]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/disasm.c
http://sourceware.org/ml/gdb-patches/2010-12/msg00299.html
[thirdparty/binutils-gdb.git] / gdb / disasm.c
1 /* Disassemble support for GDB.
2
3 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "target.h"
23 #include "value.h"
24 #include "ui-out.h"
25 #include "gdb_string.h"
26 #include "disasm.h"
27 #include "gdbcore.h"
28 #include "dis-asm.h"
29
30 /* Disassemble functions.
31 FIXME: We should get rid of all the duplicate code in gdb that does
32 the same thing: disassemble_command() and the gdbtk variation. */
33
34 /* This Structure is used to store line number information.
35 We need a different sort of line table from the normal one cuz we can't
36 depend upon implicit line-end pc's for lines to do the
37 reordering in this function. */
38
39 struct dis_line_entry
40 {
41 int line;
42 CORE_ADDR start_pc;
43 CORE_ADDR end_pc;
44 };
45
46 /* Like target_read_memory, but slightly different parameters. */
47 static int
48 dis_asm_read_memory (bfd_vma memaddr, gdb_byte *myaddr, unsigned int len,
49 struct disassemble_info *info)
50 {
51 return target_read_memory (memaddr, myaddr, len);
52 }
53
54 /* Like memory_error with slightly different parameters. */
55 static void
56 dis_asm_memory_error (int status, bfd_vma memaddr,
57 struct disassemble_info *info)
58 {
59 memory_error (status, memaddr);
60 }
61
62 /* Like print_address with slightly different parameters. */
63 static void
64 dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
65 {
66 struct gdbarch *gdbarch = info->application_data;
67
68 print_address (gdbarch, addr, info->stream);
69 }
70
71 static int
72 compare_lines (const void *mle1p, const void *mle2p)
73 {
74 struct dis_line_entry *mle1, *mle2;
75 int val;
76
77 mle1 = (struct dis_line_entry *) mle1p;
78 mle2 = (struct dis_line_entry *) mle2p;
79
80 val = mle1->line - mle2->line;
81
82 if (val != 0)
83 return val;
84
85 return mle1->start_pc - mle2->start_pc;
86 }
87
88 static int
89 dump_insns (struct gdbarch *gdbarch, struct ui_out *uiout,
90 struct disassemble_info * di,
91 CORE_ADDR low, CORE_ADDR high,
92 int how_many, int flags, struct ui_stream *stb)
93 {
94 int num_displayed = 0;
95 CORE_ADDR pc;
96
97 /* parts of the symbolic representation of the address */
98 int unmapped;
99 int offset;
100 int line;
101 struct cleanup *ui_out_chain;
102
103 for (pc = low; pc < high;)
104 {
105 char *filename = NULL;
106 char *name = NULL;
107
108 QUIT;
109 if (how_many >= 0)
110 {
111 if (num_displayed >= how_many)
112 break;
113 else
114 num_displayed++;
115 }
116 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
117 ui_out_text (uiout, pc_prefix (pc));
118 ui_out_field_core_addr (uiout, "address", gdbarch, pc);
119
120 if (!build_address_symbolic (gdbarch, pc, 0, &name, &offset, &filename,
121 &line, &unmapped))
122 {
123 /* We don't care now about line, filename and
124 unmapped. But we might in the future. */
125 ui_out_text (uiout, " <");
126 if ((flags & DISASSEMBLY_OMIT_FNAME) == 0)
127 ui_out_field_string (uiout, "func-name", name);
128 ui_out_text (uiout, "+");
129 ui_out_field_int (uiout, "offset", offset);
130 ui_out_text (uiout, ">:\t");
131 }
132 else
133 ui_out_text (uiout, ":\t");
134
135 if (filename != NULL)
136 xfree (filename);
137 if (name != NULL)
138 xfree (name);
139
140 ui_file_rewind (stb->stream);
141 if (flags & DISASSEMBLY_RAW_INSN)
142 {
143 CORE_ADDR old_pc = pc;
144 bfd_byte data;
145 int status;
146 const char *spacer = "";
147
148 /* Build the opcodes using a temporary stream so we can
149 write them out in a single go for the MI. */
