]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dve3900-rom.c
Initial creation of sourceware repository
[thirdparty/binutils-gdb.git] / gdb / dve3900-rom.c
1 /* Remote debugging interface for Densan DVE-R3900 ROM monitor for
2 GDB, the GNU debugger.
3 Copyright 1997 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "target.h"
24 #include "monitor.h"
25 #include "serial.h"
26 #include "inferior.h"
27 #include "command.h"
28 #include "gdb_string.h"
29 #include <time.h>
30
31 /* Type of function passed to bfd_map_over_sections. */
32
33 typedef void (*section_map_func) PARAMS ((bfd *abfd, asection *sect, PTR obj));
34
35 /* Packet escape character used by Densan monitor. */
36
37 #define PESC 0xdc
38
39 /* Maximum packet size. This is actually smaller than necessary
40 just to be safe. */
41
42 #define MAXPSIZE 1024
43
44 /* External functions. */
45
46 extern void report_transfer_performance PARAMS ((unsigned long,
47 time_t, time_t));
48
49 /* Certain registers are "bitmapped", in that the monitor can only display
50 them or let the user modify them as a series of named bitfields.
51 This structure describes a field in a bitmapped register. */
52
53 struct bit_field
54 {
55 char *prefix; /* string appearing before the value */
56 char *suffix; /* string appearing after the value */
57 char *user_name; /* name used by human when entering field value */
58 int length; /* number of bits in the field */
59 int start; /* starting (least significant) bit number of field */
60 };
61
62 /* Local functions for register manipulation. */
63
64 static void r3900_supply_register PARAMS ((char *regname, int regnamelen,
65 char *val, int vallen));
66 static void fetch_bad_vaddr PARAMS ((void));
67 static unsigned long fetch_fields PARAMS ((struct bit_field *bf));
68 static void fetch_bitmapped_register PARAMS ((int regno,
69 struct bit_field *bf));
70 static void r3900_fetch_registers PARAMS ((int regno));
71 static void store_bitmapped_register PARAMS ((int regno,
72 struct bit_field *bf));
73 static void r3900_store_registers PARAMS ((int regno));
74
75 /* Local functions for fast binary loading. */
76
77 static void write_long PARAMS ((char *buf, long n));
78 static void write_long_le PARAMS ((char *buf, long n));
79 static int debug_readchar PARAMS ((int hex));
80 static void debug_write PARAMS ((unsigned char *buf, int buflen));
81 static void ignore_packet PARAMS ((void));
82 static void send_packet PARAMS ((char type, unsigned char *buf, int buflen,
83 int seq));
84 static void process_read_request PARAMS ((unsigned char *buf, int buflen));
85 static void count_section PARAMS ((bfd *abfd, asection *s,
86 unsigned int *section_count));
87 static void load_section PARAMS ((bfd *abfd, asection *s,
88 unsigned int *data_count));
89 static void r3900_load PARAMS ((char *filename, int from_tty));
90
91 /* Miscellaneous local functions. */
92
93 static void r3900_open PARAMS ((char *args, int from_tty));
94
95
96 /* Pointers to static functions in monitor.c for fetching and storing
97 registers. We can't use these function in certain cases where the Densan
98 monitor acts perversely: for registers that it displays in bit-map
99 format, and those that can't be modified at all. In those cases
100 we have to use our own functions to fetch and store their values. */
101
102 static void (*orig_monitor_fetch_registers) PARAMS ((int regno));
103 static void (*orig_monitor_store_registers) PARAMS ((int regno));
104
105 /* Pointer to static function in monitor. for loading programs.
