]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/corelow.c
Update year range in copyright notice of all files owned by the GDB project.
[thirdparty/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #ifdef HAVE_SYS_FILE_H
25 #include <sys/file.h> /* needed for F_OK and friends */
26 #endif
27 #include "frame.h" /* required by inferior.h */
28 #include "inferior.h"
29 #include "infrun.h"
30 #include "symtab.h"
31 #include "command.h"
32 #include "bfd.h"
33 #include "target.h"
34 #include "gdbcore.h"
35 #include "gdbthread.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "exec.h"
40 #include "readline/readline.h"
41 #include "solib.h"
42 #include "filenames.h"
43 #include "progspace.h"
44 #include "objfiles.h"
45 #include "gdb_bfd.h"
46 #include "completer.h"
47 #include "filestuff.h"
48
49 #ifndef O_LARGEFILE
50 #define O_LARGEFILE 0
51 #endif
52
53 /* List of all available core_fns. On gdb startup, each core file
54 register reader calls deprecated_add_core_fns() to register
55 information on each core format it is prepared to read. */
56
57 static struct core_fns *core_file_fns = NULL;
58
59 /* The core_fns for a core file handler that is prepared to read the
60 core file currently open on core_bfd. */
61
62 static struct core_fns *core_vec = NULL;
63
64 /* FIXME: kettenis/20031023: Eventually this variable should
65 disappear. */
66
67 static struct gdbarch *core_gdbarch = NULL;
68
69 /* Per-core data. Currently, only the section table. Note that these
70 target sections are *not* mapped in the current address spaces' set
71 of target sections --- those should come only from pure executable
72 or shared library bfds. The core bfd sections are an
73 implementation detail of the core target, just like ptrace is for
74 unix child targets. */
75 static struct target_section_table *core_data;
76
77 static void core_files_info (struct target_ops *);
78
79 static struct core_fns *sniff_core_bfd (bfd *);
80
81 static int gdb_check_format (bfd *);
82
83 static void core_close (struct target_ops *self);
84
85 static void core_close_cleanup (void *ignore);
86
87 static void add_to_thread_list (bfd *, asection *, void *);
88
89 static void init_core_ops (void);
90
91 void _initialize_corelow (void);
92
93 static struct target_ops core_ops;
94
95 /* An arbitrary identifier for the core inferior. */
96 #define CORELOW_PID 1
97
98 /* Link a new core_fns into the global core_file_fns list. Called on
99 gdb startup by the _initialize routine in each core file register
100 reader, to register information about each format the reader is
101 prepared to handle. */
102
103 void
104 deprecated_add_core_fns (struct core_fns *cf)
105 {
106 cf->next = core_file_fns;
107 core_file_fns = cf;
108 }
109
110 /* The default function that core file handlers can use to examine a
111 core file BFD and decide whether or not to accept the job of
112 reading the core file. */
113
114 int
115 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
116 {
117 int result;
118
119 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
120 return (result);
121 }
122
123 /* Walk through the list of core functions to find a set that can
124 handle the core file open on ABFD. Returns pointer to set that is
125 selected. */
126
127 static struct core_fns *
128 sniff_core_bfd (bfd *abfd)
129 {
130 struct core_fns *cf;
131 struct core_fns *yummy = NULL;
132 int matches = 0;;
133
134 /* Don't sniff if we have support for register sets in
135 CORE_GDBARCH. */
136 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
