]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
201a8575d82796f079e6fb4caa59490be61fb1d3
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "filename-seen-cache.h"
78 #include <fcntl.h>
79 #include <sys/types.h>
80 #include <algorithm>
81 #include <unordered_set>
82 #include <unordered_map>
83
84 typedef struct symbol *symbolp;
85 DEF_VEC_P (symbolp);
86
87 /* When == 1, print basic high level tracing messages.
88 When > 1, be more verbose.
89 This is in contrast to the low level DIE reading of dwarf_die_debug. */
90 static unsigned int dwarf_read_debug = 0;
91
92 /* When non-zero, dump DIEs after they are read in. */
93 static unsigned int dwarf_die_debug = 0;
94
95 /* When non-zero, dump line number entries as they are read in. */
96 static unsigned int dwarf_line_debug = 0;
97
98 /* When non-zero, cross-check physname against demangler. */
99 static int check_physname = 0;
100
101 /* When non-zero, do not reject deprecated .gdb_index sections. */
102 static int use_deprecated_index_sections = 0;
103
104 static const struct objfile_data *dwarf2_objfile_data_key;
105
106 /* The "aclass" indices for various kinds of computed DWARF symbols. */
107
108 static int dwarf2_locexpr_index;
109 static int dwarf2_loclist_index;
110 static int dwarf2_locexpr_block_index;
111 static int dwarf2_loclist_block_index;
112
113 /* A descriptor for dwarf sections.
114
115 S.ASECTION, SIZE are typically initialized when the objfile is first
116 scanned. BUFFER, READIN are filled in later when the section is read.
117 If the section contained compressed data then SIZE is updated to record
118 the uncompressed size of the section.
119
120 DWP file format V2 introduces a wrinkle that is easiest to handle by
121 creating the concept of virtual sections contained within a real section.
122 In DWP V2 the sections of the input DWO files are concatenated together
123 into one section, but section offsets are kept relative to the original
124 input section.
125 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
126 the real section this "virtual" section is contained in, and BUFFER,SIZE
127 describe the virtual section. */
128
129 struct dwarf2_section_info
130 {
131 union
132 {
133 /* If this is a real section, the bfd section. */
134 asection *section;
135 /* If this is a virtual section, pointer to the containing ("real")
136 section. */
137 struct dwarf2_section_info *containing_section;
138 } s;
139 /* Pointer to section data, only valid if readin. */
140 const gdb_byte *buffer;
141 /* The size of the section, real or virtual. */
142 bfd_size_type size;
143 /* If this is a virtual section, the offset in the real section.
144 Only valid if is_virtual. */
145 bfd_size_type virtual_offset;
146 /* True if we have tried to read this section. */
147 char readin;
148 /* True if this is a virtual section, False otherwise.
149 This specifies which of s.section and s.containing_section to use. */
150 char is_virtual;
151 };
152
153 typedef struct dwarf2_section_info dwarf2_section_info_def;
154 DEF_VEC_O (dwarf2_section_info_def);
155
156 /* All offsets in the index are of this type. It must be
157 architecture-independent. */
158 typedef uint32_t offset_type;
159
160 DEF_VEC_I (offset_type);
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((unsigned int) (value) <= 1); \
166 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure only legit values are used. */
170 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
173 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
174 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
178 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
179 do { \
180 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
181 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
182 } while (0)
183
184 /* A description of the mapped index. The file format is described in
185 a comment by the code that writes the index. */
186 struct mapped_index
187 {
188 /* Index data format version. */
189 int version;
190
191 /* The total length of the buffer. */
192 off_t total_size;
193
194 /* A pointer to the address table data. */
195 const gdb_byte *address_table;
196
197 /* Size of the address table data in bytes. */
198 offset_type address_table_size;
199
200 /* The symbol table, implemented as a hash table. */
201 const offset_type *symbol_table;
202
203 /* Size in slots, each slot is 2 offset_types. */
204 offset_type symbol_table_slots;
205
206 /* A pointer to the constant pool. */
207 const char *constant_pool;
208 };
209
210 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
211 DEF_VEC_P (dwarf2_per_cu_ptr);
212
213 struct tu_stats
214 {
215 int nr_uniq_abbrev_tables;
216 int nr_symtabs;
217 int nr_symtab_sharers;
218 int nr_stmt_less_type_units;
219 int nr_all_type_units_reallocs;
220 };
221
222 /* Collection of data recorded per objfile.
223 This hangs off of dwarf2_objfile_data_key. */
224
225 struct dwarf2_per_objfile
226 {
227 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
228 dwarf2 section names, or is NULL if the standard ELF names are
229 used. */
230 dwarf2_per_objfile (struct objfile *objfile,
231 const dwarf2_debug_sections *names);
232
233 ~dwarf2_per_objfile ();
234
235 /* Disable copy. */
236 dwarf2_per_objfile (const dwarf2_per_objfile &) = delete;
237 void operator= (const dwarf2_per_objfile &) = delete;
238
239 /* Free all cached compilation units. */
240 void free_cached_comp_units ();
241 private:
242 /* This function is mapped across the sections and remembers the
243 offset and size of each of the debugging sections we are
244 interested in. */
245 void locate_sections (bfd *abfd, asection *sectp,
246 const dwarf2_debug_sections &names);
247
248 public:
249 dwarf2_section_info info {};
250 dwarf2_section_info abbrev {};
251 dwarf2_section_info line {};
252 dwarf2_section_info loc {};
253 dwarf2_section_info loclists {};
254 dwarf2_section_info macinfo {};
255 dwarf2_section_info macro {};
256 dwarf2_section_info str {};
257 dwarf2_section_info line_str {};
258 dwarf2_section_info ranges {};
259 dwarf2_section_info rnglists {};
260 dwarf2_section_info addr {};
261 dwarf2_section_info frame {};
262 dwarf2_section_info eh_frame {};
263 dwarf2_section_info gdb_index {};
264
265 VEC (dwarf2_section_info_def) *types = NULL;
266
267 /* Back link. */
268 struct objfile *objfile = NULL;
269
270 /* Table of all the compilation units. This is used to locate
271 the target compilation unit of a particular reference. */
272 struct dwarf2_per_cu_data **all_comp_units = NULL;
273
274 /* The number of compilation units in ALL_COMP_UNITS. */
275 int n_comp_units = 0;
276
277 /* The number of .debug_types-related CUs. */
278 int n_type_units = 0;
279
280 /* The number of elements allocated in all_type_units.
281 If there are skeleton-less TUs, we add them to all_type_units lazily. */
282 int n_allocated_type_units = 0;
283
284 /* The .debug_types-related CUs (TUs).
285 This is stored in malloc space because we may realloc it. */
286 struct signatured_type **all_type_units = NULL;
287
288 /* Table of struct type_unit_group objects.
289 The hash key is the DW_AT_stmt_list value. */
290 htab_t type_unit_groups {};
291
292 /* A table mapping .debug_types signatures to its signatured_type entry.
293 This is NULL if the .debug_types section hasn't been read in yet. */
294 htab_t signatured_types {};
295
296 /* Type unit statistics, to see how well the scaling improvements
297 are doing. */
298 struct tu_stats tu_stats {};
299
300 /* A chain of compilation units that are currently read in, so that
301 they can be freed later. */
302 dwarf2_per_cu_data *read_in_chain = NULL;
303
304 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
305 This is NULL if the table hasn't been allocated yet. */
306 htab_t dwo_files {};
307
308 /* True if we've checked for whether there is a DWP file. */
309 bool dwp_checked = false;
310
311 /* The DWP file if there is one, or NULL. */
312 struct dwp_file *dwp_file = NULL;
313
314 /* The shared '.dwz' file, if one exists. This is used when the
315 original data was compressed using 'dwz -m'. */
316 struct dwz_file *dwz_file = NULL;
317
318 /* A flag indicating whether this objfile has a section loaded at a
319 VMA of 0. */
320 bool has_section_at_zero = false;
321
322 /* True if we are using the mapped index,
323 or we are faking it for OBJF_READNOW's sake. */
324 bool using_index = false;
325
326 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
327 mapped_index *index_table = NULL;
328
329 /* When using index_table, this keeps track of all quick_file_names entries.
330 TUs typically share line table entries with a CU, so we maintain a
331 separate table of all line table entries to support the sharing.
332 Note that while there can be way more TUs than CUs, we've already
333 sorted all the TUs into "type unit groups", grouped by their
334 DW_AT_stmt_list value. Therefore the only sharing done here is with a
335 CU and its associated TU group if there is one. */
336 htab_t quick_file_names_table {};
337
338 /* Set during partial symbol reading, to prevent queueing of full
339 symbols. */
340 bool reading_partial_symbols = false;
341
342 /* Table mapping type DIEs to their struct type *.
343 This is NULL if not allocated yet.
344 The mapping is done via (CU/TU + DIE offset) -> type. */
345 htab_t die_type_hash {};
346
347 /* The CUs we recently read. */
348 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
349
350 /* Table containing line_header indexed by offset and offset_in_dwz. */
351 htab_t line_header_hash {};
352
353 /* Table containing all filenames. This is an optional because the
354 table is lazily constructed on first access. */
355 gdb::optional<filename_seen_cache> filenames_cache;
356 };
357
358 static struct dwarf2_per_objfile *dwarf2_per_objfile;
359
360 /* Default names of the debugging sections. */
361
362 /* Note that if the debugging section has been compressed, it might
363 have a name like .zdebug_info. */
364
365 static const struct dwarf2_debug_sections dwarf2_elf_names =
366 {
367 { ".debug_info", ".zdebug_info" },
368 { ".debug_abbrev", ".zdebug_abbrev" },
369 { ".debug_line", ".zdebug_line" },
370 { ".debug_loc", ".zdebug_loc" },
371 { ".debug_loclists", ".zdebug_loclists" },
372 { ".debug_macinfo", ".zdebug_macinfo" },
373 { ".debug_macro", ".zdebug_macro" },
374 { ".debug_str", ".zdebug_str" },
375 { ".debug_line_str", ".zdebug_line_str" },
376 { ".debug_ranges", ".zdebug_ranges" },
377 { ".debug_rnglists", ".zdebug_rnglists" },
378 { ".debug_types", ".zdebug_types" },
379 { ".debug_addr", ".zdebug_addr" },
380 { ".debug_frame", ".zdebug_frame" },
381 { ".eh_frame", NULL },
382 { ".gdb_index", ".zgdb_index" },
383 23
384 };
385
386 /* List of DWO/DWP sections. */
387
388 static const struct dwop_section_names
389 {
390 struct dwarf2_section_names abbrev_dwo;
391 struct dwarf2_section_names info_dwo;
392 struct dwarf2_section_names line_dwo;
393 struct dwarf2_section_names loc_dwo;
394 struct dwarf2_section_names loclists_dwo;
395 struct dwarf2_section_names macinfo_dwo;
396 struct dwarf2_section_names macro_dwo;
397 struct dwarf2_section_names str_dwo;
398 struct dwarf2_section_names str_offsets_dwo;
399 struct dwarf2_section_names types_dwo;
400 struct dwarf2_section_names cu_index;
401 struct dwarf2_section_names tu_index;
402 }
403 dwop_section_names =
404 {
405 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
406 { ".debug_info.dwo", ".zdebug_info.dwo" },
407 { ".debug_line.dwo", ".zdebug_line.dwo" },
408 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
409 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
410 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
411 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
412 { ".debug_str.dwo", ".zdebug_str.dwo" },
413 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
414 { ".debug_types.dwo", ".zdebug_types.dwo" },
415 { ".debug_cu_index", ".zdebug_cu_index" },
416 { ".debug_tu_index", ".zdebug_tu_index" },
417 };
418
419 /* local data types */
420
421 /* The data in a compilation unit header, after target2host
422 translation, looks like this. */
423 struct comp_unit_head
424 {
425 unsigned int length;
426 short version;
427 unsigned char addr_size;
428 unsigned char signed_addr_p;
429 sect_offset abbrev_sect_off;
430
431 /* Size of file offsets; either 4 or 8. */
432 unsigned int offset_size;
433
434 /* Size of the length field; either 4 or 12. */
435 unsigned int initial_length_size;
436
437 enum dwarf_unit_type unit_type;
438
439 /* Offset to the first byte of this compilation unit header in the
440 .debug_info section, for resolving relative reference dies. */
441 sect_offset sect_off;
442
443 /* Offset to first die in this cu from the start of the cu.
444 This will be the first byte following the compilation unit header. */
445 cu_offset first_die_cu_offset;
446
447 /* 64-bit signature of this type unit - it is valid only for
448 UNIT_TYPE DW_UT_type. */
449 ULONGEST signature;
450
451 /* For types, offset in the type's DIE of the type defined by this TU. */
452 cu_offset type_cu_offset_in_tu;
453 };
454
455 /* Type used for delaying computation of method physnames.
456 See comments for compute_delayed_physnames. */
457 struct delayed_method_info
458 {
459 /* The type to which the method is attached, i.e., its parent class. */
460 struct type *type;
461
462 /* The index of the method in the type's function fieldlists. */
463 int fnfield_index;
464
465 /* The index of the method in the fieldlist. */
466 int index;
467
468 /* The name of the DIE. */
469 const char *name;
470
471 /* The DIE associated with this method. */
472 struct die_info *die;
473 };
474
475 typedef struct delayed_method_info delayed_method_info;
476 DEF_VEC_O (delayed_method_info);
477
478 /* Internal state when decoding a particular compilation unit. */
479 struct dwarf2_cu
480 {
481 /* The objfile containing this compilation unit. */
482 struct objfile *objfile;
483
484 /* The header of the compilation unit. */
485 struct comp_unit_head header;
486
487 /* Base address of this compilation unit. */
488 CORE_ADDR base_address;
489
490 /* Non-zero if base_address has been set. */
491 int base_known;
492
493 /* The language we are debugging. */
494 enum language language;
495 const struct language_defn *language_defn;
496
497 const char *producer;
498
499 /* The generic symbol table building routines have separate lists for
500 file scope symbols and all all other scopes (local scopes). So
501 we need to select the right one to pass to add_symbol_to_list().
502 We do it by keeping a pointer to the correct list in list_in_scope.
503
504 FIXME: The original dwarf code just treated the file scope as the
505 first local scope, and all other local scopes as nested local
506 scopes, and worked fine. Check to see if we really need to
507 distinguish these in buildsym.c. */
508 struct pending **list_in_scope;
509
510 /* The abbrev table for this CU.
511 Normally this points to the abbrev table in the objfile.
512 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
513 struct abbrev_table *abbrev_table;
514
515 /* Hash table holding all the loaded partial DIEs
516 with partial_die->offset.SECT_OFF as hash. */
517 htab_t partial_dies;
518
519 /* Storage for things with the same lifetime as this read-in compilation
520 unit, including partial DIEs. */
521 struct obstack comp_unit_obstack;
522
523 /* When multiple dwarf2_cu structures are living in memory, this field
524 chains them all together, so that they can be released efficiently.
525 We will probably also want a generation counter so that most-recently-used
526 compilation units are cached... */
527 struct dwarf2_per_cu_data *read_in_chain;
528
529 /* Backlink to our per_cu entry. */
530 struct dwarf2_per_cu_data *per_cu;
531
532 /* How many compilation units ago was this CU last referenced? */
533 int last_used;
534
535 /* A hash table of DIE cu_offset for following references with
536 die_info->offset.sect_off as hash. */
537 htab_t die_hash;
538
539 /* Full DIEs if read in. */
540 struct die_info *dies;
541
542 /* A set of pointers to dwarf2_per_cu_data objects for compilation
543 units referenced by this one. Only set during full symbol processing;
544 partial symbol tables do not have dependencies. */
545 htab_t dependencies;
546
547 /* Header data from the line table, during full symbol processing. */
548 struct line_header *line_header;
549 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
550 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
551 this is the DW_TAG_compile_unit die for this CU. We'll hold on
552 to the line header as long as this DIE is being processed. See
553 process_die_scope. */
554 die_info *line_header_die_owner;
555
556 /* A list of methods which need to have physnames computed
557 after all type information has been read. */
558 VEC (delayed_method_info) *method_list;
559
560 /* To be copied to symtab->call_site_htab. */
561 htab_t call_site_htab;
562
563 /* Non-NULL if this CU came from a DWO file.
564 There is an invariant here that is important to remember:
565 Except for attributes copied from the top level DIE in the "main"
566 (or "stub") file in preparation for reading the DWO file
567 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
568 Either there isn't a DWO file (in which case this is NULL and the point
569 is moot), or there is and either we're not going to read it (in which
570 case this is NULL) or there is and we are reading it (in which case this
571 is non-NULL). */
572 struct dwo_unit *dwo_unit;
573
574 /* The DW_AT_addr_base attribute if present, zero otherwise
575 (zero is a valid value though).
576 Note this value comes from the Fission stub CU/TU's DIE. */
577 ULONGEST addr_base;
578
579 /* The DW_AT_ranges_base attribute if present, zero otherwise
580 (zero is a valid value though).
581 Note this value comes from the Fission stub CU/TU's DIE.
582 Also note that the value is zero in the non-DWO case so this value can
583 be used without needing to know whether DWO files are in use or not.
584 N.B. This does not apply to DW_AT_ranges appearing in
585 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
586 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
587 DW_AT_ranges_base *would* have to be applied, and we'd have to care
588 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
589 ULONGEST ranges_base;
590
591 /* Mark used when releasing cached dies. */
592 unsigned int mark : 1;
593
594 /* This CU references .debug_loc. See the symtab->locations_valid field.
595 This test is imperfect as there may exist optimized debug code not using
596 any location list and still facing inlining issues if handled as
597 unoptimized code. For a future better test see GCC PR other/32998. */
598 unsigned int has_loclist : 1;
599
600 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
601 if all the producer_is_* fields are valid. This information is cached
602 because profiling CU expansion showed excessive time spent in
603 producer_is_gxx_lt_4_6. */
604 unsigned int checked_producer : 1;
605 unsigned int producer_is_gxx_lt_4_6 : 1;
606 unsigned int producer_is_gcc_lt_4_3 : 1;
607 unsigned int producer_is_icc : 1;
608
609 /* When set, the file that we're processing is known to have
610 debugging info for C++ namespaces. GCC 3.3.x did not produce
611 this information, but later versions do. */
612
613 unsigned int processing_has_namespace_info : 1;
614 };
615
616 /* Persistent data held for a compilation unit, even when not
617 processing it. We put a pointer to this structure in the
618 read_symtab_private field of the psymtab. */
619
620 struct dwarf2_per_cu_data
621 {
622 /* The start offset and length of this compilation unit.
623 NOTE: Unlike comp_unit_head.length, this length includes
624 initial_length_size.
625 If the DIE refers to a DWO file, this is always of the original die,
626 not the DWO file. */
627 sect_offset sect_off;
628 unsigned int length;
629
630 /* DWARF standard version this data has been read from (such as 4 or 5). */
631 short dwarf_version;
632
633 /* Flag indicating this compilation unit will be read in before
634 any of the current compilation units are processed. */
635 unsigned int queued : 1;
636
637 /* This flag will be set when reading partial DIEs if we need to load
638 absolutely all DIEs for this compilation unit, instead of just the ones
639 we think are interesting. It gets set if we look for a DIE in the
640 hash table and don't find it. */
641 unsigned int load_all_dies : 1;
642
643 /* Non-zero if this CU is from .debug_types.
644 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
645 this is non-zero. */
646 unsigned int is_debug_types : 1;
647
648 /* Non-zero if this CU is from the .dwz file. */
649 unsigned int is_dwz : 1;
650
651 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
652 This flag is only valid if is_debug_types is true.
653 We can't read a CU directly from a DWO file: There are required
654 attributes in the stub. */
655 unsigned int reading_dwo_directly : 1;
656
657 /* Non-zero if the TU has been read.
658 This is used to assist the "Stay in DWO Optimization" for Fission:
659 When reading a DWO, it's faster to read TUs from the DWO instead of
660 fetching them from random other DWOs (due to comdat folding).
661 If the TU has already been read, the optimization is unnecessary
662 (and unwise - we don't want to change where gdb thinks the TU lives
663 "midflight").
664 This flag is only valid if is_debug_types is true. */
665 unsigned int tu_read : 1;
666
667 /* The section this CU/TU lives in.
668 If the DIE refers to a DWO file, this is always the original die,
669 not the DWO file. */
670 struct dwarf2_section_info *section;
671
672 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
673 of the CU cache it gets reset to NULL again. This is left as NULL for
674 dummy CUs (a CU header, but nothing else). */
675 struct dwarf2_cu *cu;
676
677 /* The corresponding objfile.
678 Normally we can get the objfile from dwarf2_per_objfile.
679 However we can enter this file with just a "per_cu" handle. */
680 struct objfile *objfile;
681
682 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
683 is active. Otherwise, the 'psymtab' field is active. */
684 union
685 {
686 /* The partial symbol table associated with this compilation unit,
687 or NULL for unread partial units. */
688 struct partial_symtab *psymtab;
689
690 /* Data needed by the "quick" functions. */
691 struct dwarf2_per_cu_quick_data *quick;
692 } v;
693
694 /* The CUs we import using DW_TAG_imported_unit. This is filled in
695 while reading psymtabs, used to compute the psymtab dependencies,
696 and then cleared. Then it is filled in again while reading full
697 symbols, and only deleted when the objfile is destroyed.
698
699 This is also used to work around a difference between the way gold
700 generates .gdb_index version <=7 and the way gdb does. Arguably this
701 is a gold bug. For symbols coming from TUs, gold records in the index
702 the CU that includes the TU instead of the TU itself. This breaks
703 dw2_lookup_symbol: It assumes that if the index says symbol X lives
704 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
705 will find X. Alas TUs live in their own symtab, so after expanding CU Y
706 we need to look in TU Z to find X. Fortunately, this is akin to
707 DW_TAG_imported_unit, so we just use the same mechanism: For
708 .gdb_index version <=7 this also records the TUs that the CU referred
709 to. Concurrently with this change gdb was modified to emit version 8
710 indices so we only pay a price for gold generated indices.
711 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
712 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
713 };
714
715 /* Entry in the signatured_types hash table. */
716
717 struct signatured_type
718 {
719 /* The "per_cu" object of this type.
720 This struct is used iff per_cu.is_debug_types.
721 N.B.: This is the first member so that it's easy to convert pointers
722 between them. */
723 struct dwarf2_per_cu_data per_cu;
724
725 /* The type's signature. */
726 ULONGEST signature;
727
728 /* Offset in the TU of the type's DIE, as read from the TU header.
729 If this TU is a DWO stub and the definition lives in a DWO file
730 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
731 cu_offset type_offset_in_tu;
732
733 /* Offset in the section of the type's DIE.
734 If the definition lives in a DWO file, this is the offset in the
735 .debug_types.dwo section.
736 The value is zero until the actual value is known.
737 Zero is otherwise not a valid section offset. */
738 sect_offset type_offset_in_section;
739
740 /* Type units are grouped by their DW_AT_stmt_list entry so that they
741 can share them. This points to the containing symtab. */
742 struct type_unit_group *type_unit_group;
743
744 /* The type.
745 The first time we encounter this type we fully read it in and install it
746 in the symbol tables. Subsequent times we only need the type. */
747 struct type *type;
748
749 /* Containing DWO unit.
750 This field is valid iff per_cu.reading_dwo_directly. */
751 struct dwo_unit *dwo_unit;
752 };
753
754 typedef struct signatured_type *sig_type_ptr;
755 DEF_VEC_P (sig_type_ptr);
756
757 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
758 This includes type_unit_group and quick_file_names. */
759
760 struct stmt_list_hash
761 {
762 /* The DWO unit this table is from or NULL if there is none. */
763 struct dwo_unit *dwo_unit;
764
765 /* Offset in .debug_line or .debug_line.dwo. */
766 sect_offset line_sect_off;
767 };
768
769 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
770 an object of this type. */
771
772 struct type_unit_group
773 {
774 /* dwarf2read.c's main "handle" on a TU symtab.
775 To simplify things we create an artificial CU that "includes" all the
776 type units using this stmt_list so that the rest of the code still has
777 a "per_cu" handle on the symtab.
778 This PER_CU is recognized by having no section. */
779 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
780 struct dwarf2_per_cu_data per_cu;
781
782 /* The TUs that share this DW_AT_stmt_list entry.
783 This is added to while parsing type units to build partial symtabs,
784 and is deleted afterwards and not used again. */
785 VEC (sig_type_ptr) *tus;
786
787 /* The compunit symtab.
788 Type units in a group needn't all be defined in the same source file,
789 so we create an essentially anonymous symtab as the compunit symtab. */
790 struct compunit_symtab *compunit_symtab;
791
792 /* The data used to construct the hash key. */
793 struct stmt_list_hash hash;
794
795 /* The number of symtabs from the line header.
796 The value here must match line_header.num_file_names. */
797 unsigned int num_symtabs;
798
799 /* The symbol tables for this TU (obtained from the files listed in
800 DW_AT_stmt_list).
801 WARNING: The order of entries here must match the order of entries
802 in the line header. After the first TU using this type_unit_group, the
803 line header for the subsequent TUs is recreated from this. This is done
804 because we need to use the same symtabs for each TU using the same
805 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
806 there's no guarantee the line header doesn't have duplicate entries. */
807 struct symtab **symtabs;
808 };
809
810 /* These sections are what may appear in a (real or virtual) DWO file. */
811
812 struct dwo_sections
813 {
814 struct dwarf2_section_info abbrev;
815 struct dwarf2_section_info line;
816 struct dwarf2_section_info loc;
817 struct dwarf2_section_info loclists;
818 struct dwarf2_section_info macinfo;
819 struct dwarf2_section_info macro;
820 struct dwarf2_section_info str;
821 struct dwarf2_section_info str_offsets;
822 /* In the case of a virtual DWO file, these two are unused. */
823 struct dwarf2_section_info info;
824 VEC (dwarf2_section_info_def) *types;
825 };
826
827 /* CUs/TUs in DWP/DWO files. */
828
829 struct dwo_unit
830 {
831 /* Backlink to the containing struct dwo_file. */
832 struct dwo_file *dwo_file;
833
834 /* The "id" that distinguishes this CU/TU.
835 .debug_info calls this "dwo_id", .debug_types calls this "signature".
836 Since signatures came first, we stick with it for consistency. */
837 ULONGEST signature;
838
839 /* The section this CU/TU lives in, in the DWO file. */
840 struct dwarf2_section_info *section;
841
842 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
843 sect_offset sect_off;
844 unsigned int length;
845
846 /* For types, offset in the type's DIE of the type defined by this TU. */
847 cu_offset type_offset_in_tu;
848 };
849
850 /* include/dwarf2.h defines the DWP section codes.
851 It defines a max value but it doesn't define a min value, which we
852 use for error checking, so provide one. */
853
854 enum dwp_v2_section_ids
855 {
856 DW_SECT_MIN = 1
857 };
858
859 /* Data for one DWO file.
860
861 This includes virtual DWO files (a virtual DWO file is a DWO file as it
862 appears in a DWP file). DWP files don't really have DWO files per se -
863 comdat folding of types "loses" the DWO file they came from, and from
864 a high level view DWP files appear to contain a mass of random types.
865 However, to maintain consistency with the non-DWP case we pretend DWP
866 files contain virtual DWO files, and we assign each TU with one virtual
867 DWO file (generally based on the line and abbrev section offsets -
868 a heuristic that seems to work in practice). */
869
870 struct dwo_file
871 {
872 /* The DW_AT_GNU_dwo_name attribute.
873 For virtual DWO files the name is constructed from the section offsets
874 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
875 from related CU+TUs. */
876 const char *dwo_name;
877
878 /* The DW_AT_comp_dir attribute. */
879 const char *comp_dir;
880
881 /* The bfd, when the file is open. Otherwise this is NULL.
882 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
883 bfd *dbfd;
884
885 /* The sections that make up this DWO file.
886 Remember that for virtual DWO files in DWP V2, these are virtual
887 sections (for lack of a better name). */
888 struct dwo_sections sections;
889
890 /* The CUs in the file.
891 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
892 an extension to handle LLVM's Link Time Optimization output (where
893 multiple source files may be compiled into a single object/dwo pair). */
894 htab_t cus;
895
896 /* Table of TUs in the file.
897 Each element is a struct dwo_unit. */
898 htab_t tus;
899 };
900
901 /* These sections are what may appear in a DWP file. */
902
903 struct dwp_sections
904 {
905 /* These are used by both DWP version 1 and 2. */
906 struct dwarf2_section_info str;
907 struct dwarf2_section_info cu_index;
908 struct dwarf2_section_info tu_index;
909
910 /* These are only used by DWP version 2 files.
911 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
912 sections are referenced by section number, and are not recorded here.
913 In DWP version 2 there is at most one copy of all these sections, each
914 section being (effectively) comprised of the concatenation of all of the
915 individual sections that exist in the version 1 format.
916 To keep the code simple we treat each of these concatenated pieces as a
917 section itself (a virtual section?). */
918 struct dwarf2_section_info abbrev;
919 struct dwarf2_section_info info;
920 struct dwarf2_section_info line;
921 struct dwarf2_section_info loc;
922 struct dwarf2_section_info macinfo;
923 struct dwarf2_section_info macro;
924 struct dwarf2_section_info str_offsets;
925 struct dwarf2_section_info types;
926 };
927
928 /* These sections are what may appear in a virtual DWO file in DWP version 1.
929 A virtual DWO file is a DWO file as it appears in a DWP file. */
930
931 struct virtual_v1_dwo_sections
932 {
933 struct dwarf2_section_info abbrev;
934 struct dwarf2_section_info line;
935 struct dwarf2_section_info loc;
936 struct dwarf2_section_info macinfo;
937 struct dwarf2_section_info macro;
938 struct dwarf2_section_info str_offsets;
939 /* Each DWP hash table entry records one CU or one TU.
940 That is recorded here, and copied to dwo_unit.section. */
941 struct dwarf2_section_info info_or_types;
942 };
943
944 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
945 In version 2, the sections of the DWO files are concatenated together
946 and stored in one section of that name. Thus each ELF section contains
947 several "virtual" sections. */
948
949 struct virtual_v2_dwo_sections
950 {
951 bfd_size_type abbrev_offset;
952 bfd_size_type abbrev_size;
953
954 bfd_size_type line_offset;
955 bfd_size_type line_size;
956
957 bfd_size_type loc_offset;
958 bfd_size_type loc_size;
959
960 bfd_size_type macinfo_offset;
961 bfd_size_type macinfo_size;
962
963 bfd_size_type macro_offset;
964 bfd_size_type macro_size;
965
966 bfd_size_type str_offsets_offset;
967 bfd_size_type str_offsets_size;
968
969 /* Each DWP hash table entry records one CU or one TU.
970 That is recorded here, and copied to dwo_unit.section. */
971 bfd_size_type info_or_types_offset;
972 bfd_size_type info_or_types_size;
973 };
974
975 /* Contents of DWP hash tables. */
976
977 struct dwp_hash_table
978 {
979 uint32_t version, nr_columns;
980 uint32_t nr_units, nr_slots;
981 const gdb_byte *hash_table, *unit_table;
982 union
983 {
984 struct
985 {
986 const gdb_byte *indices;
987 } v1;
988 struct
989 {
990 /* This is indexed by column number and gives the id of the section
991 in that column. */
992 #define MAX_NR_V2_DWO_SECTIONS \
993 (1 /* .debug_info or .debug_types */ \
994 + 1 /* .debug_abbrev */ \
995 + 1 /* .debug_line */ \
996 + 1 /* .debug_loc */ \
997 + 1 /* .debug_str_offsets */ \
998 + 1 /* .debug_macro or .debug_macinfo */)
999 int section_ids[MAX_NR_V2_DWO_SECTIONS];
1000 const gdb_byte *offsets;
1001 const gdb_byte *sizes;
1002 } v2;
1003 } section_pool;
1004 };
1005
1006 /* Data for one DWP file. */
1007
1008 struct dwp_file
1009 {
1010 /* Name of the file. */
1011 const char *name;
1012
1013 /* File format version. */
1014 int version;
1015
1016 /* The bfd. */
1017 bfd *dbfd;
1018
1019 /* Section info for this file. */
1020 struct dwp_sections sections;
1021
1022 /* Table of CUs in the file. */
1023 const struct dwp_hash_table *cus;
1024
1025 /* Table of TUs in the file. */
1026 const struct dwp_hash_table *tus;
1027
1028 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1029 htab_t loaded_cus;
1030 htab_t loaded_tus;
1031
1032 /* Table to map ELF section numbers to their sections.
1033 This is only needed for the DWP V1 file format. */
1034 unsigned int num_sections;
1035 asection **elf_sections;
1036 };
1037
1038 /* This represents a '.dwz' file. */
1039
1040 struct dwz_file
1041 {
1042 /* A dwz file can only contain a few sections. */
1043 struct dwarf2_section_info abbrev;
1044 struct dwarf2_section_info info;
1045 struct dwarf2_section_info str;
1046 struct dwarf2_section_info line;
1047 struct dwarf2_section_info macro;
1048 struct dwarf2_section_info gdb_index;
1049
1050 /* The dwz's BFD. */
1051 bfd *dwz_bfd;
1052 };
1053
1054 /* Struct used to pass misc. parameters to read_die_and_children, et
1055 al. which are used for both .debug_info and .debug_types dies.
1056 All parameters here are unchanging for the life of the call. This
1057 struct exists to abstract away the constant parameters of die reading. */
1058
1059 struct die_reader_specs
1060 {
1061 /* The bfd of die_section. */
1062 bfd* abfd;
1063
1064 /* The CU of the DIE we are parsing. */
1065 struct dwarf2_cu *cu;
1066
1067 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1068 struct dwo_file *dwo_file;
1069
1070 /* The section the die comes from.
1071 This is either .debug_info or .debug_types, or the .dwo variants. */
1072 struct dwarf2_section_info *die_section;
1073
1074 /* die_section->buffer. */
1075 const gdb_byte *buffer;
1076
1077 /* The end of the buffer. */
1078 const gdb_byte *buffer_end;
1079
1080 /* The value of the DW_AT_comp_dir attribute. */
1081 const char *comp_dir;
1082 };
1083
1084 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1085 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1086 const gdb_byte *info_ptr,
1087 struct die_info *comp_unit_die,
1088 int has_children,
1089 void *data);
1090
1091 /* A 1-based directory index. This is a strong typedef to prevent
1092 accidentally using a directory index as a 0-based index into an
1093 array/vector. */
1094 enum class dir_index : unsigned int {};
1095
1096 /* Likewise, a 1-based file name index. */
1097 enum class file_name_index : unsigned int {};
1098
1099 struct file_entry
1100 {
1101 file_entry () = default;
1102
1103 file_entry (const char *name_, dir_index d_index_,
1104 unsigned int mod_time_, unsigned int length_)
1105 : name (name_),
1106 d_index (d_index_),
1107 mod_time (mod_time_),
1108 length (length_)
1109 {}
1110
1111 /* Return the include directory at D_INDEX stored in LH. Returns
1112 NULL if D_INDEX is out of bounds. */
1113 const char *include_dir (const line_header *lh) const;
1114
1115 /* The file name. Note this is an observing pointer. The memory is
1116 owned by debug_line_buffer. */
1117 const char *name {};
1118
1119 /* The directory index (1-based). */
1120 dir_index d_index {};
1121
1122 unsigned int mod_time {};
1123
1124 unsigned int length {};
1125
1126 /* True if referenced by the Line Number Program. */
1127 bool included_p {};
1128
1129 /* The associated symbol table, if any. */
1130 struct symtab *symtab {};
1131 };
1132
1133 /* The line number information for a compilation unit (found in the
1134 .debug_line section) begins with a "statement program header",
1135 which contains the following information. */
1136 struct line_header
1137 {
1138 line_header ()
1139 : offset_in_dwz {}
1140 {}
1141
1142 /* Add an entry to the include directory table. */
1143 void add_include_dir (const char *include_dir);
1144
1145 /* Add an entry to the file name table. */
1146 void add_file_name (const char *name, dir_index d_index,
1147 unsigned int mod_time, unsigned int length);
1148
1149 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1150 is out of bounds. */
1151 const char *include_dir_at (dir_index index) const
1152 {
1153 /* Convert directory index number (1-based) to vector index
1154 (0-based). */
1155 size_t vec_index = to_underlying (index) - 1;
1156
1157 if (vec_index >= include_dirs.size ())
1158 return NULL;
1159 return include_dirs[vec_index];
1160 }
1161
1162 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1163 is out of bounds. */
1164 file_entry *file_name_at (file_name_index index)
1165 {
1166 /* Convert file name index number (1-based) to vector index
1167 (0-based). */
1168 size_t vec_index = to_underlying (index) - 1;
1169
1170 if (vec_index >= file_names.size ())
1171 return NULL;
1172 return &file_names[vec_index];
1173 }
1174
1175 /* Const version of the above. */
1176 const file_entry *file_name_at (unsigned int index) const
1177 {
1178 if (index >= file_names.size ())
1179 return NULL;
1180 return &file_names[index];
1181 }
1182
1183 /* Offset of line number information in .debug_line section. */
1184 sect_offset sect_off {};
1185
1186 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1187 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1188
1189 unsigned int total_length {};
1190 unsigned short version {};
1191 unsigned int header_length {};
1192 unsigned char minimum_instruction_length {};
1193 unsigned char maximum_ops_per_instruction {};
1194 unsigned char default_is_stmt {};
1195 int line_base {};
1196 unsigned char line_range {};
1197 unsigned char opcode_base {};
1198
1199 /* standard_opcode_lengths[i] is the number of operands for the
1200 standard opcode whose value is i. This means that
1201 standard_opcode_lengths[0] is unused, and the last meaningful
1202 element is standard_opcode_lengths[opcode_base - 1]. */
1203 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1204
1205 /* The include_directories table. Note these are observing
1206 pointers. The memory is owned by debug_line_buffer. */
1207 std::vector<const char *> include_dirs;
1208
1209 /* The file_names table. */
1210 std::vector<file_entry> file_names;
1211
1212 /* The start and end of the statement program following this
1213 header. These point into dwarf2_per_objfile->line_buffer. */
1214 const gdb_byte *statement_program_start {}, *statement_program_end {};
1215 };
1216
1217 typedef std::unique_ptr<line_header> line_header_up;
1218
1219 const char *
1220 file_entry::include_dir (const line_header *lh) const
1221 {
1222 return lh->include_dir_at (d_index);
1223 }
1224
1225 /* When we construct a partial symbol table entry we only
1226 need this much information. */
1227 struct partial_die_info
1228 {
1229 /* Offset of this DIE. */
1230 sect_offset sect_off;
1231
1232 /* DWARF-2 tag for this DIE. */
1233 ENUM_BITFIELD(dwarf_tag) tag : 16;
1234
1235 /* Assorted flags describing the data found in this DIE. */
1236 unsigned int has_children : 1;
1237 unsigned int is_external : 1;
1238 unsigned int is_declaration : 1;
1239 unsigned int has_type : 1;
1240 unsigned int has_specification : 1;
1241 unsigned int has_pc_info : 1;
1242 unsigned int may_be_inlined : 1;
1243
1244 /* This DIE has been marked DW_AT_main_subprogram. */
1245 unsigned int main_subprogram : 1;
1246
1247 /* Flag set if the SCOPE field of this structure has been
1248 computed. */
1249 unsigned int scope_set : 1;
1250
1251 /* Flag set if the DIE has a byte_size attribute. */
1252 unsigned int has_byte_size : 1;
1253
1254 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1255 unsigned int has_const_value : 1;
1256
1257 /* Flag set if any of the DIE's children are template arguments. */
1258 unsigned int has_template_arguments : 1;
1259
1260 /* Flag set if fixup_partial_die has been called on this die. */
1261 unsigned int fixup_called : 1;
1262
1263 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1264 unsigned int is_dwz : 1;
1265
1266 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1267 unsigned int spec_is_dwz : 1;
1268
1269 /* The name of this DIE. Normally the value of DW_AT_name, but
1270 sometimes a default name for unnamed DIEs. */
1271 const char *name;
1272
1273 /* The linkage name, if present. */
1274 const char *linkage_name;
1275
1276 /* The scope to prepend to our children. This is generally
1277 allocated on the comp_unit_obstack, so will disappear
1278 when this compilation unit leaves the cache. */
1279 const char *scope;
1280
1281 /* Some data associated with the partial DIE. The tag determines
1282 which field is live. */
1283 union
1284 {
1285 /* The location description associated with this DIE, if any. */
1286 struct dwarf_block *locdesc;
1287 /* The offset of an import, for DW_TAG_imported_unit. */
1288 sect_offset sect_off;
1289 } d;
1290
1291 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1292 CORE_ADDR lowpc;
1293 CORE_ADDR highpc;
1294
1295 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1296 DW_AT_sibling, if any. */
1297 /* NOTE: This member isn't strictly necessary, read_partial_die could
1298 return DW_AT_sibling values to its caller load_partial_dies. */
1299 const gdb_byte *sibling;
1300
1301 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1302 DW_AT_specification (or DW_AT_abstract_origin or
1303 DW_AT_extension). */
1304 sect_offset spec_offset;
1305
1306 /* Pointers to this DIE's parent, first child, and next sibling,
1307 if any. */
1308 struct partial_die_info *die_parent, *die_child, *die_sibling;
1309 };
1310
1311 /* This data structure holds the information of an abbrev. */
1312 struct abbrev_info
1313 {
1314 unsigned int number; /* number identifying abbrev */
1315 enum dwarf_tag tag; /* dwarf tag */
1316 unsigned short has_children; /* boolean */
1317 unsigned short num_attrs; /* number of attributes */
1318 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1319 struct abbrev_info *next; /* next in chain */
1320 };
1321
1322 struct attr_abbrev
1323 {
1324 ENUM_BITFIELD(dwarf_attribute) name : 16;
1325 ENUM_BITFIELD(dwarf_form) form : 16;
1326
1327 /* It is valid only if FORM is DW_FORM_implicit_const. */
1328 LONGEST implicit_const;
1329 };
1330
1331 /* Size of abbrev_table.abbrev_hash_table. */
1332 #define ABBREV_HASH_SIZE 121
1333
1334 /* Top level data structure to contain an abbreviation table. */
1335
1336 struct abbrev_table
1337 {
1338 /* Where the abbrev table came from.
1339 This is used as a sanity check when the table is used. */
1340 sect_offset sect_off;
1341
1342 /* Storage for the abbrev table. */
1343 struct obstack abbrev_obstack;
1344
1345 /* Hash table of abbrevs.
1346 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1347 It could be statically allocated, but the previous code didn't so we
1348 don't either. */
1349 struct abbrev_info **abbrevs;
1350 };
1351
1352 /* Attributes have a name and a value. */
1353 struct attribute
1354 {
1355 ENUM_BITFIELD(dwarf_attribute) name : 16;
1356 ENUM_BITFIELD(dwarf_form) form : 15;
1357
1358 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1359 field should be in u.str (existing only for DW_STRING) but it is kept
1360 here for better struct attribute alignment. */
1361 unsigned int string_is_canonical : 1;
1362
1363 union
1364 {
1365 const char *str;
1366 struct dwarf_block *blk;
1367 ULONGEST unsnd;
1368 LONGEST snd;
1369 CORE_ADDR addr;
1370 ULONGEST signature;
1371 }
1372 u;
1373 };
1374
1375 /* This data structure holds a complete die structure. */
1376 struct die_info
1377 {
1378 /* DWARF-2 tag for this DIE. */
1379 ENUM_BITFIELD(dwarf_tag) tag : 16;
1380
1381 /* Number of attributes */
1382 unsigned char num_attrs;
1383
1384 /* True if we're presently building the full type name for the
1385 type derived from this DIE. */
1386 unsigned char building_fullname : 1;
1387
1388 /* True if this die is in process. PR 16581. */
1389 unsigned char in_process : 1;
1390
1391 /* Abbrev number */
1392 unsigned int abbrev;
1393
1394 /* Offset in .debug_info or .debug_types section. */
1395 sect_offset sect_off;
1396
1397 /* The dies in a compilation unit form an n-ary tree. PARENT
1398 points to this die's parent; CHILD points to the first child of
1399 this node; and all the children of a given node are chained
1400 together via their SIBLING fields. */
1401 struct die_info *child; /* Its first child, if any. */
1402 struct die_info *sibling; /* Its next sibling, if any. */
1403 struct die_info *parent; /* Its parent, if any. */
1404
1405 /* An array of attributes, with NUM_ATTRS elements. There may be
1406 zero, but it's not common and zero-sized arrays are not
1407 sufficiently portable C. */
1408 struct attribute attrs[1];
1409 };
1410
1411 /* Get at parts of an attribute structure. */
1412
1413 #define DW_STRING(attr) ((attr)->u.str)
1414 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1415 #define DW_UNSND(attr) ((attr)->u.unsnd)
1416 #define DW_BLOCK(attr) ((attr)->u.blk)
1417 #define DW_SND(attr) ((attr)->u.snd)
1418 #define DW_ADDR(attr) ((attr)->u.addr)
1419 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1420
1421 /* Blocks are a bunch of untyped bytes. */
1422 struct dwarf_block
1423 {
1424 size_t size;
1425
1426 /* Valid only if SIZE is not zero. */
1427 const gdb_byte *data;
1428 };
1429
1430 #ifndef ATTR_ALLOC_CHUNK
1431 #define ATTR_ALLOC_CHUNK 4
1432 #endif
1433
1434 /* Allocate fields for structs, unions and enums in this size. */
1435 #ifndef DW_FIELD_ALLOC_CHUNK
1436 #define DW_FIELD_ALLOC_CHUNK 4
1437 #endif
1438
1439 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1440 but this would require a corresponding change in unpack_field_as_long
1441 and friends. */
1442 static int bits_per_byte = 8;
1443
1444 struct nextfield
1445 {
1446 struct nextfield *next;
1447 int accessibility;
1448 int virtuality;
1449 struct field field;
1450 };
1451
1452 struct nextfnfield
1453 {
1454 struct nextfnfield *next;
1455 struct fn_field fnfield;
1456 };
1457
1458 struct fnfieldlist
1459 {
1460 const char *name;
1461 int length;
1462 struct nextfnfield *head;
1463 };
1464
1465 struct typedef_field_list
1466 {
1467 struct typedef_field field;
1468 struct typedef_field_list *next;
1469 };
1470
1471 /* The routines that read and process dies for a C struct or C++ class
1472 pass lists of data member fields and lists of member function fields
1473 in an instance of a field_info structure, as defined below. */
1474 struct field_info
1475 {
1476 /* List of data member and baseclasses fields. */
1477 struct nextfield *fields, *baseclasses;
1478
1479 /* Number of fields (including baseclasses). */
1480 int nfields;
1481
1482 /* Number of baseclasses. */
1483 int nbaseclasses;
1484
1485 /* Set if the accesibility of one of the fields is not public. */
1486 int non_public_fields;
1487
1488 /* Member function fieldlist array, contains name of possibly overloaded
1489 member function, number of overloaded member functions and a pointer
1490 to the head of the member function field chain. */
1491 struct fnfieldlist *fnfieldlists;
1492
1493 /* Number of entries in the fnfieldlists array. */
1494 int nfnfields;
1495
1496 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1497 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1498 struct typedef_field_list *typedef_field_list;
1499 unsigned typedef_field_list_count;
1500 };
1501
1502 /* One item on the queue of compilation units to read in full symbols
1503 for. */
1504 struct dwarf2_queue_item
1505 {
1506 struct dwarf2_per_cu_data *per_cu;
1507 enum language pretend_language;
1508 struct dwarf2_queue_item *next;
1509 };
1510
1511 /* The current queue. */
1512 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1513
1514 /* Loaded secondary compilation units are kept in memory until they
1515 have not been referenced for the processing of this many
1516 compilation units. Set this to zero to disable caching. Cache
1517 sizes of up to at least twenty will improve startup time for
1518 typical inter-CU-reference binaries, at an obvious memory cost. */
1519 static int dwarf_max_cache_age = 5;
1520 static void
1521 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1522 struct cmd_list_element *c, const char *value)
1523 {
1524 fprintf_filtered (file, _("The upper bound on the age of cached "
1525 "DWARF compilation units is %s.\n"),
1526 value);
1527 }
1528 \f
1529 /* local function prototypes */
1530
1531 static const char *get_section_name (const struct dwarf2_section_info *);
1532
1533 static const char *get_section_file_name (const struct dwarf2_section_info *);
1534
1535 static void dwarf2_find_base_address (struct die_info *die,
1536 struct dwarf2_cu *cu);
1537
1538 static struct partial_symtab *create_partial_symtab
1539 (struct dwarf2_per_cu_data *per_cu, const char *name);
1540
1541 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1542 const gdb_byte *info_ptr,
1543 struct die_info *type_unit_die,
1544 int has_children, void *data);
1545
1546 static void dwarf2_build_psymtabs_hard (struct objfile *);
1547
1548 static void scan_partial_symbols (struct partial_die_info *,
1549 CORE_ADDR *, CORE_ADDR *,
1550 int, struct dwarf2_cu *);
1551
1552 static void add_partial_symbol (struct partial_die_info *,
1553 struct dwarf2_cu *);
1554
1555 static void add_partial_namespace (struct partial_die_info *pdi,
1556 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1557 int set_addrmap, struct dwarf2_cu *cu);
1558
1559 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1560 CORE_ADDR *highpc, int set_addrmap,
1561 struct dwarf2_cu *cu);
1562
1563 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1564 struct dwarf2_cu *cu);
1565
1566 static void add_partial_subprogram (struct partial_die_info *pdi,
1567 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1568 int need_pc, struct dwarf2_cu *cu);
1569
1570 static void dwarf2_read_symtab (struct partial_symtab *,
1571 struct objfile *);
1572
1573 static void psymtab_to_symtab_1 (struct partial_symtab *);
1574
1575 static struct abbrev_info *abbrev_table_lookup_abbrev
1576 (const struct abbrev_table *, unsigned int);
1577
1578 static struct abbrev_table *abbrev_table_read_table
1579 (struct dwarf2_section_info *, sect_offset);
1580
1581 static void abbrev_table_free (struct abbrev_table *);
1582
1583 static void abbrev_table_free_cleanup (void *);
1584
1585 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1586 struct dwarf2_section_info *);
1587
1588 static void dwarf2_free_abbrev_table (void *);
1589
1590 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1591
1592 static struct partial_die_info *load_partial_dies
1593 (const struct die_reader_specs *, const gdb_byte *, int);
1594
1595 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1596 struct partial_die_info *,
1597 struct abbrev_info *,
1598 unsigned int,
1599 const gdb_byte *);
1600
1601 static struct partial_die_info *find_partial_die (sect_offset, int,
1602 struct dwarf2_cu *);
1603
1604 static void fixup_partial_die (struct partial_die_info *,
1605 struct dwarf2_cu *);
1606
1607 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1608 struct attribute *, struct attr_abbrev *,
1609 const gdb_byte *);
1610
1611 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1612
1613 static int read_1_signed_byte (bfd *, const gdb_byte *);
1614
1615 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1616
1617 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1618
1619 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1620
1621 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1622 unsigned int *);
1623
1624 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1625
1626 static LONGEST read_checked_initial_length_and_offset
1627 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1628 unsigned int *, unsigned int *);
1629
1630 static LONGEST read_offset (bfd *, const gdb_byte *,
1631 const struct comp_unit_head *,
1632 unsigned int *);
1633
1634 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1635
1636 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1637 sect_offset);
1638
1639 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1640
1641 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1642
1643 static const char *read_indirect_string (bfd *, const gdb_byte *,
1644 const struct comp_unit_head *,
1645 unsigned int *);
1646
1647 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1648 const struct comp_unit_head *,
1649 unsigned int *);
1650
1651 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1652
1653 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1654
1655 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1656 const gdb_byte *,
1657 unsigned int *);
1658
1659 static const char *read_str_index (const struct die_reader_specs *reader,
1660 ULONGEST str_index);
1661
1662 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1663
1664 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1665 struct dwarf2_cu *);
1666
1667 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1668 unsigned int);
1669
1670 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1671 struct dwarf2_cu *cu);
1672
1673 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1674 struct dwarf2_cu *cu);
1675
1676 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1677
1678 static struct die_info *die_specification (struct die_info *die,
1679 struct dwarf2_cu **);
1680
1681 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1682 struct dwarf2_cu *cu);
1683
1684 static void dwarf_decode_lines (struct line_header *, const char *,
1685 struct dwarf2_cu *, struct partial_symtab *,
1686 CORE_ADDR, int decode_mapping);
1687
1688 static void dwarf2_start_subfile (const char *, const char *);
1689
1690 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1691 const char *, const char *,
1692 CORE_ADDR);
1693
1694 static struct symbol *new_symbol (struct die_info *, struct type *,
1695 struct dwarf2_cu *);
1696
1697 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1698 struct dwarf2_cu *, struct symbol *);
1699
1700 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1701 struct dwarf2_cu *);
1702
1703 static void dwarf2_const_value_attr (const struct attribute *attr,
1704 struct type *type,
1705 const char *name,
1706 struct obstack *obstack,
1707 struct dwarf2_cu *cu, LONGEST *value,
1708 const gdb_byte **bytes,
1709 struct dwarf2_locexpr_baton **baton);
1710
1711 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1712
1713 static int need_gnat_info (struct dwarf2_cu *);
1714
1715 static struct type *die_descriptive_type (struct die_info *,
1716 struct dwarf2_cu *);
1717
1718 static void set_descriptive_type (struct type *, struct die_info *,
1719 struct dwarf2_cu *);
1720
1721 static struct type *die_containing_type (struct die_info *,
1722 struct dwarf2_cu *);
1723
1724 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1725 struct dwarf2_cu *);
1726
1727 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1728
1729 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1730
1731 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1732
1733 static char *typename_concat (struct obstack *obs, const char *prefix,
1734 const char *suffix, int physname,
1735 struct dwarf2_cu *cu);
1736
1737 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1738
1739 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1740
1741 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1742
1743 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1744
1745 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1746
1747 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1748 struct dwarf2_cu *, struct partial_symtab *);
1749
1750 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1751 values. Keep the items ordered with increasing constraints compliance. */
1752 enum pc_bounds_kind
1753 {
1754 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1755 PC_BOUNDS_NOT_PRESENT,
1756
1757 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1758 were present but they do not form a valid range of PC addresses. */
1759 PC_BOUNDS_INVALID,
1760
1761 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1762 PC_BOUNDS_RANGES,
1763
1764 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1765 PC_BOUNDS_HIGH_LOW,
1766 };
1767
1768 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1769 CORE_ADDR *, CORE_ADDR *,
1770 struct dwarf2_cu *,
1771 struct partial_symtab *);
1772
1773 static void get_scope_pc_bounds (struct die_info *,
1774 CORE_ADDR *, CORE_ADDR *,
1775 struct dwarf2_cu *);
1776
1777 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1778 CORE_ADDR, struct dwarf2_cu *);
1779
1780 static void dwarf2_add_field (struct field_info *, struct die_info *,
1781 struct dwarf2_cu *);
1782
1783 static void dwarf2_attach_fields_to_type (struct field_info *,
1784 struct type *, struct dwarf2_cu *);
1785
1786 static void dwarf2_add_member_fn (struct field_info *,
1787 struct die_info *, struct type *,
1788 struct dwarf2_cu *);
1789
1790 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1791 struct type *,
1792 struct dwarf2_cu *);
1793
1794 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1795
1796 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1797
1798 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1799
1800 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1801
1802 static struct using_direct **using_directives (enum language);
1803
1804 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1805
1806 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1807
1808 static struct type *read_module_type (struct die_info *die,
1809 struct dwarf2_cu *cu);
1810
1811 static const char *namespace_name (struct die_info *die,
1812 int *is_anonymous, struct dwarf2_cu *);
1813
1814 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1815
1816 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1817
1818 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1819 struct dwarf2_cu *);
1820
1821 static struct die_info *read_die_and_siblings_1
1822 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1823 struct die_info *);
1824
1825 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1826 const gdb_byte *info_ptr,
1827 const gdb_byte **new_info_ptr,
1828 struct die_info *parent);
1829
1830 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1831 struct die_info **, const gdb_byte *,
1832 int *, int);
1833
1834 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1835 struct die_info **, const gdb_byte *,
1836 int *);
1837
1838 static void process_die (struct die_info *, struct dwarf2_cu *);
1839
1840 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1841 struct obstack *);
1842
1843 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1844
1845 static const char *dwarf2_full_name (const char *name,
1846 struct die_info *die,
1847 struct dwarf2_cu *cu);
1848
1849 static const char *dwarf2_physname (const char *name, struct die_info *die,
1850 struct dwarf2_cu *cu);
1851
1852 static struct die_info *dwarf2_extension (struct die_info *die,
1853 struct dwarf2_cu **);
1854
1855 static const char *dwarf_tag_name (unsigned int);
1856
1857 static const char *dwarf_attr_name (unsigned int);
1858
1859 static const char *dwarf_form_name (unsigned int);
1860
1861 static const char *dwarf_bool_name (unsigned int);
1862
1863 static const char *dwarf_type_encoding_name (unsigned int);
1864
1865 static struct die_info *sibling_die (struct die_info *);
1866
1867 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1868
1869 static void dump_die_for_error (struct die_info *);
1870
1871 static void dump_die_1 (struct ui_file *, int level, int max_level,
1872 struct die_info *);
1873
1874 /*static*/ void dump_die (struct die_info *, int max_level);
1875
1876 static void store_in_ref_table (struct die_info *,
1877 struct dwarf2_cu *);
1878
1879 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1880
1881 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1882
1883 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1884 const struct attribute *,
1885 struct dwarf2_cu **);
1886
1887 static struct die_info *follow_die_ref (struct die_info *,
1888 const struct attribute *,
1889 struct dwarf2_cu **);
1890
1891 static struct die_info *follow_die_sig (struct die_info *,
1892 const struct attribute *,
1893 struct dwarf2_cu **);
1894
1895 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1896 struct dwarf2_cu *);
1897
1898 static struct type *get_DW_AT_signature_type (struct die_info *,
1899 const struct attribute *,
1900 struct dwarf2_cu *);
1901
1902 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1903
1904 static void read_signatured_type (struct signatured_type *);
1905
1906 static int attr_to_dynamic_prop (const struct attribute *attr,
1907 struct die_info *die, struct dwarf2_cu *cu,
1908 struct dynamic_prop *prop);
1909
1910 /* memory allocation interface */
1911
1912 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1913
1914 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1915
1916 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1917
1918 static int attr_form_is_block (const struct attribute *);
1919
1920 static int attr_form_is_section_offset (const struct attribute *);
1921
1922 static int attr_form_is_constant (const struct attribute *);
1923
1924 static int attr_form_is_ref (const struct attribute *);
1925
1926 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1927 struct dwarf2_loclist_baton *baton,
1928 const struct attribute *attr);
1929
1930 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1931 struct symbol *sym,
1932 struct dwarf2_cu *cu,
1933 int is_block);
1934
1935 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1936 const gdb_byte *info_ptr,
1937 struct abbrev_info *abbrev);
1938
1939 static void free_stack_comp_unit (void *);
1940
1941 static hashval_t partial_die_hash (const void *item);
1942
1943 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1944
1945 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1946 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
1947
1948 static void init_one_comp_unit (struct dwarf2_cu *cu,
1949 struct dwarf2_per_cu_data *per_cu);
1950
1951 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1952 struct die_info *comp_unit_die,
1953 enum language pretend_language);
1954
1955 static void free_heap_comp_unit (void *);
1956
1957 static void free_cached_comp_units (void *);
1958
1959 static void age_cached_comp_units (void);
1960
1961 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1962
1963 static struct type *set_die_type (struct die_info *, struct type *,
1964 struct dwarf2_cu *);
1965
1966 static void create_all_comp_units (struct objfile *);
1967
1968 static int create_all_type_units (struct objfile *);
1969
1970 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1971 enum language);
1972
1973 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1974 enum language);
1975
1976 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1977 enum language);
1978
1979 static void dwarf2_add_dependence (struct dwarf2_cu *,
1980 struct dwarf2_per_cu_data *);
1981
1982 static void dwarf2_mark (struct dwarf2_cu *);
1983
1984 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1985
1986 static struct type *get_die_type_at_offset (sect_offset,
1987 struct dwarf2_per_cu_data *);
1988
1989 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1990
1991 static void dwarf2_release_queue (void *dummy);
1992
1993 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1994 enum language pretend_language);
1995
1996 static void process_queue (void);
1997
1998 /* The return type of find_file_and_directory. Note, the enclosed
1999 string pointers are only valid while this object is valid. */
2000
2001 struct file_and_directory
2002 {
2003 /* The filename. This is never NULL. */
2004 const char *name;
2005
2006 /* The compilation directory. NULL if not known. If we needed to
2007 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2008 points directly to the DW_AT_comp_dir string attribute owned by
2009 the obstack that owns the DIE. */
2010 const char *comp_dir;
2011
2012 /* If we needed to build a new string for comp_dir, this is what
2013 owns the storage. */
2014 std::string comp_dir_storage;
2015 };
2016
2017 static file_and_directory find_file_and_directory (struct die_info *die,
2018 struct dwarf2_cu *cu);
2019
2020 static char *file_full_name (int file, struct line_header *lh,
2021 const char *comp_dir);
2022
2023 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2024 enum class rcuh_kind { COMPILE, TYPE };
2025
2026 static const gdb_byte *read_and_check_comp_unit_head
2027 (struct comp_unit_head *header,
2028 struct dwarf2_section_info *section,
2029 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2030 rcuh_kind section_kind);
2031
2032 static void init_cutu_and_read_dies
2033 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2034 int use_existing_cu, int keep,
2035 die_reader_func_ftype *die_reader_func, void *data);
2036
2037 static void init_cutu_and_read_dies_simple
2038 (struct dwarf2_per_cu_data *this_cu,
2039 die_reader_func_ftype *die_reader_func, void *data);
2040
2041 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2042
2043 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2044
2045 static struct dwo_unit *lookup_dwo_unit_in_dwp
2046 (struct dwp_file *dwp_file, const char *comp_dir,
2047 ULONGEST signature, int is_debug_types);
2048
2049 static struct dwp_file *get_dwp_file (void);
2050
2051 static struct dwo_unit *lookup_dwo_comp_unit
2052 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2053
2054 static struct dwo_unit *lookup_dwo_type_unit
2055 (struct signatured_type *, const char *, const char *);
2056
2057 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2058
2059 static void free_dwo_file_cleanup (void *);
2060
2061 static void process_cu_includes (void);
2062
2063 static void check_producer (struct dwarf2_cu *cu);
2064
2065 static void free_line_header_voidp (void *arg);
2066 \f
2067 /* Various complaints about symbol reading that don't abort the process. */
2068
2069 static void
2070 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2071 {
2072 complaint (&symfile_complaints,
2073 _("statement list doesn't fit in .debug_line section"));
2074 }
2075
2076 static void
2077 dwarf2_debug_line_missing_file_complaint (void)
2078 {
2079 complaint (&symfile_complaints,
2080 _(".debug_line section has line data without a file"));
2081 }
2082
2083 static void
2084 dwarf2_debug_line_missing_end_sequence_complaint (void)
2085 {
2086 complaint (&symfile_complaints,
2087 _(".debug_line section has line "
2088 "program sequence without an end"));
2089 }
2090
2091 static void
2092 dwarf2_complex_location_expr_complaint (void)
2093 {
2094 complaint (&symfile_complaints, _("location expression too complex"));
2095 }
2096
2097 static void
2098 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2099 int arg3)
2100 {
2101 complaint (&symfile_complaints,
2102 _("const value length mismatch for '%s', got %d, expected %d"),
2103 arg1, arg2, arg3);
2104 }
2105
2106 static void
2107 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2108 {
2109 complaint (&symfile_complaints,
2110 _("debug info runs off end of %s section"
2111 " [in module %s]"),
2112 get_section_name (section),
2113 get_section_file_name (section));
2114 }
2115
2116 static void
2117 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2118 {
2119 complaint (&symfile_complaints,
2120 _("macro debug info contains a "
2121 "malformed macro definition:\n`%s'"),
2122 arg1);
2123 }
2124
2125 static void
2126 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2127 {
2128 complaint (&symfile_complaints,
2129 _("invalid attribute class or form for '%s' in '%s'"),
2130 arg1, arg2);
2131 }
2132
2133 /* Hash function for line_header_hash. */
2134
2135 static hashval_t
2136 line_header_hash (const struct line_header *ofs)
2137 {
2138 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2139 }
2140
2141 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2142
2143 static hashval_t
2144 line_header_hash_voidp (const void *item)
2145 {
2146 const struct line_header *ofs = (const struct line_header *) item;
2147
2148 return line_header_hash (ofs);
2149 }
2150
2151 /* Equality function for line_header_hash. */
2152
2153 static int
2154 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2155 {
2156 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2157 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2158
2159 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2160 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2161 }
2162
2163 \f
2164 #if WORDS_BIGENDIAN
2165
2166 /* Convert VALUE between big- and little-endian. */
2167 static offset_type
2168 byte_swap (offset_type value)
2169 {
2170 offset_type result;
2171
2172 result = (value & 0xff) << 24;
2173 result |= (value & 0xff00) << 8;
2174 result |= (value & 0xff0000) >> 8;
2175 result |= (value & 0xff000000) >> 24;
2176 return result;
2177 }
2178
2179 #define MAYBE_SWAP(V) byte_swap (V)
2180
2181 #else
2182 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
2183 #endif /* WORDS_BIGENDIAN */
2184
2185 /* Read the given attribute value as an address, taking the attribute's
2186 form into account. */
2187
2188 static CORE_ADDR
2189 attr_value_as_address (struct attribute *attr)
2190 {
2191 CORE_ADDR addr;
2192
2193 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2194 {
2195 /* Aside from a few clearly defined exceptions, attributes that
2196 contain an address must always be in DW_FORM_addr form.
2197 Unfortunately, some compilers happen to be violating this
2198 requirement by encoding addresses using other forms, such
2199 as DW_FORM_data4 for example. For those broken compilers,
2200 we try to do our best, without any guarantee of success,
2201 to interpret the address correctly. It would also be nice
2202 to generate a complaint, but that would require us to maintain
2203 a list of legitimate cases where a non-address form is allowed,
2204 as well as update callers to pass in at least the CU's DWARF
2205 version. This is more overhead than what we're willing to
2206 expand for a pretty rare case. */
2207 addr = DW_UNSND (attr);
2208 }
2209 else
2210 addr = DW_ADDR (attr);
2211
2212 return addr;
2213 }
2214
2215 /* The suffix for an index file. */
2216 #define INDEX_SUFFIX ".gdb-index"
2217
2218 /* See declaration. */
2219
2220 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2221 const dwarf2_debug_sections *names)
2222 : objfile (objfile_)
2223 {
2224 if (names == NULL)
2225 names = &dwarf2_elf_names;
2226
2227 bfd *obfd = objfile->obfd;
2228
2229 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2230 locate_sections (obfd, sec, *names);
2231 }
2232
2233 dwarf2_per_objfile::~dwarf2_per_objfile ()
2234 {
2235 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2236 free_cached_comp_units ();
2237
2238 if (quick_file_names_table)
2239 htab_delete (quick_file_names_table);
2240
2241 if (line_header_hash)
2242 htab_delete (line_header_hash);
2243
2244 /* Everything else should be on the objfile obstack. */
2245 }
2246
2247 /* See declaration. */
2248
2249 void
2250 dwarf2_per_objfile::free_cached_comp_units ()
2251 {
2252 dwarf2_per_cu_data *per_cu = read_in_chain;
2253 dwarf2_per_cu_data **last_chain = &read_in_chain;
2254 while (per_cu != NULL)
2255 {
2256 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2257
2258 free_heap_comp_unit (per_cu->cu);
2259 *last_chain = next_cu;
2260 per_cu = next_cu;
2261 }
2262 }
2263
2264 /* Try to locate the sections we need for DWARF 2 debugging
2265 information and return true if we have enough to do something.
2266 NAMES points to the dwarf2 section names, or is NULL if the standard
2267 ELF names are used. */
2268
2269 int
2270 dwarf2_has_info (struct objfile *objfile,
2271 const struct dwarf2_debug_sections *names)
2272 {
2273 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2274 objfile_data (objfile, dwarf2_objfile_data_key));
2275 if (!dwarf2_per_objfile)
2276 {
2277 /* Initialize per-objfile state. */
2278 struct dwarf2_per_objfile *data
2279 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2280
2281 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2282 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
2283 }
2284 return (!dwarf2_per_objfile->info.is_virtual
2285 && dwarf2_per_objfile->info.s.section != NULL
2286 && !dwarf2_per_objfile->abbrev.is_virtual
2287 && dwarf2_per_objfile->abbrev.s.section != NULL);
2288 }
2289
2290 /* Return the containing section of virtual section SECTION. */
2291
2292 static struct dwarf2_section_info *
2293 get_containing_section (const struct dwarf2_section_info *section)
2294 {
2295 gdb_assert (section->is_virtual);
2296 return section->s.containing_section;
2297 }
2298
2299 /* Return the bfd owner of SECTION. */
2300
2301 static struct bfd *
2302 get_section_bfd_owner (const struct dwarf2_section_info *section)
2303 {
2304 if (section->is_virtual)
2305 {
2306 section = get_containing_section (section);
2307 gdb_assert (!section->is_virtual);
2308 }
2309 return section->s.section->owner;
2310 }
2311
2312 /* Return the bfd section of SECTION.
2313 Returns NULL if the section is not present. */
2314
2315 static asection *
2316 get_section_bfd_section (const struct dwarf2_section_info *section)
2317 {
2318 if (section->is_virtual)
2319 {
2320 section = get_containing_section (section);
2321 gdb_assert (!section->is_virtual);
2322 }
2323 return section->s.section;
2324 }
2325
2326 /* Return the name of SECTION. */
2327
2328 static const char *
2329 get_section_name (const struct dwarf2_section_info *section)
2330 {
2331 asection *sectp = get_section_bfd_section (section);
2332
2333 gdb_assert (sectp != NULL);
2334 return bfd_section_name (get_section_bfd_owner (section), sectp);
2335 }
2336
2337 /* Return the name of the file SECTION is in. */
2338
2339 static const char *
2340 get_section_file_name (const struct dwarf2_section_info *section)
2341 {
2342 bfd *abfd = get_section_bfd_owner (section);
2343
2344 return bfd_get_filename (abfd);
2345 }
2346
2347 /* Return the id of SECTION.
2348 Returns 0 if SECTION doesn't exist. */
2349
2350 static int
2351 get_section_id (const struct dwarf2_section_info *section)
2352 {
2353 asection *sectp = get_section_bfd_section (section);
2354
2355 if (sectp == NULL)
2356 return 0;
2357 return sectp->id;
2358 }
2359
2360 /* Return the flags of SECTION.
2361 SECTION (or containing section if this is a virtual section) must exist. */
2362
2363 static int
2364 get_section_flags (const struct dwarf2_section_info *section)
2365 {
2366 asection *sectp = get_section_bfd_section (section);
2367
2368 gdb_assert (sectp != NULL);
2369 return bfd_get_section_flags (sectp->owner, sectp);
2370 }
2371
2372 /* When loading sections, we look either for uncompressed section or for
2373 compressed section names. */
2374
2375 static int
2376 section_is_p (const char *section_name,
2377 const struct dwarf2_section_names *names)
2378 {
2379 if (names->normal != NULL
2380 && strcmp (section_name, names->normal) == 0)
2381 return 1;
2382 if (names->compressed != NULL
2383 && strcmp (section_name, names->compressed) == 0)
2384 return 1;
2385 return 0;
2386 }
2387
2388 /* See declaration. */
2389
2390 void
2391 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2392 const dwarf2_debug_sections &names)
2393 {
2394 flagword aflag = bfd_get_section_flags (abfd, sectp);
2395
2396 if ((aflag & SEC_HAS_CONTENTS) == 0)
2397 {
2398 }
2399 else if (section_is_p (sectp->name, &names.info))
2400 {
2401 this->info.s.section = sectp;
2402 this->info.size = bfd_get_section_size (sectp);
2403 }
2404 else if (section_is_p (sectp->name, &names.abbrev))
2405 {
2406 this->abbrev.s.section = sectp;
2407 this->abbrev.size = bfd_get_section_size (sectp);
2408 }
2409 else if (section_is_p (sectp->name, &names.line))
2410 {
2411 this->line.s.section = sectp;
2412 this->line.size = bfd_get_section_size (sectp);
2413 }
2414 else if (section_is_p (sectp->name, &names.loc))
2415 {
2416 this->loc.s.section = sectp;
2417 this->loc.size = bfd_get_section_size (sectp);
2418 }
2419 else if (section_is_p (sectp->name, &names.loclists))
2420 {
2421 this->loclists.s.section = sectp;
2422 this->loclists.size = bfd_get_section_size (sectp);
2423 }
2424 else if (section_is_p (sectp->name, &names.macinfo))
2425 {
2426 this->macinfo.s.section = sectp;
2427 this->macinfo.size = bfd_get_section_size (sectp);
2428 }
2429 else if (section_is_p (sectp->name, &names.macro))
2430 {
2431 this->macro.s.section = sectp;
2432 this->macro.size = bfd_get_section_size (sectp);
2433 }
2434 else if (section_is_p (sectp->name, &names.str))
2435 {
2436 this->str.s.section = sectp;
2437 this->str.size = bfd_get_section_size (sectp);
2438 }
2439 else if (section_is_p (sectp->name, &names.line_str))
2440 {
2441 this->line_str.s.section = sectp;
2442 this->line_str.size = bfd_get_section_size (sectp);
2443 }
2444 else if (section_is_p (sectp->name, &names.addr))
2445 {
2446 this->addr.s.section = sectp;
2447 this->addr.size = bfd_get_section_size (sectp);
2448 }
2449 else if (section_is_p (sectp->name, &names.frame))
2450 {
2451 this->frame.s.section = sectp;
2452 this->frame.size = bfd_get_section_size (sectp);
2453 }
2454 else if (section_is_p (sectp->name, &names.eh_frame))
2455 {
2456 this->eh_frame.s.section = sectp;
2457 this->eh_frame.size = bfd_get_section_size (sectp);
2458 }
2459 else if (section_is_p (sectp->name, &names.ranges))
2460 {
2461 this->ranges.s.section = sectp;
2462 this->ranges.size = bfd_get_section_size (sectp);
2463 }
2464 else if (section_is_p (sectp->name, &names.rnglists))
2465 {
2466 this->rnglists.s.section = sectp;
2467 this->rnglists.size = bfd_get_section_size (sectp);
2468 }
2469 else if (section_is_p (sectp->name, &names.types))
2470 {
2471 struct dwarf2_section_info type_section;
2472
2473 memset (&type_section, 0, sizeof (type_section));
2474 type_section.s.section = sectp;
2475 type_section.size = bfd_get_section_size (sectp);
2476
2477 VEC_safe_push (dwarf2_section_info_def, this->types,
2478 &type_section);
2479 }
2480 else if (section_is_p (sectp->name, &names.gdb_index))
2481 {
2482 this->gdb_index.s.section = sectp;
2483 this->gdb_index.size = bfd_get_section_size (sectp);
2484 }
2485
2486 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2487 && bfd_section_vma (abfd, sectp) == 0)
2488 this->has_section_at_zero = true;
2489 }
2490
2491 /* A helper function that decides whether a section is empty,
2492 or not present. */
2493
2494 static int
2495 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2496 {
2497 if (section->is_virtual)
2498 return section->size == 0;
2499 return section->s.section == NULL || section->size == 0;
2500 }
2501
2502 /* Read the contents of the section INFO.
2503 OBJFILE is the main object file, but not necessarily the file where
2504 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2505 of the DWO file.
