]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/config/rs6000/tm-rs6000.h
Initial creation of sourceware repository
[thirdparty/binutils-gdb.git] / gdb / config / rs6000 / tm-rs6000.h
1 /* Parameters for target execution on an RS6000, for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1997
3 Free Software Foundation, Inc.
4 Contributed by IBM Corporation.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #ifdef __STDC__ /* Forward decls for prototypes */
23 struct frame_info;
24 struct type;
25 struct value;
26 #endif
27
28 /* Minimum possible text address in AIX */
29
30 #define TEXT_SEGMENT_BASE 0x10000000
31
32 /* Load segment of a given pc value. */
33
34 #define PC_LOAD_SEGMENT(PC) pc_load_segment_name(PC)
35 extern char *pc_load_segment_name PARAMS ((CORE_ADDR));
36
37 /* AIX cc seems to get this right. */
38
39 #define BELIEVE_PCC_PROMOTION 1
40
41 /* return true if a given `pc' value is in `call dummy' function. */
42 /* FIXME: This just checks for the end of the stack, which is broken
43 for things like stepping through gcc nested function stubs. */
44 #define PC_IN_CALL_DUMMY(STOP_PC, STOP_SP, STOP_FRAME_ADDR) \
45 (STOP_SP < STOP_PC && STOP_PC < STACK_END_ADDR)
46
47 #if 0
48 extern unsigned int text_start, data_start;
49 extern char *corefile;
50 #endif
51 extern int inferior_pid;
52
53 /* We are missing register descriptions in the system header files. Sigh! */
54
55 struct regs {
56 int gregs [32]; /* general purpose registers */
57 int pc; /* program conter */
58 int ps; /* processor status, or machine state */
59 };
60
61 struct fp_status {
62 double fpregs [32]; /* floating GP registers */
63 };
64
65
66 /* To be used by skip_prologue. */
67
68 struct rs6000_framedata {
69 int offset; /* total size of frame --- the distance
70 by which we decrement sp to allocate
71 the frame */
72 int saved_gpr; /* smallest # of saved gpr */
73 int saved_fpr; /* smallest # of saved fpr */
74 int alloca_reg; /* alloca register number (frame ptr) */
75 char frameless; /* true if frameless functions. */
76 char nosavedpc; /* true if pc not saved. */
77 int gpr_offset; /* offset of saved gprs from prev sp */
78 int fpr_offset; /* offset of saved fprs from prev sp */
79 int lr_offset; /* offset of saved lr */
80 int cr_offset; /* offset of saved cr */
81 };
82
83 /* Define the byte order of the machine. */
84
85 #define TARGET_BYTE_ORDER_DEFAULT BIG_ENDIAN
86
87 /* AIX's assembler doesn't grok dollar signs in identifiers.
88 So we use dots instead. This item must be coordinated with G++. */
89 #undef CPLUS_MARKER
90 #define CPLUS_MARKER '.'
91
92 /* Offset from address of function to start of its code.