137 return NULL;
138
139 for (cf = core_file_fns; cf != NULL; cf = cf->next)
140 {
141 if (cf->core_sniffer (cf, abfd))
142 {
143 yummy = cf;
144 matches++;
145 }
146 }
147 if (matches > 1)
148 {
149 warning (_("\"%s\": ambiguous core format, %d handlers match"),
150 bfd_get_filename (abfd), matches);
151 }
152 else if (matches == 0)
153 error (_("\"%s\": no core file handler recognizes format"),
154 bfd_get_filename (abfd));
155
156 return (yummy);
157 }
158
159 /* The default is to reject every core file format we see. Either
160 BFD has to recognize it, or we have to provide a function in the
161 core file handler that recognizes it. */
162
163 int
164 default_check_format (bfd *abfd)
165 {
166 return (0);
167 }
168
169 /* Attempt to recognize core file formats that BFD rejects. */
170
171 static int
172 gdb_check_format (bfd *abfd)
173 {
174 struct core_fns *cf;
175
176 for (cf = core_file_fns; cf != NULL; cf = cf->next)
177 {
178 if (cf->check_format (abfd))
179 {
180 return (1);
181 }
182 }
183 return (0);
184 }
185
186 /* Discard all vestiges of any previous core file and mark data and
187 stack spaces as empty. */
188
189 static void
190 core_close (struct target_ops *self)
191 {
192 if (core_bfd)
193 {
194 int pid = ptid_get_pid (inferior_ptid);
195 inferior_ptid = null_ptid; /* Avoid confusion from thread
196 stuff. */
197 if (pid != 0)
198 exit_inferior_silent (pid);
199
200 /* Clear out solib state while the bfd is still open. See
201 comments in clear_solib in solib.c. */
202 clear_solib ();
203
204 if (core_data)
205 {
206 xfree (core_data->sections);
207 xfree (core_data);
208 core_data = NULL;
209 }
210
211 gdb_bfd_unref (core_bfd);
212 core_bfd = NULL;
213 }
214 core_vec = NULL;
215 core_gdbarch = NULL;
216 }
217
218 static void
219 core_close_cleanup (void *ignore)
220 {
221 core_close (NULL);
222 }
223
224 /* Look for sections whose names start with `.reg/' so that we can
225 extract the list of threads in a core file. */
226
227 static void
228 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
229 {
230 ptid_t ptid;
231 int core_tid;
232 int pid, lwpid;
233 asection *reg_sect = (asection *) reg_sect_arg;
234 int fake_pid_p = 0;
235 struct inferior *inf;
236
237 if (strncmp (bfd_section_name (abfd, asect), ".reg/", 5) != 0)
238 return;
239
240 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
241
242 pid = bfd_core_file_pid (core_bfd);
243 if (pid == 0)
244 {
245 fake_pid_p = 1;
246 pid = CORELOW_PID;
247 }
248
249 lwpid = core_tid;
250
251 inf = current_inferior ();
252 if (inf->pid == 0)
253 {
254 inferior_appeared (inf, pid);
255 inf->fake_pid_p = fake_pid_p;
256 }
257
258 ptid = ptid_build (pid, lwpid, 0);
259
260 add_thread (ptid);
261
262 /* Warning, Will Robinson, looking at BFD private data! */
263
264 if (reg_sect != NULL
265 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
266 inferior_ptid = ptid; /* Yes, make it current. */
267 }
268
269 /* This routine opens and sets up the core file bfd. */
270
271 static void
272 core_open (const char *arg, int from_tty)
273 {
274 const char *p;
275 int siggy;
276 struct cleanup *old_chain;
277 char *temp;
278 bfd *temp_bfd;
279 int scratch_chan;
280 int flags;
281 volatile struct gdb_exception except;
282 char *filename;
283
284 target_preopen (from_tty);
285 if (!arg)
286 {
287 if (core_bfd)
288 error (_("No core file specified. (Use `detach' "
289 "to stop debugging a core file.)"));
290 else
291 error (_("No core file specified."));
292 }
293
294 filename = tilde_expand (arg);