2506 If the section is compressed, uncompress it before returning. */
2507
2508 static void
2509 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2510 {
2511 asection *sectp;
2512 bfd *abfd;
2513 gdb_byte *buf, *retbuf;
2514
2515 if (info->readin)
2516 return;
2517 info->buffer = NULL;
2518 info->readin = 1;
2519
2520 if (dwarf2_section_empty_p (info))
2521 return;
2522
2523 sectp = get_section_bfd_section (info);
2524
2525 /* If this is a virtual section we need to read in the real one first. */
2526 if (info->is_virtual)
2527 {
2528 struct dwarf2_section_info *containing_section =
2529 get_containing_section (info);
2530
2531 gdb_assert (sectp != NULL);
2532 if ((sectp->flags & SEC_RELOC) != 0)
2533 {
2534 error (_("Dwarf Error: DWP format V2 with relocations is not"
2535 " supported in section %s [in module %s]"),
2536 get_section_name (info), get_section_file_name (info));
2537 }
2538 dwarf2_read_section (objfile, containing_section);
2539 /* Other code should have already caught virtual sections that don't
2540 fit. */
2541 gdb_assert (info->virtual_offset + info->size
2542 <= containing_section->size);
2543 /* If the real section is empty or there was a problem reading the
2544 section we shouldn't get here. */
2545 gdb_assert (containing_section->buffer != NULL);
2546 info->buffer = containing_section->buffer + info->virtual_offset;
2547 return;
2548 }
2549
2550 /* If the section has relocations, we must read it ourselves.
2551 Otherwise we attach it to the BFD. */
2552 if ((sectp->flags & SEC_RELOC) == 0)
2553 {
2554 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2555 return;
2556 }
2557
2558 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2559 info->buffer = buf;
2560
2561 /* When debugging .o files, we may need to apply relocations; see
2562 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2563 We never compress sections in .o files, so we only need to
2564 try this when the section is not compressed. */
2565 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2566 if (retbuf != NULL)
2567 {
2568 info->buffer = retbuf;
2569 return;
2570 }
2571
2572 abfd = get_section_bfd_owner (info);
2573 gdb_assert (abfd != NULL);
2574
2575 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2576 || bfd_bread (buf, info->size, abfd) != info->size)
2577 {
2578 error (_("Dwarf Error: Can't read DWARF data"
2579 " in section %s [in module %s]"),
2580 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2581 }
2582 }
2583
2584 /* A helper function that returns the size of a section in a safe way.
2585 If you are positive that the section has been read before using the
2586 size, then it is safe to refer to the dwarf2_section_info object's
2587 "size" field directly. In other cases, you must call this
2588 function, because for compressed sections the size field is not set
2589 correctly until the section has been read. */
2590
2591 static bfd_size_type
2592 dwarf2_section_size (struct objfile *objfile,
2593 struct dwarf2_section_info *info)
2594 {
2595 if (!info->readin)
2596 dwarf2_read_section (objfile, info);
2597 return info->size;
2598 }
2599
2600 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2601 SECTION_NAME. */
2602
2603 void
2604 dwarf2_get_section_info (struct objfile *objfile,
2605 enum dwarf2_section_enum sect,
2606 asection **sectp, const gdb_byte **bufp,
2607 bfd_size_type *sizep)
2608 {
2609 struct dwarf2_per_objfile *data
2610 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2611 dwarf2_objfile_data_key);
2612 struct dwarf2_section_info *info;
2613
2614 /* We may see an objfile without any DWARF, in which case we just
2615 return nothing. */
2616 if (data == NULL)
2617 {
2618 *sectp = NULL;
2619 *bufp = NULL;
2620 *sizep = 0;
2621 return;
2622 }
2623 switch (sect)
2624 {
2625 case DWARF2_DEBUG_FRAME:
2626 info = &data->frame;
2627 break;
2628 case DWARF2_EH_FRAME:
2629 info = &data->eh_frame;
2630 break;
2631 default:
2632 gdb_assert_not_reached ("unexpected section");
2633 }
2634
2635 dwarf2_read_section (objfile, info);
2636
2637 *sectp = get_section_bfd_section (info);
2638 *bufp = info->buffer;
2639 *sizep = info->size;
2640 }
2641
2642 /* A helper function to find the sections for a .dwz file. */
2643
2644 static void
2645 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2646 {
2647 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2648
2649 /* Note that we only support the standard ELF names, because .dwz
2650 is ELF-only (at the time of writing). */
2651 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2652 {
2653 dwz_file->abbrev.s.section = sectp;
2654 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2655 }
2656 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2657 {
2658 dwz_file->info.s.section = sectp;
2659 dwz_file->info.size = bfd_get_section_size (sectp);
2660 }
2661 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2662 {
2663 dwz_file->str.s.section = sectp;
2664 dwz_file->str.size = bfd_get_section_size (sectp);
2665 }
2666 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2667 {
2668 dwz_file->line.s.section = sectp;
2669 dwz_file->line.size = bfd_get_section_size (sectp);
2670 }
2671 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2672 {
2673 dwz_file->macro.s.section = sectp;
2674 dwz_file->macro.size = bfd_get_section_size (sectp);
2675 }
2676 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2677 {
2678 dwz_file->gdb_index.s.section = sectp;
2679 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2680 }
2681 }
2682
2683 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2684 there is no .gnu_debugaltlink section in the file. Error if there
2685 is such a section but the file cannot be found. */
2686
2687 static struct dwz_file *
2688 dwarf2_get_dwz_file (void)
2689 {
2690 char *data;
2691 struct cleanup *cleanup;
2692 const char *filename;
2693 struct dwz_file *result;
2694 bfd_size_type buildid_len_arg;
2695 size_t buildid_len;
2696 bfd_byte *buildid;
2697
2698 if (dwarf2_per_objfile->dwz_file != NULL)
2699 return dwarf2_per_objfile->dwz_file;
2700
2701 bfd_set_error (bfd_error_no_error);
2702 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2703 &buildid_len_arg, &buildid);
2704 if (data == NULL)
2705 {
2706 if (bfd_get_error () == bfd_error_no_error)
2707 return NULL;
2708 error (_("could not read '.gnu_debugaltlink' section: %s"),
2709 bfd_errmsg (bfd_get_error ()));
2710 }
2711 cleanup = make_cleanup (xfree, data);
2712 make_cleanup (xfree, buildid);
2713
2714 buildid_len = (size_t) buildid_len_arg;
2715
2716 filename = (const char *) data;
2717
2718 std::string abs_storage;
2719 if (!IS_ABSOLUTE_PATH (filename))
2720 {
2721 gdb::unique_xmalloc_ptr<char> abs
2722 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2723
2724 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2725 filename = abs_storage.c_str ();
2726 }
2727
2728 /* First try the file name given in the section. If that doesn't
2729 work, try to use the build-id instead. */
2730 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2731 if (dwz_bfd != NULL)
2732 {
2733 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2734 dwz_bfd.release ();
2735 }
2736
2737 if (dwz_bfd == NULL)
2738 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2739
2740 if (dwz_bfd == NULL)
2741 error (_("could not find '.gnu_debugaltlink' file for %s"),
2742 objfile_name (dwarf2_per_objfile->objfile));
2743
2744 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2745 struct dwz_file);
2746 result->dwz_bfd = dwz_bfd.release ();
2747
2748 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2749
2750 do_cleanups (cleanup);
2751
2752 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2753 dwarf2_per_objfile->dwz_file = result;
2754 return result;
2755 }
2756 \f
2757 /* DWARF quick_symbols_functions support. */
2758
2759 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2760 unique line tables, so we maintain a separate table of all .debug_line
2761 derived entries to support the sharing.
2762 All the quick functions need is the list of file names. We discard the
2763 line_header when we're done and don't need to record it here. */
2764 struct quick_file_names
2765 {
2766 /* The data used to construct the hash key. */
2767 struct stmt_list_hash hash;
2768
2769 /* The number of entries in file_names, real_names. */
2770 unsigned int num_file_names;
2771
2772 /* The file names from the line table, after being run through
2773 file_full_name. */
2774 const char **file_names;
2775
2776 /* The file names from the line table after being run through
2777 gdb_realpath. These are computed lazily. */
2778 const char **real_names;
2779 };
2780
2781 /* When using the index (and thus not using psymtabs), each CU has an
2782 object of this type. This is used to hold information needed by
2783 the various "quick" methods. */
2784 struct dwarf2_per_cu_quick_data
2785 {
2786 /* The file table. This can be NULL if there was no file table
2787 or it's currently not read in.
2788 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2789 struct quick_file_names *file_names;
2790
2791 /* The corresponding symbol table. This is NULL if symbols for this
2792 CU have not yet been read. */
2793 struct compunit_symtab *compunit_symtab;
2794
2795 /* A temporary mark bit used when iterating over all CUs in
2796 expand_symtabs_matching. */
2797 unsigned int mark : 1;
2798
2799 /* True if we've tried to read the file table and found there isn't one.
2800 There will be no point in trying to read it again next time. */
2801 unsigned int no_file_data : 1;
2802 };
2803
2804 /* Utility hash function for a stmt_list_hash. */
2805
2806 static hashval_t
2807 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2808 {
2809 hashval_t v = 0;
2810
2811 if (stmt_list_hash->dwo_unit != NULL)
2812 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2813 v += to_underlying (stmt_list_hash->line_sect_off);
2814 return v;
2815 }
2816
2817 /* Utility equality function for a stmt_list_hash. */
2818
2819 static int
2820 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2821 const struct stmt_list_hash *rhs)
2822 {
2823 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2824 return 0;
2825 if (lhs->dwo_unit != NULL
2826 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2827 return 0;
2828
2829 return lhs->line_sect_off == rhs->line_sect_off;
2830 }
2831
2832 /* Hash function for a quick_file_names. */
2833
2834 static hashval_t
2835 hash_file_name_entry (const void *e)
2836 {
2837 const struct quick_file_names *file_data
2838 = (const struct quick_file_names *) e;
2839
2840 return hash_stmt_list_entry (&file_data->hash);
2841 }
2842
2843 /* Equality function for a quick_file_names. */
2844
2845 static int
2846 eq_file_name_entry (const void *a, const void *b)
2847 {
2848 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2849 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2850
2851 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2852 }
2853
2854 /* Delete function for a quick_file_names. */
2855
2856 static void
2857 delete_file_name_entry (void *e)
2858 {
2859 struct quick_file_names *file_data = (struct quick_file_names *) e;
2860 int i;
2861
2862 for (i = 0; i < file_data->num_file_names; ++i)
2863 {
2864 xfree ((void*) file_data->file_names[i]);
2865 if (file_data->real_names)
2866 xfree ((void*) file_data->real_names[i]);
2867 }
2868
2869 /* The space for the struct itself lives on objfile_obstack,
2870 so we don't free it here. */
2871 }
2872
2873 /* Create a quick_file_names hash table. */
2874
2875 static htab_t
2876 create_quick_file_names_table (unsigned int nr_initial_entries)
2877 {
2878 return htab_create_alloc (nr_initial_entries,
2879 hash_file_name_entry, eq_file_name_entry,
2880 delete_file_name_entry, xcalloc, xfree);
2881 }
2882
2883 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2884 have to be created afterwards. You should call age_cached_comp_units after
2885 processing PER_CU->CU. dw2_setup must have been already called. */
2886
2887 static void
2888 load_cu (struct dwarf2_per_cu_data *per_cu)
2889 {
2890 if (per_cu->is_debug_types)
2891 load_full_type_unit (per_cu);
2892 else
2893 load_full_comp_unit (per_cu, language_minimal);
2894
2895 if (per_cu->cu == NULL)
2896 return; /* Dummy CU. */
2897
2898 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2899 }
2900
2901 /* Read in the symbols for PER_CU. */
2902
2903 static void
2904 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2905 {
2906 struct cleanup *back_to;
2907
2908 /* Skip type_unit_groups, reading the type units they contain
2909 is handled elsewhere. */
2910 if (IS_TYPE_UNIT_GROUP (per_cu))
2911 return;
2912
2913 back_to = make_cleanup (dwarf2_release_queue, NULL);
2914
2915 if (dwarf2_per_objfile->using_index
2916 ? per_cu->v.quick->compunit_symtab == NULL
2917 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2918 {
2919 queue_comp_unit (per_cu, language_minimal);
2920 load_cu (per_cu);
2921
2922 /* If we just loaded a CU from a DWO, and we're working with an index
2923 that may badly handle TUs, load all the TUs in that DWO as well.
2924 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2925 if (!per_cu->is_debug_types
2926 && per_cu->cu != NULL
2927 && per_cu->cu->dwo_unit != NULL
2928 && dwarf2_per_objfile->index_table != NULL
2929 && dwarf2_per_objfile->index_table->version <= 7
2930 /* DWP files aren't supported yet. */
2931 && get_dwp_file () == NULL)
2932 queue_and_load_all_dwo_tus (per_cu);
2933 }
2934
2935 process_queue ();
2936
2937 /* Age the cache, releasing compilation units that have not
2938 been used recently. */
2939 age_cached_comp_units ();
2940
2941 do_cleanups (back_to);
2942 }
2943
2944 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2945 the objfile from which this CU came. Returns the resulting symbol
2946 table. */
2947
2948 static struct compunit_symtab *
2949 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2950 {
2951 gdb_assert (dwarf2_per_objfile->using_index);
2952 if (!per_cu->v.quick->compunit_symtab)
2953 {
2954 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2955 scoped_restore decrementer = increment_reading_symtab ();
2956 dw2_do_instantiate_symtab (per_cu);
2957 process_cu_includes ();
2958 do_cleanups (back_to);
2959 }
2960
2961 return per_cu->v.quick->compunit_symtab;
2962 }
2963
2964 /* Return the CU/TU given its index.
2965
2966 This is intended for loops like:
2967
2968 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2969 + dwarf2_per_objfile->n_type_units); ++i)
2970 {
2971 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2972
2973 ...;
2974 }
2975 */
2976
2977 static struct dwarf2_per_cu_data *
2978 dw2_get_cutu (int index)
2979 {
2980 if (index >= dwarf2_per_objfile->n_comp_units)
2981 {
2982 index -= dwarf2_per_objfile->n_comp_units;
2983 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2984 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2985 }
2986
2987 return dwarf2_per_objfile->all_comp_units[index];
2988 }
2989
2990 /* Return the CU given its index.
2991 This differs from dw2_get_cutu in that it's for when you know INDEX
2992 refers to a CU. */
2993
2994 static struct dwarf2_per_cu_data *
2995 dw2_get_cu (int index)
2996 {
2997 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2998
2999 return dwarf2_per_objfile->all_comp_units[index];
3000 }
3001
3002 /* A helper for create_cus_from_index that handles a given list of
3003 CUs. */
3004
3005 static void
3006 create_cus_from_index_list (struct objfile *objfile,
3007 const gdb_byte *cu_list, offset_type n_elements,
3008 struct dwarf2_section_info *section,
3009 int is_dwz,
3010 int base_offset)
3011 {
3012 offset_type i;
3013
3014 for (i = 0; i < n_elements; i += 2)
3015 {
3016 gdb_static_assert (sizeof (ULONGEST) >= 8);
3017
3018 sect_offset sect_off
3019 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3020 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3021 cu_list += 2 * 8;
3022
3023 dwarf2_per_cu_data *the_cu
3024 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3025 struct dwarf2_per_cu_data);
3026 the_cu->sect_off = sect_off;
3027 the_cu->length = length;
3028 the_cu->objfile = objfile;
3029 the_cu->section = section;
3030 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3031 struct dwarf2_per_cu_quick_data);
3032 the_cu->is_dwz = is_dwz;
3033 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
3034 }
3035 }
3036
3037 /* Read the CU list from the mapped index, and use it to create all
3038 the CU objects for this objfile. */
3039
3040 static void
3041 create_cus_from_index (struct objfile *objfile,
3042 const gdb_byte *cu_list, offset_type cu_list_elements,
3043 const gdb_byte *dwz_list, offset_type dwz_elements)
3044 {
3045 struct dwz_file *dwz;
3046
3047 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3048 dwarf2_per_objfile->all_comp_units =
3049 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3050 dwarf2_per_objfile->n_comp_units);
3051
3052 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3053 &dwarf2_per_objfile->info, 0, 0);
3054
3055 if (dwz_elements == 0)
3056 return;
3057
3058 dwz = dwarf2_get_dwz_file ();
3059 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3060 cu_list_elements / 2);
3061 }
3062
3063 /* Create the signatured type hash table from the index. */
3064
3065 static void
3066 create_signatured_type_table_from_index (struct objfile *objfile,
3067 struct dwarf2_section_info *section,
3068 const gdb_byte *bytes,
3069 offset_type elements)
3070 {
3071 offset_type i;
3072 htab_t sig_types_hash;
3073
3074 dwarf2_per_objfile->n_type_units
3075 = dwarf2_per_objfile->n_allocated_type_units
3076 = elements / 3;
3077 dwarf2_per_objfile->all_type_units =
3078 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3079
3080 sig_types_hash = allocate_signatured_type_table (objfile);
3081
3082 for (i = 0; i < elements; i += 3)
3083 {
3084 struct signatured_type *sig_type;
3085 ULONGEST signature;
3086 void **slot;
3087 cu_offset type_offset_in_tu;
3088
3089 gdb_static_assert (sizeof (ULONGEST) >= 8);
3090 sect_offset sect_off
3091 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3092 type_offset_in_tu
3093 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3094 BFD_ENDIAN_LITTLE);
3095 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3096 bytes += 3 * 8;
3097
3098 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3099 struct signatured_type);
3100 sig_type->signature = signature;
3101 sig_type->type_offset_in_tu = type_offset_in_tu;
3102 sig_type->per_cu.is_debug_types = 1;
3103 sig_type->per_cu.section = section;
3104 sig_type->per_cu.sect_off = sect_off;
3105 sig_type->per_cu.objfile = objfile;
3106 sig_type->per_cu.v.quick
3107 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3108 struct dwarf2_per_cu_quick_data);
3109
3110 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3111 *slot = sig_type;
3112
3113 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3114 }
3115
3116 dwarf2_per_objfile->signatured_types = sig_types_hash;
3117 }
3118
3119 /* Read the address map data from the mapped index, and use it to
3120 populate the objfile's psymtabs_addrmap. */
3121
3122 static void
3123 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3124 {
3125 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3126 const gdb_byte *iter, *end;
3127 struct addrmap *mutable_map;
3128 CORE_ADDR baseaddr;
3129
3130 auto_obstack temp_obstack;
3131
3132 mutable_map = addrmap_create_mutable (&temp_obstack);
3133
3134 iter = index->address_table;
3135 end = iter + index->address_table_size;
3136
3137 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3138
3139 while (iter < end)
3140 {
3141 ULONGEST hi, lo, cu_index;
3142 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3143 iter += 8;
3144 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3145 iter += 8;
3146 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3147 iter += 4;
3148
3149 if (lo > hi)
3150 {
3151 complaint (&symfile_complaints,
3152 _(".gdb_index address table has invalid range (%s - %s)"),
3153 hex_string (lo), hex_string (hi));
3154 continue;
3155 }
3156
3157 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3158 {
3159 complaint (&symfile_complaints,
3160 _(".gdb_index address table has invalid CU number %u"),
3161 (unsigned) cu_index);
3162 continue;
3163 }
3164
3165 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3166 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3167 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3168 }
3169
3170 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3171 &objfile->objfile_obstack);
3172 }
3173
3174 /* The hash function for strings in the mapped index. This is the same as
3175 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3176 implementation. This is necessary because the hash function is tied to the
3177 format of the mapped index file. The hash values do not have to match with
3178 SYMBOL_HASH_NEXT.
3179
3180 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3181
3182 static hashval_t
3183 mapped_index_string_hash (int index_version, const void *p)
3184 {
3185 const unsigned char *str = (const unsigned char *) p;
3186 hashval_t r = 0;
3187 unsigned char c;
3188
3189 while ((c = *str++) != 0)
3190 {
3191 if (index_version >= 5)
3192 c = tolower (c);
3193 r = r * 67 + c - 113;
3194 }
3195
3196 return r;
3197 }
3198
3199 /* Find a slot in the mapped index INDEX for the object named NAME.
3200 If NAME is found, set *VEC_OUT to point to the CU vector in the
3201 constant pool and return 1. If NAME cannot be found, return 0. */
3202
3203 static int
3204 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3205 offset_type **vec_out)
3206 {
3207 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3208 offset_type hash;
3209 offset_type slot, step;
3210 int (*cmp) (const char *, const char *);
3211
3212 if (current_language->la_language == language_cplus
3213 || current_language->la_language == language_fortran
3214 || current_language->la_language == language_d)
3215 {
3216 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3217 not contain any. */
3218
3219 if (strchr (name, '(') != NULL)
3220 {
3221 char *without_params = cp_remove_params (name);
3222
3223 if (without_params != NULL)
3224 {
3225 make_cleanup (xfree, without_params);
3226 name = without_params;
3227 }
3228 }
3229 }
3230
3231 /* Index version 4 did not support case insensitive searches. But the
3232 indices for case insensitive languages are built in lowercase, therefore
3233 simulate our NAME being searched is also lowercased. */
3234 hash = mapped_index_string_hash ((index->version == 4
3235 && case_sensitivity == case_sensitive_off
3236 ? 5 : index->version),
3237 name);
3238
3239 slot = hash & (index->symbol_table_slots - 1);
3240 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3241 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3242
3243 for (;;)
3244 {
3245 /* Convert a slot number to an offset into the table. */
3246 offset_type i = 2 * slot;
3247 const char *str;
3248 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3249 {
3250 do_cleanups (back_to);
3251 return 0;
3252 }
3253
3254 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3255 if (!cmp (name, str))
3256 {
3257 *vec_out = (offset_type *) (index->constant_pool
3258 + MAYBE_SWAP (index->symbol_table[i + 1]));
3259 do_cleanups (back_to);
3260 return 1;
3261 }
3262
3263 slot = (slot + step) & (index->symbol_table_slots - 1);
3264 }
3265 }
3266
3267 /* A helper function that reads the .gdb_index from SECTION and fills
3268 in MAP. FILENAME is the name of the file containing the section;
3269 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3270 ok to use deprecated sections.
3271
3272 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3273 out parameters that are filled in with information about the CU and
3274 TU lists in the section.
3275
3276 Returns 1 if all went well, 0 otherwise. */
3277
3278 static int
3279 read_index_from_section (struct objfile *objfile,
3280 const char *filename,
3281 int deprecated_ok,
3282 struct dwarf2_section_info *section,
3283 struct mapped_index *map,
3284 const gdb_byte **cu_list,
3285 offset_type *cu_list_elements,
3286 const gdb_byte **types_list,
3287 offset_type *types_list_elements)
3288 {
3289 const gdb_byte *addr;
3290 offset_type version;
3291 offset_type *metadata;
3292 int i;
3293
3294 if (dwarf2_section_empty_p (section))
3295 return 0;
3296
3297 /* Older elfutils strip versions could keep the section in the main
3298 executable while splitting it for the separate debug info file. */
3299 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3300 return 0;
3301
3302 dwarf2_read_section (objfile, section);
3303
3304 addr = section->buffer;
3305 /* Version check. */
3306 version = MAYBE_SWAP (*(offset_type *) addr);
3307 /* Versions earlier than 3 emitted every copy of a psymbol. This
3308 causes the index to behave very poorly for certain requests. Version 3
3309 contained incomplete addrmap. So, it seems better to just ignore such
3310 indices. */
3311 if (version < 4)
3312 {
3313 static int warning_printed = 0;
3314 if (!warning_printed)
3315 {
3316 warning (_("Skipping obsolete .gdb_index section in %s."),
3317 filename);
3318 warning_printed = 1;
3319 }
3320 return 0;
3321 }
3322 /* Index version 4 uses a different hash function than index version
3323 5 and later.
3324
3325 Versions earlier than 6 did not emit psymbols for inlined
3326 functions. Using these files will cause GDB not to be able to
3327 set breakpoints on inlined functions by name, so we ignore these
3328 indices unless the user has done
3329 "set use-deprecated-index-sections on". */
3330 if (version < 6 && !deprecated_ok)
3331 {
3332 static int warning_printed = 0;
3333 if (!warning_printed)
3334 {
3335 warning (_("\
3336 Skipping deprecated .gdb_index section in %s.\n\
3337 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3338 to use the section anyway."),
3339 filename);
3340 warning_printed = 1;
3341 }
3342 return 0;
3343 }
3344 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3345 of the TU (for symbols coming from TUs),
3346 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3347 Plus gold-generated indices can have duplicate entries for global symbols,
3348 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3349 These are just performance bugs, and we can't distinguish gdb-generated
3350 indices from gold-generated ones, so issue no warning here. */
3351
3352 /* Indexes with higher version than the one supported by GDB may be no
3353 longer backward compatible. */
3354 if (version > 8)
3355 return 0;
3356
3357 map->version = version;
3358 map->total_size = section->size;
3359
3360 metadata = (offset_type *) (addr + sizeof (offset_type));
3361
3362 i = 0;
3363 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3364 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3365 / 8);
3366 ++i;
3367
3368 *types_list = addr + MAYBE_SWAP (metadata[i]);
3369 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3370 - MAYBE_SWAP (metadata[i]))
3371 / 8);
3372 ++i;
3373
3374 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3375 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3376 - MAYBE_SWAP (metadata[i]));
3377 ++i;
3378
3379 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3380 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3381 - MAYBE_SWAP (metadata[i]))
3382 / (2 * sizeof (offset_type)));
3383 ++i;
3384
3385 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3386
3387 return 1;
3388 }
3389
3390
3391 /* Read the index file. If everything went ok, initialize the "quick"
3392 elements of all the CUs and return 1. Otherwise, return 0. */
3393
3394 static int
3395 dwarf2_read_index (struct objfile *objfile)
3396 {
3397 struct mapped_index local_map, *map;
3398 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3399 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3400 struct dwz_file *dwz;
3401
3402 if (!read_index_from_section (objfile, objfile_name (objfile),
3403 use_deprecated_index_sections,
3404 &dwarf2_per_objfile->gdb_index, &local_map,
3405 &cu_list, &cu_list_elements,
3406 &types_list, &types_list_elements))
3407 return 0;
3408
3409 /* Don't use the index if it's empty. */
3410 if (local_map.symbol_table_slots == 0)
3411 return 0;
3412
3413 /* If there is a .dwz file, read it so we can get its CU list as
3414 well. */
3415 dwz = dwarf2_get_dwz_file ();
3416 if (dwz != NULL)
3417 {
3418 struct mapped_index dwz_map;
3419 const gdb_byte *dwz_types_ignore;
3420 offset_type dwz_types_elements_ignore;
3421
3422 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3423 1,
3424 &dwz->gdb_index, &dwz_map,
3425 &dwz_list, &dwz_list_elements,
3426 &dwz_types_ignore,
3427 &dwz_types_elements_ignore))
3428 {
3429 warning (_("could not read '.gdb_index' section from %s; skipping"),
3430 bfd_get_filename (dwz->dwz_bfd));
3431 return 0;
3432 }
3433 }
3434
3435 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3436 dwz_list_elements);
3437
3438 if (types_list_elements)
3439 {
3440 struct dwarf2_section_info *section;
3441
3442 /* We can only handle a single .debug_types when we have an
3443 index. */
3444 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3445 return 0;
3446
3447 section = VEC_index (dwarf2_section_info_def,
3448 dwarf2_per_objfile->types, 0);
3449
3450 create_signatured_type_table_from_index (objfile, section, types_list,
3451 types_list_elements);
3452 }
3453
3454 create_addrmap_from_index (objfile, &local_map);
3455
3456 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3457 *map = local_map;
3458
3459 dwarf2_per_objfile->index_table = map;
3460 dwarf2_per_objfile->using_index = 1;
3461 dwarf2_per_objfile->quick_file_names_table =
3462 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3463
3464 return 1;
3465 }
3466
3467 /* A helper for the "quick" functions which sets the global
3468 dwarf2_per_objfile according to OBJFILE. */
3469
3470 static void
3471 dw2_setup (struct objfile *objfile)
3472 {
3473 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3474 objfile_data (objfile, dwarf2_objfile_data_key));
3475 gdb_assert (dwarf2_per_objfile);
3476 }
3477
3478 /* die_reader_func for dw2_get_file_names. */
3479
3480 static void
3481 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3482 const gdb_byte *info_ptr,
3483 struct die_info *comp_unit_die,
3484 int has_children,
3485 void *data)
3486 {
3487 struct dwarf2_cu *cu = reader->cu;
3488 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3489 struct objfile *objfile = dwarf2_per_objfile->objfile;
3490 struct dwarf2_per_cu_data *lh_cu;
3491 struct attribute *attr;
3492 int i;
3493 void **slot;
3494 struct quick_file_names *qfn;
3495
3496 gdb_assert (! this_cu->is_debug_types);
3497
3498 /* Our callers never want to match partial units -- instead they
3499 will match the enclosing full CU. */
3500 if (comp_unit_die->tag == DW_TAG_partial_unit)
3501 {
3502 this_cu->v.quick->no_file_data = 1;
3503 return;
3504 }
3505
3506 lh_cu = this_cu;
3507 slot = NULL;
3508
3509 line_header_up lh;
3510 sect_offset line_offset {};
3511
3512 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3513 if (attr)
3514 {
3515 struct quick_file_names find_entry;
3516
3517 line_offset = (sect_offset) DW_UNSND (attr);
3518
3519 /* We may have already read in this line header (TU line header sharing).
3520 If we have we're done. */
3521 find_entry.hash.dwo_unit = cu->dwo_unit;
3522 find_entry.hash.line_sect_off = line_offset;
3523 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3524 &find_entry, INSERT);
3525 if (*slot != NULL)
3526 {
3527 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3528 return;
3529 }
3530
3531 lh = dwarf_decode_line_header (line_offset, cu);
3532 }
3533 if (lh == NULL)
3534 {
3535 lh_cu->v.quick->no_file_data = 1;
3536 return;
3537 }
3538
3539 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3540 qfn->hash.dwo_unit = cu->dwo_unit;
3541 qfn->hash.line_sect_off = line_offset;
3542 gdb_assert (slot != NULL);
3543 *slot = qfn;
3544
3545 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3546
3547 qfn->num_file_names = lh->file_names.size ();
3548 qfn->file_names =
3549 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3550 for (i = 0; i < lh->file_names.size (); ++i)
3551 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3552 qfn->real_names = NULL;
3553
3554 lh_cu->v.quick->file_names = qfn;
3555 }
3556
3557 /* A helper for the "quick" functions which attempts to read the line
3558 table for THIS_CU. */
3559
3560 static struct quick_file_names *
3561 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3562 {
3563 /* This should never be called for TUs. */
3564 gdb_assert (! this_cu->is_debug_types);
3565 /* Nor type unit groups. */
3566 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3567
3568 if (this_cu->v.quick->file_names != NULL)
3569 return this_cu->v.quick->file_names;
3570 /* If we know there is no line data, no point in looking again. */
3571 if (this_cu->v.quick->no_file_data)
3572 return NULL;
3573
3574 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3575
3576 if (this_cu->v.quick->no_file_data)
3577 return NULL;
3578 return this_cu->v.quick->file_names;
3579 }
3580
3581 /* A helper for the "quick" functions which computes and caches the
3582 real path for a given file name from the line table. */
3583
3584 static const char *
3585 dw2_get_real_path (struct objfile *objfile,
3586 struct quick_file_names *qfn, int index)
3587 {
3588 if (qfn->real_names == NULL)
3589 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3590 qfn->num_file_names, const char *);
3591
3592 if (qfn->real_names[index] == NULL)
3593 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3594
3595 return qfn->real_names[index];
3596 }
3597
3598 static struct symtab *
3599 dw2_find_last_source_symtab (struct objfile *objfile)
3600 {
3601 struct compunit_symtab *cust;
3602 int index;
3603
3604 dw2_setup (objfile);
3605 index = dwarf2_per_objfile->n_comp_units - 1;
3606 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3607 if (cust == NULL)
3608 return NULL;
3609 return compunit_primary_filetab (cust);
3610 }
3611
3612 /* Traversal function for dw2_forget_cached_source_info. */
3613
3614 static int
3615 dw2_free_cached_file_names (void **slot, void *info)
3616 {
3617 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3618
3619 if (file_data->real_names)
3620 {
3621 int i;
3622
3623 for (i = 0; i < file_data->num_file_names; ++i)
3624 {
3625 xfree ((void*) file_data->real_names[i]);
3626 file_data->real_names[i] = NULL;
3627 }
3628 }
3629
3630 return 1;
3631 }
3632
3633 static void
3634 dw2_forget_cached_source_info (struct objfile *objfile)
3635 {
3636 dw2_setup (objfile);
3637
3638 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3639 dw2_free_cached_file_names, NULL);
3640 }
3641
3642 /* Helper function for dw2_map_symtabs_matching_filename that expands
3643 the symtabs and calls the iterator. */
3644
3645 static int
3646 dw2_map_expand_apply (struct objfile *objfile,
3647 struct dwarf2_per_cu_data *per_cu,
3648 const char *name, const char *real_path,
3649 gdb::function_view<bool (symtab *)> callback)
3650 {
3651 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3652
3653 /* Don't visit already-expanded CUs. */
3654 if (per_cu->v.quick->compunit_symtab)
3655 return 0;
3656
3657 /* This may expand more than one symtab, and we want to iterate over
3658 all of them. */
3659 dw2_instantiate_symtab (per_cu);
3660
3661 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3662 last_made, callback);
3663 }
3664
3665 /* Implementation of the map_symtabs_matching_filename method. */
3666
3667 static bool
3668 dw2_map_symtabs_matching_filename
3669 (struct objfile *objfile, const char *name, const char *real_path,
3670 gdb::function_view<bool (symtab *)> callback)
3671 {
3672 int i;
3673 const char *name_basename = lbasename (name);
3674
3675 dw2_setup (objfile);
3676
3677 /* The rule is CUs specify all the files, including those used by
3678 any TU, so there's no need to scan TUs here. */
3679
3680 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3681 {
3682 int j;
3683 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3684 struct quick_file_names *file_data;
3685
3686 /* We only need to look at symtabs not already expanded. */
3687 if (per_cu->v.quick->compunit_symtab)
3688 continue;
3689
3690 file_data = dw2_get_file_names (per_cu);
3691 if (file_data == NULL)
3692 continue;
3693
3694 for (j = 0; j < file_data->num_file_names; ++j)
3695 {
3696 const char *this_name = file_data->file_names[j];
3697 const char *this_real_name;
3698
3699 if (compare_filenames_for_search (this_name, name))
3700 {
3701 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3702 callback))
3703 return true;
3704 continue;
3705 }
3706
3707 /* Before we invoke realpath, which can get expensive when many
3708 files are involved, do a quick comparison of the basenames. */
3709 if (! basenames_may_differ
3710 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3711 continue;
3712
3713 this_real_name = dw2_get_real_path (objfile, file_data, j);
3714 if (compare_filenames_for_search (this_real_name, name))
3715 {
3716 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3717 callback))
3718 return true;
3719 continue;
3720 }
3721
3722 if (real_path != NULL)
3723 {
3724 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3725 gdb_assert (IS_ABSOLUTE_PATH (name));
3726 if (this_real_name != NULL
3727 && FILENAME_CMP (real_path, this_real_name) == 0)
3728 {
3729 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3730 callback))
3731 return true;
3732 continue;
3733 }
3734 }
3735 }
3736 }
3737
3738 return false;
3739 }
3740
3741 /* Struct used to manage iterating over all CUs looking for a symbol. */
3742
3743 struct dw2_symtab_iterator
3744 {
3745 /* The internalized form of .gdb_index. */
3746 struct mapped_index *index;
3747 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3748 int want_specific_block;
3749 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3750 Unused if !WANT_SPECIFIC_BLOCK. */
3751 int block_index;
3752 /* The kind of symbol we're looking for. */
3753 domain_enum domain;
3754 /* The list of CUs from the index entry of the symbol,
3755 or NULL if not found. */
3756 offset_type *vec;
3757 /* The next element in VEC to look at. */
3758 int next;
3759 /* The number of elements in VEC, or zero if there is no match. */
3760 int length;
3761 /* Have we seen a global version of the symbol?
3762 If so we can ignore all further global instances.
3763 This is to work around gold/15646, inefficient gold-generated
3764 indices. */
3765 int global_seen;
3766 };
3767
3768 /* Initialize the index symtab iterator ITER.
3769 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3770 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3771
3772 static void
3773 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3774 struct mapped_index *index,
3775 int want_specific_block,
3776 int block_index,
3777 domain_enum domain,
3778 const char *name)
3779 {
3780 iter->index = index;
3781 iter->want_specific_block = want_specific_block;
3782 iter->block_index = block_index;
3783 iter->domain = domain;
3784 iter->next = 0;
3785 iter->global_seen = 0;
3786
3787 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3788 iter->length = MAYBE_SWAP (*iter->vec);
3789 else
3790 {
3791 iter->vec = NULL;
3792 iter->length = 0;
3793 }
3794 }
3795
3796 /* Return the next matching CU or NULL if there are no more. */
3797
3798 static struct dwarf2_per_cu_data *
3799 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3800 {
3801 for ( ; iter->next < iter->length; ++iter->next)
3802 {
3803 offset_type cu_index_and_attrs =
3804 MAYBE_SWAP (iter->vec[iter->next + 1]);
3805 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3806 struct dwarf2_per_cu_data *per_cu;
3807 int want_static = iter->block_index != GLOBAL_BLOCK;
3808 /* This value is only valid for index versions >= 7. */
3809 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3810 gdb_index_symbol_kind symbol_kind =
3811 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3812 /* Only check the symbol attributes if they're present.
3813 Indices prior to version 7 don't record them,
3814 and indices >= 7 may elide them for certain symbols
3815 (gold does this). */
3816 int attrs_valid =
3817 (iter->index->version >= 7
3818 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3819
3820 /* Don't crash on bad data. */
3821 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3822 + dwarf2_per_objfile->n_type_units))
3823 {
3824 complaint (&symfile_complaints,
3825 _(".gdb_index entry has bad CU index"
3826 " [in module %s]"),
3827 objfile_name (dwarf2_per_objfile->objfile));
3828 continue;
3829 }
3830
3831 per_cu = dw2_get_cutu (cu_index);
3832
3833 /* Skip if already read in. */
3834 if (per_cu->v.quick->compunit_symtab)
3835 continue;
3836
3837 /* Check static vs global. */
3838 if (attrs_valid)
3839 {
3840 if (iter->want_specific_block
3841 && want_static != is_static)
3842 continue;
3843 /* Work around gold/15646. */
3844 if (!is_static && iter->global_seen)
3845 continue;
3846 if (!is_static)
3847 iter->global_seen = 1;
3848 }
3849
3850 /* Only check the symbol's kind if it has one. */
3851 if (attrs_valid)
3852 {
3853 switch (iter->domain)
3854 {
3855 case VAR_DOMAIN:
3856 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3857 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3858 /* Some types are also in VAR_DOMAIN. */
3859 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3860 continue;
3861 break;
3862 case STRUCT_DOMAIN:
3863 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3864 continue;
3865 break;
3866 case LABEL_DOMAIN:
3867 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3868 continue;
3869 break;
3870 default:
3871 break;
3872 }
3873 }
3874
3875 ++iter->next;
3876 return per_cu;
3877 }
3878
3879 return NULL;
3880 }
3881
3882 static struct compunit_symtab *
3883 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3884 const char *name, domain_enum domain)
3885 {
3886 struct compunit_symtab *stab_best = NULL;
3887 struct mapped_index *index;
3888
3889 dw2_setup (objfile);
3890
3891 index = dwarf2_per_objfile->index_table;
3892
3893 /* index is NULL if OBJF_READNOW. */
3894 if (index)
3895 {
3896 struct dw2_symtab_iterator iter;
3897 struct dwarf2_per_cu_data *per_cu;
3898
3899 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3900
3901 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3902 {
3903 struct symbol *sym, *with_opaque = NULL;
3904 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3905 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3906 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3907
3908 sym = block_find_symbol (block, name, domain,
3909 block_find_non_opaque_type_preferred,
3910 &with_opaque);
3911
3912 /* Some caution must be observed with overloaded functions
3913 and methods, since the index will not contain any overload
3914 information (but NAME might contain it). */
3915
3916 if (sym != NULL
3917 && SYMBOL_MATCHES_SEARCH_NAME (sym, name))
3918 return stab;
3919 if (with_opaque != NULL
3920 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, name))
3921 stab_best = stab;
3922
3923 /* Keep looking through other CUs. */
3924 }
3925 }
3926
3927 return stab_best;
3928 }
3929
3930 static void
3931 dw2_print_stats (struct objfile *objfile)
3932 {
3933 int i, total, count;
3934
3935 dw2_setup (objfile);
3936 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3937 count = 0;
3938 for (i = 0; i < total; ++i)
3939 {
3940 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3941
3942 if (!per_cu->v.quick->compunit_symtab)
3943 ++count;
3944 }
3945 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3946 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3947 }
3948
3949 /* This dumps minimal information about the index.
3950 It is called via "mt print objfiles".
3951 One use is to verify .gdb_index has been loaded by the
3952 gdb.dwarf2/gdb-index.exp testcase. */
3953
3954 static void
3955 dw2_dump (struct objfile *objfile)
3956 {
3957 dw2_setup (objfile);
3958 gdb_assert (dwarf2_per_objfile->using_index);
3959 printf_filtered (".gdb_index:");
3960 if (dwarf2_per_objfile->index_table != NULL)
3961 {
3962 printf_filtered (" version %d\n",
3963 dwarf2_per_objfile->index_table->version);
3964 }
3965 else
3966 printf_filtered (" faked for \"readnow\"\n");
3967 printf_filtered ("\n");
3968 }
3969
3970 static void
3971 dw2_relocate (struct objfile *objfile,
3972 const struct section_offsets *new_offsets,
3973 const struct section_offsets *delta)
3974 {
3975 /* There's nothing to relocate here. */
3976 }
3977
3978 static void
3979 dw2_expand_symtabs_for_function (struct objfile *objfile,
3980 const char *func_name)
3981 {
3982 struct mapped_index *index;
3983
3984 dw2_setup (objfile);
3985
3986 index = dwarf2_per_objfile->index_table;
3987
3988 /* index is NULL if OBJF_READNOW. */
3989 if (index)
3990 {
3991 struct dw2_symtab_iterator iter;
3992 struct dwarf2_per_cu_data *per_cu;
3993
3994 /* Note: It doesn't matter what we pass for block_index here. */
3995 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3996 func_name);
3997
3998 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3999 dw2_instantiate_symtab (per_cu);
4000 }
4001 }
4002
4003 static void
4004 dw2_expand_all_symtabs (struct objfile *objfile)
4005 {
4006 int i;
4007
4008 dw2_setup (objfile);
4009
4010 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4011 + dwarf2_per_objfile->n_type_units); ++i)
4012 {
4013 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4014
4015 dw2_instantiate_symtab (per_cu);
4016 }
4017 }
4018
4019 static void
4020 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4021 const char *fullname)
4022 {
4023 int i;
4024
4025 dw2_setup (objfile);
4026
4027 /* We don't need to consider type units here.
4028 This is only called for examining code, e.g. expand_line_sal.
4029 There can be an order of magnitude (or more) more type units
4030 than comp units, and we avoid them if we can. */
4031
4032 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4033 {
4034 int j;
4035 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4036 struct quick_file_names *file_data;
4037
4038 /* We only need to look at symtabs not already expanded. */
4039 if (per_cu->v.quick->compunit_symtab)
4040 continue;
4041
4042 file_data = dw2_get_file_names (per_cu);
4043 if (file_data == NULL)
4044 continue;
4045
4046 for (j = 0; j < file_data->num_file_names; ++j)
4047 {
4048 const char *this_fullname = file_data->file_names[j];
4049
4050 if (filename_cmp (this_fullname, fullname) == 0)
4051 {
4052 dw2_instantiate_symtab (per_cu);
4053 break;
4054 }
4055 }
4056 }
4057 }
4058
4059 static void
4060 dw2_map_matching_symbols (struct objfile *objfile,
4061 const char * name, domain_enum domain,
4062 int global,
4063 int (*callback) (struct block *,
4064 struct symbol *, void *),
4065 void *data, symbol_compare_ftype *match,
4066 symbol_compare_ftype *ordered_compare)
4067 {
4068 /* Currently unimplemented; used for Ada. The function can be called if the
4069 current language is Ada for a non-Ada objfile using GNU index. As Ada
4070 does not look for non-Ada symbols this function should just return. */
4071 }
4072
4073 static void
4074 dw2_expand_symtabs_matching
4075 (struct objfile *objfile,
4076 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4077 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4078 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4079 enum search_domain kind)
4080 {
4081 int i;
4082 offset_type iter;
4083 struct mapped_index *index;
4084
4085 dw2_setup (objfile);
4086
4087 /* index_table is NULL if OBJF_READNOW. */
4088 if (!dwarf2_per_objfile->index_table)
4089 return;
4090 index = dwarf2_per_objfile->index_table;
4091
4092 if (file_matcher != NULL)
4093 {
4094 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4095 htab_eq_pointer,
4096 NULL, xcalloc, xfree));
4097 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4098 htab_eq_pointer,
4099 NULL, xcalloc, xfree));
4100
4101 /* The rule is CUs specify all the files, including those used by
4102 any TU, so there's no need to scan TUs here. */
4103
4104 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4105 {
4106 int j;
4107 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4108 struct quick_file_names *file_data;
4109 void **slot;
4110
4111 QUIT;
4112
4113 per_cu->v.quick->mark = 0;
4114
4115 /* We only need to look at symtabs not already expanded. */
4116 if (per_cu->v.quick->compunit_symtab)
4117 continue;
4118
4119 file_data = dw2_get_file_names (per_cu);
4120 if (file_data == NULL)
4121 continue;
4122
4123 if (htab_find (visited_not_found.get (), file_data) != NULL)
4124 continue;
4125 else if (htab_find (visited_found.get (), file_data) != NULL)
4126 {
4127 per_cu->v.quick->mark = 1;
4128 continue;
4129 }
4130
4131 for (j = 0; j < file_data->num_file_names; ++j)
4132 {
4133 const char *this_real_name;
4134
4135 if (file_matcher (file_data->file_names[j], false))
4136 {
4137 per_cu->v.quick->mark = 1;
4138 break;
4139 }
4140
4141 /* Before we invoke realpath, which can get expensive when many
4142 files are involved, do a quick comparison of the basenames. */
4143 if (!basenames_may_differ
4144 && !file_matcher (lbasename (file_data->file_names[j]),
4145 true))
4146 continue;
4147
4148 this_real_name = dw2_get_real_path (objfile, file_data, j);
4149 if (file_matcher (this_real_name, false))
4150 {
4151 per_cu->v.quick->mark = 1;
4152 break;
4153 }
4154 }
4155
4156 slot = htab_find_slot (per_cu->v.quick->mark
4157 ? visited_found.get ()
4158 : visited_not_found.get (),
4159 file_data, INSERT);
4160 *slot = file_data;
4161 }
4162 }
4163
4164 for (iter = 0; iter < index->symbol_table_slots; ++iter)
4165 {
4166 offset_type idx = 2 * iter;
4167 const char *name;
4168 offset_type *vec, vec_len, vec_idx;
4169 int global_seen = 0;
4170
4171 QUIT;
4172
4173 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
4174 continue;
4175
4176 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
4177
4178 if (!symbol_matcher (name))
4179 continue;
4180
4181 /* The name was matched, now expand corresponding CUs that were
4182 marked. */
4183 vec = (offset_type *) (index->constant_pool
4184 + MAYBE_SWAP (index->symbol_table[idx + 1]));
4185 vec_len = MAYBE_SWAP (vec[0]);
4186 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4187 {
4188 struct dwarf2_per_cu_data *per_cu;
4189 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4190 /* This value is only valid for index versions >= 7. */
4191 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4192 gdb_index_symbol_kind symbol_kind =
4193 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4194 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4195 /* Only check the symbol attributes if they're present.
4196 Indices prior to version 7 don't record them,
4197 and indices >= 7 may elide them for certain symbols
4198 (gold does this). */
4199 int attrs_valid =
4200 (index->version >= 7
4201 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4202
4203 /* Work around gold/15646. */
4204 if (attrs_valid)
4205 {
4206 if (!is_static && global_seen)
4207 continue;
4208 if (!is_static)
4209 global_seen = 1;
4210 }
4211
4212 /* Only check the symbol's kind if it has one. */
4213 if (attrs_valid)
4214 {
4215 switch (kind)
4216 {
4217 case VARIABLES_DOMAIN:
4218 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4219 continue;
4220 break;
4221 case FUNCTIONS_DOMAIN:
4222 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4223 continue;
4224 break;
4225 case TYPES_DOMAIN:
4226 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4227 continue;
4228 break;
4229 default:
4230 break;
4231 }
4232 }
4233
4234 /* Don't crash on bad data. */
4235 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4236 + dwarf2_per_objfile->n_type_units))
4237 {
4238 complaint (&symfile_complaints,
4239 _(".gdb_index entry has bad CU index"
4240 " [in module %s]"), objfile_name (objfile));
4241 continue;
4242 }
4243
4244 per_cu = dw2_get_cutu (cu_index);
4245 if (file_matcher == NULL || per_cu->v.quick->mark)
4246 {
4247 int symtab_was_null =
4248 (per_cu->v.quick->compunit_symtab == NULL);
4249
4250 dw2_instantiate_symtab (per_cu);
4251
4252 if (expansion_notify != NULL
4253 && symtab_was_null
4254 && per_cu->v.quick->compunit_symtab != NULL)
4255 {
4256 expansion_notify (per_cu->v.quick->compunit_symtab);
4257 }
4258 }
4259 }
4260 }
4261 }
4262
4263 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4264 symtab. */
4265
4266 static struct compunit_symtab *
4267 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4268 CORE_ADDR pc)
4269 {
4270 int i;
4271
4272 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4273 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4274 return cust;
4275
4276 if (cust->includes == NULL)
4277 return NULL;
4278
4279 for (i = 0; cust->includes[i]; ++i)
4280 {
4281 struct compunit_symtab *s = cust->includes[i];
4282
4283 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4284 if (s != NULL)
4285 return s;
4286 }
4287
4288 return NULL;
4289 }
4290
4291 static struct compunit_symtab *
4292 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4293 struct bound_minimal_symbol msymbol,
4294 CORE_ADDR pc,
4295 struct obj_section *section,
4296 int warn_if_readin)
4297 {
4298 struct dwarf2_per_cu_data *data;
4299 struct compunit_symtab *result;
4300
4301 dw2_setup (objfile);
4302
4303 if (!objfile->psymtabs_addrmap)
4304 return NULL;
4305
4306 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4307 pc);
4308 if (!data)
4309 return NULL;
4310
4311 if (warn_if_readin && data->v.quick->compunit_symtab)
4312 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4313 paddress (get_objfile_arch (objfile), pc));
4314
4315 result
4316 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4317 pc);
4318 gdb_assert (result != NULL);
4319 return result;
4320 }
4321
4322 static void
4323 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4324 void *data, int need_fullname)
4325 {
4326 dw2_setup (objfile);
4327
4328 if (!dwarf2_per_objfile->filenames_cache)
4329 {
4330 dwarf2_per_objfile->filenames_cache.emplace ();
4331
4332 htab_up visited (htab_create_alloc (10,
4333 htab_hash_pointer, htab_eq_pointer,
4334 NULL, xcalloc, xfree));
4335
4336 /* The rule is CUs specify all the files, including those used
4337 by any TU, so there's no need to scan TUs here. We can
4338 ignore file names coming from already-expanded CUs. */
4339
4340 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4341 {
4342 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4343
4344 if (per_cu->v.quick->compunit_symtab)
4345 {
4346 void **slot = htab_find_slot (visited.get (),
4347 per_cu->v.quick->file_names,
4348 INSERT);
4349
4350 *slot = per_cu->v.quick->file_names;
4351 }
4352 }
4353
4354 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4355 {
4356 int j;
4357 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4358 struct quick_file_names *file_data;
4359 void **slot;
4360
4361 /* We only need to look at symtabs not already expanded. */
4362 if (per_cu->v.quick->compunit_symtab)
4363 continue;
4364
4365 file_data = dw2_get_file_names (per_cu);
4366 if (file_data == NULL)
4367 continue;
4368
4369 slot = htab_find_slot (visited.get (), file_data, INSERT);
4370 if (*slot)
4371 {
4372 /* Already visited. */
4373 continue;
4374 }
4375 *slot = file_data;
4376
4377 for (int j = 0; j < file_data->num_file_names; ++j)
4378 {
4379 const char *filename = file_data->file_names[j];
4380 dwarf2_per_objfile->filenames_cache->seen (filename);
4381 }
4382 }
4383 }
4384
4385 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4386 {
4387 gdb::unique_xmalloc_ptr<char> this_real_name;
4388
4389 if (need_fullname)
4390 this_real_name = gdb_realpath (filename);
4391 (*fun) (filename, this_real_name.get (), data);
4392 });
4393 }
4394
4395 static int
4396 dw2_has_symbols (struct objfile *objfile)
4397 {
4398 return 1;
4399 }
4400
4401 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4402 {
4403 dw2_has_symbols,
4404 dw2_find_last_source_symtab,
4405 dw2_forget_cached_source_info,
4406 dw2_map_symtabs_matching_filename,
4407 dw2_lookup_symbol,
4408 dw2_print_stats,
4409 dw2_dump,
4410 dw2_relocate,
4411 dw2_expand_symtabs_for_function,
4412 dw2_expand_all_symtabs,
4413 dw2_expand_symtabs_with_fullname,
4414 dw2_map_matching_symbols,
4415 dw2_expand_symtabs_matching,
4416 dw2_find_pc_sect_compunit_symtab,
4417 dw2_map_symbol_filenames
4418 };
4419
4420 /* Initialize for reading DWARF for this objfile. Return 0 if this
4421 file will use psymtabs, or 1 if using the GNU index. */
4422
4423 int
4424 dwarf2_initialize_objfile (struct objfile *objfile)
4425 {
4426 /* If we're about to read full symbols, don't bother with the
4427 indices. In this case we also don't care if some other debug
4428 format is making psymtabs, because they are all about to be
4429 expanded anyway. */
4430 if ((objfile->flags & OBJF_READNOW))
4431 {
4432 int i;
4433
4434 dwarf2_per_objfile->using_index = 1;
4435 create_all_comp_units (objfile);
4436 create_all_type_units (objfile);
4437 dwarf2_per_objfile->quick_file_names_table =
4438 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4439
4440 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4441 + dwarf2_per_objfile->n_type_units); ++i)
4442 {
4443 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4444
4445 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4446 struct dwarf2_per_cu_quick_data);
4447 }
4448
4449 /* Return 1 so that gdb sees the "quick" functions. However,
4450 these functions will be no-ops because we will have expanded
4451 all symtabs. */
4452 return 1;
4453 }
4454
4455 if (dwarf2_read_index (objfile))
4456 return 1;
4457
4458 return 0;
4459 }
4460
4461 \f
4462
4463 /* Build a partial symbol table. */
4464
4465 void
4466 dwarf2_build_psymtabs (struct objfile *objfile)
4467 {
4468
4469 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4470 {
4471 init_psymbol_list (objfile, 1024);
4472 }
4473
4474 TRY
4475 {
4476 /* This isn't really ideal: all the data we allocate on the
4477 objfile's obstack is still uselessly kept around. However,
4478 freeing it seems unsafe. */
4479 psymtab_discarder psymtabs (objfile);
4480 dwarf2_build_psymtabs_hard (objfile);
4481 psymtabs.keep ();
4482 }
4483 CATCH (except, RETURN_MASK_ERROR)
4484 {
4485 exception_print (gdb_stderr, except);
4486 }
4487 END_CATCH
4488 }
4489
4490 /* Return the total length of the CU described by HEADER. */
4491
4492 static unsigned int
4493 get_cu_length (const struct comp_unit_head *header)
4494 {
4495 return header->initial_length_size + header->length;
4496 }
4497
4498 /* Return TRUE if SECT_OFF is within CU_HEADER. */
4499
4500 static inline bool
4501 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
4502 {
4503 sect_offset bottom = cu_header->sect_off;
4504 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
4505
4506 return sect_off >= bottom && sect_off < top;
4507 }
4508
4509 /* Find the base address of the compilation unit for range lists and
4510 location lists. It will normally be specified by DW_AT_low_pc.
4511 In DWARF-3 draft 4, the base address could be overridden by
4512 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4513 compilation units with discontinuous ranges. */
4514
4515 static void
4516 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4517 {
4518 struct attribute *attr;
4519
4520 cu->base_known = 0;
4521 cu->base_address = 0;
4522
4523 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4524 if (attr)
4525 {
4526 cu->base_address = attr_value_as_address (attr);
4527 cu->base_known = 1;
4528 }
4529 else
4530 {
4531 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4532 if (attr)
4533 {
4534 cu->base_address = attr_value_as_address (attr);
4535 cu->base_known = 1;
4536 }
4537 }
4538 }
4539
4540 /* Read in the comp unit header information from the debug_info at info_ptr.
4541 Use rcuh_kind::COMPILE as the default type if not known by the caller.
4542 NOTE: This leaves members offset, first_die_offset to be filled in
4543 by the caller. */
4544
4545 static const gdb_byte *
4546 read_comp_unit_head (struct comp_unit_head *cu_header,
4547 const gdb_byte *info_ptr,
4548 struct dwarf2_section_info *section,
4549 rcuh_kind section_kind)
4550 {
4551 int signed_addr;
4552 unsigned int bytes_read;
4553 const char *filename = get_section_file_name (section);
4554 bfd *abfd = get_section_bfd_owner (section);
4555
4556 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4557 cu_header->initial_length_size = bytes_read;
4558 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4559 info_ptr += bytes_read;
4560 cu_header->version = read_2_bytes (abfd, info_ptr);
4561 info_ptr += 2;
4562 if (cu_header->version < 5)
4563 switch (section_kind)
4564 {
4565 case rcuh_kind::COMPILE:
4566 cu_header->unit_type = DW_UT_compile;
4567 break;
4568 case rcuh_kind::TYPE:
4569 cu_header->unit_type = DW_UT_type;
4570 break;
4571 default:
4572 internal_error (__FILE__, __LINE__,
4573 _("read_comp_unit_head: invalid section_kind"));
4574 }
4575 else
4576 {
4577 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4578 (read_1_byte (abfd, info_ptr));
4579 info_ptr += 1;
4580 switch (cu_header->unit_type)
4581 {
4582 case DW_UT_compile:
4583 if (section_kind != rcuh_kind::COMPILE)
4584 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4585 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4586 filename);
4587 break;
4588 case DW_UT_type:
4589 section_kind = rcuh_kind::TYPE;
4590 break;
4591 default:
4592 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4593 "(is %d, should be %d or %d) [in module %s]"),
4594 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4595 }
4596
4597 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4598 info_ptr += 1;
4599 }
4600 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4601 cu_header,
4602 &bytes_read);
4603 info_ptr += bytes_read;
4604 if (cu_header->version < 5)
4605 {
4606 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4607 info_ptr += 1;
4608 }
4609 signed_addr = bfd_get_sign_extend_vma (abfd);
4610 if (signed_addr < 0)
4611 internal_error (__FILE__, __LINE__,
4612 _("read_comp_unit_head: dwarf from non elf file"));
4613 cu_header->signed_addr_p = signed_addr;
4614
4615 if (section_kind == rcuh_kind::TYPE)
4616 {
4617 LONGEST type_offset;
4618
4619 cu_header->signature = read_8_bytes (abfd, info_ptr);
4620 info_ptr += 8;
4621
4622 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4623 info_ptr += bytes_read;
4624 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4625 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
4626 error (_("Dwarf Error: Too big type_offset in compilation unit "
4627 "header (is %s) [in module %s]"), plongest (type_offset),
4628 filename);
4629 }
4630
4631 return info_ptr;
4632 }
4633
4634 /* Helper function that returns the proper abbrev section for
4635 THIS_CU. */
4636
4637 static struct dwarf2_section_info *
4638 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4639 {
4640 struct dwarf2_section_info *abbrev;
4641
4642 if (this_cu->is_dwz)
4643 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4644 else
4645 abbrev = &dwarf2_per_objfile->abbrev;
4646
4647 return abbrev;
4648 }
4649
4650 /* Subroutine of read_and_check_comp_unit_head and
4651 read_and_check_type_unit_head to simplify them.
4652 Perform various error checking on the header. */
4653
4654 static void
4655 error_check_comp_unit_head (struct comp_unit_head *header,
4656 struct dwarf2_section_info *section,
4657 struct dwarf2_section_info *abbrev_section)
4658 {
4659 const char *filename = get_section_file_name (section);
4660
4661 if (header->version < 2 || header->version > 5)
4662 error (_("Dwarf Error: wrong version in compilation unit header "
4663 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
4664 filename);
4665
4666 if (to_underlying (header->abbrev_sect_off)
4667 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4668 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4669 "(offset 0x%x + 6) [in module %s]"),
4670 to_underlying (header->abbrev_sect_off),
4671 to_underlying (header->sect_off),
4672 filename);
4673
4674 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
4675 avoid potential 32-bit overflow. */
4676 if (((ULONGEST) header->sect_off + get_cu_length (header))
4677 > section->size)
4678 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4679 "(offset 0x%x + 0) [in module %s]"),
4680 header->length, to_underlying (header->sect_off),
4681 filename);
4682 }
4683
4684 /* Read in a CU/TU header and perform some basic error checking.
4685 The contents of the header are stored in HEADER.
4686 The result is a pointer to the start of the first DIE. */
4687
4688 static const gdb_byte *
4689 read_and_check_comp_unit_head (struct comp_unit_head *header,
4690 struct dwarf2_section_info *section,
4691 struct dwarf2_section_info *abbrev_section,
4692 const gdb_byte *info_ptr,
4693 rcuh_kind section_kind)
4694 {
4695 const gdb_byte *beg_of_comp_unit = info_ptr;
4696 bfd *abfd = get_section_bfd_owner (section);
4697
4698 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
4699
4700 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
4701
4702 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
4703
4704 error_check_comp_unit_head (header, section, abbrev_section);
4705
4706 return info_ptr;
4707 }
4708
4709 /* Fetch the abbreviation table offset from a comp or type unit header. */
4710
4711 static sect_offset
4712 read_abbrev_offset (struct dwarf2_section_info *section,
4713 sect_offset sect_off)
4714 {
4715 bfd *abfd = get_section_bfd_owner (section);
4716 const gdb_byte *info_ptr;
4717 unsigned int initial_length_size, offset_size;
4718 uint16_t version;
4719
4720 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4721 info_ptr = section->buffer + to_underlying (sect_off);
4722 read_initial_length (abfd, info_ptr, &initial_length_size);
4723 offset_size = initial_length_size == 4 ? 4 : 8;
4724 info_ptr += initial_length_size;
4725
4726 version = read_2_bytes (abfd, info_ptr);
4727 info_ptr += 2;
4728 if (version >= 5)
4729 {
4730 /* Skip unit type and address size. */
4731 info_ptr += 2;
4732 }
4733
4734 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
4735 }
4736
4737 /* Allocate a new partial symtab for file named NAME and mark this new
4738 partial symtab as being an include of PST. */
4739
4740 static void
4741 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4742 struct objfile *objfile)
4743 {
4744 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4745
4746 if (!IS_ABSOLUTE_PATH (subpst->filename))
4747 {
4748 /* It shares objfile->objfile_obstack. */
4749 subpst->dirname = pst->dirname;
4750 }
4751
4752 subpst->textlow = 0;
4753 subpst->texthigh = 0;
4754
4755 subpst->dependencies
4756 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4757 subpst->dependencies[0] = pst;
4758 subpst->number_of_dependencies = 1;
4759
4760 subpst->globals_offset = 0;
4761 subpst->n_global_syms = 0;
4762 subpst->statics_offset = 0;
4763 subpst->n_static_syms = 0;
4764 subpst->compunit_symtab = NULL;
4765 subpst->read_symtab = pst->read_symtab;
4766 subpst->readin = 0;
4767
4768 /* No private part is necessary for include psymtabs. This property
4769 can be used to differentiate between such include psymtabs and
4770 the regular ones. */
4771 subpst->read_symtab_private = NULL;
4772 }
4773
4774 /* Read the Line Number Program data and extract the list of files
4775 included by the source file represented by PST. Build an include
4776 partial symtab for each of these included files. */
4777
4778 static void
4779 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4780 struct die_info *die,
4781 struct partial_symtab *pst)
4782 {
4783 line_header_up lh;
4784 struct attribute *attr;
4785
4786 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4787 if (attr)
4788 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
4789 if (lh == NULL)
4790 return; /* No linetable, so no includes. */
4791
4792 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4793 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
4794 }
4795
4796 static hashval_t
4797 hash_signatured_type (const void *item)
4798 {
4799 const struct signatured_type *sig_type
4800 = (const struct signatured_type *) item;
4801
4802 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4803 return sig_type->signature;
4804 }
4805
4806 static int
4807 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4808 {
4809 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4810 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4811
4812 return lhs->signature == rhs->signature;
4813 }
4814
4815 /* Allocate a hash table for signatured types. */
4816
4817 static htab_t
4818 allocate_signatured_type_table (struct objfile *objfile)
4819 {
4820 return htab_create_alloc_ex (41,
4821 hash_signatured_type,
4822 eq_signatured_type,
4823 NULL,
4824 &objfile->objfile_obstack,
4825 hashtab_obstack_allocate,
4826 dummy_obstack_deallocate);
4827 }
4828
4829 /* A helper function to add a signatured type CU to a table. */
4830
4831 static int
4832 add_signatured_type_cu_to_table (void **slot, void *datum)
4833 {
4834 struct signatured_type *sigt = (struct signatured_type *) *slot;
4835 struct signatured_type ***datap = (struct signatured_type ***) datum;
4836
4837 **datap = sigt;
4838 ++*datap;
4839
4840 return 1;
4841 }
4842
4843 /* A helper for create_debug_types_hash_table. Read types from SECTION
4844 and fill them into TYPES_HTAB. It will process only type units,
4845 therefore DW_UT_type. */
4846
4847 static void
4848 create_debug_type_hash_table (struct dwo_file *dwo_file,
4849 dwarf2_section_info *section, htab_t &types_htab,
4850 rcuh_kind section_kind)
4851 {
4852 struct objfile *objfile = dwarf2_per_objfile->objfile;
4853 struct dwarf2_section_info *abbrev_section;
4854 bfd *abfd;
4855 const gdb_byte *info_ptr, *end_ptr;
4856
4857 abbrev_section = (dwo_file != NULL
4858 ? &dwo_file->sections.abbrev
4859 : &dwarf2_per_objfile->abbrev);
4860
4861 if (dwarf_read_debug)
4862 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4863 get_section_name (section),
4864 get_section_file_name (abbrev_section));
4865
4866 dwarf2_read_section (objfile, section);
4867 info_ptr = section->buffer;
4868
4869 if (info_ptr == NULL)
4870 return;
4871
4872 /* We can't set abfd until now because the section may be empty or
4873 not present, in which case the bfd is unknown. */
4874 abfd = get_section_bfd_owner (section);
4875
4876 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4877 because we don't need to read any dies: the signature is in the
4878 header. */
4879
4880 end_ptr = info_ptr + section->size;
4881 while (info_ptr < end_ptr)
4882 {
4883 struct signatured_type *sig_type;
4884 struct dwo_unit *dwo_tu;
4885 void **slot;
4886 const gdb_byte *ptr = info_ptr;
4887 struct comp_unit_head header;
4888 unsigned int length;
4889
4890 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
4891
4892 /* Initialize it due to a false compiler warning. */
4893 header.signature = -1;
4894 header.type_cu_offset_in_tu = (cu_offset) -1;
4895
4896 /* We need to read the type's signature in order to build the hash
4897 table, but we don't need anything else just yet. */
4898
4899 ptr = read_and_check_comp_unit_head (&header, section,
4900 abbrev_section, ptr, section_kind);
4901
4902 length = get_cu_length (&header);
4903
4904 /* Skip dummy type units. */
4905 if (ptr >= info_ptr + length
4906 || peek_abbrev_code (abfd, ptr) == 0
4907 || header.unit_type != DW_UT_type)
4908 {
4909 info_ptr += length;
4910 continue;
4911 }
4912
4913 if (types_htab == NULL)
4914 {
4915 if (dwo_file)
4916 types_htab = allocate_dwo_unit_table (objfile);
4917 else
4918 types_htab = allocate_signatured_type_table (objfile);
4919 }
4920
4921 if (dwo_file)
4922 {
4923 sig_type = NULL;
4924 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4925 struct dwo_unit);
4926 dwo_tu->dwo_file = dwo_file;
4927 dwo_tu->signature = header.signature;
4928 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
4929 dwo_tu->section = section;
4930 dwo_tu->sect_off = sect_off;
4931 dwo_tu->length = length;
4932 }
4933 else
4934 {
4935 /* N.B.: type_offset is not usable if this type uses a DWO file.
4936 The real type_offset is in the DWO file. */
4937 dwo_tu = NULL;
4938 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4939 struct signatured_type);
4940 sig_type->signature = header.signature;
4941 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
4942 sig_type->per_cu.objfile = objfile;
4943 sig_type->per_cu.is_debug_types = 1;
4944 sig_type->per_cu.section = section;
4945 sig_type->per_cu.sect_off = sect_off;
4946 sig_type->per_cu.length = length;
4947 }
4948
4949 slot = htab_find_slot (types_htab,
4950 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4951 INSERT);
4952 gdb_assert (slot != NULL);
4953 if (*slot != NULL)
4954 {
4955 sect_offset dup_sect_off;
4956
4957 if (dwo_file)
4958 {
4959 const struct dwo_unit *dup_tu
4960 = (const struct dwo_unit *) *slot;
4961
4962 dup_sect_off = dup_tu->sect_off;
4963 }
4964 else
4965 {
4966 const struct signatured_type *dup_tu
4967 = (const struct signatured_type *) *slot;
4968
4969 dup_sect_off = dup_tu->per_cu.sect_off;
4970 }
4971
4972 complaint (&symfile_complaints,
4973 _("debug type entry at offset 0x%x is duplicate to"
4974 " the entry at offset 0x%x, signature %s"),
4975 to_underlying (sect_off), to_underlying (dup_sect_off),
4976 hex_string (header.signature));
4977 }
4978 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4979
4980 if (dwarf_read_debug > 1)
4981 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4982 to_underlying (sect_off),
4983 hex_string (header.signature));
4984
4985 info_ptr += length;
4986 }
4987 }
4988
4989 /* Create the hash table of all entries in the .debug_types
4990 (or .debug_types.dwo) section(s).
4991 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4992 otherwise it is NULL.
4993
4994 The result is a pointer to the hash table or NULL if there are no types.
4995
4996 Note: This function processes DWO files only, not DWP files. */
4997
4998 static void
4999 create_debug_types_hash_table (struct dwo_file *dwo_file,
5000 VEC (dwarf2_section_info_def) *types,
5001 htab_t &types_htab)
5002 {
5003 int ix;
5004 struct dwarf2_section_info *section;
5005
5006 if (VEC_empty (dwarf2_section_info_def, types))
5007 return;
5008
5009 for (ix = 0;
5010 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5011 ++ix)
5012 create_debug_type_hash_table (dwo_file, section, types_htab,
5013 rcuh_kind::TYPE);
5014 }
5015
5016 /* Create the hash table of all entries in the .debug_types section,
5017 and initialize all_type_units.
5018 The result is zero if there is an error (e.g. missing .debug_types section),
5019 otherwise non-zero. */
5020
5021 static int
5022 create_all_type_units (struct objfile *objfile)
5023 {
5024 htab_t types_htab = NULL;
5025 struct signatured_type **iter;
5026
5027 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5028 rcuh_kind::COMPILE);
5029 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
5030 if (types_htab == NULL)
5031 {
5032 dwarf2_per_objfile->signatured_types = NULL;
5033 return 0;
5034 }
5035
5036 dwarf2_per_objfile->signatured_types = types_htab;
5037
5038 dwarf2_per_objfile->n_type_units
5039 = dwarf2_per_objfile->n_allocated_type_units
5040 = htab_elements (types_htab);
5041 dwarf2_per_objfile->all_type_units =
5042 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
5043 iter = &dwarf2_per_objfile->all_type_units[0];
5044 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5045 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5046 == dwarf2_per_objfile->n_type_units);
5047
5048 return 1;
5049 }
5050
5051 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5052 If SLOT is non-NULL, it is the entry to use in the hash table.
5053 Otherwise we find one. */
5054
5055 static struct signatured_type *
5056 add_type_unit (ULONGEST sig, void **slot)
5057 {
5058 struct objfile *objfile = dwarf2_per_objfile->objfile;
5059 int n_type_units = dwarf2_per_objfile->n_type_units;
5060 struct signatured_type *sig_type;
5061
5062 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5063 ++n_type_units;
5064 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5065 {
5066 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5067 dwarf2_per_objfile->n_allocated_type_units = 1;
5068 dwarf2_per_objfile->n_allocated_type_units *= 2;
5069 dwarf2_per_objfile->all_type_units
5070 = XRESIZEVEC (struct signatured_type *,
5071 dwarf2_per_objfile->all_type_units,
5072 dwarf2_per_objfile->n_allocated_type_units);
5073 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5074 }
5075 dwarf2_per_objfile->n_type_units = n_type_units;
5076
5077 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5078 struct signatured_type);
5079 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5080 sig_type->signature = sig;
5081 sig_type->per_cu.is_debug_types = 1;
5082 if (dwarf2_per_objfile->using_index)
5083 {
5084 sig_type->per_cu.v.quick =
5085 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5086 struct dwarf2_per_cu_quick_data);
5087 }
5088
5089 if (slot == NULL)
5090 {
5091 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5092 sig_type, INSERT);
5093 }
5094 gdb_assert (*slot == NULL);
5095 *slot = sig_type;
5096 /* The rest of sig_type must be filled in by the caller. */
5097 return sig_type;
5098 }
5099
5100 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5101 Fill in SIG_ENTRY with DWO_ENTRY. */
5102
5103 static void
5104 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5105 struct signatured_type *sig_entry,
5106 struct dwo_unit *dwo_entry)
5107 {
5108 /* Make sure we're not clobbering something we don't expect to. */
5109 gdb_assert (! sig_entry->per_cu.queued);
5110 gdb_assert (sig_entry->per_cu.cu == NULL);
5111 if (dwarf2_per_objfile->using_index)
5112 {
5113 gdb_assert (sig_entry->per_cu.v.quick != NULL);
5114 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
5115 }
5116 else
5117 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
5118 gdb_assert (sig_entry->signature == dwo_entry->signature);
5119 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
5120 gdb_assert (sig_entry->type_unit_group == NULL);
5121 gdb_assert (sig_entry->dwo_unit == NULL);
5122
5123 sig_entry->per_cu.section = dwo_entry->section;
5124 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
5125 sig_entry->per_cu.length = dwo_entry->length;
5126 sig_entry->per_cu.reading_dwo_directly = 1;
5127 sig_entry->per_cu.objfile = objfile;
5128 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5129 sig_entry->dwo_unit = dwo_entry;
5130 }
5131
5132 /* Subroutine of lookup_signatured_type.
5133 If we haven't read the TU yet, create the signatured_type data structure
5134 for a TU to be read in directly from a DWO file, bypassing the stub.
5135 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5136 using .gdb_index, then when reading a CU we want to stay in the DWO file
5137 containing that CU. Otherwise we could end up reading several other DWO
5138 files (due to comdat folding) to process the transitive closure of all the
5139 mentioned TUs, and that can be slow. The current DWO file will have every
5140 type signature that it needs.
5141 We only do this for .gdb_index because in the psymtab case we already have
5142 to read all the DWOs to build the type unit groups. */
5143
5144 static struct signatured_type *
5145 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5146 {
5147 struct objfile *objfile = dwarf2_per_objfile->objfile;
5148 struct dwo_file *dwo_file;
5149 struct dwo_unit find_dwo_entry, *dwo_entry;
5150 struct signatured_type find_sig_entry, *sig_entry;
5151 void **slot;
5152
5153 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5154
5155 /* If TU skeletons have been removed then we may not have read in any
5156 TUs yet. */
5157 if (dwarf2_per_objfile->signatured_types == NULL)
5158 {
5159 dwarf2_per_objfile->signatured_types
5160 = allocate_signatured_type_table (objfile);
5161 }
5162
5163 /* We only ever need to read in one copy of a signatured type.