106 We use this function for loading S-records via the serial link. */
107
108 static void (*orig_monitor_load) PARAMS ((char *file, int from_tty));
109
110 /* This flag is set if a fast ethernet download should be used. */
111
112 static int ethernet = 0;
113
114 /* This array of registers needs to match the indexes used by GDB. The
115 whole reason this exists is because the various ROM monitors use
116 different names than GDB does, and don't support all the registers
117 either. */
118
119 static char *r3900_regnames[NUM_REGS] =
120 {
121 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
122 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
123 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
124 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
125
126 "S", /* PS_REGNUM */
127 "l", /* LO_REGNUM */
128 "h", /* HI_REGNUM */
129 "B", /* BADVADDR_REGNUM */
130 "Pcause", /* CAUSE_REGNUM */
131 "p" /* PC_REGNUM */
132 };
133
134
135 /* Table of register names produced by monitor's register dump command. */
136
137 static struct reg_entry
138 {
139 char *name;
140 int regno;
141 } reg_table[] =
142 {
143 { "r0_zero", 0 }, { "r1_at", 1 }, { "r2_v0", 2 }, { "r3_v1", 3 },
144 { "r4_a0", 4 }, { "r5_a1", 5 }, { "r6_a2", 6 }, { "r7_a3", 7 },
145 { "r8_t0", 8 }, { "r9_t1", 9 }, { "r10_t2", 10 }, { "r11_t3", 11 },
146 { "r12_t4", 12 }, { "r13_t5", 13 }, { "r14_t6", 14 }, { "r15_t7", 15 },
147 { "r16_s0", 16 }, { "r17_s1", 17 }, { "r18_s2", 18 }, { "r19_s3", 19 },
148 { "r20_s4", 20 }, { "r21_s5", 21 }, { "r22_s6", 22 }, { "r23_s7", 23 },
149 { "r24_t8", 24 }, { "r25_t9", 25 }, { "r26_k0", 26 }, { "r27_k1", 27 },
150 { "r28_gp", 28 }, { "r29_sp", 29 }, { "r30_fp", 30 }, { "r31_ra", 31 },
151 { "HI", HI_REGNUM },
152 { "LO", LO_REGNUM },
153 { "PC", PC_REGNUM },
154 { "BadV", BADVADDR_REGNUM },
155 { NULL, 0 }
156 };
157
158
159 /* The monitor displays the cache register along with the status register,
160 as if they were a single register. So when we want to fetch the
161 status register, parse but otherwise ignore the fields of the
162 cache register that the monitor displays. Register fields that should
163 be ignored have a length of zero in the tables below. */
164
165 static struct bit_field status_fields [] =
166 {
167 /* Status register portion */
168 { "SR[<CU=", " ", "cu", 4, 28 },
169 { "RE=", " ", "re", 1, 25 },
170 { "BEV=", " ", "bev", 1, 22 },
171 { "TS=", " ", "ts", 1, 21 },
172 { "Nmi=", " ", "nmi", 1, 20 },
173 { "INT=", " ", "int", 6, 10 },
174 { "SW=", ">]", "sw", 2, 8 },
175 { "[<KUO=", " ", "kuo", 1, 5 },
176 { "IEO=", " ", "ieo", 1, 4 },
177 { "KUP=", " ", "kup", 1, 3 },
178 { "IEP=", " ", "iep", 1, 2 },
179 { "KUC=", " ", "kuc", 1, 1 },
180 { "IEC=", ">]", "iec", 1, 0 },
181
182 /* Cache register portion (dummy for parsing only) */
183 { "CR[<IalO="," ", "ialo", 0, 13 },
184 { "DalO=", " ", "dalo", 0, 12 },
185 { "IalP=", " ", "ialp", 0, 11 },
186 { "DalP=", " ", "dalp", 0, 10 },
187 { "IalC=", " ", "ialc", 0, 9 },
188 { "DalC=", ">] ", "dalc", 0, 8 },
189
190 { NULL, NULL, 0, 0 } /* end of table marker */
191 };
192
193
194 #if 0 /* FIXME: Enable when we add support for modifying cache register. */
195 static struct bit_field cache_fields [] =
196 {
197 /* Status register portion (dummy for parsing only) */
198 { "SR[<CU=", " ", "cu", 0, 28 },
199 { "RE=", " ", "re", 0, 25 },
200 { "BEV=", " ", "bev", 0, 22 },
201 { "TS=", " ", "ts", 0, 21 },
202 { "Nmi=", " ", "nmi", 0, 20 },
203 { "INT=", " ", "int", 0, 10 },
204 { "SW=", ">]", "sw", 0, 8 },
205 { "[<KUO=", " ", "kuo", 0, 5 },
206 { "IEO=", " ", "ieo", 0, 4 },
207 { "KUP=", " ", "kup", 0, 3 },
208 { "IEP=", " ", "iep", 0, 2 },