295 if (!IS_ABSOLUTE_PATH (filename))
296 {
297 temp = concat (current_directory, "/",
298 filename, (char *) NULL);
299 xfree (filename);
300 filename = temp;
301 }
302
303 old_chain = make_cleanup (xfree, filename);
304
305 flags = O_BINARY | O_LARGEFILE;
306 if (write_files)
307 flags |= O_RDWR;
308 else
309 flags |= O_RDONLY;
310 scratch_chan = gdb_open_cloexec (filename, flags, 0);
311 if (scratch_chan < 0)
312 perror_with_name (filename);
313
314 temp_bfd = gdb_bfd_fopen (filename, gnutarget,
315 write_files ? FOPEN_RUB : FOPEN_RB,
316 scratch_chan);
317 if (temp_bfd == NULL)
318 perror_with_name (filename);
319
320 if (!bfd_check_format (temp_bfd, bfd_core)
321 && !gdb_check_format (temp_bfd))
322 {
323 /* Do it after the err msg */
324 /* FIXME: should be checking for errors from bfd_close (for one
325 thing, on error it does not free all the storage associated
326 with the bfd). */
327 make_cleanup_bfd_unref (temp_bfd);
328 error (_("\"%s\" is not a core dump: %s"),
329 filename, bfd_errmsg (bfd_get_error ()));
330 }
331
332 /* Looks semi-reasonable. Toss the old core file and work on the
333 new. */
334
335 do_cleanups (old_chain);
336 unpush_target (&core_ops);
337 core_bfd = temp_bfd;
338 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
339
340 core_gdbarch = gdbarch_from_bfd (core_bfd);
341
342 /* Find a suitable core file handler to munch on core_bfd */
343 core_vec = sniff_core_bfd (core_bfd);
344
345 validate_files ();
346
347 core_data = XCNEW (struct target_section_table);
348
349 /* Find the data section */
350 if (build_section_table (core_bfd,
351 &core_data->sections,
352 &core_data->sections_end))
353 error (_("\"%s\": Can't find sections: %s"),
354 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
355
356 /* If we have no exec file, try to set the architecture from the
357 core file. We don't do this unconditionally since an exec file
358 typically contains more information that helps us determine the
359 architecture than a core file. */
360 if (!exec_bfd)
361 set_gdbarch_from_file (core_bfd);
362
363 push_target (&core_ops);
364 discard_cleanups (old_chain);
365
366 /* Do this before acknowledging the inferior, so if
367 post_create_inferior throws (can happen easilly if you're loading
368 a core file with the wrong exec), we aren't left with threads
369 from the previous inferior. */
370 init_thread_list ();
371
372 inferior_ptid = null_ptid;
373
374 /* Need to flush the register cache (and the frame cache) from a
375 previous debug session. If inferior_ptid ends up the same as the
376 last debug session --- e.g., b foo; run; gcore core1; step; gcore
377 core2; core core1; core core2 --- then there's potential for
378 get_current_regcache to return the cached regcache of the
379 previous session, and the frame cache being stale. */
380 registers_changed ();
381
382 /* Build up thread list from BFD sections, and possibly set the
383 current thread to the .reg/NN section matching the .reg
384 section. */
385 bfd_map_over_sections (core_bfd, add_to_thread_list,
386 bfd_get_section_by_name (core_bfd, ".reg"));
387
388 if (ptid_equal (inferior_ptid, null_ptid))
389 {
390 /* Either we found no .reg/NN section, and hence we have a
391 non-threaded core (single-threaded, from gdb's perspective),
392 or for some reason add_to_thread_list couldn't determine
393 which was the "main" thread. The latter case shouldn't
394 usually happen, but we're dealing with input here, which can
395 always be broken in different ways. */
396 struct thread_info *thread = first_thread_of_process (-1);