150 struct ui_stream *opcode_stream = ui_out_stream_new (uiout);
151 struct cleanup *cleanups =
152 make_cleanup_ui_out_stream_delete (opcode_stream);
153
154 pc += gdbarch_print_insn (gdbarch, pc, di);
155 for (;old_pc < pc; old_pc++)
156 {
157 status = (*di->read_memory_func) (old_pc, &data, 1, di);
158 if (status != 0)
159 (*di->memory_error_func) (status, old_pc, di);
160 fprintf_filtered (opcode_stream->stream, "%s%02x",
161 spacer, (unsigned) data);
162 spacer = " ";
163 }
164 ui_out_field_stream (uiout, "opcodes", opcode_stream);
165 ui_out_text (uiout, "\t");
166
167 do_cleanups (cleanups);
168 }
169 else
170 pc += gdbarch_print_insn (gdbarch, pc, di);
171 ui_out_field_stream (uiout, "inst", stb);
172 ui_file_rewind (stb->stream);
173 do_cleanups (ui_out_chain);
174 ui_out_text (uiout, "\n");
175 }
176 return num_displayed;
177 }
178
179 /* The idea here is to present a source-O-centric view of a
180 function to the user. This means that things are presented
181 in source order, with (possibly) out of order assembly
182 immediately following. */
183
184 static void
185 do_mixed_source_and_assembly (struct gdbarch *gdbarch, struct ui_out *uiout,
186 struct disassemble_info *di, int nlines,
187 struct linetable_entry *le,
188 CORE_ADDR low, CORE_ADDR high,
189 struct symtab *symtab,
190 int how_many, int flags, struct ui_stream *stb)
191 {
192 int newlines = 0;
193 struct dis_line_entry *mle;
194 struct symtab_and_line sal;
195 int i;
196 int out_of_order = 0;
197 int next_line = 0;
198 int num_displayed = 0;
199 struct cleanup *ui_out_chain;
200 struct cleanup *ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
201 struct cleanup *ui_out_list_chain = make_cleanup (null_cleanup, 0);
202
203 mle = (struct dis_line_entry *) alloca (nlines
204 * sizeof (struct dis_line_entry));
205
206 /* Copy linetable entries for this function into our data
207 structure, creating end_pc's and setting out_of_order as
208 appropriate. */
209
210 /* First, skip all the preceding functions. */
211
212 for (i = 0; i < nlines - 1 && le[i].pc < low; i++);
213
214 /* Now, copy all entries before the end of this function. */
215
216 for (; i < nlines - 1 && le[i].pc < high; i++)
217 {
218 if (le[i].line == le[i + 1].line && le[i].pc == le[i + 1].pc)
219 continue; /* Ignore duplicates. */
220
221 /* Skip any end-of-function markers. */
222 if (le[i].line == 0)
223 continue;
224
225 mle[newlines].line = le[i].line;
226 if (le[i].line > le[i + 1].line)
227 out_of_order = 1;
228 mle[newlines].start_pc = le[i].pc;
229 mle[newlines].end_pc = le[i + 1].pc;
230 newlines++;
231 }
232
233 /* If we're on the last line, and it's part of the function,
234 then we need to get the end pc in a special way. */
235
236 if (i == nlines - 1 && le[i].pc < high)
237 {
238 mle[newlines].line = le[i].line;
239 mle[newlines].start_pc = le[i].pc;
240 sal = find_pc_line (le[i].pc, 0);
241 mle[newlines].end_pc = sal.end;
242 newlines++;
243 }
244
245 /* Now, sort mle by line #s (and, then by addresses within
246 lines). */
247
248 if (out_of_order)
249 qsort (mle, newlines, sizeof (struct dis_line_entry), compare_lines);
250
251 /* Now, for each line entry, emit the specified lines (unless
252 they have been emitted before), followed by the assembly code
253 for that line. */
254
255 ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
256
257 for (i = 0; i < newlines; i++)
258 {
259 /* Print out everything from next_line to the current line. */
260 if (mle[i].line >= next_line)
261 {
262 if (next_line != 0)
263 {
264 /* Just one line to print. */
265 if (next_line == mle[i].line)