5164 Use the global signatured_types array to do our own comdat-folding
5165 of types. If this is the first time we're reading this TU, and
5166 the TU has an entry in .gdb_index, replace the recorded data from
5167 .gdb_index with this TU. */
5168
5169 find_sig_entry.signature = sig;
5170 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5171 &find_sig_entry, INSERT);
5172 sig_entry = (struct signatured_type *) *slot;
5173
5174 /* We can get here with the TU already read, *or* in the process of being
5175 read. Don't reassign the global entry to point to this DWO if that's
5176 the case. Also note that if the TU is already being read, it may not
5177 have come from a DWO, the program may be a mix of Fission-compiled
5178 code and non-Fission-compiled code. */
5179
5180 /* Have we already tried to read this TU?
5181 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5182 needn't exist in the global table yet). */
5183 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
5184 return sig_entry;
5185
5186 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5187 dwo_unit of the TU itself. */
5188 dwo_file = cu->dwo_unit->dwo_file;
5189
5190 /* Ok, this is the first time we're reading this TU. */
5191 if (dwo_file->tus == NULL)
5192 return NULL;
5193 find_dwo_entry.signature = sig;
5194 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
5195 if (dwo_entry == NULL)
5196 return NULL;
5197
5198 /* If the global table doesn't have an entry for this TU, add one. */
5199 if (sig_entry == NULL)
5200 sig_entry = add_type_unit (sig, slot);
5201
5202 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5203 sig_entry->per_cu.tu_read = 1;
5204 return sig_entry;
5205 }
5206
5207 /* Subroutine of lookup_signatured_type.
5208 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
5209 then try the DWP file. If the TU stub (skeleton) has been removed then
5210 it won't be in .gdb_index. */
5211
5212 static struct signatured_type *
5213 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5214 {
5215 struct objfile *objfile = dwarf2_per_objfile->objfile;
5216 struct dwp_file *dwp_file = get_dwp_file ();
5217 struct dwo_unit *dwo_entry;
5218 struct signatured_type find_sig_entry, *sig_entry;
5219 void **slot;
5220
5221 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5222 gdb_assert (dwp_file != NULL);
5223
5224 /* If TU skeletons have been removed then we may not have read in any
5225 TUs yet. */
5226 if (dwarf2_per_objfile->signatured_types == NULL)
5227 {
5228 dwarf2_per_objfile->signatured_types
5229 = allocate_signatured_type_table (objfile);
5230 }
5231
5232 find_sig_entry.signature = sig;
5233 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5234 &find_sig_entry, INSERT);
5235 sig_entry = (struct signatured_type *) *slot;
5236
5237 /* Have we already tried to read this TU?
5238 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5239 needn't exist in the global table yet). */
5240 if (sig_entry != NULL)
5241 return sig_entry;
5242
5243 if (dwp_file->tus == NULL)
5244 return NULL;
5245 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5246 sig, 1 /* is_debug_types */);
5247 if (dwo_entry == NULL)
5248 return NULL;
5249
5250 sig_entry = add_type_unit (sig, slot);
5251 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5252
5253 return sig_entry;
5254 }
5255
5256 /* Lookup a signature based type for DW_FORM_ref_sig8.
5257 Returns NULL if signature SIG is not present in the table.
5258 It is up to the caller to complain about this. */
5259
5260 static struct signatured_type *
5261 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5262 {
5263 if (cu->dwo_unit
5264 && dwarf2_per_objfile->using_index)
5265 {
5266 /* We're in a DWO/DWP file, and we're using .gdb_index.
5267 These cases require special processing. */
5268 if (get_dwp_file () == NULL)
5269 return lookup_dwo_signatured_type (cu, sig);
5270 else
5271 return lookup_dwp_signatured_type (cu, sig);
5272 }
5273 else
5274 {
5275 struct signatured_type find_entry, *entry;
5276
5277 if (dwarf2_per_objfile->signatured_types == NULL)
5278 return NULL;
5279 find_entry.signature = sig;
5280 entry = ((struct signatured_type *)
5281 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5282 return entry;
5283 }
5284 }
5285 \f
5286 /* Low level DIE reading support. */
5287
5288 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5289
5290 static void
5291 init_cu_die_reader (struct die_reader_specs *reader,
5292 struct dwarf2_cu *cu,
5293 struct dwarf2_section_info *section,
5294 struct dwo_file *dwo_file)
5295 {
5296 gdb_assert (section->readin && section->buffer != NULL);
5297 reader->abfd = get_section_bfd_owner (section);
5298 reader->cu = cu;
5299 reader->dwo_file = dwo_file;
5300 reader->die_section = section;
5301 reader->buffer = section->buffer;
5302 reader->buffer_end = section->buffer + section->size;
5303 reader->comp_dir = NULL;
5304 }
5305
5306 /* Subroutine of init_cutu_and_read_dies to simplify it.
5307 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5308 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5309 already.
5310
5311 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5312 from it to the DIE in the DWO. If NULL we are skipping the stub.
5313 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5314 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5315 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5316 STUB_COMP_DIR may be non-NULL.
5317 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5318 are filled in with the info of the DIE from the DWO file.
5319 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5320 provided an abbrev table to use.
5321 The result is non-zero if a valid (non-dummy) DIE was found. */
5322
5323 static int
5324 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5325 struct dwo_unit *dwo_unit,
5326 int abbrev_table_provided,
5327 struct die_info *stub_comp_unit_die,
5328 const char *stub_comp_dir,
5329 struct die_reader_specs *result_reader,
5330 const gdb_byte **result_info_ptr,
5331 struct die_info **result_comp_unit_die,
5332 int *result_has_children)
5333 {
5334 struct objfile *objfile = dwarf2_per_objfile->objfile;
5335 struct dwarf2_cu *cu = this_cu->cu;
5336 struct dwarf2_section_info *section;
5337 bfd *abfd;
5338 const gdb_byte *begin_info_ptr, *info_ptr;
5339 ULONGEST signature; /* Or dwo_id. */
5340 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5341 int i,num_extra_attrs;
5342 struct dwarf2_section_info *dwo_abbrev_section;
5343 struct attribute *attr;
5344 struct die_info *comp_unit_die;
5345
5346 /* At most one of these may be provided. */
5347 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5348
5349 /* These attributes aren't processed until later:
5350 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5351 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5352 referenced later. However, these attributes are found in the stub
5353 which we won't have later. In order to not impose this complication
5354 on the rest of the code, we read them here and copy them to the
5355 DWO CU/TU die. */
5356
5357 stmt_list = NULL;
5358 low_pc = NULL;
5359 high_pc = NULL;
5360 ranges = NULL;
5361 comp_dir = NULL;
5362
5363 if (stub_comp_unit_die != NULL)
5364 {
5365 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5366 DWO file. */
5367 if (! this_cu->is_debug_types)
5368 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5369 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5370 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5371 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5372 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5373
5374 /* There should be a DW_AT_addr_base attribute here (if needed).
5375 We need the value before we can process DW_FORM_GNU_addr_index. */
5376 cu->addr_base = 0;
5377 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5378 if (attr)
5379 cu->addr_base = DW_UNSND (attr);
5380
5381 /* There should be a DW_AT_ranges_base attribute here (if needed).
5382 We need the value before we can process DW_AT_ranges. */
5383 cu->ranges_base = 0;
5384 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5385 if (attr)
5386 cu->ranges_base = DW_UNSND (attr);
5387 }
5388 else if (stub_comp_dir != NULL)
5389 {
5390 /* Reconstruct the comp_dir attribute to simplify the code below. */
5391 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5392 comp_dir->name = DW_AT_comp_dir;
5393 comp_dir->form = DW_FORM_string;
5394 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5395 DW_STRING (comp_dir) = stub_comp_dir;
5396 }
5397
5398 /* Set up for reading the DWO CU/TU. */
5399 cu->dwo_unit = dwo_unit;
5400 section = dwo_unit->section;
5401 dwarf2_read_section (objfile, section);
5402 abfd = get_section_bfd_owner (section);
5403 begin_info_ptr = info_ptr = (section->buffer
5404 + to_underlying (dwo_unit->sect_off));
5405 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5406 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5407
5408 if (this_cu->is_debug_types)
5409 {
5410 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5411
5412 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5413 dwo_abbrev_section,
5414 info_ptr, rcuh_kind::TYPE);
5415 /* This is not an assert because it can be caused by bad debug info. */
5416 if (sig_type->signature != cu->header.signature)
5417 {
5418 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5419 " TU at offset 0x%x [in module %s]"),
5420 hex_string (sig_type->signature),
5421 hex_string (cu->header.signature),
5422 to_underlying (dwo_unit->sect_off),
5423 bfd_get_filename (abfd));
5424 }
5425 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5426 /* For DWOs coming from DWP files, we don't know the CU length
5427 nor the type's offset in the TU until now. */
5428 dwo_unit->length = get_cu_length (&cu->header);
5429 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
5430
5431 /* Establish the type offset that can be used to lookup the type.
5432 For DWO files, we don't know it until now. */
5433 sig_type->type_offset_in_section
5434 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
5435 }
5436 else
5437 {
5438 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5439 dwo_abbrev_section,
5440 info_ptr, rcuh_kind::COMPILE);
5441 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5442 /* For DWOs coming from DWP files, we don't know the CU length
5443 until now. */
5444 dwo_unit->length = get_cu_length (&cu->header);
5445 }
5446
5447 /* Replace the CU's original abbrev table with the DWO's.
5448 Reminder: We can't read the abbrev table until we've read the header. */
5449 if (abbrev_table_provided)
5450 {
5451 /* Don't free the provided abbrev table, the caller of
5452 init_cutu_and_read_dies owns it. */
5453 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5454 /* Ensure the DWO abbrev table gets freed. */
5455 make_cleanup (dwarf2_free_abbrev_table, cu);
5456 }
5457 else
5458 {
5459 dwarf2_free_abbrev_table (cu);
5460 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5461 /* Leave any existing abbrev table cleanup as is. */
5462 }
5463
5464 /* Read in the die, but leave space to copy over the attributes
5465 from the stub. This has the benefit of simplifying the rest of
5466 the code - all the work to maintain the illusion of a single
5467 DW_TAG_{compile,type}_unit DIE is done here. */
5468 num_extra_attrs = ((stmt_list != NULL)
5469 + (low_pc != NULL)
5470 + (high_pc != NULL)
5471 + (ranges != NULL)
5472 + (comp_dir != NULL));
5473 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5474 result_has_children, num_extra_attrs);
5475
5476 /* Copy over the attributes from the stub to the DIE we just read in. */
5477 comp_unit_die = *result_comp_unit_die;
5478 i = comp_unit_die->num_attrs;
5479 if (stmt_list != NULL)
5480 comp_unit_die->attrs[i++] = *stmt_list;
5481 if (low_pc != NULL)
5482 comp_unit_die->attrs[i++] = *low_pc;
5483 if (high_pc != NULL)
5484 comp_unit_die->attrs[i++] = *high_pc;
5485 if (ranges != NULL)
5486 comp_unit_die->attrs[i++] = *ranges;
5487 if (comp_dir != NULL)
5488 comp_unit_die->attrs[i++] = *comp_dir;
5489 comp_unit_die->num_attrs += num_extra_attrs;
5490
5491 if (dwarf_die_debug)
5492 {
5493 fprintf_unfiltered (gdb_stdlog,
5494 "Read die from %s@0x%x of %s:\n",
5495 get_section_name (section),
5496 (unsigned) (begin_info_ptr - section->buffer),
5497 bfd_get_filename (abfd));
5498 dump_die (comp_unit_die, dwarf_die_debug);
5499 }
5500
5501 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5502 TUs by skipping the stub and going directly to the entry in the DWO file.
5503 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5504 to get it via circuitous means. Blech. */
5505 if (comp_dir != NULL)
5506 result_reader->comp_dir = DW_STRING (comp_dir);
5507
5508 /* Skip dummy compilation units. */
5509 if (info_ptr >= begin_info_ptr + dwo_unit->length
5510 || peek_abbrev_code (abfd, info_ptr) == 0)
5511 return 0;
5512
5513 *result_info_ptr = info_ptr;
5514 return 1;
5515 }
5516
5517 /* Subroutine of init_cutu_and_read_dies to simplify it.
5518 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5519 Returns NULL if the specified DWO unit cannot be found. */
5520
5521 static struct dwo_unit *
5522 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5523 struct die_info *comp_unit_die)
5524 {
5525 struct dwarf2_cu *cu = this_cu->cu;
5526 struct attribute *attr;
5527 ULONGEST signature;
5528 struct dwo_unit *dwo_unit;
5529 const char *comp_dir, *dwo_name;
5530
5531 gdb_assert (cu != NULL);
5532
5533 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5534 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5535 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5536
5537 if (this_cu->is_debug_types)
5538 {
5539 struct signatured_type *sig_type;
5540
5541 /* Since this_cu is the first member of struct signatured_type,
5542 we can go from a pointer to one to a pointer to the other. */
5543 sig_type = (struct signatured_type *) this_cu;
5544 signature = sig_type->signature;
5545 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5546 }
5547 else
5548 {
5549 struct attribute *attr;
5550
5551 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5552 if (! attr)
5553 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5554 " [in module %s]"),
5555 dwo_name, objfile_name (this_cu->objfile));
5556 signature = DW_UNSND (attr);
5557 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5558 signature);
5559 }
5560
5561 return dwo_unit;
5562 }
5563
5564 /* Subroutine of init_cutu_and_read_dies to simplify it.
5565 See it for a description of the parameters.
5566 Read a TU directly from a DWO file, bypassing the stub.
5567
5568 Note: This function could be a little bit simpler if we shared cleanups
5569 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5570 to do, so we keep this function self-contained. Or we could move this
5571 into our caller, but it's complex enough already. */
5572
5573 static void
5574 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5575 int use_existing_cu, int keep,
5576 die_reader_func_ftype *die_reader_func,
5577 void *data)
5578 {
5579 struct dwarf2_cu *cu;
5580 struct signatured_type *sig_type;
5581 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5582 struct die_reader_specs reader;
5583 const gdb_byte *info_ptr;
5584 struct die_info *comp_unit_die;
5585 int has_children;
5586
5587 /* Verify we can do the following downcast, and that we have the
5588 data we need. */
5589 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5590 sig_type = (struct signatured_type *) this_cu;
5591 gdb_assert (sig_type->dwo_unit != NULL);
5592
5593 cleanups = make_cleanup (null_cleanup, NULL);
5594
5595 if (use_existing_cu && this_cu->cu != NULL)
5596 {
5597 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5598 cu = this_cu->cu;
5599 /* There's no need to do the rereading_dwo_cu handling that
5600 init_cutu_and_read_dies does since we don't read the stub. */
5601 }
5602 else
5603 {
5604 /* If !use_existing_cu, this_cu->cu must be NULL. */
5605 gdb_assert (this_cu->cu == NULL);
5606 cu = XNEW (struct dwarf2_cu);
5607 init_one_comp_unit (cu, this_cu);
5608 /* If an error occurs while loading, release our storage. */
5609 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5610 }
5611
5612 /* A future optimization, if needed, would be to use an existing
5613 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5614 could share abbrev tables. */
5615
5616 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5617 0 /* abbrev_table_provided */,
5618 NULL /* stub_comp_unit_die */,
5619 sig_type->dwo_unit->dwo_file->comp_dir,
5620 &reader, &info_ptr,
5621 &comp_unit_die, &has_children) == 0)
5622 {
5623 /* Dummy die. */
5624 do_cleanups (cleanups);
5625 return;
5626 }
5627
5628 /* All the "real" work is done here. */
5629 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5630
5631 /* This duplicates the code in init_cutu_and_read_dies,
5632 but the alternative is making the latter more complex.
5633 This function is only for the special case of using DWO files directly:
5634 no point in overly complicating the general case just to handle this. */
5635 if (free_cu_cleanup != NULL)
5636 {
5637 if (keep)
5638 {
5639 /* We've successfully allocated this compilation unit. Let our
5640 caller clean it up when finished with it. */
5641 discard_cleanups (free_cu_cleanup);
5642
5643 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5644 So we have to manually free the abbrev table. */
5645 dwarf2_free_abbrev_table (cu);
5646
5647 /* Link this CU into read_in_chain. */
5648 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5649 dwarf2_per_objfile->read_in_chain = this_cu;
5650 }
5651 else
5652 do_cleanups (free_cu_cleanup);
5653 }
5654
5655 do_cleanups (cleanups);
5656 }
5657
5658 /* Initialize a CU (or TU) and read its DIEs.
5659 If the CU defers to a DWO file, read the DWO file as well.
5660
5661 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5662 Otherwise the table specified in the comp unit header is read in and used.
5663 This is an optimization for when we already have the abbrev table.
5664
5665 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5666 Otherwise, a new CU is allocated with xmalloc.
5667
5668 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5669 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5670
5671 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5672 linker) then DIE_READER_FUNC will not get called. */
5673
5674 static void
5675 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5676 struct abbrev_table *abbrev_table,
5677 int use_existing_cu, int keep,
5678 die_reader_func_ftype *die_reader_func,
5679 void *data)
5680 {
5681 struct objfile *objfile = dwarf2_per_objfile->objfile;
5682 struct dwarf2_section_info *section = this_cu->section;
5683 bfd *abfd = get_section_bfd_owner (section);
5684 struct dwarf2_cu *cu;
5685 const gdb_byte *begin_info_ptr, *info_ptr;
5686 struct die_reader_specs reader;
5687 struct die_info *comp_unit_die;
5688 int has_children;
5689 struct attribute *attr;
5690 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5691 struct signatured_type *sig_type = NULL;
5692 struct dwarf2_section_info *abbrev_section;
5693 /* Non-zero if CU currently points to a DWO file and we need to
5694 reread it. When this happens we need to reread the skeleton die
5695 before we can reread the DWO file (this only applies to CUs, not TUs). */
5696 int rereading_dwo_cu = 0;
5697
5698 if (dwarf_die_debug)
5699 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5700 this_cu->is_debug_types ? "type" : "comp",
5701 to_underlying (this_cu->sect_off));
5702
5703 if (use_existing_cu)
5704 gdb_assert (keep);
5705
5706 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5707 file (instead of going through the stub), short-circuit all of this. */
5708 if (this_cu->reading_dwo_directly)
5709 {
5710 /* Narrow down the scope of possibilities to have to understand. */
5711 gdb_assert (this_cu->is_debug_types);
5712 gdb_assert (abbrev_table == NULL);
5713 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5714 die_reader_func, data);
5715 return;
5716 }
5717
5718 cleanups = make_cleanup (null_cleanup, NULL);
5719
5720 /* This is cheap if the section is already read in. */
5721 dwarf2_read_section (objfile, section);
5722
5723 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5724
5725 abbrev_section = get_abbrev_section_for_cu (this_cu);
5726
5727 if (use_existing_cu && this_cu->cu != NULL)
5728 {
5729 cu = this_cu->cu;
5730 /* If this CU is from a DWO file we need to start over, we need to
5731 refetch the attributes from the skeleton CU.
5732 This could be optimized by retrieving those attributes from when we
5733 were here the first time: the previous comp_unit_die was stored in
5734 comp_unit_obstack. But there's no data yet that we need this
5735 optimization. */
5736 if (cu->dwo_unit != NULL)
5737 rereading_dwo_cu = 1;
5738 }
5739 else
5740 {
5741 /* If !use_existing_cu, this_cu->cu must be NULL. */
5742 gdb_assert (this_cu->cu == NULL);
5743 cu = XNEW (struct dwarf2_cu);
5744 init_one_comp_unit (cu, this_cu);
5745 /* If an error occurs while loading, release our storage. */
5746 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5747 }
5748
5749 /* Get the header. */
5750 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
5751 {
5752 /* We already have the header, there's no need to read it in again. */
5753 info_ptr += to_underlying (cu->header.first_die_cu_offset);
5754 }
5755 else
5756 {
5757 if (this_cu->is_debug_types)
5758 {
5759 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5760 abbrev_section, info_ptr,
5761 rcuh_kind::TYPE);
5762
5763 /* Since per_cu is the first member of struct signatured_type,
5764 we can go from a pointer to one to a pointer to the other. */
5765 sig_type = (struct signatured_type *) this_cu;
5766 gdb_assert (sig_type->signature == cu->header.signature);
5767 gdb_assert (sig_type->type_offset_in_tu
5768 == cu->header.type_cu_offset_in_tu);
5769 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5770
5771 /* LENGTH has not been set yet for type units if we're
5772 using .gdb_index. */
5773 this_cu->length = get_cu_length (&cu->header);
5774
5775 /* Establish the type offset that can be used to lookup the type. */
5776 sig_type->type_offset_in_section =
5777 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
5778
5779 this_cu->dwarf_version = cu->header.version;
5780 }
5781 else
5782 {
5783 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5784 abbrev_section,
5785 info_ptr,
5786 rcuh_kind::COMPILE);
5787
5788 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5789 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5790 this_cu->dwarf_version = cu->header.version;
5791 }
5792 }
5793
5794 /* Skip dummy compilation units. */
5795 if (info_ptr >= begin_info_ptr + this_cu->length
5796 || peek_abbrev_code (abfd, info_ptr) == 0)
5797 {
5798 do_cleanups (cleanups);
5799 return;
5800 }
5801
5802 /* If we don't have them yet, read the abbrevs for this compilation unit.
5803 And if we need to read them now, make sure they're freed when we're
5804 done. Note that it's important that if the CU had an abbrev table
5805 on entry we don't free it when we're done: Somewhere up the call stack
5806 it may be in use. */
5807 if (abbrev_table != NULL)
5808 {
5809 gdb_assert (cu->abbrev_table == NULL);
5810 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
5811 cu->abbrev_table = abbrev_table;
5812 }
5813 else if (cu->abbrev_table == NULL)
5814 {
5815 dwarf2_read_abbrevs (cu, abbrev_section);
5816 make_cleanup (dwarf2_free_abbrev_table, cu);
5817 }
5818 else if (rereading_dwo_cu)
5819 {
5820 dwarf2_free_abbrev_table (cu);
5821 dwarf2_read_abbrevs (cu, abbrev_section);
5822 }
5823
5824 /* Read the top level CU/TU die. */
5825 init_cu_die_reader (&reader, cu, section, NULL);
5826 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5827
5828 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5829 from the DWO file.
5830 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5831 DWO CU, that this test will fail (the attribute will not be present). */
5832 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5833 if (attr)
5834 {
5835 struct dwo_unit *dwo_unit;
5836 struct die_info *dwo_comp_unit_die;
5837
5838 if (has_children)
5839 {
5840 complaint (&symfile_complaints,
5841 _("compilation unit with DW_AT_GNU_dwo_name"
5842 " has children (offset 0x%x) [in module %s]"),
5843 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
5844 }
5845 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5846 if (dwo_unit != NULL)
5847 {
5848 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5849 abbrev_table != NULL,
5850 comp_unit_die, NULL,
5851 &reader, &info_ptr,
5852 &dwo_comp_unit_die, &has_children) == 0)
5853 {
5854 /* Dummy die. */
5855 do_cleanups (cleanups);
5856 return;
5857 }
5858 comp_unit_die = dwo_comp_unit_die;
5859 }
5860 else
5861 {
5862 /* Yikes, we couldn't find the rest of the DIE, we only have
5863 the stub. A complaint has already been logged. There's
5864 not much more we can do except pass on the stub DIE to
5865 die_reader_func. We don't want to throw an error on bad
5866 debug info. */
5867 }
5868 }
5869
5870 /* All of the above is setup for this call. Yikes. */
5871 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5872
5873 /* Done, clean up. */
5874 if (free_cu_cleanup != NULL)
5875 {
5876 if (keep)
5877 {
5878 /* We've successfully allocated this compilation unit. Let our
5879 caller clean it up when finished with it. */
5880 discard_cleanups (free_cu_cleanup);
5881
5882 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5883 So we have to manually free the abbrev table. */
5884 dwarf2_free_abbrev_table (cu);
5885
5886 /* Link this CU into read_in_chain. */
5887 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5888 dwarf2_per_objfile->read_in_chain = this_cu;
5889 }
5890 else
5891 do_cleanups (free_cu_cleanup);
5892 }
5893
5894 do_cleanups (cleanups);
5895 }
5896
5897 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5898 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5899 to have already done the lookup to find the DWO file).
5900
5901 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5902 THIS_CU->is_debug_types, but nothing else.
5903
5904 We fill in THIS_CU->length.
5905
5906 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5907 linker) then DIE_READER_FUNC will not get called.
5908
5909 THIS_CU->cu is always freed when done.
5910 This is done in order to not leave THIS_CU->cu in a state where we have
5911 to care whether it refers to the "main" CU or the DWO CU. */
5912
5913 static void
5914 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5915 struct dwo_file *dwo_file,
5916 die_reader_func_ftype *die_reader_func,
5917 void *data)
5918 {
5919 struct objfile *objfile = dwarf2_per_objfile->objfile;
5920 struct dwarf2_section_info *section = this_cu->section;
5921 bfd *abfd = get_section_bfd_owner (section);
5922 struct dwarf2_section_info *abbrev_section;
5923 struct dwarf2_cu cu;
5924 const gdb_byte *begin_info_ptr, *info_ptr;
5925 struct die_reader_specs reader;
5926 struct cleanup *cleanups;
5927 struct die_info *comp_unit_die;
5928 int has_children;
5929
5930 if (dwarf_die_debug)
5931 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5932 this_cu->is_debug_types ? "type" : "comp",
5933 to_underlying (this_cu->sect_off));
5934
5935 gdb_assert (this_cu->cu == NULL);
5936
5937 abbrev_section = (dwo_file != NULL
5938 ? &dwo_file->sections.abbrev
5939 : get_abbrev_section_for_cu (this_cu));
5940
5941 /* This is cheap if the section is already read in. */
5942 dwarf2_read_section (objfile, section);
5943
5944 init_one_comp_unit (&cu, this_cu);
5945
5946 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5947
5948 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5949 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5950 abbrev_section, info_ptr,
5951 (this_cu->is_debug_types
5952 ? rcuh_kind::TYPE
5953 : rcuh_kind::COMPILE));
5954
5955 this_cu->length = get_cu_length (&cu.header);
5956
5957 /* Skip dummy compilation units. */
5958 if (info_ptr >= begin_info_ptr + this_cu->length
5959 || peek_abbrev_code (abfd, info_ptr) == 0)
5960 {
5961 do_cleanups (cleanups);
5962 return;
5963 }
5964
5965 dwarf2_read_abbrevs (&cu, abbrev_section);
5966 make_cleanup (dwarf2_free_abbrev_table, &cu);
5967
5968 init_cu_die_reader (&reader, &cu, section, dwo_file);
5969 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5970
5971 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5972
5973 do_cleanups (cleanups);
5974 }
5975
5976 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5977 does not lookup the specified DWO file.
5978 This cannot be used to read DWO files.
5979
5980 THIS_CU->cu is always freed when done.
5981 This is done in order to not leave THIS_CU->cu in a state where we have
5982 to care whether it refers to the "main" CU or the DWO CU.
5983 We can revisit this if the data shows there's a performance issue. */
5984
5985 static void
5986 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5987 die_reader_func_ftype *die_reader_func,
5988 void *data)
5989 {
5990 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5991 }
5992 \f
5993 /* Type Unit Groups.
5994
5995 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5996 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5997 so that all types coming from the same compilation (.o file) are grouped
5998 together. A future step could be to put the types in the same symtab as
5999 the CU the types ultimately came from. */
6000
6001 static hashval_t
6002 hash_type_unit_group (const void *item)
6003 {
6004 const struct type_unit_group *tu_group
6005 = (const struct type_unit_group *) item;
6006
6007 return hash_stmt_list_entry (&tu_group->hash);
6008 }
6009
6010 static int
6011 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
6012 {
6013 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6014 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
6015
6016 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
6017 }
6018
6019 /* Allocate a hash table for type unit groups. */
6020
6021 static htab_t
6022 allocate_type_unit_groups_table (void)
6023 {
6024 return htab_create_alloc_ex (3,
6025 hash_type_unit_group,
6026 eq_type_unit_group,
6027 NULL,
6028 &dwarf2_per_objfile->objfile->objfile_obstack,
6029 hashtab_obstack_allocate,
6030 dummy_obstack_deallocate);
6031 }
6032
6033 /* Type units that don't have DW_AT_stmt_list are grouped into their own
6034 partial symtabs. We combine several TUs per psymtab to not let the size
6035 of any one psymtab grow too big. */
6036 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6037 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
6038
6039 /* Helper routine for get_type_unit_group.
6040 Create the type_unit_group object used to hold one or more TUs. */
6041
6042 static struct type_unit_group *
6043 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
6044 {
6045 struct objfile *objfile = dwarf2_per_objfile->objfile;
6046 struct dwarf2_per_cu_data *per_cu;
6047 struct type_unit_group *tu_group;
6048
6049 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6050 struct type_unit_group);
6051 per_cu = &tu_group->per_cu;
6052 per_cu->objfile = objfile;
6053
6054 if (dwarf2_per_objfile->using_index)
6055 {
6056 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6057 struct dwarf2_per_cu_quick_data);
6058 }
6059 else
6060 {
6061 unsigned int line_offset = to_underlying (line_offset_struct);
6062 struct partial_symtab *pst;
6063 char *name;
6064
6065 /* Give the symtab a useful name for debug purposes. */
6066 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6067 name = xstrprintf ("<type_units_%d>",
6068 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6069 else
6070 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6071
6072 pst = create_partial_symtab (per_cu, name);
6073 pst->anonymous = 1;
6074
6075 xfree (name);
6076 }
6077
6078 tu_group->hash.dwo_unit = cu->dwo_unit;
6079 tu_group->hash.line_sect_off = line_offset_struct;
6080
6081 return tu_group;
6082 }
6083
6084 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6085 STMT_LIST is a DW_AT_stmt_list attribute. */
6086
6087 static struct type_unit_group *
6088 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6089 {
6090 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6091 struct type_unit_group *tu_group;
6092 void **slot;
6093 unsigned int line_offset;
6094 struct type_unit_group type_unit_group_for_lookup;
6095
6096 if (dwarf2_per_objfile->type_unit_groups == NULL)
6097 {
6098 dwarf2_per_objfile->type_unit_groups =
6099 allocate_type_unit_groups_table ();
6100 }
6101
6102 /* Do we need to create a new group, or can we use an existing one? */
6103
6104 if (stmt_list)
6105 {
6106 line_offset = DW_UNSND (stmt_list);
6107 ++tu_stats->nr_symtab_sharers;
6108 }
6109 else
6110 {
6111 /* Ugh, no stmt_list. Rare, but we have to handle it.
6112 We can do various things here like create one group per TU or
6113 spread them over multiple groups to split up the expansion work.
6114 To avoid worst case scenarios (too many groups or too large groups)
6115 we, umm, group them in bunches. */
6116 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6117 | (tu_stats->nr_stmt_less_type_units
6118 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6119 ++tu_stats->nr_stmt_less_type_units;
6120 }
6121
6122 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6123 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6124 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6125 &type_unit_group_for_lookup, INSERT);
6126 if (*slot != NULL)
6127 {
6128 tu_group = (struct type_unit_group *) *slot;
6129 gdb_assert (tu_group != NULL);
6130 }
6131 else
6132 {
6133 sect_offset line_offset_struct = (sect_offset) line_offset;
6134 tu_group = create_type_unit_group (cu, line_offset_struct);
6135 *slot = tu_group;
6136 ++tu_stats->nr_symtabs;
6137 }
6138
6139 return tu_group;
6140 }
6141 \f
6142 /* Partial symbol tables. */
6143
6144 /* Create a psymtab named NAME and assign it to PER_CU.
6145
6146 The caller must fill in the following details:
6147 dirname, textlow, texthigh. */
6148
6149 static struct partial_symtab *
6150 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6151 {
6152 struct objfile *objfile = per_cu->objfile;
6153 struct partial_symtab *pst;
6154
6155 pst = start_psymtab_common (objfile, name, 0,
6156 objfile->global_psymbols.next,
6157 objfile->static_psymbols.next);
6158
6159 pst->psymtabs_addrmap_supported = 1;
6160
6161 /* This is the glue that links PST into GDB's symbol API. */
6162 pst->read_symtab_private = per_cu;
6163 pst->read_symtab = dwarf2_read_symtab;
6164 per_cu->v.psymtab = pst;
6165
6166 return pst;
6167 }
6168
6169 /* The DATA object passed to process_psymtab_comp_unit_reader has this
6170 type. */
6171
6172 struct process_psymtab_comp_unit_data
6173 {
6174 /* True if we are reading a DW_TAG_partial_unit. */
6175
6176 int want_partial_unit;
6177
6178 /* The "pretend" language that is used if the CU doesn't declare a
6179 language. */
6180
6181 enum language pretend_language;
6182 };
6183
6184 /* die_reader_func for process_psymtab_comp_unit. */
6185
6186 static void
6187 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6188 const gdb_byte *info_ptr,
6189 struct die_info *comp_unit_die,
6190 int has_children,
6191 void *data)
6192 {
6193 struct dwarf2_cu *cu = reader->cu;
6194 struct objfile *objfile = cu->objfile;
6195 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6196 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6197 CORE_ADDR baseaddr;
6198 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6199 struct partial_symtab *pst;
6200 enum pc_bounds_kind cu_bounds_kind;
6201 const char *filename;
6202 struct process_psymtab_comp_unit_data *info
6203 = (struct process_psymtab_comp_unit_data *) data;
6204
6205 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6206 return;
6207
6208 gdb_assert (! per_cu->is_debug_types);
6209
6210 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6211
6212 cu->list_in_scope = &file_symbols;
6213
6214 /* Allocate a new partial symbol table structure. */
6215 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6216 if (filename == NULL)
6217 filename = "";
6218
6219 pst = create_partial_symtab (per_cu, filename);
6220
6221 /* This must be done before calling dwarf2_build_include_psymtabs. */
6222 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6223
6224 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6225
6226 dwarf2_find_base_address (comp_unit_die, cu);
6227
6228 /* Possibly set the default values of LOWPC and HIGHPC from
6229 `DW_AT_ranges'. */
6230 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6231 &best_highpc, cu, pst);
6232 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6233 /* Store the contiguous range if it is not empty; it can be empty for
6234 CUs with no code. */
6235 addrmap_set_empty (objfile->psymtabs_addrmap,
6236 gdbarch_adjust_dwarf2_addr (gdbarch,
6237 best_lowpc + baseaddr),
6238 gdbarch_adjust_dwarf2_addr (gdbarch,
6239 best_highpc + baseaddr) - 1,
6240 pst);
6241
6242 /* Check if comp unit has_children.
6243 If so, read the rest of the partial symbols from this comp unit.
6244 If not, there's no more debug_info for this comp unit. */
6245 if (has_children)
6246 {
6247 struct partial_die_info *first_die;
6248 CORE_ADDR lowpc, highpc;
6249
6250 lowpc = ((CORE_ADDR) -1);
6251 highpc = ((CORE_ADDR) 0);
6252
6253 first_die = load_partial_dies (reader, info_ptr, 1);
6254
6255 scan_partial_symbols (first_die, &lowpc, &highpc,
6256 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6257
6258 /* If we didn't find a lowpc, set it to highpc to avoid
6259 complaints from `maint check'. */
6260 if (lowpc == ((CORE_ADDR) -1))
6261 lowpc = highpc;
6262
6263 /* If the compilation unit didn't have an explicit address range,
6264 then use the information extracted from its child dies. */
6265 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6266 {
6267 best_lowpc = lowpc;
6268 best_highpc = highpc;
6269 }
6270 }
6271 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6272 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6273
6274 end_psymtab_common (objfile, pst);
6275
6276 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6277 {
6278 int i;
6279 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6280 struct dwarf2_per_cu_data *iter;
6281
6282 /* Fill in 'dependencies' here; we fill in 'users' in a
6283 post-pass. */
6284 pst->number_of_dependencies = len;
6285 pst->dependencies =
6286 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6287 for (i = 0;
6288 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6289 i, iter);
6290 ++i)
6291 pst->dependencies[i] = iter->v.psymtab;
6292
6293 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6294 }
6295
6296 /* Get the list of files included in the current compilation unit,
6297 and build a psymtab for each of them. */
6298 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6299
6300 if (dwarf_read_debug)
6301 {
6302 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6303
6304 fprintf_unfiltered (gdb_stdlog,
6305 "Psymtab for %s unit @0x%x: %s - %s"
6306 ", %d global, %d static syms\n",
6307 per_cu->is_debug_types ? "type" : "comp",
6308 to_underlying (per_cu->sect_off),
6309 paddress (gdbarch, pst->textlow),
6310 paddress (gdbarch, pst->texthigh),
6311 pst->n_global_syms, pst->n_static_syms);
6312 }
6313 }
6314
6315 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6316 Process compilation unit THIS_CU for a psymtab. */
6317
6318 static void
6319 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6320 int want_partial_unit,
6321 enum language pretend_language)
6322 {
6323 /* If this compilation unit was already read in, free the
6324 cached copy in order to read it in again. This is
6325 necessary because we skipped some symbols when we first
6326 read in the compilation unit (see load_partial_dies).
6327 This problem could be avoided, but the benefit is unclear. */
6328 if (this_cu->cu != NULL)
6329 free_one_cached_comp_unit (this_cu);
6330
6331 if (this_cu->is_debug_types)
6332 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
6333 NULL);
6334 else
6335 {
6336 process_psymtab_comp_unit_data info;
6337 info.want_partial_unit = want_partial_unit;
6338 info.pretend_language = pretend_language;
6339 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6340 process_psymtab_comp_unit_reader, &info);
6341 }
6342
6343 /* Age out any secondary CUs. */
6344 age_cached_comp_units ();
6345 }
6346
6347 /* Reader function for build_type_psymtabs. */
6348
6349 static void
6350 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6351 const gdb_byte *info_ptr,
6352 struct die_info *type_unit_die,
6353 int has_children,
6354 void *data)
6355 {
6356 struct objfile *objfile = dwarf2_per_objfile->objfile;
6357 struct dwarf2_cu *cu = reader->cu;
6358 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6359 struct signatured_type *sig_type;
6360 struct type_unit_group *tu_group;
6361 struct attribute *attr;
6362 struct partial_die_info *first_die;
6363 CORE_ADDR lowpc, highpc;
6364 struct partial_symtab *pst;
6365
6366 gdb_assert (data == NULL);
6367 gdb_assert (per_cu->is_debug_types);
6368 sig_type = (struct signatured_type *) per_cu;
6369
6370 if (! has_children)
6371 return;
6372
6373 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6374 tu_group = get_type_unit_group (cu, attr);
6375
6376 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6377
6378 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6379 cu->list_in_scope = &file_symbols;
6380 pst = create_partial_symtab (per_cu, "");
6381 pst->anonymous = 1;
6382
6383 first_die = load_partial_dies (reader, info_ptr, 1);
6384
6385 lowpc = (CORE_ADDR) -1;
6386 highpc = (CORE_ADDR) 0;
6387 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6388
6389 end_psymtab_common (objfile, pst);
6390 }
6391
6392 /* Struct used to sort TUs by their abbreviation table offset. */
6393
6394 struct tu_abbrev_offset
6395 {
6396 struct signatured_type *sig_type;
6397 sect_offset abbrev_offset;
6398 };
6399
6400 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6401
6402 static int
6403 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6404 {
6405 const struct tu_abbrev_offset * const *a
6406 = (const struct tu_abbrev_offset * const*) ap;
6407 const struct tu_abbrev_offset * const *b
6408 = (const struct tu_abbrev_offset * const*) bp;
6409 sect_offset aoff = (*a)->abbrev_offset;
6410 sect_offset boff = (*b)->abbrev_offset;
6411
6412 return (aoff > boff) - (aoff < boff);
6413 }
6414
6415 /* Efficiently read all the type units.
6416 This does the bulk of the work for build_type_psymtabs.
6417
6418 The efficiency is because we sort TUs by the abbrev table they use and
6419 only read each abbrev table once. In one program there are 200K TUs
6420 sharing 8K abbrev tables.
6421
6422 The main purpose of this function is to support building the
6423 dwarf2_per_objfile->type_unit_groups table.
6424 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6425 can collapse the search space by grouping them by stmt_list.
6426 The savings can be significant, in the same program from above the 200K TUs
6427 share 8K stmt_list tables.
6428
6429 FUNC is expected to call get_type_unit_group, which will create the
6430 struct type_unit_group if necessary and add it to
6431 dwarf2_per_objfile->type_unit_groups. */
6432
6433 static void
6434 build_type_psymtabs_1 (void)
6435 {
6436 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6437 struct cleanup *cleanups;
6438 struct abbrev_table *abbrev_table;
6439 sect_offset abbrev_offset;
6440 struct tu_abbrev_offset *sorted_by_abbrev;
6441 int i;
6442
6443 /* It's up to the caller to not call us multiple times. */
6444 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6445
6446 if (dwarf2_per_objfile->n_type_units == 0)
6447 return;
6448
6449 /* TUs typically share abbrev tables, and there can be way more TUs than
6450 abbrev tables. Sort by abbrev table to reduce the number of times we
6451 read each abbrev table in.
6452 Alternatives are to punt or to maintain a cache of abbrev tables.
6453 This is simpler and efficient enough for now.
6454
6455 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6456 symtab to use). Typically TUs with the same abbrev offset have the same
6457 stmt_list value too so in practice this should work well.
6458
6459 The basic algorithm here is:
6460
6461 sort TUs by abbrev table
6462 for each TU with same abbrev table:
6463 read abbrev table if first user
6464 read TU top level DIE
6465 [IWBN if DWO skeletons had DW_AT_stmt_list]
6466 call FUNC */
6467
6468 if (dwarf_read_debug)
6469 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6470
6471 /* Sort in a separate table to maintain the order of all_type_units
6472 for .gdb_index: TU indices directly index all_type_units. */
6473 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6474 dwarf2_per_objfile->n_type_units);
6475 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6476 {
6477 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6478
6479 sorted_by_abbrev[i].sig_type = sig_type;
6480 sorted_by_abbrev[i].abbrev_offset =
6481 read_abbrev_offset (sig_type->per_cu.section,
6482 sig_type->per_cu.sect_off);
6483 }
6484 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6485 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6486 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6487
6488 abbrev_offset = (sect_offset) ~(unsigned) 0;
6489 abbrev_table = NULL;
6490 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6491
6492 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6493 {
6494 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6495
6496 /* Switch to the next abbrev table if necessary. */
6497 if (abbrev_table == NULL
6498 || tu->abbrev_offset != abbrev_offset)
6499 {
6500 if (abbrev_table != NULL)
6501 {
6502 abbrev_table_free (abbrev_table);
6503 /* Reset to NULL in case abbrev_table_read_table throws
6504 an error: abbrev_table_free_cleanup will get called. */
6505 abbrev_table = NULL;
6506 }
6507 abbrev_offset = tu->abbrev_offset;
6508 abbrev_table =
6509 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6510 abbrev_offset);
6511 ++tu_stats->nr_uniq_abbrev_tables;
6512 }
6513
6514 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6515 build_type_psymtabs_reader, NULL);
6516 }
6517
6518 do_cleanups (cleanups);
6519 }
6520
6521 /* Print collected type unit statistics. */
6522
6523 static void
6524 print_tu_stats (void)
6525 {
6526 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6527
6528 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6529 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6530 dwarf2_per_objfile->n_type_units);
6531 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6532 tu_stats->nr_uniq_abbrev_tables);
6533 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6534 tu_stats->nr_symtabs);
6535 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6536 tu_stats->nr_symtab_sharers);
6537 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6538 tu_stats->nr_stmt_less_type_units);
6539 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6540 tu_stats->nr_all_type_units_reallocs);
6541 }
6542
6543 /* Traversal function for build_type_psymtabs. */
6544
6545 static int
6546 build_type_psymtab_dependencies (void **slot, void *info)
6547 {
6548 struct objfile *objfile = dwarf2_per_objfile->objfile;
6549 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6550 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6551 struct partial_symtab *pst = per_cu->v.psymtab;
6552 int len = VEC_length (sig_type_ptr, tu_group->tus);
6553 struct signatured_type *iter;
6554 int i;
6555
6556 gdb_assert (len > 0);
6557 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6558
6559 pst->number_of_dependencies = len;
6560 pst->dependencies =
6561 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6562 for (i = 0;
6563 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6564 ++i)
6565 {
6566 gdb_assert (iter->per_cu.is_debug_types);
6567 pst->dependencies[i] = iter->per_cu.v.psymtab;
6568 iter->type_unit_group = tu_group;
6569 }
6570
6571 VEC_free (sig_type_ptr, tu_group->tus);
6572
6573 return 1;
6574 }
6575
6576 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6577 Build partial symbol tables for the .debug_types comp-units. */
6578
6579 static void
6580 build_type_psymtabs (struct objfile *objfile)
6581 {
6582 if (! create_all_type_units (objfile))
6583 return;
6584
6585 build_type_psymtabs_1 ();
6586 }
6587
6588 /* Traversal function for process_skeletonless_type_unit.
6589 Read a TU in a DWO file and build partial symbols for it. */
6590
6591 static int
6592 process_skeletonless_type_unit (void **slot, void *info)
6593 {
6594 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6595 struct objfile *objfile = (struct objfile *) info;
6596 struct signatured_type find_entry, *entry;
6597
6598 /* If this TU doesn't exist in the global table, add it and read it in. */
6599
6600 if (dwarf2_per_objfile->signatured_types == NULL)
6601 {
6602 dwarf2_per_objfile->signatured_types
6603 = allocate_signatured_type_table (objfile);
6604 }
6605
6606 find_entry.signature = dwo_unit->signature;
6607 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6608 INSERT);
6609 /* If we've already seen this type there's nothing to do. What's happening
6610 is we're doing our own version of comdat-folding here. */
6611 if (*slot != NULL)
6612 return 1;
6613
6614 /* This does the job that create_all_type_units would have done for
6615 this TU. */
6616 entry = add_type_unit (dwo_unit->signature, slot);
6617 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6618 *slot = entry;
6619
6620 /* This does the job that build_type_psymtabs_1 would have done. */
6621 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6622 build_type_psymtabs_reader, NULL);
6623
6624 return 1;
6625 }
6626
6627 /* Traversal function for process_skeletonless_type_units. */
6628
6629 static int
6630 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6631 {
6632 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6633
6634 if (dwo_file->tus != NULL)
6635 {
6636 htab_traverse_noresize (dwo_file->tus,
6637 process_skeletonless_type_unit, info);
6638 }
6639
6640 return 1;
6641 }
6642
6643 /* Scan all TUs of DWO files, verifying we've processed them.
6644 This is needed in case a TU was emitted without its skeleton.
6645 Note: This can't be done until we know what all the DWO files are. */
6646
6647 static void
6648 process_skeletonless_type_units (struct objfile *objfile)
6649 {
6650 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6651 if (get_dwp_file () == NULL
6652 && dwarf2_per_objfile->dwo_files != NULL)
6653 {
6654 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6655 process_dwo_file_for_skeletonless_type_units,
6656 objfile);
6657 }
6658 }
6659
6660 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6661
6662 static void
6663 psymtabs_addrmap_cleanup (void *o)
6664 {
6665 struct objfile *objfile = (struct objfile *) o;
6666
6667 objfile->psymtabs_addrmap = NULL;
6668 }
6669
6670 /* Compute the 'user' field for each psymtab in OBJFILE. */
6671
6672 static void
6673 set_partial_user (struct objfile *objfile)
6674 {
6675 int i;
6676
6677 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6678 {
6679 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6680 struct partial_symtab *pst = per_cu->v.psymtab;
6681 int j;
6682
6683 if (pst == NULL)
6684 continue;
6685
6686 for (j = 0; j < pst->number_of_dependencies; ++j)
6687 {
6688 /* Set the 'user' field only if it is not already set. */
6689 if (pst->dependencies[j]->user == NULL)
6690 pst->dependencies[j]->user = pst;
6691 }
6692 }
6693 }
6694
6695 /* Build the partial symbol table by doing a quick pass through the
6696 .debug_info and .debug_abbrev sections. */
6697
6698 static void
6699 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6700 {
6701 struct cleanup *back_to, *addrmap_cleanup;
6702 int i;
6703
6704 if (dwarf_read_debug)
6705 {
6706 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6707 objfile_name (objfile));
6708 }
6709
6710 dwarf2_per_objfile->reading_partial_symbols = 1;
6711
6712 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6713
6714 /* Any cached compilation units will be linked by the per-objfile
6715 read_in_chain. Make sure to free them when we're done. */
6716 back_to = make_cleanup (free_cached_comp_units, NULL);
6717
6718 build_type_psymtabs (objfile);
6719
6720 create_all_comp_units (objfile);
6721
6722 /* Create a temporary address map on a temporary obstack. We later
6723 copy this to the final obstack. */
6724 auto_obstack temp_obstack;
6725 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6726 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6727
6728 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6729 {
6730 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6731
6732 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6733 }
6734
6735 /* This has to wait until we read the CUs, we need the list of DWOs. */
6736 process_skeletonless_type_units (objfile);
6737
6738 /* Now that all TUs have been processed we can fill in the dependencies. */
6739 if (dwarf2_per_objfile->type_unit_groups != NULL)
6740 {
6741 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6742 build_type_psymtab_dependencies, NULL);
6743 }
6744
6745 if (dwarf_read_debug)
6746 print_tu_stats ();
6747
6748 set_partial_user (objfile);
6749
6750 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6751 &objfile->objfile_obstack);
6752 discard_cleanups (addrmap_cleanup);
6753
6754 do_cleanups (back_to);
6755
6756 if (dwarf_read_debug)
6757 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6758 objfile_name (objfile));
6759 }
6760
6761 /* die_reader_func for load_partial_comp_unit. */
6762
6763 static void
6764 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6765 const gdb_byte *info_ptr,
6766 struct die_info *comp_unit_die,
6767 int has_children,
6768 void *data)
6769 {
6770 struct dwarf2_cu *cu = reader->cu;
6771
6772 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6773
6774 /* Check if comp unit has_children.
6775 If so, read the rest of the partial symbols from this comp unit.
6776 If not, there's no more debug_info for this comp unit. */
6777 if (has_children)
6778 load_partial_dies (reader, info_ptr, 0);
6779 }
6780
6781 /* Load the partial DIEs for a secondary CU into memory.
6782 This is also used when rereading a primary CU with load_all_dies. */
6783
6784 static void
6785 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6786 {
6787 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6788 load_partial_comp_unit_reader, NULL);
6789 }
6790
6791 static void
6792 read_comp_units_from_section (struct objfile *objfile,
6793 struct dwarf2_section_info *section,
6794 struct dwarf2_section_info *abbrev_section,
6795 unsigned int is_dwz,
6796 int *n_allocated,
6797 int *n_comp_units,
6798 struct dwarf2_per_cu_data ***all_comp_units)
6799 {
6800 const gdb_byte *info_ptr;
6801 bfd *abfd = get_section_bfd_owner (section);
6802
6803 if (dwarf_read_debug)
6804 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6805 get_section_name (section),
6806 get_section_file_name (section));
6807
6808 dwarf2_read_section (objfile, section);
6809
6810 info_ptr = section->buffer;
6811
6812 while (info_ptr < section->buffer + section->size)
6813 {
6814 struct dwarf2_per_cu_data *this_cu;
6815
6816 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
6817
6818 comp_unit_head cu_header;
6819 read_and_check_comp_unit_head (&cu_header, section, abbrev_section,
6820 info_ptr, rcuh_kind::COMPILE);
6821
6822 /* Save the compilation unit for later lookup. */
6823 if (cu_header.unit_type != DW_UT_type)
6824 {
6825 this_cu = XOBNEW (&objfile->objfile_obstack,
6826 struct dwarf2_per_cu_data);
6827 memset (this_cu, 0, sizeof (*this_cu));
6828 }
6829 else
6830 {
6831 auto sig_type = XOBNEW (&objfile->objfile_obstack,
6832 struct signatured_type);
6833 memset (sig_type, 0, sizeof (*sig_type));
6834 sig_type->signature = cu_header.signature;
6835 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
6836 this_cu = &sig_type->per_cu;
6837 }
6838 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
6839 this_cu->sect_off = sect_off;
6840 this_cu->length = cu_header.length + cu_header.initial_length_size;
6841 this_cu->is_dwz = is_dwz;
6842 this_cu->objfile = objfile;
6843 this_cu->section = section;
6844
6845 if (*n_comp_units == *n_allocated)
6846 {
6847 *n_allocated *= 2;
6848 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6849 *all_comp_units, *n_allocated);
6850 }
6851 (*all_comp_units)[*n_comp_units] = this_cu;
6852 ++*n_comp_units;
6853
6854 info_ptr = info_ptr + this_cu->length;
6855 }
6856 }
6857
6858 /* Create a list of all compilation units in OBJFILE.
6859 This is only done for -readnow and building partial symtabs. */
6860
6861 static void
6862 create_all_comp_units (struct objfile *objfile)
6863 {
6864 int n_allocated;
6865 int n_comp_units;
6866 struct dwarf2_per_cu_data **all_comp_units;
6867 struct dwz_file *dwz;
6868
6869 n_comp_units = 0;
6870 n_allocated = 10;
6871 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6872
6873 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info,
6874 &dwarf2_per_objfile->abbrev, 0,
6875 &n_allocated, &n_comp_units, &all_comp_units);
6876
6877 dwz = dwarf2_get_dwz_file ();
6878 if (dwz != NULL)
6879 read_comp_units_from_section (objfile, &dwz->info, &dwz->abbrev, 1,
6880 &n_allocated, &n_comp_units,
6881 &all_comp_units);
6882
6883 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6884 struct dwarf2_per_cu_data *,
6885 n_comp_units);
6886 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6887 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6888 xfree (all_comp_units);
6889 dwarf2_per_objfile->n_comp_units = n_comp_units;
6890 }
6891
6892 /* Process all loaded DIEs for compilation unit CU, starting at
6893 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6894 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6895 DW_AT_ranges). See the comments of add_partial_subprogram on how
6896 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6897
6898 static void
6899 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6900 CORE_ADDR *highpc, int set_addrmap,
6901 struct dwarf2_cu *cu)
6902 {
6903 struct partial_die_info *pdi;
6904
6905 /* Now, march along the PDI's, descending into ones which have
6906 interesting children but skipping the children of the other ones,
6907 until we reach the end of the compilation unit. */
6908
6909 pdi = first_die;
6910
6911 while (pdi != NULL)
6912 {
6913 fixup_partial_die (pdi, cu);
6914
6915 /* Anonymous namespaces or modules have no name but have interesting
6916 children, so we need to look at them. Ditto for anonymous
6917 enums. */
6918
6919 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6920 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6921 || pdi->tag == DW_TAG_imported_unit)
6922 {
6923 switch (pdi->tag)
6924 {
6925 case DW_TAG_subprogram:
6926 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6927 break;
6928 case DW_TAG_constant:
6929 case DW_TAG_variable:
6930 case DW_TAG_typedef:
6931 case DW_TAG_union_type:
6932 if (!pdi->is_declaration)
6933 {
6934 add_partial_symbol (pdi, cu);
6935 }
6936 break;
6937 case DW_TAG_class_type:
6938 case DW_TAG_interface_type:
6939 case DW_TAG_structure_type:
6940 if (!pdi->is_declaration)
6941 {
6942 add_partial_symbol (pdi, cu);
6943 }
6944 if (cu->language == language_rust && pdi->has_children)
6945 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6946 set_addrmap, cu);
6947 break;
6948 case DW_TAG_enumeration_type:
6949 if (!pdi->is_declaration)
6950 add_partial_enumeration (pdi, cu);
6951 break;
6952 case DW_TAG_base_type:
6953 case DW_TAG_subrange_type:
6954 /* File scope base type definitions are added to the partial
6955 symbol table. */
6956 add_partial_symbol (pdi, cu);
6957 break;
6958 case DW_TAG_namespace:
6959 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6960 break;
6961 case DW_TAG_module:
6962 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6963 break;
6964 case DW_TAG_imported_unit:
6965 {
6966 struct dwarf2_per_cu_data *per_cu;
6967
6968 /* For now we don't handle imported units in type units. */
6969 if (cu->per_cu->is_debug_types)
6970 {
6971 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6972 " supported in type units [in module %s]"),
6973 objfile_name (cu->objfile));
6974 }
6975
6976 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
6977 pdi->is_dwz,
6978 cu->objfile);
6979
6980 /* Go read the partial unit, if needed. */
6981 if (per_cu->v.psymtab == NULL)
6982 process_psymtab_comp_unit (per_cu, 1, cu->language);
6983
6984 VEC_safe_push (dwarf2_per_cu_ptr,
6985 cu->per_cu->imported_symtabs, per_cu);
6986 }
6987 break;
6988 case DW_TAG_imported_declaration:
6989 add_partial_symbol (pdi, cu);
6990 break;
6991 default:
6992 break;
6993 }
6994 }
6995
6996 /* If the die has a sibling, skip to the sibling. */
6997
6998 pdi = pdi->die_sibling;
6999 }
7000 }
7001
7002 /* Functions used to compute the fully scoped name of a partial DIE.
7003
7004 Normally, this is simple. For C++, the parent DIE's fully scoped
7005 name is concatenated with "::" and the partial DIE's name.
7006 Enumerators are an exception; they use the scope of their parent
7007 enumeration type, i.e. the name of the enumeration type is not
7008 prepended to the enumerator.
7009
7010 There are two complexities. One is DW_AT_specification; in this
7011 case "parent" means the parent of the target of the specification,
7012 instead of the direct parent of the DIE. The other is compilers
7013 which do not emit DW_TAG_namespace; in this case we try to guess
7014 the fully qualified name of structure types from their members'
7015 linkage names. This must be done using the DIE's children rather
7016 than the children of any DW_AT_specification target. We only need
7017 to do this for structures at the top level, i.e. if the target of
7018 any DW_AT_specification (if any; otherwise the DIE itself) does not
7019 have a parent. */
7020
7021 /* Compute the scope prefix associated with PDI's parent, in
7022 compilation unit CU. The result will be allocated on CU's
7023 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7024 field. NULL is returned if no prefix is necessary. */
7025 static const char *
7026 partial_die_parent_scope (struct partial_die_info *pdi,
7027 struct dwarf2_cu *cu)
7028 {
7029 const char *grandparent_scope;
7030 struct partial_die_info *parent, *real_pdi;
7031
7032 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7033 then this means the parent of the specification DIE. */
7034
7035 real_pdi = pdi;
7036 while (real_pdi->has_specification)
7037 real_pdi = find_partial_die (real_pdi->spec_offset,
7038 real_pdi->spec_is_dwz, cu);
7039
7040 parent = real_pdi->die_parent;
7041 if (parent == NULL)
7042 return NULL;
7043
7044 if (parent->scope_set)
7045 return parent->scope;
7046
7047 fixup_partial_die (parent, cu);
7048
7049 grandparent_scope = partial_die_parent_scope (parent, cu);
7050
7051 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7052 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7053 Work around this problem here. */
7054 if (cu->language == language_cplus
7055 && parent->tag == DW_TAG_namespace
7056 && strcmp (parent->name, "::") == 0
7057 && grandparent_scope == NULL)
7058 {
7059 parent->scope = NULL;
7060 parent->scope_set = 1;
7061 return NULL;
7062 }
7063
7064 if (pdi->tag == DW_TAG_enumerator)
7065 /* Enumerators should not get the name of the enumeration as a prefix. */
7066 parent->scope = grandparent_scope;
7067 else if (parent->tag == DW_TAG_namespace
7068 || parent->tag == DW_TAG_module
7069 || parent->tag == DW_TAG_structure_type
7070 || parent->tag == DW_TAG_class_type
7071 || parent->tag == DW_TAG_interface_type
7072 || parent->tag == DW_TAG_union_type
7073 || parent->tag == DW_TAG_enumeration_type)
7074 {
7075 if (grandparent_scope == NULL)
7076 parent->scope = parent->name;
7077 else
7078 parent->scope = typename_concat (&cu->comp_unit_obstack,
7079 grandparent_scope,
7080 parent->name, 0, cu);
7081 }
7082 else
7083 {
7084 /* FIXME drow/2004-04-01: What should we be doing with
7085 function-local names? For partial symbols, we should probably be
7086 ignoring them. */
7087 complaint (&symfile_complaints,
7088 _("unhandled containing DIE tag %d for DIE at %d"),
7089 parent->tag, to_underlying (pdi->sect_off));
7090 parent->scope = grandparent_scope;
7091 }
7092
7093 parent->scope_set = 1;
7094 return parent->scope;
7095 }
7096
7097 /* Return the fully scoped name associated with PDI, from compilation unit
7098 CU. The result will be allocated with malloc. */
7099
7100 static char *
7101 partial_die_full_name (struct partial_die_info *pdi,
7102 struct dwarf2_cu *cu)
7103 {
7104 const char *parent_scope;
7105
7106 /* If this is a template instantiation, we can not work out the
7107 template arguments from partial DIEs. So, unfortunately, we have
7108 to go through the full DIEs. At least any work we do building
7109 types here will be reused if full symbols are loaded later. */
7110 if (pdi->has_template_arguments)
7111 {
7112 fixup_partial_die (pdi, cu);
7113
7114 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7115 {
7116 struct die_info *die;
7117 struct attribute attr;
7118 struct dwarf2_cu *ref_cu = cu;
7119
7120 /* DW_FORM_ref_addr is using section offset. */
7121 attr.name = (enum dwarf_attribute) 0;
7122 attr.form = DW_FORM_ref_addr;
7123 attr.u.unsnd = to_underlying (pdi->sect_off);
7124 die = follow_die_ref (NULL, &attr, &ref_cu);
7125
7126 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7127 }
7128 }
7129
7130 parent_scope = partial_die_parent_scope (pdi, cu);
7131 if (parent_scope == NULL)
7132 return NULL;
7133 else
7134 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
7135 }
7136
7137 static void
7138 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7139 {
7140 struct objfile *objfile = cu->objfile;
7141 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7142 CORE_ADDR addr = 0;
7143 const char *actual_name = NULL;
7144 CORE_ADDR baseaddr;
7145 char *built_actual_name;
7146
7147 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7148
7149 built_actual_name = partial_die_full_name (pdi, cu);
7150 if (built_actual_name != NULL)
7151 actual_name = built_actual_name;
7152
7153 if (actual_name == NULL)
7154 actual_name = pdi->name;
7155
7156 switch (pdi->tag)
7157 {
7158 case DW_TAG_subprogram:
7159 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
7160 if (pdi->is_external || cu->language == language_ada)
7161 {
7162 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7163 of the global scope. But in Ada, we want to be able to access
7164 nested procedures globally. So all Ada subprograms are stored
7165 in the global scope. */
7166 add_psymbol_to_list (actual_name, strlen (actual_name),
7167 built_actual_name != NULL,
7168 VAR_DOMAIN, LOC_BLOCK,
7169 &objfile->global_psymbols,
7170 addr, cu->language, objfile);
7171 }
7172 else
7173 {
7174 add_psymbol_to_list (actual_name, strlen (actual_name),
7175 built_actual_name != NULL,
7176 VAR_DOMAIN, LOC_BLOCK,
7177 &objfile->static_psymbols,
7178 addr, cu->language, objfile);
7179 }
7180
7181 if (pdi->main_subprogram && actual_name != NULL)
7182 set_objfile_main_name (objfile, actual_name, cu->language);
7183 break;
7184 case DW_TAG_constant:
7185 {
7186 struct psymbol_allocation_list *list;
7187
7188 if (pdi->is_external)
7189 list = &objfile->global_psymbols;
7190 else
7191 list = &objfile->static_psymbols;
7192 add_psymbol_to_list (actual_name, strlen (actual_name),
7193 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
7194 list, 0, cu->language, objfile);
7195 }
7196 break;
7197 case DW_TAG_variable:
7198 if (pdi->d.locdesc)
7199 addr = decode_locdesc (pdi->d.locdesc, cu);
7200
7201 if (pdi->d.locdesc
7202 && addr == 0
7203 && !dwarf2_per_objfile->has_section_at_zero)
7204 {
7205 /* A global or static variable may also have been stripped
7206 out by the linker if unused, in which case its address
7207 will be nullified; do not add such variables into partial
7208 symbol table then. */
7209 }
7210 else if (pdi->is_external)
7211 {
7212 /* Global Variable.
7213 Don't enter into the minimal symbol tables as there is
7214 a minimal symbol table entry from the ELF symbols already.
7215 Enter into partial symbol table if it has a location
7216 descriptor or a type.
7217 If the location descriptor is missing, new_symbol will create
7218 a LOC_UNRESOLVED symbol, the address of the variable will then
7219 be determined from the minimal symbol table whenever the variable
7220 is referenced.
7221 The address for the partial symbol table entry is not
7222 used by GDB, but it comes in handy for debugging partial symbol
7223 table building. */
7224
7225 if (pdi->d.locdesc || pdi->has_type)
7226 add_psymbol_to_list (actual_name, strlen (actual_name),
7227 built_actual_name != NULL,
7228 VAR_DOMAIN, LOC_STATIC,
7229 &objfile->global_psymbols,
7230 addr + baseaddr,
7231 cu->language, objfile);
7232 }
7233 else
7234 {
7235 int has_loc = pdi->d.locdesc != NULL;
7236
7237 /* Static Variable. Skip symbols whose value we cannot know (those
7238 without location descriptors or constant values). */
7239 if (!has_loc && !pdi->has_const_value)
7240 {
7241 xfree (built_actual_name);
7242 return;
7243 }
7244
7245 add_psymbol_to_list (actual_name, strlen (actual_name),
7246 built_actual_name != NULL,
7247 VAR_DOMAIN, LOC_STATIC,
7248 &objfile->static_psymbols,
7249 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7250 cu->language, objfile);
7251 }
7252 break;
7253 case DW_TAG_typedef:
7254 case DW_TAG_base_type:
7255 case DW_TAG_subrange_type:
7256 add_psymbol_to_list (actual_name, strlen (actual_name),
7257 built_actual_name != NULL,
7258 VAR_DOMAIN, LOC_TYPEDEF,
7259 &objfile->static_psymbols,
7260 0, cu->language, objfile);
7261 break;
7262 case DW_TAG_imported_declaration:
7263 case DW_TAG_namespace:
7264 add_psymbol_to_list (actual_name, strlen (actual_name),
7265 built_actual_name != NULL,
7266 VAR_DOMAIN, LOC_TYPEDEF,
7267 &objfile->global_psymbols,
7268 0, cu->language, objfile);
7269 break;
7270 case DW_TAG_module:
7271 add_psymbol_to_list (actual_name, strlen (actual_name),
7272 built_actual_name != NULL,
7273 MODULE_DOMAIN, LOC_TYPEDEF,
7274 &objfile->global_psymbols,
7275 0, cu->language, objfile);
7276 break;
7277 case DW_TAG_class_type:
7278 case DW_TAG_interface_type:
7279 case DW_TAG_structure_type:
7280 case DW_TAG_union_type:
7281 case DW_TAG_enumeration_type:
7282 /* Skip external references. The DWARF standard says in the section
7283 about "Structure, Union, and Class Type Entries": "An incomplete
7284 structure, union or class type is represented by a structure,
7285 union or class entry that does not have a byte size attribute
7286 and that has a DW_AT_declaration attribute." */
7287 if (!pdi->has_byte_size && pdi->is_declaration)
7288 {
7289 xfree (built_actual_name);
7290 return;
7291 }
7292
7293 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7294 static vs. global. */
7295 add_psymbol_to_list (actual_name, strlen (actual_name),
7296 built_actual_name != NULL,
7297 STRUCT_DOMAIN, LOC_TYPEDEF,
7298 cu->language == language_cplus
7299 ? &objfile->global_psymbols
7300 : &objfile->static_psymbols,
7301 0, cu->language, objfile);
7302
7303 break;
7304 case DW_TAG_enumerator:
7305 add_psymbol_to_list (actual_name, strlen (actual_name),
7306 built_actual_name != NULL,
7307 VAR_DOMAIN, LOC_CONST,
7308 cu->language == language_cplus
7309 ? &objfile->global_psymbols
7310 : &objfile->static_psymbols,
7311 0, cu->language, objfile);
7312 break;
7313 default:
7314 break;
7315 }
7316
7317 xfree (built_actual_name);
7318 }
7319
7320 /* Read a partial die corresponding to a namespace; also, add a symbol
7321 corresponding to that namespace to the symbol table. NAMESPACE is
7322 the name of the enclosing namespace. */
7323
7324 static void
7325 add_partial_namespace (struct partial_die_info *pdi,
7326 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7327 int set_addrmap, struct dwarf2_cu *cu)
7328 {
7329 /* Add a symbol for the namespace. */
7330
7331 add_partial_symbol (pdi, cu);
7332
7333 /* Now scan partial symbols in that namespace. */
7334
7335 if (pdi->has_children)
7336 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7337 }
7338
7339 /* Read a partial die corresponding to a Fortran module. */
7340
7341 static void
7342 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7343 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7344 {
7345 /* Add a symbol for the namespace. */
7346
7347 add_partial_symbol (pdi, cu);
7348
7349 /* Now scan partial symbols in that module. */
7350
7351 if (pdi->has_children)
7352 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7353 }
7354
7355 /* Read a partial die corresponding to a subprogram and create a partial
7356 symbol for that subprogram. When the CU language allows it, this
7357 routine also defines a partial symbol for each nested subprogram
7358 that this subprogram contains. If SET_ADDRMAP is true, record the
7359 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7360 and highest PC values found in PDI.
7361
7362 PDI may also be a lexical block, in which case we simply search
7363 recursively for subprograms defined inside that lexical block.
7364 Again, this is only performed when the CU language allows this
7365 type of definitions. */
7366
7367 static void
7368 add_partial_subprogram (struct partial_die_info *pdi,
7369 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7370 int set_addrmap, struct dwarf2_cu *cu)
7371 {
7372 if (pdi->tag == DW_TAG_subprogram)
7373 {
7374 if (pdi->has_pc_info)
7375 {
7376 if (pdi->lowpc < *lowpc)
7377 *lowpc = pdi->lowpc;
7378 if (pdi->highpc > *highpc)
7379 *highpc = pdi->highpc;
7380 if (set_addrmap)
7381 {
7382 struct objfile *objfile = cu->objfile;
7383 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7384 CORE_ADDR baseaddr;
7385 CORE_ADDR highpc;
7386 CORE_ADDR lowpc;
7387
7388 baseaddr = ANOFFSET (objfile->section_offsets,
7389 SECT_OFF_TEXT (objfile));
7390 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7391 pdi->lowpc + baseaddr);
7392 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7393 pdi->highpc + baseaddr);
7394 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7395 cu->per_cu->v.psymtab);
7396 }
7397 }
7398
7399 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7400 {
7401 if (!pdi->is_declaration)
7402 /* Ignore subprogram DIEs that do not have a name, they are
7403 illegal. Do not emit a complaint at this point, we will
7404 do so when we convert this psymtab into a symtab. */
7405 if (pdi->name)
7406 add_partial_symbol (pdi, cu);
7407 }
7408 }
7409
7410 if (! pdi->has_children)
7411 return;
7412
7413 if (cu->language == language_ada)
7414 {
7415 pdi = pdi->die_child;
7416 while (pdi != NULL)
7417 {
7418 fixup_partial_die (pdi, cu);
7419 if (pdi->tag == DW_TAG_subprogram
7420 || pdi->tag == DW_TAG_lexical_block)
7421 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7422 pdi = pdi->die_sibling;
7423 }
7424 }
7425 }
7426
7427 /* Read a partial die corresponding to an enumeration type. */
7428
7429 static void
7430 add_partial_enumeration (struct partial_die_info *enum_pdi,
7431 struct dwarf2_cu *cu)
7432 {
7433 struct partial_die_info *pdi;
7434
7435 if (enum_pdi->name != NULL)
7436 add_partial_symbol (enum_pdi, cu);
7437
7438 pdi = enum_pdi->die_child;
7439 while (pdi)
7440 {
7441 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7442 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7443 else
7444 add_partial_symbol (pdi, cu);
7445 pdi = pdi->die_sibling;
7446 }
7447 }
7448
7449 /* Return the initial uleb128 in the die at INFO_PTR. */
7450
7451 static unsigned int
7452 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7453 {
7454 unsigned int bytes_read;
7455
7456 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7457 }
7458
7459 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7460 Return the corresponding abbrev, or NULL if the number is zero (indicating
7461 an empty DIE). In either case *BYTES_READ will be set to the length of
7462 the initial number. */
7463
7464 static struct abbrev_info *
7465 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7466 struct dwarf2_cu *cu)
7467 {
7468 bfd *abfd = cu->objfile->obfd;
7469 unsigned int abbrev_number;
7470 struct abbrev_info *abbrev;
7471
7472 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7473
7474 if (abbrev_number == 0)
7475 return NULL;
7476
7477 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7478 if (!abbrev)
7479 {
7480 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7481 " at offset 0x%x [in module %s]"),
7482 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7483 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
7484 }
7485
7486 return abbrev;
7487 }
7488
7489 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7490 Returns a pointer to the end of a series of DIEs, terminated by an empty
7491 DIE. Any children of the skipped DIEs will also be skipped. */
7492
7493 static const gdb_byte *
7494 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7495 {
7496 struct dwarf2_cu *cu = reader->cu;
7497 struct abbrev_info *abbrev;
7498 unsigned int bytes_read;
7499
7500 while (1)
7501 {
7502 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7503 if (abbrev == NULL)
7504 return info_ptr + bytes_read;
7505 else
7506 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7507 }
7508 }
7509
7510 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7511 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7512 abbrev corresponding to that skipped uleb128 should be passed in
7513 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7514 children. */
7515
7516 static const gdb_byte *
7517 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7518 struct abbrev_info *abbrev)
7519 {
7520 unsigned int bytes_read;
7521 struct attribute attr;
7522 bfd *abfd = reader->abfd;
7523 struct dwarf2_cu *cu = reader->cu;
7524 const gdb_byte *buffer = reader->buffer;
7525 const gdb_byte *buffer_end = reader->buffer_end;
7526 unsigned int form, i;
7527
7528 for (i = 0; i < abbrev->num_attrs; i++)
7529 {
7530 /* The only abbrev we care about is DW_AT_sibling. */
7531 if (abbrev->attrs[i].name == DW_AT_sibling)
7532 {
7533 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7534 if (attr.form == DW_FORM_ref_addr)
7535 complaint (&symfile_complaints,
7536 _("ignoring absolute DW_AT_sibling"));
7537 else
7538 {
7539 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7540 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
7541
7542 if (sibling_ptr < info_ptr)
7543 complaint (&symfile_complaints,
7544 _("DW_AT_sibling points backwards"));
7545 else if (sibling_ptr > reader->buffer_end)
7546 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7547 else
7548 return sibling_ptr;
7549 }
7550 }
7551
7552 /* If it isn't DW_AT_sibling, skip this attribute. */
7553 form = abbrev->attrs[i].form;
7554 skip_attribute:
7555 switch (form)
7556 {
7557 case DW_FORM_ref_addr:
7558 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7559 and later it is offset sized. */
7560 if (cu->header.version == 2)
7561 info_ptr += cu->header.addr_size;
7562 else
7563 info_ptr += cu->header.offset_size;
7564 break;
7565 case DW_FORM_GNU_ref_alt:
7566 info_ptr += cu->header.offset_size;
7567 break;
7568 case DW_FORM_addr:
7569 info_ptr += cu->header.addr_size;
7570 break;
7571 case DW_FORM_data1:
7572 case DW_FORM_ref1:
7573 case DW_FORM_flag:
7574 info_ptr += 1;
7575 break;
7576 case DW_FORM_flag_present:
7577 case DW_FORM_implicit_const:
7578 break;
7579 case DW_FORM_data2:
7580 case DW_FORM_ref2:
7581 info_ptr += 2;
7582 break;
7583 case DW_FORM_data4:
7584 case DW_FORM_ref4:
7585 info_ptr += 4;
7586 break;
7587 case DW_FORM_data8:
7588 case DW_FORM_ref8:
7589 case DW_FORM_ref_sig8:
7590 info_ptr += 8;
7591 break;
7592 case DW_FORM_data16:
7593 info_ptr += 16;
7594 break;
7595 case DW_FORM_string:
7596 read_direct_string (abfd, info_ptr, &bytes_read);
7597 info_ptr += bytes_read;
7598 break;
7599 case DW_FORM_sec_offset:
7600 case DW_FORM_strp:
7601 case DW_FORM_GNU_strp_alt:
7602 info_ptr += cu->header.offset_size;
7603 break;
7604 case DW_FORM_exprloc:
7605 case DW_FORM_block:
7606 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7607 info_ptr += bytes_read;
7608 break;
7609 case DW_FORM_block1:
7610 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7611 break;
7612 case DW_FORM_block2:
7613 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7614 break;
7615 case DW_FORM_block4:
7616 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7617 break;
7618 case DW_FORM_sdata:
7619 case DW_FORM_udata:
7620 case DW_FORM_ref_udata:
7621 case DW_FORM_GNU_addr_index:
7622 case DW_FORM_GNU_str_index:
7623 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7624 break;
7625 case DW_FORM_indirect:
7626 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7627 info_ptr += bytes_read;
7628 /* We need to continue parsing from here, so just go back to
7629 the top. */
7630 goto skip_attribute;
7631
7632 default:
7633 error (_("Dwarf Error: Cannot handle %s "
7634 "in DWARF reader [in module %s]"),
7635 dwarf_form_name (form),
7636 bfd_get_filename (abfd));
7637 }
7638 }
7639
7640 if (abbrev->has_children)
7641 return skip_children (reader, info_ptr);
7642 else
7643 return info_ptr;
7644 }
7645
7646 /* Locate ORIG_PDI's sibling.