93 Zero on most machines. */
94
95 #define FUNCTION_START_OFFSET 0
96
97 /* Advance PC across any function entry prologue instructions
98 to reach some "real" code. */
99
100 #define SKIP_PROLOGUE(pc) \
101 do { \
102 struct rs6000_framedata _frame; \
103 pc = skip_prologue (pc, &_frame); \
104 } while (0)
105
106 extern CORE_ADDR skip_prologue PARAMS((CORE_ADDR, struct rs6000_framedata *));
107
108
109 /* If PC is in some function-call trampoline code, return the PC
110 where the function itself actually starts. If not, return NULL. */
111
112 #define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc)
113 extern CORE_ADDR skip_trampoline_code PARAMS ((CORE_ADDR));
114
115 /* Number of trap signals we need to skip over, once the inferior process
116 starts running. */
117
118 #define START_INFERIOR_TRAPS_EXPECTED 2
119
120 /* AIX has a couple of strange returns from wait(). */
121
122 #define CHILD_SPECIAL_WAITSTATUS(ourstatus, hoststatus) ( \
123 /* "stop after load" status. */ \
124 (hoststatus) == 0x57c ? (ourstatus)->kind = TARGET_WAITKIND_LOADED, 1 : \
125 \
126 /* signal 0. I have no idea why wait(2) returns with this status word. */ \
127 /* It looks harmless. */ \
128 (hoststatus) == 0x7f ? (ourstatus)->kind = TARGET_WAITKIND_SPURIOUS, 1 : \
129 \
130 /* A normal waitstatus. Let the usual macros deal with it. */ \
131 0)
132
133 /* In xcoff, we cannot process line numbers when we see them. This is
134 mainly because we don't know the boundaries of the include files. So,
135 we postpone that, and then enter and sort(?) the whole line table at
136 once, when we are closing the current symbol table in end_symtab(). */
137
138 #define PROCESS_LINENUMBER_HOOK() aix_process_linenos ()
139 extern void aix_process_linenos PARAMS ((void));
140
141 /* Immediately after a function call, return the saved pc.
142 Can't go through the frames for this because on some machines
143 the new frame is not set up until the new function executes
144 some instructions. */
145
146 #define SAVED_PC_AFTER_CALL(frame) read_register (LR_REGNUM)
147
148 /* Address of end of stack space. */
149
150 #define STACK_END_ADDR 0x2ff80000
151
152 /* Stack grows downward. */
153
154 #define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
155
156 /* This is how arguments pushed onto stack or passed in registers.
157 Stack must be aligned on 64-bit boundaries when synthesizing
158 function calls. We don't need STACK_ALIGN, PUSH_ARGUMENTS will
159 handle it. */
160
161 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
162 sp = push_arguments((nargs), (args), (sp), (struct_return), (struct_addr))
163 extern CORE_ADDR push_arguments PARAMS ((int, struct value **, CORE_ADDR,
164 int, CORE_ADDR));
165
166 /* BREAKPOINT_FROM_PC uses the program counter value to determine the
167 breakpoint that should be used */
168 extern breakpoint_from_pc_fn rs6000_breakpoint_from_pc;
169 #define BREAKPOINT_FROM_PC(pcptr, lenptr) rs6000_breakpoint_from_pc (pcptr, lenptr)
170
171 /* Amount PC must be decremented by after a breakpoint.
172 This is often the number of bytes in BREAKPOINT
173 but not always. */
174
175 #define DECR_PC_AFTER_BREAK 0
176
177 /* Say how long (ordinary) registers are. This is a piece of bogosity
178 used in push_word and a few other places; REGISTER_RAW_SIZE is the
179 real way to know how big a register is. */
180 #define REGISTER_SIZE 4
181
182
183 /* Return the name of register number REG. This may return "" to
184 indicate a register number that's not used on this variant.
185 (Register numbers may be sparse for consistency between variants.) */
186 #define REGISTER_NAME(reg) (rs6000_register_name(reg))
187 extern char *rs6000_register_name (int reg);
188
189 /* Number of machine registers */
190 #define NUM_REGS 183
191
192 /* Register numbers of various important registers.