397
398 if (thread == NULL)
399 {
400 inferior_appeared (current_inferior (), CORELOW_PID);
401 inferior_ptid = pid_to_ptid (CORELOW_PID);
402 add_thread_silent (inferior_ptid);
403 }
404 else
405 switch_to_thread (thread->ptid);
406 }
407
408 post_create_inferior (&core_ops, from_tty);
409
410 /* Now go through the target stack looking for threads since there
411 may be a thread_stratum target loaded on top of target core by
412 now. The layer above should claim threads found in the BFD
413 sections. */
414 TRY_CATCH (except, RETURN_MASK_ERROR)
415 {
416 target_update_thread_list ();
417 }
418
419 if (except.reason < 0)
420 exception_print (gdb_stderr, except);
421
422 p = bfd_core_file_failing_command (core_bfd);
423 if (p)
424 printf_filtered (_("Core was generated by `%s'.\n"), p);
425
426 /* Clearing any previous state of convenience variables. */
427 clear_exit_convenience_vars ();
428
429 siggy = bfd_core_file_failing_signal (core_bfd);
430 if (siggy > 0)
431 {
432 /* If we don't have a CORE_GDBARCH to work with, assume a native
433 core (map gdb_signal from host signals). If we do have
434 CORE_GDBARCH to work with, but no gdb_signal_from_target
435 implementation for that gdbarch, as a fallback measure,
436 assume the host signal mapping. It'll be correct for native
437 cores, but most likely incorrect for cross-cores. */
438 enum gdb_signal sig = (core_gdbarch != NULL
439 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
440 ? gdbarch_gdb_signal_from_target (core_gdbarch,
441 siggy)
442 : gdb_signal_from_host (siggy));
443
444 printf_filtered (_("Program terminated with signal %s, %s.\n"),
445 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
446
447 /* Set the value of the internal variable $_exitsignal,
448 which holds the signal uncaught by the inferior. */
449 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
450 siggy);
451 }
452
453 /* Fetch all registers from core file. */
454 target_fetch_registers (get_current_regcache (), -1);
455
456 /* Now, set up the frame cache, and print the top of stack. */
457 reinit_frame_cache ();
458 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
459 }
460
461 static void
462 core_detach (struct target_ops *ops, const char *args, int from_tty)
463 {
464 if (args)
465 error (_("Too many arguments"));
466 unpush_target (ops);
467 reinit_frame_cache ();
468 if (from_tty)
469 printf_filtered (_("No core file now.\n"));
470 }
471
472 /* Try to retrieve registers from a section in core_bfd, and supply
473 them to core_vec->core_read_registers, as the register set numbered
474 WHICH.
475
476 If inferior_ptid's lwp member is zero, do the single-threaded
477 thing: look for a section named NAME. If inferior_ptid's lwp
478 member is non-zero, do the multi-threaded thing: look for a section
479 named "NAME/LWP", where LWP is the shortest ASCII decimal
480 representation of inferior_ptid's lwp member.
481
482 HUMAN_NAME is a human-readable name for the kind of registers the
483 NAME section contains, for use in error messages.
484
485 If REQUIRED is non-zero, print an error if the core file doesn't
486 have a section by the appropriate name. Otherwise, just do
487 nothing. */
488
489 static void
490 get_core_register_section (struct regcache *regcache,
491 const struct regset *regset,
492 const char *name,
493 int min_size,
494 int which,
495 const char *human_name,
496 int required)
497 {
498 static char *section_name = NULL;
499 struct bfd_section *section;
500 bfd_size_type size;