7647 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7648
7649 static const gdb_byte *
7650 locate_pdi_sibling (const struct die_reader_specs *reader,
7651 struct partial_die_info *orig_pdi,
7652 const gdb_byte *info_ptr)
7653 {
7654 /* Do we know the sibling already? */
7655
7656 if (orig_pdi->sibling)
7657 return orig_pdi->sibling;
7658
7659 /* Are there any children to deal with? */
7660
7661 if (!orig_pdi->has_children)
7662 return info_ptr;
7663
7664 /* Skip the children the long way. */
7665
7666 return skip_children (reader, info_ptr);
7667 }
7668
7669 /* Expand this partial symbol table into a full symbol table. SELF is
7670 not NULL. */
7671
7672 static void
7673 dwarf2_read_symtab (struct partial_symtab *self,
7674 struct objfile *objfile)
7675 {
7676 if (self->readin)
7677 {
7678 warning (_("bug: psymtab for %s is already read in."),
7679 self->filename);
7680 }
7681 else
7682 {
7683 if (info_verbose)
7684 {
7685 printf_filtered (_("Reading in symbols for %s..."),
7686 self->filename);
7687 gdb_flush (gdb_stdout);
7688 }
7689
7690 /* Restore our global data. */
7691 dwarf2_per_objfile
7692 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7693 dwarf2_objfile_data_key);
7694
7695 /* If this psymtab is constructed from a debug-only objfile, the
7696 has_section_at_zero flag will not necessarily be correct. We
7697 can get the correct value for this flag by looking at the data
7698 associated with the (presumably stripped) associated objfile. */
7699 if (objfile->separate_debug_objfile_backlink)
7700 {
7701 struct dwarf2_per_objfile *dpo_backlink
7702 = ((struct dwarf2_per_objfile *)
7703 objfile_data (objfile->separate_debug_objfile_backlink,
7704 dwarf2_objfile_data_key));
7705
7706 dwarf2_per_objfile->has_section_at_zero
7707 = dpo_backlink->has_section_at_zero;
7708 }
7709
7710 dwarf2_per_objfile->reading_partial_symbols = 0;
7711
7712 psymtab_to_symtab_1 (self);
7713
7714 /* Finish up the debug error message. */
7715 if (info_verbose)
7716 printf_filtered (_("done.\n"));
7717 }
7718
7719 process_cu_includes ();
7720 }
7721 \f
7722 /* Reading in full CUs. */
7723
7724 /* Add PER_CU to the queue. */
7725
7726 static void
7727 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7728 enum language pretend_language)
7729 {
7730 struct dwarf2_queue_item *item;
7731
7732 per_cu->queued = 1;
7733 item = XNEW (struct dwarf2_queue_item);
7734 item->per_cu = per_cu;
7735 item->pretend_language = pretend_language;
7736 item->next = NULL;
7737
7738 if (dwarf2_queue == NULL)
7739 dwarf2_queue = item;
7740 else
7741 dwarf2_queue_tail->next = item;
7742
7743 dwarf2_queue_tail = item;
7744 }
7745
7746 /* If PER_CU is not yet queued, add it to the queue.
7747 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7748 dependency.
7749 The result is non-zero if PER_CU was queued, otherwise the result is zero
7750 meaning either PER_CU is already queued or it is already loaded.
7751
7752 N.B. There is an invariant here that if a CU is queued then it is loaded.
7753 The caller is required to load PER_CU if we return non-zero. */
7754
7755 static int
7756 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7757 struct dwarf2_per_cu_data *per_cu,
7758 enum language pretend_language)
7759 {
7760 /* We may arrive here during partial symbol reading, if we need full
7761 DIEs to process an unusual case (e.g. template arguments). Do
7762 not queue PER_CU, just tell our caller to load its DIEs. */
7763 if (dwarf2_per_objfile->reading_partial_symbols)
7764 {
7765 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7766 return 1;
7767 return 0;
7768 }
7769
7770 /* Mark the dependence relation so that we don't flush PER_CU
7771 too early. */
7772 if (dependent_cu != NULL)
7773 dwarf2_add_dependence (dependent_cu, per_cu);
7774
7775 /* If it's already on the queue, we have nothing to do. */
7776 if (per_cu->queued)
7777 return 0;
7778
7779 /* If the compilation unit is already loaded, just mark it as
7780 used. */
7781 if (per_cu->cu != NULL)
7782 {
7783 per_cu->cu->last_used = 0;
7784 return 0;
7785 }
7786
7787 /* Add it to the queue. */
7788 queue_comp_unit (per_cu, pretend_language);
7789
7790 return 1;
7791 }
7792
7793 /* Process the queue. */
7794
7795 static void
7796 process_queue (void)
7797 {
7798 struct dwarf2_queue_item *item, *next_item;
7799
7800 if (dwarf_read_debug)
7801 {
7802 fprintf_unfiltered (gdb_stdlog,
7803 "Expanding one or more symtabs of objfile %s ...\n",
7804 objfile_name (dwarf2_per_objfile->objfile));
7805 }
7806
7807 /* The queue starts out with one item, but following a DIE reference
7808 may load a new CU, adding it to the end of the queue. */
7809 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7810 {
7811 if ((dwarf2_per_objfile->using_index
7812 ? !item->per_cu->v.quick->compunit_symtab
7813 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7814 /* Skip dummy CUs. */
7815 && item->per_cu->cu != NULL)
7816 {
7817 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7818 unsigned int debug_print_threshold;
7819 char buf[100];
7820
7821 if (per_cu->is_debug_types)
7822 {
7823 struct signatured_type *sig_type =
7824 (struct signatured_type *) per_cu;
7825
7826 sprintf (buf, "TU %s at offset 0x%x",
7827 hex_string (sig_type->signature),
7828 to_underlying (per_cu->sect_off));
7829 /* There can be 100s of TUs.
7830 Only print them in verbose mode. */
7831 debug_print_threshold = 2;
7832 }
7833 else
7834 {
7835 sprintf (buf, "CU at offset 0x%x",
7836 to_underlying (per_cu->sect_off));
7837 debug_print_threshold = 1;
7838 }
7839
7840 if (dwarf_read_debug >= debug_print_threshold)
7841 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7842
7843 if (per_cu->is_debug_types)
7844 process_full_type_unit (per_cu, item->pretend_language);
7845 else
7846 process_full_comp_unit (per_cu, item->pretend_language);
7847
7848 if (dwarf_read_debug >= debug_print_threshold)
7849 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7850 }
7851
7852 item->per_cu->queued = 0;
7853 next_item = item->next;
7854 xfree (item);
7855 }
7856
7857 dwarf2_queue_tail = NULL;
7858
7859 if (dwarf_read_debug)
7860 {
7861 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7862 objfile_name (dwarf2_per_objfile->objfile));
7863 }
7864 }
7865
7866 /* Free all allocated queue entries. This function only releases anything if
7867 an error was thrown; if the queue was processed then it would have been
7868 freed as we went along. */
7869
7870 static void
7871 dwarf2_release_queue (void *dummy)
7872 {
7873 struct dwarf2_queue_item *item, *last;
7874
7875 item = dwarf2_queue;
7876 while (item)
7877 {
7878 /* Anything still marked queued is likely to be in an
7879 inconsistent state, so discard it. */
7880 if (item->per_cu->queued)
7881 {
7882 if (item->per_cu->cu != NULL)
7883 free_one_cached_comp_unit (item->per_cu);
7884 item->per_cu->queued = 0;
7885 }
7886
7887 last = item;
7888 item = item->next;
7889 xfree (last);
7890 }
7891
7892 dwarf2_queue = dwarf2_queue_tail = NULL;
7893 }
7894
7895 /* Read in full symbols for PST, and anything it depends on. */
7896
7897 static void
7898 psymtab_to_symtab_1 (struct partial_symtab *pst)
7899 {
7900 struct dwarf2_per_cu_data *per_cu;
7901 int i;
7902
7903 if (pst->readin)
7904 return;
7905
7906 for (i = 0; i < pst->number_of_dependencies; i++)
7907 if (!pst->dependencies[i]->readin
7908 && pst->dependencies[i]->user == NULL)
7909 {
7910 /* Inform about additional files that need to be read in. */
7911 if (info_verbose)
7912 {
7913 /* FIXME: i18n: Need to make this a single string. */
7914 fputs_filtered (" ", gdb_stdout);
7915 wrap_here ("");
7916 fputs_filtered ("and ", gdb_stdout);
7917 wrap_here ("");
7918 printf_filtered ("%s...", pst->dependencies[i]->filename);
7919 wrap_here (""); /* Flush output. */
7920 gdb_flush (gdb_stdout);
7921 }
7922 psymtab_to_symtab_1 (pst->dependencies[i]);
7923 }
7924
7925 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7926
7927 if (per_cu == NULL)
7928 {
7929 /* It's an include file, no symbols to read for it.
7930 Everything is in the parent symtab. */
7931 pst->readin = 1;
7932 return;
7933 }
7934
7935 dw2_do_instantiate_symtab (per_cu);
7936 }
7937
7938 /* Trivial hash function for die_info: the hash value of a DIE
7939 is its offset in .debug_info for this objfile. */
7940
7941 static hashval_t
7942 die_hash (const void *item)
7943 {
7944 const struct die_info *die = (const struct die_info *) item;
7945
7946 return to_underlying (die->sect_off);
7947 }
7948
7949 /* Trivial comparison function for die_info structures: two DIEs
7950 are equal if they have the same offset. */
7951
7952 static int
7953 die_eq (const void *item_lhs, const void *item_rhs)
7954 {
7955 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7956 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7957
7958 return die_lhs->sect_off == die_rhs->sect_off;
7959 }
7960
7961 /* die_reader_func for load_full_comp_unit.
7962 This is identical to read_signatured_type_reader,
7963 but is kept separate for now. */
7964
7965 static void
7966 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7967 const gdb_byte *info_ptr,
7968 struct die_info *comp_unit_die,
7969 int has_children,
7970 void *data)
7971 {
7972 struct dwarf2_cu *cu = reader->cu;
7973 enum language *language_ptr = (enum language *) data;
7974
7975 gdb_assert (cu->die_hash == NULL);
7976 cu->die_hash =
7977 htab_create_alloc_ex (cu->header.length / 12,
7978 die_hash,
7979 die_eq,
7980 NULL,
7981 &cu->comp_unit_obstack,
7982 hashtab_obstack_allocate,
7983 dummy_obstack_deallocate);
7984
7985 if (has_children)
7986 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7987 &info_ptr, comp_unit_die);
7988 cu->dies = comp_unit_die;
7989 /* comp_unit_die is not stored in die_hash, no need. */
7990
7991 /* We try not to read any attributes in this function, because not
7992 all CUs needed for references have been loaded yet, and symbol
7993 table processing isn't initialized. But we have to set the CU language,
7994 or we won't be able to build types correctly.
7995 Similarly, if we do not read the producer, we can not apply
7996 producer-specific interpretation. */
7997 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7998 }
7999
8000 /* Load the DIEs associated with PER_CU into memory. */
8001
8002 static void
8003 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8004 enum language pretend_language)
8005 {
8006 gdb_assert (! this_cu->is_debug_types);
8007
8008 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8009 load_full_comp_unit_reader, &pretend_language);
8010 }
8011
8012 /* Add a DIE to the delayed physname list. */
8013
8014 static void
8015 add_to_method_list (struct type *type, int fnfield_index, int index,
8016 const char *name, struct die_info *die,
8017 struct dwarf2_cu *cu)
8018 {
8019 struct delayed_method_info mi;
8020 mi.type = type;
8021 mi.fnfield_index = fnfield_index;
8022 mi.index = index;
8023 mi.name = name;
8024 mi.die = die;
8025 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8026 }
8027
8028 /* A cleanup for freeing the delayed method list. */
8029
8030 static void
8031 free_delayed_list (void *ptr)
8032 {
8033 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8034 if (cu->method_list != NULL)
8035 {
8036 VEC_free (delayed_method_info, cu->method_list);
8037 cu->method_list = NULL;
8038 }
8039 }
8040
8041 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8042 "const" / "volatile". If so, decrements LEN by the length of the
8043 modifier and return true. Otherwise return false. */
8044
8045 template<size_t N>
8046 static bool
8047 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8048 {
8049 size_t mod_len = sizeof (mod) - 1;
8050 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8051 {
8052 len -= mod_len;
8053 return true;
8054 }
8055 return false;
8056 }
8057
8058 /* Compute the physnames of any methods on the CU's method list.
8059
8060 The computation of method physnames is delayed in order to avoid the
8061 (bad) condition that one of the method's formal parameters is of an as yet
8062 incomplete type. */
8063
8064 static void
8065 compute_delayed_physnames (struct dwarf2_cu *cu)
8066 {
8067 int i;
8068 struct delayed_method_info *mi;
8069
8070 /* Only C++ delays computing physnames. */
8071 if (VEC_empty (delayed_method_info, cu->method_list))
8072 return;
8073 gdb_assert (cu->language == language_cplus);
8074
8075 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8076 {
8077 const char *physname;
8078 struct fn_fieldlist *fn_flp
8079 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
8080 physname = dwarf2_physname (mi->name, mi->die, cu);
8081 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8082 = physname ? physname : "";
8083
8084 /* Since there's no tag to indicate whether a method is a
8085 const/volatile overload, extract that information out of the
8086 demangled name. */
8087 if (physname != NULL)
8088 {
8089 size_t len = strlen (physname);
8090
8091 while (1)
8092 {
8093 if (physname[len] == ')') /* shortcut */
8094 break;
8095 else if (check_modifier (physname, len, " const"))
8096 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi->index) = 1;
8097 else if (check_modifier (physname, len, " volatile"))
8098 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi->index) = 1;
8099 else
8100 break;
8101 }
8102 }
8103 }
8104 }
8105
8106 /* Go objects should be embedded in a DW_TAG_module DIE,
8107 and it's not clear if/how imported objects will appear.
8108 To keep Go support simple until that's worked out,
8109 go back through what we've read and create something usable.
8110 We could do this while processing each DIE, and feels kinda cleaner,
8111 but that way is more invasive.
8112 This is to, for example, allow the user to type "p var" or "b main"
8113 without having to specify the package name, and allow lookups
8114 of module.object to work in contexts that use the expression
8115 parser. */
8116
8117 static void
8118 fixup_go_packaging (struct dwarf2_cu *cu)
8119 {
8120 char *package_name = NULL;
8121 struct pending *list;
8122 int i;
8123
8124 for (list = global_symbols; list != NULL; list = list->next)
8125 {
8126 for (i = 0; i < list->nsyms; ++i)
8127 {
8128 struct symbol *sym = list->symbol[i];
8129
8130 if (SYMBOL_LANGUAGE (sym) == language_go
8131 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8132 {
8133 char *this_package_name = go_symbol_package_name (sym);
8134
8135 if (this_package_name == NULL)
8136 continue;
8137 if (package_name == NULL)
8138 package_name = this_package_name;
8139 else
8140 {
8141 if (strcmp (package_name, this_package_name) != 0)
8142 complaint (&symfile_complaints,
8143 _("Symtab %s has objects from two different Go packages: %s and %s"),
8144 (symbol_symtab (sym) != NULL
8145 ? symtab_to_filename_for_display
8146 (symbol_symtab (sym))
8147 : objfile_name (cu->objfile)),
8148 this_package_name, package_name);
8149 xfree (this_package_name);
8150 }
8151 }
8152 }
8153 }
8154
8155 if (package_name != NULL)
8156 {
8157 struct objfile *objfile = cu->objfile;
8158 const char *saved_package_name
8159 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8160 package_name,
8161 strlen (package_name));
8162 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8163 saved_package_name);
8164 struct symbol *sym;
8165
8166 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8167
8168 sym = allocate_symbol (objfile);
8169 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
8170 SYMBOL_SET_NAMES (sym, saved_package_name,
8171 strlen (saved_package_name), 0, objfile);
8172 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8173 e.g., "main" finds the "main" module and not C's main(). */
8174 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8175 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
8176 SYMBOL_TYPE (sym) = type;
8177
8178 add_symbol_to_list (sym, &global_symbols);
8179
8180 xfree (package_name);
8181 }
8182 }
8183
8184 /* Return the symtab for PER_CU. This works properly regardless of
8185 whether we're using the index or psymtabs. */
8186
8187 static struct compunit_symtab *
8188 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
8189 {
8190 return (dwarf2_per_objfile->using_index
8191 ? per_cu->v.quick->compunit_symtab
8192 : per_cu->v.psymtab->compunit_symtab);
8193 }
8194
8195 /* A helper function for computing the list of all symbol tables
8196 included by PER_CU. */
8197
8198 static void
8199 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
8200 htab_t all_children, htab_t all_type_symtabs,
8201 struct dwarf2_per_cu_data *per_cu,
8202 struct compunit_symtab *immediate_parent)
8203 {
8204 void **slot;
8205 int ix;
8206 struct compunit_symtab *cust;
8207 struct dwarf2_per_cu_data *iter;
8208
8209 slot = htab_find_slot (all_children, per_cu, INSERT);
8210 if (*slot != NULL)
8211 {
8212 /* This inclusion and its children have been processed. */
8213 return;
8214 }
8215
8216 *slot = per_cu;
8217 /* Only add a CU if it has a symbol table. */
8218 cust = get_compunit_symtab (per_cu);
8219 if (cust != NULL)
8220 {
8221 /* If this is a type unit only add its symbol table if we haven't
8222 seen it yet (type unit per_cu's can share symtabs). */
8223 if (per_cu->is_debug_types)
8224 {
8225 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
8226 if (*slot == NULL)
8227 {
8228 *slot = cust;
8229 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8230 if (cust->user == NULL)
8231 cust->user = immediate_parent;
8232 }
8233 }
8234 else
8235 {
8236 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8237 if (cust->user == NULL)
8238 cust->user = immediate_parent;
8239 }
8240 }
8241
8242 for (ix = 0;
8243 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
8244 ++ix)
8245 {
8246 recursively_compute_inclusions (result, all_children,
8247 all_type_symtabs, iter, cust);
8248 }
8249 }
8250
8251 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
8252 PER_CU. */
8253
8254 static void
8255 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
8256 {
8257 gdb_assert (! per_cu->is_debug_types);
8258
8259 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
8260 {
8261 int ix, len;
8262 struct dwarf2_per_cu_data *per_cu_iter;
8263 struct compunit_symtab *compunit_symtab_iter;
8264 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
8265 htab_t all_children, all_type_symtabs;
8266 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
8267
8268 /* If we don't have a symtab, we can just skip this case. */
8269 if (cust == NULL)
8270 return;
8271
8272 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8273 NULL, xcalloc, xfree);
8274 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8275 NULL, xcalloc, xfree);
8276
8277 for (ix = 0;
8278 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
8279 ix, per_cu_iter);
8280 ++ix)
8281 {
8282 recursively_compute_inclusions (&result_symtabs, all_children,
8283 all_type_symtabs, per_cu_iter,
8284 cust);
8285 }
8286
8287 /* Now we have a transitive closure of all the included symtabs. */
8288 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8289 cust->includes
8290 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8291 struct compunit_symtab *, len + 1);
8292 for (ix = 0;
8293 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8294 compunit_symtab_iter);
8295 ++ix)
8296 cust->includes[ix] = compunit_symtab_iter;
8297 cust->includes[len] = NULL;
8298
8299 VEC_free (compunit_symtab_ptr, result_symtabs);
8300 htab_delete (all_children);
8301 htab_delete (all_type_symtabs);
8302 }
8303 }
8304
8305 /* Compute the 'includes' field for the symtabs of all the CUs we just
8306 read. */
8307
8308 static void
8309 process_cu_includes (void)
8310 {
8311 int ix;
8312 struct dwarf2_per_cu_data *iter;
8313
8314 for (ix = 0;
8315 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8316 ix, iter);
8317 ++ix)
8318 {
8319 if (! iter->is_debug_types)
8320 compute_compunit_symtab_includes (iter);
8321 }
8322
8323 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8324 }
8325
8326 /* Generate full symbol information for PER_CU, whose DIEs have
8327 already been loaded into memory. */
8328
8329 static void
8330 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8331 enum language pretend_language)
8332 {
8333 struct dwarf2_cu *cu = per_cu->cu;
8334 struct objfile *objfile = per_cu->objfile;
8335 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8336 CORE_ADDR lowpc, highpc;
8337 struct compunit_symtab *cust;
8338 struct cleanup *back_to, *delayed_list_cleanup;
8339 CORE_ADDR baseaddr;
8340 struct block *static_block;
8341 CORE_ADDR addr;
8342
8343 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8344
8345 buildsym_init ();
8346 back_to = make_cleanup (really_free_pendings, NULL);
8347 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8348
8349 cu->list_in_scope = &file_symbols;
8350
8351 cu->language = pretend_language;
8352 cu->language_defn = language_def (cu->language);
8353
8354 /* Do line number decoding in read_file_scope () */
8355 process_die (cu->dies, cu);
8356
8357 /* For now fudge the Go package. */
8358 if (cu->language == language_go)
8359 fixup_go_packaging (cu);
8360
8361 /* Now that we have processed all the DIEs in the CU, all the types
8362 should be complete, and it should now be safe to compute all of the
8363 physnames. */
8364 compute_delayed_physnames (cu);
8365 do_cleanups (delayed_list_cleanup);
8366
8367 /* Some compilers don't define a DW_AT_high_pc attribute for the
8368 compilation unit. If the DW_AT_high_pc is missing, synthesize
8369 it, by scanning the DIE's below the compilation unit. */
8370 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8371
8372 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8373 static_block = end_symtab_get_static_block (addr, 0, 1);
8374
8375 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8376 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8377 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8378 addrmap to help ensure it has an accurate map of pc values belonging to
8379 this comp unit. */
8380 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8381
8382 cust = end_symtab_from_static_block (static_block,
8383 SECT_OFF_TEXT (objfile), 0);
8384
8385 if (cust != NULL)
8386 {
8387 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8388
8389 /* Set symtab language to language from DW_AT_language. If the
8390 compilation is from a C file generated by language preprocessors, do
8391 not set the language if it was already deduced by start_subfile. */
8392 if (!(cu->language == language_c
8393 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8394 COMPUNIT_FILETABS (cust)->language = cu->language;
8395
8396 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8397 produce DW_AT_location with location lists but it can be possibly
8398 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8399 there were bugs in prologue debug info, fixed later in GCC-4.5
8400 by "unwind info for epilogues" patch (which is not directly related).
8401
8402 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8403 needed, it would be wrong due to missing DW_AT_producer there.
8404
8405 Still one can confuse GDB by using non-standard GCC compilation
8406 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8407 */
8408 if (cu->has_loclist && gcc_4_minor >= 5)
8409 cust->locations_valid = 1;
8410
8411 if (gcc_4_minor >= 5)
8412 cust->epilogue_unwind_valid = 1;
8413
8414 cust->call_site_htab = cu->call_site_htab;
8415 }
8416
8417 if (dwarf2_per_objfile->using_index)
8418 per_cu->v.quick->compunit_symtab = cust;
8419 else
8420 {
8421 struct partial_symtab *pst = per_cu->v.psymtab;
8422 pst->compunit_symtab = cust;
8423 pst->readin = 1;
8424 }
8425
8426 /* Push it for inclusion processing later. */
8427 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8428
8429 do_cleanups (back_to);
8430 }
8431
8432 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8433 already been loaded into memory. */
8434
8435 static void
8436 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8437 enum language pretend_language)
8438 {
8439 struct dwarf2_cu *cu = per_cu->cu;
8440 struct objfile *objfile = per_cu->objfile;
8441 struct compunit_symtab *cust;
8442 struct cleanup *back_to, *delayed_list_cleanup;
8443 struct signatured_type *sig_type;
8444
8445 gdb_assert (per_cu->is_debug_types);
8446 sig_type = (struct signatured_type *) per_cu;
8447
8448 buildsym_init ();
8449 back_to = make_cleanup (really_free_pendings, NULL);
8450 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8451
8452 cu->list_in_scope = &file_symbols;
8453
8454 cu->language = pretend_language;
8455 cu->language_defn = language_def (cu->language);
8456
8457 /* The symbol tables are set up in read_type_unit_scope. */
8458 process_die (cu->dies, cu);
8459
8460 /* For now fudge the Go package. */
8461 if (cu->language == language_go)
8462 fixup_go_packaging (cu);
8463
8464 /* Now that we have processed all the DIEs in the CU, all the types
8465 should be complete, and it should now be safe to compute all of the
8466 physnames. */
8467 compute_delayed_physnames (cu);
8468 do_cleanups (delayed_list_cleanup);
8469
8470 /* TUs share symbol tables.
8471 If this is the first TU to use this symtab, complete the construction
8472 of it with end_expandable_symtab. Otherwise, complete the addition of
8473 this TU's symbols to the existing symtab. */
8474 if (sig_type->type_unit_group->compunit_symtab == NULL)
8475 {
8476 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8477 sig_type->type_unit_group->compunit_symtab = cust;
8478
8479 if (cust != NULL)
8480 {
8481 /* Set symtab language to language from DW_AT_language. If the
8482 compilation is from a C file generated by language preprocessors,
8483 do not set the language if it was already deduced by
8484 start_subfile. */
8485 if (!(cu->language == language_c
8486 && COMPUNIT_FILETABS (cust)->language != language_c))
8487 COMPUNIT_FILETABS (cust)->language = cu->language;
8488 }
8489 }
8490 else
8491 {
8492 augment_type_symtab ();
8493 cust = sig_type->type_unit_group->compunit_symtab;
8494 }
8495
8496 if (dwarf2_per_objfile->using_index)
8497 per_cu->v.quick->compunit_symtab = cust;
8498 else
8499 {
8500 struct partial_symtab *pst = per_cu->v.psymtab;
8501 pst->compunit_symtab = cust;
8502 pst->readin = 1;
8503 }
8504
8505 do_cleanups (back_to);
8506 }
8507
8508 /* Process an imported unit DIE. */
8509
8510 static void
8511 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8512 {
8513 struct attribute *attr;
8514
8515 /* For now we don't handle imported units in type units. */
8516 if (cu->per_cu->is_debug_types)
8517 {
8518 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8519 " supported in type units [in module %s]"),
8520 objfile_name (cu->objfile));
8521 }
8522
8523 attr = dwarf2_attr (die, DW_AT_import, cu);
8524 if (attr != NULL)
8525 {
8526 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8527 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8528 dwarf2_per_cu_data *per_cu
8529 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
8530
8531 /* If necessary, add it to the queue and load its DIEs. */
8532 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8533 load_full_comp_unit (per_cu, cu->language);
8534
8535 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8536 per_cu);
8537 }
8538 }
8539
8540 /* RAII object that represents a process_die scope: i.e.,
8541 starts/finishes processing a DIE. */
8542 class process_die_scope
8543 {
8544 public:
8545 process_die_scope (die_info *die, dwarf2_cu *cu)
8546 : m_die (die), m_cu (cu)
8547 {
8548 /* We should only be processing DIEs not already in process. */
8549 gdb_assert (!m_die->in_process);
8550 m_die->in_process = true;
8551 }
8552
8553 ~process_die_scope ()
8554 {
8555 m_die->in_process = false;
8556
8557 /* If we're done processing the DIE for the CU that owns the line
8558 header, we don't need the line header anymore. */
8559 if (m_cu->line_header_die_owner == m_die)
8560 {
8561 delete m_cu->line_header;
8562 m_cu->line_header = NULL;
8563 m_cu->line_header_die_owner = NULL;
8564 }
8565 }
8566
8567 private:
8568 die_info *m_die;
8569 dwarf2_cu *m_cu;
8570 };
8571
8572 /* Process a die and its children. */
8573
8574 static void
8575 process_die (struct die_info *die, struct dwarf2_cu *cu)
8576 {
8577 process_die_scope scope (die, cu);
8578
8579 switch (die->tag)
8580 {
8581 case DW_TAG_padding:
8582 break;
8583 case DW_TAG_compile_unit:
8584 case DW_TAG_partial_unit:
8585 read_file_scope (die, cu);
8586 break;
8587 case DW_TAG_type_unit:
8588 read_type_unit_scope (die, cu);
8589 break;
8590 case DW_TAG_subprogram:
8591 case DW_TAG_inlined_subroutine:
8592 read_func_scope (die, cu);
8593 break;
8594 case DW_TAG_lexical_block:
8595 case DW_TAG_try_block:
8596 case DW_TAG_catch_block:
8597 read_lexical_block_scope (die, cu);
8598 break;
8599 case DW_TAG_call_site:
8600 case DW_TAG_GNU_call_site:
8601 read_call_site_scope (die, cu);
8602 break;
8603 case DW_TAG_class_type:
8604 case DW_TAG_interface_type:
8605 case DW_TAG_structure_type:
8606 case DW_TAG_union_type:
8607 process_structure_scope (die, cu);
8608 break;
8609 case DW_TAG_enumeration_type:
8610 process_enumeration_scope (die, cu);
8611 break;
8612
8613 /* These dies have a type, but processing them does not create
8614 a symbol or recurse to process the children. Therefore we can
8615 read them on-demand through read_type_die. */
8616 case DW_TAG_subroutine_type:
8617 case DW_TAG_set_type:
8618 case DW_TAG_array_type:
8619 case DW_TAG_pointer_type:
8620 case DW_TAG_ptr_to_member_type:
8621 case DW_TAG_reference_type:
8622 case DW_TAG_rvalue_reference_type:
8623 case DW_TAG_string_type:
8624 break;
8625
8626 case DW_TAG_base_type:
8627 case DW_TAG_subrange_type:
8628 case DW_TAG_typedef:
8629 /* Add a typedef symbol for the type definition, if it has a
8630 DW_AT_name. */
8631 new_symbol (die, read_type_die (die, cu), cu);
8632 break;
8633 case DW_TAG_common_block:
8634 read_common_block (die, cu);
8635 break;
8636 case DW_TAG_common_inclusion:
8637 break;
8638 case DW_TAG_namespace:
8639 cu->processing_has_namespace_info = 1;
8640 read_namespace (die, cu);
8641 break;
8642 case DW_TAG_module:
8643 cu->processing_has_namespace_info = 1;
8644 read_module (die, cu);
8645 break;
8646 case DW_TAG_imported_declaration:
8647 cu->processing_has_namespace_info = 1;
8648 if (read_namespace_alias (die, cu))
8649 break;
8650 /* The declaration is not a global namespace alias: fall through. */
8651 case DW_TAG_imported_module:
8652 cu->processing_has_namespace_info = 1;
8653 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8654 || cu->language != language_fortran))
8655 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8656 dwarf_tag_name (die->tag));
8657 read_import_statement (die, cu);
8658 break;
8659
8660 case DW_TAG_imported_unit:
8661 process_imported_unit_die (die, cu);
8662 break;
8663
8664 default:
8665 new_symbol (die, NULL, cu);
8666 break;
8667 }
8668 }
8669 \f
8670 /* DWARF name computation. */
8671
8672 /* A helper function for dwarf2_compute_name which determines whether DIE
8673 needs to have the name of the scope prepended to the name listed in the
8674 die. */
8675
8676 static int
8677 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8678 {
8679 struct attribute *attr;
8680
8681 switch (die->tag)
8682 {
8683 case DW_TAG_namespace:
8684 case DW_TAG_typedef:
8685 case DW_TAG_class_type:
8686 case DW_TAG_interface_type:
8687 case DW_TAG_structure_type:
8688 case DW_TAG_union_type:
8689 case DW_TAG_enumeration_type:
8690 case DW_TAG_enumerator:
8691 case DW_TAG_subprogram:
8692 case DW_TAG_inlined_subroutine:
8693 case DW_TAG_member:
8694 case DW_TAG_imported_declaration:
8695 return 1;
8696
8697 case DW_TAG_variable:
8698 case DW_TAG_constant:
8699 /* We only need to prefix "globally" visible variables. These include
8700 any variable marked with DW_AT_external or any variable that
8701 lives in a namespace. [Variables in anonymous namespaces
8702 require prefixing, but they are not DW_AT_external.] */
8703
8704 if (dwarf2_attr (die, DW_AT_specification, cu))
8705 {
8706 struct dwarf2_cu *spec_cu = cu;
8707
8708 return die_needs_namespace (die_specification (die, &spec_cu),
8709 spec_cu);
8710 }
8711
8712 attr = dwarf2_attr (die, DW_AT_external, cu);
8713 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8714 && die->parent->tag != DW_TAG_module)
8715 return 0;
8716 /* A variable in a lexical block of some kind does not need a
8717 namespace, even though in C++ such variables may be external
8718 and have a mangled name. */
8719 if (die->parent->tag == DW_TAG_lexical_block
8720 || die->parent->tag == DW_TAG_try_block
8721 || die->parent->tag == DW_TAG_catch_block
8722 || die->parent->tag == DW_TAG_subprogram)
8723 return 0;
8724 return 1;
8725
8726 default:
8727 return 0;
8728 }
8729 }
8730
8731 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
8732 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
8733 defined for the given DIE. */
8734
8735 static struct attribute *
8736 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
8737 {
8738 struct attribute *attr;
8739
8740 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8741 if (attr == NULL)
8742 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8743
8744 return attr;
8745 }
8746
8747 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
8748 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
8749 defined for the given DIE. */
8750
8751 static const char *
8752 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
8753 {
8754 const char *linkage_name;
8755
8756 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8757 if (linkage_name == NULL)
8758 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8759
8760 return linkage_name;
8761 }
8762
8763 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8764 compute the physname for the object, which include a method's:
8765 - formal parameters (C++),
8766 - receiver type (Go),
8767
8768 The term "physname" is a bit confusing.
8769 For C++, for example, it is the demangled name.
8770 For Go, for example, it's the mangled name.
8771
8772 For Ada, return the DIE's linkage name rather than the fully qualified
8773 name. PHYSNAME is ignored..
8774
8775 The result is allocated on the objfile_obstack and canonicalized. */
8776
8777 static const char *
8778 dwarf2_compute_name (const char *name,
8779 struct die_info *die, struct dwarf2_cu *cu,
8780 int physname)
8781 {
8782 struct objfile *objfile = cu->objfile;
8783
8784 if (name == NULL)
8785 name = dwarf2_name (die, cu);
8786
8787 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8788 but otherwise compute it by typename_concat inside GDB.
8789 FIXME: Actually this is not really true, or at least not always true.
8790 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8791 Fortran names because there is no mangling standard. So new_symbol_full
8792 will set the demangled name to the result of dwarf2_full_name, and it is
8793 the demangled name that GDB uses if it exists. */
8794 if (cu->language == language_ada
8795 || (cu->language == language_fortran && physname))
8796 {
8797 /* For Ada unit, we prefer the linkage name over the name, as
8798 the former contains the exported name, which the user expects
8799 to be able to reference. Ideally, we want the user to be able
8800 to reference this entity using either natural or linkage name,
8801 but we haven't started looking at this enhancement yet. */
8802 const char *linkage_name = dw2_linkage_name (die, cu);
8803
8804 if (linkage_name != NULL)
8805 return linkage_name;
8806 }
8807
8808 /* These are the only languages we know how to qualify names in. */
8809 if (name != NULL
8810 && (cu->language == language_cplus
8811 || cu->language == language_fortran || cu->language == language_d
8812 || cu->language == language_rust))
8813 {
8814 if (die_needs_namespace (die, cu))
8815 {
8816 long length;
8817 const char *prefix;
8818 const char *canonical_name = NULL;
8819
8820 string_file buf;
8821
8822 prefix = determine_prefix (die, cu);
8823 if (*prefix != '\0')
8824 {
8825 char *prefixed_name = typename_concat (NULL, prefix, name,
8826 physname, cu);
8827
8828 buf.puts (prefixed_name);
8829 xfree (prefixed_name);
8830 }
8831 else
8832 buf.puts (name);
8833
8834 /* Template parameters may be specified in the DIE's DW_AT_name, or
8835 as children with DW_TAG_template_type_param or
8836 DW_TAG_value_type_param. If the latter, add them to the name
8837 here. If the name already has template parameters, then
8838 skip this step; some versions of GCC emit both, and
8839 it is more efficient to use the pre-computed name.
8840
8841 Something to keep in mind about this process: it is very
8842 unlikely, or in some cases downright impossible, to produce
8843 something that will match the mangled name of a function.
8844 If the definition of the function has the same debug info,
8845 we should be able to match up with it anyway. But fallbacks
8846 using the minimal symbol, for instance to find a method
8847 implemented in a stripped copy of libstdc++, will not work.
8848 If we do not have debug info for the definition, we will have to
8849 match them up some other way.
8850
8851 When we do name matching there is a related problem with function
8852 templates; two instantiated function templates are allowed to
8853 differ only by their return types, which we do not add here. */
8854
8855 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8856 {
8857 struct attribute *attr;
8858 struct die_info *child;
8859 int first = 1;
8860
8861 die->building_fullname = 1;
8862
8863 for (child = die->child; child != NULL; child = child->sibling)
8864 {
8865 struct type *type;
8866 LONGEST value;
8867 const gdb_byte *bytes;
8868 struct dwarf2_locexpr_baton *baton;
8869 struct value *v;
8870
8871 if (child->tag != DW_TAG_template_type_param
8872 && child->tag != DW_TAG_template_value_param)
8873 continue;
8874
8875 if (first)
8876 {
8877 buf.puts ("<");
8878 first = 0;
8879 }
8880 else
8881 buf.puts (", ");
8882
8883 attr = dwarf2_attr (child, DW_AT_type, cu);
8884 if (attr == NULL)
8885 {
8886 complaint (&symfile_complaints,
8887 _("template parameter missing DW_AT_type"));
8888 buf.puts ("UNKNOWN_TYPE");
8889 continue;
8890 }
8891 type = die_type (child, cu);
8892
8893 if (child->tag == DW_TAG_template_type_param)
8894 {
8895 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
8896 continue;
8897 }
8898
8899 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8900 if (attr == NULL)
8901 {
8902 complaint (&symfile_complaints,
8903 _("template parameter missing "
8904 "DW_AT_const_value"));
8905 buf.puts ("UNKNOWN_VALUE");
8906 continue;
8907 }
8908
8909 dwarf2_const_value_attr (attr, type, name,
8910 &cu->comp_unit_obstack, cu,
8911 &value, &bytes, &baton);
8912
8913 if (TYPE_NOSIGN (type))
8914 /* GDB prints characters as NUMBER 'CHAR'. If that's
8915 changed, this can use value_print instead. */
8916 c_printchar (value, type, &buf);
8917 else
8918 {
8919 struct value_print_options opts;
8920
8921 if (baton != NULL)
8922 v = dwarf2_evaluate_loc_desc (type, NULL,
8923 baton->data,
8924 baton->size,
8925 baton->per_cu);
8926 else if (bytes != NULL)
8927 {
8928 v = allocate_value (type);
8929 memcpy (value_contents_writeable (v), bytes,
8930 TYPE_LENGTH (type));
8931 }
8932 else
8933 v = value_from_longest (type, value);
8934
8935 /* Specify decimal so that we do not depend on
8936 the radix. */
8937 get_formatted_print_options (&opts, 'd');
8938 opts.raw = 1;
8939 value_print (v, &buf, &opts);
8940 release_value (v);
8941 value_free (v);
8942 }
8943 }
8944
8945 die->building_fullname = 0;
8946
8947 if (!first)
8948 {
8949 /* Close the argument list, with a space if necessary
8950 (nested templates). */
8951 if (!buf.empty () && buf.string ().back () == '>')
8952 buf.puts (" >");
8953 else
8954 buf.puts (">");
8955 }
8956 }
8957
8958 /* For C++ methods, append formal parameter type
8959 information, if PHYSNAME. */
8960
8961 if (physname && die->tag == DW_TAG_subprogram
8962 && cu->language == language_cplus)
8963 {
8964 struct type *type = read_type_die (die, cu);
8965
8966 c_type_print_args (type, &buf, 1, cu->language,
8967 &type_print_raw_options);
8968
8969 if (cu->language == language_cplus)
8970 {
8971 /* Assume that an artificial first parameter is
8972 "this", but do not crash if it is not. RealView
8973 marks unnamed (and thus unused) parameters as
8974 artificial; there is no way to differentiate
8975 the two cases. */
8976 if (TYPE_NFIELDS (type) > 0
8977 && TYPE_FIELD_ARTIFICIAL (type, 0)
8978 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8979 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8980 0))))
8981 buf.puts (" const");
8982 }
8983 }
8984
8985 const std::string &intermediate_name = buf.string ();
8986
8987 if (cu->language == language_cplus)
8988 canonical_name
8989 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8990 &objfile->per_bfd->storage_obstack);
8991
8992 /* If we only computed INTERMEDIATE_NAME, or if
8993 INTERMEDIATE_NAME is already canonical, then we need to
8994 copy it to the appropriate obstack. */
8995 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8996 name = ((const char *)
8997 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8998 intermediate_name.c_str (),
8999 intermediate_name.length ()));
9000 else
9001 name = canonical_name;
9002 }
9003 }
9004
9005 return name;
9006 }
9007
9008 /* Return the fully qualified name of DIE, based on its DW_AT_name.
9009 If scope qualifiers are appropriate they will be added. The result
9010 will be allocated on the storage_obstack, or NULL if the DIE does
9011 not have a name. NAME may either be from a previous call to
9012 dwarf2_name or NULL.
9013
9014 The output string will be canonicalized (if C++). */
9015
9016 static const char *
9017 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9018 {
9019 return dwarf2_compute_name (name, die, cu, 0);
9020 }
9021
9022 /* Construct a physname for the given DIE in CU. NAME may either be
9023 from a previous call to dwarf2_name or NULL. The result will be
9024 allocated on the objfile_objstack or NULL if the DIE does not have a
9025 name.
9026
9027 The output string will be canonicalized (if C++). */
9028
9029 static const char *
9030 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9031 {
9032 struct objfile *objfile = cu->objfile;
9033 const char *retval, *mangled = NULL, *canon = NULL;
9034 struct cleanup *back_to;
9035 int need_copy = 1;
9036
9037 /* In this case dwarf2_compute_name is just a shortcut not building anything
9038 on its own. */
9039 if (!die_needs_namespace (die, cu))
9040 return dwarf2_compute_name (name, die, cu, 1);
9041
9042 back_to = make_cleanup (null_cleanup, NULL);
9043
9044 mangled = dw2_linkage_name (die, cu);
9045
9046 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
9047 See https://github.com/rust-lang/rust/issues/32925. */
9048 if (cu->language == language_rust && mangled != NULL
9049 && strchr (mangled, '{') != NULL)
9050 mangled = NULL;
9051
9052 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
9053 has computed. */
9054 if (mangled != NULL)
9055 {
9056 char *demangled;
9057
9058 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
9059 type. It is easier for GDB users to search for such functions as
9060 `name(params)' than `long name(params)'. In such case the minimal
9061 symbol names do not match the full symbol names but for template
9062 functions there is never a need to look up their definition from their
9063 declaration so the only disadvantage remains the minimal symbol
9064 variant `long name(params)' does not have the proper inferior type.
9065 */
9066
9067 if (cu->language == language_go)
9068 {
9069 /* This is a lie, but we already lie to the caller new_symbol_full.
9070 new_symbol_full assumes we return the mangled name.
9071 This just undoes that lie until things are cleaned up. */
9072 demangled = NULL;
9073 }
9074 else
9075 {
9076 demangled = gdb_demangle (mangled,
9077 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
9078 }
9079 if (demangled)
9080 {
9081 make_cleanup (xfree, demangled);
9082 canon = demangled;
9083 }
9084 else
9085 {
9086 canon = mangled;
9087 need_copy = 0;
9088 }
9089 }
9090
9091 if (canon == NULL || check_physname)
9092 {
9093 const char *physname = dwarf2_compute_name (name, die, cu, 1);
9094
9095 if (canon != NULL && strcmp (physname, canon) != 0)
9096 {
9097 /* It may not mean a bug in GDB. The compiler could also
9098 compute DW_AT_linkage_name incorrectly. But in such case
9099 GDB would need to be bug-to-bug compatible. */
9100
9101 complaint (&symfile_complaints,
9102 _("Computed physname <%s> does not match demangled <%s> "
9103 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9104 physname, canon, mangled, to_underlying (die->sect_off),
9105 objfile_name (objfile));
9106
9107 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9108 is available here - over computed PHYSNAME. It is safer
9109 against both buggy GDB and buggy compilers. */
9110
9111 retval = canon;
9112 }
9113 else
9114 {
9115 retval = physname;
9116 need_copy = 0;
9117 }
9118 }
9119 else
9120 retval = canon;
9121
9122 if (need_copy)
9123 retval = ((const char *)
9124 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9125 retval, strlen (retval)));
9126
9127 do_cleanups (back_to);
9128 return retval;
9129 }
9130
9131 /* Inspect DIE in CU for a namespace alias. If one exists, record
9132 a new symbol for it.
9133
9134 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9135
9136 static int
9137 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9138 {
9139 struct attribute *attr;
9140
9141 /* If the die does not have a name, this is not a namespace
9142 alias. */
9143 attr = dwarf2_attr (die, DW_AT_name, cu);
9144 if (attr != NULL)
9145 {
9146 int num;
9147 struct die_info *d = die;
9148 struct dwarf2_cu *imported_cu = cu;
9149
9150 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9151 keep inspecting DIEs until we hit the underlying import. */
9152 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
9153 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9154 {
9155 attr = dwarf2_attr (d, DW_AT_import, cu);
9156 if (attr == NULL)
9157 break;
9158
9159 d = follow_die_ref (d, attr, &imported_cu);
9160 if (d->tag != DW_TAG_imported_declaration)
9161 break;
9162 }
9163
9164 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9165 {
9166 complaint (&symfile_complaints,
9167 _("DIE at 0x%x has too many recursively imported "
9168 "declarations"), to_underlying (d->sect_off));
9169 return 0;
9170 }
9171
9172 if (attr != NULL)
9173 {
9174 struct type *type;
9175 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9176
9177 type = get_die_type_at_offset (sect_off, cu->per_cu);
9178 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9179 {
9180 /* This declaration is a global namespace alias. Add
9181 a symbol for it whose type is the aliased namespace. */
9182 new_symbol (die, type, cu);
9183 return 1;
9184 }
9185 }
9186 }
9187
9188 return 0;
9189 }
9190
9191 /* Return the using directives repository (global or local?) to use in the
9192 current context for LANGUAGE.
9193
9194 For Ada, imported declarations can materialize renamings, which *may* be
9195 global. However it is impossible (for now?) in DWARF to distinguish
9196 "external" imported declarations and "static" ones. As all imported
9197 declarations seem to be static in all other languages, make them all CU-wide
9198 global only in Ada. */
9199
9200 static struct using_direct **
9201 using_directives (enum language language)
9202 {
9203 if (language == language_ada && context_stack_depth == 0)
9204 return &global_using_directives;
9205 else
9206 return &local_using_directives;
9207 }
9208
9209 /* Read the import statement specified by the given die and record it. */
9210
9211 static void
9212 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9213 {
9214 struct objfile *objfile = cu->objfile;
9215 struct attribute *import_attr;
9216 struct die_info *imported_die, *child_die;
9217 struct dwarf2_cu *imported_cu;
9218 const char *imported_name;
9219 const char *imported_name_prefix;
9220 const char *canonical_name;
9221 const char *import_alias;
9222 const char *imported_declaration = NULL;
9223 const char *import_prefix;
9224 VEC (const_char_ptr) *excludes = NULL;
9225 struct cleanup *cleanups;
9226
9227 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9228 if (import_attr == NULL)
9229 {
9230 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9231 dwarf_tag_name (die->tag));
9232 return;
9233 }
9234
9235 imported_cu = cu;
9236 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9237 imported_name = dwarf2_name (imported_die, imported_cu);
9238 if (imported_name == NULL)
9239 {
9240 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9241
9242 The import in the following code:
9243 namespace A
9244 {
9245 typedef int B;
9246 }
9247
9248 int main ()
9249 {
9250 using A::B;
9251 B b;
9252 return b;
9253 }
9254
9255 ...
9256 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9257 <52> DW_AT_decl_file : 1
9258 <53> DW_AT_decl_line : 6
9259 <54> DW_AT_import : <0x75>
9260 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9261 <59> DW_AT_name : B
9262 <5b> DW_AT_decl_file : 1
9263 <5c> DW_AT_decl_line : 2
9264 <5d> DW_AT_type : <0x6e>
9265 ...
9266 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9267 <76> DW_AT_byte_size : 4
9268 <77> DW_AT_encoding : 5 (signed)
9269
9270 imports the wrong die ( 0x75 instead of 0x58 ).
9271 This case will be ignored until the gcc bug is fixed. */
9272 return;
9273 }
9274
9275 /* Figure out the local name after import. */
9276 import_alias = dwarf2_name (die, cu);
9277
9278 /* Figure out where the statement is being imported to. */
9279 import_prefix = determine_prefix (die, cu);
9280
9281 /* Figure out what the scope of the imported die is and prepend it
9282 to the name of the imported die. */
9283 imported_name_prefix = determine_prefix (imported_die, imported_cu);
9284
9285 if (imported_die->tag != DW_TAG_namespace
9286 && imported_die->tag != DW_TAG_module)
9287 {
9288 imported_declaration = imported_name;
9289 canonical_name = imported_name_prefix;
9290 }
9291 else if (strlen (imported_name_prefix) > 0)
9292 canonical_name = obconcat (&objfile->objfile_obstack,
9293 imported_name_prefix,
9294 (cu->language == language_d ? "." : "::"),
9295 imported_name, (char *) NULL);
9296 else
9297 canonical_name = imported_name;
9298
9299 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
9300
9301 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9302 for (child_die = die->child; child_die && child_die->tag;
9303 child_die = sibling_die (child_die))
9304 {
9305 /* DWARF-4: A Fortran use statement with a “rename list” may be
9306 represented by an imported module entry with an import attribute
9307 referring to the module and owned entries corresponding to those
9308 entities that are renamed as part of being imported. */
9309
9310 if (child_die->tag != DW_TAG_imported_declaration)
9311 {
9312 complaint (&symfile_complaints,
9313 _("child DW_TAG_imported_declaration expected "
9314 "- DIE at 0x%x [in module %s]"),
9315 to_underlying (child_die->sect_off), objfile_name (objfile));
9316 continue;
9317 }
9318
9319 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9320 if (import_attr == NULL)
9321 {
9322 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9323 dwarf_tag_name (child_die->tag));
9324 continue;
9325 }
9326
9327 imported_cu = cu;
9328 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9329 &imported_cu);
9330 imported_name = dwarf2_name (imported_die, imported_cu);
9331 if (imported_name == NULL)
9332 {
9333 complaint (&symfile_complaints,
9334 _("child DW_TAG_imported_declaration has unknown "
9335 "imported name - DIE at 0x%x [in module %s]"),
9336 to_underlying (child_die->sect_off), objfile_name (objfile));
9337 continue;
9338 }
9339
9340 VEC_safe_push (const_char_ptr, excludes, imported_name);
9341
9342 process_die (child_die, cu);
9343 }
9344
9345 add_using_directive (using_directives (cu->language),
9346 import_prefix,
9347 canonical_name,
9348 import_alias,
9349 imported_declaration,
9350 excludes,
9351 0,
9352 &objfile->objfile_obstack);
9353
9354 do_cleanups (cleanups);
9355 }
9356
9357 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9358 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9359 this, it was first present in GCC release 4.3.0. */
9360
9361 static int
9362 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9363 {
9364 if (!cu->checked_producer)
9365 check_producer (cu);
9366
9367 return cu->producer_is_gcc_lt_4_3;
9368 }
9369
9370 static file_and_directory
9371 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9372 {
9373 file_and_directory res;
9374
9375 /* Find the filename. Do not use dwarf2_name here, since the filename
9376 is not a source language identifier. */
9377 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9378 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9379
9380 if (res.comp_dir == NULL
9381 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9382 && IS_ABSOLUTE_PATH (res.name))
9383 {
9384 res.comp_dir_storage = ldirname (res.name);
9385 if (!res.comp_dir_storage.empty ())
9386 res.comp_dir = res.comp_dir_storage.c_str ();
9387 }
9388 if (res.comp_dir != NULL)
9389 {
9390 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9391 directory, get rid of it. */
9392 const char *cp = strchr (res.comp_dir, ':');
9393
9394 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9395 res.comp_dir = cp + 1;
9396 }
9397
9398 if (res.name == NULL)
9399 res.name = "<unknown>";
9400
9401 return res;
9402 }
9403
9404 /* Handle DW_AT_stmt_list for a compilation unit.
9405 DIE is the DW_TAG_compile_unit die for CU.
9406 COMP_DIR is the compilation directory. LOWPC is passed to
9407 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9408
9409 static void
9410 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9411 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9412 {
9413 struct objfile *objfile = dwarf2_per_objfile->objfile;
9414 struct attribute *attr;
9415 struct line_header line_header_local;
9416 hashval_t line_header_local_hash;
9417 unsigned u;
9418 void **slot;
9419 int decode_mapping;
9420
9421 gdb_assert (! cu->per_cu->is_debug_types);
9422
9423 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9424 if (attr == NULL)
9425 return;
9426
9427 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9428
9429 /* The line header hash table is only created if needed (it exists to
9430 prevent redundant reading of the line table for partial_units).
9431 If we're given a partial_unit, we'll need it. If we're given a
9432 compile_unit, then use the line header hash table if it's already
9433 created, but don't create one just yet. */
9434
9435 if (dwarf2_per_objfile->line_header_hash == NULL
9436 && die->tag == DW_TAG_partial_unit)
9437 {
9438 dwarf2_per_objfile->line_header_hash
9439 = htab_create_alloc_ex (127, line_header_hash_voidp,
9440 line_header_eq_voidp,
9441 free_line_header_voidp,
9442 &objfile->objfile_obstack,
9443 hashtab_obstack_allocate,
9444 dummy_obstack_deallocate);
9445 }
9446
9447 line_header_local.sect_off = line_offset;
9448 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9449 line_header_local_hash = line_header_hash (&line_header_local);
9450 if (dwarf2_per_objfile->line_header_hash != NULL)
9451 {
9452 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9453 &line_header_local,
9454 line_header_local_hash, NO_INSERT);
9455
9456 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9457 is not present in *SLOT (since if there is something in *SLOT then
9458 it will be for a partial_unit). */
9459 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9460 {
9461 gdb_assert (*slot != NULL);
9462 cu->line_header = (struct line_header *) *slot;
9463 return;
9464 }
9465 }
9466
9467 /* dwarf_decode_line_header does not yet provide sufficient information.
9468 We always have to call also dwarf_decode_lines for it. */
9469 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9470 if (lh == NULL)
9471 return;
9472
9473 cu->line_header = lh.release ();
9474 cu->line_header_die_owner = die;
9475
9476 if (dwarf2_per_objfile->line_header_hash == NULL)
9477 slot = NULL;
9478 else
9479 {
9480 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9481 &line_header_local,
9482 line_header_local_hash, INSERT);
9483 gdb_assert (slot != NULL);
9484 }
9485 if (slot != NULL && *slot == NULL)
9486 {
9487 /* This newly decoded line number information unit will be owned
9488 by line_header_hash hash table. */
9489 *slot = cu->line_header;
9490 cu->line_header_die_owner = NULL;
9491 }
9492 else
9493 {
9494 /* We cannot free any current entry in (*slot) as that struct line_header
9495 may be already used by multiple CUs. Create only temporary decoded
9496 line_header for this CU - it may happen at most once for each line
9497 number information unit. And if we're not using line_header_hash
9498 then this is what we want as well. */
9499 gdb_assert (die->tag != DW_TAG_partial_unit);
9500 }
9501 decode_mapping = (die->tag != DW_TAG_partial_unit);
9502 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9503 decode_mapping);
9504
9505 }
9506
9507 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9508
9509 static void
9510 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9511 {
9512 struct objfile *objfile = dwarf2_per_objfile->objfile;
9513 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9514 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9515 CORE_ADDR highpc = ((CORE_ADDR) 0);
9516 struct attribute *attr;
9517 struct die_info *child_die;
9518 CORE_ADDR baseaddr;
9519
9520 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9521
9522 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9523
9524 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9525 from finish_block. */
9526 if (lowpc == ((CORE_ADDR) -1))
9527 lowpc = highpc;
9528 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9529
9530 file_and_directory fnd = find_file_and_directory (die, cu);
9531
9532 prepare_one_comp_unit (cu, die, cu->language);
9533
9534 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9535 standardised yet. As a workaround for the language detection we fall
9536 back to the DW_AT_producer string. */
9537 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9538 cu->language = language_opencl;
9539
9540 /* Similar hack for Go. */
9541 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9542 set_cu_language (DW_LANG_Go, cu);
9543
9544 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
9545
9546 /* Decode line number information if present. We do this before
9547 processing child DIEs, so that the line header table is available
9548 for DW_AT_decl_file. */
9549 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
9550
9551 /* Process all dies in compilation unit. */
9552 if (die->child != NULL)
9553 {
9554 child_die = die->child;
9555 while (child_die && child_die->tag)
9556 {
9557 process_die (child_die, cu);
9558 child_die = sibling_die (child_die);
9559 }
9560 }
9561
9562 /* Decode macro information, if present. Dwarf 2 macro information
9563 refers to information in the line number info statement program
9564 header, so we can only read it if we've read the header
9565 successfully. */
9566 attr = dwarf2_attr (die, DW_AT_macros, cu);
9567 if (attr == NULL)
9568 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9569 if (attr && cu->line_header)
9570 {
9571 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9572 complaint (&symfile_complaints,
9573 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
9574
9575 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9576 }
9577 else
9578 {
9579 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9580 if (attr && cu->line_header)
9581 {
9582 unsigned int macro_offset = DW_UNSND (attr);
9583
9584 dwarf_decode_macros (cu, macro_offset, 0);
9585 }
9586 }
9587 }
9588
9589 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9590 Create the set of symtabs used by this TU, or if this TU is sharing
9591 symtabs with another TU and the symtabs have already been created
9592 then restore those symtabs in the line header.
9593 We don't need the pc/line-number mapping for type units. */
9594
9595 static void
9596 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9597 {
9598 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9599 struct type_unit_group *tu_group;
9600 int first_time;
9601 struct attribute *attr;
9602 unsigned int i;
9603 struct signatured_type *sig_type;
9604
9605 gdb_assert (per_cu->is_debug_types);
9606 sig_type = (struct signatured_type *) per_cu;
9607
9608 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9609
9610 /* If we're using .gdb_index (includes -readnow) then
9611 per_cu->type_unit_group may not have been set up yet. */
9612 if (sig_type->type_unit_group == NULL)
9613 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9614 tu_group = sig_type->type_unit_group;
9615
9616 /* If we've already processed this stmt_list there's no real need to
9617 do it again, we could fake it and just recreate the part we need
9618 (file name,index -> symtab mapping). If data shows this optimization
9619 is useful we can do it then. */
9620 first_time = tu_group->compunit_symtab == NULL;
9621
9622 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9623 debug info. */
9624 line_header_up lh;
9625 if (attr != NULL)
9626 {
9627 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9628 lh = dwarf_decode_line_header (line_offset, cu);
9629 }
9630 if (lh == NULL)
9631 {
9632 if (first_time)
9633 dwarf2_start_symtab (cu, "", NULL, 0);
9634 else
9635 {
9636 gdb_assert (tu_group->symtabs == NULL);
9637 restart_symtab (tu_group->compunit_symtab, "", 0);
9638 }
9639 return;
9640 }
9641
9642 cu->line_header = lh.release ();
9643 cu->line_header_die_owner = die;
9644
9645 if (first_time)
9646 {
9647 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9648
9649 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9650 still initializing it, and our caller (a few levels up)
9651 process_full_type_unit still needs to know if this is the first
9652 time. */
9653
9654 tu_group->num_symtabs = cu->line_header->file_names.size ();
9655 tu_group->symtabs = XNEWVEC (struct symtab *,
9656 cu->line_header->file_names.size ());
9657
9658 for (i = 0; i < cu->line_header->file_names.size (); ++i)
9659 {
9660 file_entry &fe = cu->line_header->file_names[i];
9661
9662 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
9663
9664 if (current_subfile->symtab == NULL)
9665 {
9666 /* NOTE: start_subfile will recognize when it's been
9667 passed a file it has already seen. So we can't
9668 assume there's a simple mapping from
9669 cu->line_header->file_names to subfiles, plus
9670 cu->line_header->file_names may contain dups. */
9671 current_subfile->symtab
9672 = allocate_symtab (cust, current_subfile->name);
9673 }
9674
9675 fe.symtab = current_subfile->symtab;
9676 tu_group->symtabs[i] = fe.symtab;
9677 }
9678 }
9679 else
9680 {
9681 restart_symtab (tu_group->compunit_symtab, "", 0);
9682
9683 for (i = 0; i < cu->line_header->file_names.size (); ++i)
9684 {
9685 file_entry &fe = cu->line_header->file_names[i];
9686
9687 fe.symtab = tu_group->symtabs[i];
9688 }
9689 }
9690
9691 /* The main symtab is allocated last. Type units don't have DW_AT_name
9692 so they don't have a "real" (so to speak) symtab anyway.
9693 There is later code that will assign the main symtab to all symbols
9694 that don't have one. We need to handle the case of a symbol with a
9695 missing symtab (DW_AT_decl_file) anyway. */
9696 }
9697
9698 /* Process DW_TAG_type_unit.
9699 For TUs we want to skip the first top level sibling if it's not the
9700 actual type being defined by this TU. In this case the first top
9701 level sibling is there to provide context only. */
9702
9703 static void
9704 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9705 {
9706 struct die_info *child_die;
9707
9708 prepare_one_comp_unit (cu, die, language_minimal);
9709
9710 /* Initialize (or reinitialize) the machinery for building symtabs.
9711 We do this before processing child DIEs, so that the line header table
9712 is available for DW_AT_decl_file. */
9713 setup_type_unit_groups (die, cu);
9714
9715 if (die->child != NULL)
9716 {
9717 child_die = die->child;
9718 while (child_die && child_die->tag)
9719 {
9720 process_die (child_die, cu);
9721 child_die = sibling_die (child_die);
9722 }
9723 }
9724 }
9725 \f
9726 /* DWO/DWP files.
9727
9728 http://gcc.gnu.org/wiki/DebugFission
9729 http://gcc.gnu.org/wiki/DebugFissionDWP
9730
9731 To simplify handling of both DWO files ("object" files with the DWARF info)
9732 and DWP files (a file with the DWOs packaged up into one file), we treat
9733 DWP files as having a collection of virtual DWO files. */
9734
9735 static hashval_t
9736 hash_dwo_file (const void *item)
9737 {
9738 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9739 hashval_t hash;
9740
9741 hash = htab_hash_string (dwo_file->dwo_name);
9742 if (dwo_file->comp_dir != NULL)
9743 hash += htab_hash_string (dwo_file->comp_dir);
9744 return hash;
9745 }
9746
9747 static int
9748 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9749 {
9750 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9751 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9752
9753 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9754 return 0;
9755 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9756 return lhs->comp_dir == rhs->comp_dir;
9757 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9758 }
9759
9760 /* Allocate a hash table for DWO files. */
9761
9762 static htab_t
9763 allocate_dwo_file_hash_table (void)
9764 {
9765 struct objfile *objfile = dwarf2_per_objfile->objfile;
9766
9767 return htab_create_alloc_ex (41,
9768 hash_dwo_file,
9769 eq_dwo_file,
9770 NULL,
9771 &objfile->objfile_obstack,
9772 hashtab_obstack_allocate,
9773 dummy_obstack_deallocate);
9774 }
9775
9776 /* Lookup DWO file DWO_NAME. */
9777
9778 static void **
9779 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9780 {
9781 struct dwo_file find_entry;
9782 void **slot;
9783
9784 if (dwarf2_per_objfile->dwo_files == NULL)
9785 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9786
9787 memset (&find_entry, 0, sizeof (find_entry));
9788 find_entry.dwo_name = dwo_name;
9789 find_entry.comp_dir = comp_dir;
9790 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9791
9792 return slot;
9793 }
9794
9795 static hashval_t
9796 hash_dwo_unit (const void *item)
9797 {
9798 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9799
9800 /* This drops the top 32 bits of the id, but is ok for a hash. */
9801 return dwo_unit->signature;
9802 }
9803
9804 static int
9805 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9806 {
9807 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9808 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9809
9810 /* The signature is assumed to be unique within the DWO file.
9811 So while object file CU dwo_id's always have the value zero,
9812 that's OK, assuming each object file DWO file has only one CU,
9813 and that's the rule for now. */
9814 return lhs->signature == rhs->signature;
9815 }
9816
9817 /* Allocate a hash table for DWO CUs,TUs.
9818 There is one of these tables for each of CUs,TUs for each DWO file. */
9819
9820 static htab_t
9821 allocate_dwo_unit_table (struct objfile *objfile)
9822 {
9823 /* Start out with a pretty small number.
9824 Generally DWO files contain only one CU and maybe some TUs. */
9825 return htab_create_alloc_ex (3,
9826 hash_dwo_unit,
9827 eq_dwo_unit,
9828 NULL,
9829 &objfile->objfile_obstack,
9830 hashtab_obstack_allocate,
9831 dummy_obstack_deallocate);
9832 }
9833
9834 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9835
9836 struct create_dwo_cu_data
9837 {
9838 struct dwo_file *dwo_file;
9839 struct dwo_unit dwo_unit;
9840 };
9841
9842 /* die_reader_func for create_dwo_cu. */
9843
9844 static void
9845 create_dwo_cu_reader (const struct die_reader_specs *reader,
9846 const gdb_byte *info_ptr,
9847 struct die_info *comp_unit_die,
9848 int has_children,
9849 void *datap)
9850 {
9851 struct dwarf2_cu *cu = reader->cu;
9852 sect_offset sect_off = cu->per_cu->sect_off;
9853 struct dwarf2_section_info *section = cu->per_cu->section;
9854 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9855 struct dwo_file *dwo_file = data->dwo_file;
9856 struct dwo_unit *dwo_unit = &data->dwo_unit;
9857 struct attribute *attr;
9858
9859 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9860 if (attr == NULL)
9861 {
9862 complaint (&symfile_complaints,
9863 _("Dwarf Error: debug entry at offset 0x%x is missing"
9864 " its dwo_id [in module %s]"),
9865 to_underlying (sect_off), dwo_file->dwo_name);
9866 return;
9867 }
9868
9869 dwo_unit->dwo_file = dwo_file;
9870 dwo_unit->signature = DW_UNSND (attr);
9871 dwo_unit->section = section;
9872 dwo_unit->sect_off = sect_off;
9873 dwo_unit->length = cu->per_cu->length;
9874
9875 if (dwarf_read_debug)
9876 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9877 to_underlying (sect_off),
9878 hex_string (dwo_unit->signature));
9879 }
9880
9881 /* Create the dwo_units for the CUs in a DWO_FILE.
9882 Note: This function processes DWO files only, not DWP files. */
9883
9884 static void
9885 create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
9886 htab_t &cus_htab)
9887 {
9888 struct objfile *objfile = dwarf2_per_objfile->objfile;
9889 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
9890 const gdb_byte *info_ptr, *end_ptr;
9891
9892 dwarf2_read_section (objfile, &section);
9893 info_ptr = section.buffer;
9894
9895 if (info_ptr == NULL)
9896 return;
9897
9898 if (dwarf_read_debug)
9899 {
9900 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9901 get_section_name (&section),
9902 get_section_file_name (&section));
9903 }
9904
9905 end_ptr = info_ptr + section.size;
9906 while (info_ptr < end_ptr)
9907 {
9908 struct dwarf2_per_cu_data per_cu;
9909 struct create_dwo_cu_data create_dwo_cu_data;
9910 struct dwo_unit *dwo_unit;
9911 void **slot;
9912 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
9913
9914 memset (&create_dwo_cu_data.dwo_unit, 0,
9915 sizeof (create_dwo_cu_data.dwo_unit));
9916 memset (&per_cu, 0, sizeof (per_cu));
9917 per_cu.objfile = objfile;
9918 per_cu.is_debug_types = 0;
9919 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
9920 per_cu.section = &section;
9921 create_dwo_cu_data.dwo_file = &dwo_file;
9922
9923 init_cutu_and_read_dies_no_follow (
9924 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
9925 info_ptr += per_cu.length;
9926
9927 // If the unit could not be parsed, skip it.
9928 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
9929 continue;
9930
9931 if (cus_htab == NULL)
9932 cus_htab = allocate_dwo_unit_table (objfile);
9933
9934 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9935 *dwo_unit = create_dwo_cu_data.dwo_unit;
9936 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
9937 gdb_assert (slot != NULL);
9938 if (*slot != NULL)
9939 {
9940 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
9941 sect_offset dup_sect_off = dup_cu->sect_off;
9942
9943 complaint (&symfile_complaints,
9944 _("debug cu entry at offset 0x%x is duplicate to"
9945 " the entry at offset 0x%x, signature %s"),
9946 to_underlying (sect_off), to_underlying (dup_sect_off),
9947 hex_string (dwo_unit->signature));
9948 }
9949 *slot = (void *)dwo_unit;
9950 }
9951 }
9952
9953 /* DWP file .debug_{cu,tu}_index section format:
9954 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9955
9956 DWP Version 1:
9957
9958 Both index sections have the same format, and serve to map a 64-bit
9959 signature to a set of section numbers. Each section begins with a header,
9960 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9961 indexes, and a pool of 32-bit section numbers. The index sections will be
9962 aligned at 8-byte boundaries in the file.
9963
9964 The index section header consists of:
9965
9966 V, 32 bit version number
9967 -, 32 bits unused
9968 N, 32 bit number of compilation units or type units in the index
9969 M, 32 bit number of slots in the hash table
9970
9971 Numbers are recorded using the byte order of the application binary.
9972
9973 The hash table begins at offset 16 in the section, and consists of an array
9974 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9975 order of the application binary). Unused slots in the hash table are 0.
9976 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9977
9978 The parallel table begins immediately after the hash table
9979 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9980 array of 32-bit indexes (using the byte order of the application binary),
9981 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9982 table contains a 32-bit index into the pool of section numbers. For unused
9983 hash table slots, the corresponding entry in the parallel table will be 0.
9984
9985 The pool of section numbers begins immediately following the hash table
9986 (at offset 16 + 12 * M from the beginning of the section). The pool of
9987 section numbers consists of an array of 32-bit words (using the byte order
9988 of the application binary). Each item in the array is indexed starting
9989 from 0. The hash table entry provides the index of the first section
9990 number in the set. Additional section numbers in the set follow, and the
9991 set is terminated by a 0 entry (section number 0 is not used in ELF).
9992
9993 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9994 section must be the first entry in the set, and the .debug_abbrev.dwo must
9995 be the second entry. Other members of the set may follow in any order.
9996
9997 ---
9998
9999 DWP Version 2:
10000
10001 DWP Version 2 combines all the .debug_info, etc. sections into one,
10002 and the entries in the index tables are now offsets into these sections.
10003 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
10004 section.
10005
10006 Index Section Contents:
10007 Header
10008 Hash Table of Signatures dwp_hash_table.hash_table
10009 Parallel Table of Indices dwp_hash_table.unit_table
10010 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
10011 Table of Section Sizes dwp_hash_table.v2.sizes
10012
10013 The index section header consists of:
10014
10015 V, 32 bit version number
10016 L, 32 bit number of columns in the table of section offsets
10017 N, 32 bit number of compilation units or type units in the index
10018 M, 32 bit number of slots in the hash table
10019
10020 Numbers are recorded using the byte order of the application binary.
10021
10022 The hash table has the same format as version 1.
10023 The parallel table of indices has the same format as version 1,
10024 except that the entries are origin-1 indices into the table of sections
10025 offsets and the table of section sizes.
10026
10027 The table of offsets begins immediately following the parallel table
10028 (at offset 16 + 12 * M from the beginning of the section). The table is
10029 a two-dimensional array of 32-bit words (using the byte order of the
10030 application binary), with L columns and N+1 rows, in row-major order.
10031 Each row in the array is indexed starting from 0. The first row provides
10032 a key to the remaining rows: each column in this row provides an identifier
10033 for a debug section, and the offsets in the same column of subsequent rows
10034 refer to that section. The section identifiers are:
10035
10036 DW_SECT_INFO 1 .debug_info.dwo
10037 DW_SECT_TYPES 2 .debug_types.dwo
10038 DW_SECT_ABBREV 3 .debug_abbrev.dwo
10039 DW_SECT_LINE 4 .debug_line.dwo
10040 DW_SECT_LOC 5 .debug_loc.dwo
10041 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
10042 DW_SECT_MACINFO 7 .debug_macinfo.dwo
10043 DW_SECT_MACRO 8 .debug_macro.dwo
10044
10045 The offsets provided by the CU and TU index sections are the base offsets
10046 for the contributions made by each CU or TU to the corresponding section
10047 in the package file. Each CU and TU header contains an abbrev_offset
10048 field, used to find the abbreviations table for that CU or TU within the
10049 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
10050 be interpreted as relative to the base offset given in the index section.
10051 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
10052 should be interpreted as relative to the base offset for .debug_line.dwo,
10053 and offsets into other debug sections obtained from DWARF attributes should
10054 also be interpreted as relative to the corresponding base offset.
10055
10056 The table of sizes begins immediately following the table of offsets.
10057 Like the table of offsets, it is a two-dimensional array of 32-bit words,
10058 with L columns and N rows, in row-major order. Each row in the array is
10059 indexed starting from 1 (row 0 is shared by the two tables).
10060
10061 ---
10062
10063 Hash table lookup is handled the same in version 1 and 2:
10064
10065 We assume that N and M will not exceed 2^32 - 1.
10066 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
10067
10068 Given a 64-bit compilation unit signature or a type signature S, an entry
10069 in the hash table is located as follows:
10070
10071 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
10072 the low-order k bits all set to 1.
10073
10074 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
10075
10076 3) If the hash table entry at index H matches the signature, use that
10077 entry. If the hash table entry at index H is unused (all zeroes),
10078 terminate the search: the signature is not present in the table.
10079
10080 4) Let H = (H + H') modulo M. Repeat at Step 3.
10081
10082 Because M > N and H' and M are relatively prime, the search is guaranteed
10083 to stop at an unused slot or find the match. */
10084
10085 /* Create a hash table to map DWO IDs to their CU/TU entry in
10086 .debug_{info,types}.dwo in DWP_FILE.