193 Note that some of these values are "real" register numbers,
194 and correspond to the general registers of the machine,
195 and some are "phony" register numbers which are too large
196 to be actual register numbers as far as the user is concerned
197 but do serve to get the desired values when passed to read_register. */
198
199 #define FP_REGNUM 1 /* Contains address of executing stack frame */
200 #define SP_REGNUM 1 /* Contains address of top of stack */
201 #define TOC_REGNUM 2 /* TOC register */
202 #define FP0_REGNUM 32 /* Floating point register 0 */
203 #define GP0_REGNUM 0 /* GPR register 0 */
204 #define FP0_REGNUM 32 /* FPR (Floating point) register 0 */
205 #define FPLAST_REGNUM 63 /* Last floating point register */
206
207 /* Special purpose registers... */
208 /* P.S. keep these in the same order as in /usr/mstsave.h `mstsave'
209 structure, for easier processing */
210
211 #define PC_REGNUM 64 /* Program counter (instruction address %iar)*/
212 #define PS_REGNUM 65 /* Processor (or machine) status (%msr) */
213 #define CR_REGNUM 66 /* Condition register */
214 #define LR_REGNUM 67 /* Link register */
215 #define CTR_REGNUM 68 /* Count register */
216 #define XER_REGNUM 69 /* Fixed point exception registers */
217 #define MQ_REGNUM 70 /* Multiply/quotient register */
218
219 /* These #defines are used to parse core files and talk to ptrace, so they
220 must remain fixed. */
221 #define FIRST_UISA_SP_REGNUM 64 /* first special register number */
222 #define LAST_UISA_SP_REGNUM 70 /* last special register number */
223
224 /* This is the offset in REG_NAMES at which the `set processor'
225 command starts plugging in its names. */
226 #define FIRST_VARIANT_REGISTER 66
227
228 /* Total amount of space needed to store our copies of the machine's
229 register state, the array `registers'.
230 32 4-byte gpr's
231 32 8-byte fpr's
232 7 4-byte UISA special purpose registers,
233 16 4-byte segment registers,
234 32 4-byte standard OEA special-purpose registers,
235 and up to 64 4-byte non-standard OEA special purpose regs.
236 total: (+ (* 32 4) (* 32 8) (* 7 4) (* 16 4) (* 32 4) (* 64 4)) 860 bytes
237 Keep some extra space for now, in case to add more. */
238 #define REGISTER_BYTES 880
239
240
241 /* Index within `registers' of the first byte of the space for
242 register N. */
243
244 #define REGISTER_BYTE(N) \
245 ( \
246 ((N) > FPLAST_REGNUM) ? ((((N) - FPLAST_REGNUM -1) * 4) + 384)\
247 :((N) >= FP0_REGNUM) ? ((((N) - FP0_REGNUM) * 8) + 128) \
248 :((N) * 4) )
249
250 /* Number of bytes of storage in the actual machine representation
251 for register N. */
252 /* Note that the unsigned cast here forces the result of the
253 subtraction to very high positive values if N < FP0_REGNUM */
254
255 #define REGISTER_RAW_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
256
257 /* Number of bytes of storage in the program's representation
258 for register N. On the RS6000, all regs are 4 bytes
259 except the floating point regs which are 8-byte doubles. */
260
261 #define REGISTER_VIRTUAL_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
262
263 /* Largest value REGISTER_RAW_SIZE can have. */
264
265 #define MAX_REGISTER_RAW_SIZE 8
266
267 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
268
269 #define MAX_REGISTER_VIRTUAL_SIZE 8
270
271 /* convert a dbx stab register number (from `r' declaration) to a gdb REGNUM */
272
273 #define STAB_REG_TO_REGNUM(value) (value)
274
275 /* Nonzero if register N requires conversion
276 from raw format to virtual format.
277 The register format for rs6000 floating point registers is always
278 double, we need a conversion if the memory format is float. */
279
280 #define REGISTER_CONVERTIBLE(N) ((N) >= FP0_REGNUM && (N) <= FPLAST_REGNUM)
281
282 /* Convert data from raw format for register REGNUM in buffer FROM
283 to virtual format with type TYPE in buffer TO. */
284
285 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
286 { \
287 if (TYPE_LENGTH (TYPE) != REGISTER_RAW_SIZE (REGNUM)) \
288 { \
289 double val = extract_floating ((FROM), REGISTER_RAW_SIZE (REGNUM)); \
290 store_floating ((TO), TYPE_LENGTH (TYPE), val); \
291 } \
292 else \
293 memcpy ((TO), (FROM), REGISTER_RAW_SIZE (REGNUM)); \
294 }
295
296 /* Convert data from virtual format with type TYPE in buffer FROM
297 to raw format for register REGNUM in buffer TO. */
298
299 #define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
300 { \
301 if (TYPE_LENGTH (TYPE) != REGISTER_RAW_SIZE (REGNUM)) \
302 { \
303 double val = extract_floating ((FROM), TYPE_LENGTH (TYPE)); \
304 store_floating ((TO), REGISTER_RAW_SIZE (REGNUM), val); \
305 } \
306 else \
307 memcpy ((TO), (FROM), REGISTER_RAW_SIZE (REGNUM)); \
308 }
309
310 /* Return the GDB type object for the "standard" data type
311 of data in register N. */
312
313 #define REGISTER_VIRTUAL_TYPE(N) \
314 (((unsigned)(N) - FP0_REGNUM) < 32 ? builtin_type_double : builtin_type_int)
315
316 /* Store the address of the place in which to copy the structure the
317 subroutine will return. This is called from call_function. */
318 /* in RS6000, struct return addresses are passed as an extra parameter in r3.