501 char *contents;
502
503 xfree (section_name);
504
505 if (ptid_get_lwp (inferior_ptid))
506 section_name = xstrprintf ("%s/%ld", name,
507 ptid_get_lwp (inferior_ptid));
508 else
509 section_name = xstrdup (name);
510
511 section = bfd_get_section_by_name (core_bfd, section_name);
512 if (! section)
513 {
514 if (required)
515 warning (_("Couldn't find %s registers in core file."),
516 human_name);
517 return;
518 }
519
520 size = bfd_section_size (core_bfd, section);
521 if (size < min_size)
522 {
523 warning (_("Section `%s' in core file too small."), section_name);
524 return;
525 }
526
527 contents = alloca (size);
528 if (! bfd_get_section_contents (core_bfd, section, contents,
529 (file_ptr) 0, size))
530 {
531 warning (_("Couldn't read %s registers from `%s' section in core file."),
532 human_name, name);
533 return;
534 }
535
536 if (regset != NULL)
537 {
538 regset->supply_regset (regset, regcache, -1, contents, size);
539 return;
540 }
541
542 gdb_assert (core_vec);
543 core_vec->core_read_registers (regcache, contents, size, which,
544 ((CORE_ADDR)
545 bfd_section_vma (core_bfd, section)));
546 }
547
548 /* Callback for get_core_registers that handles a single core file
549 register note section. */
550
551 static void
552 get_core_registers_cb (const char *sect_name, int size,
553 const struct regset *regset,
554 const char *human_name, void *cb_data)
555 {
556 struct regcache *regcache = (struct regcache *) cb_data;
557 int required = 0;
558
559 if (strcmp (sect_name, ".reg") == 0)
560 {
561 required = 1;
562 if (human_name == NULL)
563 human_name = "general-purpose";
564 }
565 else if (strcmp (sect_name, ".reg2") == 0)
566 {
567 if (human_name == NULL)
568 human_name = "floating-point";
569 }
570
571 /* The 'which' parameter is only used when no regset is provided.
572 Thus we just set it to -1. */
573 get_core_register_section (regcache, regset, sect_name,
574 size, -1, human_name, required);
575 }
576
577 /* Get the registers out of a core file. This is the machine-
578 independent part. Fetch_core_registers is the machine-dependent
579 part, typically implemented in the xm-file for each
580 architecture. */
581
582 /* We just get all the registers, so we don't use regno. */
583
584 static void
585 get_core_registers (struct target_ops *ops,
586 struct regcache *regcache, int regno)
587 {
588 int i;
589 struct gdbarch *gdbarch;
590
591 if (!(core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
592 && (core_vec == NULL || core_vec->core_read_registers == NULL))
593 {
594 fprintf_filtered (gdb_stderr,
595 "Can't fetch registers from this type of core file\n");
596 return;
597 }
598
599 gdbarch = get_regcache_arch (regcache);
600 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
601 gdbarch_iterate_over_regset_sections (gdbarch,
602 get_core_registers_cb,
603 (void *) regcache, NULL);
604 else
605 {
606 get_core_register_section (regcache, NULL,
607 ".reg", 0, 0, "general-purpose", 1);
608 get_core_register_section (regcache, NULL,
609 ".reg2", 0, 2, "floating-point", 0);
610 }
611
612 /* Mark all registers not found in the core as unavailable. */
613 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
614 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
615 regcache_raw_supply (regcache, i, NULL);
616 }
617
618 static void
619 core_files_info (struct target_ops *t)
620 {
621 print_section_info (core_data, core_bfd);
622 }
623 \f
624 struct spuid_list
625 {
626 gdb_byte *buf;
627 ULONGEST offset;
628 LONGEST len;
629 ULONGEST pos;
630 ULONGEST written;