209 { "KUC=", " ", "kuc", 0, 1 },
210 { "IEC=", ">]", "iec", 0, 0 },
211
212 /* Cache register portion */
213 { "CR[<IalO="," ", "ialo", 1, 13 },
214 { "DalO=", " ", "dalo", 1, 12 },
215 { "IalP=", " ", "ialp", 1, 11 },
216 { "DalP=", " ", "dalp", 1, 10 },
217 { "IalC=", " ", "ialc", 1, 9 },
218 { "DalC=", ">] ", "dalc", 1, 8 },
219
220 { NULL, NULL, NULL, 0, 0 } /* end of table marker */
221 };
222 #endif
223
224
225 static struct bit_field cause_fields[] =
226 {
227 { "<BD=", " ", "bd", 1, 31 },
228 { "CE=", " ", "ce", 2, 28 },
229 { "IP=", " ", "ip", 6, 10 },
230 { "SW=", " ", "sw", 2, 8 },
231 { "EC=", ">]" , "ec", 5, 2 },
232
233 { NULL, NULL, NULL, 0, 0 } /* end of table marker */
234 };
235
236
237 /* The monitor prints register values in the form
238
239 regname = xxxx xxxx
240
241 We look up the register name in a table, and remove the embedded space in
242 the hex value before passing it to monitor_supply_register. */
243
244 static void
245 r3900_supply_register (regname, regnamelen, val, vallen)
246 char *regname;
247 int regnamelen;
248 char *val;
249 int vallen;
250 {
251 int regno = -1;
252 int i;
253 char valbuf[10];
254 char *p;
255
256 /* Perform some sanity checks on the register name and value. */
257 if (regnamelen < 2 || regnamelen > 7 || vallen != 9)
258 return;
259
260 /* Look up the register name. */
261 for (i = 0; reg_table[i].name != NULL; i++)
262 {
263 int rlen = strlen (reg_table[i].name);
264 if (rlen == regnamelen && strncmp (regname, reg_table[i].name, rlen) == 0)
265 {
266 regno = reg_table[i].regno;
267 break;
268 }
269 }
270 if (regno == -1)
271 return;
272
273 /* Copy the hex value to a buffer and eliminate the embedded space. */
274 for (i = 0, p = valbuf; i < vallen; i++)
275 if (val[i] != ' ')
276 *p++ = val[i];
277 *p = '\0';
278
279 monitor_supply_register (regno, valbuf);
280 }
281
282
283 /* Fetch the BadVaddr register. Unlike the other registers, this
284 one can't be modified, and the monitor won't even prompt to let
285 you modify it. */
286
287 static void
288 fetch_bad_vaddr()
289 {
290 char buf[20];
291
292 monitor_printf ("xB\r");
293 monitor_expect ("BadV=", NULL, 0);
294 monitor_expect_prompt (buf, sizeof(buf));
295 monitor_supply_register (BADVADDR_REGNUM, buf);
296 }
297
298
299 /* Read a series of bit fields from the monitor, and return their
300 combined binary value. */
301
302 static unsigned long
303 fetch_fields (bf)
304 struct bit_field *bf;
305 {
306 char buf[20];
307 unsigned long val = 0;
308 unsigned long bits;
309
310 for ( ; bf->prefix != NULL; bf++)
311 {
312 monitor_expect (bf->prefix, NULL, 0); /* get prefix */
313 monitor_expect (bf->suffix, buf, sizeof (buf)); /* hex value, suffix */
314 if (bf->length != 0)
315 {
316 bits = strtoul (buf, NULL, 16); /* get field value */
317 bits &= ((1 << bf->length) - 1); /* mask out useless bits */
318 val |= bits << bf->start; /* insert into register */
319 }
320
321 }
322
323 return val;
324 }
325
326
327 static void
328 fetch_bitmapped_register (regno, bf)
329 int regno;
330 struct bit_field *bf;
331 {
332 unsigned long val;
333 unsigned char regbuf[MAX_REGISTER_RAW_SIZE];
334
335 monitor_printf ("x%s\r", r3900_regnames[regno]);
336 val = fetch_fields (bf);
337 monitor_printf (".\r");
338 monitor_expect_prompt (NULL, 0);
339
340 /* supply register stores in target byte order, so swap here */
341
342 store_unsigned_integer (regbuf, REGISTER_RAW_SIZE (regno), val);
343 supply_register (regno, regbuf);
344
345 }
346
347
348 /* Fetch all registers (if regno is -1), or one register from the
349 monitor. For most registers, we can use the generic monitor_
350 monitor_fetch_registers function. But others are displayed in