319 In function return, callee is not responsible of returning this address back.
320 Since gdb needs to find it, we will store in a designated variable
321 `rs6000_struct_return_address'. */
322
323 extern CORE_ADDR rs6000_struct_return_address;
324
325 #define STORE_STRUCT_RETURN(ADDR, SP) \
326 { write_register (3, (ADDR)); \
327 rs6000_struct_return_address = (ADDR); }
328
329 /* Extract from an array REGBUF containing the (raw) register state
330 a function return value of type TYPE, and copy that, in virtual format,
331 into VALBUF. */
332
333 /* #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
334 memcpy (VALBUF, REGBUF, TYPE_LENGTH (TYPE)) */
335
336 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
337 extract_return_value(TYPE,REGBUF,VALBUF)
338 extern void extract_return_value PARAMS ((struct type *, char [], char *));
339
340 /* Write into appropriate registers a function return value
341 of type TYPE, given in virtual format. */
342
343 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
344 { \
345 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \
346 \
347 /* Floating point values are returned starting from FPR1 and up. \
348 Say a double_double_double type could be returned in \
349 FPR1/FPR2/FPR3 triple. */ \
350 \
351 write_register_bytes (REGISTER_BYTE (FP0_REGNUM+1), (VALBUF), \
352 TYPE_LENGTH (TYPE)); \
353 else \
354 /* Everything else is returned in GPR3 and up. */ \
355 write_register_bytes (REGISTER_BYTE (GP0_REGNUM+3), (VALBUF), \
356 TYPE_LENGTH (TYPE)); \
357 }
358
359
360 /* Extract from an array REGBUF containing the (raw) register state
361 the address in which a function should return its structure value,
362 as a CORE_ADDR (or an expression that can be used as one). */
363
364 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) rs6000_struct_return_address
365 \f
366 /* Describe the pointer in each stack frame to the previous stack frame
367 (its caller). */
368
369 /* FRAME_CHAIN takes a frame's nominal address
370 and produces the frame's chain-pointer. */
371
372 /* In the case of the RS6000, the frame's nominal address
373 is the address of a 4-byte word containing the calling frame's address. */
374
375 #define FRAME_CHAIN(thisframe) rs6000_frame_chain (thisframe)
376 CORE_ADDR rs6000_frame_chain PARAMS ((struct frame_info *));
377
378 /* Define other aspects of the stack frame. */
379
380 /* A macro that tells us whether the function invocation represented
381 by FI does not have a frame on the stack associated with it. If it
382 does not, FRAMELESS is set to 1, else 0. */
383
384 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
385 FRAMELESS = frameless_function_invocation (FI)
386
387 extern int frameless_function_invocation PARAMS((struct frame_info *));
388
389 #define INIT_FRAME_PC_FIRST(fromleaf, prev) \
390 prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \
391 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
392 #define INIT_FRAME_PC(fromleaf, prev) /* nothing */
393 extern void rs6000_init_extra_frame_info (int fromleaf, struct frame_info *);
394 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) rs6000_init_extra_frame_info (fromleaf, fi)
395
396 /* If the kernel has to deliver a signal, it pushes a sigcontext
397 structure on the stack and then calls the signal handler, passing
398 the address of the sigcontext in an argument register. Usually
399 the signal handler doesn't save this register, so we have to
400 access the sigcontext structure via an offset from the signal handler
401 frame.