266 {
267 ui_out_tuple_chain
268 = make_cleanup_ui_out_tuple_begin_end (uiout,
269 "src_and_asm_line");
270 print_source_lines (symtab, next_line, mle[i].line + 1, 0);
271 }
272 else
273 {
274 /* Several source lines w/o asm instructions associated. */
275 for (; next_line < mle[i].line; next_line++)
276 {
277 struct cleanup *ui_out_list_chain_line;
278 struct cleanup *ui_out_tuple_chain_line;
279
280 ui_out_tuple_chain_line
281 = make_cleanup_ui_out_tuple_begin_end (uiout,
282 "src_and_asm_line");
283 print_source_lines (symtab, next_line, next_line + 1,
284 0);
285 ui_out_list_chain_line
286 = make_cleanup_ui_out_list_begin_end (uiout,
287 "line_asm_insn");
288 do_cleanups (ui_out_list_chain_line);
289 do_cleanups (ui_out_tuple_chain_line);
290 }
291 /* Print the last line and leave list open for
292 asm instructions to be added. */
293 ui_out_tuple_chain
294 = make_cleanup_ui_out_tuple_begin_end (uiout,
295 "src_and_asm_line");
296 print_source_lines (symtab, next_line, mle[i].line + 1, 0);
297 }
298 }
299 else
300 {
301 ui_out_tuple_chain
302 = make_cleanup_ui_out_tuple_begin_end (uiout,
303 "src_and_asm_line");
304 print_source_lines (symtab, mle[i].line, mle[i].line + 1, 0);
305 }
306
307 next_line = mle[i].line + 1;
308 ui_out_list_chain
309 = make_cleanup_ui_out_list_begin_end (uiout, "line_asm_insn");
310 }
311
312 num_displayed += dump_insns (gdbarch, uiout, di,
313 mle[i].start_pc, mle[i].end_pc,
314 how_many, flags, stb);
315
316 /* When we've reached the end of the mle array, or we've seen the last
317 assembly range for this source line, close out the list/tuple. */
318 if (i == (newlines - 1) || mle[i + 1].line > mle[i].line)
319 {
320 do_cleanups (ui_out_list_chain);
321 do_cleanups (ui_out_tuple_chain);
322 ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
323 ui_out_list_chain = make_cleanup (null_cleanup, 0);
324 ui_out_text (uiout, "\n");
325 }
326 if (how_many >= 0 && num_displayed >= how_many)
327 break;
328 }
329 do_cleanups (ui_out_chain);
330 }
331
332
333 static void
334 do_assembly_only (struct gdbarch *gdbarch, struct ui_out *uiout,
335 struct disassemble_info * di,
336 CORE_ADDR low, CORE_ADDR high,
337 int how_many, int flags, struct ui_stream *stb)
338 {
339 int num_displayed = 0;
340 struct cleanup *ui_out_chain;
341
342 ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
343
344 num_displayed = dump_insns (gdbarch, uiout, di, low, high, how_many,
345 flags, stb);
346
347 do_cleanups (ui_out_chain);
348 }
349
350 /* Initialize the disassemble info struct ready for the specified
351 stream. */
352
353 static int ATTRIBUTE_PRINTF (2, 3)
354 fprintf_disasm (void *stream, const char *format, ...)
355 {
356 va_list args;
357
358 va_start (args, format);
359 vfprintf_filtered (stream, format, args);
360 va_end (args);
361 /* Something non -ve. */
362 return 0;
363 }
364
365 static struct disassemble_info
366 gdb_disassemble_info (struct gdbarch *gdbarch, struct ui_file *file)
367 {
368 struct disassemble_info di;
369
370 init_disassemble_info (&di, file, fprintf_disasm);
371 di.flavour = bfd_target_unknown_flavour;
372 di.memory_error_func = dis_asm_memory_error;
373 di.print_address_func = dis_asm_print_address;
374 /* NOTE: cagney/2003-04-28: The original code, from the old Insight
375 disassembler had a local optomization here. By default it would
376 access the executable file, instead of the target memory (there
377 was a growing list of exceptions though). Unfortunately, the
378 heuristic was flawed. Commands like "disassemble &variable"
379 didn't work as they relied on the access going to the target.