351 a very unusual fashion by the monitor, and must be handled specially. */
352
353 static void
354 r3900_fetch_registers (regno)
355 int regno;
356 {
357 switch (regno)
358 {
359 case BADVADDR_REGNUM:
360 fetch_bad_vaddr ();
361 return;
362 case PS_REGNUM:
363 fetch_bitmapped_register (PS_REGNUM, status_fields);
364 return;
365 case CAUSE_REGNUM:
366 fetch_bitmapped_register (CAUSE_REGNUM, cause_fields);
367 return;
368 default:
369 orig_monitor_fetch_registers (regno);
370 }
371 }
372
373
374 /* Write the new value of the bitmapped register to the monitor. */
375
376 static void
377 store_bitmapped_register (regno, bf)
378 int regno;
379 struct bit_field *bf;
380 {
381 unsigned long oldval, newval;
382
383 /* Fetch the current value of the register. */
384 monitor_printf ("x%s\r", r3900_regnames[regno]);
385 oldval = fetch_fields (bf);
386 newval = read_register (regno);
387
388 /* To save time, write just the fields that have changed. */
389 for ( ; bf->prefix != NULL; bf++)
390 {
391 if (bf->length != 0)
392 {
393 unsigned long oldbits, newbits, mask;
394
395 mask = (1 << bf->length) - 1;
396 oldbits = (oldval >> bf->start) & mask;
397 newbits = (newval >> bf->start) & mask;
398 if (oldbits != newbits)
399 monitor_printf ("%s %x ", bf->user_name, newbits);
400 }
401 }
402
403 monitor_printf (".\r");
404 monitor_expect_prompt (NULL, 0);
405 }
406
407
408 static void
409 r3900_store_registers (regno)
410 int regno;
411 {
412 switch (regno)
413 {
414 case PS_REGNUM:
415 store_bitmapped_register (PS_REGNUM, status_fields);
416 return;
417 case CAUSE_REGNUM:
418 store_bitmapped_register (CAUSE_REGNUM, cause_fields);
419 return;
420 default:
421 orig_monitor_store_registers (regno);
422 }
423 }
424
425
426 /* Write a 4-byte integer to the buffer in big-endian order. */
427
428 static void
429 write_long (buf, n)
430 char *buf;
431 long n;
432 {
433 buf[0] = (n >> 24) & 0xff;
434 buf[1] = (n >> 16) & 0xff;
435 buf[2] = (n >> 8) & 0xff;
436 buf[3] = n & 0xff;
437 }
438
439
440 /* Write a 4-byte integer to the buffer in little-endian order. */
441
442 static void
443 write_long_le (buf, n)
444 char *buf;
445 long n;
446 {
447 buf[0] = n & 0xff;
448 buf[1] = (n >> 8) & 0xff;
449 buf[2] = (n >> 16) & 0xff;
450 buf[3] = (n >> 24) & 0xff;
451 }
452
453
454 /* Read a character from the monitor. If remote debugging is on,
455 print the received character. If HEX is non-zero, print the
456 character in hexadecimal; otherwise, print it in ASCII. */
457
458 static int
459 debug_readchar (hex)
460 int hex;
461 {
462 char buf [10];
463 int c = monitor_readchar ();
464
465 if (remote_debug > 0)
466 {
467 if (hex)
468 sprintf (buf, "[%02x]", c & 0xff);
469 else if (c == '\0')
470 strcpy (buf, "\\0");
471 else
472 {
473 buf[0] = c;
474 buf[1] = '\0';
475 }
476 puts_debug ("Read -->", buf, "<--");
477 }
478 return c;
479 }
480
481
482 /* Send a buffer of characters to the monitor. If remote debugging is on,
483 print the sent buffer in hex. */
484
485 static void
486 debug_write (buf, buflen)
487 unsigned char *buf;
488 int buflen;
489 {
490 char s[10];
491
492 monitor_write (buf, buflen);
493
494 if (remote_debug > 0)
495 {
496 while (buflen-- > 0)
497 {
498 sprintf (s, "[%02x]", *buf & 0xff);
499 puts_debug ("Sent -->", s, "<--");
500 buf++;
501 }
502 }
503 }
504
505
506 /* Ignore a packet sent to us by the monitor. It send packets
507 when its console is in "communications interface" mode. A packet
508 is of this form:
509
510 start of packet flag (one byte: 0xdc)
511 packet type (one byte)
512 length (low byte)
513 length (high byte)
514 data (length bytes)
515
516 The last two bytes of the data field are a checksum, but we don't
517 bother to verify it.