402 The following constants were determined by experimentation on AIX 3.2. */
403 #define SIG_FRAME_PC_OFFSET 96
404 #define SIG_FRAME_LR_OFFSET 108
405 #define SIG_FRAME_FP_OFFSET 284
406
407 /* Default offset from SP where the LR is stored */
408 #define DEFAULT_LR_SAVE 8
409
410 /* Return saved PC from a frame */
411 #define FRAME_SAVED_PC(FRAME) frame_saved_pc (FRAME)
412
413 extern unsigned long frame_saved_pc PARAMS ((struct frame_info *));
414
415 extern CORE_ADDR rs6000_frame_args_address PARAMS ((struct frame_info *));
416 #define FRAME_ARGS_ADDRESS(FI) rs6000_frame_args_address (FI)
417
418 #define FRAME_LOCALS_ADDRESS(FI) FRAME_ARGS_ADDRESS(FI)
419
420
421 /* Set VAL to the number of args passed to frame described by FI.
422 Can set VAL to -1, meaning no way to tell. */
423
424 /* We can't tell how many args there are
425 now that the C compiler delays popping them. */
426
427 #define FRAME_NUM_ARGS(val,fi) (val = -1)
428
429 /* Return number of bytes at start of arglist that are not really args. */
430
431 #define FRAME_ARGS_SKIP 8 /* Not sure on this. FIXMEmgo */
432
433 /* Put here the code to store, into a struct frame_saved_regs,
434 the addresses of the saved registers of frame described by FRAME_INFO.
435 This includes special registers such as pc and fp saved in special
436 ways in the stack frame. sp is even more special:
437 the address we return for it IS the sp for the next frame. */
438 /* In the following implementation for RS6000, we did *not* save sp. I am
439 not sure if it will be needed. The following macro takes care of gpr's
440 and fpr's only. */
441
442 extern void rs6000_frame_init_saved_regs PARAMS ((struct frame_info *));
443 #define FRAME_INIT_SAVED_REGS(FI) rs6000_frame_init_saved_regs (FI)
444
445 /* Things needed for making the inferior call functions. */
446
447 /* Push an empty stack frame, to record the current PC, etc. */
448 /* Change these names into rs6k_{push, pop}_frame(). FIXMEmgo. */
449
450 #define PUSH_DUMMY_FRAME push_dummy_frame ()
451 extern void push_dummy_frame PARAMS ((void));
452
453 /* Discard from the stack the innermost frame,
454 restoring all saved registers. */
455
456 #define POP_FRAME pop_frame ()
457 extern void pop_frame PARAMS ((void));
458
459 /* This sequence of words is the instructions:
460
461 mflr r0 // 0x7c0802a6
462 // save fpr's
463 stfd r?, num(r1) // 0xd8010000 there should be 32 of this??
464 // save gpr's
465 stm r0, num(r1) // 0xbc010000
466 stu r1, num(r1) // 0x94210000
467
468 // the function we want to branch might be in a different load
469 // segment. reset the toc register. Note that the actual toc address
470 // will be fix by fix_call_dummy () along with function address.
471
472 st r2, 0x14(r1) // 0x90410014 save toc register
473 liu r2, 0x1234 // 0x3c401234 reset a new toc value 0x12345678
474 oril r2, r2,0x5678 // 0x60425678
475
476 // load absolute address 0x12345678 to r0
477 liu r0, 0x1234 // 0x3c001234
478 oril r0, r0,0x5678 // 0x60005678
479 mtctr r0 // 0x7c0903a6 ctr <- r0
480 bctrl // 0x4e800421 jump subroutine 0x12345678 (%ctr)
481 cror 0xf, 0xf, 0xf // 0x4def7b82
482 brpt // 0x7d821008, breakpoint
483 cror 0xf, 0xf, 0xf // 0x4def7b82 (for 8 byte alignment)
484
485
486 We actually start executing by saving the toc register first, since the pushing
487 of the registers is done by PUSH_DUMMY_FRAME. If this were real code,
488 the arguments for the function called by the `bctrl' would be pushed
489 between the `stu' and the `bctrl', and we could allow it to execute through.