10087 Returns NULL if there isn't one.
10088 Note: This function processes DWP files only, not DWO files. */
10089
10090 static struct dwp_hash_table *
10091 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
10092 {
10093 struct objfile *objfile = dwarf2_per_objfile->objfile;
10094 bfd *dbfd = dwp_file->dbfd;
10095 const gdb_byte *index_ptr, *index_end;
10096 struct dwarf2_section_info *index;
10097 uint32_t version, nr_columns, nr_units, nr_slots;
10098 struct dwp_hash_table *htab;
10099
10100 if (is_debug_types)
10101 index = &dwp_file->sections.tu_index;
10102 else
10103 index = &dwp_file->sections.cu_index;
10104
10105 if (dwarf2_section_empty_p (index))
10106 return NULL;
10107 dwarf2_read_section (objfile, index);
10108
10109 index_ptr = index->buffer;
10110 index_end = index_ptr + index->size;
10111
10112 version = read_4_bytes (dbfd, index_ptr);
10113 index_ptr += 4;
10114 if (version == 2)
10115 nr_columns = read_4_bytes (dbfd, index_ptr);
10116 else
10117 nr_columns = 0;
10118 index_ptr += 4;
10119 nr_units = read_4_bytes (dbfd, index_ptr);
10120 index_ptr += 4;
10121 nr_slots = read_4_bytes (dbfd, index_ptr);
10122 index_ptr += 4;
10123
10124 if (version != 1 && version != 2)
10125 {
10126 error (_("Dwarf Error: unsupported DWP file version (%s)"
10127 " [in module %s]"),
10128 pulongest (version), dwp_file->name);
10129 }
10130 if (nr_slots != (nr_slots & -nr_slots))
10131 {
10132 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
10133 " is not power of 2 [in module %s]"),
10134 pulongest (nr_slots), dwp_file->name);
10135 }
10136
10137 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
10138 htab->version = version;
10139 htab->nr_columns = nr_columns;
10140 htab->nr_units = nr_units;
10141 htab->nr_slots = nr_slots;
10142 htab->hash_table = index_ptr;
10143 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
10144
10145 /* Exit early if the table is empty. */
10146 if (nr_slots == 0 || nr_units == 0
10147 || (version == 2 && nr_columns == 0))
10148 {
10149 /* All must be zero. */
10150 if (nr_slots != 0 || nr_units != 0
10151 || (version == 2 && nr_columns != 0))
10152 {
10153 complaint (&symfile_complaints,
10154 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10155 " all zero [in modules %s]"),
10156 dwp_file->name);
10157 }
10158 return htab;
10159 }
10160
10161 if (version == 1)
10162 {
10163 htab->section_pool.v1.indices =
10164 htab->unit_table + sizeof (uint32_t) * nr_slots;
10165 /* It's harder to decide whether the section is too small in v1.
10166 V1 is deprecated anyway so we punt. */
10167 }
10168 else
10169 {
10170 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10171 int *ids = htab->section_pool.v2.section_ids;
10172 /* Reverse map for error checking. */
10173 int ids_seen[DW_SECT_MAX + 1];
10174 int i;
10175
10176 if (nr_columns < 2)
10177 {
10178 error (_("Dwarf Error: bad DWP hash table, too few columns"
10179 " in section table [in module %s]"),
10180 dwp_file->name);
10181 }
10182 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10183 {
10184 error (_("Dwarf Error: bad DWP hash table, too many columns"
10185 " in section table [in module %s]"),
10186 dwp_file->name);
10187 }
10188 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10189 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10190 for (i = 0; i < nr_columns; ++i)
10191 {
10192 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10193
10194 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10195 {
10196 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10197 " in section table [in module %s]"),
10198 id, dwp_file->name);
10199 }
10200 if (ids_seen[id] != -1)
10201 {
10202 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10203 " id %d in section table [in module %s]"),
10204 id, dwp_file->name);
10205 }
10206 ids_seen[id] = i;
10207 ids[i] = id;
10208 }
10209 /* Must have exactly one info or types section. */
10210 if (((ids_seen[DW_SECT_INFO] != -1)
10211 + (ids_seen[DW_SECT_TYPES] != -1))
10212 != 1)
10213 {
10214 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10215 " DWO info/types section [in module %s]"),
10216 dwp_file->name);
10217 }
10218 /* Must have an abbrev section. */
10219 if (ids_seen[DW_SECT_ABBREV] == -1)
10220 {
10221 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10222 " section [in module %s]"),
10223 dwp_file->name);
10224 }
10225 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10226 htab->section_pool.v2.sizes =
10227 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10228 * nr_units * nr_columns);
10229 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10230 * nr_units * nr_columns))
10231 > index_end)
10232 {
10233 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10234 " [in module %s]"),
10235 dwp_file->name);
10236 }
10237 }
10238
10239 return htab;
10240 }
10241
10242 /* Update SECTIONS with the data from SECTP.
10243
10244 This function is like the other "locate" section routines that are
10245 passed to bfd_map_over_sections, but in this context the sections to
10246 read comes from the DWP V1 hash table, not the full ELF section table.
10247
10248 The result is non-zero for success, or zero if an error was found. */
10249
10250 static int
10251 locate_v1_virtual_dwo_sections (asection *sectp,
10252 struct virtual_v1_dwo_sections *sections)
10253 {
10254 const struct dwop_section_names *names = &dwop_section_names;
10255
10256 if (section_is_p (sectp->name, &names->abbrev_dwo))
10257 {
10258 /* There can be only one. */
10259 if (sections->abbrev.s.section != NULL)
10260 return 0;
10261 sections->abbrev.s.section = sectp;
10262 sections->abbrev.size = bfd_get_section_size (sectp);
10263 }
10264 else if (section_is_p (sectp->name, &names->info_dwo)
10265 || section_is_p (sectp->name, &names->types_dwo))
10266 {
10267 /* There can be only one. */
10268 if (sections->info_or_types.s.section != NULL)
10269 return 0;
10270 sections->info_or_types.s.section = sectp;
10271 sections->info_or_types.size = bfd_get_section_size (sectp);
10272 }
10273 else if (section_is_p (sectp->name, &names->line_dwo))
10274 {
10275 /* There can be only one. */
10276 if (sections->line.s.section != NULL)
10277 return 0;
10278 sections->line.s.section = sectp;
10279 sections->line.size = bfd_get_section_size (sectp);
10280 }
10281 else if (section_is_p (sectp->name, &names->loc_dwo))
10282 {
10283 /* There can be only one. */
10284 if (sections->loc.s.section != NULL)
10285 return 0;
10286 sections->loc.s.section = sectp;
10287 sections->loc.size = bfd_get_section_size (sectp);
10288 }
10289 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10290 {
10291 /* There can be only one. */
10292 if (sections->macinfo.s.section != NULL)
10293 return 0;
10294 sections->macinfo.s.section = sectp;
10295 sections->macinfo.size = bfd_get_section_size (sectp);
10296 }
10297 else if (section_is_p (sectp->name, &names->macro_dwo))
10298 {
10299 /* There can be only one. */
10300 if (sections->macro.s.section != NULL)
10301 return 0;
10302 sections->macro.s.section = sectp;
10303 sections->macro.size = bfd_get_section_size (sectp);
10304 }
10305 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10306 {
10307 /* There can be only one. */
10308 if (sections->str_offsets.s.section != NULL)
10309 return 0;
10310 sections->str_offsets.s.section = sectp;
10311 sections->str_offsets.size = bfd_get_section_size (sectp);
10312 }
10313 else
10314 {
10315 /* No other kind of section is valid. */
10316 return 0;
10317 }
10318
10319 return 1;
10320 }
10321
10322 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10323 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10324 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10325 This is for DWP version 1 files. */
10326
10327 static struct dwo_unit *
10328 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10329 uint32_t unit_index,
10330 const char *comp_dir,
10331 ULONGEST signature, int is_debug_types)
10332 {
10333 struct objfile *objfile = dwarf2_per_objfile->objfile;
10334 const struct dwp_hash_table *dwp_htab =
10335 is_debug_types ? dwp_file->tus : dwp_file->cus;
10336 bfd *dbfd = dwp_file->dbfd;
10337 const char *kind = is_debug_types ? "TU" : "CU";
10338 struct dwo_file *dwo_file;
10339 struct dwo_unit *dwo_unit;
10340 struct virtual_v1_dwo_sections sections;
10341 void **dwo_file_slot;
10342 char *virtual_dwo_name;
10343 struct cleanup *cleanups;
10344 int i;
10345
10346 gdb_assert (dwp_file->version == 1);
10347
10348 if (dwarf_read_debug)
10349 {
10350 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10351 kind,
10352 pulongest (unit_index), hex_string (signature),
10353 dwp_file->name);
10354 }
10355
10356 /* Fetch the sections of this DWO unit.
10357 Put a limit on the number of sections we look for so that bad data
10358 doesn't cause us to loop forever. */
10359
10360 #define MAX_NR_V1_DWO_SECTIONS \
10361 (1 /* .debug_info or .debug_types */ \
10362 + 1 /* .debug_abbrev */ \
10363 + 1 /* .debug_line */ \
10364 + 1 /* .debug_loc */ \
10365 + 1 /* .debug_str_offsets */ \
10366 + 1 /* .debug_macro or .debug_macinfo */ \
10367 + 1 /* trailing zero */)
10368
10369 memset (&sections, 0, sizeof (sections));
10370 cleanups = make_cleanup (null_cleanup, 0);
10371
10372 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10373 {
10374 asection *sectp;
10375 uint32_t section_nr =
10376 read_4_bytes (dbfd,
10377 dwp_htab->section_pool.v1.indices
10378 + (unit_index + i) * sizeof (uint32_t));
10379
10380 if (section_nr == 0)
10381 break;
10382 if (section_nr >= dwp_file->num_sections)
10383 {
10384 error (_("Dwarf Error: bad DWP hash table, section number too large"
10385 " [in module %s]"),
10386 dwp_file->name);
10387 }
10388
10389 sectp = dwp_file->elf_sections[section_nr];
10390 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10391 {
10392 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10393 " [in module %s]"),
10394 dwp_file->name);
10395 }
10396 }
10397
10398 if (i < 2
10399 || dwarf2_section_empty_p (&sections.info_or_types)
10400 || dwarf2_section_empty_p (&sections.abbrev))
10401 {
10402 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10403 " [in module %s]"),
10404 dwp_file->name);
10405 }
10406 if (i == MAX_NR_V1_DWO_SECTIONS)
10407 {
10408 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10409 " [in module %s]"),
10410 dwp_file->name);
10411 }
10412
10413 /* It's easier for the rest of the code if we fake a struct dwo_file and
10414 have dwo_unit "live" in that. At least for now.
10415
10416 The DWP file can be made up of a random collection of CUs and TUs.
10417 However, for each CU + set of TUs that came from the same original DWO
10418 file, we can combine them back into a virtual DWO file to save space
10419 (fewer struct dwo_file objects to allocate). Remember that for really
10420 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10421
10422 virtual_dwo_name =
10423 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10424 get_section_id (&sections.abbrev),
10425 get_section_id (&sections.line),
10426 get_section_id (&sections.loc),
10427 get_section_id (&sections.str_offsets));
10428 make_cleanup (xfree, virtual_dwo_name);
10429 /* Can we use an existing virtual DWO file? */
10430 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10431 /* Create one if necessary. */
10432 if (*dwo_file_slot == NULL)
10433 {
10434 if (dwarf_read_debug)
10435 {
10436 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10437 virtual_dwo_name);
10438 }
10439 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10440 dwo_file->dwo_name
10441 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10442 virtual_dwo_name,
10443 strlen (virtual_dwo_name));
10444 dwo_file->comp_dir = comp_dir;
10445 dwo_file->sections.abbrev = sections.abbrev;
10446 dwo_file->sections.line = sections.line;
10447 dwo_file->sections.loc = sections.loc;
10448 dwo_file->sections.macinfo = sections.macinfo;
10449 dwo_file->sections.macro = sections.macro;
10450 dwo_file->sections.str_offsets = sections.str_offsets;
10451 /* The "str" section is global to the entire DWP file. */
10452 dwo_file->sections.str = dwp_file->sections.str;
10453 /* The info or types section is assigned below to dwo_unit,
10454 there's no need to record it in dwo_file.
10455 Also, we can't simply record type sections in dwo_file because
10456 we record a pointer into the vector in dwo_unit. As we collect more
10457 types we'll grow the vector and eventually have to reallocate space
10458 for it, invalidating all copies of pointers into the previous
10459 contents. */
10460 *dwo_file_slot = dwo_file;
10461 }
10462 else
10463 {
10464 if (dwarf_read_debug)
10465 {
10466 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10467 virtual_dwo_name);
10468 }
10469 dwo_file = (struct dwo_file *) *dwo_file_slot;
10470 }
10471 do_cleanups (cleanups);
10472
10473 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10474 dwo_unit->dwo_file = dwo_file;
10475 dwo_unit->signature = signature;
10476 dwo_unit->section =
10477 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10478 *dwo_unit->section = sections.info_or_types;
10479 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10480
10481 return dwo_unit;
10482 }
10483
10484 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10485 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10486 piece within that section used by a TU/CU, return a virtual section
10487 of just that piece. */
10488
10489 static struct dwarf2_section_info
10490 create_dwp_v2_section (struct dwarf2_section_info *section,
10491 bfd_size_type offset, bfd_size_type size)
10492 {
10493 struct dwarf2_section_info result;
10494 asection *sectp;
10495
10496 gdb_assert (section != NULL);
10497 gdb_assert (!section->is_virtual);
10498
10499 memset (&result, 0, sizeof (result));
10500 result.s.containing_section = section;
10501 result.is_virtual = 1;
10502
10503 if (size == 0)
10504 return result;
10505
10506 sectp = get_section_bfd_section (section);
10507
10508 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10509 bounds of the real section. This is a pretty-rare event, so just
10510 flag an error (easier) instead of a warning and trying to cope. */
10511 if (sectp == NULL
10512 || offset + size > bfd_get_section_size (sectp))
10513 {
10514 bfd *abfd = sectp->owner;
10515
10516 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10517 " in section %s [in module %s]"),
10518 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10519 objfile_name (dwarf2_per_objfile->objfile));
10520 }
10521
10522 result.virtual_offset = offset;
10523 result.size = size;
10524 return result;
10525 }
10526
10527 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10528 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10529 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10530 This is for DWP version 2 files. */
10531
10532 static struct dwo_unit *
10533 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10534 uint32_t unit_index,
10535 const char *comp_dir,
10536 ULONGEST signature, int is_debug_types)
10537 {
10538 struct objfile *objfile = dwarf2_per_objfile->objfile;
10539 const struct dwp_hash_table *dwp_htab =
10540 is_debug_types ? dwp_file->tus : dwp_file->cus;
10541 bfd *dbfd = dwp_file->dbfd;
10542 const char *kind = is_debug_types ? "TU" : "CU";
10543 struct dwo_file *dwo_file;
10544 struct dwo_unit *dwo_unit;
10545 struct virtual_v2_dwo_sections sections;
10546 void **dwo_file_slot;
10547 char *virtual_dwo_name;
10548 struct cleanup *cleanups;
10549 int i;
10550
10551 gdb_assert (dwp_file->version == 2);
10552
10553 if (dwarf_read_debug)
10554 {
10555 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10556 kind,
10557 pulongest (unit_index), hex_string (signature),
10558 dwp_file->name);
10559 }
10560
10561 /* Fetch the section offsets of this DWO unit. */
10562
10563 memset (&sections, 0, sizeof (sections));
10564 cleanups = make_cleanup (null_cleanup, 0);
10565
10566 for (i = 0; i < dwp_htab->nr_columns; ++i)
10567 {
10568 uint32_t offset = read_4_bytes (dbfd,
10569 dwp_htab->section_pool.v2.offsets
10570 + (((unit_index - 1) * dwp_htab->nr_columns
10571 + i)
10572 * sizeof (uint32_t)));
10573 uint32_t size = read_4_bytes (dbfd,
10574 dwp_htab->section_pool.v2.sizes
10575 + (((unit_index - 1) * dwp_htab->nr_columns
10576 + i)
10577 * sizeof (uint32_t)));
10578
10579 switch (dwp_htab->section_pool.v2.section_ids[i])
10580 {
10581 case DW_SECT_INFO:
10582 case DW_SECT_TYPES:
10583 sections.info_or_types_offset = offset;
10584 sections.info_or_types_size = size;
10585 break;
10586 case DW_SECT_ABBREV:
10587 sections.abbrev_offset = offset;
10588 sections.abbrev_size = size;
10589 break;
10590 case DW_SECT_LINE:
10591 sections.line_offset = offset;
10592 sections.line_size = size;
10593 break;
10594 case DW_SECT_LOC:
10595 sections.loc_offset = offset;
10596 sections.loc_size = size;
10597 break;
10598 case DW_SECT_STR_OFFSETS:
10599 sections.str_offsets_offset = offset;
10600 sections.str_offsets_size = size;
10601 break;
10602 case DW_SECT_MACINFO:
10603 sections.macinfo_offset = offset;
10604 sections.macinfo_size = size;
10605 break;
10606 case DW_SECT_MACRO:
10607 sections.macro_offset = offset;
10608 sections.macro_size = size;
10609 break;
10610 }
10611 }
10612
10613 /* It's easier for the rest of the code if we fake a struct dwo_file and
10614 have dwo_unit "live" in that. At least for now.
10615
10616 The DWP file can be made up of a random collection of CUs and TUs.
10617 However, for each CU + set of TUs that came from the same original DWO
10618 file, we can combine them back into a virtual DWO file to save space
10619 (fewer struct dwo_file objects to allocate). Remember that for really
10620 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10621
10622 virtual_dwo_name =
10623 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10624 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10625 (long) (sections.line_size ? sections.line_offset : 0),
10626 (long) (sections.loc_size ? sections.loc_offset : 0),
10627 (long) (sections.str_offsets_size
10628 ? sections.str_offsets_offset : 0));
10629 make_cleanup (xfree, virtual_dwo_name);
10630 /* Can we use an existing virtual DWO file? */
10631 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10632 /* Create one if necessary. */
10633 if (*dwo_file_slot == NULL)
10634 {
10635 if (dwarf_read_debug)
10636 {
10637 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10638 virtual_dwo_name);
10639 }
10640 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10641 dwo_file->dwo_name
10642 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10643 virtual_dwo_name,
10644 strlen (virtual_dwo_name));
10645 dwo_file->comp_dir = comp_dir;
10646 dwo_file->sections.abbrev =
10647 create_dwp_v2_section (&dwp_file->sections.abbrev,
10648 sections.abbrev_offset, sections.abbrev_size);
10649 dwo_file->sections.line =
10650 create_dwp_v2_section (&dwp_file->sections.line,
10651 sections.line_offset, sections.line_size);
10652 dwo_file->sections.loc =
10653 create_dwp_v2_section (&dwp_file->sections.loc,
10654 sections.loc_offset, sections.loc_size);
10655 dwo_file->sections.macinfo =
10656 create_dwp_v2_section (&dwp_file->sections.macinfo,
10657 sections.macinfo_offset, sections.macinfo_size);
10658 dwo_file->sections.macro =
10659 create_dwp_v2_section (&dwp_file->sections.macro,
10660 sections.macro_offset, sections.macro_size);
10661 dwo_file->sections.str_offsets =
10662 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10663 sections.str_offsets_offset,
10664 sections.str_offsets_size);
10665 /* The "str" section is global to the entire DWP file. */
10666 dwo_file->sections.str = dwp_file->sections.str;
10667 /* The info or types section is assigned below to dwo_unit,
10668 there's no need to record it in dwo_file.
10669 Also, we can't simply record type sections in dwo_file because
10670 we record a pointer into the vector in dwo_unit. As we collect more
10671 types we'll grow the vector and eventually have to reallocate space
10672 for it, invalidating all copies of pointers into the previous
10673 contents. */
10674 *dwo_file_slot = dwo_file;
10675 }
10676 else
10677 {
10678 if (dwarf_read_debug)
10679 {
10680 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10681 virtual_dwo_name);
10682 }
10683 dwo_file = (struct dwo_file *) *dwo_file_slot;
10684 }
10685 do_cleanups (cleanups);
10686
10687 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10688 dwo_unit->dwo_file = dwo_file;
10689 dwo_unit->signature = signature;
10690 dwo_unit->section =
10691 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10692 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10693 ? &dwp_file->sections.types
10694 : &dwp_file->sections.info,
10695 sections.info_or_types_offset,
10696 sections.info_or_types_size);
10697 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10698
10699 return dwo_unit;
10700 }
10701
10702 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10703 Returns NULL if the signature isn't found. */
10704
10705 static struct dwo_unit *
10706 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10707 ULONGEST signature, int is_debug_types)
10708 {
10709 const struct dwp_hash_table *dwp_htab =
10710 is_debug_types ? dwp_file->tus : dwp_file->cus;
10711 bfd *dbfd = dwp_file->dbfd;
10712 uint32_t mask = dwp_htab->nr_slots - 1;
10713 uint32_t hash = signature & mask;
10714 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10715 unsigned int i;
10716 void **slot;
10717 struct dwo_unit find_dwo_cu;
10718
10719 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10720 find_dwo_cu.signature = signature;
10721 slot = htab_find_slot (is_debug_types
10722 ? dwp_file->loaded_tus
10723 : dwp_file->loaded_cus,
10724 &find_dwo_cu, INSERT);
10725
10726 if (*slot != NULL)
10727 return (struct dwo_unit *) *slot;
10728
10729 /* Use a for loop so that we don't loop forever on bad debug info. */
10730 for (i = 0; i < dwp_htab->nr_slots; ++i)
10731 {
10732 ULONGEST signature_in_table;
10733
10734 signature_in_table =
10735 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10736 if (signature_in_table == signature)
10737 {
10738 uint32_t unit_index =
10739 read_4_bytes (dbfd,
10740 dwp_htab->unit_table + hash * sizeof (uint32_t));
10741
10742 if (dwp_file->version == 1)
10743 {
10744 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10745 comp_dir, signature,
10746 is_debug_types);
10747 }
10748 else
10749 {
10750 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10751 comp_dir, signature,
10752 is_debug_types);
10753 }
10754 return (struct dwo_unit *) *slot;
10755 }
10756 if (signature_in_table == 0)
10757 return NULL;
10758 hash = (hash + hash2) & mask;
10759 }
10760
10761 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10762 " [in module %s]"),
10763 dwp_file->name);
10764 }
10765
10766 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10767 Open the file specified by FILE_NAME and hand it off to BFD for
10768 preliminary analysis. Return a newly initialized bfd *, which
10769 includes a canonicalized copy of FILE_NAME.
10770 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10771 SEARCH_CWD is true if the current directory is to be searched.
10772 It will be searched before debug-file-directory.
10773 If successful, the file is added to the bfd include table of the
10774 objfile's bfd (see gdb_bfd_record_inclusion).
10775 If unable to find/open the file, return NULL.
10776 NOTE: This function is derived from symfile_bfd_open. */
10777
10778 static gdb_bfd_ref_ptr
10779 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10780 {
10781 int desc, flags;
10782 char *absolute_name;
10783 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10784 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10785 to debug_file_directory. */
10786 char *search_path;
10787 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10788
10789 if (search_cwd)
10790 {
10791 if (*debug_file_directory != '\0')
10792 search_path = concat (".", dirname_separator_string,
10793 debug_file_directory, (char *) NULL);
10794 else
10795 search_path = xstrdup (".");
10796 }
10797 else
10798 search_path = xstrdup (debug_file_directory);
10799
10800 flags = OPF_RETURN_REALPATH;
10801 if (is_dwp)
10802 flags |= OPF_SEARCH_IN_PATH;
10803 desc = openp (search_path, flags, file_name,
10804 O_RDONLY | O_BINARY, &absolute_name);
10805 xfree (search_path);
10806 if (desc < 0)
10807 return NULL;
10808
10809 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
10810 xfree (absolute_name);
10811 if (sym_bfd == NULL)
10812 return NULL;
10813 bfd_set_cacheable (sym_bfd.get (), 1);
10814
10815 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10816 return NULL;
10817
10818 /* Success. Record the bfd as having been included by the objfile's bfd.
10819 This is important because things like demangled_names_hash lives in the
10820 objfile's per_bfd space and may have references to things like symbol
10821 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10822 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
10823
10824 return sym_bfd;
10825 }
10826
10827 /* Try to open DWO file FILE_NAME.
10828 COMP_DIR is the DW_AT_comp_dir attribute.
10829 The result is the bfd handle of the file.
10830 If there is a problem finding or opening the file, return NULL.
10831 Upon success, the canonicalized path of the file is stored in the bfd,
10832 same as symfile_bfd_open. */
10833
10834 static gdb_bfd_ref_ptr
10835 open_dwo_file (const char *file_name, const char *comp_dir)
10836 {
10837 if (IS_ABSOLUTE_PATH (file_name))
10838 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10839
10840 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10841
10842 if (comp_dir != NULL)
10843 {
10844 char *path_to_try = concat (comp_dir, SLASH_STRING,
10845 file_name, (char *) NULL);
10846
10847 /* NOTE: If comp_dir is a relative path, this will also try the
10848 search path, which seems useful. */
10849 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10850 1 /*search_cwd*/));
10851 xfree (path_to_try);
10852 if (abfd != NULL)
10853 return abfd;
10854 }
10855
10856 /* That didn't work, try debug-file-directory, which, despite its name,
10857 is a list of paths. */
10858
10859 if (*debug_file_directory == '\0')
10860 return NULL;
10861
10862 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10863 }
10864
10865 /* This function is mapped across the sections and remembers the offset and
10866 size of each of the DWO debugging sections we are interested in. */
10867
10868 static void
10869 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10870 {
10871 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10872 const struct dwop_section_names *names = &dwop_section_names;
10873
10874 if (section_is_p (sectp->name, &names->abbrev_dwo))
10875 {
10876 dwo_sections->abbrev.s.section = sectp;
10877 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10878 }
10879 else if (section_is_p (sectp->name, &names->info_dwo))
10880 {
10881 dwo_sections->info.s.section = sectp;
10882 dwo_sections->info.size = bfd_get_section_size (sectp);
10883 }
10884 else if (section_is_p (sectp->name, &names->line_dwo))
10885 {
10886 dwo_sections->line.s.section = sectp;
10887 dwo_sections->line.size = bfd_get_section_size (sectp);
10888 }
10889 else if (section_is_p (sectp->name, &names->loc_dwo))
10890 {
10891 dwo_sections->loc.s.section = sectp;
10892 dwo_sections->loc.size = bfd_get_section_size (sectp);
10893 }
10894 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10895 {
10896 dwo_sections->macinfo.s.section = sectp;
10897 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10898 }
10899 else if (section_is_p (sectp->name, &names->macro_dwo))
10900 {
10901 dwo_sections->macro.s.section = sectp;
10902 dwo_sections->macro.size = bfd_get_section_size (sectp);
10903 }
10904 else if (section_is_p (sectp->name, &names->str_dwo))
10905 {
10906 dwo_sections->str.s.section = sectp;
10907 dwo_sections->str.size = bfd_get_section_size (sectp);
10908 }
10909 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10910 {
10911 dwo_sections->str_offsets.s.section = sectp;
10912 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10913 }
10914 else if (section_is_p (sectp->name, &names->types_dwo))
10915 {
10916 struct dwarf2_section_info type_section;
10917
10918 memset (&type_section, 0, sizeof (type_section));
10919 type_section.s.section = sectp;
10920 type_section.size = bfd_get_section_size (sectp);
10921 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10922 &type_section);
10923 }
10924 }
10925
10926 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10927 by PER_CU. This is for the non-DWP case.
10928 The result is NULL if DWO_NAME can't be found. */
10929
10930 static struct dwo_file *
10931 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10932 const char *dwo_name, const char *comp_dir)
10933 {
10934 struct objfile *objfile = dwarf2_per_objfile->objfile;
10935 struct dwo_file *dwo_file;
10936 struct cleanup *cleanups;
10937
10938 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
10939 if (dbfd == NULL)
10940 {
10941 if (dwarf_read_debug)
10942 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10943 return NULL;
10944 }
10945 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10946 dwo_file->dwo_name = dwo_name;
10947 dwo_file->comp_dir = comp_dir;
10948 dwo_file->dbfd = dbfd.release ();
10949
10950 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10951
10952 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10953 &dwo_file->sections);
10954
10955 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
10956
10957 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10958 dwo_file->tus);
10959
10960 discard_cleanups (cleanups);
10961
10962 if (dwarf_read_debug)
10963 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10964
10965 return dwo_file;
10966 }
10967
10968 /* This function is mapped across the sections and remembers the offset and
10969 size of each of the DWP debugging sections common to version 1 and 2 that
10970 we are interested in. */
10971
10972 static void
10973 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10974 void *dwp_file_ptr)
10975 {
10976 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10977 const struct dwop_section_names *names = &dwop_section_names;
10978 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10979
10980 /* Record the ELF section number for later lookup: this is what the
10981 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10982 gdb_assert (elf_section_nr < dwp_file->num_sections);
10983 dwp_file->elf_sections[elf_section_nr] = sectp;
10984
10985 /* Look for specific sections that we need. */
10986 if (section_is_p (sectp->name, &names->str_dwo))
10987 {
10988 dwp_file->sections.str.s.section = sectp;
10989 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10990 }
10991 else if (section_is_p (sectp->name, &names->cu_index))
10992 {
10993 dwp_file->sections.cu_index.s.section = sectp;
10994 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10995 }
10996 else if (section_is_p (sectp->name, &names->tu_index))
10997 {
10998 dwp_file->sections.tu_index.s.section = sectp;
10999 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
11000 }
11001 }
11002
11003 /* This function is mapped across the sections and remembers the offset and
11004 size of each of the DWP version 2 debugging sections that we are interested
11005 in. This is split into a separate function because we don't know if we
11006 have version 1 or 2 until we parse the cu_index/tu_index sections. */
11007
11008 static void
11009 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
11010 {
11011 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
11012 const struct dwop_section_names *names = &dwop_section_names;
11013 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
11014
11015 /* Record the ELF section number for later lookup: this is what the
11016 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
11017 gdb_assert (elf_section_nr < dwp_file->num_sections);
11018 dwp_file->elf_sections[elf_section_nr] = sectp;
11019
11020 /* Look for specific sections that we need. */
11021 if (section_is_p (sectp->name, &names->abbrev_dwo))
11022 {
11023 dwp_file->sections.abbrev.s.section = sectp;
11024 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
11025 }
11026 else if (section_is_p (sectp->name, &names->info_dwo))
11027 {
11028 dwp_file->sections.info.s.section = sectp;
11029 dwp_file->sections.info.size = bfd_get_section_size (sectp);
11030 }
11031 else if (section_is_p (sectp->name, &names->line_dwo))
11032 {
11033 dwp_file->sections.line.s.section = sectp;
11034 dwp_file->sections.line.size = bfd_get_section_size (sectp);
11035 }
11036 else if (section_is_p (sectp->name, &names->loc_dwo))
11037 {
11038 dwp_file->sections.loc.s.section = sectp;
11039 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
11040 }
11041 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11042 {
11043 dwp_file->sections.macinfo.s.section = sectp;
11044 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
11045 }
11046 else if (section_is_p (sectp->name, &names->macro_dwo))
11047 {
11048 dwp_file->sections.macro.s.section = sectp;
11049 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
11050 }
11051 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11052 {
11053 dwp_file->sections.str_offsets.s.section = sectp;
11054 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
11055 }
11056 else if (section_is_p (sectp->name, &names->types_dwo))
11057 {
11058 dwp_file->sections.types.s.section = sectp;
11059 dwp_file->sections.types.size = bfd_get_section_size (sectp);
11060 }
11061 }
11062
11063 /* Hash function for dwp_file loaded CUs/TUs. */
11064
11065 static hashval_t
11066 hash_dwp_loaded_cutus (const void *item)
11067 {
11068 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11069
11070 /* This drops the top 32 bits of the signature, but is ok for a hash. */
11071 return dwo_unit->signature;
11072 }
11073
11074 /* Equality function for dwp_file loaded CUs/TUs. */
11075
11076 static int
11077 eq_dwp_loaded_cutus (const void *a, const void *b)
11078 {
11079 const struct dwo_unit *dua = (const struct dwo_unit *) a;
11080 const struct dwo_unit *dub = (const struct dwo_unit *) b;
11081
11082 return dua->signature == dub->signature;
11083 }
11084
11085 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
11086
11087 static htab_t
11088 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
11089 {
11090 return htab_create_alloc_ex (3,
11091 hash_dwp_loaded_cutus,
11092 eq_dwp_loaded_cutus,
11093 NULL,
11094 &objfile->objfile_obstack,
11095 hashtab_obstack_allocate,
11096 dummy_obstack_deallocate);
11097 }
11098
11099 /* Try to open DWP file FILE_NAME.
11100 The result is the bfd handle of the file.
11101 If there is a problem finding or opening the file, return NULL.
11102 Upon success, the canonicalized path of the file is stored in the bfd,
11103 same as symfile_bfd_open. */
11104
11105 static gdb_bfd_ref_ptr
11106 open_dwp_file (const char *file_name)
11107 {
11108 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
11109 1 /*search_cwd*/));
11110 if (abfd != NULL)
11111 return abfd;
11112
11113 /* Work around upstream bug 15652.
11114 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11115 [Whether that's a "bug" is debatable, but it is getting in our way.]
11116 We have no real idea where the dwp file is, because gdb's realpath-ing
11117 of the executable's path may have discarded the needed info.
11118 [IWBN if the dwp file name was recorded in the executable, akin to
11119 .gnu_debuglink, but that doesn't exist yet.]
11120 Strip the directory from FILE_NAME and search again. */
11121 if (*debug_file_directory != '\0')
11122 {
11123 /* Don't implicitly search the current directory here.
11124 If the user wants to search "." to handle this case,
11125 it must be added to debug-file-directory. */
11126 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11127 0 /*search_cwd*/);
11128 }
11129
11130 return NULL;
11131 }
11132
11133 /* Initialize the use of the DWP file for the current objfile.
11134 By convention the name of the DWP file is ${objfile}.dwp.
11135 The result is NULL if it can't be found. */
11136
11137 static struct dwp_file *
11138 open_and_init_dwp_file (void)
11139 {
11140 struct objfile *objfile = dwarf2_per_objfile->objfile;
11141 struct dwp_file *dwp_file;
11142
11143 /* Try to find first .dwp for the binary file before any symbolic links
11144 resolving. */
11145
11146 /* If the objfile is a debug file, find the name of the real binary
11147 file and get the name of dwp file from there. */
11148 std::string dwp_name;
11149 if (objfile->separate_debug_objfile_backlink != NULL)
11150 {
11151 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11152 const char *backlink_basename = lbasename (backlink->original_name);
11153
11154 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
11155 }
11156 else
11157 dwp_name = objfile->original_name;
11158
11159 dwp_name += ".dwp";
11160
11161 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
11162 if (dbfd == NULL
11163 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11164 {
11165 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
11166 dwp_name = objfile_name (objfile);
11167 dwp_name += ".dwp";
11168 dbfd = open_dwp_file (dwp_name.c_str ());
11169 }
11170
11171 if (dbfd == NULL)
11172 {
11173 if (dwarf_read_debug)
11174 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
11175 return NULL;
11176 }
11177 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
11178 dwp_file->name = bfd_get_filename (dbfd.get ());
11179 dwp_file->dbfd = dbfd.release ();
11180
11181 /* +1: section 0 is unused */
11182 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
11183 dwp_file->elf_sections =
11184 OBSTACK_CALLOC (&objfile->objfile_obstack,
11185 dwp_file->num_sections, asection *);
11186
11187 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11188 dwp_file);
11189
11190 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11191
11192 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11193
11194 /* The DWP file version is stored in the hash table. Oh well. */
11195 if (dwp_file->cus->version != dwp_file->tus->version)
11196 {
11197 /* Technically speaking, we should try to limp along, but this is
11198 pretty bizarre. We use pulongest here because that's the established
11199 portability solution (e.g, we cannot use %u for uint32_t). */
11200 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11201 " TU version %s [in DWP file %s]"),
11202 pulongest (dwp_file->cus->version),
11203 pulongest (dwp_file->tus->version), dwp_name.c_str ());
11204 }
11205 dwp_file->version = dwp_file->cus->version;
11206
11207 if (dwp_file->version == 2)
11208 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11209 dwp_file);
11210
11211 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11212 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
11213
11214 if (dwarf_read_debug)
11215 {
11216 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11217 fprintf_unfiltered (gdb_stdlog,
11218 " %s CUs, %s TUs\n",
11219 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11220 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
11221 }
11222
11223 return dwp_file;
11224 }
11225
11226 /* Wrapper around open_and_init_dwp_file, only open it once. */
11227
11228 static struct dwp_file *
11229 get_dwp_file (void)
11230 {
11231 if (! dwarf2_per_objfile->dwp_checked)
11232 {
11233 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11234 dwarf2_per_objfile->dwp_checked = 1;
11235 }
11236 return dwarf2_per_objfile->dwp_file;
11237 }
11238
11239 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11240 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11241 or in the DWP file for the objfile, referenced by THIS_UNIT.
11242 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
11243 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11244
11245 This is called, for example, when wanting to read a variable with a
11246 complex location. Therefore we don't want to do file i/o for every call.
11247 Therefore we don't want to look for a DWO file on every call.
11248 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11249 then we check if we've already seen DWO_NAME, and only THEN do we check
11250 for a DWO file.
11251
11252 The result is a pointer to the dwo_unit object or NULL if we didn't find it
11253 (dwo_id mismatch or couldn't find the DWO/DWP file). */
11254
11255 static struct dwo_unit *
11256 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11257 const char *dwo_name, const char *comp_dir,
11258 ULONGEST signature, int is_debug_types)
11259 {
11260 struct objfile *objfile = dwarf2_per_objfile->objfile;
11261 const char *kind = is_debug_types ? "TU" : "CU";
11262 void **dwo_file_slot;
11263 struct dwo_file *dwo_file;
11264 struct dwp_file *dwp_file;
11265
11266 /* First see if there's a DWP file.
11267 If we have a DWP file but didn't find the DWO inside it, don't
11268 look for the original DWO file. It makes gdb behave differently
11269 depending on whether one is debugging in the build tree. */
11270
11271 dwp_file = get_dwp_file ();
11272 if (dwp_file != NULL)
11273 {
11274 const struct dwp_hash_table *dwp_htab =
11275 is_debug_types ? dwp_file->tus : dwp_file->cus;
11276
11277 if (dwp_htab != NULL)
11278 {
11279 struct dwo_unit *dwo_cutu =
11280 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11281 signature, is_debug_types);
11282
11283 if (dwo_cutu != NULL)
11284 {
11285 if (dwarf_read_debug)
11286 {
11287 fprintf_unfiltered (gdb_stdlog,
11288 "Virtual DWO %s %s found: @%s\n",
11289 kind, hex_string (signature),
11290 host_address_to_string (dwo_cutu));
11291 }
11292 return dwo_cutu;
11293 }
11294 }
11295 }
11296 else
11297 {
11298 /* No DWP file, look for the DWO file. */
11299
11300 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11301 if (*dwo_file_slot == NULL)
11302 {
11303 /* Read in the file and build a table of the CUs/TUs it contains. */
11304 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11305 }
11306 /* NOTE: This will be NULL if unable to open the file. */
11307 dwo_file = (struct dwo_file *) *dwo_file_slot;
11308
11309 if (dwo_file != NULL)
11310 {
11311 struct dwo_unit *dwo_cutu = NULL;
11312
11313 if (is_debug_types && dwo_file->tus)
11314 {
11315 struct dwo_unit find_dwo_cutu;
11316
11317 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11318 find_dwo_cutu.signature = signature;
11319 dwo_cutu
11320 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11321 }
11322 else if (!is_debug_types && dwo_file->cus)
11323 {
11324 struct dwo_unit find_dwo_cutu;
11325
11326 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11327 find_dwo_cutu.signature = signature;
11328 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11329 &find_dwo_cutu);
11330 }
11331
11332 if (dwo_cutu != NULL)
11333 {
11334 if (dwarf_read_debug)
11335 {
11336 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11337 kind, dwo_name, hex_string (signature),
11338 host_address_to_string (dwo_cutu));
11339 }
11340 return dwo_cutu;
11341 }
11342 }
11343 }
11344
11345 /* We didn't find it. This could mean a dwo_id mismatch, or
11346 someone deleted the DWO/DWP file, or the search path isn't set up
11347 correctly to find the file. */
11348
11349 if (dwarf_read_debug)
11350 {
11351 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11352 kind, dwo_name, hex_string (signature));
11353 }
11354
11355 /* This is a warning and not a complaint because it can be caused by
11356 pilot error (e.g., user accidentally deleting the DWO). */
11357 {
11358 /* Print the name of the DWP file if we looked there, helps the user
11359 better diagnose the problem. */
11360 char *dwp_text = NULL;
11361 struct cleanup *cleanups;
11362
11363 if (dwp_file != NULL)
11364 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11365 cleanups = make_cleanup (xfree, dwp_text);
11366
11367 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11368 " [in module %s]"),
11369 kind, dwo_name, hex_string (signature),
11370 dwp_text != NULL ? dwp_text : "",
11371 this_unit->is_debug_types ? "TU" : "CU",
11372 to_underlying (this_unit->sect_off), objfile_name (objfile));
11373
11374 do_cleanups (cleanups);
11375 }
11376 return NULL;
11377 }
11378
11379 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11380 See lookup_dwo_cutu_unit for details. */
11381
11382 static struct dwo_unit *
11383 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11384 const char *dwo_name, const char *comp_dir,
11385 ULONGEST signature)
11386 {
11387 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11388 }
11389
11390 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11391 See lookup_dwo_cutu_unit for details. */
11392
11393 static struct dwo_unit *
11394 lookup_dwo_type_unit (struct signatured_type *this_tu,
11395 const char *dwo_name, const char *comp_dir)
11396 {
11397 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11398 }
11399
11400 /* Traversal function for queue_and_load_all_dwo_tus. */
11401
11402 static int
11403 queue_and_load_dwo_tu (void **slot, void *info)
11404 {
11405 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11406 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11407 ULONGEST signature = dwo_unit->signature;
11408 struct signatured_type *sig_type =
11409 lookup_dwo_signatured_type (per_cu->cu, signature);
11410
11411 if (sig_type != NULL)
11412 {
11413 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11414
11415 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11416 a real dependency of PER_CU on SIG_TYPE. That is detected later
11417 while processing PER_CU. */
11418 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11419 load_full_type_unit (sig_cu);
11420 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11421 }
11422
11423 return 1;
11424 }
11425
11426 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11427 The DWO may have the only definition of the type, though it may not be
11428 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11429 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11430
11431 static void
11432 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11433 {
11434 struct dwo_unit *dwo_unit;
11435 struct dwo_file *dwo_file;
11436
11437 gdb_assert (!per_cu->is_debug_types);
11438 gdb_assert (get_dwp_file () == NULL);
11439 gdb_assert (per_cu->cu != NULL);
11440
11441 dwo_unit = per_cu->cu->dwo_unit;
11442 gdb_assert (dwo_unit != NULL);
11443
11444 dwo_file = dwo_unit->dwo_file;
11445 if (dwo_file->tus != NULL)
11446 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11447 }
11448
11449 /* Free all resources associated with DWO_FILE.
11450 Close the DWO file and munmap the sections.
11451 All memory should be on the objfile obstack. */
11452
11453 static void
11454 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11455 {
11456
11457 /* Note: dbfd is NULL for virtual DWO files. */
11458 gdb_bfd_unref (dwo_file->dbfd);
11459
11460 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11461 }
11462
11463 /* Wrapper for free_dwo_file for use in cleanups. */
11464
11465 static void
11466 free_dwo_file_cleanup (void *arg)
11467 {
11468 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11469 struct objfile *objfile = dwarf2_per_objfile->objfile;
11470
11471 free_dwo_file (dwo_file, objfile);
11472 }
11473
11474 /* Traversal function for free_dwo_files. */
11475
11476 static int
11477 free_dwo_file_from_slot (void **slot, void *info)
11478 {
11479 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11480 struct objfile *objfile = (struct objfile *) info;
11481
11482 free_dwo_file (dwo_file, objfile);
11483
11484 return 1;
11485 }
11486
11487 /* Free all resources associated with DWO_FILES. */
11488
11489 static void
11490 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11491 {
11492 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11493 }
11494 \f
11495 /* Read in various DIEs. */
11496
11497 /* qsort helper for inherit_abstract_dies. */
11498
11499 static int
11500 unsigned_int_compar (const void *ap, const void *bp)
11501 {
11502 unsigned int a = *(unsigned int *) ap;
11503 unsigned int b = *(unsigned int *) bp;
11504
11505 return (a > b) - (b > a);
11506 }
11507
11508 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11509 Inherit only the children of the DW_AT_abstract_origin DIE not being
11510 already referenced by DW_AT_abstract_origin from the children of the
11511 current DIE. */
11512
11513 static void
11514 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11515 {
11516 struct die_info *child_die;
11517 unsigned die_children_count;
11518 /* CU offsets which were referenced by children of the current DIE. */
11519 sect_offset *offsets;
11520 sect_offset *offsets_end, *offsetp;
11521 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11522 struct die_info *origin_die;
11523 /* Iterator of the ORIGIN_DIE children. */
11524 struct die_info *origin_child_die;
11525 struct cleanup *cleanups;
11526 struct attribute *attr;
11527 struct dwarf2_cu *origin_cu;
11528 struct pending **origin_previous_list_in_scope;
11529
11530 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11531 if (!attr)
11532 return;
11533
11534 /* Note that following die references may follow to a die in a
11535 different cu. */
11536
11537 origin_cu = cu;
11538 origin_die = follow_die_ref (die, attr, &origin_cu);
11539
11540 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11541 symbols in. */
11542 origin_previous_list_in_scope = origin_cu->list_in_scope;
11543 origin_cu->list_in_scope = cu->list_in_scope;
11544
11545 if (die->tag != origin_die->tag
11546 && !(die->tag == DW_TAG_inlined_subroutine
11547 && origin_die->tag == DW_TAG_subprogram))
11548 complaint (&symfile_complaints,
11549 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11550 to_underlying (die->sect_off),
11551 to_underlying (origin_die->sect_off));
11552
11553 child_die = die->child;
11554 die_children_count = 0;
11555 while (child_die && child_die->tag)
11556 {
11557 child_die = sibling_die (child_die);
11558 die_children_count++;
11559 }
11560 offsets = XNEWVEC (sect_offset, die_children_count);
11561 cleanups = make_cleanup (xfree, offsets);
11562
11563 offsets_end = offsets;
11564 for (child_die = die->child;
11565 child_die && child_die->tag;
11566 child_die = sibling_die (child_die))
11567 {
11568 struct die_info *child_origin_die;
11569 struct dwarf2_cu *child_origin_cu;
11570
11571 /* We are trying to process concrete instance entries:
11572 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11573 it's not relevant to our analysis here. i.e. detecting DIEs that are
11574 present in the abstract instance but not referenced in the concrete
11575 one. */
11576 if (child_die->tag == DW_TAG_call_site
11577 || child_die->tag == DW_TAG_GNU_call_site)
11578 continue;
11579
11580 /* For each CHILD_DIE, find the corresponding child of
11581 ORIGIN_DIE. If there is more than one layer of
11582 DW_AT_abstract_origin, follow them all; there shouldn't be,
11583 but GCC versions at least through 4.4 generate this (GCC PR
11584 40573). */
11585 child_origin_die = child_die;
11586 child_origin_cu = cu;
11587 while (1)
11588 {
11589 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11590 child_origin_cu);
11591 if (attr == NULL)
11592 break;
11593 child_origin_die = follow_die_ref (child_origin_die, attr,
11594 &child_origin_cu);
11595 }
11596
11597 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11598 counterpart may exist. */
11599 if (child_origin_die != child_die)
11600 {
11601 if (child_die->tag != child_origin_die->tag
11602 && !(child_die->tag == DW_TAG_inlined_subroutine
11603 && child_origin_die->tag == DW_TAG_subprogram))
11604 complaint (&symfile_complaints,
11605 _("Child DIE 0x%x and its abstract origin 0x%x have "
11606 "different tags"),
11607 to_underlying (child_die->sect_off),
11608 to_underlying (child_origin_die->sect_off));
11609 if (child_origin_die->parent != origin_die)
11610 complaint (&symfile_complaints,
11611 _("Child DIE 0x%x and its abstract origin 0x%x have "
11612 "different parents"),
11613 to_underlying (child_die->sect_off),
11614 to_underlying (child_origin_die->sect_off));
11615 else
11616 *offsets_end++ = child_origin_die->sect_off;
11617 }
11618 }
11619 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11620 unsigned_int_compar);
11621 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11622 if (offsetp[-1] == *offsetp)
11623 complaint (&symfile_complaints,
11624 _("Multiple children of DIE 0x%x refer "
11625 "to DIE 0x%x as their abstract origin"),
11626 to_underlying (die->sect_off), to_underlying (*offsetp));
11627
11628 offsetp = offsets;
11629 origin_child_die = origin_die->child;
11630 while (origin_child_die && origin_child_die->tag)
11631 {
11632 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11633 while (offsetp < offsets_end
11634 && *offsetp < origin_child_die->sect_off)
11635 offsetp++;
11636 if (offsetp >= offsets_end
11637 || *offsetp > origin_child_die->sect_off)
11638 {
11639 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11640 Check whether we're already processing ORIGIN_CHILD_DIE.
11641 This can happen with mutually referenced abstract_origins.
11642 PR 16581. */
11643 if (!origin_child_die->in_process)
11644 process_die (origin_child_die, origin_cu);
11645 }
11646 origin_child_die = sibling_die (origin_child_die);
11647 }
11648 origin_cu->list_in_scope = origin_previous_list_in_scope;
11649
11650 do_cleanups (cleanups);
11651 }
11652
11653 static void
11654 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11655 {
11656 struct objfile *objfile = cu->objfile;
11657 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11658 struct context_stack *newobj;
11659 CORE_ADDR lowpc;
11660 CORE_ADDR highpc;
11661 struct die_info *child_die;
11662 struct attribute *attr, *call_line, *call_file;
11663 const char *name;
11664 CORE_ADDR baseaddr;
11665 struct block *block;
11666 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11667 VEC (symbolp) *template_args = NULL;
11668 struct template_symbol *templ_func = NULL;
11669
11670 if (inlined_func)
11671 {
11672 /* If we do not have call site information, we can't show the
11673 caller of this inlined function. That's too confusing, so
11674 only use the scope for local variables. */
11675 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11676 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11677 if (call_line == NULL || call_file == NULL)
11678 {
11679 read_lexical_block_scope (die, cu);
11680 return;
11681 }
11682 }
11683
11684 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11685
11686 name = dwarf2_name (die, cu);
11687
11688 /* Ignore functions with missing or empty names. These are actually
11689 illegal according to the DWARF standard. */
11690 if (name == NULL)
11691 {
11692 complaint (&symfile_complaints,
11693 _("missing name for subprogram DIE at %d"),
11694 to_underlying (die->sect_off));
11695 return;
11696 }
11697
11698 /* Ignore functions with missing or invalid low and high pc attributes. */
11699 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11700 <= PC_BOUNDS_INVALID)
11701 {
11702 attr = dwarf2_attr (die, DW_AT_external, cu);
11703 if (!attr || !DW_UNSND (attr))
11704 complaint (&symfile_complaints,
11705 _("cannot get low and high bounds "
11706 "for subprogram DIE at %d"),
11707 to_underlying (die->sect_off));
11708 return;
11709 }
11710
11711 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11712 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11713
11714 /* If we have any template arguments, then we must allocate a
11715 different sort of symbol. */
11716 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11717 {
11718 if (child_die->tag == DW_TAG_template_type_param
11719 || child_die->tag == DW_TAG_template_value_param)
11720 {
11721 templ_func = allocate_template_symbol (objfile);
11722 templ_func->base.is_cplus_template_function = 1;
11723 break;
11724 }
11725 }
11726
11727 newobj = push_context (0, lowpc);
11728 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11729 (struct symbol *) templ_func);
11730
11731 /* If there is a location expression for DW_AT_frame_base, record
11732 it. */
11733 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11734 if (attr)
11735 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11736
11737 /* If there is a location for the static link, record it. */
11738 newobj->static_link = NULL;
11739 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11740 if (attr)
11741 {
11742 newobj->static_link
11743 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11744 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11745 }
11746
11747 cu->list_in_scope = &local_symbols;
11748
11749 if (die->child != NULL)
11750 {
11751 child_die = die->child;
11752 while (child_die && child_die->tag)
11753 {
11754 if (child_die->tag == DW_TAG_template_type_param
11755 || child_die->tag == DW_TAG_template_value_param)
11756 {
11757 struct symbol *arg = new_symbol (child_die, NULL, cu);
11758
11759 if (arg != NULL)
11760 VEC_safe_push (symbolp, template_args, arg);
11761 }
11762 else
11763 process_die (child_die, cu);
11764 child_die = sibling_die (child_die);
11765 }
11766 }
11767
11768 inherit_abstract_dies (die, cu);
11769
11770 /* If we have a DW_AT_specification, we might need to import using
11771 directives from the context of the specification DIE. See the
11772 comment in determine_prefix. */
11773 if (cu->language == language_cplus
11774 && dwarf2_attr (die, DW_AT_specification, cu))
11775 {
11776 struct dwarf2_cu *spec_cu = cu;
11777 struct die_info *spec_die = die_specification (die, &spec_cu);
11778
11779 while (spec_die)
11780 {
11781 child_die = spec_die->child;
11782 while (child_die && child_die->tag)
11783 {
11784 if (child_die->tag == DW_TAG_imported_module)
11785 process_die (child_die, spec_cu);
11786 child_die = sibling_die (child_die);
11787 }
11788
11789 /* In some cases, GCC generates specification DIEs that
11790 themselves contain DW_AT_specification attributes. */
11791 spec_die = die_specification (spec_die, &spec_cu);
11792 }
11793 }
11794
11795 newobj = pop_context ();
11796 /* Make a block for the local symbols within. */
11797 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11798 newobj->static_link, lowpc, highpc);
11799
11800 /* For C++, set the block's scope. */
11801 if ((cu->language == language_cplus
11802 || cu->language == language_fortran
11803 || cu->language == language_d
11804 || cu->language == language_rust)
11805 && cu->processing_has_namespace_info)
11806 block_set_scope (block, determine_prefix (die, cu),
11807 &objfile->objfile_obstack);
11808
11809 /* If we have address ranges, record them. */
11810 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11811
11812 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11813
11814 /* Attach template arguments to function. */
11815 if (! VEC_empty (symbolp, template_args))
11816 {
11817 gdb_assert (templ_func != NULL);
11818
11819 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11820 templ_func->template_arguments
11821 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11822 templ_func->n_template_arguments);
11823 memcpy (templ_func->template_arguments,
11824 VEC_address (symbolp, template_args),
11825 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11826 VEC_free (symbolp, template_args);
11827 }
11828
11829 /* In C++, we can have functions nested inside functions (e.g., when
11830 a function declares a class that has methods). This means that
11831 when we finish processing a function scope, we may need to go
11832 back to building a containing block's symbol lists. */
11833 local_symbols = newobj->locals;
11834 local_using_directives = newobj->local_using_directives;
11835
11836 /* If we've finished processing a top-level function, subsequent
11837 symbols go in the file symbol list. */
11838 if (outermost_context_p ())
11839 cu->list_in_scope = &file_symbols;
11840 }
11841
11842 /* Process all the DIES contained within a lexical block scope. Start
11843 a new scope, process the dies, and then close the scope. */
11844
11845 static void
11846 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11847 {
11848 struct objfile *objfile = cu->objfile;
11849 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11850 struct context_stack *newobj;
11851 CORE_ADDR lowpc, highpc;
11852 struct die_info *child_die;
11853 CORE_ADDR baseaddr;
11854
11855 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11856
11857 /* Ignore blocks with missing or invalid low and high pc attributes. */
11858 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11859 as multiple lexical blocks? Handling children in a sane way would
11860 be nasty. Might be easier to properly extend generic blocks to
11861 describe ranges. */
11862 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11863 {
11864 case PC_BOUNDS_NOT_PRESENT:
11865 /* DW_TAG_lexical_block has no attributes, process its children as if
11866 there was no wrapping by that DW_TAG_lexical_block.
11867 GCC does no longer produces such DWARF since GCC r224161. */
11868 for (child_die = die->child;
11869 child_die != NULL && child_die->tag;
11870 child_die = sibling_die (child_die))
11871 process_die (child_die, cu);
11872 return;
11873 case PC_BOUNDS_INVALID:
11874 return;
11875 }
11876 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11877 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11878
11879 push_context (0, lowpc);
11880 if (die->child != NULL)
11881 {
11882 child_die = die->child;
11883 while (child_die && child_die->tag)
11884 {
11885 process_die (child_die, cu);
11886 child_die = sibling_die (child_die);
11887 }
11888 }
11889 inherit_abstract_dies (die, cu);
11890 newobj = pop_context ();
11891
11892 if (local_symbols != NULL || local_using_directives != NULL)
11893 {
11894 struct block *block
11895 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11896 newobj->start_addr, highpc);
11897
11898 /* Note that recording ranges after traversing children, as we
11899 do here, means that recording a parent's ranges entails
11900 walking across all its children's ranges as they appear in
11901 the address map, which is quadratic behavior.
11902
11903 It would be nicer to record the parent's ranges before
11904 traversing its children, simply overriding whatever you find
11905 there. But since we don't even decide whether to create a
11906 block until after we've traversed its children, that's hard
11907 to do. */
11908 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11909 }
11910 local_symbols = newobj->locals;
11911 local_using_directives = newobj->local_using_directives;
11912 }
11913
11914 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
11915
11916 static void
11917 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11918 {
11919 struct objfile *objfile = cu->objfile;
11920 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11921 CORE_ADDR pc, baseaddr;
11922 struct attribute *attr;
11923 struct call_site *call_site, call_site_local;
11924 void **slot;
11925 int nparams;
11926 struct die_info *child_die;
11927
11928 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11929
11930 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11931 if (attr == NULL)
11932 {
11933 /* This was a pre-DWARF-5 GNU extension alias
11934 for DW_AT_call_return_pc. */
11935 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11936 }
11937 if (!attr)
11938 {
11939 complaint (&symfile_complaints,
11940 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
11941 "DIE 0x%x [in module %s]"),
11942 to_underlying (die->sect_off), objfile_name (objfile));
11943 return;
11944 }
11945 pc = attr_value_as_address (attr) + baseaddr;
11946 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11947
11948 if (cu->call_site_htab == NULL)
11949 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11950 NULL, &objfile->objfile_obstack,
11951 hashtab_obstack_allocate, NULL);
11952 call_site_local.pc = pc;
11953 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11954 if (*slot != NULL)
11955 {
11956 complaint (&symfile_complaints,
11957 _("Duplicate PC %s for DW_TAG_call_site "
11958 "DIE 0x%x [in module %s]"),
11959 paddress (gdbarch, pc), to_underlying (die->sect_off),
11960 objfile_name (objfile));
11961 return;
11962 }
11963
11964 /* Count parameters at the caller. */
11965
11966 nparams = 0;
11967 for (child_die = die->child; child_die && child_die->tag;
11968 child_die = sibling_die (child_die))
11969 {
11970 if (child_die->tag != DW_TAG_call_site_parameter
11971 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11972 {
11973 complaint (&symfile_complaints,
11974 _("Tag %d is not DW_TAG_call_site_parameter in "
11975 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11976 child_die->tag, to_underlying (child_die->sect_off),
11977 objfile_name (objfile));
11978 continue;
11979 }
11980
11981 nparams++;
11982 }
11983
11984 call_site
11985 = ((struct call_site *)
11986 obstack_alloc (&objfile->objfile_obstack,
11987 sizeof (*call_site)
11988 + (sizeof (*call_site->parameter) * (nparams - 1))));
11989 *slot = call_site;
11990 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11991 call_site->pc = pc;
11992
11993 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11994 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11995 {
11996 struct die_info *func_die;
11997
11998 /* Skip also over DW_TAG_inlined_subroutine. */
11999 for (func_die = die->parent;
12000 func_die && func_die->tag != DW_TAG_subprogram
12001 && func_die->tag != DW_TAG_subroutine_type;
12002 func_die = func_die->parent);
12003
12004 /* DW_AT_call_all_calls is a superset
12005 of DW_AT_call_all_tail_calls. */
12006 if (func_die
12007 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
12008 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
12009 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
12010 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
12011 {
12012 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
12013 not complete. But keep CALL_SITE for look ups via call_site_htab,
12014 both the initial caller containing the real return address PC and
12015 the final callee containing the current PC of a chain of tail
12016 calls do not need to have the tail call list complete. But any
12017 function candidate for a virtual tail call frame searched via
12018 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
12019 determined unambiguously. */
12020 }
12021 else
12022 {
12023 struct type *func_type = NULL;
12024
12025 if (func_die)
12026 func_type = get_die_type (func_die, cu);
12027 if (func_type != NULL)
12028 {
12029 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
12030
12031 /* Enlist this call site to the function. */
12032 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
12033 TYPE_TAIL_CALL_LIST (func_type) = call_site;
12034 }
12035 else
12036 complaint (&symfile_complaints,
12037 _("Cannot find function owning DW_TAG_call_site "
12038 "DIE 0x%x [in module %s]"),
12039 to_underlying (die->sect_off), objfile_name (objfile));
12040 }
12041 }
12042
12043 attr = dwarf2_attr (die, DW_AT_call_target, cu);
12044 if (attr == NULL)
12045 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
12046 if (attr == NULL)
12047 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
12048 if (attr == NULL)
12049 {
12050 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
12051 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12052 }
12053 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
12054 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
12055 /* Keep NULL DWARF_BLOCK. */;
12056 else if (attr_form_is_block (attr))
12057 {
12058 struct dwarf2_locexpr_baton *dlbaton;
12059
12060 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
12061 dlbaton->data = DW_BLOCK (attr)->data;
12062 dlbaton->size = DW_BLOCK (attr)->size;
12063 dlbaton->per_cu = cu->per_cu;
12064
12065 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
12066 }
12067 else if (attr_form_is_ref (attr))
12068 {
12069 struct dwarf2_cu *target_cu = cu;
12070 struct die_info *target_die;
12071
12072 target_die = follow_die_ref (die, attr, &target_cu);
12073 gdb_assert (target_cu->objfile == objfile);
12074 if (die_is_declaration (target_die, target_cu))
12075 {
12076 const char *target_physname;
12077
12078 /* Prefer the mangled name; otherwise compute the demangled one. */
12079 target_physname = dw2_linkage_name (target_die, target_cu);
12080 if (target_physname == NULL)
12081 target_physname = dwarf2_physname (NULL, target_die, target_cu);
12082 if (target_physname == NULL)
12083 complaint (&symfile_complaints,
12084 _("DW_AT_call_target target DIE has invalid "
12085 "physname, for referencing DIE 0x%x [in module %s]"),
12086 to_underlying (die->sect_off), objfile_name (objfile));
12087 else
12088 SET_FIELD_PHYSNAME (call_site->target, target_physname);
12089 }
12090 else
12091 {
12092 CORE_ADDR lowpc;
12093
12094 /* DW_AT_entry_pc should be preferred. */
12095 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
12096 <= PC_BOUNDS_INVALID)
12097 complaint (&symfile_complaints,
12098 _("DW_AT_call_target target DIE has invalid "
12099 "low pc, for referencing DIE 0x%x [in module %s]"),
12100 to_underlying (die->sect_off), objfile_name (objfile));
12101 else
12102 {
12103 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12104 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12105 }
12106 }
12107 }
12108 else
12109 complaint (&symfile_complaints,
12110 _("DW_TAG_call_site DW_AT_call_target is neither "
12111 "block nor reference, for DIE 0x%x [in module %s]"),
12112 to_underlying (die->sect_off), objfile_name (objfile));
12113
12114 call_site->per_cu = cu->per_cu;
12115
12116 for (child_die = die->child;
12117 child_die && child_die->tag;
12118 child_die = sibling_die (child_die))
12119 {
12120 struct call_site_parameter *parameter;
12121 struct attribute *loc, *origin;
12122
12123 if (child_die->tag != DW_TAG_call_site_parameter
12124 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12125 {
12126 /* Already printed the complaint above. */
12127 continue;
12128 }
12129
12130 gdb_assert (call_site->parameter_count < nparams);
12131 parameter = &call_site->parameter[call_site->parameter_count];
12132
12133 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12134 specifies DW_TAG_formal_parameter. Value of the data assumed for the
12135 register is contained in DW_AT_call_value. */
12136
12137 loc = dwarf2_attr (child_die, DW_AT_location, cu);
12138 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12139 if (origin == NULL)
12140 {
12141 /* This was a pre-DWARF-5 GNU extension alias
12142 for DW_AT_call_parameter. */
12143 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12144 }
12145 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
12146 {
12147 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
12148
12149 sect_offset sect_off
12150 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12151 if (!offset_in_cu_p (&cu->header, sect_off))
12152 {
12153 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12154 binding can be done only inside one CU. Such referenced DIE
12155 therefore cannot be even moved to DW_TAG_partial_unit. */
12156 complaint (&symfile_complaints,
12157 _("DW_AT_call_parameter offset is not in CU for "
12158 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12159 to_underlying (child_die->sect_off),
12160 objfile_name (objfile));
12161 continue;
12162 }
12163 parameter->u.param_cu_off
12164 = (cu_offset) (sect_off - cu->header.sect_off);
12165 }
12166 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
12167 {
12168 complaint (&symfile_complaints,
12169 _("No DW_FORM_block* DW_AT_location for "
12170 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12171 to_underlying (child_die->sect_off), objfile_name (objfile));
12172 continue;
12173 }
12174 else
12175 {
12176 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12177 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12178 if (parameter->u.dwarf_reg != -1)
12179 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12180 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12181 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12182 &parameter->u.fb_offset))
12183 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12184 else
12185 {
12186 complaint (&symfile_complaints,
12187 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12188 "for DW_FORM_block* DW_AT_location is supported for "
12189 "DW_TAG_call_site child DIE 0x%x "
12190 "[in module %s]"),
12191 to_underlying (child_die->sect_off),
12192 objfile_name (objfile));
12193 continue;
12194 }
12195 }
12196
12197 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12198 if (attr == NULL)
12199 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
12200 if (!attr_form_is_block (attr))
12201 {
12202 complaint (&symfile_complaints,
12203 _("No DW_FORM_block* DW_AT_call_value for "
12204 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12205 to_underlying (child_die->sect_off),
12206 objfile_name (objfile));
12207 continue;
12208 }
12209 parameter->value = DW_BLOCK (attr)->data;
12210 parameter->value_size = DW_BLOCK (attr)->size;
12211
12212 /* Parameters are not pre-cleared by memset above. */
12213 parameter->data_value = NULL;
12214 parameter->data_value_size = 0;
12215 call_site->parameter_count++;
12216
12217 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12218 if (attr == NULL)
12219 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
12220 if (attr)
12221 {
12222 if (!attr_form_is_block (attr))
12223 complaint (&symfile_complaints,
12224 _("No DW_FORM_block* DW_AT_call_data_value for "
12225 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12226 to_underlying (child_die->sect_off),
12227 objfile_name (objfile));
12228 else
12229 {
12230 parameter->data_value = DW_BLOCK (attr)->data;
12231 parameter->data_value_size = DW_BLOCK (attr)->size;
12232 }
12233 }
12234 }
12235 }
12236
12237 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12238 reading .debug_rnglists.
12239 Callback's type should be:
12240 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12241 Return true if the attributes are present and valid, otherwise,
12242 return false. */
12243
12244 template <typename Callback>
12245 static bool
12246 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12247 Callback &&callback)
12248 {
12249 struct objfile *objfile = cu->objfile;
12250 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12251 struct comp_unit_head *cu_header = &cu->header;
12252 bfd *obfd = objfile->obfd;
12253 unsigned int addr_size = cu_header->addr_size;
12254 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12255 /* Base address selection entry. */
12256 CORE_ADDR base;
12257 int found_base;
12258 unsigned int dummy;
12259 const gdb_byte *buffer;
12260 CORE_ADDR low = 0;
12261 CORE_ADDR high = 0;
12262 CORE_ADDR baseaddr;
12263 bool overflow = false;
12264
12265 found_base = cu->base_known;
12266 base = cu->base_address;
12267
12268 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12269 if (offset >= dwarf2_per_objfile->rnglists.size)
12270 {
12271 complaint (&symfile_complaints,
12272 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12273 offset);
12274 return false;
12275 }
12276 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12277
12278 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12279
12280 while (1)
12281 {
12282 /* Initialize it due to a false compiler warning. */
12283 CORE_ADDR range_beginning = 0, range_end = 0;
12284 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12285 + dwarf2_per_objfile->rnglists.size);
12286 unsigned int bytes_read;
12287
12288 if (buffer == buf_end)
12289 {
12290 overflow = true;
12291 break;
12292 }
12293 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12294 switch (rlet)
12295 {
12296 case DW_RLE_end_of_list:
12297 break;
12298 case DW_RLE_base_address:
12299 if (buffer + cu->header.addr_size > buf_end)
12300 {
12301 overflow = true;
12302 break;
12303 }
12304 base = read_address (obfd, buffer, cu, &bytes_read);
12305 found_base = 1;
12306 buffer += bytes_read;
12307 break;
12308 case DW_RLE_start_length:
12309 if (buffer + cu->header.addr_size > buf_end)
12310 {
12311 overflow = true;
12312 break;
12313 }
12314 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12315 buffer += bytes_read;
12316 range_end = (range_beginning
12317 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12318 buffer += bytes_read;
12319 if (buffer > buf_end)
12320 {
12321 overflow = true;
12322 break;
12323 }
12324 break;
12325 case DW_RLE_offset_pair:
12326 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12327 buffer += bytes_read;
12328 if (buffer > buf_end)
12329 {
12330 overflow = true;
12331 break;
12332 }
12333 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12334 buffer += bytes_read;
12335 if (buffer > buf_end)
12336 {
12337 overflow = true;
12338 break;
12339 }
12340 break;
12341 case DW_RLE_start_end:
12342 if (buffer + 2 * cu->header.addr_size > buf_end)
12343 {
12344 overflow = true;
12345 break;
12346 }
12347 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12348 buffer += bytes_read;
12349 range_end = read_address (obfd, buffer, cu, &bytes_read);
12350 buffer += bytes_read;
12351 break;
12352 default:
12353 complaint (&symfile_complaints,
12354 _("Invalid .debug_rnglists data (no base address)"));
12355 return false;
12356 }
12357 if (rlet == DW_RLE_end_of_list || overflow)
12358 break;
12359 if (rlet == DW_RLE_base_address)
12360 continue;
12361
12362 if (!found_base)
12363 {
12364 /* We have no valid base address for the ranges
12365 data. */
12366 complaint (&symfile_complaints,
12367 _("Invalid .debug_rnglists data (no base address)"));
12368 return false;
12369 }
12370
12371 if (range_beginning > range_end)
12372 {
12373 /* Inverted range entries are invalid. */
12374 complaint (&symfile_complaints,
12375 _("Invalid .debug_rnglists data (inverted range)"));
12376 return false;
12377 }
12378
12379 /* Empty range entries have no effect. */
12380 if (range_beginning == range_end)
12381 continue;
12382
12383 range_beginning += base;
12384 range_end += base;
12385
12386 /* A not-uncommon case of bad debug info.
12387 Don't pollute the addrmap with bad data. */
12388 if (range_beginning + baseaddr == 0
12389 && !dwarf2_per_objfile->has_section_at_zero)
12390 {
12391 complaint (&symfile_complaints,
12392 _(".debug_rnglists entry has start address of zero"
12393 " [in module %s]"), objfile_name (objfile));
12394 continue;
12395 }
12396
12397 callback (range_beginning, range_end);
12398 }
12399
12400 if (overflow)
12401 {
12402 complaint (&symfile_complaints,
12403 _("Offset %d is not terminated "
12404 "for DW_AT_ranges attribute"),
12405 offset);
12406 return false;
12407 }
12408
12409 return true;
12410 }
12411
12412 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12413 Callback's type should be:
12414 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12415 Return 1 if the attributes are present and valid, otherwise, return 0. */
12416
12417 template <typename Callback>
12418 static int
12419 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
12420 Callback &&callback)
12421 {
12422 struct objfile *objfile = cu->objfile;
12423 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12424 struct comp_unit_head *cu_header = &cu->header;
12425 bfd *obfd = objfile->obfd;
12426 unsigned int addr_size = cu_header->addr_size;
12427 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12428 /* Base address selection entry. */
12429 CORE_ADDR base;
12430 int found_base;
12431 unsigned int dummy;
12432 const gdb_byte *buffer;
12433 CORE_ADDR baseaddr;
12434
12435 if (cu_header->version >= 5)
12436 return dwarf2_rnglists_process (offset, cu, callback);
12437
12438 found_base = cu->base_known;
12439 base = cu->base_address;
12440
12441 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12442 if (offset >= dwarf2_per_objfile->ranges.size)
12443 {
12444 complaint (&symfile_complaints,
12445 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12446 offset);
12447 return 0;
12448 }
12449 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12450
12451 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12452
12453 while (1)
12454 {
12455 CORE_ADDR range_beginning, range_end;
12456
12457 range_beginning = read_address (obfd, buffer, cu, &dummy);
12458 buffer += addr_size;
12459 range_end = read_address (obfd, buffer, cu, &dummy);
12460 buffer += addr_size;
12461 offset += 2 * addr_size;
12462
12463 /* An end of list marker is a pair of zero addresses. */
12464 if (range_beginning == 0 && range_end == 0)
12465 /* Found the end of list entry. */
12466 break;
12467
12468 /* Each base address selection entry is a pair of 2 values.
12469 The first is the largest possible address, the second is
12470 the base address. Check for a base address here. */
12471 if ((range_beginning & mask) == mask)
12472 {
12473 /* If we found the largest possible address, then we already
12474 have the base address in range_end. */
12475 base = range_end;
12476 found_base = 1;
12477 continue;
12478 }
12479
12480 if (!found_base)
12481 {
12482 /* We have no valid base address for the ranges
12483 data. */
12484 complaint (&symfile_complaints,
12485 _("Invalid .debug_ranges data (no base address)"));
12486 return 0;
12487 }
12488
12489 if (range_beginning > range_end)
12490 {
12491 /* Inverted range entries are invalid. */
12492 complaint (&symfile_complaints,
12493 _("Invalid .debug_ranges data (inverted range)"));
12494 return 0;
12495 }
12496
12497 /* Empty range entries have no effect. */
12498 if (range_beginning == range_end)
12499 continue;
12500
12501 range_beginning += base;
12502 range_end += base;
12503
12504 /* A not-uncommon case of bad debug info.
12505 Don't pollute the addrmap with bad data. */
12506 if (range_beginning + baseaddr == 0
12507 && !dwarf2_per_objfile->has_section_at_zero)
12508 {
12509 complaint (&symfile_complaints,
12510 _(".debug_ranges entry has start address of zero"
12511 " [in module %s]"), objfile_name (objfile));
12512 continue;
12513 }
12514
12515 callback (range_beginning, range_end);
12516 }
12517
12518 return 1;
12519 }
12520
12521 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12522 Return 1 if the attributes are present and valid, otherwise, return 0.