380 Further, it has been supperseeded by trust-read-only-sections
381 (although that should be superseeded by target_trust..._p()). */
382 di.read_memory_func = dis_asm_read_memory;
383 di.arch = gdbarch_bfd_arch_info (gdbarch)->arch;
384 di.mach = gdbarch_bfd_arch_info (gdbarch)->mach;
385 di.endian = gdbarch_byte_order (gdbarch);
386 di.endian_code = gdbarch_byte_order_for_code (gdbarch);
387 di.application_data = gdbarch;
388 disassemble_init_for_target (&di);
389 return di;
390 }
391
392 void
393 gdb_disassembly (struct gdbarch *gdbarch, struct ui_out *uiout,
394 char *file_string, int flags, int how_many,
395 CORE_ADDR low, CORE_ADDR high)
396 {
397 struct ui_stream *stb = ui_out_stream_new (uiout);
398 struct cleanup *cleanups = make_cleanup_ui_out_stream_delete (stb);
399 struct disassemble_info di = gdb_disassemble_info (gdbarch, stb->stream);
400 /* To collect the instruction outputted from opcodes. */
401 struct symtab *symtab = NULL;
402 struct linetable_entry *le = NULL;
403 int nlines = -1;
404
405 /* Assume symtab is valid for whole PC range. */
406 symtab = find_pc_symtab (low);
407
408 if (symtab != NULL && symtab->linetable != NULL)
409 {
410 /* Convert the linetable to a bunch of my_line_entry's. */
411 le = symtab->linetable->item;
412 nlines = symtab->linetable->nitems;
413 }
414
415 if (!(flags & DISASSEMBLY_SOURCE) || nlines <= 0
416 || symtab == NULL || symtab->linetable == NULL)
417 do_assembly_only (gdbarch, uiout, &di, low, high, how_many, flags, stb);
418
419 else if (flags & DISASSEMBLY_SOURCE)
420 do_mixed_source_and_assembly (gdbarch, uiout, &di, nlines, le, low,
421 high, symtab, how_many, flags, stb);
422
423 do_cleanups (cleanups);
424 gdb_flush (gdb_stdout);
425 }
426
427 /* Print the instruction at address MEMADDR in debugged memory,
428 on STREAM. Returns the length of the instruction, in bytes,
429 and, if requested, the number of branch delay slot instructions. */
430
431 int
432 gdb_print_insn (struct gdbarch *gdbarch, CORE_ADDR memaddr,
433 struct ui_file *stream, int *branch_delay_insns)
434 {
435 struct disassemble_info di;
436 int length;
437
438 di = gdb_disassemble_info (gdbarch, stream);
439 length = gdbarch_print_insn (gdbarch, memaddr, &di);
440 if (branch_delay_insns)
441 {
442 if (di.insn_info_valid)
443 *branch_delay_insns = di.branch_delay_insns;
444 else
445 *branch_delay_insns = 0;
446 }
447 return length;
448 }
449
450 static void
451 do_ui_file_delete (void *arg)
452 {
453 ui_file_delete (arg);
454 }
455
456 /* Return the length in bytes of the instruction at address MEMADDR in
457 debugged memory. */
458
459 int
460 gdb_insn_length (struct gdbarch *gdbarch, CORE_ADDR addr)
461 {
462 static struct ui_file *null_stream = NULL;
463
464 /* Dummy file descriptor for the disassembler. */
465 if (!null_stream)
466 {
467 null_stream = ui_file_new ();
468 make_final_cleanup (do_ui_file_delete, null_stream);
469 }
470
471 return gdb_print_insn (gdbarch, addr, null_stream, NULL);
472 }
473
474 /* fprintf-function for gdb_buffered_insn_length. This function is a
475 nop, we don't want to print anything, we just want to compute the
476 length of the insn. */
477
478 static int ATTRIBUTE_PRINTF (2, 3)
479 gdb_buffered_insn_length_fprintf (void *stream, const char *format, ...)
480 {
481 return 0;
482 }
483
484 /* Initialize a struct disassemble_info for gdb_buffered_insn_length. */
485
486 static void
487 gdb_buffered_insn_length_init_dis (struct gdbarch *gdbarch,
488 struct disassemble_info *di,
489 const gdb_byte *insn, int max_len,
490 CORE_ADDR addr)
491 {
492 init_disassemble_info (di, NULL, gdb_buffered_insn_length_fprintf);
493
494 /* init_disassemble_info installs buffer_read_memory, etc.
495 so we don't need to do that here.
496 The cast is necessary until disassemble_info is const-ified. */
497 di->buffer = (gdb_byte *) insn;
498 di->buffer_length = max_len;
499 di->buffer_vma = addr;
500
501 di->arch = gdbarch_bfd_arch_info (gdbarch)->arch;
502 di->mach = gdbarch_bfd_arch_info (gdbarch)->mach;
503 di->endian = gdbarch_byte_order (gdbarch);
504 di->endian_code = gdbarch_byte_order_for_code (gdbarch);
505
506 disassemble_init_for_target (di);
507 }
508
509 /* Return the length in bytes of INSN. MAX_LEN is the size of the
510 buffer containing INSN. */
511
512 int
513 gdb_buffered_insn_length (struct gdbarch *gdbarch,
514 const gdb_byte *insn, int max_len, CORE_ADDR addr)
515 {
516 struct disassemble_info di;
517
518 gdb_buffered_insn_length_init_dis (gdbarch, &di, insn, max_len, addr);
519
520 return gdbarch_print_insn (gdbarch, addr, &di);
521 }