490 But the arguments have to be pushed by GDB after the PUSH_DUMMY_FRAME is done,
491 and we cannot allow to push the registers again.
492 */
493
494 #define CALL_DUMMY {0x7c0802a6, 0xd8010000, 0xbc010000, 0x94210000, \
495 0x90410014, 0x3c401234, 0x60425678, \
496 0x3c001234, 0x60005678, 0x7c0903a6, 0x4e800421, \
497 0x4def7b82, 0x7d821008, 0x4def7b82 }
498
499
500 /* keep this as multiple of 8 (%sp requires 8 byte alignment) */
501 #define CALL_DUMMY_LENGTH 56
502
503 #define CALL_DUMMY_START_OFFSET 16
504
505 /* Insert the specified number of args and function address into a
506 call sequence of the above form stored at DUMMYNAME. */
507
508 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
509 rs6000_fix_call_dummy (dummyname, pc, fun, nargs, args, type, gcc_p)
510 extern void rs6000_fix_call_dummy PARAMS ((char *, CORE_ADDR, CORE_ADDR,
511 int, struct value **,
512 struct type *, int));
513
514 /* Hook in rs6000-tdep.c for determining the TOC address when
515 calling functions in the inferior. */
516 extern CORE_ADDR (*find_toc_address_hook) PARAMS ((CORE_ADDR));
517
518 /* xcoffread.c provides a function to determine the TOC offset
519 for a given object file.
520 It is used under native AIX configurations for determining the
521 TOC address when calling functions in the inferior. */
522 #ifdef __STDC__
523 struct objfile;
524 #endif
525 extern CORE_ADDR get_toc_offset PARAMS ((struct objfile *));
526
527 /* Usually a function pointer's representation is simply the address
528 of the function. On the RS/6000 however, a function pointer is
529 represented by a pointer to a TOC entry. This TOC entry contains
530 three words, the first word is the address of the function, the
531 second word is the TOC pointer (r2), and the third word is the
532 static chain value. Throughout GDB it is currently assumed that a
533 function pointer contains the address of the function, which is not
534 easy to fix. In addition, the conversion of a function address to
535 a function pointer would require allocation of a TOC entry in the
536 inferior's memory space, with all its drawbacks. To be able to
537 call C++ virtual methods in the inferior (which are called via
538 function pointers), find_function_addr uses this macro to get the
539 function address from a function pointer. */
540
541 #define CONVERT_FROM_FUNC_PTR_ADDR(ADDR) \
542 (is_magic_function_pointer (ADDR) ? read_memory_integer (ADDR, 4) : (ADDR))
543 extern int is_magic_function_pointer PARAMS ((CORE_ADDR));
544
545 /* Flag for machine-specific stuff in shared files. FIXME */
546 #define IBM6000_TARGET
547
548 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
549
550 #define SOFTWARE_SINGLE_STEP_P 1
551 extern void rs6000_software_single_step PARAMS ((unsigned int, int));
552 #define SOFTWARE_SINGLE_STEP(sig,bp_p) rs6000_software_single_step (sig, bp_p)
553
554 /* If the current gcc for for this target does not produce correct debugging
555 information for float parameters, both prototyped and unprototyped, then
556 define this macro. This forces gdb to always assume that floats are
557 passed as doubles and then converted in the callee.
558
559 For the PowerPC, it appears that the debug info marks the parameters as
560 floats regardless of whether the function is prototyped, but the actual
561 values are always passed in as doubles. Thus by setting this to 1, both
562 types of calls will work. */
563
564 #define COERCE_FLOAT_TO_DOUBLE 1