12523 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12524
12525 static int
12526 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12527 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12528 struct partial_symtab *ranges_pst)
12529 {
12530 struct objfile *objfile = cu->objfile;
12531 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12532 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12533 SECT_OFF_TEXT (objfile));
12534 int low_set = 0;
12535 CORE_ADDR low = 0;
12536 CORE_ADDR high = 0;
12537 int retval;
12538
12539 retval = dwarf2_ranges_process (offset, cu,
12540 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12541 {
12542 if (ranges_pst != NULL)
12543 {
12544 CORE_ADDR lowpc;
12545 CORE_ADDR highpc;
12546
12547 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12548 range_beginning + baseaddr);
12549 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12550 range_end + baseaddr);
12551 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12552 ranges_pst);
12553 }
12554
12555 /* FIXME: This is recording everything as a low-high
12556 segment of consecutive addresses. We should have a
12557 data structure for discontiguous block ranges
12558 instead. */
12559 if (! low_set)
12560 {
12561 low = range_beginning;
12562 high = range_end;
12563 low_set = 1;
12564 }
12565 else
12566 {
12567 if (range_beginning < low)
12568 low = range_beginning;
12569 if (range_end > high)
12570 high = range_end;
12571 }
12572 });
12573 if (!retval)
12574 return 0;
12575
12576 if (! low_set)
12577 /* If the first entry is an end-of-list marker, the range
12578 describes an empty scope, i.e. no instructions. */
12579 return 0;
12580
12581 if (low_return)
12582 *low_return = low;
12583 if (high_return)
12584 *high_return = high;
12585 return 1;
12586 }
12587
12588 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12589 definition for the return value. *LOWPC and *HIGHPC are set iff
12590 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12591
12592 static enum pc_bounds_kind
12593 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12594 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12595 struct partial_symtab *pst)
12596 {
12597 struct attribute *attr;
12598 struct attribute *attr_high;
12599 CORE_ADDR low = 0;
12600 CORE_ADDR high = 0;
12601 enum pc_bounds_kind ret;
12602
12603 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12604 if (attr_high)
12605 {
12606 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12607 if (attr)
12608 {
12609 low = attr_value_as_address (attr);
12610 high = attr_value_as_address (attr_high);
12611 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12612 high += low;
12613 }
12614 else
12615 /* Found high w/o low attribute. */
12616 return PC_BOUNDS_INVALID;
12617
12618 /* Found consecutive range of addresses. */
12619 ret = PC_BOUNDS_HIGH_LOW;
12620 }
12621 else
12622 {
12623 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12624 if (attr != NULL)
12625 {
12626 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12627 We take advantage of the fact that DW_AT_ranges does not appear
12628 in DW_TAG_compile_unit of DWO files. */
12629 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12630 unsigned int ranges_offset = (DW_UNSND (attr)
12631 + (need_ranges_base
12632 ? cu->ranges_base
12633 : 0));
12634
12635 /* Value of the DW_AT_ranges attribute is the offset in the
12636 .debug_ranges section. */
12637 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12638 return PC_BOUNDS_INVALID;
12639 /* Found discontinuous range of addresses. */
12640 ret = PC_BOUNDS_RANGES;
12641 }
12642 else
12643 return PC_BOUNDS_NOT_PRESENT;
12644 }
12645
12646 /* read_partial_die has also the strict LOW < HIGH requirement. */
12647 if (high <= low)
12648 return PC_BOUNDS_INVALID;
12649
12650 /* When using the GNU linker, .gnu.linkonce. sections are used to
12651 eliminate duplicate copies of functions and vtables and such.
12652 The linker will arbitrarily choose one and discard the others.
12653 The AT_*_pc values for such functions refer to local labels in
12654 these sections. If the section from that file was discarded, the
12655 labels are not in the output, so the relocs get a value of 0.
12656 If this is a discarded function, mark the pc bounds as invalid,
12657 so that GDB will ignore it. */
12658 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12659 return PC_BOUNDS_INVALID;
12660
12661 *lowpc = low;
12662 if (highpc)
12663 *highpc = high;
12664 return ret;
12665 }
12666
12667 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12668 its low and high PC addresses. Do nothing if these addresses could not
12669 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12670 and HIGHPC to the high address if greater than HIGHPC. */
12671
12672 static void
12673 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12674 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12675 struct dwarf2_cu *cu)
12676 {
12677 CORE_ADDR low, high;
12678 struct die_info *child = die->child;
12679
12680 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12681 {
12682 *lowpc = std::min (*lowpc, low);
12683 *highpc = std::max (*highpc, high);
12684 }
12685
12686 /* If the language does not allow nested subprograms (either inside
12687 subprograms or lexical blocks), we're done. */
12688 if (cu->language != language_ada)
12689 return;
12690
12691 /* Check all the children of the given DIE. If it contains nested
12692 subprograms, then check their pc bounds. Likewise, we need to
12693 check lexical blocks as well, as they may also contain subprogram
12694 definitions. */
12695 while (child && child->tag)
12696 {
12697 if (child->tag == DW_TAG_subprogram
12698 || child->tag == DW_TAG_lexical_block)
12699 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12700 child = sibling_die (child);
12701 }
12702 }
12703
12704 /* Get the low and high pc's represented by the scope DIE, and store
12705 them in *LOWPC and *HIGHPC. If the correct values can't be
12706 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12707
12708 static void
12709 get_scope_pc_bounds (struct die_info *die,
12710 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12711 struct dwarf2_cu *cu)
12712 {
12713 CORE_ADDR best_low = (CORE_ADDR) -1;
12714 CORE_ADDR best_high = (CORE_ADDR) 0;
12715 CORE_ADDR current_low, current_high;
12716
12717 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12718 >= PC_BOUNDS_RANGES)
12719 {
12720 best_low = current_low;
12721 best_high = current_high;
12722 }
12723 else
12724 {
12725 struct die_info *child = die->child;
12726
12727 while (child && child->tag)
12728 {
12729 switch (child->tag) {
12730 case DW_TAG_subprogram:
12731 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12732 break;
12733 case DW_TAG_namespace:
12734 case DW_TAG_module:
12735 /* FIXME: carlton/2004-01-16: Should we do this for
12736 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12737 that current GCC's always emit the DIEs corresponding
12738 to definitions of methods of classes as children of a
12739 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12740 the DIEs giving the declarations, which could be
12741 anywhere). But I don't see any reason why the
12742 standards says that they have to be there. */
12743 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12744
12745 if (current_low != ((CORE_ADDR) -1))
12746 {
12747 best_low = std::min (best_low, current_low);
12748 best_high = std::max (best_high, current_high);
12749 }
12750 break;
12751 default:
12752 /* Ignore. */
12753 break;
12754 }
12755
12756 child = sibling_die (child);
12757 }
12758 }
12759
12760 *lowpc = best_low;
12761 *highpc = best_high;
12762 }
12763
12764 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12765 in DIE. */
12766
12767 static void
12768 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12769 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12770 {
12771 struct objfile *objfile = cu->objfile;
12772 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12773 struct attribute *attr;
12774 struct attribute *attr_high;
12775
12776 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12777 if (attr_high)
12778 {
12779 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12780 if (attr)
12781 {
12782 CORE_ADDR low = attr_value_as_address (attr);
12783 CORE_ADDR high = attr_value_as_address (attr_high);
12784
12785 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12786 high += low;
12787
12788 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12789 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12790 record_block_range (block, low, high - 1);
12791 }
12792 }
12793
12794 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12795 if (attr)
12796 {
12797 bfd *obfd = objfile->obfd;
12798 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12799 We take advantage of the fact that DW_AT_ranges does not appear
12800 in DW_TAG_compile_unit of DWO files. */
12801 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12802
12803 /* The value of the DW_AT_ranges attribute is the offset of the
12804 address range list in the .debug_ranges section. */
12805 unsigned long offset = (DW_UNSND (attr)
12806 + (need_ranges_base ? cu->ranges_base : 0));
12807 const gdb_byte *buffer;
12808
12809 /* For some target architectures, but not others, the
12810 read_address function sign-extends the addresses it returns.
12811 To recognize base address selection entries, we need a
12812 mask. */
12813 unsigned int addr_size = cu->header.addr_size;
12814 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12815
12816 /* The base address, to which the next pair is relative. Note
12817 that this 'base' is a DWARF concept: most entries in a range
12818 list are relative, to reduce the number of relocs against the
12819 debugging information. This is separate from this function's
12820 'baseaddr' argument, which GDB uses to relocate debugging
12821 information from a shared library based on the address at
12822 which the library was loaded. */
12823 CORE_ADDR base = cu->base_address;
12824 int base_known = cu->base_known;
12825
12826 dwarf2_ranges_process (offset, cu,
12827 [&] (CORE_ADDR start, CORE_ADDR end)
12828 {
12829 start += baseaddr;
12830 end += baseaddr;
12831 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12832 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12833 record_block_range (block, start, end - 1);
12834 });
12835 }
12836 }
12837
12838 /* Check whether the producer field indicates either of GCC < 4.6, or the
12839 Intel C/C++ compiler, and cache the result in CU. */
12840
12841 static void
12842 check_producer (struct dwarf2_cu *cu)
12843 {
12844 int major, minor;
12845
12846 if (cu->producer == NULL)
12847 {
12848 /* For unknown compilers expect their behavior is DWARF version
12849 compliant.
12850
12851 GCC started to support .debug_types sections by -gdwarf-4 since
12852 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12853 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12854 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12855 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12856 }
12857 else if (producer_is_gcc (cu->producer, &major, &minor))
12858 {
12859 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12860 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12861 }
12862 else if (startswith (cu->producer, "Intel(R) C"))
12863 cu->producer_is_icc = 1;
12864 else
12865 {
12866 /* For other non-GCC compilers, expect their behavior is DWARF version
12867 compliant. */
12868 }
12869
12870 cu->checked_producer = 1;
12871 }
12872
12873 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12874 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12875 during 4.6.0 experimental. */
12876
12877 static int
12878 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12879 {
12880 if (!cu->checked_producer)
12881 check_producer (cu);
12882
12883 return cu->producer_is_gxx_lt_4_6;
12884 }
12885
12886 /* Return the default accessibility type if it is not overriden by
12887 DW_AT_accessibility. */
12888
12889 static enum dwarf_access_attribute
12890 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12891 {
12892 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12893 {
12894 /* The default DWARF 2 accessibility for members is public, the default
12895 accessibility for inheritance is private. */
12896
12897 if (die->tag != DW_TAG_inheritance)
12898 return DW_ACCESS_public;
12899 else
12900 return DW_ACCESS_private;
12901 }
12902 else
12903 {
12904 /* DWARF 3+ defines the default accessibility a different way. The same
12905 rules apply now for DW_TAG_inheritance as for the members and it only
12906 depends on the container kind. */
12907
12908 if (die->parent->tag == DW_TAG_class_type)
12909 return DW_ACCESS_private;
12910 else
12911 return DW_ACCESS_public;
12912 }
12913 }
12914
12915 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12916 offset. If the attribute was not found return 0, otherwise return
12917 1. If it was found but could not properly be handled, set *OFFSET
12918 to 0. */
12919
12920 static int
12921 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12922 LONGEST *offset)
12923 {
12924 struct attribute *attr;
12925
12926 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12927 if (attr != NULL)
12928 {
12929 *offset = 0;
12930
12931 /* Note that we do not check for a section offset first here.
12932 This is because DW_AT_data_member_location is new in DWARF 4,
12933 so if we see it, we can assume that a constant form is really
12934 a constant and not a section offset. */
12935 if (attr_form_is_constant (attr))
12936 *offset = dwarf2_get_attr_constant_value (attr, 0);
12937 else if (attr_form_is_section_offset (attr))
12938 dwarf2_complex_location_expr_complaint ();
12939 else if (attr_form_is_block (attr))
12940 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12941 else
12942 dwarf2_complex_location_expr_complaint ();
12943
12944 return 1;
12945 }
12946
12947 return 0;
12948 }
12949
12950 /* Add an aggregate field to the field list. */
12951
12952 static void
12953 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12954 struct dwarf2_cu *cu)
12955 {
12956 struct objfile *objfile = cu->objfile;
12957 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12958 struct nextfield *new_field;
12959 struct attribute *attr;
12960 struct field *fp;
12961 const char *fieldname = "";
12962
12963 /* Allocate a new field list entry and link it in. */
12964 new_field = XNEW (struct nextfield);
12965 make_cleanup (xfree, new_field);
12966 memset (new_field, 0, sizeof (struct nextfield));
12967
12968 if (die->tag == DW_TAG_inheritance)
12969 {
12970 new_field->next = fip->baseclasses;
12971 fip->baseclasses = new_field;
12972 }
12973 else
12974 {
12975 new_field->next = fip->fields;
12976 fip->fields = new_field;
12977 }
12978 fip->nfields++;
12979
12980 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12981 if (attr)
12982 new_field->accessibility = DW_UNSND (attr);
12983 else
12984 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12985 if (new_field->accessibility != DW_ACCESS_public)
12986 fip->non_public_fields = 1;
12987
12988 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12989 if (attr)
12990 new_field->virtuality = DW_UNSND (attr);
12991 else
12992 new_field->virtuality = DW_VIRTUALITY_none;
12993
12994 fp = &new_field->field;
12995
12996 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12997 {
12998 LONGEST offset;
12999
13000 /* Data member other than a C++ static data member. */
13001
13002 /* Get type of field. */
13003 fp->type = die_type (die, cu);
13004
13005 SET_FIELD_BITPOS (*fp, 0);
13006
13007 /* Get bit size of field (zero if none). */
13008 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
13009 if (attr)
13010 {
13011 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
13012 }
13013 else
13014 {
13015 FIELD_BITSIZE (*fp) = 0;
13016 }
13017
13018 /* Get bit offset of field. */
13019 if (handle_data_member_location (die, cu, &offset))
13020 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13021 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
13022 if (attr)
13023 {
13024 if (gdbarch_bits_big_endian (gdbarch))
13025 {
13026 /* For big endian bits, the DW_AT_bit_offset gives the
13027 additional bit offset from the MSB of the containing
13028 anonymous object to the MSB of the field. We don't
13029 have to do anything special since we don't need to
13030 know the size of the anonymous object. */
13031 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
13032 }
13033 else
13034 {
13035 /* For little endian bits, compute the bit offset to the
13036 MSB of the anonymous object, subtract off the number of
13037 bits from the MSB of the field to the MSB of the
13038 object, and then subtract off the number of bits of
13039 the field itself. The result is the bit offset of
13040 the LSB of the field. */
13041 int anonymous_size;
13042 int bit_offset = DW_UNSND (attr);
13043
13044 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13045 if (attr)
13046 {
13047 /* The size of the anonymous object containing
13048 the bit field is explicit, so use the
13049 indicated size (in bytes). */
13050 anonymous_size = DW_UNSND (attr);
13051 }
13052 else
13053 {
13054 /* The size of the anonymous object containing
13055 the bit field must be inferred from the type
13056 attribute of the data member containing the
13057 bit field. */
13058 anonymous_size = TYPE_LENGTH (fp->type);
13059 }
13060 SET_FIELD_BITPOS (*fp,
13061 (FIELD_BITPOS (*fp)
13062 + anonymous_size * bits_per_byte
13063 - bit_offset - FIELD_BITSIZE (*fp)));
13064 }
13065 }
13066 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
13067 if (attr != NULL)
13068 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
13069 + dwarf2_get_attr_constant_value (attr, 0)));
13070
13071 /* Get name of field. */
13072 fieldname = dwarf2_name (die, cu);
13073 if (fieldname == NULL)
13074 fieldname = "";
13075
13076 /* The name is already allocated along with this objfile, so we don't
13077 need to duplicate it for the type. */
13078 fp->name = fieldname;
13079
13080 /* Change accessibility for artificial fields (e.g. virtual table
13081 pointer or virtual base class pointer) to private. */
13082 if (dwarf2_attr (die, DW_AT_artificial, cu))
13083 {
13084 FIELD_ARTIFICIAL (*fp) = 1;
13085 new_field->accessibility = DW_ACCESS_private;
13086 fip->non_public_fields = 1;
13087 }
13088 }
13089 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
13090 {
13091 /* C++ static member. */
13092
13093 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
13094 is a declaration, but all versions of G++ as of this writing
13095 (so through at least 3.2.1) incorrectly generate
13096 DW_TAG_variable tags. */
13097
13098 const char *physname;
13099
13100 /* Get name of field. */
13101 fieldname = dwarf2_name (die, cu);
13102 if (fieldname == NULL)
13103 return;
13104
13105 attr = dwarf2_attr (die, DW_AT_const_value, cu);
13106 if (attr
13107 /* Only create a symbol if this is an external value.
13108 new_symbol checks this and puts the value in the global symbol
13109 table, which we want. If it is not external, new_symbol
13110 will try to put the value in cu->list_in_scope which is wrong. */
13111 && dwarf2_flag_true_p (die, DW_AT_external, cu))
13112 {
13113 /* A static const member, not much different than an enum as far as
13114 we're concerned, except that we can support more types. */
13115 new_symbol (die, NULL, cu);
13116 }
13117
13118 /* Get physical name. */
13119 physname = dwarf2_physname (fieldname, die, cu);
13120
13121 /* The name is already allocated along with this objfile, so we don't
13122 need to duplicate it for the type. */
13123 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
13124 FIELD_TYPE (*fp) = die_type (die, cu);
13125 FIELD_NAME (*fp) = fieldname;
13126 }
13127 else if (die->tag == DW_TAG_inheritance)
13128 {
13129 LONGEST offset;
13130
13131 /* C++ base class field. */
13132 if (handle_data_member_location (die, cu, &offset))
13133 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13134 FIELD_BITSIZE (*fp) = 0;
13135 FIELD_TYPE (*fp) = die_type (die, cu);
13136 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13137 fip->nbaseclasses++;
13138 }
13139 }
13140
13141 /* Add a typedef defined in the scope of the FIP's class. */
13142
13143 static void
13144 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13145 struct dwarf2_cu *cu)
13146 {
13147 struct typedef_field_list *new_field;
13148 struct typedef_field *fp;
13149
13150 /* Allocate a new field list entry and link it in. */
13151 new_field = XCNEW (struct typedef_field_list);
13152 make_cleanup (xfree, new_field);
13153
13154 gdb_assert (die->tag == DW_TAG_typedef);
13155
13156 fp = &new_field->field;
13157
13158 /* Get name of field. */
13159 fp->name = dwarf2_name (die, cu);
13160 if (fp->name == NULL)
13161 return;
13162
13163 fp->type = read_type_die (die, cu);
13164
13165 new_field->next = fip->typedef_field_list;
13166 fip->typedef_field_list = new_field;
13167 fip->typedef_field_list_count++;
13168 }
13169
13170 /* Create the vector of fields, and attach it to the type. */
13171
13172 static void
13173 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
13174 struct dwarf2_cu *cu)
13175 {
13176 int nfields = fip->nfields;
13177
13178 /* Record the field count, allocate space for the array of fields,
13179 and create blank accessibility bitfields if necessary. */
13180 TYPE_NFIELDS (type) = nfields;
13181 TYPE_FIELDS (type) = (struct field *)
13182 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13183 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13184
13185 if (fip->non_public_fields && cu->language != language_ada)
13186 {
13187 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13188
13189 TYPE_FIELD_PRIVATE_BITS (type) =
13190 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13191 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13192
13193 TYPE_FIELD_PROTECTED_BITS (type) =
13194 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13195 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13196
13197 TYPE_FIELD_IGNORE_BITS (type) =
13198 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13199 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
13200 }
13201
13202 /* If the type has baseclasses, allocate and clear a bit vector for
13203 TYPE_FIELD_VIRTUAL_BITS. */
13204 if (fip->nbaseclasses && cu->language != language_ada)
13205 {
13206 int num_bytes = B_BYTES (fip->nbaseclasses);
13207 unsigned char *pointer;
13208
13209 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13210 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
13211 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
13212 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13213 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13214 }
13215
13216 /* Copy the saved-up fields into the field vector. Start from the head of
13217 the list, adding to the tail of the field array, so that they end up in
13218 the same order in the array in which they were added to the list. */
13219 while (nfields-- > 0)
13220 {
13221 struct nextfield *fieldp;
13222
13223 if (fip->fields)
13224 {
13225 fieldp = fip->fields;
13226 fip->fields = fieldp->next;
13227 }
13228 else
13229 {
13230 fieldp = fip->baseclasses;
13231 fip->baseclasses = fieldp->next;
13232 }
13233
13234 TYPE_FIELD (type, nfields) = fieldp->field;
13235 switch (fieldp->accessibility)
13236 {
13237 case DW_ACCESS_private:
13238 if (cu->language != language_ada)
13239 SET_TYPE_FIELD_PRIVATE (type, nfields);
13240 break;
13241
13242 case DW_ACCESS_protected:
13243 if (cu->language != language_ada)
13244 SET_TYPE_FIELD_PROTECTED (type, nfields);
13245 break;
13246
13247 case DW_ACCESS_public:
13248 break;
13249
13250 default:
13251 /* Unknown accessibility. Complain and treat it as public. */
13252 {
13253 complaint (&symfile_complaints, _("unsupported accessibility %d"),
13254 fieldp->accessibility);
13255 }
13256 break;
13257 }
13258 if (nfields < fip->nbaseclasses)
13259 {
13260 switch (fieldp->virtuality)
13261 {
13262 case DW_VIRTUALITY_virtual:
13263 case DW_VIRTUALITY_pure_virtual:
13264 if (cu->language == language_ada)
13265 error (_("unexpected virtuality in component of Ada type"));
13266 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13267 break;
13268 }
13269 }
13270 }
13271 }
13272
13273 /* Return true if this member function is a constructor, false
13274 otherwise. */
13275
13276 static int
13277 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13278 {
13279 const char *fieldname;
13280 const char *type_name;
13281 int len;
13282
13283 if (die->parent == NULL)
13284 return 0;
13285
13286 if (die->parent->tag != DW_TAG_structure_type
13287 && die->parent->tag != DW_TAG_union_type
13288 && die->parent->tag != DW_TAG_class_type)
13289 return 0;
13290
13291 fieldname = dwarf2_name (die, cu);
13292 type_name = dwarf2_name (die->parent, cu);
13293 if (fieldname == NULL || type_name == NULL)
13294 return 0;
13295
13296 len = strlen (fieldname);
13297 return (strncmp (fieldname, type_name, len) == 0
13298 && (type_name[len] == '\0' || type_name[len] == '<'));
13299 }
13300
13301 /* Add a member function to the proper fieldlist. */
13302
13303 static void
13304 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
13305 struct type *type, struct dwarf2_cu *cu)
13306 {
13307 struct objfile *objfile = cu->objfile;
13308 struct attribute *attr;
13309 struct fnfieldlist *flp;
13310 int i;
13311 struct fn_field *fnp;
13312 const char *fieldname;
13313 struct nextfnfield *new_fnfield;
13314 struct type *this_type;
13315 enum dwarf_access_attribute accessibility;
13316
13317 if (cu->language == language_ada)
13318 error (_("unexpected member function in Ada type"));
13319
13320 /* Get name of member function. */
13321 fieldname = dwarf2_name (die, cu);
13322 if (fieldname == NULL)
13323 return;
13324
13325 /* Look up member function name in fieldlist. */
13326 for (i = 0; i < fip->nfnfields; i++)
13327 {
13328 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
13329 break;
13330 }
13331
13332 /* Create new list element if necessary. */
13333 if (i < fip->nfnfields)
13334 flp = &fip->fnfieldlists[i];
13335 else
13336 {
13337 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13338 {
13339 fip->fnfieldlists = (struct fnfieldlist *)
13340 xrealloc (fip->fnfieldlists,
13341 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
13342 * sizeof (struct fnfieldlist));
13343 if (fip->nfnfields == 0)
13344 make_cleanup (free_current_contents, &fip->fnfieldlists);
13345 }
13346 flp = &fip->fnfieldlists[fip->nfnfields];
13347 flp->name = fieldname;
13348 flp->length = 0;
13349 flp->head = NULL;
13350 i = fip->nfnfields++;
13351 }
13352
13353 /* Create a new member function field and chain it to the field list
13354 entry. */
13355 new_fnfield = XNEW (struct nextfnfield);
13356 make_cleanup (xfree, new_fnfield);
13357 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13358 new_fnfield->next = flp->head;
13359 flp->head = new_fnfield;
13360 flp->length++;
13361
13362 /* Fill in the member function field info. */
13363 fnp = &new_fnfield->fnfield;
13364
13365 /* Delay processing of the physname until later. */
13366 if (cu->language == language_cplus)
13367 {
13368 add_to_method_list (type, i, flp->length - 1, fieldname,
13369 die, cu);
13370 }
13371 else
13372 {
13373 const char *physname = dwarf2_physname (fieldname, die, cu);
13374 fnp->physname = physname ? physname : "";
13375 }
13376
13377 fnp->type = alloc_type (objfile);
13378 this_type = read_type_die (die, cu);
13379 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
13380 {
13381 int nparams = TYPE_NFIELDS (this_type);
13382
13383 /* TYPE is the domain of this method, and THIS_TYPE is the type
13384 of the method itself (TYPE_CODE_METHOD). */
13385 smash_to_method_type (fnp->type, type,
13386 TYPE_TARGET_TYPE (this_type),
13387 TYPE_FIELDS (this_type),
13388 TYPE_NFIELDS (this_type),
13389 TYPE_VARARGS (this_type));
13390
13391 /* Handle static member functions.
13392 Dwarf2 has no clean way to discern C++ static and non-static
13393 member functions. G++ helps GDB by marking the first
13394 parameter for non-static member functions (which is the this
13395 pointer) as artificial. We obtain this information from
13396 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
13397 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
13398 fnp->voffset = VOFFSET_STATIC;
13399 }
13400 else
13401 complaint (&symfile_complaints, _("member function type missing for '%s'"),
13402 dwarf2_full_name (fieldname, die, cu));
13403
13404 /* Get fcontext from DW_AT_containing_type if present. */
13405 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13406 fnp->fcontext = die_containing_type (die, cu);
13407
13408 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13409 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
13410
13411 /* Get accessibility. */
13412 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13413 if (attr)
13414 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13415 else
13416 accessibility = dwarf2_default_access_attribute (die, cu);
13417 switch (accessibility)
13418 {
13419 case DW_ACCESS_private:
13420 fnp->is_private = 1;
13421 break;
13422 case DW_ACCESS_protected:
13423 fnp->is_protected = 1;
13424 break;
13425 }
13426
13427 /* Check for artificial methods. */
13428 attr = dwarf2_attr (die, DW_AT_artificial, cu);
13429 if (attr && DW_UNSND (attr) != 0)
13430 fnp->is_artificial = 1;
13431
13432 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13433
13434 /* Get index in virtual function table if it is a virtual member
13435 function. For older versions of GCC, this is an offset in the
13436 appropriate virtual table, as specified by DW_AT_containing_type.
13437 For everyone else, it is an expression to be evaluated relative
13438 to the object address. */
13439
13440 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
13441 if (attr)
13442 {
13443 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
13444 {
13445 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13446 {
13447 /* Old-style GCC. */
13448 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13449 }
13450 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13451 || (DW_BLOCK (attr)->size > 1
13452 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13453 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13454 {
13455 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13456 if ((fnp->voffset % cu->header.addr_size) != 0)
13457 dwarf2_complex_location_expr_complaint ();
13458 else
13459 fnp->voffset /= cu->header.addr_size;
13460 fnp->voffset += 2;
13461 }
13462 else
13463 dwarf2_complex_location_expr_complaint ();
13464
13465 if (!fnp->fcontext)
13466 {
13467 /* If there is no `this' field and no DW_AT_containing_type,
13468 we cannot actually find a base class context for the
13469 vtable! */
13470 if (TYPE_NFIELDS (this_type) == 0
13471 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13472 {
13473 complaint (&symfile_complaints,
13474 _("cannot determine context for virtual member "
13475 "function \"%s\" (offset %d)"),
13476 fieldname, to_underlying (die->sect_off));
13477 }
13478 else
13479 {
13480 fnp->fcontext
13481 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13482 }
13483 }
13484 }
13485 else if (attr_form_is_section_offset (attr))
13486 {
13487 dwarf2_complex_location_expr_complaint ();
13488 }
13489 else
13490 {
13491 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13492 fieldname);
13493 }
13494 }
13495 else
13496 {
13497 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13498 if (attr && DW_UNSND (attr))
13499 {
13500 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13501 complaint (&symfile_complaints,
13502 _("Member function \"%s\" (offset %d) is virtual "
13503 "but the vtable offset is not specified"),
13504 fieldname, to_underlying (die->sect_off));
13505 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13506 TYPE_CPLUS_DYNAMIC (type) = 1;
13507 }
13508 }
13509 }
13510
13511 /* Create the vector of member function fields, and attach it to the type. */
13512
13513 static void
13514 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13515 struct dwarf2_cu *cu)
13516 {
13517 struct fnfieldlist *flp;
13518 int i;
13519
13520 if (cu->language == language_ada)
13521 error (_("unexpected member functions in Ada type"));
13522
13523 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13524 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13525 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13526
13527 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13528 {
13529 struct nextfnfield *nfp = flp->head;
13530 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13531 int k;
13532
13533 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13534 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13535 fn_flp->fn_fields = (struct fn_field *)
13536 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13537 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13538 fn_flp->fn_fields[k] = nfp->fnfield;
13539 }
13540
13541 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13542 }
13543
13544 /* Returns non-zero if NAME is the name of a vtable member in CU's
13545 language, zero otherwise. */
13546 static int
13547 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13548 {
13549 static const char vptr[] = "_vptr";
13550 static const char vtable[] = "vtable";
13551
13552 /* Look for the C++ form of the vtable. */
13553 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13554 return 1;
13555
13556 return 0;
13557 }
13558
13559 /* GCC outputs unnamed structures that are really pointers to member
13560 functions, with the ABI-specified layout. If TYPE describes
13561 such a structure, smash it into a member function type.
13562
13563 GCC shouldn't do this; it should just output pointer to member DIEs.
13564 This is GCC PR debug/28767. */
13565
13566 static void
13567 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13568 {
13569 struct type *pfn_type, *self_type, *new_type;
13570
13571 /* Check for a structure with no name and two children. */
13572 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13573 return;
13574
13575 /* Check for __pfn and __delta members. */
13576 if (TYPE_FIELD_NAME (type, 0) == NULL
13577 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13578 || TYPE_FIELD_NAME (type, 1) == NULL
13579 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13580 return;
13581
13582 /* Find the type of the method. */
13583 pfn_type = TYPE_FIELD_TYPE (type, 0);
13584 if (pfn_type == NULL
13585 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13586 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13587 return;
13588
13589 /* Look for the "this" argument. */
13590 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13591 if (TYPE_NFIELDS (pfn_type) == 0
13592 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13593 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13594 return;
13595
13596 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13597 new_type = alloc_type (objfile);
13598 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13599 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13600 TYPE_VARARGS (pfn_type));
13601 smash_to_methodptr_type (type, new_type);
13602 }
13603
13604 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13605 (icc). */
13606
13607 static int
13608 producer_is_icc (struct dwarf2_cu *cu)
13609 {
13610 if (!cu->checked_producer)
13611 check_producer (cu);
13612
13613 return cu->producer_is_icc;
13614 }
13615
13616 /* Called when we find the DIE that starts a structure or union scope
13617 (definition) to create a type for the structure or union. Fill in
13618 the type's name and general properties; the members will not be
13619 processed until process_structure_scope. A symbol table entry for
13620 the type will also not be done until process_structure_scope (assuming
13621 the type has a name).
13622
13623 NOTE: we need to call these functions regardless of whether or not the
13624 DIE has a DW_AT_name attribute, since it might be an anonymous
13625 structure or union. This gets the type entered into our set of
13626 user defined types. */
13627
13628 static struct type *
13629 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13630 {
13631 struct objfile *objfile = cu->objfile;
13632 struct type *type;
13633 struct attribute *attr;
13634 const char *name;
13635
13636 /* If the definition of this type lives in .debug_types, read that type.
13637 Don't follow DW_AT_specification though, that will take us back up
13638 the chain and we want to go down. */
13639 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13640 if (attr)
13641 {
13642 type = get_DW_AT_signature_type (die, attr, cu);
13643
13644 /* The type's CU may not be the same as CU.
13645 Ensure TYPE is recorded with CU in die_type_hash. */
13646 return set_die_type (die, type, cu);
13647 }
13648
13649 type = alloc_type (objfile);
13650 INIT_CPLUS_SPECIFIC (type);
13651
13652 name = dwarf2_name (die, cu);
13653 if (name != NULL)
13654 {
13655 if (cu->language == language_cplus
13656 || cu->language == language_d
13657 || cu->language == language_rust)
13658 {
13659 const char *full_name = dwarf2_full_name (name, die, cu);
13660
13661 /* dwarf2_full_name might have already finished building the DIE's
13662 type. If so, there is no need to continue. */
13663 if (get_die_type (die, cu) != NULL)
13664 return get_die_type (die, cu);
13665
13666 TYPE_TAG_NAME (type) = full_name;
13667 if (die->tag == DW_TAG_structure_type
13668 || die->tag == DW_TAG_class_type)
13669 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13670 }
13671 else
13672 {
13673 /* The name is already allocated along with this objfile, so
13674 we don't need to duplicate it for the type. */
13675 TYPE_TAG_NAME (type) = name;
13676 if (die->tag == DW_TAG_class_type)
13677 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13678 }
13679 }
13680
13681 if (die->tag == DW_TAG_structure_type)
13682 {
13683 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13684 }
13685 else if (die->tag == DW_TAG_union_type)
13686 {
13687 TYPE_CODE (type) = TYPE_CODE_UNION;
13688 }
13689 else
13690 {
13691 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13692 }
13693
13694 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13695 TYPE_DECLARED_CLASS (type) = 1;
13696
13697 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13698 if (attr)
13699 {
13700 if (attr_form_is_constant (attr))
13701 TYPE_LENGTH (type) = DW_UNSND (attr);
13702 else
13703 {
13704 /* For the moment, dynamic type sizes are not supported
13705 by GDB's struct type. The actual size is determined
13706 on-demand when resolving the type of a given object,
13707 so set the type's length to zero for now. Otherwise,
13708 we record an expression as the length, and that expression
13709 could lead to a very large value, which could eventually
13710 lead to us trying to allocate that much memory when creating
13711 a value of that type. */
13712 TYPE_LENGTH (type) = 0;
13713 }
13714 }
13715 else
13716 {
13717 TYPE_LENGTH (type) = 0;
13718 }
13719
13720 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13721 {
13722 /* ICC does not output the required DW_AT_declaration
13723 on incomplete types, but gives them a size of zero. */
13724 TYPE_STUB (type) = 1;
13725 }
13726 else
13727 TYPE_STUB_SUPPORTED (type) = 1;
13728
13729 if (die_is_declaration (die, cu))
13730 TYPE_STUB (type) = 1;
13731 else if (attr == NULL && die->child == NULL
13732 && producer_is_realview (cu->producer))
13733 /* RealView does not output the required DW_AT_declaration
13734 on incomplete types. */
13735 TYPE_STUB (type) = 1;
13736
13737 /* We need to add the type field to the die immediately so we don't
13738 infinitely recurse when dealing with pointers to the structure
13739 type within the structure itself. */
13740 set_die_type (die, type, cu);
13741
13742 /* set_die_type should be already done. */
13743 set_descriptive_type (type, die, cu);
13744
13745 return type;
13746 }
13747
13748 /* Finish creating a structure or union type, including filling in
13749 its members and creating a symbol for it. */
13750
13751 static void
13752 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13753 {
13754 struct objfile *objfile = cu->objfile;
13755 struct die_info *child_die;
13756 struct type *type;
13757
13758 type = get_die_type (die, cu);
13759 if (type == NULL)
13760 type = read_structure_type (die, cu);
13761
13762 if (die->child != NULL && ! die_is_declaration (die, cu))
13763 {
13764 struct field_info fi;
13765 VEC (symbolp) *template_args = NULL;
13766 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13767
13768 memset (&fi, 0, sizeof (struct field_info));
13769
13770 child_die = die->child;
13771
13772 while (child_die && child_die->tag)
13773 {
13774 if (child_die->tag == DW_TAG_member
13775 || child_die->tag == DW_TAG_variable)
13776 {
13777 /* NOTE: carlton/2002-11-05: A C++ static data member
13778 should be a DW_TAG_member that is a declaration, but
13779 all versions of G++ as of this writing (so through at
13780 least 3.2.1) incorrectly generate DW_TAG_variable
13781 tags for them instead. */
13782 dwarf2_add_field (&fi, child_die, cu);
13783 }
13784 else if (child_die->tag == DW_TAG_subprogram)
13785 {
13786 /* Rust doesn't have member functions in the C++ sense.
13787 However, it does emit ordinary functions as children
13788 of a struct DIE. */
13789 if (cu->language == language_rust)
13790 read_func_scope (child_die, cu);
13791 else
13792 {
13793 /* C++ member function. */
13794 dwarf2_add_member_fn (&fi, child_die, type, cu);
13795 }
13796 }
13797 else if (child_die->tag == DW_TAG_inheritance)
13798 {
13799 /* C++ base class field. */
13800 dwarf2_add_field (&fi, child_die, cu);
13801 }
13802 else if (child_die->tag == DW_TAG_typedef)
13803 dwarf2_add_typedef (&fi, child_die, cu);
13804 else if (child_die->tag == DW_TAG_template_type_param
13805 || child_die->tag == DW_TAG_template_value_param)
13806 {
13807 struct symbol *arg = new_symbol (child_die, NULL, cu);
13808
13809 if (arg != NULL)
13810 VEC_safe_push (symbolp, template_args, arg);
13811 }
13812
13813 child_die = sibling_die (child_die);
13814 }
13815
13816 /* Attach template arguments to type. */
13817 if (! VEC_empty (symbolp, template_args))
13818 {
13819 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13820 TYPE_N_TEMPLATE_ARGUMENTS (type)
13821 = VEC_length (symbolp, template_args);
13822 TYPE_TEMPLATE_ARGUMENTS (type)
13823 = XOBNEWVEC (&objfile->objfile_obstack,
13824 struct symbol *,
13825 TYPE_N_TEMPLATE_ARGUMENTS (type));
13826 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13827 VEC_address (symbolp, template_args),
13828 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13829 * sizeof (struct symbol *)));
13830 VEC_free (symbolp, template_args);
13831 }
13832
13833 /* Attach fields and member functions to the type. */
13834 if (fi.nfields)
13835 dwarf2_attach_fields_to_type (&fi, type, cu);
13836 if (fi.nfnfields)
13837 {
13838 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13839
13840 /* Get the type which refers to the base class (possibly this
13841 class itself) which contains the vtable pointer for the current
13842 class from the DW_AT_containing_type attribute. This use of
13843 DW_AT_containing_type is a GNU extension. */
13844
13845 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13846 {
13847 struct type *t = die_containing_type (die, cu);
13848
13849 set_type_vptr_basetype (type, t);
13850 if (type == t)
13851 {
13852 int i;
13853
13854 /* Our own class provides vtbl ptr. */
13855 for (i = TYPE_NFIELDS (t) - 1;
13856 i >= TYPE_N_BASECLASSES (t);
13857 --i)
13858 {
13859 const char *fieldname = TYPE_FIELD_NAME (t, i);
13860
13861 if (is_vtable_name (fieldname, cu))
13862 {
13863 set_type_vptr_fieldno (type, i);
13864 break;
13865 }
13866 }
13867
13868 /* Complain if virtual function table field not found. */
13869 if (i < TYPE_N_BASECLASSES (t))
13870 complaint (&symfile_complaints,
13871 _("virtual function table pointer "
13872 "not found when defining class '%s'"),
13873 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13874 "");
13875 }
13876 else
13877 {
13878 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13879 }
13880 }
13881 else if (cu->producer
13882 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13883 {
13884 /* The IBM XLC compiler does not provide direct indication
13885 of the containing type, but the vtable pointer is
13886 always named __vfp. */
13887
13888 int i;
13889
13890 for (i = TYPE_NFIELDS (type) - 1;
13891 i >= TYPE_N_BASECLASSES (type);
13892 --i)
13893 {
13894 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13895 {
13896 set_type_vptr_fieldno (type, i);
13897 set_type_vptr_basetype (type, type);
13898 break;
13899 }
13900 }
13901 }
13902 }
13903
13904 /* Copy fi.typedef_field_list linked list elements content into the
13905 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13906 if (fi.typedef_field_list)
13907 {
13908 int i = fi.typedef_field_list_count;
13909
13910 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13911 TYPE_TYPEDEF_FIELD_ARRAY (type)
13912 = ((struct typedef_field *)
13913 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13914 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13915
13916 /* Reverse the list order to keep the debug info elements order. */
13917 while (--i >= 0)
13918 {
13919 struct typedef_field *dest, *src;
13920
13921 dest = &TYPE_TYPEDEF_FIELD (type, i);
13922 src = &fi.typedef_field_list->field;
13923 fi.typedef_field_list = fi.typedef_field_list->next;
13924 *dest = *src;
13925 }
13926 }
13927
13928 do_cleanups (back_to);
13929 }
13930
13931 quirk_gcc_member_function_pointer (type, objfile);
13932
13933 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13934 snapshots) has been known to create a die giving a declaration
13935 for a class that has, as a child, a die giving a definition for a
13936 nested class. So we have to process our children even if the
13937 current die is a declaration. Normally, of course, a declaration
13938 won't have any children at all. */
13939
13940 child_die = die->child;
13941
13942 while (child_die != NULL && child_die->tag)
13943 {
13944 if (child_die->tag == DW_TAG_member
13945 || child_die->tag == DW_TAG_variable
13946 || child_die->tag == DW_TAG_inheritance
13947 || child_die->tag == DW_TAG_template_value_param
13948 || child_die->tag == DW_TAG_template_type_param)
13949 {
13950 /* Do nothing. */
13951 }
13952 else
13953 process_die (child_die, cu);
13954
13955 child_die = sibling_die (child_die);
13956 }
13957
13958 /* Do not consider external references. According to the DWARF standard,
13959 these DIEs are identified by the fact that they have no byte_size
13960 attribute, and a declaration attribute. */
13961 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13962 || !die_is_declaration (die, cu))
13963 new_symbol (die, type, cu);
13964 }
13965
13966 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13967 update TYPE using some information only available in DIE's children. */
13968
13969 static void
13970 update_enumeration_type_from_children (struct die_info *die,
13971 struct type *type,
13972 struct dwarf2_cu *cu)
13973 {
13974 struct die_info *child_die;
13975 int unsigned_enum = 1;
13976 int flag_enum = 1;
13977 ULONGEST mask = 0;
13978
13979 auto_obstack obstack;
13980
13981 for (child_die = die->child;
13982 child_die != NULL && child_die->tag;
13983 child_die = sibling_die (child_die))
13984 {
13985 struct attribute *attr;
13986 LONGEST value;
13987 const gdb_byte *bytes;
13988 struct dwarf2_locexpr_baton *baton;
13989 const char *name;
13990
13991 if (child_die->tag != DW_TAG_enumerator)
13992 continue;
13993
13994 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13995 if (attr == NULL)
13996 continue;
13997
13998 name = dwarf2_name (child_die, cu);
13999 if (name == NULL)
14000 name = "<anonymous enumerator>";
14001
14002 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
14003 &value, &bytes, &baton);
14004 if (value < 0)
14005 {
14006 unsigned_enum = 0;
14007 flag_enum = 0;
14008 }
14009 else if ((mask & value) != 0)
14010 flag_enum = 0;
14011 else
14012 mask |= value;
14013
14014 /* If we already know that the enum type is neither unsigned, nor
14015 a flag type, no need to look at the rest of the enumerates. */
14016 if (!unsigned_enum && !flag_enum)
14017 break;
14018 }
14019
14020 if (unsigned_enum)
14021 TYPE_UNSIGNED (type) = 1;
14022 if (flag_enum)
14023 TYPE_FLAG_ENUM (type) = 1;
14024 }
14025
14026 /* Given a DW_AT_enumeration_type die, set its type. We do not
14027 complete the type's fields yet, or create any symbols. */
14028
14029 static struct type *
14030 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
14031 {
14032 struct objfile *objfile = cu->objfile;
14033 struct type *type;
14034 struct attribute *attr;
14035 const char *name;
14036
14037 /* If the definition of this type lives in .debug_types, read that type.
14038 Don't follow DW_AT_specification though, that will take us back up
14039 the chain and we want to go down. */
14040 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
14041 if (attr)
14042 {
14043 type = get_DW_AT_signature_type (die, attr, cu);
14044
14045 /* The type's CU may not be the same as CU.
14046 Ensure TYPE is recorded with CU in die_type_hash. */
14047 return set_die_type (die, type, cu);
14048 }
14049
14050 type = alloc_type (objfile);
14051
14052 TYPE_CODE (type) = TYPE_CODE_ENUM;
14053 name = dwarf2_full_name (NULL, die, cu);
14054 if (name != NULL)
14055 TYPE_TAG_NAME (type) = name;
14056
14057 attr = dwarf2_attr (die, DW_AT_type, cu);
14058 if (attr != NULL)
14059 {
14060 struct type *underlying_type = die_type (die, cu);
14061
14062 TYPE_TARGET_TYPE (type) = underlying_type;
14063 }
14064
14065 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14066 if (attr)
14067 {
14068 TYPE_LENGTH (type) = DW_UNSND (attr);
14069 }
14070 else
14071 {
14072 TYPE_LENGTH (type) = 0;
14073 }
14074
14075 /* The enumeration DIE can be incomplete. In Ada, any type can be
14076 declared as private in the package spec, and then defined only
14077 inside the package body. Such types are known as Taft Amendment
14078 Types. When another package uses such a type, an incomplete DIE
14079 may be generated by the compiler. */
14080 if (die_is_declaration (die, cu))
14081 TYPE_STUB (type) = 1;
14082
14083 /* Finish the creation of this type by using the enum's children.
14084 We must call this even when the underlying type has been provided
14085 so that we can determine if we're looking at a "flag" enum. */
14086 update_enumeration_type_from_children (die, type, cu);
14087
14088 /* If this type has an underlying type that is not a stub, then we
14089 may use its attributes. We always use the "unsigned" attribute
14090 in this situation, because ordinarily we guess whether the type
14091 is unsigned -- but the guess can be wrong and the underlying type
14092 can tell us the reality. However, we defer to a local size
14093 attribute if one exists, because this lets the compiler override
14094 the underlying type if needed. */
14095 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
14096 {
14097 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
14098 if (TYPE_LENGTH (type) == 0)
14099 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
14100 }
14101
14102 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
14103
14104 return set_die_type (die, type, cu);
14105 }
14106
14107 /* Given a pointer to a die which begins an enumeration, process all
14108 the dies that define the members of the enumeration, and create the
14109 symbol for the enumeration type.
14110
14111 NOTE: We reverse the order of the element list. */
14112
14113 static void
14114 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14115 {
14116 struct type *this_type;
14117
14118 this_type = get_die_type (die, cu);
14119 if (this_type == NULL)
14120 this_type = read_enumeration_type (die, cu);
14121
14122 if (die->child != NULL)
14123 {
14124 struct die_info *child_die;
14125 struct symbol *sym;
14126 struct field *fields = NULL;
14127 int num_fields = 0;
14128 const char *name;
14129
14130 child_die = die->child;
14131 while (child_die && child_die->tag)
14132 {
14133 if (child_die->tag != DW_TAG_enumerator)
14134 {
14135 process_die (child_die, cu);
14136 }
14137 else
14138 {
14139 name = dwarf2_name (child_die, cu);
14140 if (name)
14141 {
14142 sym = new_symbol (child_die, this_type, cu);
14143
14144 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14145 {
14146 fields = (struct field *)
14147 xrealloc (fields,
14148 (num_fields + DW_FIELD_ALLOC_CHUNK)
14149 * sizeof (struct field));
14150 }
14151
14152 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
14153 FIELD_TYPE (fields[num_fields]) = NULL;
14154 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
14155 FIELD_BITSIZE (fields[num_fields]) = 0;
14156
14157 num_fields++;
14158 }
14159 }
14160
14161 child_die = sibling_die (child_die);
14162 }
14163
14164 if (num_fields)
14165 {
14166 TYPE_NFIELDS (this_type) = num_fields;
14167 TYPE_FIELDS (this_type) = (struct field *)
14168 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14169 memcpy (TYPE_FIELDS (this_type), fields,
14170 sizeof (struct field) * num_fields);
14171 xfree (fields);
14172 }
14173 }
14174
14175 /* If we are reading an enum from a .debug_types unit, and the enum
14176 is a declaration, and the enum is not the signatured type in the
14177 unit, then we do not want to add a symbol for it. Adding a
14178 symbol would in some cases obscure the true definition of the
14179 enum, giving users an incomplete type when the definition is
14180 actually available. Note that we do not want to do this for all
14181 enums which are just declarations, because C++0x allows forward
14182 enum declarations. */
14183 if (cu->per_cu->is_debug_types
14184 && die_is_declaration (die, cu))
14185 {
14186 struct signatured_type *sig_type;
14187
14188 sig_type = (struct signatured_type *) cu->per_cu;
14189 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14190 if (sig_type->type_offset_in_section != die->sect_off)
14191 return;
14192 }
14193
14194 new_symbol (die, this_type, cu);
14195 }
14196
14197 /* Extract all information from a DW_TAG_array_type DIE and put it in
14198 the DIE's type field. For now, this only handles one dimensional
14199 arrays. */
14200
14201 static struct type *
14202 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
14203 {
14204 struct objfile *objfile = cu->objfile;
14205 struct die_info *child_die;
14206 struct type *type;
14207 struct type *element_type, *range_type, *index_type;
14208 struct type **range_types = NULL;
14209 struct attribute *attr;
14210 int ndim = 0;
14211 struct cleanup *back_to;
14212 const char *name;
14213 unsigned int bit_stride = 0;
14214
14215 element_type = die_type (die, cu);
14216
14217 /* The die_type call above may have already set the type for this DIE. */
14218 type = get_die_type (die, cu);
14219 if (type)
14220 return type;
14221
14222 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14223 if (attr != NULL)
14224 bit_stride = DW_UNSND (attr) * 8;
14225
14226 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14227 if (attr != NULL)
14228 bit_stride = DW_UNSND (attr);
14229
14230 /* Irix 6.2 native cc creates array types without children for
14231 arrays with unspecified length. */
14232 if (die->child == NULL)
14233 {
14234 index_type = objfile_type (objfile)->builtin_int;
14235 range_type = create_static_range_type (NULL, index_type, 0, -1);
14236 type = create_array_type_with_stride (NULL, element_type, range_type,
14237 bit_stride);
14238 return set_die_type (die, type, cu);
14239 }
14240
14241 back_to = make_cleanup (null_cleanup, NULL);
14242 child_die = die->child;
14243 while (child_die && child_die->tag)
14244 {
14245 if (child_die->tag == DW_TAG_subrange_type)
14246 {
14247 struct type *child_type = read_type_die (child_die, cu);
14248
14249 if (child_type != NULL)
14250 {
14251 /* The range type was succesfully read. Save it for the
14252 array type creation. */
14253 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
14254 {
14255 range_types = (struct type **)
14256 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
14257 * sizeof (struct type *));
14258 if (ndim == 0)
14259 make_cleanup (free_current_contents, &range_types);
14260 }
14261 range_types[ndim++] = child_type;
14262 }
14263 }
14264 child_die = sibling_die (child_die);
14265 }
14266
14267 /* Dwarf2 dimensions are output from left to right, create the
14268 necessary array types in backwards order. */
14269
14270 type = element_type;
14271
14272 if (read_array_order (die, cu) == DW_ORD_col_major)
14273 {
14274 int i = 0;
14275
14276 while (i < ndim)
14277 type = create_array_type_with_stride (NULL, type, range_types[i++],
14278 bit_stride);
14279 }
14280 else
14281 {
14282 while (ndim-- > 0)
14283 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14284 bit_stride);
14285 }
14286
14287 /* Understand Dwarf2 support for vector types (like they occur on
14288 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14289 array type. This is not part of the Dwarf2/3 standard yet, but a
14290 custom vendor extension. The main difference between a regular
14291 array and the vector variant is that vectors are passed by value
14292 to functions. */
14293 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
14294 if (attr)
14295 make_vector_type (type);
14296
14297 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14298 implementation may choose to implement triple vectors using this
14299 attribute. */
14300 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14301 if (attr)
14302 {
14303 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14304 TYPE_LENGTH (type) = DW_UNSND (attr);
14305 else
14306 complaint (&symfile_complaints,
14307 _("DW_AT_byte_size for array type smaller "
14308 "than the total size of elements"));
14309 }
14310
14311 name = dwarf2_name (die, cu);
14312 if (name)
14313 TYPE_NAME (type) = name;
14314
14315 /* Install the type in the die. */
14316 set_die_type (die, type, cu);
14317
14318 /* set_die_type should be already done. */
14319 set_descriptive_type (type, die, cu);
14320
14321 do_cleanups (back_to);
14322
14323 return type;
14324 }
14325
14326 static enum dwarf_array_dim_ordering
14327 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
14328 {
14329 struct attribute *attr;
14330
14331 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14332
14333 if (attr)
14334 return (enum dwarf_array_dim_ordering) DW_SND (attr);
14335
14336 /* GNU F77 is a special case, as at 08/2004 array type info is the
14337 opposite order to the dwarf2 specification, but data is still
14338 laid out as per normal fortran.
14339
14340 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14341 version checking. */
14342
14343 if (cu->language == language_fortran
14344 && cu->producer && strstr (cu->producer, "GNU F77"))
14345 {
14346 return DW_ORD_row_major;
14347 }
14348
14349 switch (cu->language_defn->la_array_ordering)
14350 {
14351 case array_column_major:
14352 return DW_ORD_col_major;
14353 case array_row_major:
14354 default:
14355 return DW_ORD_row_major;
14356 };
14357 }
14358
14359 /* Extract all information from a DW_TAG_set_type DIE and put it in
14360 the DIE's type field. */
14361
14362 static struct type *
14363 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14364 {
14365 struct type *domain_type, *set_type;
14366 struct attribute *attr;
14367
14368 domain_type = die_type (die, cu);
14369
14370 /* The die_type call above may have already set the type for this DIE. */
14371 set_type = get_die_type (die, cu);
14372 if (set_type)
14373 return set_type;
14374
14375 set_type = create_set_type (NULL, domain_type);
14376
14377 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14378 if (attr)
14379 TYPE_LENGTH (set_type) = DW_UNSND (attr);
14380
14381 return set_die_type (die, set_type, cu);
14382 }
14383
14384 /* A helper for read_common_block that creates a locexpr baton.
14385 SYM is the symbol which we are marking as computed.
14386 COMMON_DIE is the DIE for the common block.
14387 COMMON_LOC is the location expression attribute for the common
14388 block itself.
14389 MEMBER_LOC is the location expression attribute for the particular
14390 member of the common block that we are processing.
14391 CU is the CU from which the above come. */
14392
14393 static void
14394 mark_common_block_symbol_computed (struct symbol *sym,
14395 struct die_info *common_die,
14396 struct attribute *common_loc,
14397 struct attribute *member_loc,
14398 struct dwarf2_cu *cu)
14399 {
14400 struct objfile *objfile = dwarf2_per_objfile->objfile;
14401 struct dwarf2_locexpr_baton *baton;
14402 gdb_byte *ptr;
14403 unsigned int cu_off;
14404 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14405 LONGEST offset = 0;
14406
14407 gdb_assert (common_loc && member_loc);
14408 gdb_assert (attr_form_is_block (common_loc));
14409 gdb_assert (attr_form_is_block (member_loc)
14410 || attr_form_is_constant (member_loc));
14411
14412 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14413 baton->per_cu = cu->per_cu;
14414 gdb_assert (baton->per_cu);
14415
14416 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14417
14418 if (attr_form_is_constant (member_loc))
14419 {
14420 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14421 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14422 }
14423 else
14424 baton->size += DW_BLOCK (member_loc)->size;
14425
14426 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
14427 baton->data = ptr;
14428
14429 *ptr++ = DW_OP_call4;
14430 cu_off = common_die->sect_off - cu->per_cu->sect_off;
14431 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14432 ptr += 4;
14433
14434 if (attr_form_is_constant (member_loc))
14435 {
14436 *ptr++ = DW_OP_addr;
14437 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14438 ptr += cu->header.addr_size;
14439 }
14440 else
14441 {
14442 /* We have to copy the data here, because DW_OP_call4 will only
14443 use a DW_AT_location attribute. */
14444 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14445 ptr += DW_BLOCK (member_loc)->size;
14446 }
14447
14448 *ptr++ = DW_OP_plus;
14449 gdb_assert (ptr - baton->data == baton->size);
14450
14451 SYMBOL_LOCATION_BATON (sym) = baton;
14452 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
14453 }
14454
14455 /* Create appropriate locally-scoped variables for all the
14456 DW_TAG_common_block entries. Also create a struct common_block
14457 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14458 is used to sepate the common blocks name namespace from regular
14459 variable names. */
14460
14461 static void
14462 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
14463 {
14464 struct attribute *attr;
14465
14466 attr = dwarf2_attr (die, DW_AT_location, cu);
14467 if (attr)
14468 {
14469 /* Support the .debug_loc offsets. */
14470 if (attr_form_is_block (attr))
14471 {
14472 /* Ok. */
14473 }
14474 else if (attr_form_is_section_offset (attr))
14475 {
14476 dwarf2_complex_location_expr_complaint ();
14477 attr = NULL;
14478 }
14479 else
14480 {
14481 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14482 "common block member");
14483 attr = NULL;
14484 }
14485 }
14486
14487 if (die->child != NULL)
14488 {
14489 struct objfile *objfile = cu->objfile;
14490 struct die_info *child_die;
14491 size_t n_entries = 0, size;
14492 struct common_block *common_block;
14493 struct symbol *sym;
14494
14495 for (child_die = die->child;
14496 child_die && child_die->tag;
14497 child_die = sibling_die (child_die))
14498 ++n_entries;
14499
14500 size = (sizeof (struct common_block)
14501 + (n_entries - 1) * sizeof (struct symbol *));
14502 common_block
14503 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14504 size);
14505 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14506 common_block->n_entries = 0;
14507
14508 for (child_die = die->child;
14509 child_die && child_die->tag;
14510 child_die = sibling_die (child_die))
14511 {
14512 /* Create the symbol in the DW_TAG_common_block block in the current
14513 symbol scope. */
14514 sym = new_symbol (child_die, NULL, cu);
14515 if (sym != NULL)
14516 {
14517 struct attribute *member_loc;
14518
14519 common_block->contents[common_block->n_entries++] = sym;
14520
14521 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14522 cu);
14523 if (member_loc)
14524 {
14525 /* GDB has handled this for a long time, but it is
14526 not specified by DWARF. It seems to have been
14527 emitted by gfortran at least as recently as:
14528 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14529 complaint (&symfile_complaints,
14530 _("Variable in common block has "
14531 "DW_AT_data_member_location "
14532 "- DIE at 0x%x [in module %s]"),
14533 to_underlying (child_die->sect_off),
14534 objfile_name (cu->objfile));
14535
14536 if (attr_form_is_section_offset (member_loc))
14537 dwarf2_complex_location_expr_complaint ();
14538 else if (attr_form_is_constant (member_loc)
14539 || attr_form_is_block (member_loc))
14540 {
14541 if (attr)
14542 mark_common_block_symbol_computed (sym, die, attr,
14543 member_loc, cu);
14544 }
14545 else
14546 dwarf2_complex_location_expr_complaint ();
14547 }
14548 }
14549 }
14550
14551 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14552 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14553 }
14554 }
14555
14556 /* Create a type for a C++ namespace. */
14557
14558 static struct type *
14559 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14560 {
14561 struct objfile *objfile = cu->objfile;
14562 const char *previous_prefix, *name;
14563 int is_anonymous;
14564 struct type *type;
14565
14566 /* For extensions, reuse the type of the original namespace. */
14567 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14568 {
14569 struct die_info *ext_die;
14570 struct dwarf2_cu *ext_cu = cu;
14571
14572 ext_die = dwarf2_extension (die, &ext_cu);
14573 type = read_type_die (ext_die, ext_cu);
14574
14575 /* EXT_CU may not be the same as CU.
14576 Ensure TYPE is recorded with CU in die_type_hash. */
14577 return set_die_type (die, type, cu);
14578 }
14579
14580 name = namespace_name (die, &is_anonymous, cu);
14581
14582 /* Now build the name of the current namespace. */
14583
14584 previous_prefix = determine_prefix (die, cu);
14585 if (previous_prefix[0] != '\0')
14586 name = typename_concat (&objfile->objfile_obstack,
14587 previous_prefix, name, 0, cu);
14588
14589 /* Create the type. */
14590 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14591 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14592
14593 return set_die_type (die, type, cu);
14594 }
14595
14596 /* Read a namespace scope. */
14597
14598 static void
14599 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14600 {
14601 struct objfile *objfile = cu->objfile;
14602 int is_anonymous;
14603
14604 /* Add a symbol associated to this if we haven't seen the namespace
14605 before. Also, add a using directive if it's an anonymous
14606 namespace. */
14607
14608 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14609 {
14610 struct type *type;
14611
14612 type = read_type_die (die, cu);
14613 new_symbol (die, type, cu);
14614
14615 namespace_name (die, &is_anonymous, cu);
14616 if (is_anonymous)
14617 {
14618 const char *previous_prefix = determine_prefix (die, cu);
14619
14620 add_using_directive (using_directives (cu->language),
14621 previous_prefix, TYPE_NAME (type), NULL,
14622 NULL, NULL, 0, &objfile->objfile_obstack);
14623 }
14624 }
14625
14626 if (die->child != NULL)
14627 {
14628 struct die_info *child_die = die->child;
14629
14630 while (child_die && child_die->tag)
14631 {
14632 process_die (child_die, cu);
14633 child_die = sibling_die (child_die);
14634 }
14635 }
14636 }
14637
14638 /* Read a Fortran module as type. This DIE can be only a declaration used for
14639 imported module. Still we need that type as local Fortran "use ... only"
14640 declaration imports depend on the created type in determine_prefix. */
14641
14642 static struct type *
14643 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14644 {
14645 struct objfile *objfile = cu->objfile;
14646 const char *module_name;
14647 struct type *type;
14648
14649 module_name = dwarf2_name (die, cu);
14650 if (!module_name)
14651 complaint (&symfile_complaints,
14652 _("DW_TAG_module has no name, offset 0x%x"),
14653 to_underlying (die->sect_off));
14654 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14655
14656 /* determine_prefix uses TYPE_TAG_NAME. */
14657 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14658
14659 return set_die_type (die, type, cu);
14660 }
14661
14662 /* Read a Fortran module. */
14663
14664 static void
14665 read_module (struct die_info *die, struct dwarf2_cu *cu)
14666 {
14667 struct die_info *child_die = die->child;
14668 struct type *type;
14669
14670 type = read_type_die (die, cu);
14671 new_symbol (die, type, cu);
14672
14673 while (child_die && child_die->tag)
14674 {
14675 process_die (child_die, cu);
14676 child_die = sibling_die (child_die);
14677 }
14678 }
14679
14680 /* Return the name of the namespace represented by DIE. Set
14681 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14682 namespace. */
14683
14684 static const char *
14685 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14686 {
14687 struct die_info *current_die;
14688 const char *name = NULL;
14689
14690 /* Loop through the extensions until we find a name. */
14691
14692 for (current_die = die;
14693 current_die != NULL;
14694 current_die = dwarf2_extension (die, &cu))
14695 {
14696 /* We don't use dwarf2_name here so that we can detect the absence
14697 of a name -> anonymous namespace. */
14698 name = dwarf2_string_attr (die, DW_AT_name, cu);
14699
14700 if (name != NULL)
14701 break;
14702 }
14703
14704 /* Is it an anonymous namespace? */
14705
14706 *is_anonymous = (name == NULL);
14707 if (*is_anonymous)
14708 name = CP_ANONYMOUS_NAMESPACE_STR;
14709
14710 return name;
14711 }
14712
14713 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14714 the user defined type vector. */
14715
14716 static struct type *
14717 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14718 {
14719 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14720 struct comp_unit_head *cu_header = &cu->header;
14721 struct type *type;
14722 struct attribute *attr_byte_size;
14723 struct attribute *attr_address_class;
14724 int byte_size, addr_class;
14725 struct type *target_type;
14726
14727 target_type = die_type (die, cu);
14728
14729 /* The die_type call above may have already set the type for this DIE. */
14730 type = get_die_type (die, cu);
14731 if (type)
14732 return type;
14733
14734 type = lookup_pointer_type (target_type);
14735
14736 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14737 if (attr_byte_size)
14738 byte_size = DW_UNSND (attr_byte_size);
14739 else
14740 byte_size = cu_header->addr_size;
14741
14742 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14743 if (attr_address_class)
14744 addr_class = DW_UNSND (attr_address_class);
14745 else
14746 addr_class = DW_ADDR_none;
14747
14748 /* If the pointer size or address class is different than the
14749 default, create a type variant marked as such and set the
14750 length accordingly. */
14751 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14752 {
14753 if (gdbarch_address_class_type_flags_p (gdbarch))
14754 {
14755 int type_flags;
14756
14757 type_flags = gdbarch_address_class_type_flags
14758 (gdbarch, byte_size, addr_class);
14759 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14760 == 0);
14761 type = make_type_with_address_space (type, type_flags);
14762 }
14763 else if (TYPE_LENGTH (type) != byte_size)
14764 {
14765 complaint (&symfile_complaints,
14766 _("invalid pointer size %d"), byte_size);
14767 }
14768 else
14769 {
14770 /* Should we also complain about unhandled address classes? */
14771 }
14772 }
14773
14774 TYPE_LENGTH (type) = byte_size;
14775 return set_die_type (die, type, cu);
14776 }
14777
14778 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14779 the user defined type vector. */
14780
14781 static struct type *
14782 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14783 {
14784 struct type *type;
14785 struct type *to_type;
14786 struct type *domain;
14787
14788 to_type = die_type (die, cu);
14789 domain = die_containing_type (die, cu);
14790
14791 /* The calls above may have already set the type for this DIE. */
14792 type = get_die_type (die, cu);
14793 if (type)
14794 return type;
14795
14796 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14797 type = lookup_methodptr_type (to_type);
14798 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14799 {
14800 struct type *new_type = alloc_type (cu->objfile);
14801
14802 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14803 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14804 TYPE_VARARGS (to_type));
14805 type = lookup_methodptr_type (new_type);
14806 }
14807 else
14808 type = lookup_memberptr_type (to_type, domain);
14809
14810 return set_die_type (die, type, cu);
14811 }
14812
14813 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
14814 the user defined type vector. */
14815
14816 static struct type *
14817 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
14818 enum type_code refcode)
14819 {
14820 struct comp_unit_head *cu_header = &cu->header;
14821 struct type *type, *target_type;
14822 struct attribute *attr;
14823
14824 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
14825
14826 target_type = die_type (die, cu);
14827
14828 /* The die_type call above may have already set the type for this DIE. */
14829 type = get_die_type (die, cu);
14830 if (type)
14831 return type;
14832
14833 type = lookup_reference_type (target_type, refcode);
14834 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14835 if (attr)
14836 {
14837 TYPE_LENGTH (type) = DW_UNSND (attr);
14838 }
14839 else
14840 {
14841 TYPE_LENGTH (type) = cu_header->addr_size;
14842 }
14843 return set_die_type (die, type, cu);
14844 }
14845
14846 /* Add the given cv-qualifiers to the element type of the array. GCC
14847 outputs DWARF type qualifiers that apply to an array, not the
14848 element type. But GDB relies on the array element type to carry
14849 the cv-qualifiers. This mimics section 6.7.3 of the C99
14850 specification. */
14851
14852 static struct type *
14853 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14854 struct type *base_type, int cnst, int voltl)
14855 {
14856 struct type *el_type, *inner_array;
14857
14858 base_type = copy_type (base_type);
14859 inner_array = base_type;
14860
14861 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14862 {
14863 TYPE_TARGET_TYPE (inner_array) =
14864 copy_type (TYPE_TARGET_TYPE (inner_array));
14865 inner_array = TYPE_TARGET_TYPE (inner_array);
14866 }
14867
14868 el_type = TYPE_TARGET_TYPE (inner_array);
14869 cnst |= TYPE_CONST (el_type);
14870 voltl |= TYPE_VOLATILE (el_type);
14871 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14872
14873 return set_die_type (die, base_type, cu);
14874 }
14875
14876 static struct type *
14877 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14878 {
14879 struct type *base_type, *cv_type;
14880
14881 base_type = die_type (die, cu);
14882
14883 /* The die_type call above may have already set the type for this DIE. */
14884 cv_type = get_die_type (die, cu);
14885 if (cv_type)
14886 return cv_type;
14887
14888 /* In case the const qualifier is applied to an array type, the element type
14889 is so qualified, not the array type (section 6.7.3 of C99). */
14890 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14891 return add_array_cv_type (die, cu, base_type, 1, 0);
14892
14893 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14894 return set_die_type (die, cv_type, cu);
14895 }
14896
14897 static struct type *
14898 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14899 {
14900 struct type *base_type, *cv_type;
14901
14902 base_type = die_type (die, cu);
14903
14904 /* The die_type call above may have already set the type for this DIE. */
14905 cv_type = get_die_type (die, cu);
14906 if (cv_type)
14907 return cv_type;
14908
14909 /* In case the volatile qualifier is applied to an array type, the
14910 element type is so qualified, not the array type (section 6.7.3
14911 of C99). */
14912 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14913 return add_array_cv_type (die, cu, base_type, 0, 1);
14914
14915 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14916 return set_die_type (die, cv_type, cu);
14917 }
14918
14919 /* Handle DW_TAG_restrict_type. */
14920
14921 static struct type *
14922 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14923 {
14924 struct type *base_type, *cv_type;
14925
14926 base_type = die_type (die, cu);
14927
14928 /* The die_type call above may have already set the type for this DIE. */
14929 cv_type = get_die_type (die, cu);
14930 if (cv_type)
14931 return cv_type;
14932
14933 cv_type = make_restrict_type (base_type);
14934 return set_die_type (die, cv_type, cu);
14935 }
14936
14937 /* Handle DW_TAG_atomic_type. */
14938
14939 static struct type *
14940 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14941 {
14942 struct type *base_type, *cv_type;
14943
14944 base_type = die_type (die, cu);
14945
14946 /* The die_type call above may have already set the type for this DIE. */
14947 cv_type = get_die_type (die, cu);
14948 if (cv_type)
14949 return cv_type;
14950
14951 cv_type = make_atomic_type (base_type);
14952 return set_die_type (die, cv_type, cu);
14953 }
14954
14955 /* Extract all information from a DW_TAG_string_type DIE and add to
14956 the user defined type vector. It isn't really a user defined type,
14957 but it behaves like one, with other DIE's using an AT_user_def_type
14958 attribute to reference it. */
14959
14960 static struct type *
14961 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14962 {
14963 struct objfile *objfile = cu->objfile;
14964 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14965 struct type *type, *range_type, *index_type, *char_type;
14966 struct attribute *attr;
14967 unsigned int length;
14968
14969 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14970 if (attr)
14971 {
14972 length = DW_UNSND (attr);
14973 }
14974 else
14975 {
14976 /* Check for the DW_AT_byte_size attribute. */
14977 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14978 if (attr)
14979 {
14980 length = DW_UNSND (attr);
14981 }
14982 else
14983 {
14984 length = 1;
14985 }
14986 }
14987
14988 index_type = objfile_type (objfile)->builtin_int;
14989 range_type = create_static_range_type (NULL, index_type, 1, length);
14990 char_type = language_string_char_type (cu->language_defn, gdbarch);
14991 type = create_string_type (NULL, char_type, range_type);
14992
14993 return set_die_type (die, type, cu);
14994 }
14995
14996 /* Assuming that DIE corresponds to a function, returns nonzero
14997 if the function is prototyped. */
14998
14999 static int
15000 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
15001 {
15002 struct attribute *attr;
15003
15004 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
15005 if (attr && (DW_UNSND (attr) != 0))
15006 return 1;
15007
15008 /* The DWARF standard implies that the DW_AT_prototyped attribute
15009 is only meaninful for C, but the concept also extends to other
15010 languages that allow unprototyped functions (Eg: Objective C).
15011 For all other languages, assume that functions are always
15012 prototyped. */
15013 if (cu->language != language_c
15014 && cu->language != language_objc
15015 && cu->language != language_opencl)
15016 return 1;
15017
15018 /* RealView does not emit DW_AT_prototyped. We can not distinguish
15019 prototyped and unprototyped functions; default to prototyped,
15020 since that is more common in modern code (and RealView warns
15021 about unprototyped functions). */
15022 if (producer_is_realview (cu->producer))
15023 return 1;
15024
15025 return 0;
15026 }
15027
15028 /* Handle DIES due to C code like:
15029
15030 struct foo
15031 {
15032 int (*funcp)(int a, long l);
15033 int b;
15034 };
15035
15036 ('funcp' generates a DW_TAG_subroutine_type DIE). */
15037
15038 static struct type *
15039 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
15040 {
15041 struct objfile *objfile = cu->objfile;
15042 struct type *type; /* Type that this function returns. */
15043 struct type *ftype; /* Function that returns above type. */
15044 struct attribute *attr;
15045
15046 type = die_type (die, cu);
15047
15048 /* The die_type call above may have already set the type for this DIE. */
15049 ftype = get_die_type (die, cu);
15050 if (ftype)
15051 return ftype;
15052
15053 ftype = lookup_function_type (type);
15054
15055 if (prototyped_function_p (die, cu))
15056 TYPE_PROTOTYPED (ftype) = 1;
15057
15058 /* Store the calling convention in the type if it's available in
15059 the subroutine die. Otherwise set the calling convention to
15060 the default value DW_CC_normal. */
15061 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15062 if (attr)
15063 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
15064 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
15065 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
15066 else
15067 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
15068
15069 /* Record whether the function returns normally to its caller or not
15070 if the DWARF producer set that information. */
15071 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
15072 if (attr && (DW_UNSND (attr) != 0))
15073 TYPE_NO_RETURN (ftype) = 1;
15074
15075 /* We need to add the subroutine type to the die immediately so
15076 we don't infinitely recurse when dealing with parameters
15077 declared as the same subroutine type. */
15078 set_die_type (die, ftype, cu);
15079
15080 if (die->child != NULL)
15081 {
15082 struct type *void_type = objfile_type (objfile)->builtin_void;
15083 struct die_info *child_die;
15084 int nparams, iparams;
15085
15086 /* Count the number of parameters.