518 */
519
520 static void
521 ignore_packet ()
522 {
523 int c;
524 int len;
525
526 /* Ignore lots of trash (messages about section addresses, for example)
527 until we see the start of a packet. */
528 for (len = 0; len < 256; len++)
529 {
530 c = debug_readchar (0);
531 if (c == PESC)
532 break;
533 }
534 if (len == 8)
535 error ("Packet header byte not found; %02x seen instead.", c);
536
537 /* Read the packet type and length. */
538 c = debug_readchar (1); /* type */
539
540 c = debug_readchar (1); /* low byte of length */
541 len = c & 0xff;
542
543 c = debug_readchar (1); /* high byte of length */
544 len += (c & 0xff) << 8;
545
546 /* Ignore the rest of the packet. */
547 while (len-- > 0)
548 c = debug_readchar (1);
549 }
550
551
552 /* Encapsulate some data into a packet and send it to the monitor.
553
554 The 'p' packet is a special case. This is a packet we send
555 in response to a read ('r') packet from the monitor. This function
556 appends a one-byte sequence number to the data field of such a packet.
557 */
558
559 static void
560 send_packet (type, buf, buflen, seq)
561 char type;
562 unsigned char *buf;
563 int buflen, seq;
564 {
565 unsigned char hdr[4];
566 int len = buflen;
567 int sum, i;
568
569 /* If this is a 'p' packet, add one byte for a sequence number. */
570 if (type == 'p')
571 len++;
572
573 /* If the buffer has a non-zero length, add two bytes for a checksum. */
574 if (len > 0)
575 len += 2;
576
577 /* Write the packet header. */
578 hdr[0] = PESC;
579 hdr[1] = type;
580 hdr[2] = len & 0xff;
581 hdr[3] = (len >> 8) & 0xff;
582 debug_write (hdr, sizeof (hdr));
583
584 if (len)
585 {
586 /* Write the packet data. */
587 debug_write (buf, buflen);
588
589 /* Write the sequence number if this is a 'p' packet. */
590 if (type == 'p')
591 {
592 hdr[0] = seq;
593 debug_write (hdr, 1);
594 }
595
596 /* Write the checksum. */
597 sum = 0;
598 for (i = 0; i < buflen; i++)
599 {
600 int tmp = (buf[i] & 0xff);
601 if (i & 1)
602 sum += tmp;
603 else
604 sum += tmp << 8;
605 }
606 if (type == 'p')
607 {
608 if (buflen & 1)
609 sum += (seq & 0xff);
610 else
611 sum += (seq & 0xff) << 8;
612 }
613 sum = (sum & 0xffff) + ((sum >> 16) & 0xffff);
614 sum += (sum >> 16) & 1;
615 sum = ~sum;
616
617 hdr[0] = (sum >> 8) & 0xff;
618 hdr[1] = sum & 0xff;
619 debug_write (hdr, 2);
620 }
621 }
622
623
624 /* Respond to an expected read request from the monitor by sending
625 data in chunks. Handle all acknowledgements and handshaking packets.
626
627 The monitor expects a response consisting of a one or more 'p' packets,
628 each followed by a portion of the data requested. The 'p' packet
629 contains only a four-byte integer, the value of which is the number
630 of bytes of data we are about to send. Following the 'p' packet,
631 the monitor expects the data bytes themselves in raw, unpacketized,
632 form, without even a checksum.