631 };
632
633 static void
634 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
635 {
636 struct spuid_list *list = list_p;
637 enum bfd_endian byte_order
638 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
639 int fd, pos = 0;
640
641 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
642 if (pos == 0)
643 return;
644
645 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
646 {
647 store_unsigned_integer (list->buf + list->pos - list->offset,
648 4, byte_order, fd);
649 list->written += 4;
650 }
651 list->pos += 4;
652 }
653
654 /* Read siginfo data from the core, if possible. Returns -1 on
655 failure. Otherwise, returns the number of bytes read. ABFD is the
656 core file's BFD; READBUF, OFFSET, and LEN are all as specified by
657 the to_xfer_partial interface. */
658
659 static LONGEST
660 get_core_siginfo (bfd *abfd, gdb_byte *readbuf, ULONGEST offset, ULONGEST len)
661 {
662 asection *section;
663 char *section_name;
664 const char *name = ".note.linuxcore.siginfo";
665
666 if (ptid_get_lwp (inferior_ptid))
667 section_name = xstrprintf ("%s/%ld", name,
668 ptid_get_lwp (inferior_ptid));
669 else
670 section_name = xstrdup (name);
671
672 section = bfd_get_section_by_name (abfd, section_name);
673 xfree (section_name);
674 if (section == NULL)
675 return -1;
676
677 if (!bfd_get_section_contents (abfd, section, readbuf, offset, len))
678 return -1;
679
680 return len;
681 }
682
683 static enum target_xfer_status
684 core_xfer_partial (struct target_ops *ops, enum target_object object,
685 const char *annex, gdb_byte *readbuf,
686 const gdb_byte *writebuf, ULONGEST offset,
687 ULONGEST len, ULONGEST *xfered_len)
688 {
689 switch (object)
690 {
691 case TARGET_OBJECT_MEMORY:
692 return section_table_xfer_memory_partial (readbuf, writebuf,
693 offset, len, xfered_len,
694 core_data->sections,
695 core_data->sections_end,
696 NULL);
697
698 case TARGET_OBJECT_AUXV:
699 if (readbuf)
700 {
701 /* When the aux vector is stored in core file, BFD
702 represents this with a fake section called ".auxv". */
703
704 struct bfd_section *section;
705 bfd_size_type size;
706
707 section = bfd_get_section_by_name (core_bfd, ".auxv");
708 if (section == NULL)
709 return TARGET_XFER_E_IO;
710
711 size = bfd_section_size (core_bfd, section);
712 if (offset >= size)
713 return TARGET_XFER_EOF;
714 size -= offset;
715 if (size > len)
716 size = len;
717
718 if (size == 0)
719 return TARGET_XFER_EOF;
720 if (!bfd_get_section_contents (core_bfd, section, readbuf,
721 (file_ptr) offset, size))
722 {
723 warning (_("Couldn't read NT_AUXV note in core file."));
724 return TARGET_XFER_E_IO;
725 }
726
727 *xfered_len = (ULONGEST) size;
728 return TARGET_XFER_OK;
729 }
730 return TARGET_XFER_E_IO;
731
732 case TARGET_OBJECT_WCOOKIE:
733 if (readbuf)
734 {
735 /* When the StackGhost cookie is stored in core file, BFD
736 represents this with a fake section called
737 ".wcookie". */
738
739 struct bfd_section *section;
740 bfd_size_type size;
741
742 section = bfd_get_section_by_name (core_bfd, ".wcookie");
743 if (section == NULL)
744 return TARGET_XFER_E_IO;
745
746 size = bfd_section_size (core_bfd, section);
747 if (offset >= size)
748 return TARGET_XFER_EOF;
749 size -= offset;
750 if (size > len)
751 size = len;
752
753 if (size == 0)
754 return TARGET_XFER_EOF;
755 if (!bfd_get_section_contents (core_bfd, section, readbuf,
756 (file_ptr) offset, size))
757 {
758 warning (_("Couldn't read StackGhost cookie in core file."));
759 return TARGET_XFER_E_IO;
760 }
761