15087 FIXME: GDB currently ignores vararg functions, but knows about
15088 vararg member functions. */
15089 nparams = 0;
15090 child_die = die->child;
15091 while (child_die && child_die->tag)
15092 {
15093 if (child_die->tag == DW_TAG_formal_parameter)
15094 nparams++;
15095 else if (child_die->tag == DW_TAG_unspecified_parameters)
15096 TYPE_VARARGS (ftype) = 1;
15097 child_die = sibling_die (child_die);
15098 }
15099
15100 /* Allocate storage for parameters and fill them in. */
15101 TYPE_NFIELDS (ftype) = nparams;
15102 TYPE_FIELDS (ftype) = (struct field *)
15103 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
15104
15105 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15106 even if we error out during the parameters reading below. */
15107 for (iparams = 0; iparams < nparams; iparams++)
15108 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15109
15110 iparams = 0;
15111 child_die = die->child;
15112 while (child_die && child_die->tag)
15113 {
15114 if (child_die->tag == DW_TAG_formal_parameter)
15115 {
15116 struct type *arg_type;
15117
15118 /* DWARF version 2 has no clean way to discern C++
15119 static and non-static member functions. G++ helps
15120 GDB by marking the first parameter for non-static
15121 member functions (which is the this pointer) as
15122 artificial. We pass this information to
15123 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15124
15125 DWARF version 3 added DW_AT_object_pointer, which GCC
15126 4.5 does not yet generate. */
15127 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
15128 if (attr)
15129 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15130 else
15131 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
15132 arg_type = die_type (child_die, cu);
15133
15134 /* RealView does not mark THIS as const, which the testsuite
15135 expects. GCC marks THIS as const in method definitions,
15136 but not in the class specifications (GCC PR 43053). */
15137 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15138 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15139 {
15140 int is_this = 0;
15141 struct dwarf2_cu *arg_cu = cu;
15142 const char *name = dwarf2_name (child_die, cu);
15143
15144 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15145 if (attr)
15146 {
15147 /* If the compiler emits this, use it. */
15148 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15149 is_this = 1;
15150 }
15151 else if (name && strcmp (name, "this") == 0)
15152 /* Function definitions will have the argument names. */
15153 is_this = 1;
15154 else if (name == NULL && iparams == 0)
15155 /* Declarations may not have the names, so like
15156 elsewhere in GDB, assume an artificial first
15157 argument is "this". */
15158 is_this = 1;
15159
15160 if (is_this)
15161 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15162 arg_type, 0);
15163 }
15164
15165 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
15166 iparams++;
15167 }
15168 child_die = sibling_die (child_die);
15169 }
15170 }
15171
15172 return ftype;
15173 }
15174
15175 static struct type *
15176 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
15177 {
15178 struct objfile *objfile = cu->objfile;
15179 const char *name = NULL;
15180 struct type *this_type, *target_type;
15181
15182 name = dwarf2_full_name (NULL, die, cu);
15183 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15184 TYPE_TARGET_STUB (this_type) = 1;
15185 set_die_type (die, this_type, cu);
15186 target_type = die_type (die, cu);
15187 if (target_type != this_type)
15188 TYPE_TARGET_TYPE (this_type) = target_type;
15189 else
15190 {
15191 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15192 spec and cause infinite loops in GDB. */
15193 complaint (&symfile_complaints,
15194 _("Self-referential DW_TAG_typedef "
15195 "- DIE at 0x%x [in module %s]"),
15196 to_underlying (die->sect_off), objfile_name (objfile));
15197 TYPE_TARGET_TYPE (this_type) = NULL;
15198 }
15199 return this_type;
15200 }
15201
15202 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15203 (which may be different from NAME) to the architecture back-end to allow
15204 it to guess the correct format if necessary. */
15205
15206 static struct type *
15207 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15208 const char *name_hint)
15209 {
15210 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15211 const struct floatformat **format;
15212 struct type *type;
15213
15214 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15215 if (format)
15216 type = init_float_type (objfile, bits, name, format);
15217 else
15218 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
15219
15220 return type;
15221 }
15222
15223 /* Find a representation of a given base type and install
15224 it in the TYPE field of the die. */
15225
15226 static struct type *
15227 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
15228 {
15229 struct objfile *objfile = cu->objfile;
15230 struct type *type;
15231 struct attribute *attr;
15232 int encoding = 0, bits = 0;
15233 const char *name;
15234
15235 attr = dwarf2_attr (die, DW_AT_encoding, cu);
15236 if (attr)
15237 {
15238 encoding = DW_UNSND (attr);
15239 }
15240 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15241 if (attr)
15242 {
15243 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
15244 }
15245 name = dwarf2_name (die, cu);
15246 if (!name)
15247 {
15248 complaint (&symfile_complaints,
15249 _("DW_AT_name missing from DW_TAG_base_type"));
15250 }
15251
15252 switch (encoding)
15253 {
15254 case DW_ATE_address:
15255 /* Turn DW_ATE_address into a void * pointer. */
15256 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
15257 type = init_pointer_type (objfile, bits, name, type);
15258 break;
15259 case DW_ATE_boolean:
15260 type = init_boolean_type (objfile, bits, 1, name);
15261 break;
15262 case DW_ATE_complex_float:
15263 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
15264 type = init_complex_type (objfile, name, type);
15265 break;
15266 case DW_ATE_decimal_float:
15267 type = init_decfloat_type (objfile, bits, name);
15268 break;
15269 case DW_ATE_float:
15270 type = dwarf2_init_float_type (objfile, bits, name, name);
15271 break;
15272 case DW_ATE_signed:
15273 type = init_integer_type (objfile, bits, 0, name);
15274 break;
15275 case DW_ATE_unsigned:
15276 if (cu->language == language_fortran
15277 && name
15278 && startswith (name, "character("))
15279 type = init_character_type (objfile, bits, 1, name);
15280 else
15281 type = init_integer_type (objfile, bits, 1, name);
15282 break;
15283 case DW_ATE_signed_char:
15284 if (cu->language == language_ada || cu->language == language_m2
15285 || cu->language == language_pascal
15286 || cu->language == language_fortran)
15287 type = init_character_type (objfile, bits, 0, name);
15288 else
15289 type = init_integer_type (objfile, bits, 0, name);
15290 break;
15291 case DW_ATE_unsigned_char:
15292 if (cu->language == language_ada || cu->language == language_m2
15293 || cu->language == language_pascal
15294 || cu->language == language_fortran
15295 || cu->language == language_rust)
15296 type = init_character_type (objfile, bits, 1, name);
15297 else
15298 type = init_integer_type (objfile, bits, 1, name);
15299 break;
15300 case DW_ATE_UTF:
15301 {
15302 gdbarch *arch = get_objfile_arch (objfile);
15303
15304 if (bits == 16)
15305 type = builtin_type (arch)->builtin_char16;
15306 else if (bits == 32)
15307 type = builtin_type (arch)->builtin_char32;
15308 else
15309 {
15310 complaint (&symfile_complaints,
15311 _("unsupported DW_ATE_UTF bit size: '%d'"),
15312 bits);
15313 type = init_integer_type (objfile, bits, 1, name);
15314 }
15315 return set_die_type (die, type, cu);
15316 }
15317 break;
15318
15319 default:
15320 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15321 dwarf_type_encoding_name (encoding));
15322 type = init_type (objfile, TYPE_CODE_ERROR,
15323 bits / TARGET_CHAR_BIT, name);
15324 break;
15325 }
15326
15327 if (name && strcmp (name, "char") == 0)
15328 TYPE_NOSIGN (type) = 1;
15329
15330 return set_die_type (die, type, cu);
15331 }
15332
15333 /* Parse dwarf attribute if it's a block, reference or constant and put the
15334 resulting value of the attribute into struct bound_prop.
15335 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15336
15337 static int
15338 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15339 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15340 {
15341 struct dwarf2_property_baton *baton;
15342 struct obstack *obstack = &cu->objfile->objfile_obstack;
15343
15344 if (attr == NULL || prop == NULL)
15345 return 0;
15346
15347 if (attr_form_is_block (attr))
15348 {
15349 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15350 baton->referenced_type = NULL;
15351 baton->locexpr.per_cu = cu->per_cu;
15352 baton->locexpr.size = DW_BLOCK (attr)->size;
15353 baton->locexpr.data = DW_BLOCK (attr)->data;
15354 prop->data.baton = baton;
15355 prop->kind = PROP_LOCEXPR;
15356 gdb_assert (prop->data.baton != NULL);
15357 }
15358 else if (attr_form_is_ref (attr))
15359 {
15360 struct dwarf2_cu *target_cu = cu;
15361 struct die_info *target_die;
15362 struct attribute *target_attr;
15363
15364 target_die = follow_die_ref (die, attr, &target_cu);
15365 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
15366 if (target_attr == NULL)
15367 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15368 target_cu);
15369 if (target_attr == NULL)
15370 return 0;
15371
15372 switch (target_attr->name)
15373 {
15374 case DW_AT_location:
15375 if (attr_form_is_section_offset (target_attr))
15376 {
15377 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15378 baton->referenced_type = die_type (target_die, target_cu);
15379 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15380 prop->data.baton = baton;
15381 prop->kind = PROP_LOCLIST;
15382 gdb_assert (prop->data.baton != NULL);
15383 }
15384 else if (attr_form_is_block (target_attr))
15385 {
15386 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15387 baton->referenced_type = die_type (target_die, target_cu);
15388 baton->locexpr.per_cu = cu->per_cu;
15389 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15390 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15391 prop->data.baton = baton;
15392 prop->kind = PROP_LOCEXPR;
15393 gdb_assert (prop->data.baton != NULL);
15394 }
15395 else
15396 {
15397 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15398 "dynamic property");
15399 return 0;
15400 }
15401 break;
15402 case DW_AT_data_member_location:
15403 {
15404 LONGEST offset;
15405
15406 if (!handle_data_member_location (target_die, target_cu,
15407 &offset))
15408 return 0;
15409
15410 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15411 baton->referenced_type = read_type_die (target_die->parent,
15412 target_cu);
15413 baton->offset_info.offset = offset;
15414 baton->offset_info.type = die_type (target_die, target_cu);
15415 prop->data.baton = baton;
15416 prop->kind = PROP_ADDR_OFFSET;
15417 break;
15418 }
15419 }
15420 }
15421 else if (attr_form_is_constant (attr))
15422 {
15423 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15424 prop->kind = PROP_CONST;
15425 }
15426 else
15427 {
15428 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15429 dwarf2_name (die, cu));
15430 return 0;
15431 }
15432
15433 return 1;
15434 }
15435
15436 /* Read the given DW_AT_subrange DIE. */
15437
15438 static struct type *
15439 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15440 {
15441 struct type *base_type, *orig_base_type;
15442 struct type *range_type;
15443 struct attribute *attr;
15444 struct dynamic_prop low, high;
15445 int low_default_is_valid;
15446 int high_bound_is_count = 0;
15447 const char *name;
15448 LONGEST negative_mask;
15449
15450 orig_base_type = die_type (die, cu);
15451 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15452 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15453 creating the range type, but we use the result of check_typedef
15454 when examining properties of the type. */
15455 base_type = check_typedef (orig_base_type);
15456
15457 /* The die_type call above may have already set the type for this DIE. */
15458 range_type = get_die_type (die, cu);
15459 if (range_type)
15460 return range_type;
15461
15462 low.kind = PROP_CONST;
15463 high.kind = PROP_CONST;
15464 high.data.const_val = 0;
15465
15466 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15467 omitting DW_AT_lower_bound. */
15468 switch (cu->language)
15469 {
15470 case language_c:
15471 case language_cplus:
15472 low.data.const_val = 0;
15473 low_default_is_valid = 1;
15474 break;
15475 case language_fortran:
15476 low.data.const_val = 1;
15477 low_default_is_valid = 1;
15478 break;
15479 case language_d:
15480 case language_objc:
15481 case language_rust:
15482 low.data.const_val = 0;
15483 low_default_is_valid = (cu->header.version >= 4);
15484 break;
15485 case language_ada:
15486 case language_m2:
15487 case language_pascal:
15488 low.data.const_val = 1;
15489 low_default_is_valid = (cu->header.version >= 4);
15490 break;
15491 default:
15492 low.data.const_val = 0;
15493 low_default_is_valid = 0;
15494 break;
15495 }
15496
15497 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15498 if (attr)
15499 attr_to_dynamic_prop (attr, die, cu, &low);
15500 else if (!low_default_is_valid)
15501 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15502 "- DIE at 0x%x [in module %s]"),
15503 to_underlying (die->sect_off), objfile_name (cu->objfile));
15504
15505 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15506 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15507 {
15508 attr = dwarf2_attr (die, DW_AT_count, cu);
15509 if (attr_to_dynamic_prop (attr, die, cu, &high))
15510 {
15511 /* If bounds are constant do the final calculation here. */
15512 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15513 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15514 else
15515 high_bound_is_count = 1;
15516 }
15517 }
15518
15519 /* Dwarf-2 specifications explicitly allows to create subrange types
15520 without specifying a base type.
15521 In that case, the base type must be set to the type of
15522 the lower bound, upper bound or count, in that order, if any of these
15523 three attributes references an object that has a type.
15524 If no base type is found, the Dwarf-2 specifications say that
15525 a signed integer type of size equal to the size of an address should
15526 be used.
15527 For the following C code: `extern char gdb_int [];'
15528 GCC produces an empty range DIE.
15529 FIXME: muller/2010-05-28: Possible references to object for low bound,
15530 high bound or count are not yet handled by this code. */
15531 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15532 {
15533 struct objfile *objfile = cu->objfile;
15534 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15535 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15536 struct type *int_type = objfile_type (objfile)->builtin_int;
15537
15538 /* Test "int", "long int", and "long long int" objfile types,
15539 and select the first one having a size above or equal to the
15540 architecture address size. */
15541 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15542 base_type = int_type;
15543 else
15544 {
15545 int_type = objfile_type (objfile)->builtin_long;
15546 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15547 base_type = int_type;
15548 else
15549 {
15550 int_type = objfile_type (objfile)->builtin_long_long;
15551 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15552 base_type = int_type;
15553 }
15554 }
15555 }
15556
15557 /* Normally, the DWARF producers are expected to use a signed
15558 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15559 But this is unfortunately not always the case, as witnessed
15560 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15561 is used instead. To work around that ambiguity, we treat
15562 the bounds as signed, and thus sign-extend their values, when
15563 the base type is signed. */
15564 negative_mask =
15565 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15566 if (low.kind == PROP_CONST
15567 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15568 low.data.const_val |= negative_mask;
15569 if (high.kind == PROP_CONST
15570 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15571 high.data.const_val |= negative_mask;
15572
15573 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15574
15575 if (high_bound_is_count)
15576 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15577
15578 /* Ada expects an empty array on no boundary attributes. */
15579 if (attr == NULL && cu->language != language_ada)
15580 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15581
15582 name = dwarf2_name (die, cu);
15583 if (name)
15584 TYPE_NAME (range_type) = name;
15585
15586 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15587 if (attr)
15588 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15589
15590 set_die_type (die, range_type, cu);
15591
15592 /* set_die_type should be already done. */
15593 set_descriptive_type (range_type, die, cu);
15594
15595 return range_type;
15596 }
15597
15598 static struct type *
15599 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15600 {
15601 struct type *type;
15602
15603 /* For now, we only support the C meaning of an unspecified type: void. */
15604
15605 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15606 TYPE_NAME (type) = dwarf2_name (die, cu);
15607
15608 return set_die_type (die, type, cu);
15609 }
15610
15611 /* Read a single die and all its descendents. Set the die's sibling
15612 field to NULL; set other fields in the die correctly, and set all
15613 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15614 location of the info_ptr after reading all of those dies. PARENT
15615 is the parent of the die in question. */
15616
15617 static struct die_info *
15618 read_die_and_children (const struct die_reader_specs *reader,
15619 const gdb_byte *info_ptr,
15620 const gdb_byte **new_info_ptr,
15621 struct die_info *parent)
15622 {
15623 struct die_info *die;
15624 const gdb_byte *cur_ptr;
15625 int has_children;
15626
15627 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15628 if (die == NULL)
15629 {
15630 *new_info_ptr = cur_ptr;
15631 return NULL;
15632 }
15633 store_in_ref_table (die, reader->cu);
15634
15635 if (has_children)
15636 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15637 else
15638 {
15639 die->child = NULL;
15640 *new_info_ptr = cur_ptr;
15641 }
15642
15643 die->sibling = NULL;
15644 die->parent = parent;
15645 return die;
15646 }
15647
15648 /* Read a die, all of its descendents, and all of its siblings; set
15649 all of the fields of all of the dies correctly. Arguments are as
15650 in read_die_and_children. */
15651
15652 static struct die_info *
15653 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15654 const gdb_byte *info_ptr,
15655 const gdb_byte **new_info_ptr,
15656 struct die_info *parent)
15657 {
15658 struct die_info *first_die, *last_sibling;
15659 const gdb_byte *cur_ptr;
15660
15661 cur_ptr = info_ptr;
15662 first_die = last_sibling = NULL;
15663
15664 while (1)
15665 {
15666 struct die_info *die
15667 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15668
15669 if (die == NULL)
15670 {
15671 *new_info_ptr = cur_ptr;
15672 return first_die;
15673 }
15674
15675 if (!first_die)
15676 first_die = die;
15677 else
15678 last_sibling->sibling = die;
15679
15680 last_sibling = die;
15681 }
15682 }
15683
15684 /* Read a die, all of its descendents, and all of its siblings; set
15685 all of the fields of all of the dies correctly. Arguments are as
15686 in read_die_and_children.
15687 This the main entry point for reading a DIE and all its children. */
15688
15689 static struct die_info *
15690 read_die_and_siblings (const struct die_reader_specs *reader,
15691 const gdb_byte *info_ptr,
15692 const gdb_byte **new_info_ptr,
15693 struct die_info *parent)
15694 {
15695 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15696 new_info_ptr, parent);
15697
15698 if (dwarf_die_debug)
15699 {
15700 fprintf_unfiltered (gdb_stdlog,
15701 "Read die from %s@0x%x of %s:\n",
15702 get_section_name (reader->die_section),
15703 (unsigned) (info_ptr - reader->die_section->buffer),
15704 bfd_get_filename (reader->abfd));
15705 dump_die (die, dwarf_die_debug);
15706 }
15707
15708 return die;
15709 }
15710
15711 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15712 attributes.
15713 The caller is responsible for filling in the extra attributes
15714 and updating (*DIEP)->num_attrs.
15715 Set DIEP to point to a newly allocated die with its information,
15716 except for its child, sibling, and parent fields.
15717 Set HAS_CHILDREN to tell whether the die has children or not. */
15718
15719 static const gdb_byte *
15720 read_full_die_1 (const struct die_reader_specs *reader,
15721 struct die_info **diep, const gdb_byte *info_ptr,
15722 int *has_children, int num_extra_attrs)
15723 {
15724 unsigned int abbrev_number, bytes_read, i;
15725 struct abbrev_info *abbrev;
15726 struct die_info *die;
15727 struct dwarf2_cu *cu = reader->cu;
15728 bfd *abfd = reader->abfd;
15729
15730 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
15731 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15732 info_ptr += bytes_read;
15733 if (!abbrev_number)
15734 {
15735 *diep = NULL;
15736 *has_children = 0;
15737 return info_ptr;
15738 }
15739
15740 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15741 if (!abbrev)
15742 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15743 abbrev_number,
15744 bfd_get_filename (abfd));
15745
15746 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15747 die->sect_off = sect_off;
15748 die->tag = abbrev->tag;
15749 die->abbrev = abbrev_number;
15750
15751 /* Make the result usable.
15752 The caller needs to update num_attrs after adding the extra
15753 attributes. */
15754 die->num_attrs = abbrev->num_attrs;
15755
15756 for (i = 0; i < abbrev->num_attrs; ++i)
15757 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15758 info_ptr);
15759
15760 *diep = die;
15761 *has_children = abbrev->has_children;
15762 return info_ptr;
15763 }
15764
15765 /* Read a die and all its attributes.
15766 Set DIEP to point to a newly allocated die with its information,
15767 except for its child, sibling, and parent fields.
15768 Set HAS_CHILDREN to tell whether the die has children or not. */
15769
15770 static const gdb_byte *
15771 read_full_die (const struct die_reader_specs *reader,
15772 struct die_info **diep, const gdb_byte *info_ptr,
15773 int *has_children)
15774 {
15775 const gdb_byte *result;
15776
15777 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15778
15779 if (dwarf_die_debug)
15780 {
15781 fprintf_unfiltered (gdb_stdlog,
15782 "Read die from %s@0x%x of %s:\n",
15783 get_section_name (reader->die_section),
15784 (unsigned) (info_ptr - reader->die_section->buffer),
15785 bfd_get_filename (reader->abfd));
15786 dump_die (*diep, dwarf_die_debug);
15787 }
15788
15789 return result;
15790 }
15791 \f
15792 /* Abbreviation tables.
15793
15794 In DWARF version 2, the description of the debugging information is
15795 stored in a separate .debug_abbrev section. Before we read any
15796 dies from a section we read in all abbreviations and install them
15797 in a hash table. */
15798
15799 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15800
15801 static struct abbrev_info *
15802 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15803 {
15804 struct abbrev_info *abbrev;
15805
15806 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15807 memset (abbrev, 0, sizeof (struct abbrev_info));
15808
15809 return abbrev;
15810 }
15811
15812 /* Add an abbreviation to the table. */
15813
15814 static void
15815 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15816 unsigned int abbrev_number,
15817 struct abbrev_info *abbrev)
15818 {
15819 unsigned int hash_number;
15820
15821 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15822 abbrev->next = abbrev_table->abbrevs[hash_number];
15823 abbrev_table->abbrevs[hash_number] = abbrev;
15824 }
15825
15826 /* Look up an abbrev in the table.
15827 Returns NULL if the abbrev is not found. */
15828
15829 static struct abbrev_info *
15830 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15831 unsigned int abbrev_number)
15832 {
15833 unsigned int hash_number;
15834 struct abbrev_info *abbrev;
15835
15836 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15837 abbrev = abbrev_table->abbrevs[hash_number];
15838
15839 while (abbrev)
15840 {
15841 if (abbrev->number == abbrev_number)
15842 return abbrev;
15843 abbrev = abbrev->next;
15844 }
15845 return NULL;
15846 }
15847
15848 /* Read in an abbrev table. */
15849
15850 static struct abbrev_table *
15851 abbrev_table_read_table (struct dwarf2_section_info *section,
15852 sect_offset sect_off)
15853 {
15854 struct objfile *objfile = dwarf2_per_objfile->objfile;
15855 bfd *abfd = get_section_bfd_owner (section);
15856 struct abbrev_table *abbrev_table;
15857 const gdb_byte *abbrev_ptr;
15858 struct abbrev_info *cur_abbrev;
15859 unsigned int abbrev_number, bytes_read, abbrev_name;
15860 unsigned int abbrev_form;
15861 struct attr_abbrev *cur_attrs;
15862 unsigned int allocated_attrs;
15863
15864 abbrev_table = XNEW (struct abbrev_table);
15865 abbrev_table->sect_off = sect_off;
15866 obstack_init (&abbrev_table->abbrev_obstack);
15867 abbrev_table->abbrevs =
15868 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15869 ABBREV_HASH_SIZE);
15870 memset (abbrev_table->abbrevs, 0,
15871 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15872
15873 dwarf2_read_section (objfile, section);
15874 abbrev_ptr = section->buffer + to_underlying (sect_off);
15875 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15876 abbrev_ptr += bytes_read;
15877
15878 allocated_attrs = ATTR_ALLOC_CHUNK;
15879 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15880
15881 /* Loop until we reach an abbrev number of 0. */
15882 while (abbrev_number)
15883 {
15884 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15885
15886 /* read in abbrev header */
15887 cur_abbrev->number = abbrev_number;
15888 cur_abbrev->tag
15889 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15890 abbrev_ptr += bytes_read;
15891 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15892 abbrev_ptr += 1;
15893
15894 /* now read in declarations */
15895 for (;;)
15896 {
15897 LONGEST implicit_const;
15898
15899 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15900 abbrev_ptr += bytes_read;
15901 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15902 abbrev_ptr += bytes_read;
15903 if (abbrev_form == DW_FORM_implicit_const)
15904 {
15905 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15906 &bytes_read);
15907 abbrev_ptr += bytes_read;
15908 }
15909 else
15910 {
15911 /* Initialize it due to a false compiler warning. */
15912 implicit_const = -1;
15913 }
15914
15915 if (abbrev_name == 0)
15916 break;
15917
15918 if (cur_abbrev->num_attrs == allocated_attrs)
15919 {
15920 allocated_attrs += ATTR_ALLOC_CHUNK;
15921 cur_attrs
15922 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15923 }
15924
15925 cur_attrs[cur_abbrev->num_attrs].name
15926 = (enum dwarf_attribute) abbrev_name;
15927 cur_attrs[cur_abbrev->num_attrs].form
15928 = (enum dwarf_form) abbrev_form;
15929 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
15930 ++cur_abbrev->num_attrs;
15931 }
15932
15933 cur_abbrev->attrs =
15934 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15935 cur_abbrev->num_attrs);
15936 memcpy (cur_abbrev->attrs, cur_attrs,
15937 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15938
15939 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15940
15941 /* Get next abbreviation.
15942 Under Irix6 the abbreviations for a compilation unit are not
15943 always properly terminated with an abbrev number of 0.
15944 Exit loop if we encounter an abbreviation which we have
15945 already read (which means we are about to read the abbreviations
15946 for the next compile unit) or if the end of the abbreviation
15947 table is reached. */
15948 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15949 break;
15950 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15951 abbrev_ptr += bytes_read;
15952 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15953 break;
15954 }
15955
15956 xfree (cur_attrs);
15957 return abbrev_table;
15958 }
15959
15960 /* Free the resources held by ABBREV_TABLE. */
15961
15962 static void
15963 abbrev_table_free (struct abbrev_table *abbrev_table)
15964 {
15965 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15966 xfree (abbrev_table);
15967 }
15968
15969 /* Same as abbrev_table_free but as a cleanup.
15970 We pass in a pointer to the pointer to the table so that we can
15971 set the pointer to NULL when we're done. It also simplifies
15972 build_type_psymtabs_1. */
15973
15974 static void
15975 abbrev_table_free_cleanup (void *table_ptr)
15976 {
15977 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15978
15979 if (*abbrev_table_ptr != NULL)
15980 abbrev_table_free (*abbrev_table_ptr);
15981 *abbrev_table_ptr = NULL;
15982 }
15983
15984 /* Read the abbrev table for CU from ABBREV_SECTION. */
15985
15986 static void
15987 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15988 struct dwarf2_section_info *abbrev_section)
15989 {
15990 cu->abbrev_table =
15991 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
15992 }
15993
15994 /* Release the memory used by the abbrev table for a compilation unit. */
15995
15996 static void
15997 dwarf2_free_abbrev_table (void *ptr_to_cu)
15998 {
15999 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
16000
16001 if (cu->abbrev_table != NULL)
16002 abbrev_table_free (cu->abbrev_table);
16003 /* Set this to NULL so that we SEGV if we try to read it later,
16004 and also because free_comp_unit verifies this is NULL. */
16005 cu->abbrev_table = NULL;
16006 }
16007 \f
16008 /* Returns nonzero if TAG represents a type that we might generate a partial
16009 symbol for. */
16010
16011 static int
16012 is_type_tag_for_partial (int tag)
16013 {
16014 switch (tag)
16015 {
16016 #if 0
16017 /* Some types that would be reasonable to generate partial symbols for,
16018 that we don't at present. */
16019 case DW_TAG_array_type:
16020 case DW_TAG_file_type:
16021 case DW_TAG_ptr_to_member_type:
16022 case DW_TAG_set_type:
16023 case DW_TAG_string_type:
16024 case DW_TAG_subroutine_type:
16025 #endif
16026 case DW_TAG_base_type:
16027 case DW_TAG_class_type:
16028 case DW_TAG_interface_type:
16029 case DW_TAG_enumeration_type:
16030 case DW_TAG_structure_type:
16031 case DW_TAG_subrange_type:
16032 case DW_TAG_typedef:
16033 case DW_TAG_union_type:
16034 return 1;
16035 default:
16036 return 0;
16037 }
16038 }
16039
16040 /* Load all DIEs that are interesting for partial symbols into memory. */
16041
16042 static struct partial_die_info *
16043 load_partial_dies (const struct die_reader_specs *reader,
16044 const gdb_byte *info_ptr, int building_psymtab)
16045 {
16046 struct dwarf2_cu *cu = reader->cu;
16047 struct objfile *objfile = cu->objfile;
16048 struct partial_die_info *part_die;
16049 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
16050 struct abbrev_info *abbrev;
16051 unsigned int bytes_read;
16052 unsigned int load_all = 0;
16053 int nesting_level = 1;
16054
16055 parent_die = NULL;
16056 last_die = NULL;
16057
16058 gdb_assert (cu->per_cu != NULL);
16059 if (cu->per_cu->load_all_dies)
16060 load_all = 1;
16061
16062 cu->partial_dies
16063 = htab_create_alloc_ex (cu->header.length / 12,
16064 partial_die_hash,
16065 partial_die_eq,
16066 NULL,
16067 &cu->comp_unit_obstack,
16068 hashtab_obstack_allocate,
16069 dummy_obstack_deallocate);
16070
16071 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16072
16073 while (1)
16074 {
16075 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
16076
16077 /* A NULL abbrev means the end of a series of children. */
16078 if (abbrev == NULL)
16079 {
16080 if (--nesting_level == 0)
16081 {
16082 /* PART_DIE was probably the last thing allocated on the
16083 comp_unit_obstack, so we could call obstack_free
16084 here. We don't do that because the waste is small,
16085 and will be cleaned up when we're done with this
16086 compilation unit. This way, we're also more robust
16087 against other users of the comp_unit_obstack. */
16088 return first_die;
16089 }
16090 info_ptr += bytes_read;
16091 last_die = parent_die;
16092 parent_die = parent_die->die_parent;
16093 continue;
16094 }
16095
16096 /* Check for template arguments. We never save these; if
16097 they're seen, we just mark the parent, and go on our way. */
16098 if (parent_die != NULL
16099 && cu->language == language_cplus
16100 && (abbrev->tag == DW_TAG_template_type_param
16101 || abbrev->tag == DW_TAG_template_value_param))
16102 {
16103 parent_die->has_template_arguments = 1;
16104
16105 if (!load_all)
16106 {
16107 /* We don't need a partial DIE for the template argument. */
16108 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16109 continue;
16110 }
16111 }
16112
16113 /* We only recurse into c++ subprograms looking for template arguments.
16114 Skip their other children. */
16115 if (!load_all
16116 && cu->language == language_cplus
16117 && parent_die != NULL
16118 && parent_die->tag == DW_TAG_subprogram)
16119 {
16120 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16121 continue;
16122 }
16123
16124 /* Check whether this DIE is interesting enough to save. Normally
16125 we would not be interested in members here, but there may be
16126 later variables referencing them via DW_AT_specification (for
16127 static members). */
16128 if (!load_all
16129 && !is_type_tag_for_partial (abbrev->tag)
16130 && abbrev->tag != DW_TAG_constant
16131 && abbrev->tag != DW_TAG_enumerator
16132 && abbrev->tag != DW_TAG_subprogram
16133 && abbrev->tag != DW_TAG_lexical_block
16134 && abbrev->tag != DW_TAG_variable
16135 && abbrev->tag != DW_TAG_namespace
16136 && abbrev->tag != DW_TAG_module
16137 && abbrev->tag != DW_TAG_member
16138 && abbrev->tag != DW_TAG_imported_unit
16139 && abbrev->tag != DW_TAG_imported_declaration)
16140 {
16141 /* Otherwise we skip to the next sibling, if any. */
16142 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16143 continue;
16144 }
16145
16146 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16147 info_ptr);
16148
16149 /* This two-pass algorithm for processing partial symbols has a
16150 high cost in cache pressure. Thus, handle some simple cases
16151 here which cover the majority of C partial symbols. DIEs
16152 which neither have specification tags in them, nor could have
16153 specification tags elsewhere pointing at them, can simply be
16154 processed and discarded.
16155
16156 This segment is also optional; scan_partial_symbols and
16157 add_partial_symbol will handle these DIEs if we chain
16158 them in normally. When compilers which do not emit large
16159 quantities of duplicate debug information are more common,
16160 this code can probably be removed. */
16161
16162 /* Any complete simple types at the top level (pretty much all
16163 of them, for a language without namespaces), can be processed
16164 directly. */
16165 if (parent_die == NULL
16166 && part_die->has_specification == 0
16167 && part_die->is_declaration == 0
16168 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
16169 || part_die->tag == DW_TAG_base_type
16170 || part_die->tag == DW_TAG_subrange_type))
16171 {
16172 if (building_psymtab && part_die->name != NULL)
16173 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16174 VAR_DOMAIN, LOC_TYPEDEF,
16175 &objfile->static_psymbols,
16176 0, cu->language, objfile);
16177 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16178 continue;
16179 }
16180
16181 /* The exception for DW_TAG_typedef with has_children above is
16182 a workaround of GCC PR debug/47510. In the case of this complaint
16183 type_name_no_tag_or_error will error on such types later.
16184
16185 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16186 it could not find the child DIEs referenced later, this is checked
16187 above. In correct DWARF DW_TAG_typedef should have no children. */
16188
16189 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16190 complaint (&symfile_complaints,
16191 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16192 "- DIE at 0x%x [in module %s]"),
16193 to_underlying (part_die->sect_off), objfile_name (objfile));
16194
16195 /* If we're at the second level, and we're an enumerator, and
16196 our parent has no specification (meaning possibly lives in a
16197 namespace elsewhere), then we can add the partial symbol now
16198 instead of queueing it. */
16199 if (part_die->tag == DW_TAG_enumerator
16200 && parent_die != NULL
16201 && parent_die->die_parent == NULL
16202 && parent_die->tag == DW_TAG_enumeration_type
16203 && parent_die->has_specification == 0)
16204 {
16205 if (part_die->name == NULL)
16206 complaint (&symfile_complaints,
16207 _("malformed enumerator DIE ignored"));
16208 else if (building_psymtab)
16209 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16210 VAR_DOMAIN, LOC_CONST,
16211 cu->language == language_cplus
16212 ? &objfile->global_psymbols
16213 : &objfile->static_psymbols,
16214 0, cu->language, objfile);
16215
16216 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16217 continue;
16218 }
16219
16220 /* We'll save this DIE so link it in. */
16221 part_die->die_parent = parent_die;
16222 part_die->die_sibling = NULL;
16223 part_die->die_child = NULL;
16224
16225 if (last_die && last_die == parent_die)
16226 last_die->die_child = part_die;
16227 else if (last_die)
16228 last_die->die_sibling = part_die;
16229
16230 last_die = part_die;
16231
16232 if (first_die == NULL)
16233 first_die = part_die;
16234
16235 /* Maybe add the DIE to the hash table. Not all DIEs that we
16236 find interesting need to be in the hash table, because we
16237 also have the parent/sibling/child chains; only those that we
16238 might refer to by offset later during partial symbol reading.
16239
16240 For now this means things that might have be the target of a
16241 DW_AT_specification, DW_AT_abstract_origin, or
16242 DW_AT_extension. DW_AT_extension will refer only to
16243 namespaces; DW_AT_abstract_origin refers to functions (and
16244 many things under the function DIE, but we do not recurse
16245 into function DIEs during partial symbol reading) and
16246 possibly variables as well; DW_AT_specification refers to
16247 declarations. Declarations ought to have the DW_AT_declaration
16248 flag. It happens that GCC forgets to put it in sometimes, but
16249 only for functions, not for types.
16250
16251 Adding more things than necessary to the hash table is harmless
16252 except for the performance cost. Adding too few will result in
16253 wasted time in find_partial_die, when we reread the compilation
16254 unit with load_all_dies set. */
16255
16256 if (load_all
16257 || abbrev->tag == DW_TAG_constant
16258 || abbrev->tag == DW_TAG_subprogram
16259 || abbrev->tag == DW_TAG_variable
16260 || abbrev->tag == DW_TAG_namespace
16261 || part_die->is_declaration)
16262 {
16263 void **slot;
16264
16265 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
16266 to_underlying (part_die->sect_off),
16267 INSERT);
16268 *slot = part_die;
16269 }
16270
16271 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16272
16273 /* For some DIEs we want to follow their children (if any). For C
16274 we have no reason to follow the children of structures; for other
16275 languages we have to, so that we can get at method physnames
16276 to infer fully qualified class names, for DW_AT_specification,
16277 and for C++ template arguments. For C++, we also look one level
16278 inside functions to find template arguments (if the name of the
16279 function does not already contain the template arguments).
16280
16281 For Ada, we need to scan the children of subprograms and lexical
16282 blocks as well because Ada allows the definition of nested
16283 entities that could be interesting for the debugger, such as
16284 nested subprograms for instance. */
16285 if (last_die->has_children
16286 && (load_all
16287 || last_die->tag == DW_TAG_namespace
16288 || last_die->tag == DW_TAG_module
16289 || last_die->tag == DW_TAG_enumeration_type
16290 || (cu->language == language_cplus
16291 && last_die->tag == DW_TAG_subprogram
16292 && (last_die->name == NULL
16293 || strchr (last_die->name, '<') == NULL))
16294 || (cu->language != language_c
16295 && (last_die->tag == DW_TAG_class_type
16296 || last_die->tag == DW_TAG_interface_type
16297 || last_die->tag == DW_TAG_structure_type
16298 || last_die->tag == DW_TAG_union_type))
16299 || (cu->language == language_ada
16300 && (last_die->tag == DW_TAG_subprogram
16301 || last_die->tag == DW_TAG_lexical_block))))
16302 {
16303 nesting_level++;
16304 parent_die = last_die;
16305 continue;
16306 }
16307
16308 /* Otherwise we skip to the next sibling, if any. */
16309 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
16310
16311 /* Back to the top, do it again. */
16312 }
16313 }
16314
16315 /* Read a minimal amount of information into the minimal die structure. */
16316
16317 static const gdb_byte *
16318 read_partial_die (const struct die_reader_specs *reader,
16319 struct partial_die_info *part_die,
16320 struct abbrev_info *abbrev, unsigned int abbrev_len,
16321 const gdb_byte *info_ptr)
16322 {
16323 struct dwarf2_cu *cu = reader->cu;
16324 struct objfile *objfile = cu->objfile;
16325 const gdb_byte *buffer = reader->buffer;
16326 unsigned int i;
16327 struct attribute attr;
16328 int has_low_pc_attr = 0;
16329 int has_high_pc_attr = 0;
16330 int high_pc_relative = 0;
16331
16332 memset (part_die, 0, sizeof (struct partial_die_info));
16333
16334 part_die->sect_off = (sect_offset) (info_ptr - buffer);
16335
16336 info_ptr += abbrev_len;
16337
16338 if (abbrev == NULL)
16339 return info_ptr;
16340
16341 part_die->tag = abbrev->tag;
16342 part_die->has_children = abbrev->has_children;
16343
16344 for (i = 0; i < abbrev->num_attrs; ++i)
16345 {
16346 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
16347
16348 /* Store the data if it is of an attribute we want to keep in a
16349 partial symbol table. */
16350 switch (attr.name)
16351 {
16352 case DW_AT_name:
16353 switch (part_die->tag)
16354 {
16355 case DW_TAG_compile_unit:
16356 case DW_TAG_partial_unit:
16357 case DW_TAG_type_unit:
16358 /* Compilation units have a DW_AT_name that is a filename, not
16359 a source language identifier. */
16360 case DW_TAG_enumeration_type:
16361 case DW_TAG_enumerator:
16362 /* These tags always have simple identifiers already; no need
16363 to canonicalize them. */
16364 part_die->name = DW_STRING (&attr);
16365 break;
16366 default:
16367 part_die->name
16368 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
16369 &objfile->per_bfd->storage_obstack);
16370 break;
16371 }
16372 break;
16373 case DW_AT_linkage_name:
16374 case DW_AT_MIPS_linkage_name:
16375 /* Note that both forms of linkage name might appear. We
16376 assume they will be the same, and we only store the last
16377 one we see. */
16378 if (cu->language == language_ada)
16379 part_die->name = DW_STRING (&attr);
16380 part_die->linkage_name = DW_STRING (&attr);
16381 break;
16382 case DW_AT_low_pc:
16383 has_low_pc_attr = 1;
16384 part_die->lowpc = attr_value_as_address (&attr);
16385 break;
16386 case DW_AT_high_pc:
16387 has_high_pc_attr = 1;
16388 part_die->highpc = attr_value_as_address (&attr);
16389 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16390 high_pc_relative = 1;
16391 break;
16392 case DW_AT_location:
16393 /* Support the .debug_loc offsets. */
16394 if (attr_form_is_block (&attr))
16395 {
16396 part_die->d.locdesc = DW_BLOCK (&attr);
16397 }
16398 else if (attr_form_is_section_offset (&attr))
16399 {
16400 dwarf2_complex_location_expr_complaint ();
16401 }
16402 else
16403 {
16404 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16405 "partial symbol information");
16406 }
16407 break;
16408 case DW_AT_external:
16409 part_die->is_external = DW_UNSND (&attr);
16410 break;
16411 case DW_AT_declaration:
16412 part_die->is_declaration = DW_UNSND (&attr);
16413 break;
16414 case DW_AT_type:
16415 part_die->has_type = 1;
16416 break;
16417 case DW_AT_abstract_origin:
16418 case DW_AT_specification:
16419 case DW_AT_extension:
16420 part_die->has_specification = 1;
16421 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
16422 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16423 || cu->per_cu->is_dwz);
16424 break;
16425 case DW_AT_sibling:
16426 /* Ignore absolute siblings, they might point outside of
16427 the current compile unit. */
16428 if (attr.form == DW_FORM_ref_addr)
16429 complaint (&symfile_complaints,
16430 _("ignoring absolute DW_AT_sibling"));
16431 else
16432 {
16433 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16434 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
16435
16436 if (sibling_ptr < info_ptr)
16437 complaint (&symfile_complaints,
16438 _("DW_AT_sibling points backwards"));
16439 else if (sibling_ptr > reader->buffer_end)
16440 dwarf2_section_buffer_overflow_complaint (reader->die_section);
16441 else
16442 part_die->sibling = sibling_ptr;
16443 }
16444 break;
16445 case DW_AT_byte_size:
16446 part_die->has_byte_size = 1;
16447 break;
16448 case DW_AT_const_value:
16449 part_die->has_const_value = 1;
16450 break;
16451 case DW_AT_calling_convention:
16452 /* DWARF doesn't provide a way to identify a program's source-level
16453 entry point. DW_AT_calling_convention attributes are only meant
16454 to describe functions' calling conventions.
16455
16456 However, because it's a necessary piece of information in
16457 Fortran, and before DWARF 4 DW_CC_program was the only
16458 piece of debugging information whose definition refers to
16459 a 'main program' at all, several compilers marked Fortran
16460 main programs with DW_CC_program --- even when those
16461 functions use the standard calling conventions.
16462
16463 Although DWARF now specifies a way to provide this
16464 information, we support this practice for backward
16465 compatibility. */
16466 if (DW_UNSND (&attr) == DW_CC_program
16467 && cu->language == language_fortran)
16468 part_die->main_subprogram = 1;
16469 break;
16470 case DW_AT_inline:
16471 if (DW_UNSND (&attr) == DW_INL_inlined
16472 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16473 part_die->may_be_inlined = 1;
16474 break;
16475
16476 case DW_AT_import:
16477 if (part_die->tag == DW_TAG_imported_unit)
16478 {
16479 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
16480 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16481 || cu->per_cu->is_dwz);
16482 }
16483 break;
16484
16485 case DW_AT_main_subprogram:
16486 part_die->main_subprogram = DW_UNSND (&attr);
16487 break;
16488
16489 default:
16490 break;
16491 }
16492 }
16493
16494 if (high_pc_relative)
16495 part_die->highpc += part_die->lowpc;
16496
16497 if (has_low_pc_attr && has_high_pc_attr)
16498 {
16499 /* When using the GNU linker, .gnu.linkonce. sections are used to
16500 eliminate duplicate copies of functions and vtables and such.
16501 The linker will arbitrarily choose one and discard the others.
16502 The AT_*_pc values for such functions refer to local labels in
16503 these sections. If the section from that file was discarded, the
16504 labels are not in the output, so the relocs get a value of 0.
16505 If this is a discarded function, mark the pc bounds as invalid,
16506 so that GDB will ignore it. */
16507 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16508 {
16509 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16510
16511 complaint (&symfile_complaints,
16512 _("DW_AT_low_pc %s is zero "
16513 "for DIE at 0x%x [in module %s]"),
16514 paddress (gdbarch, part_die->lowpc),
16515 to_underlying (part_die->sect_off), objfile_name (objfile));
16516 }
16517 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16518 else if (part_die->lowpc >= part_die->highpc)
16519 {
16520 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16521
16522 complaint (&symfile_complaints,
16523 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16524 "for DIE at 0x%x [in module %s]"),
16525 paddress (gdbarch, part_die->lowpc),
16526 paddress (gdbarch, part_die->highpc),
16527 to_underlying (part_die->sect_off),
16528 objfile_name (objfile));
16529 }
16530 else
16531 part_die->has_pc_info = 1;
16532 }
16533
16534 return info_ptr;
16535 }
16536
16537 /* Find a cached partial DIE at OFFSET in CU. */
16538
16539 static struct partial_die_info *
16540 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
16541 {
16542 struct partial_die_info *lookup_die = NULL;
16543 struct partial_die_info part_die;
16544
16545 part_die.sect_off = sect_off;
16546 lookup_die = ((struct partial_die_info *)
16547 htab_find_with_hash (cu->partial_dies, &part_die,
16548 to_underlying (sect_off)));
16549
16550 return lookup_die;
16551 }
16552
16553 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16554 except in the case of .debug_types DIEs which do not reference
16555 outside their CU (they do however referencing other types via
16556 DW_FORM_ref_sig8). */
16557
16558 static struct partial_die_info *
16559 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
16560 {
16561 struct objfile *objfile = cu->objfile;
16562 struct dwarf2_per_cu_data *per_cu = NULL;
16563 struct partial_die_info *pd = NULL;
16564
16565 if (offset_in_dwz == cu->per_cu->is_dwz
16566 && offset_in_cu_p (&cu->header, sect_off))
16567 {
16568 pd = find_partial_die_in_comp_unit (sect_off, cu);
16569 if (pd != NULL)
16570 return pd;
16571 /* We missed recording what we needed.
16572 Load all dies and try again. */
16573 per_cu = cu->per_cu;
16574 }
16575 else
16576 {
16577 /* TUs don't reference other CUs/TUs (except via type signatures). */
16578 if (cu->per_cu->is_debug_types)
16579 {
16580 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16581 " external reference to offset 0x%x [in module %s].\n"),
16582 to_underlying (cu->header.sect_off), to_underlying (sect_off),
16583 bfd_get_filename (objfile->obfd));
16584 }
16585 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
16586 objfile);
16587
16588 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16589 load_partial_comp_unit (per_cu);
16590
16591 per_cu->cu->last_used = 0;
16592 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16593 }
16594
16595 /* If we didn't find it, and not all dies have been loaded,
16596 load them all and try again. */
16597
16598 if (pd == NULL && per_cu->load_all_dies == 0)
16599 {
16600 per_cu->load_all_dies = 1;
16601
16602 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16603 THIS_CU->cu may already be in use. So we can't just free it and
16604 replace its DIEs with the ones we read in. Instead, we leave those
16605 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16606 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16607 set. */
16608 load_partial_comp_unit (per_cu);
16609
16610 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16611 }
16612
16613 if (pd == NULL)
16614 internal_error (__FILE__, __LINE__,
16615 _("could not find partial DIE 0x%x "
16616 "in cache [from module %s]\n"),
16617 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
16618 return pd;
16619 }
16620
16621 /* See if we can figure out if the class lives in a namespace. We do
16622 this by looking for a member function; its demangled name will
16623 contain namespace info, if there is any. */
16624
16625 static void
16626 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16627 struct dwarf2_cu *cu)
16628 {
16629 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16630 what template types look like, because the demangler
16631 frequently doesn't give the same name as the debug info. We
16632 could fix this by only using the demangled name to get the
16633 prefix (but see comment in read_structure_type). */
16634
16635 struct partial_die_info *real_pdi;
16636 struct partial_die_info *child_pdi;
16637
16638 /* If this DIE (this DIE's specification, if any) has a parent, then
16639 we should not do this. We'll prepend the parent's fully qualified
16640 name when we create the partial symbol. */
16641
16642 real_pdi = struct_pdi;
16643 while (real_pdi->has_specification)
16644 real_pdi = find_partial_die (real_pdi->spec_offset,
16645 real_pdi->spec_is_dwz, cu);
16646
16647 if (real_pdi->die_parent != NULL)
16648 return;
16649
16650 for (child_pdi = struct_pdi->die_child;
16651 child_pdi != NULL;
16652 child_pdi = child_pdi->die_sibling)
16653 {
16654 if (child_pdi->tag == DW_TAG_subprogram
16655 && child_pdi->linkage_name != NULL)
16656 {
16657 char *actual_class_name
16658 = language_class_name_from_physname (cu->language_defn,
16659 child_pdi->linkage_name);
16660 if (actual_class_name != NULL)
16661 {
16662 struct_pdi->name
16663 = ((const char *)
16664 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16665 actual_class_name,
16666 strlen (actual_class_name)));
16667 xfree (actual_class_name);
16668 }
16669 break;
16670 }
16671 }
16672 }
16673
16674 /* Adjust PART_DIE before generating a symbol for it. This function
16675 may set the is_external flag or change the DIE's name. */
16676
16677 static void
16678 fixup_partial_die (struct partial_die_info *part_die,
16679 struct dwarf2_cu *cu)
16680 {
16681 /* Once we've fixed up a die, there's no point in doing so again.
16682 This also avoids a memory leak if we were to call
16683 guess_partial_die_structure_name multiple times. */
16684 if (part_die->fixup_called)
16685 return;
16686
16687 /* If we found a reference attribute and the DIE has no name, try
16688 to find a name in the referred to DIE. */
16689
16690 if (part_die->name == NULL && part_die->has_specification)
16691 {
16692 struct partial_die_info *spec_die;
16693
16694 spec_die = find_partial_die (part_die->spec_offset,
16695 part_die->spec_is_dwz, cu);
16696
16697 fixup_partial_die (spec_die, cu);
16698
16699 if (spec_die->name)
16700 {
16701 part_die->name = spec_die->name;
16702
16703 /* Copy DW_AT_external attribute if it is set. */
16704 if (spec_die->is_external)
16705 part_die->is_external = spec_die->is_external;
16706 }
16707 }
16708
16709 /* Set default names for some unnamed DIEs. */
16710
16711 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16712 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16713
16714 /* If there is no parent die to provide a namespace, and there are
16715 children, see if we can determine the namespace from their linkage
16716 name. */
16717 if (cu->language == language_cplus
16718 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16719 && part_die->die_parent == NULL
16720 && part_die->has_children
16721 && (part_die->tag == DW_TAG_class_type
16722 || part_die->tag == DW_TAG_structure_type
16723 || part_die->tag == DW_TAG_union_type))
16724 guess_partial_die_structure_name (part_die, cu);
16725
16726 /* GCC might emit a nameless struct or union that has a linkage
16727 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16728 if (part_die->name == NULL
16729 && (part_die->tag == DW_TAG_class_type
16730 || part_die->tag == DW_TAG_interface_type
16731 || part_die->tag == DW_TAG_structure_type
16732 || part_die->tag == DW_TAG_union_type)
16733 && part_die->linkage_name != NULL)
16734 {
16735 char *demangled;
16736
16737 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16738 if (demangled)
16739 {
16740 const char *base;
16741
16742 /* Strip any leading namespaces/classes, keep only the base name.
16743 DW_AT_name for named DIEs does not contain the prefixes. */
16744 base = strrchr (demangled, ':');
16745 if (base && base > demangled && base[-1] == ':')
16746 base++;
16747 else
16748 base = demangled;
16749
16750 part_die->name
16751 = ((const char *)
16752 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16753 base, strlen (base)));
16754 xfree (demangled);
16755 }
16756 }
16757
16758 part_die->fixup_called = 1;
16759 }
16760
16761 /* Read an attribute value described by an attribute form. */
16762
16763 static const gdb_byte *
16764 read_attribute_value (const struct die_reader_specs *reader,
16765 struct attribute *attr, unsigned form,
16766 LONGEST implicit_const, const gdb_byte *info_ptr)
16767 {
16768 struct dwarf2_cu *cu = reader->cu;
16769 struct objfile *objfile = cu->objfile;
16770 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16771 bfd *abfd = reader->abfd;
16772 struct comp_unit_head *cu_header = &cu->header;
16773 unsigned int bytes_read;
16774 struct dwarf_block *blk;
16775
16776 attr->form = (enum dwarf_form) form;
16777 switch (form)
16778 {
16779 case DW_FORM_ref_addr:
16780 if (cu->header.version == 2)
16781 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16782 else
16783 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16784 &cu->header, &bytes_read);
16785 info_ptr += bytes_read;
16786 break;
16787 case DW_FORM_GNU_ref_alt:
16788 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16789 info_ptr += bytes_read;
16790 break;
16791 case DW_FORM_addr:
16792 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16793 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16794 info_ptr += bytes_read;
16795 break;
16796 case DW_FORM_block2:
16797 blk = dwarf_alloc_block (cu);
16798 blk->size = read_2_bytes (abfd, info_ptr);
16799 info_ptr += 2;
16800 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16801 info_ptr += blk->size;
16802 DW_BLOCK (attr) = blk;
16803 break;
16804 case DW_FORM_block4:
16805 blk = dwarf_alloc_block (cu);
16806 blk->size = read_4_bytes (abfd, info_ptr);
16807 info_ptr += 4;
16808 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16809 info_ptr += blk->size;
16810 DW_BLOCK (attr) = blk;
16811 break;
16812 case DW_FORM_data2:
16813 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16814 info_ptr += 2;
16815 break;
16816 case DW_FORM_data4:
16817 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16818 info_ptr += 4;
16819 break;
16820 case DW_FORM_data8:
16821 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16822 info_ptr += 8;
16823 break;
16824 case DW_FORM_data16:
16825 blk = dwarf_alloc_block (cu);
16826 blk->size = 16;
16827 blk->data = read_n_bytes (abfd, info_ptr, 16);
16828 info_ptr += 16;
16829 DW_BLOCK (attr) = blk;
16830 break;
16831 case DW_FORM_sec_offset:
16832 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16833 info_ptr += bytes_read;
16834 break;
16835 case DW_FORM_string:
16836 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16837 DW_STRING_IS_CANONICAL (attr) = 0;
16838 info_ptr += bytes_read;
16839 break;
16840 case DW_FORM_strp:
16841 if (!cu->per_cu->is_dwz)
16842 {
16843 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16844 &bytes_read);
16845 DW_STRING_IS_CANONICAL (attr) = 0;
16846 info_ptr += bytes_read;
16847 break;
16848 }
16849 /* FALLTHROUGH */
16850 case DW_FORM_line_strp:
16851 if (!cu->per_cu->is_dwz)
16852 {
16853 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16854 cu_header, &bytes_read);
16855 DW_STRING_IS_CANONICAL (attr) = 0;
16856 info_ptr += bytes_read;
16857 break;
16858 }
16859 /* FALLTHROUGH */
16860 case DW_FORM_GNU_strp_alt:
16861 {
16862 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16863 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16864 &bytes_read);
16865
16866 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16867 DW_STRING_IS_CANONICAL (attr) = 0;
16868 info_ptr += bytes_read;
16869 }
16870 break;
16871 case DW_FORM_exprloc:
16872 case DW_FORM_block:
16873 blk = dwarf_alloc_block (cu);
16874 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16875 info_ptr += bytes_read;
16876 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16877 info_ptr += blk->size;
16878 DW_BLOCK (attr) = blk;
16879 break;
16880 case DW_FORM_block1:
16881 blk = dwarf_alloc_block (cu);
16882 blk->size = read_1_byte (abfd, info_ptr);
16883 info_ptr += 1;
16884 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16885 info_ptr += blk->size;
16886 DW_BLOCK (attr) = blk;
16887 break;
16888 case DW_FORM_data1:
16889 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16890 info_ptr += 1;
16891 break;
16892 case DW_FORM_flag:
16893 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16894 info_ptr += 1;
16895 break;
16896 case DW_FORM_flag_present:
16897 DW_UNSND (attr) = 1;
16898 break;
16899 case DW_FORM_sdata:
16900 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16901 info_ptr += bytes_read;
16902 break;
16903 case DW_FORM_udata:
16904 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16905 info_ptr += bytes_read;
16906 break;
16907 case DW_FORM_ref1:
16908 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16909 + read_1_byte (abfd, info_ptr));
16910 info_ptr += 1;
16911 break;
16912 case DW_FORM_ref2:
16913 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16914 + read_2_bytes (abfd, info_ptr));
16915 info_ptr += 2;
16916 break;
16917 case DW_FORM_ref4:
16918 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16919 + read_4_bytes (abfd, info_ptr));
16920 info_ptr += 4;
16921 break;
16922 case DW_FORM_ref8:
16923 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16924 + read_8_bytes (abfd, info_ptr));
16925 info_ptr += 8;
16926 break;
16927 case DW_FORM_ref_sig8:
16928 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16929 info_ptr += 8;
16930 break;
16931 case DW_FORM_ref_udata:
16932 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16933 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16934 info_ptr += bytes_read;
16935 break;
16936 case DW_FORM_indirect:
16937 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16938 info_ptr += bytes_read;
16939 if (form == DW_FORM_implicit_const)
16940 {
16941 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16942 info_ptr += bytes_read;
16943 }
16944 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16945 info_ptr);
16946 break;
16947 case DW_FORM_implicit_const:
16948 DW_SND (attr) = implicit_const;
16949 break;
16950 case DW_FORM_GNU_addr_index:
16951 if (reader->dwo_file == NULL)
16952 {
16953 /* For now flag a hard error.
16954 Later we can turn this into a complaint. */
16955 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16956 dwarf_form_name (form),
16957 bfd_get_filename (abfd));
16958 }
16959 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16960 info_ptr += bytes_read;
16961 break;
16962 case DW_FORM_GNU_str_index:
16963 if (reader->dwo_file == NULL)
16964 {
16965 /* For now flag a hard error.
16966 Later we can turn this into a complaint if warranted. */
16967 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16968 dwarf_form_name (form),
16969 bfd_get_filename (abfd));
16970 }
16971 {
16972 ULONGEST str_index =
16973 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16974
16975 DW_STRING (attr) = read_str_index (reader, str_index);
16976 DW_STRING_IS_CANONICAL (attr) = 0;
16977 info_ptr += bytes_read;
16978 }
16979 break;
16980 default:
16981 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16982 dwarf_form_name (form),
16983 bfd_get_filename (abfd));
16984 }
16985
16986 /* Super hack. */
16987 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16988 attr->form = DW_FORM_GNU_ref_alt;
16989
16990 /* We have seen instances where the compiler tried to emit a byte
16991 size attribute of -1 which ended up being encoded as an unsigned
16992 0xffffffff. Although 0xffffffff is technically a valid size value,
16993 an object of this size seems pretty unlikely so we can relatively
16994 safely treat these cases as if the size attribute was invalid and
16995 treat them as zero by default. */
16996 if (attr->name == DW_AT_byte_size
16997 && form == DW_FORM_data4
16998 && DW_UNSND (attr) >= 0xffffffff)
16999 {
17000 complaint
17001 (&symfile_complaints,
17002 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
17003 hex_string (DW_UNSND (attr)));
17004 DW_UNSND (attr) = 0;
17005 }
17006
17007 return info_ptr;
17008 }
17009
17010 /* Read an attribute described by an abbreviated attribute. */
17011
17012 static const gdb_byte *
17013 read_attribute (const struct die_reader_specs *reader,
17014 struct attribute *attr, struct attr_abbrev *abbrev,
17015 const gdb_byte *info_ptr)
17016 {
17017 attr->name = abbrev->name;
17018 return read_attribute_value (reader, attr, abbrev->form,
17019 abbrev->implicit_const, info_ptr);
17020 }
17021
17022 /* Read dwarf information from a buffer. */
17023
17024 static unsigned int
17025 read_1_byte (bfd *abfd, const gdb_byte *buf)
17026 {
17027 return bfd_get_8 (abfd, buf);
17028 }
17029
17030 static int
17031 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
17032 {
17033 return bfd_get_signed_8 (abfd, buf);
17034 }
17035
17036 static unsigned int
17037 read_2_bytes (bfd *abfd, const gdb_byte *buf)
17038 {
17039 return bfd_get_16 (abfd, buf);
17040 }
17041
17042 static int
17043 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
17044 {
17045 return bfd_get_signed_16 (abfd, buf);
17046 }
17047
17048 static unsigned int
17049 read_4_bytes (bfd *abfd, const gdb_byte *buf)
17050 {
17051 return bfd_get_32 (abfd, buf);
17052 }
17053
17054 static int
17055 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
17056 {
17057 return bfd_get_signed_32 (abfd, buf);
17058 }
17059
17060 static ULONGEST
17061 read_8_bytes (bfd *abfd, const gdb_byte *buf)
17062 {
17063 return bfd_get_64 (abfd, buf);
17064 }
17065
17066 static CORE_ADDR
17067 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
17068 unsigned int *bytes_read)
17069 {
17070 struct comp_unit_head *cu_header = &cu->header;
17071 CORE_ADDR retval = 0;
17072
17073 if (cu_header->signed_addr_p)
17074 {
17075 switch (cu_header->addr_size)
17076 {
17077 case 2:
17078 retval = bfd_get_signed_16 (abfd, buf);
17079 break;
17080 case 4:
17081 retval = bfd_get_signed_32 (abfd, buf);
17082 break;
17083 case 8:
17084 retval = bfd_get_signed_64 (abfd, buf);
17085 break;
17086 default:
17087 internal_error (__FILE__, __LINE__,
17088 _("read_address: bad switch, signed [in module %s]"),
17089 bfd_get_filename (abfd));
17090 }
17091 }
17092 else
17093 {
17094 switch (cu_header->addr_size)
17095 {
17096 case 2:
17097 retval = bfd_get_16 (abfd, buf);
17098 break;
17099 case 4:
17100 retval = bfd_get_32 (abfd, buf);
17101 break;
17102 case 8:
17103 retval = bfd_get_64 (abfd, buf);
17104 break;
17105 default:
17106 internal_error (__FILE__, __LINE__,
17107 _("read_address: bad switch, "
17108 "unsigned [in module %s]"),
17109 bfd_get_filename (abfd));
17110 }
17111 }
17112
17113 *bytes_read = cu_header->addr_size;
17114 return retval;
17115 }
17116
17117 /* Read the initial length from a section. The (draft) DWARF 3
17118 specification allows the initial length to take up either 4 bytes
17119 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17120 bytes describe the length and all offsets will be 8 bytes in length
17121 instead of 4.
17122
17123 An older, non-standard 64-bit format is also handled by this
17124 function. The older format in question stores the initial length
17125 as an 8-byte quantity without an escape value. Lengths greater
17126 than 2^32 aren't very common which means that the initial 4 bytes
17127 is almost always zero. Since a length value of zero doesn't make
17128 sense for the 32-bit format, this initial zero can be considered to
17129 be an escape value which indicates the presence of the older 64-bit
17130 format. As written, the code can't detect (old format) lengths
17131 greater than 4GB. If it becomes necessary to handle lengths
17132 somewhat larger than 4GB, we could allow other small values (such
17133 as the non-sensical values of 1, 2, and 3) to also be used as
17134 escape values indicating the presence of the old format.
17135
17136 The value returned via bytes_read should be used to increment the
17137 relevant pointer after calling read_initial_length().
17138
17139 [ Note: read_initial_length() and read_offset() are based on the
17140 document entitled "DWARF Debugging Information Format", revision
17141 3, draft 8, dated November 19, 2001. This document was obtained
17142 from:
17143
17144 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
17145
17146 This document is only a draft and is subject to change. (So beware.)
17147
17148 Details regarding the older, non-standard 64-bit format were
17149 determined empirically by examining 64-bit ELF files produced by
17150 the SGI toolchain on an IRIX 6.5 machine.
17151
17152 - Kevin, July 16, 2002
17153 ] */
17154
17155 static LONGEST
17156 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
17157 {
17158 LONGEST length = bfd_get_32 (abfd, buf);
17159
17160 if (length == 0xffffffff)
17161 {
17162 length = bfd_get_64 (abfd, buf + 4);
17163 *bytes_read = 12;
17164 }
17165 else if (length == 0)
17166 {
17167 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
17168 length = bfd_get_64 (abfd, buf);
17169 *bytes_read = 8;
17170 }
17171 else
17172 {
17173 *bytes_read = 4;
17174 }
17175
17176 return length;
17177 }
17178
17179 /* Cover function for read_initial_length.
17180 Returns the length of the object at BUF, and stores the size of the
17181 initial length in *BYTES_READ and stores the size that offsets will be in
17182 *OFFSET_SIZE.
17183 If the initial length size is not equivalent to that specified in
17184 CU_HEADER then issue a complaint.
17185 This is useful when reading non-comp-unit headers. */
17186
17187 static LONGEST
17188 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
17189 const struct comp_unit_head *cu_header,
17190 unsigned int *bytes_read,
17191 unsigned int *offset_size)
17192 {
17193 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17194
17195 gdb_assert (cu_header->initial_length_size == 4
17196 || cu_header->initial_length_size == 8
17197 || cu_header->initial_length_size == 12);
17198
17199 if (cu_header->initial_length_size != *bytes_read)
17200 complaint (&symfile_complaints,
17201 _("intermixed 32-bit and 64-bit DWARF sections"));
17202
17203 *offset_size = (*bytes_read == 4) ? 4 : 8;
17204 return length;
17205 }
17206
17207 /* Read an offset from the data stream. The size of the offset is
17208 given by cu_header->offset_size. */
17209
17210 static LONGEST
17211 read_offset (bfd *abfd, const gdb_byte *buf,
17212 const struct comp_unit_head *cu_header,
17213 unsigned int *bytes_read)
17214 {
17215 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
17216
17217 *bytes_read = cu_header->offset_size;
17218 return offset;
17219 }
17220
17221 /* Read an offset from the data stream. */
17222
17223 static LONGEST
17224 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
17225 {
17226 LONGEST retval = 0;
17227
17228 switch (offset_size)
17229 {
17230 case 4:
17231 retval = bfd_get_32 (abfd, buf);
17232 break;
17233 case 8:
17234 retval = bfd_get_64 (abfd, buf);
17235 break;
17236 default:
17237 internal_error (__FILE__, __LINE__,
17238 _("read_offset_1: bad switch [in module %s]"),
17239 bfd_get_filename (abfd));
17240 }
17241
17242 return retval;
17243 }
17244
17245 static const gdb_byte *
17246 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
17247 {
17248 /* If the size of a host char is 8 bits, we can return a pointer
17249 to the buffer, otherwise we have to copy the data to a buffer
17250 allocated on the temporary obstack. */
17251 gdb_assert (HOST_CHAR_BIT == 8);
17252 return buf;
17253 }
17254
17255 static const char *
17256 read_direct_string (bfd *abfd, const gdb_byte *buf,
17257 unsigned int *bytes_read_ptr)
17258 {
17259 /* If the size of a host char is 8 bits, we can return a pointer
17260 to the string, otherwise we have to copy the string to a buffer
17261 allocated on the temporary obstack. */
17262 gdb_assert (HOST_CHAR_BIT == 8);
17263 if (*buf == '\0')
17264 {
17265 *bytes_read_ptr = 1;
17266 return NULL;
17267 }
17268 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17269 return (const char *) buf;
17270 }
17271
17272 /* Return pointer to string at section SECT offset STR_OFFSET with error
17273 reporting strings FORM_NAME and SECT_NAME. */
17274
17275 static const char *
17276 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17277 struct dwarf2_section_info *sect,
17278 const char *form_name,
17279 const char *sect_name)
17280 {
17281 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17282 if (sect->buffer == NULL)
17283 error (_("%s used without %s section [in module %s]"),
17284 form_name, sect_name, bfd_get_filename (abfd));
17285 if (str_offset >= sect->size)
17286 error (_("%s pointing outside of %s section [in module %s]"),
17287 form_name, sect_name, bfd_get_filename (abfd));
17288 gdb_assert (HOST_CHAR_BIT == 8);
17289 if (sect->buffer[str_offset] == '\0')
17290 return NULL;
17291 return (const char *) (sect->buffer + str_offset);
17292 }
17293
17294 /* Return pointer to string at .debug_str offset STR_OFFSET. */
17295
17296 static const char *
17297 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17298 {
17299 return read_indirect_string_at_offset_from (abfd, str_offset,
17300 &dwarf2_per_objfile->str,
17301 "DW_FORM_strp", ".debug_str");
17302 }
17303
17304 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17305
17306 static const char *
17307 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17308 {
17309 return read_indirect_string_at_offset_from (abfd, str_offset,
17310 &dwarf2_per_objfile->line_str,
17311 "DW_FORM_line_strp",
17312 ".debug_line_str");
17313 }
17314
17315 /* Read a string at offset STR_OFFSET in the .debug_str section from
17316 the .dwz file DWZ. Throw an error if the offset is too large. If
17317 the string consists of a single NUL byte, return NULL; otherwise
17318 return a pointer to the string. */
17319
17320 static const char *
17321 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17322 {
17323 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17324
17325 if (dwz->str.buffer == NULL)
17326 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17327 "section [in module %s]"),
17328 bfd_get_filename (dwz->dwz_bfd));
17329 if (str_offset >= dwz->str.size)
17330 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17331 ".debug_str section [in module %s]"),
17332 bfd_get_filename (dwz->dwz_bfd));
17333 gdb_assert (HOST_CHAR_BIT == 8);
17334 if (dwz->str.buffer[str_offset] == '\0')
17335 return NULL;
17336 return (const char *) (dwz->str.buffer + str_offset);
17337 }
17338
17339 /* Return pointer to string at .debug_str offset as read from BUF.
17340 BUF is assumed to be in a compilation unit described by CU_HEADER.
17341 Return *BYTES_READ_PTR count of bytes read from BUF. */
17342
17343 static const char *
17344 read_indirect_string (bfd *abfd, const gdb_byte *buf,
17345 const struct comp_unit_head *cu_header,
17346 unsigned int *bytes_read_ptr)
17347 {
17348 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17349
17350 return read_indirect_string_at_offset (abfd, str_offset);
17351 }
17352
17353 /* Return pointer to string at .debug_line_str offset as read from BUF.
17354 BUF is assumed to be in a compilation unit described by CU_HEADER.
17355 Return *BYTES_READ_PTR count of bytes read from BUF. */
17356
17357 static const char *
17358 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17359 const struct comp_unit_head *cu_header,
17360 unsigned int *bytes_read_ptr)
17361 {
17362 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17363
17364 return read_indirect_line_string_at_offset (abfd, str_offset);
17365 }
17366
17367 ULONGEST
17368 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
17369 unsigned int *bytes_read_ptr)
17370 {
17371 ULONGEST result;
17372 unsigned int num_read;
17373 int shift;
17374 unsigned char byte;
17375
17376 result = 0;
17377 shift = 0;
17378 num_read = 0;
17379 while (1)
17380 {
17381 byte = bfd_get_8 (abfd, buf);
17382 buf++;
17383 num_read++;
17384 result |= ((ULONGEST) (byte & 127) << shift);
17385 if ((byte & 128) == 0)
17386 {
17387 break;
17388 }
17389 shift += 7;
17390 }
17391 *bytes_read_ptr = num_read;
17392 return result;
17393 }
17394
17395 static LONGEST
17396 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17397 unsigned int *bytes_read_ptr)
17398 {
17399 LONGEST result;
17400 int shift, num_read;
17401 unsigned char byte;
17402
17403 result = 0;
17404 shift = 0;
17405 num_read = 0;
17406 while (1)
17407 {
17408 byte = bfd_get_8 (abfd, buf);
17409 buf++;
17410 num_read++;
17411 result |= ((LONGEST) (byte & 127) << shift);
17412 shift += 7;
17413 if ((byte & 128) == 0)
17414 {
17415 break;
17416 }
17417 }
17418 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
17419 result |= -(((LONGEST) 1) << shift);
17420 *bytes_read_ptr = num_read;
17421 return result;
17422 }
17423
17424 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
17425 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17426 ADDR_SIZE is the size of addresses from the CU header. */
17427
17428 static CORE_ADDR
17429 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17430 {
17431 struct objfile *objfile = dwarf2_per_objfile->objfile;
17432 bfd *abfd = objfile->obfd;
17433 const gdb_byte *info_ptr;
17434
17435 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17436 if (dwarf2_per_objfile->addr.buffer == NULL)
17437 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
17438 objfile_name (objfile));
17439 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17440 error (_("DW_FORM_addr_index pointing outside of "
17441 ".debug_addr section [in module %s]"),
17442 objfile_name (objfile));
17443 info_ptr = (dwarf2_per_objfile->addr.buffer
17444 + addr_base + addr_index * addr_size);
17445 if (addr_size == 4)
17446 return bfd_get_32 (abfd, info_ptr);
17447 else
17448 return bfd_get_64 (abfd, info_ptr);
17449 }
17450
17451 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17452
17453 static CORE_ADDR
17454 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17455 {
17456 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17457 }
17458
17459 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17460
17461 static CORE_ADDR
17462 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
17463 unsigned int *bytes_read)
17464 {
17465 bfd *abfd = cu->objfile->obfd;
17466 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17467
17468 return read_addr_index (cu, addr_index);
17469 }
17470
17471 /* Data structure to pass results from dwarf2_read_addr_index_reader
17472 back to dwarf2_read_addr_index. */
17473
17474 struct dwarf2_read_addr_index_data
17475 {
17476 ULONGEST addr_base;
17477 int addr_size;
17478 };
17479
17480 /* die_reader_func for dwarf2_read_addr_index. */
17481
17482 static void
17483 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
17484 const gdb_byte *info_ptr,
17485 struct die_info *comp_unit_die,
17486 int has_children,
17487 void *data)
17488 {
17489 struct dwarf2_cu *cu = reader->cu;
17490 struct dwarf2_read_addr_index_data *aidata =
17491 (struct dwarf2_read_addr_index_data *) data;
17492
17493 aidata->addr_base = cu->addr_base;
17494 aidata->addr_size = cu->header.addr_size;
17495 }
17496
17497 /* Given an index in .debug_addr, fetch the value.
17498 NOTE: This can be called during dwarf expression evaluation,
17499 long after the debug information has been read, and thus per_cu->cu
17500 may no longer exist. */
17501
17502 CORE_ADDR
17503 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17504 unsigned int addr_index)
17505 {
17506 struct objfile *objfile = per_cu->objfile;
17507 struct dwarf2_cu *cu = per_cu->cu;
17508 ULONGEST addr_base;
17509 int addr_size;
17510
17511 /* This is intended to be called from outside this file. */
17512 dw2_setup (objfile);
17513
17514 /* We need addr_base and addr_size.
17515 If we don't have PER_CU->cu, we have to get it.
17516 Nasty, but the alternative is storing the needed info in PER_CU,
17517 which at this point doesn't seem justified: it's not clear how frequently
17518 it would get used and it would increase the size of every PER_CU.
17519 Entry points like dwarf2_per_cu_addr_size do a similar thing
17520 so we're not in uncharted territory here.
17521 Alas we need to be a bit more complicated as addr_base is contained
17522 in the DIE.
17523
17524 We don't need to read the entire CU(/TU).
17525 We just need the header and top level die.
17526
17527 IWBN to use the aging mechanism to let us lazily later discard the CU.
17528 For now we skip this optimization. */
17529
17530 if (cu != NULL)
17531 {
17532 addr_base = cu->addr_base;
17533 addr_size = cu->header.addr_size;
17534 }
17535 else
17536 {
17537 struct dwarf2_read_addr_index_data aidata;
17538
17539 /* Note: We can't use init_cutu_and_read_dies_simple here,
17540 we need addr_base. */
17541 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17542 dwarf2_read_addr_index_reader, &aidata);
17543 addr_base = aidata.addr_base;
17544 addr_size = aidata.addr_size;
17545 }
17546
17547 return read_addr_index_1 (addr_index, addr_base, addr_size);
17548 }
17549
17550 /* Given a DW_FORM_GNU_str_index, fetch the string.
17551 This is only used by the Fission support. */
17552
17553 static const char *
17554 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
17555 {
17556 struct objfile *objfile = dwarf2_per_objfile->objfile;
17557 const char *objf_name = objfile_name (objfile);
17558 bfd *abfd = objfile->obfd;
17559 struct dwarf2_cu *cu = reader->cu;
17560 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17561 struct dwarf2_section_info *str_offsets_section =
17562 &reader->dwo_file->sections.str_offsets;
17563 const gdb_byte *info_ptr;
17564 ULONGEST str_offset;
17565 static const char form_name[] = "DW_FORM_GNU_str_index";
17566
17567 dwarf2_read_section (objfile, str_section);
17568 dwarf2_read_section (objfile, str_offsets_section);
17569 if (str_section->buffer == NULL)
17570 error (_("%s used without .debug_str.dwo section"
17571 " in CU at offset 0x%x [in module %s]"),
17572 form_name, to_underlying (cu->header.sect_off), objf_name);
17573 if (str_offsets_section->buffer == NULL)
17574 error (_("%s used without .debug_str_offsets.dwo section"
17575 " in CU at offset 0x%x [in module %s]"),
17576 form_name, to_underlying (cu->header.sect_off), objf_name);
17577 if (str_index * cu->header.offset_size >= str_offsets_section->size)
17578 error (_("%s pointing outside of .debug_str_offsets.dwo"
17579 " section in CU at offset 0x%x [in module %s]"),
17580 form_name, to_underlying (cu->header.sect_off), objf_name);
17581 info_ptr = (str_offsets_section->buffer
17582 + str_index * cu->header.offset_size);
17583 if (cu->header.offset_size == 4)
17584 str_offset = bfd_get_32 (abfd, info_ptr);
17585 else
17586 str_offset = bfd_get_64 (abfd, info_ptr);
17587 if (str_offset >= str_section->size)
17588 error (_("Offset from %s pointing outside of"
17589 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17590 form_name, to_underlying (cu->header.sect_off), objf_name);
17591 return (const char *) (str_section->buffer + str_offset);
17592 }
17593
17594 /* Return the length of an LEB128 number in BUF. */
17595
17596 static int
17597 leb128_size (const gdb_byte *buf)
17598 {
17599 const gdb_byte *begin = buf;
17600 gdb_byte byte;
17601
17602 while (1)
17603 {
17604 byte = *buf++;
17605 if ((byte & 128) == 0)
17606 return buf - begin;
17607 }
17608 }
17609
17610 static void
17611 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17612 {
17613 switch (lang)
17614 {
17615 case DW_LANG_C89:
17616 case DW_LANG_C99:
17617 case DW_LANG_C11:
17618 case DW_LANG_C:
17619 case DW_LANG_UPC:
17620 cu->language = language_c;
17621 break;
17622 case DW_LANG_Java:
17623 case DW_LANG_C_plus_plus:
17624 case DW_LANG_C_plus_plus_11:
17625 case DW_LANG_C_plus_plus_14:
17626 cu->language = language_cplus;
17627 break;
17628 case DW_LANG_D:
17629 cu->language = language_d;
17630 break;
17631 case DW_LANG_Fortran77:
17632 case DW_LANG_Fortran90:
17633 case DW_LANG_Fortran95:
17634 case DW_LANG_Fortran03:
17635 case DW_LANG_Fortran08:
17636 cu->language = language_fortran;
17637 break;
17638 case DW_LANG_Go:
17639 cu->language = language_go;
17640 break;
17641 case DW_LANG_Mips_Assembler:
17642 cu->language = language_asm;
17643 break;
17644 case DW_LANG_Ada83:
17645 case DW_LANG_Ada95:
17646 cu->language = language_ada;
17647 break;
17648 case DW_LANG_Modula2:
17649 cu->language = language_m2;
17650 break;
17651 case DW_LANG_Pascal83:
17652 cu->language = language_pascal;
17653 break;
17654 case DW_LANG_ObjC:
17655 cu->language = language_objc;
17656 break;
17657 case DW_LANG_Rust:
17658 case DW_LANG_Rust_old:
17659 cu->language = language_rust;
17660 break;
17661 case DW_LANG_Cobol74:
17662 case DW_LANG_Cobol85:
17663 default:
17664 cu->language = language_minimal;
17665 break;
17666 }
17667 cu->language_defn = language_def (cu->language);
17668 }
17669
17670 /* Return the named attribute or NULL if not there. */
17671
17672 static struct attribute *
17673 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17674 {
17675 for (;;)
17676 {
17677 unsigned int i;
17678 struct attribute *spec = NULL;
17679
17680 for (i = 0; i < die->num_attrs; ++i)
17681 {
17682 if (die->attrs[i].name == name)
17683 return &die->attrs[i];
17684 if (die->attrs[i].name == DW_AT_specification
17685 || die->attrs[i].name == DW_AT_abstract_origin)
17686 spec = &die->attrs[i];
17687 }
17688
17689 if (!spec)
17690 break;
17691
17692 die = follow_die_ref (die, spec, &cu);
17693 }
17694
17695 return NULL;
17696 }
17697
17698 /* Return the named attribute or NULL if not there,
17699 but do not follow DW_AT_specification, etc.