633 */
634
635 static void
636 process_read_request (buf, buflen)
637 unsigned char *buf;
638 int buflen;
639 {
640 unsigned char len[4];
641 int i, chunk;
642 unsigned char seq;
643
644 /* Discard the read request. FIXME: we have to hope it's for
645 the exact number of bytes we want to send; should check for this. */
646 ignore_packet ();
647
648 for (i = chunk = 0, seq = 0; i < buflen; i += chunk, seq++)
649 {
650 /* Don't send more than MAXPSIZE bytes at a time. */
651 chunk = buflen - i;
652 if (chunk > MAXPSIZE)
653 chunk = MAXPSIZE;
654
655 /* Write a packet containing the number of bytes we are sending. */
656 write_long_le (len, chunk);
657 send_packet ('p', len, sizeof (len), seq);
658
659 /* Write the data in raw form following the packet. */
660 debug_write (&buf[i], chunk);
661
662 /* Discard the ACK packet. */
663 ignore_packet ();
664 }
665
666 /* Send an "end of data" packet. */
667 send_packet ('e', "", 0, 0);
668 }
669
670
671 /* Count loadable sections (helper function for r3900_load). */
672
673 static void
674 count_section (abfd, s, section_count)
675 bfd *abfd;
676 asection *s;
677 unsigned int *section_count;
678 {
679 if (s->flags & SEC_LOAD && bfd_section_size (abfd, s) != 0)
680 (*section_count)++;
681 }
682
683
684 /* Load a single BFD section (helper function for r3900_load).
685
686 WARNING: this code is filled with assumptions about how
687 the Densan monitor loads programs. The monitor issues
688 packets containing read requests, but rather than respond
689 to them in an general way, we expect them to following
690 a certain pattern.
691
692 For example, we know that the monitor will start loading by
693 issuing an 8-byte read request for the binary file header.
694 We know this is coming and ignore the actual contents
695 of the read request packet.
696 */
697
698 static void
699 load_section (abfd, s, data_count)
700 bfd *abfd;
701 asection *s;
702 unsigned int *data_count;
703 {
704 if (s->flags & SEC_LOAD)
705 {
706 bfd_size_type section_size = bfd_section_size (abfd, s);
707 bfd_vma section_base = bfd_section_lma (abfd, s);
708 unsigned char *buffer;
709 unsigned char header[8];
710
711 /* Don't output zero-length sections. */
712 if (section_size == 0)
713 return;
714 if (data_count)
715 *data_count += section_size;
716
717 /* Print some fluff about the section being loaded. */
718 printf_filtered ("Loading section %s, size 0x%lx lma ",
719 bfd_section_name (abfd, s), (long)section_size);
720 print_address_numeric (section_base, 1, gdb_stdout);
721 printf_filtered ("\n");
722 gdb_flush (gdb_stdout);
723
724 /* Write the section header (location and size). */
725 write_long (&header[0], (long)section_base);
726 write_long (&header[4], (long)section_size);
727 process_read_request (header, sizeof (header));
728
729 /* Read the section contents into a buffer, write it out,
730 then free the buffer. */
731 buffer = (unsigned char *) xmalloc (section_size);
732 bfd_get_section_contents (abfd, s, buffer, 0, section_size);
733 process_read_request (buffer, section_size);
734 free (buffer);
735 }
736 }
737
738
739 /* When the ethernet is used as the console port on the Densan board,
740 we can use the "Rm" command to do a fast binary load. The format
741 of the download data is:
742
743 number of sections (4 bytes)
744 starting address (4 bytes)
745 repeat for each section:
746 location address (4 bytes)
747 section size (4 bytes)
748 binary data
749
750 The 4-byte fields are all in big-endian order.
751
752 Using this command is tricky because we have to put the monitor
753 into a special funky "communications interface" mode, in which
754 it sends and receives packets of data along with the normal prompt.