762 *xfered_len = (ULONGEST) size;
763 return TARGET_XFER_OK;
764
765 }
766 return TARGET_XFER_E_IO;
767
768 case TARGET_OBJECT_LIBRARIES:
769 if (core_gdbarch
770 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
771 {
772 if (writebuf)
773 return TARGET_XFER_E_IO;
774 else
775 {
776 *xfered_len = gdbarch_core_xfer_shared_libraries (core_gdbarch,
777 readbuf,
778 offset, len);
779
780 if (*xfered_len == 0)
781 return TARGET_XFER_EOF;
782 else
783 return TARGET_XFER_OK;
784 }
785 }
786 /* FALL THROUGH */
787
788 case TARGET_OBJECT_LIBRARIES_AIX:
789 if (core_gdbarch
790 && gdbarch_core_xfer_shared_libraries_aix_p (core_gdbarch))
791 {
792 if (writebuf)
793 return TARGET_XFER_E_IO;
794 else
795 {
796 *xfered_len
797 = gdbarch_core_xfer_shared_libraries_aix (core_gdbarch,
798 readbuf, offset,
799 len);
800
801 if (*xfered_len == 0)
802 return TARGET_XFER_EOF;
803 else
804 return TARGET_XFER_OK;
805 }
806 }
807 /* FALL THROUGH */
808
809 case TARGET_OBJECT_SPU:
810 if (readbuf && annex)
811 {
812 /* When the SPU contexts are stored in a core file, BFD
813 represents this with a fake section called
814 "SPU/<annex>". */
815
816 struct bfd_section *section;
817 bfd_size_type size;
818 char sectionstr[100];
819
820 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
821
822 section = bfd_get_section_by_name (core_bfd, sectionstr);
823 if (section == NULL)
824 return TARGET_XFER_E_IO;
825
826 size = bfd_section_size (core_bfd, section);
827 if (offset >= size)
828 return TARGET_XFER_EOF;
829 size -= offset;
830 if (size > len)
831 size = len;
832
833 if (size == 0)
834 return TARGET_XFER_EOF;
835 if (!bfd_get_section_contents (core_bfd, section, readbuf,
836 (file_ptr) offset, size))
837 {
838 warning (_("Couldn't read SPU section in core file."));
839 return TARGET_XFER_E_IO;
840 }
841
842 *xfered_len = (ULONGEST) size;
843 return TARGET_XFER_OK;
844 }
845 else if (readbuf)
846 {
847 /* NULL annex requests list of all present spuids. */
848 struct spuid_list list;
849
850 list.buf = readbuf;
851 list.offset = offset;
852 list.len = len;
853 list.pos = 0;
854 list.written = 0;
855 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
856
857 if (list.written == 0)
858 return TARGET_XFER_EOF;
859 else
860 {
861 *xfered_len = (ULONGEST) list.written;
862 return TARGET_XFER_OK;
863 }
864 }
865 return TARGET_XFER_E_IO;
866
867 case TARGET_OBJECT_SIGNAL_INFO:
868 if (readbuf)
869 {
870 LONGEST l = get_core_siginfo (core_bfd, readbuf, offset, len);
871
872 if (l > 0)
873 {
874 *xfered_len = len;
875 return TARGET_XFER_OK;
876 }
877 }
878 return TARGET_XFER_E_IO;
879
880 default:
881 return ops->beneath->to_xfer_partial (ops->beneath, object,
882 annex, readbuf,
883 writebuf, offset, len,
884 xfered_len);
885 }
886 }
887
888 \f
889 /* If mourn is being called in all the right places, this could be say
890 `gdb internal error' (since generic_mourn calls
891 breakpoint_init_inferior). */
892
893 static int
894 ignore (struct target_ops *ops, struct gdbarch *gdbarch,
895 struct bp_target_info *bp_tgt)
896 {
897 return 0;
898 }
899
900
901 /* Okay, let's be honest: threads gleaned from a core file aren't
902 exactly lively, are they? On the other hand, if we don't claim
903 that each & every one is alive, then we don't get any of them
904 to appear in an "info thread" command, which is quite a useful
905 behaviour.
906 */
907 static int
908 core_thread_alive (struct target_ops *ops, ptid_t ptid)
909 {
910 return 1;
911 }
912
913 /* Ask the current architecture what it knows about this core file.
914 That will be used, in turn, to pick a better architecture. This
915 wrapper could be avoided if targets got a chance to specialize
916 core_ops. */
917
918 static const struct target_desc *
919 core_read_description (struct target_ops *target)
920 {
921 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
922 {
923 const struct target_desc *result;
924
925 result = gdbarch_core_read_description (core_gdbarch,
926 target, core_bfd);
927 if (result != NULL)
928 return result;
929 }
930
931 return target->beneath->to_read_description (target->beneath);
932 }
933
934 static char *
935 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
936 {
937 static char buf[64];
938 struct inferior *inf;
939 int pid;
940
941 /* The preferred way is to have a gdbarch/OS specific
942 implementation. */
943 if (core_gdbarch
944 && gdbarch_core_pid_to_str_p (core_gdbarch))
945 return gdbarch_core_pid_to_str (core_gdbarch, ptid);
946
947 /* Otherwise, if we don't have one, we'll just fallback to
948 "process", with normal_pid_to_str. */
949
950 /* Try the LWPID field first. */
951 pid = ptid_get_lwp (ptid);
952 if (pid != 0)
953 return normal_pid_to_str (pid_to_ptid (pid));
954
955 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
956 only if it isn't a fake PID. */
957 inf = find_inferior_ptid (ptid);
958 if (inf != NULL && !inf->fake_pid_p)
959 return normal_pid_to_str (ptid);
960
961 /* No luck. We simply don't have a valid PID to print. */
962 xsnprintf (buf, sizeof buf, "<main task>");
963 return buf;
964 }
965
966 static int
967 core_has_memory (struct target_ops *ops)
968 {
969 return (core_bfd != NULL);
970 }
971
972 static int
973 core_has_stack (struct target_ops *ops)
974 {
975 return (core_bfd != NULL);
976 }
977
978 static int
979 core_has_registers (struct target_ops *ops)
980 {
981 return (core_bfd != NULL);
982 }
983
984 /* Implement the to_info_proc method. */
985
986 static void
987 core_info_proc (struct target_ops *ops, const char *args,
988 enum info_proc_what request)
989 {
990 struct gdbarch *gdbarch = get_current_arch ();
991
992 /* Since this is the core file target, call the 'core_info_proc'
993 method on gdbarch, not 'info_proc'. */
994 if (gdbarch_core_info_proc_p (gdbarch))
995 gdbarch_core_info_proc (gdbarch, args, request);
996 }
997
998 /* Fill in core_ops with its defined operations and properties. */
999
1000 static void
1001 init_core_ops (void)
1002 {
1003 core_ops.to_shortname = "core";
1004 core_ops.to_longname = "Local core dump file";
1005 core_ops.to_doc =
1006 "Use a core file as a target. Specify the filename of the core file.";
1007 core_ops.to_open = core_open;
1008 core_ops.to_close = core_close;
1009 core_ops.to_detach = core_detach;
1010 core_ops.to_fetch_registers = get_core_registers;
1011 core_ops.to_xfer_partial = core_xfer_partial;
1012 core_ops.to_files_info = core_files_info;
1013 core_ops.to_insert_breakpoint = ignore;
1014 core_ops.to_remove_breakpoint = ignore;
1015 core_ops.to_thread_alive = core_thread_alive;
1016 core_ops.to_read_description = core_read_description;
1017 core_ops.to_pid_to_str = core_pid_to_str;
1018 core_ops.to_stratum = process_stratum;
1019 core_ops.to_has_memory = core_has_memory;
1020 core_ops.to_has_stack = core_has_stack;
1021 core_ops.to_has_registers = core_has_registers;
1022 core_ops.to_info_proc = core_info_proc;
1023 core_ops.to_magic = OPS_MAGIC;
1024
1025 if (core_target)
1026 internal_error (__FILE__, __LINE__,
1027 _("init_core_ops: core target already exists (\"%s\")."),
1028 core_target->to_longname);
1029 core_target = &core_ops;
1030 }
1031
1032 void
1033 _initialize_corelow (void)
1034 {
1035 init_core_ops ();
1036
1037 add_target_with_completer (&core_ops, filename_completer);
1038 }