755 */
756
757 static void
758 r3900_load (filename, from_tty)
759 char *filename;
760 int from_tty;
761 {
762 bfd *abfd;
763 unsigned int data_count = 0;
764 time_t start_time, end_time; /* for timing of download */
765 int section_count = 0;
766 unsigned char buffer[8];
767
768 /* If we are not using the ethernet, use the normal monitor load,
769 which sends S-records over the serial link. */
770 if (!ethernet)
771 {
772 orig_monitor_load (filename, from_tty);
773 return;
774 }
775
776 /* Open the file. */
777 if (filename == NULL || filename[0] == 0)
778 filename = get_exec_file (1);
779 abfd = bfd_openr (filename, 0);
780 if (!abfd)
781 error ("Unable to open file %s\n", filename);
782 if (bfd_check_format (abfd, bfd_object) == 0)
783 error ("File is not an object file\n");
784
785 /* Output the "vconsi" command to get the monitor in the communication
786 state where it will accept a load command. This will cause
787 the monitor to emit a packet before each prompt, so ignore the packet. */
788 monitor_printf ("vconsi\r");
789 ignore_packet ();
790 monitor_expect_prompt (NULL, 0);
791
792 /* Output the "Rm" (load) command and respond to the subsequent "open"
793 packet by sending an ACK packet. */
794 monitor_printf ("Rm\r");
795 ignore_packet ();
796 send_packet ('a', "", 0, 0);
797
798 /* Output the fast load header (number of sections and starting address). */
799 bfd_map_over_sections ((bfd *) abfd, (section_map_func) count_section,
800 &section_count);
801 write_long (&buffer[0], (long)section_count);
802 if (exec_bfd)
803 write_long (&buffer[4], (long)bfd_get_start_address (exec_bfd));
804 else
805 write_long (&buffer[4], 0);
806 process_read_request (buffer, sizeof (buffer));
807
808 /* Output the section data. */
809 start_time = time (NULL);
810 bfd_map_over_sections (abfd, (section_map_func) load_section, &data_count);
811 end_time = time (NULL);
812
813 /* Acknowledge the close packet and put the monitor back into
814 "normal" mode so it won't send packets any more. */
815 ignore_packet ();
816 send_packet ('a', "", 0, 0);
817 monitor_expect_prompt (NULL, 0);
818 monitor_printf ("vconsx\r");
819 monitor_expect_prompt (NULL, 0);
820
821 /* Print start address and download performance information. */
822 printf_filtered ("Start address 0x%lx\n", (long)bfd_get_start_address (abfd));
823 report_transfer_performance (data_count, start_time, end_time);
824
825 /* Finally, make the PC point at the start address */
826 if (exec_bfd)
827 write_pc (bfd_get_start_address (exec_bfd));
828
829 inferior_pid = 0; /* No process now */
830
831 /* This is necessary because many things were based on the PC at the
832 time that we attached to the monitor, which is no longer valid
833 now that we have loaded new code (and just changed the PC).
834 Another way to do this might be to call normal_stop, except that
835 the stack may not be valid, and things would get horribly
836 confused... */
837 clear_symtab_users ();
838 }
839
840
841 /* Commands to send to the monitor when first connecting:
842 * The bare carriage return forces a prompt from the monitor
843 (monitor doesn't prompt immediately after a reset).
844 * The "vconsx" switches the monitor back to interactive mode
845 in case an aborted download had left it in packet mode.
846 * The "Xtr" command causes subsequent "t" (trace) commands to display
847 the general registers only.
848 * The "Xxr" command does the same thing for the "x" (examine
849 registers) command.
850 * The "bx" command clears all breakpoints.
851 */
852
853 static char *r3900_inits[] = {"\r", "vconsx\r", "Xtr\r", "Xxr\r", "bx\r", NULL};
854 static char *dummy_inits[] = { NULL };
855
856 static struct target_ops r3900_ops;
857 static struct monitor_ops r3900_cmds;
858
859 static void
860 r3900_open (args, from_tty)
861 char *args;
862 int from_tty;
863 {
864 char buf[64];
865 int i;
866
867 monitor_open (args, &r3900_cmds, from_tty);
868
869 /* We have to handle sending the init strings ourselves, because
870 the first two strings we send (carriage returns) may not be echoed
871 by the monitor, but the rest will be. */
872 monitor_printf_noecho ("\r\r");
873 for (i = 0; r3900_inits[i] != NULL; i++)
874 {
875 monitor_printf (r3900_inits[i]);
876 monitor_expect_prompt (NULL, 0);
877 }
878
879 /* Attempt to determine whether the console device is ethernet or serial.
880 This will tell us which kind of load to use (S-records over a serial
881 link, or the Densan fast binary multi-section format over the net). */
882
883 ethernet = 0;
884 monitor_printf ("v\r");
885 if (monitor_expect ("console device :", NULL, 0) != -1)
886 if (monitor_expect ("\n", buf, sizeof (buf)) != -1)
887 if (strstr (buf, "ethernet") != NULL)
888 ethernet = 1;
889 monitor_expect_prompt (NULL, 0);
890 }
891
892 void
893 _initialize_r3900_rom ()
894 {
895 r3900_cmds.flags = MO_NO_ECHO_ON_OPEN |
896 MO_ADDR_BITS_REMOVE |
897 MO_CLR_BREAK_USES_ADDR |
898 MO_GETMEM_READ_SINGLE |
899 MO_PRINT_PROGRAM_OUTPUT;
900
901 r3900_cmds.init = dummy_inits;
902 r3900_cmds.cont = "g\r";
903 r3900_cmds.step = "t\r";
904 r3900_cmds.set_break = "b %A\r"; /* COREADDR */
905 r3900_cmds.clr_break = "b %A,0\r"; /* COREADDR */
906 r3900_cmds.fill = "fx %A s %x %x\r"; /* COREADDR, len, val */
907
908 r3900_cmds.setmem.cmdb = "sx %A %x\r"; /* COREADDR, val */
909 r3900_cmds.setmem.cmdw = "sh %A %x\r"; /* COREADDR, val */
910 r3900_cmds.setmem.cmdl = "sw %A %x\r"; /* COREADDR, val */
911
912 r3900_cmds.getmem.cmdb = "sx %A\r"; /* COREADDR */
913 r3900_cmds.getmem.cmdw = "sh %A\r"; /* COREADDR */
914 r3900_cmds.getmem.cmdl = "sw %A\r"; /* COREADDR */
915 r3900_cmds.getmem.resp_delim = " : ";
916 r3900_cmds.getmem.term = " ";
917 r3900_cmds.getmem.term_cmd = ".\r";
918
919 r3900_cmds.setreg.cmd = "x%s %x\r"; /* regname, val */
920
921 r3900_cmds.getreg.cmd = "x%s\r"; /* regname */
922 r3900_cmds.getreg.resp_delim = "=";
923 r3900_cmds.getreg.term = " ";
924 r3900_cmds.getreg.term_cmd = ".\r";
925
926 r3900_cmds.dump_registers = "x\r";
927 r3900_cmds.register_pattern =
928 "\\([a-zA-Z0-9_]+\\) *=\\([0-9a-f]+ [0-9a-f]+\\b\\)";
929 r3900_cmds.supply_register = r3900_supply_register;
930 /* S-record download, via "keyboard port". */
931 r3900_cmds.load = "r0\r";
932 r3900_cmds.prompt = "#";
933 r3900_cmds.line_term = "\r";
934 r3900_cmds.target = &r3900_ops;
935 r3900_cmds.stopbits = SERIAL_1_STOPBITS;
936 r3900_cmds.regnames = r3900_regnames;
937 r3900_cmds.magic = MONITOR_OPS_MAGIC;
938
939 init_monitor_ops (&r3900_ops);
940
941 r3900_ops.to_shortname = "r3900";
942 r3900_ops.to_longname = "R3900 monitor";
943 r3900_ops.to_doc = "Debug using the DVE R3900 monitor.\n\
944 Specify the serial device it is connected to (e.g. /dev/ttya).";
945 r3900_ops.to_open = r3900_open;
946
947 /* Override the functions to fetch and store registers. But save the
948 addresses of the default functions, because we will use those functions
949 for "normal" registers. */
950
951 orig_monitor_fetch_registers = r3900_ops.to_fetch_registers;
952 orig_monitor_store_registers = r3900_ops.to_store_registers;
953 r3900_ops.to_fetch_registers = r3900_fetch_registers;
954 r3900_ops.to_store_registers = r3900_store_registers;
955
956 /* Override the load function, but save the address of the default
957 function to use when loading S-records over a serial link. */
958 orig_monitor_load = r3900_ops.to_load;
959 r3900_ops.to_load = r3900_load;
960
961 add_target (&r3900_ops);
962 }