17700 This is for use in contexts where we're reading .debug_types dies.
17701 Following DW_AT_specification, DW_AT_abstract_origin will take us
17702 back up the chain, and we want to go down. */
17703
17704 static struct attribute *
17705 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17706 {
17707 unsigned int i;
17708
17709 for (i = 0; i < die->num_attrs; ++i)
17710 if (die->attrs[i].name == name)
17711 return &die->attrs[i];
17712
17713 return NULL;
17714 }
17715
17716 /* Return the string associated with a string-typed attribute, or NULL if it
17717 is either not found or is of an incorrect type. */
17718
17719 static const char *
17720 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17721 {
17722 struct attribute *attr;
17723 const char *str = NULL;
17724
17725 attr = dwarf2_attr (die, name, cu);
17726
17727 if (attr != NULL)
17728 {
17729 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
17730 || attr->form == DW_FORM_string
17731 || attr->form == DW_FORM_GNU_str_index
17732 || attr->form == DW_FORM_GNU_strp_alt)
17733 str = DW_STRING (attr);
17734 else
17735 complaint (&symfile_complaints,
17736 _("string type expected for attribute %s for "
17737 "DIE at 0x%x in module %s"),
17738 dwarf_attr_name (name), to_underlying (die->sect_off),
17739 objfile_name (cu->objfile));
17740 }
17741
17742 return str;
17743 }
17744
17745 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17746 and holds a non-zero value. This function should only be used for
17747 DW_FORM_flag or DW_FORM_flag_present attributes. */
17748
17749 static int
17750 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17751 {
17752 struct attribute *attr = dwarf2_attr (die, name, cu);
17753
17754 return (attr && DW_UNSND (attr));
17755 }
17756
17757 static int
17758 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17759 {
17760 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17761 which value is non-zero. However, we have to be careful with
17762 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17763 (via dwarf2_flag_true_p) follows this attribute. So we may
17764 end up accidently finding a declaration attribute that belongs
17765 to a different DIE referenced by the specification attribute,
17766 even though the given DIE does not have a declaration attribute. */
17767 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17768 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17769 }
17770
17771 /* Return the die giving the specification for DIE, if there is
17772 one. *SPEC_CU is the CU containing DIE on input, and the CU
17773 containing the return value on output. If there is no
17774 specification, but there is an abstract origin, that is
17775 returned. */
17776
17777 static struct die_info *
17778 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17779 {
17780 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17781 *spec_cu);
17782
17783 if (spec_attr == NULL)
17784 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17785
17786 if (spec_attr == NULL)
17787 return NULL;
17788 else
17789 return follow_die_ref (die, spec_attr, spec_cu);
17790 }
17791
17792 /* Stub for free_line_header to match void * callback types. */
17793
17794 static void
17795 free_line_header_voidp (void *arg)
17796 {
17797 struct line_header *lh = (struct line_header *) arg;
17798
17799 delete lh;
17800 }
17801
17802 void
17803 line_header::add_include_dir (const char *include_dir)
17804 {
17805 if (dwarf_line_debug >= 2)
17806 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
17807 include_dirs.size () + 1, include_dir);
17808
17809 include_dirs.push_back (include_dir);
17810 }
17811
17812 void
17813 line_header::add_file_name (const char *name,
17814 dir_index d_index,
17815 unsigned int mod_time,
17816 unsigned int length)
17817 {
17818 if (dwarf_line_debug >= 2)
17819 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17820 (unsigned) file_names.size () + 1, name);
17821
17822 file_names.emplace_back (name, d_index, mod_time, length);
17823 }
17824
17825 /* A convenience function to find the proper .debug_line section for a CU. */
17826
17827 static struct dwarf2_section_info *
17828 get_debug_line_section (struct dwarf2_cu *cu)
17829 {
17830 struct dwarf2_section_info *section;
17831
17832 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17833 DWO file. */
17834 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17835 section = &cu->dwo_unit->dwo_file->sections.line;
17836 else if (cu->per_cu->is_dwz)
17837 {
17838 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17839
17840 section = &dwz->line;
17841 }
17842 else
17843 section = &dwarf2_per_objfile->line;
17844
17845 return section;
17846 }
17847
17848 /* Read directory or file name entry format, starting with byte of
17849 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17850 entries count and the entries themselves in the described entry
17851 format. */
17852
17853 static void
17854 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17855 struct line_header *lh,
17856 const struct comp_unit_head *cu_header,
17857 void (*callback) (struct line_header *lh,
17858 const char *name,
17859 dir_index d_index,
17860 unsigned int mod_time,
17861 unsigned int length))
17862 {
17863 gdb_byte format_count, formati;
17864 ULONGEST data_count, datai;
17865 const gdb_byte *buf = *bufp;
17866 const gdb_byte *format_header_data;
17867 int i;
17868 unsigned int bytes_read;
17869
17870 format_count = read_1_byte (abfd, buf);
17871 buf += 1;
17872 format_header_data = buf;
17873 for (formati = 0; formati < format_count; formati++)
17874 {
17875 read_unsigned_leb128 (abfd, buf, &bytes_read);
17876 buf += bytes_read;
17877 read_unsigned_leb128 (abfd, buf, &bytes_read);
17878 buf += bytes_read;
17879 }
17880
17881 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17882 buf += bytes_read;
17883 for (datai = 0; datai < data_count; datai++)
17884 {
17885 const gdb_byte *format = format_header_data;
17886 struct file_entry fe;
17887
17888 for (formati = 0; formati < format_count; formati++)
17889 {
17890 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
17891 format += bytes_read;
17892
17893 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
17894 format += bytes_read;
17895
17896 gdb::optional<const char *> string;
17897 gdb::optional<unsigned int> uint;
17898
17899 switch (form)
17900 {
17901 case DW_FORM_string:
17902 string.emplace (read_direct_string (abfd, buf, &bytes_read));
17903 buf += bytes_read;
17904 break;
17905
17906 case DW_FORM_line_strp:
17907 string.emplace (read_indirect_line_string (abfd, buf,
17908 cu_header,
17909 &bytes_read));
17910 buf += bytes_read;
17911 break;
17912
17913 case DW_FORM_data1:
17914 uint.emplace (read_1_byte (abfd, buf));
17915 buf += 1;
17916 break;
17917
17918 case DW_FORM_data2:
17919 uint.emplace (read_2_bytes (abfd, buf));
17920 buf += 2;
17921 break;
17922
17923 case DW_FORM_data4:
17924 uint.emplace (read_4_bytes (abfd, buf));
17925 buf += 4;
17926 break;
17927
17928 case DW_FORM_data8:
17929 uint.emplace (read_8_bytes (abfd, buf));
17930 buf += 8;
17931 break;
17932
17933 case DW_FORM_udata:
17934 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
17935 buf += bytes_read;
17936 break;
17937
17938 case DW_FORM_block:
17939 /* It is valid only for DW_LNCT_timestamp which is ignored by
17940 current GDB. */
17941 break;
17942 }
17943
17944 switch (content_type)
17945 {
17946 case DW_LNCT_path:
17947 if (string.has_value ())
17948 fe.name = *string;
17949 break;
17950 case DW_LNCT_directory_index:
17951 if (uint.has_value ())
17952 fe.d_index = (dir_index) *uint;
17953 break;
17954 case DW_LNCT_timestamp:
17955 if (uint.has_value ())
17956 fe.mod_time = *uint;
17957 break;
17958 case DW_LNCT_size:
17959 if (uint.has_value ())
17960 fe.length = *uint;
17961 break;
17962 case DW_LNCT_MD5:
17963 break;
17964 default:
17965 complaint (&symfile_complaints,
17966 _("Unknown format content type %s"),
17967 pulongest (content_type));
17968 }
17969 }
17970
17971 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
17972 }
17973
17974 *bufp = buf;
17975 }
17976
17977 /* Read the statement program header starting at OFFSET in
17978 .debug_line, or .debug_line.dwo. Return a pointer
17979 to a struct line_header, allocated using xmalloc.
17980 Returns NULL if there is a problem reading the header, e.g., if it
17981 has a version we don't understand.
17982
17983 NOTE: the strings in the include directory and file name tables of
17984 the returned object point into the dwarf line section buffer,
17985 and must not be freed. */
17986
17987 static line_header_up
17988 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
17989 {
17990 const gdb_byte *line_ptr;
17991 unsigned int bytes_read, offset_size;
17992 int i;
17993 const char *cur_dir, *cur_file;
17994 struct dwarf2_section_info *section;
17995 bfd *abfd;
17996
17997 section = get_debug_line_section (cu);
17998 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17999 if (section->buffer == NULL)
18000 {
18001 if (cu->dwo_unit && cu->per_cu->is_debug_types)
18002 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
18003 else
18004 complaint (&symfile_complaints, _("missing .debug_line section"));
18005 return 0;
18006 }
18007
18008 /* We can't do this until we know the section is non-empty.
18009 Only then do we know we have such a section. */
18010 abfd = get_section_bfd_owner (section);
18011
18012 /* Make sure that at least there's room for the total_length field.
18013 That could be 12 bytes long, but we're just going to fudge that. */
18014 if (to_underlying (sect_off) + 4 >= section->size)
18015 {
18016 dwarf2_statement_list_fits_in_line_number_section_complaint ();
18017 return 0;
18018 }
18019
18020 line_header_up lh (new line_header ());
18021
18022 lh->sect_off = sect_off;
18023 lh->offset_in_dwz = cu->per_cu->is_dwz;
18024
18025 line_ptr = section->buffer + to_underlying (sect_off);
18026
18027 /* Read in the header. */
18028 lh->total_length =
18029 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
18030 &bytes_read, &offset_size);
18031 line_ptr += bytes_read;
18032 if (line_ptr + lh->total_length > (section->buffer + section->size))
18033 {
18034 dwarf2_statement_list_fits_in_line_number_section_complaint ();
18035 return 0;
18036 }
18037 lh->statement_program_end = line_ptr + lh->total_length;
18038 lh->version = read_2_bytes (abfd, line_ptr);
18039 line_ptr += 2;
18040 if (lh->version > 5)
18041 {
18042 /* This is a version we don't understand. The format could have
18043 changed in ways we don't handle properly so just punt. */
18044 complaint (&symfile_complaints,
18045 _("unsupported version in .debug_line section"));
18046 return NULL;
18047 }
18048 if (lh->version >= 5)
18049 {
18050 gdb_byte segment_selector_size;
18051
18052 /* Skip address size. */
18053 read_1_byte (abfd, line_ptr);
18054 line_ptr += 1;
18055
18056 segment_selector_size = read_1_byte (abfd, line_ptr);
18057 line_ptr += 1;
18058 if (segment_selector_size != 0)
18059 {
18060 complaint (&symfile_complaints,
18061 _("unsupported segment selector size %u "
18062 "in .debug_line section"),
18063 segment_selector_size);
18064 return NULL;
18065 }
18066 }
18067 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
18068 line_ptr += offset_size;
18069 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
18070 line_ptr += 1;
18071 if (lh->version >= 4)
18072 {
18073 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
18074 line_ptr += 1;
18075 }
18076 else
18077 lh->maximum_ops_per_instruction = 1;
18078
18079 if (lh->maximum_ops_per_instruction == 0)
18080 {
18081 lh->maximum_ops_per_instruction = 1;
18082 complaint (&symfile_complaints,
18083 _("invalid maximum_ops_per_instruction "
18084 "in `.debug_line' section"));
18085 }
18086
18087 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
18088 line_ptr += 1;
18089 lh->line_base = read_1_signed_byte (abfd, line_ptr);
18090 line_ptr += 1;
18091 lh->line_range = read_1_byte (abfd, line_ptr);
18092 line_ptr += 1;
18093 lh->opcode_base = read_1_byte (abfd, line_ptr);
18094 line_ptr += 1;
18095 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
18096
18097 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
18098 for (i = 1; i < lh->opcode_base; ++i)
18099 {
18100 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
18101 line_ptr += 1;
18102 }
18103
18104 if (lh->version >= 5)
18105 {
18106 /* Read directory table. */
18107 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18108 [] (struct line_header *lh, const char *name,
18109 dir_index d_index, unsigned int mod_time,
18110 unsigned int length)
18111 {
18112 lh->add_include_dir (name);
18113 });
18114
18115 /* Read file name table. */
18116 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18117 [] (struct line_header *lh, const char *name,
18118 dir_index d_index, unsigned int mod_time,
18119 unsigned int length)
18120 {
18121 lh->add_file_name (name, d_index, mod_time, length);
18122 });
18123 }
18124 else
18125 {
18126 /* Read directory table. */
18127 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18128 {
18129 line_ptr += bytes_read;
18130 lh->add_include_dir (cur_dir);
18131 }
18132 line_ptr += bytes_read;
18133
18134 /* Read file name table. */
18135 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18136 {
18137 unsigned int mod_time, length;
18138 dir_index d_index;
18139
18140 line_ptr += bytes_read;
18141 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18142 line_ptr += bytes_read;
18143 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18144 line_ptr += bytes_read;
18145 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18146 line_ptr += bytes_read;
18147
18148 lh->add_file_name (cur_file, d_index, mod_time, length);
18149 }
18150 line_ptr += bytes_read;
18151 }
18152 lh->statement_program_start = line_ptr;
18153
18154 if (line_ptr > (section->buffer + section->size))
18155 complaint (&symfile_complaints,
18156 _("line number info header doesn't "
18157 "fit in `.debug_line' section"));
18158
18159 return lh;
18160 }
18161
18162 /* Subroutine of dwarf_decode_lines to simplify it.
18163 Return the file name of the psymtab for included file FILE_INDEX
18164 in line header LH of PST.
18165 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18166 If space for the result is malloc'd, it will be freed by a cleanup.
18167 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18168
18169 The function creates dangling cleanup registration. */
18170
18171 static const char *
18172 psymtab_include_file_name (const struct line_header *lh, int file_index,
18173 const struct partial_symtab *pst,
18174 const char *comp_dir)
18175 {
18176 const file_entry &fe = lh->file_names[file_index];
18177 const char *include_name = fe.name;
18178 const char *include_name_to_compare = include_name;
18179 const char *pst_filename;
18180 char *copied_name = NULL;
18181 int file_is_pst;
18182
18183 const char *dir_name = fe.include_dir (lh);
18184
18185 if (!IS_ABSOLUTE_PATH (include_name)
18186 && (dir_name != NULL || comp_dir != NULL))
18187 {
18188 /* Avoid creating a duplicate psymtab for PST.
18189 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18190 Before we do the comparison, however, we need to account
18191 for DIR_NAME and COMP_DIR.
18192 First prepend dir_name (if non-NULL). If we still don't
18193 have an absolute path prepend comp_dir (if non-NULL).
18194 However, the directory we record in the include-file's
18195 psymtab does not contain COMP_DIR (to match the
18196 corresponding symtab(s)).
18197
18198 Example:
18199
18200 bash$ cd /tmp
18201 bash$ gcc -g ./hello.c
18202 include_name = "hello.c"
18203 dir_name = "."
18204 DW_AT_comp_dir = comp_dir = "/tmp"
18205 DW_AT_name = "./hello.c"
18206
18207 */
18208
18209 if (dir_name != NULL)
18210 {
18211 char *tem = concat (dir_name, SLASH_STRING,
18212 include_name, (char *)NULL);
18213
18214 make_cleanup (xfree, tem);
18215 include_name = tem;
18216 include_name_to_compare = include_name;
18217 }
18218 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18219 {
18220 char *tem = concat (comp_dir, SLASH_STRING,
18221 include_name, (char *)NULL);
18222
18223 make_cleanup (xfree, tem);
18224 include_name_to_compare = tem;
18225 }
18226 }
18227
18228 pst_filename = pst->filename;
18229 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18230 {
18231 copied_name = concat (pst->dirname, SLASH_STRING,
18232 pst_filename, (char *)NULL);
18233 pst_filename = copied_name;
18234 }
18235
18236 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
18237
18238 if (copied_name != NULL)
18239 xfree (copied_name);
18240
18241 if (file_is_pst)
18242 return NULL;
18243 return include_name;
18244 }
18245
18246 /* State machine to track the state of the line number program. */
18247
18248 class lnp_state_machine
18249 {
18250 public:
18251 /* Initialize a machine state for the start of a line number
18252 program. */
18253 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18254
18255 file_entry *current_file ()
18256 {
18257 /* lh->file_names is 0-based, but the file name numbers in the
18258 statement program are 1-based. */
18259 return m_line_header->file_name_at (m_file);
18260 }
18261
18262 /* Record the line in the state machine. END_SEQUENCE is true if
18263 we're processing the end of a sequence. */
18264 void record_line (bool end_sequence);
18265
18266 /* Check address and if invalid nop-out the rest of the lines in this
18267 sequence. */
18268 void check_line_address (struct dwarf2_cu *cu,
18269 const gdb_byte *line_ptr,
18270 CORE_ADDR lowpc, CORE_ADDR address);
18271
18272 void handle_set_discriminator (unsigned int discriminator)
18273 {
18274 m_discriminator = discriminator;
18275 m_line_has_non_zero_discriminator |= discriminator != 0;
18276 }
18277
18278 /* Handle DW_LNE_set_address. */
18279 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18280 {
18281 m_op_index = 0;
18282 address += baseaddr;
18283 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18284 }
18285
18286 /* Handle DW_LNS_advance_pc. */
18287 void handle_advance_pc (CORE_ADDR adjust);
18288
18289 /* Handle a special opcode. */
18290 void handle_special_opcode (unsigned char op_code);
18291
18292 /* Handle DW_LNS_advance_line. */
18293 void handle_advance_line (int line_delta)
18294 {
18295 advance_line (line_delta);
18296 }
18297
18298 /* Handle DW_LNS_set_file. */
18299 void handle_set_file (file_name_index file);
18300
18301 /* Handle DW_LNS_negate_stmt. */
18302 void handle_negate_stmt ()
18303 {
18304 m_is_stmt = !m_is_stmt;
18305 }
18306
18307 /* Handle DW_LNS_const_add_pc. */
18308 void handle_const_add_pc ();
18309
18310 /* Handle DW_LNS_fixed_advance_pc. */
18311 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18312 {
18313 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18314 m_op_index = 0;
18315 }
18316
18317 /* Handle DW_LNS_copy. */
18318 void handle_copy ()
18319 {
18320 record_line (false);
18321 m_discriminator = 0;
18322 }
18323
18324 /* Handle DW_LNE_end_sequence. */
18325 void handle_end_sequence ()
18326 {
18327 m_record_line_callback = ::record_line;
18328 }
18329
18330 private:
18331 /* Advance the line by LINE_DELTA. */
18332 void advance_line (int line_delta)
18333 {
18334 m_line += line_delta;
18335
18336 if (line_delta != 0)
18337 m_line_has_non_zero_discriminator = m_discriminator != 0;
18338 }
18339
18340 gdbarch *m_gdbarch;
18341
18342 /* True if we're recording lines.
18343 Otherwise we're building partial symtabs and are just interested in
18344 finding include files mentioned by the line number program. */
18345 bool m_record_lines_p;
18346
18347 /* The line number header. */
18348 line_header *m_line_header;
18349
18350 /* These are part of the standard DWARF line number state machine,
18351 and initialized according to the DWARF spec. */
18352
18353 unsigned char m_op_index = 0;
18354 /* The line table index (1-based) of the current file. */
18355 file_name_index m_file = (file_name_index) 1;
18356 unsigned int m_line = 1;
18357
18358 /* These are initialized in the constructor. */
18359
18360 CORE_ADDR m_address;
18361 bool m_is_stmt;
18362 unsigned int m_discriminator;
18363
18364 /* Additional bits of state we need to track. */
18365
18366 /* The last file that we called dwarf2_start_subfile for.
18367 This is only used for TLLs. */
18368 unsigned int m_last_file = 0;
18369 /* The last file a line number was recorded for. */
18370 struct subfile *m_last_subfile = NULL;
18371
18372 /* The function to call to record a line. */
18373 record_line_ftype *m_record_line_callback = NULL;
18374
18375 /* The last line number that was recorded, used to coalesce
18376 consecutive entries for the same line. This can happen, for
18377 example, when discriminators are present. PR 17276. */
18378 unsigned int m_last_line = 0;
18379 bool m_line_has_non_zero_discriminator = false;
18380 };
18381
18382 void
18383 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18384 {
18385 CORE_ADDR addr_adj = (((m_op_index + adjust)
18386 / m_line_header->maximum_ops_per_instruction)
18387 * m_line_header->minimum_instruction_length);
18388 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18389 m_op_index = ((m_op_index + adjust)
18390 % m_line_header->maximum_ops_per_instruction);
18391 }
18392
18393 void
18394 lnp_state_machine::handle_special_opcode (unsigned char op_code)
18395 {
18396 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18397 CORE_ADDR addr_adj = (((m_op_index
18398 + (adj_opcode / m_line_header->line_range))
18399 / m_line_header->maximum_ops_per_instruction)
18400 * m_line_header->minimum_instruction_length);
18401 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18402 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18403 % m_line_header->maximum_ops_per_instruction);
18404
18405 int line_delta = (m_line_header->line_base
18406 + (adj_opcode % m_line_header->line_range));
18407 advance_line (line_delta);
18408 record_line (false);
18409 m_discriminator = 0;
18410 }
18411
18412 void
18413 lnp_state_machine::handle_set_file (file_name_index file)
18414 {
18415 m_file = file;
18416
18417 const file_entry *fe = current_file ();
18418 if (fe == NULL)
18419 dwarf2_debug_line_missing_file_complaint ();
18420 else if (m_record_lines_p)
18421 {
18422 const char *dir = fe->include_dir (m_line_header);
18423
18424 m_last_subfile = current_subfile;
18425 m_line_has_non_zero_discriminator = m_discriminator != 0;
18426 dwarf2_start_subfile (fe->name, dir);
18427 }
18428 }
18429
18430 void
18431 lnp_state_machine::handle_const_add_pc ()
18432 {
18433 CORE_ADDR adjust
18434 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18435
18436 CORE_ADDR addr_adj
18437 = (((m_op_index + adjust)
18438 / m_line_header->maximum_ops_per_instruction)
18439 * m_line_header->minimum_instruction_length);
18440
18441 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18442 m_op_index = ((m_op_index + adjust)
18443 % m_line_header->maximum_ops_per_instruction);
18444 }
18445
18446 /* Ignore this record_line request. */
18447
18448 static void
18449 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18450 {
18451 return;
18452 }
18453
18454 /* Return non-zero if we should add LINE to the line number table.
18455 LINE is the line to add, LAST_LINE is the last line that was added,
18456 LAST_SUBFILE is the subfile for LAST_LINE.
18457 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18458 had a non-zero discriminator.
18459
18460 We have to be careful in the presence of discriminators.
18461 E.g., for this line:
18462
18463 for (i = 0; i < 100000; i++);
18464
18465 clang can emit four line number entries for that one line,
18466 each with a different discriminator.
18467 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18468
18469 However, we want gdb to coalesce all four entries into one.
18470 Otherwise the user could stepi into the middle of the line and
18471 gdb would get confused about whether the pc really was in the
18472 middle of the line.
18473
18474 Things are further complicated by the fact that two consecutive
18475 line number entries for the same line is a heuristic used by gcc
18476 to denote the end of the prologue. So we can't just discard duplicate
18477 entries, we have to be selective about it. The heuristic we use is
18478 that we only collapse consecutive entries for the same line if at least
18479 one of those entries has a non-zero discriminator. PR 17276.
18480
18481 Note: Addresses in the line number state machine can never go backwards
18482 within one sequence, thus this coalescing is ok. */
18483
18484 static int
18485 dwarf_record_line_p (unsigned int line, unsigned int last_line,
18486 int line_has_non_zero_discriminator,
18487 struct subfile *last_subfile)
18488 {
18489 if (current_subfile != last_subfile)
18490 return 1;
18491 if (line != last_line)
18492 return 1;
18493 /* Same line for the same file that we've seen already.
18494 As a last check, for pr 17276, only record the line if the line
18495 has never had a non-zero discriminator. */
18496 if (!line_has_non_zero_discriminator)
18497 return 1;
18498 return 0;
18499 }
18500
18501 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18502 in the line table of subfile SUBFILE. */
18503
18504 static void
18505 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18506 unsigned int line, CORE_ADDR address,
18507 record_line_ftype p_record_line)
18508 {
18509 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18510
18511 if (dwarf_line_debug)
18512 {
18513 fprintf_unfiltered (gdb_stdlog,
18514 "Recording line %u, file %s, address %s\n",
18515 line, lbasename (subfile->name),
18516 paddress (gdbarch, address));
18517 }
18518
18519 (*p_record_line) (subfile, line, addr);
18520 }
18521
18522 /* Subroutine of dwarf_decode_lines_1 to simplify it.
18523 Mark the end of a set of line number records.
18524 The arguments are the same as for dwarf_record_line_1.
18525 If SUBFILE is NULL the request is ignored. */
18526
18527 static void
18528 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18529 CORE_ADDR address, record_line_ftype p_record_line)
18530 {
18531 if (subfile == NULL)
18532 return;
18533
18534 if (dwarf_line_debug)
18535 {
18536 fprintf_unfiltered (gdb_stdlog,
18537 "Finishing current line, file %s, address %s\n",
18538 lbasename (subfile->name),
18539 paddress (gdbarch, address));
18540 }
18541
18542 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18543 }
18544
18545 void
18546 lnp_state_machine::record_line (bool end_sequence)
18547 {
18548 if (dwarf_line_debug)
18549 {
18550 fprintf_unfiltered (gdb_stdlog,
18551 "Processing actual line %u: file %u,"
18552 " address %s, is_stmt %u, discrim %u\n",
18553 m_line, to_underlying (m_file),
18554 paddress (m_gdbarch, m_address),
18555 m_is_stmt, m_discriminator);
18556 }
18557
18558 file_entry *fe = current_file ();
18559
18560 if (fe == NULL)
18561 dwarf2_debug_line_missing_file_complaint ();
18562 /* For now we ignore lines not starting on an instruction boundary.
18563 But not when processing end_sequence for compatibility with the
18564 previous version of the code. */
18565 else if (m_op_index == 0 || end_sequence)
18566 {
18567 fe->included_p = 1;
18568 if (m_record_lines_p && m_is_stmt)
18569 {
18570 if (m_last_subfile != current_subfile || end_sequence)
18571 {
18572 dwarf_finish_line (m_gdbarch, m_last_subfile,
18573 m_address, m_record_line_callback);
18574 }
18575
18576 if (!end_sequence)
18577 {
18578 if (dwarf_record_line_p (m_line, m_last_line,
18579 m_line_has_non_zero_discriminator,
18580 m_last_subfile))
18581 {
18582 dwarf_record_line_1 (m_gdbarch, current_subfile,
18583 m_line, m_address,
18584 m_record_line_callback);
18585 }
18586 m_last_subfile = current_subfile;
18587 m_last_line = m_line;
18588 }
18589 }
18590 }
18591 }
18592
18593 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18594 bool record_lines_p)
18595 {
18596 m_gdbarch = arch;
18597 m_record_lines_p = record_lines_p;
18598 m_line_header = lh;
18599
18600 m_record_line_callback = ::record_line;
18601
18602 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18603 was a line entry for it so that the backend has a chance to adjust it
18604 and also record it in case it needs it. This is currently used by MIPS
18605 code, cf. `mips_adjust_dwarf2_line'. */
18606 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18607 m_is_stmt = lh->default_is_stmt;
18608 m_discriminator = 0;
18609 }
18610
18611 void
18612 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18613 const gdb_byte *line_ptr,
18614 CORE_ADDR lowpc, CORE_ADDR address)
18615 {
18616 /* If address < lowpc then it's not a usable value, it's outside the
18617 pc range of the CU. However, we restrict the test to only address
18618 values of zero to preserve GDB's previous behaviour which is to
18619 handle the specific case of a function being GC'd by the linker. */
18620
18621 if (address == 0 && address < lowpc)
18622 {
18623 /* This line table is for a function which has been
18624 GCd by the linker. Ignore it. PR gdb/12528 */
18625
18626 struct objfile *objfile = cu->objfile;
18627 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18628
18629 complaint (&symfile_complaints,
18630 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18631 line_offset, objfile_name (objfile));
18632 m_record_line_callback = noop_record_line;
18633 /* Note: record_line_callback is left as noop_record_line until
18634 we see DW_LNE_end_sequence. */
18635 }
18636 }
18637
18638 /* Subroutine of dwarf_decode_lines to simplify it.
18639 Process the line number information in LH.
18640 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18641 program in order to set included_p for every referenced header. */
18642
18643 static void
18644 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18645 const int decode_for_pst_p, CORE_ADDR lowpc)
18646 {
18647 const gdb_byte *line_ptr, *extended_end;
18648 const gdb_byte *line_end;
18649 unsigned int bytes_read, extended_len;
18650 unsigned char op_code, extended_op;
18651 CORE_ADDR baseaddr;
18652 struct objfile *objfile = cu->objfile;
18653 bfd *abfd = objfile->obfd;
18654 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18655 /* True if we're recording line info (as opposed to building partial
18656 symtabs and just interested in finding include files mentioned by
18657 the line number program). */
18658 bool record_lines_p = !decode_for_pst_p;
18659
18660 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18661
18662 line_ptr = lh->statement_program_start;
18663 line_end = lh->statement_program_end;
18664
18665 /* Read the statement sequences until there's nothing left. */
18666 while (line_ptr < line_end)
18667 {
18668 /* The DWARF line number program state machine. Reset the state
18669 machine at the start of each sequence. */
18670 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18671 bool end_sequence = false;
18672
18673 if (record_lines_p)
18674 {
18675 /* Start a subfile for the current file of the state
18676 machine. */
18677 const file_entry *fe = state_machine.current_file ();
18678
18679 if (fe != NULL)
18680 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
18681 }
18682
18683 /* Decode the table. */
18684 while (line_ptr < line_end && !end_sequence)
18685 {
18686 op_code = read_1_byte (abfd, line_ptr);
18687 line_ptr += 1;
18688
18689 if (op_code >= lh->opcode_base)
18690 {
18691 /* Special opcode. */
18692 state_machine.handle_special_opcode (op_code);
18693 }
18694 else switch (op_code)
18695 {
18696 case DW_LNS_extended_op:
18697 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18698 &bytes_read);
18699 line_ptr += bytes_read;
18700 extended_end = line_ptr + extended_len;
18701 extended_op = read_1_byte (abfd, line_ptr);
18702 line_ptr += 1;
18703 switch (extended_op)
18704 {
18705 case DW_LNE_end_sequence:
18706 state_machine.handle_end_sequence ();
18707 end_sequence = true;
18708 break;
18709 case DW_LNE_set_address:
18710 {
18711 CORE_ADDR address
18712 = read_address (abfd, line_ptr, cu, &bytes_read);
18713 line_ptr += bytes_read;
18714
18715 state_machine.check_line_address (cu, line_ptr,
18716 lowpc, address);
18717 state_machine.handle_set_address (baseaddr, address);
18718 }
18719 break;
18720 case DW_LNE_define_file:
18721 {
18722 const char *cur_file;
18723 unsigned int mod_time, length;
18724 dir_index dindex;
18725
18726 cur_file = read_direct_string (abfd, line_ptr,
18727 &bytes_read);
18728 line_ptr += bytes_read;
18729 dindex = (dir_index)
18730 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18731 line_ptr += bytes_read;
18732 mod_time =
18733 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18734 line_ptr += bytes_read;
18735 length =
18736 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18737 line_ptr += bytes_read;
18738 lh->add_file_name (cur_file, dindex, mod_time, length);
18739 }
18740 break;
18741 case DW_LNE_set_discriminator:
18742 {
18743 /* The discriminator is not interesting to the
18744 debugger; just ignore it. We still need to
18745 check its value though:
18746 if there are consecutive entries for the same
18747 (non-prologue) line we want to coalesce them.
18748 PR 17276. */
18749 unsigned int discr
18750 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18751 line_ptr += bytes_read;
18752
18753 state_machine.handle_set_discriminator (discr);
18754 }
18755 break;
18756 default:
18757 complaint (&symfile_complaints,
18758 _("mangled .debug_line section"));
18759 return;
18760 }
18761 /* Make sure that we parsed the extended op correctly. If e.g.
18762 we expected a different address size than the producer used,
18763 we may have read the wrong number of bytes. */
18764 if (line_ptr != extended_end)
18765 {
18766 complaint (&symfile_complaints,
18767 _("mangled .debug_line section"));
18768 return;
18769 }
18770 break;
18771 case DW_LNS_copy:
18772 state_machine.handle_copy ();
18773 break;
18774 case DW_LNS_advance_pc:
18775 {
18776 CORE_ADDR adjust
18777 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18778 line_ptr += bytes_read;
18779
18780 state_machine.handle_advance_pc (adjust);
18781 }
18782 break;
18783 case DW_LNS_advance_line:
18784 {
18785 int line_delta
18786 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18787 line_ptr += bytes_read;
18788
18789 state_machine.handle_advance_line (line_delta);
18790 }
18791 break;
18792 case DW_LNS_set_file:
18793 {
18794 file_name_index file
18795 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
18796 &bytes_read);
18797 line_ptr += bytes_read;
18798
18799 state_machine.handle_set_file (file);
18800 }
18801 break;
18802 case DW_LNS_set_column:
18803 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18804 line_ptr += bytes_read;
18805 break;
18806 case DW_LNS_negate_stmt:
18807 state_machine.handle_negate_stmt ();
18808 break;
18809 case DW_LNS_set_basic_block:
18810 break;
18811 /* Add to the address register of the state machine the
18812 address increment value corresponding to special opcode
18813 255. I.e., this value is scaled by the minimum
18814 instruction length since special opcode 255 would have
18815 scaled the increment. */
18816 case DW_LNS_const_add_pc:
18817 state_machine.handle_const_add_pc ();
18818 break;
18819 case DW_LNS_fixed_advance_pc:
18820 {
18821 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
18822 line_ptr += 2;
18823
18824 state_machine.handle_fixed_advance_pc (addr_adj);
18825 }
18826 break;
18827 default:
18828 {
18829 /* Unknown standard opcode, ignore it. */
18830 int i;
18831
18832 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18833 {
18834 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18835 line_ptr += bytes_read;
18836 }
18837 }
18838 }
18839 }
18840
18841 if (!end_sequence)
18842 dwarf2_debug_line_missing_end_sequence_complaint ();
18843
18844 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18845 in which case we still finish recording the last line). */
18846 state_machine.record_line (true);
18847 }
18848 }
18849
18850 /* Decode the Line Number Program (LNP) for the given line_header
18851 structure and CU. The actual information extracted and the type
18852 of structures created from the LNP depends on the value of PST.
18853
18854 1. If PST is NULL, then this procedure uses the data from the program
18855 to create all necessary symbol tables, and their linetables.
18856
18857 2. If PST is not NULL, this procedure reads the program to determine
18858 the list of files included by the unit represented by PST, and
18859 builds all the associated partial symbol tables.
18860
18861 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18862 It is used for relative paths in the line table.
18863 NOTE: When processing partial symtabs (pst != NULL),
18864 comp_dir == pst->dirname.
18865
18866 NOTE: It is important that psymtabs have the same file name (via strcmp)
18867 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18868 symtab we don't use it in the name of the psymtabs we create.
18869 E.g. expand_line_sal requires this when finding psymtabs to expand.
18870 A good testcase for this is mb-inline.exp.
18871
18872 LOWPC is the lowest address in CU (or 0 if not known).
18873
18874 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18875 for its PC<->lines mapping information. Otherwise only the filename
18876 table is read in. */
18877
18878 static void
18879 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18880 struct dwarf2_cu *cu, struct partial_symtab *pst,
18881 CORE_ADDR lowpc, int decode_mapping)
18882 {
18883 struct objfile *objfile = cu->objfile;
18884 const int decode_for_pst_p = (pst != NULL);
18885
18886 if (decode_mapping)
18887 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18888
18889 if (decode_for_pst_p)
18890 {
18891 int file_index;
18892
18893 /* Now that we're done scanning the Line Header Program, we can
18894 create the psymtab of each included file. */
18895 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
18896 if (lh->file_names[file_index].included_p == 1)
18897 {
18898 const char *include_name =
18899 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18900 if (include_name != NULL)
18901 dwarf2_create_include_psymtab (include_name, pst, objfile);
18902 }
18903 }
18904 else
18905 {
18906 /* Make sure a symtab is created for every file, even files
18907 which contain only variables (i.e. no code with associated
18908 line numbers). */
18909 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18910 int i;
18911
18912 for (i = 0; i < lh->file_names.size (); i++)
18913 {
18914 file_entry &fe = lh->file_names[i];
18915
18916 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
18917
18918 if (current_subfile->symtab == NULL)
18919 {
18920 current_subfile->symtab
18921 = allocate_symtab (cust, current_subfile->name);
18922 }
18923 fe.symtab = current_subfile->symtab;
18924 }
18925 }
18926 }
18927
18928 /* Start a subfile for DWARF. FILENAME is the name of the file and
18929 DIRNAME the name of the source directory which contains FILENAME
18930 or NULL if not known.
18931 This routine tries to keep line numbers from identical absolute and
18932 relative file names in a common subfile.
18933
18934 Using the `list' example from the GDB testsuite, which resides in
18935 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18936 of /srcdir/list0.c yields the following debugging information for list0.c:
18937
18938 DW_AT_name: /srcdir/list0.c
18939 DW_AT_comp_dir: /compdir
18940 files.files[0].name: list0.h
18941 files.files[0].dir: /srcdir
18942 files.files[1].name: list0.c
18943 files.files[1].dir: /srcdir
18944
18945 The line number information for list0.c has to end up in a single
18946 subfile, so that `break /srcdir/list0.c:1' works as expected.
18947 start_subfile will ensure that this happens provided that we pass the
18948 concatenation of files.files[1].dir and files.files[1].name as the
18949 subfile's name. */
18950
18951 static void
18952 dwarf2_start_subfile (const char *filename, const char *dirname)
18953 {
18954 char *copy = NULL;
18955
18956 /* In order not to lose the line information directory,
18957 we concatenate it to the filename when it makes sense.
18958 Note that the Dwarf3 standard says (speaking of filenames in line
18959 information): ``The directory index is ignored for file names
18960 that represent full path names''. Thus ignoring dirname in the
18961 `else' branch below isn't an issue. */
18962
18963 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18964 {
18965 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18966 filename = copy;
18967 }
18968
18969 start_subfile (filename);
18970
18971 if (copy != NULL)
18972 xfree (copy);
18973 }
18974
18975 /* Start a symtab for DWARF.
18976 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18977
18978 static struct compunit_symtab *
18979 dwarf2_start_symtab (struct dwarf2_cu *cu,
18980 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18981 {
18982 struct compunit_symtab *cust
18983 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18984
18985 record_debugformat ("DWARF 2");
18986 record_producer (cu->producer);
18987
18988 /* We assume that we're processing GCC output. */
18989 processing_gcc_compilation = 2;
18990
18991 cu->processing_has_namespace_info = 0;
18992
18993 return cust;
18994 }
18995
18996 static void
18997 var_decode_location (struct attribute *attr, struct symbol *sym,
18998 struct dwarf2_cu *cu)
18999 {
19000 struct objfile *objfile = cu->objfile;
19001 struct comp_unit_head *cu_header = &cu->header;
19002
19003 /* NOTE drow/2003-01-30: There used to be a comment and some special
19004 code here to turn a symbol with DW_AT_external and a
19005 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
19006 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
19007 with some versions of binutils) where shared libraries could have
19008 relocations against symbols in their debug information - the
19009 minimal symbol would have the right address, but the debug info
19010 would not. It's no longer necessary, because we will explicitly
19011 apply relocations when we read in the debug information now. */
19012
19013 /* A DW_AT_location attribute with no contents indicates that a
19014 variable has been optimized away. */
19015 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
19016 {
19017 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19018 return;
19019 }
19020
19021 /* Handle one degenerate form of location expression specially, to
19022 preserve GDB's previous behavior when section offsets are
19023 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
19024 then mark this symbol as LOC_STATIC. */
19025
19026 if (attr_form_is_block (attr)
19027 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
19028 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
19029 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
19030 && (DW_BLOCK (attr)->size
19031 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
19032 {
19033 unsigned int dummy;
19034
19035 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
19036 SYMBOL_VALUE_ADDRESS (sym) =
19037 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
19038 else
19039 SYMBOL_VALUE_ADDRESS (sym) =
19040 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
19041 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
19042 fixup_symbol_section (sym, objfile);
19043 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
19044 SYMBOL_SECTION (sym));
19045 return;
19046 }
19047
19048 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
19049 expression evaluator, and use LOC_COMPUTED only when necessary
19050 (i.e. when the value of a register or memory location is
19051 referenced, or a thread-local block, etc.). Then again, it might
19052 not be worthwhile. I'm assuming that it isn't unless performance
19053 or memory numbers show me otherwise. */
19054
19055 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
19056
19057 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
19058 cu->has_loclist = 1;
19059 }
19060
19061 /* Given a pointer to a DWARF information entry, figure out if we need
19062 to make a symbol table entry for it, and if so, create a new entry
19063 and return a pointer to it.
19064 If TYPE is NULL, determine symbol type from the die, otherwise
19065 used the passed type.
19066 If SPACE is not NULL, use it to hold the new symbol. If it is
19067 NULL, allocate a new symbol on the objfile's obstack. */
19068
19069 static struct symbol *
19070 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
19071 struct symbol *space)
19072 {
19073 struct objfile *objfile = cu->objfile;
19074 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19075 struct symbol *sym = NULL;
19076 const char *name;
19077 struct attribute *attr = NULL;
19078 struct attribute *attr2 = NULL;
19079 CORE_ADDR baseaddr;
19080 struct pending **list_to_add = NULL;
19081
19082 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
19083
19084 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19085
19086 name = dwarf2_name (die, cu);
19087 if (name)
19088 {
19089 const char *linkagename;
19090 int suppress_add = 0;
19091
19092 if (space)
19093 sym = space;
19094 else
19095 sym = allocate_symbol (objfile);
19096 OBJSTAT (objfile, n_syms++);
19097
19098 /* Cache this symbol's name and the name's demangled form (if any). */
19099 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
19100 linkagename = dwarf2_physname (name, die, cu);
19101 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
19102
19103 /* Fortran does not have mangling standard and the mangling does differ
19104 between gfortran, iFort etc. */
19105 if (cu->language == language_fortran
19106 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
19107 symbol_set_demangled_name (&(sym->ginfo),
19108 dwarf2_full_name (name, die, cu),
19109 NULL);
19110
19111 /* Default assumptions.
19112 Use the passed type or decode it from the die. */
19113 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19114 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19115 if (type != NULL)
19116 SYMBOL_TYPE (sym) = type;
19117 else
19118 SYMBOL_TYPE (sym) = die_type (die, cu);
19119 attr = dwarf2_attr (die,
19120 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19121 cu);
19122 if (attr)
19123 {
19124 SYMBOL_LINE (sym) = DW_UNSND (attr);
19125 }
19126
19127 attr = dwarf2_attr (die,
19128 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19129 cu);
19130 if (attr)
19131 {
19132 file_name_index file_index = (file_name_index) DW_UNSND (attr);
19133 struct file_entry *fe;
19134
19135 if (cu->line_header != NULL)
19136 fe = cu->line_header->file_name_at (file_index);
19137 else
19138 fe = NULL;
19139
19140 if (fe == NULL)
19141 complaint (&symfile_complaints,
19142 _("file index out of range"));
19143 else
19144 symbol_set_symtab (sym, fe->symtab);
19145 }
19146
19147 switch (die->tag)
19148 {
19149 case DW_TAG_label:
19150 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
19151 if (attr)
19152 {
19153 CORE_ADDR addr;
19154
19155 addr = attr_value_as_address (attr);
19156 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19157 SYMBOL_VALUE_ADDRESS (sym) = addr;
19158 }
19159 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19160 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
19161 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
19162 add_symbol_to_list (sym, cu->list_in_scope);
19163 break;
19164 case DW_TAG_subprogram:
19165 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19166 finish_block. */
19167 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19168 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19169 if ((attr2 && (DW_UNSND (attr2) != 0))
19170 || cu->language == language_ada)
19171 {
19172 /* Subprograms marked external are stored as a global symbol.
19173 Ada subprograms, whether marked external or not, are always
19174 stored as a global symbol, because we want to be able to
19175 access them globally. For instance, we want to be able
19176 to break on a nested subprogram without having to
19177 specify the context. */
19178 list_to_add = &global_symbols;
19179 }
19180 else
19181 {
19182 list_to_add = cu->list_in_scope;
19183 }
19184 break;
19185 case DW_TAG_inlined_subroutine:
19186 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19187 finish_block. */
19188 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19189 SYMBOL_INLINED (sym) = 1;
19190 list_to_add = cu->list_in_scope;
19191 break;
19192 case DW_TAG_template_value_param:
19193 suppress_add = 1;
19194 /* Fall through. */
19195 case DW_TAG_constant:
19196 case DW_TAG_variable:
19197 case DW_TAG_member:
19198 /* Compilation with minimal debug info may result in
19199 variables with missing type entries. Change the
19200 misleading `void' type to something sensible. */
19201 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
19202 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
19203
19204 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19205 /* In the case of DW_TAG_member, we should only be called for
19206 static const members. */
19207 if (die->tag == DW_TAG_member)
19208 {
19209 /* dwarf2_add_field uses die_is_declaration,
19210 so we do the same. */
19211 gdb_assert (die_is_declaration (die, cu));
19212 gdb_assert (attr);
19213 }
19214 if (attr)
19215 {
19216 dwarf2_const_value (attr, sym, cu);
19217 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19218 if (!suppress_add)
19219 {
19220 if (attr2 && (DW_UNSND (attr2) != 0))
19221 list_to_add = &global_symbols;
19222 else
19223 list_to_add = cu->list_in_scope;
19224 }
19225 break;
19226 }
19227 attr = dwarf2_attr (die, DW_AT_location, cu);
19228 if (attr)
19229 {
19230 var_decode_location (attr, sym, cu);
19231 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19232
19233 /* Fortran explicitly imports any global symbols to the local
19234 scope by DW_TAG_common_block. */
19235 if (cu->language == language_fortran && die->parent
19236 && die->parent->tag == DW_TAG_common_block)
19237 attr2 = NULL;
19238
19239 if (SYMBOL_CLASS (sym) == LOC_STATIC
19240 && SYMBOL_VALUE_ADDRESS (sym) == 0
19241 && !dwarf2_per_objfile->has_section_at_zero)
19242 {
19243 /* When a static variable is eliminated by the linker,
19244 the corresponding debug information is not stripped
19245 out, but the variable address is set to null;
19246 do not add such variables into symbol table. */
19247 }
19248 else if (attr2 && (DW_UNSND (attr2) != 0))
19249 {
19250 /* Workaround gfortran PR debug/40040 - it uses
19251 DW_AT_location for variables in -fPIC libraries which may
19252 get overriden by other libraries/executable and get
19253 a different address. Resolve it by the minimal symbol
19254 which may come from inferior's executable using copy
19255 relocation. Make this workaround only for gfortran as for
19256 other compilers GDB cannot guess the minimal symbol
19257 Fortran mangling kind. */
19258 if (cu->language == language_fortran && die->parent
19259 && die->parent->tag == DW_TAG_module
19260 && cu->producer
19261 && startswith (cu->producer, "GNU Fortran"))
19262 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19263
19264 /* A variable with DW_AT_external is never static,
19265 but it may be block-scoped. */
19266 list_to_add = (cu->list_in_scope == &file_symbols
19267 ? &global_symbols : cu->list_in_scope);
19268 }
19269 else
19270 list_to_add = cu->list_in_scope;
19271 }
19272 else
19273 {
19274 /* We do not know the address of this symbol.
19275 If it is an external symbol and we have type information
19276 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19277 The address of the variable will then be determined from
19278 the minimal symbol table whenever the variable is
19279 referenced. */
19280 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19281
19282 /* Fortran explicitly imports any global symbols to the local
19283 scope by DW_TAG_common_block. */
19284 if (cu->language == language_fortran && die->parent
19285 && die->parent->tag == DW_TAG_common_block)
19286 {
19287 /* SYMBOL_CLASS doesn't matter here because
19288 read_common_block is going to reset it. */
19289 if (!suppress_add)
19290 list_to_add = cu->list_in_scope;
19291 }
19292 else if (attr2 && (DW_UNSND (attr2) != 0)
19293 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
19294 {
19295 /* A variable with DW_AT_external is never static, but it
19296 may be block-scoped. */
19297 list_to_add = (cu->list_in_scope == &file_symbols
19298 ? &global_symbols : cu->list_in_scope);
19299
19300 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19301 }
19302 else if (!die_is_declaration (die, cu))
19303 {
19304 /* Use the default LOC_OPTIMIZED_OUT class. */
19305 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
19306 if (!suppress_add)
19307 list_to_add = cu->list_in_scope;
19308 }
19309 }
19310 break;
19311 case DW_TAG_formal_parameter:
19312 /* If we are inside a function, mark this as an argument. If
19313 not, we might be looking at an argument to an inlined function
19314 when we do not have enough information to show inlined frames;
19315 pretend it's a local variable in that case so that the user can
19316 still see it. */
19317 if (context_stack_depth > 0
19318 && context_stack[context_stack_depth - 1].name != NULL)
19319 SYMBOL_IS_ARGUMENT (sym) = 1;
19320 attr = dwarf2_attr (die, DW_AT_location, cu);
19321 if (attr)
19322 {
19323 var_decode_location (attr, sym, cu);
19324 }
19325 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19326 if (attr)
19327 {
19328 dwarf2_const_value (attr, sym, cu);
19329 }
19330
19331 list_to_add = cu->list_in_scope;
19332 break;
19333 case DW_TAG_unspecified_parameters:
19334 /* From varargs functions; gdb doesn't seem to have any
19335 interest in this information, so just ignore it for now.
19336 (FIXME?) */
19337 break;
19338 case DW_TAG_template_type_param:
19339 suppress_add = 1;
19340 /* Fall through. */
19341 case DW_TAG_class_type:
19342 case DW_TAG_interface_type:
19343 case DW_TAG_structure_type:
19344 case DW_TAG_union_type:
19345 case DW_TAG_set_type:
19346 case DW_TAG_enumeration_type:
19347 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19348 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
19349
19350 {
19351 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
19352 really ever be static objects: otherwise, if you try
19353 to, say, break of a class's method and you're in a file
19354 which doesn't mention that class, it won't work unless
19355 the check for all static symbols in lookup_symbol_aux
19356 saves you. See the OtherFileClass tests in
19357 gdb.c++/namespace.exp. */
19358
19359 if (!suppress_add)
19360 {
19361 list_to_add = (cu->list_in_scope == &file_symbols
19362 && cu->language == language_cplus
19363 ? &global_symbols : cu->list_in_scope);
19364
19365 /* The semantics of C++ state that "struct foo {
19366 ... }" also defines a typedef for "foo". */
19367 if (cu->language == language_cplus
19368 || cu->language == language_ada
19369 || cu->language == language_d
19370 || cu->language == language_rust)
19371 {
19372 /* The symbol's name is already allocated along
19373 with this objfile, so we don't need to
19374 duplicate it for the type. */
19375 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19376 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19377 }
19378 }
19379 }
19380 break;
19381 case DW_TAG_typedef:
19382 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19383 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19384 list_to_add = cu->list_in_scope;
19385 break;
19386 case DW_TAG_base_type:
19387 case DW_TAG_subrange_type:
19388 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19389 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19390 list_to_add = cu->list_in_scope;
19391 break;
19392 case DW_TAG_enumerator:
19393 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19394 if (attr)
19395 {
19396 dwarf2_const_value (attr, sym, cu);
19397 }
19398 {
19399 /* NOTE: carlton/2003-11-10: See comment above in the
19400 DW_TAG_class_type, etc. block. */
19401
19402 list_to_add = (cu->list_in_scope == &file_symbols
19403 && cu->language == language_cplus
19404 ? &global_symbols : cu->list_in_scope);
19405 }
19406 break;
19407 case DW_TAG_imported_declaration:
19408 case DW_TAG_namespace:
19409 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19410 list_to_add = &global_symbols;
19411 break;
19412 case DW_TAG_module:
19413 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19414 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19415 list_to_add = &global_symbols;
19416 break;
19417 case DW_TAG_common_block:
19418 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
19419 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19420 add_symbol_to_list (sym, cu->list_in_scope);
19421 break;
19422 default:
19423 /* Not a tag we recognize. Hopefully we aren't processing
19424 trash data, but since we must specifically ignore things
19425 we don't recognize, there is nothing else we should do at
19426 this point. */
19427 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
19428 dwarf_tag_name (die->tag));
19429 break;
19430 }
19431
19432 if (suppress_add)
19433 {
19434 sym->hash_next = objfile->template_symbols;
19435 objfile->template_symbols = sym;
19436 list_to_add = NULL;
19437 }
19438
19439 if (list_to_add != NULL)
19440 add_symbol_to_list (sym, list_to_add);
19441
19442 /* For the benefit of old versions of GCC, check for anonymous
19443 namespaces based on the demangled name. */
19444 if (!cu->processing_has_namespace_info
19445 && cu->language == language_cplus)
19446 cp_scan_for_anonymous_namespaces (sym, objfile);
19447 }
19448 return (sym);
19449 }
19450
19451 /* A wrapper for new_symbol_full that always allocates a new symbol. */
19452
19453 static struct symbol *
19454 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19455 {
19456 return new_symbol_full (die, type, cu, NULL);
19457 }
19458
19459 /* Given an attr with a DW_FORM_dataN value in host byte order,
19460 zero-extend it as appropriate for the symbol's type. The DWARF
19461 standard (v4) is not entirely clear about the meaning of using
19462 DW_FORM_dataN for a constant with a signed type, where the type is
19463 wider than the data. The conclusion of a discussion on the DWARF
19464 list was that this is unspecified. We choose to always zero-extend
19465 because that is the interpretation long in use by GCC. */
19466
19467 static gdb_byte *
19468 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
19469 struct dwarf2_cu *cu, LONGEST *value, int bits)
19470 {
19471 struct objfile *objfile = cu->objfile;
19472 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19473 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
19474 LONGEST l = DW_UNSND (attr);
19475
19476 if (bits < sizeof (*value) * 8)
19477 {
19478 l &= ((LONGEST) 1 << bits) - 1;
19479 *value = l;
19480 }
19481 else if (bits == sizeof (*value) * 8)
19482 *value = l;
19483 else
19484 {
19485 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
19486 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19487 return bytes;
19488 }
19489
19490 return NULL;
19491 }
19492
19493 /* Read a constant value from an attribute. Either set *VALUE, or if
19494 the value does not fit in *VALUE, set *BYTES - either already
19495 allocated on the objfile obstack, or newly allocated on OBSTACK,
19496 or, set *BATON, if we translated the constant to a location
19497 expression. */
19498
19499 static void
19500 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
19501 const char *name, struct obstack *obstack,
19502 struct dwarf2_cu *cu,
19503 LONGEST *value, const gdb_byte **bytes,
19504 struct dwarf2_locexpr_baton **baton)
19505 {
19506 struct objfile *objfile = cu->objfile;
19507 struct comp_unit_head *cu_header = &cu->header;
19508 struct dwarf_block *blk;
19509 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19510 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19511
19512 *value = 0;
19513 *bytes = NULL;
19514 *baton = NULL;
19515
19516 switch (attr->form)
19517 {
19518 case DW_FORM_addr:
19519 case DW_FORM_GNU_addr_index:
19520 {
19521 gdb_byte *data;
19522
19523 if (TYPE_LENGTH (type) != cu_header->addr_size)
19524 dwarf2_const_value_length_mismatch_complaint (name,
19525 cu_header->addr_size,
19526 TYPE_LENGTH (type));
19527 /* Symbols of this form are reasonably rare, so we just
19528 piggyback on the existing location code rather than writing
19529 a new implementation of symbol_computed_ops. */
19530 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
19531 (*baton)->per_cu = cu->per_cu;
19532 gdb_assert ((*baton)->per_cu);
19533
19534 (*baton)->size = 2 + cu_header->addr_size;
19535 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
19536 (*baton)->data = data;
19537
19538 data[0] = DW_OP_addr;
19539 store_unsigned_integer (&data[1], cu_header->addr_size,
19540 byte_order, DW_ADDR (attr));
19541 data[cu_header->addr_size + 1] = DW_OP_stack_value;
19542 }
19543 break;
19544 case DW_FORM_string:
19545 case DW_FORM_strp:
19546 case DW_FORM_GNU_str_index:
19547 case DW_FORM_GNU_strp_alt:
19548 /* DW_STRING is already allocated on the objfile obstack, point
19549 directly to it. */
19550 *bytes = (const gdb_byte *) DW_STRING (attr);
19551 break;
19552 case DW_FORM_block1:
19553 case DW_FORM_block2:
19554 case DW_FORM_block4:
19555 case DW_FORM_block:
19556 case DW_FORM_exprloc:
19557 case DW_FORM_data16:
19558 blk = DW_BLOCK (attr);
19559 if (TYPE_LENGTH (type) != blk->size)
19560 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19561 TYPE_LENGTH (type));
19562 *bytes = blk->data;
19563 break;
19564
19565 /* The DW_AT_const_value attributes are supposed to carry the
19566 symbol's value "represented as it would be on the target
19567 architecture." By the time we get here, it's already been
19568 converted to host endianness, so we just need to sign- or
19569 zero-extend it as appropriate. */
19570 case DW_FORM_data1:
19571 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
19572 break;
19573 case DW_FORM_data2:
19574 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
19575 break;
19576 case DW_FORM_data4:
19577 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
19578 break;
19579 case DW_FORM_data8:
19580 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
19581 break;
19582
19583 case DW_FORM_sdata:
19584 case DW_FORM_implicit_const:
19585 *value = DW_SND (attr);
19586 break;
19587
19588 case DW_FORM_udata:
19589 *value = DW_UNSND (attr);
19590 break;
19591
19592 default:
19593 complaint (&symfile_complaints,
19594 _("unsupported const value attribute form: '%s'"),
19595 dwarf_form_name (attr->form));
19596 *value = 0;
19597 break;
19598 }
19599 }
19600
19601
19602 /* Copy constant value from an attribute to a symbol. */
19603
19604 static void
19605 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
19606 struct dwarf2_cu *cu)
19607 {
19608 struct objfile *objfile = cu->objfile;
19609 LONGEST value;
19610 const gdb_byte *bytes;
19611 struct dwarf2_locexpr_baton *baton;
19612
19613 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19614 SYMBOL_PRINT_NAME (sym),
19615 &objfile->objfile_obstack, cu,
19616 &value, &bytes, &baton);
19617
19618 if (baton != NULL)
19619 {
19620 SYMBOL_LOCATION_BATON (sym) = baton;
19621 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
19622 }
19623 else if (bytes != NULL)
19624 {
19625 SYMBOL_VALUE_BYTES (sym) = bytes;
19626 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
19627 }
19628 else
19629 {
19630 SYMBOL_VALUE (sym) = value;
19631 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
19632 }
19633 }
19634
19635 /* Return the type of the die in question using its DW_AT_type attribute. */
19636
19637 static struct type *
19638 die_type (struct die_info *die, struct dwarf2_cu *cu)
19639 {
19640 struct attribute *type_attr;
19641
19642 type_attr = dwarf2_attr (die, DW_AT_type, cu);
19643 if (!type_attr)
19644 {
19645 /* A missing DW_AT_type represents a void type. */
19646 return objfile_type (cu->objfile)->builtin_void;
19647 }
19648
19649 return lookup_die_type (die, type_attr, cu);
19650 }
19651
19652 /* True iff CU's producer generates GNAT Ada auxiliary information
19653 that allows to find parallel types through that information instead
19654 of having to do expensive parallel lookups by type name. */
19655
19656 static int
19657 need_gnat_info (struct dwarf2_cu *cu)
19658 {
19659 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19660 of GNAT produces this auxiliary information, without any indication
19661 that it is produced. Part of enhancing the FSF version of GNAT
19662 to produce that information will be to put in place an indicator
19663 that we can use in order to determine whether the descriptive type
19664 info is available or not. One suggestion that has been made is
19665 to use a new attribute, attached to the CU die. For now, assume
19666 that the descriptive type info is not available. */
19667 return 0;
19668 }
19669
19670 /* Return the auxiliary type of the die in question using its
19671 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19672 attribute is not present. */
19673
19674 static struct type *
19675 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19676 {
19677 struct attribute *type_attr;
19678
19679 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19680 if (!type_attr)
19681 return NULL;
19682
19683 return lookup_die_type (die, type_attr, cu);
19684 }
19685
19686 /* If DIE has a descriptive_type attribute, then set the TYPE's
19687 descriptive type accordingly. */
19688
19689 static void
19690 set_descriptive_type (struct type *type, struct die_info *die,
19691 struct dwarf2_cu *cu)
19692 {
19693 struct type *descriptive_type = die_descriptive_type (die, cu);
19694
19695 if (descriptive_type)
19696 {
19697 ALLOCATE_GNAT_AUX_TYPE (type);
19698 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19699 }
19700 }
19701
19702 /* Return the containing type of the die in question using its
19703 DW_AT_containing_type attribute. */
19704
19705 static struct type *
19706 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
19707 {
19708 struct attribute *type_attr;
19709
19710 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
19711 if (!type_attr)
19712 error (_("Dwarf Error: Problem turning containing type into gdb type "
19713 "[in module %s]"), objfile_name (cu->objfile));
19714
19715 return lookup_die_type (die, type_attr, cu);
19716 }
19717
19718 /* Return an error marker type to use for the ill formed type in DIE/CU. */
19719
19720 static struct type *
19721 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19722 {
19723 struct objfile *objfile = dwarf2_per_objfile->objfile;
19724 char *message, *saved;
19725
19726 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
19727 objfile_name (objfile),
19728 to_underlying (cu->header.sect_off),
19729 to_underlying (die->sect_off));
19730 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19731 message, strlen (message));
19732 xfree (message);
19733
19734 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19735 }
19736
19737 /* Look up the type of DIE in CU using its type attribute ATTR.
19738 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19739 DW_AT_containing_type.
19740 If there is no type substitute an error marker. */
19741
19742 static struct type *
19743 lookup_die_type (struct die_info *die, const struct attribute *attr,
19744 struct dwarf2_cu *cu)
19745 {
19746 struct objfile *objfile = cu->objfile;
19747 struct type *this_type;
19748
19749 gdb_assert (attr->name == DW_AT_type
19750 || attr->name == DW_AT_GNAT_descriptive_type
19751 || attr->name == DW_AT_containing_type);
19752
19753 /* First see if we have it cached. */
19754
19755 if (attr->form == DW_FORM_GNU_ref_alt)
19756 {
19757 struct dwarf2_per_cu_data *per_cu;
19758 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19759
19760 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
19761 this_type = get_die_type_at_offset (sect_off, per_cu);
19762 }
19763 else if (attr_form_is_ref (attr))
19764 {
19765 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19766
19767 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
19768 }
19769 else if (attr->form == DW_FORM_ref_sig8)
19770 {
19771 ULONGEST signature = DW_SIGNATURE (attr);
19772
19773 return get_signatured_type (die, signature, cu);
19774 }
19775 else
19776 {
19777 complaint (&symfile_complaints,
19778 _("Dwarf Error: Bad type attribute %s in DIE"
19779 " at 0x%x [in module %s]"),
19780 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
19781 objfile_name (objfile));
19782 return build_error_marker_type (cu, die);
19783 }
19784
19785 /* If not cached we need to read it in. */
19786
19787 if (this_type == NULL)
19788 {
19789 struct die_info *type_die = NULL;
19790 struct dwarf2_cu *type_cu = cu;
19791
19792 if (attr_form_is_ref (attr))
19793 type_die = follow_die_ref (die, attr, &type_cu);
19794 if (type_die == NULL)
19795 return build_error_marker_type (cu, die);
19796 /* If we find the type now, it's probably because the type came
19797 from an inter-CU reference and the type's CU got expanded before
19798 ours. */
19799 this_type = read_type_die (type_die, type_cu);
19800 }
19801
19802 /* If we still don't have a type use an error marker. */
19803
19804 if (this_type == NULL)
19805 return build_error_marker_type (cu, die);
19806
19807 return this_type;
19808 }
19809
19810 /* Return the type in DIE, CU.
19811 Returns NULL for invalid types.
19812
19813 This first does a lookup in die_type_hash,
19814 and only reads the die in if necessary.
19815
19816 NOTE: This can be called when reading in partial or full symbols. */
19817
19818 static struct type *
19819 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19820 {
19821 struct type *this_type;
19822
19823 this_type = get_die_type (die, cu);
19824 if (this_type)
19825 return this_type;
19826
19827 return read_type_die_1 (die, cu);
19828 }
19829
19830 /* Read the type in DIE, CU.
19831 Returns NULL for invalid types. */
19832
19833 static struct type *
19834 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19835 {
19836 struct type *this_type = NULL;
19837
19838 switch (die->tag)
19839 {
19840 case DW_TAG_class_type:
19841 case DW_TAG_interface_type:
19842 case DW_TAG_structure_type:
19843 case DW_TAG_union_type:
19844 this_type = read_structure_type (die, cu);
19845 break;
19846 case DW_TAG_enumeration_type:
19847 this_type = read_enumeration_type (die, cu);
19848 break;
19849 case DW_TAG_subprogram:
19850 case DW_TAG_subroutine_type:
19851 case DW_TAG_inlined_subroutine:
19852 this_type = read_subroutine_type (die, cu);
19853 break;
19854 case DW_TAG_array_type:
19855 this_type = read_array_type (die, cu);
19856 break;
19857 case DW_TAG_set_type:
19858 this_type = read_set_type (die, cu);
19859 break;
19860 case DW_TAG_pointer_type:
19861 this_type = read_tag_pointer_type (die, cu);
19862 break;
19863 case DW_TAG_ptr_to_member_type:
19864 this_type = read_tag_ptr_to_member_type (die, cu);
19865 break;
19866 case DW_TAG_reference_type:
19867 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
19868 break;
19869 case DW_TAG_rvalue_reference_type:
19870 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
19871 break;
19872 case DW_TAG_const_type:
19873 this_type = read_tag_const_type (die, cu);
19874 break;
19875 case DW_TAG_volatile_type:
19876 this_type = read_tag_volatile_type (die, cu);
19877 break;
19878 case DW_TAG_restrict_type:
19879 this_type = read_tag_restrict_type (die, cu);
19880 break;
19881 case DW_TAG_string_type:
19882 this_type = read_tag_string_type (die, cu);
19883 break;
19884 case DW_TAG_typedef:
19885 this_type = read_typedef (die, cu);
19886 break;
19887 case DW_TAG_subrange_type:
19888 this_type = read_subrange_type (die, cu);
19889 break;
19890 case DW_TAG_base_type:
19891 this_type = read_base_type (die, cu);
19892 break;
19893 case DW_TAG_unspecified_type:
19894 this_type = read_unspecified_type (die, cu);
19895 break;
19896 case DW_TAG_namespace:
19897 this_type = read_namespace_type (die, cu);
19898 break;
19899 case DW_TAG_module:
19900 this_type = read_module_type (die, cu);
19901 break;
19902 case DW_TAG_atomic_type:
19903 this_type = read_tag_atomic_type (die, cu);
19904 break;
19905 default:
19906 complaint (&symfile_complaints,
19907 _("unexpected tag in read_type_die: '%s'"),
19908 dwarf_tag_name (die->tag));
19909 break;
19910 }
19911
19912 return this_type;
19913 }
19914
19915 /* See if we can figure out if the class lives in a namespace. We do
19916 this by looking for a member function; its demangled name will
19917 contain namespace info, if there is any.
19918 Return the computed name or NULL.
19919 Space for the result is allocated on the objfile's obstack.
19920 This is the full-die version of guess_partial_die_structure_name.
19921 In this case we know DIE has no useful parent. */
19922
19923 static char *
19924 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19925 {
19926 struct die_info *spec_die;
19927 struct dwarf2_cu *spec_cu;
19928 struct die_info *child;
19929
19930 spec_cu = cu;
19931 spec_die = die_specification (die, &spec_cu);
19932 if (spec_die != NULL)
19933 {
19934 die = spec_die;
19935 cu = spec_cu;
19936 }
19937
19938 for (child = die->child;
19939 child != NULL;
19940 child = child->sibling)
19941 {
19942 if (child->tag == DW_TAG_subprogram)
19943 {
19944 const char *linkage_name = dw2_linkage_name (child, cu);
19945
19946 if (linkage_name != NULL)
19947 {
19948 char *actual_name
19949 = language_class_name_from_physname (cu->language_defn,
19950 linkage_name);
19951 char *name = NULL;
19952
19953 if (actual_name != NULL)
19954 {
19955 const char *die_name = dwarf2_name (die, cu);
19956
19957 if (die_name != NULL
19958 && strcmp (die_name, actual_name) != 0)
19959 {
19960 /* Strip off the class name from the full name.
19961 We want the prefix. */
19962 int die_name_len = strlen (die_name);
19963 int actual_name_len = strlen (actual_name);
19964
19965 /* Test for '::' as a sanity check. */
19966 if (actual_name_len > die_name_len + 2
19967 && actual_name[actual_name_len
19968 - die_name_len - 1] == ':')
19969 name = (char *) obstack_copy0 (
19970 &cu->objfile->per_bfd->storage_obstack,
19971 actual_name, actual_name_len - die_name_len - 2);
19972 }
19973 }
19974 xfree (actual_name);
19975 return name;
19976 }
19977 }
19978 }
19979
19980 return NULL;
19981 }
19982
19983 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19984 prefix part in such case. See
19985 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19986
19987 static const char *
19988 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19989 {
19990 struct attribute *attr;
19991 const char *base;
19992
19993 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19994 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19995 return NULL;
19996
19997 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19998 return NULL;
19999
20000 attr = dw2_linkage_name_attr (die, cu);
20001 if (attr == NULL || DW_STRING (attr) == NULL)
20002 return NULL;
20003
20004 /* dwarf2_name had to be already called. */
20005 gdb_assert (DW_STRING_IS_CANONICAL (attr));
20006
20007 /* Strip the base name, keep any leading namespaces/classes. */
20008 base = strrchr (DW_STRING (attr), ':');
20009 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
20010 return "";
20011
20012 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20013 DW_STRING (attr),
20014 &base[-1] - DW_STRING (attr));
20015 }
20016
20017 /* Return the name of the namespace/class that DIE is defined within,
20018 or "" if we can't tell. The caller should not xfree the result.
20019
20020 For example, if we're within the method foo() in the following
20021 code:
20022
20023 namespace N {
20024 class C {
20025 void foo () {
20026 }
20027 };
20028 }
20029
20030 then determine_prefix on foo's die will return "N::C". */
20031
20032 static const char *
20033 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
20034 {
20035 struct die_info *parent, *spec_die;
20036 struct dwarf2_cu *spec_cu;
20037 struct type *parent_type;
20038 const char *retval;
20039
20040 if (cu->language != language_cplus
20041 && cu->language != language_fortran && cu->language != language_d
20042 && cu->language != language_rust)
20043 return "";
20044
20045 retval = anonymous_struct_prefix (die, cu);
20046 if (retval)
20047 return retval;
20048
20049 /* We have to be careful in the presence of DW_AT_specification.
20050 For example, with GCC 3.4, given the code
20051
20052 namespace N {
20053 void foo() {
20054 // Definition of N::foo.
20055 }
20056 }
20057
20058 then we'll have a tree of DIEs like this:
20059
20060 1: DW_TAG_compile_unit
20061 2: DW_TAG_namespace // N
20062 3: DW_TAG_subprogram // declaration of N::foo
20063 4: DW_TAG_subprogram // definition of N::foo
20064 DW_AT_specification // refers to die #3
20065
20066 Thus, when processing die #4, we have to pretend that we're in
20067 the context of its DW_AT_specification, namely the contex of die
20068 #3. */
20069 spec_cu = cu;
20070 spec_die = die_specification (die, &spec_cu);
20071 if (spec_die == NULL)
20072 parent = die->parent;
20073 else
20074 {
20075 parent = spec_die->parent;
20076 cu = spec_cu;
20077 }
20078
20079 if (parent == NULL)
20080 return "";
20081 else if (parent->building_fullname)
20082 {
20083 const char *name;
20084 const char *parent_name;
20085
20086 /* It has been seen on RealView 2.2 built binaries,
20087 DW_TAG_template_type_param types actually _defined_ as
20088 children of the parent class:
20089
20090 enum E {};
20091 template class <class Enum> Class{};
20092 Class<enum E> class_e;
20093
20094 1: DW_TAG_class_type (Class)
20095 2: DW_TAG_enumeration_type (E)
20096 3: DW_TAG_enumerator (enum1:0)
20097 3: DW_TAG_enumerator (enum2:1)
20098 ...
20099 2: DW_TAG_template_type_param
20100 DW_AT_type DW_FORM_ref_udata (E)
20101
20102 Besides being broken debug info, it can put GDB into an
20103 infinite loop. Consider:
20104
20105 When we're building the full name for Class<E>, we'll start
20106 at Class, and go look over its template type parameters,
20107 finding E. We'll then try to build the full name of E, and
20108 reach here. We're now trying to build the full name of E,
20109 and look over the parent DIE for containing scope. In the
20110 broken case, if we followed the parent DIE of E, we'd again
20111 find Class, and once again go look at its template type
20112 arguments, etc., etc. Simply don't consider such parent die
20113 as source-level parent of this die (it can't be, the language
20114 doesn't allow it), and break the loop here. */
20115 name = dwarf2_name (die, cu);
20116 parent_name = dwarf2_name (parent, cu);
20117 complaint (&symfile_complaints,
20118 _("template param type '%s' defined within parent '%s'"),
20119 name ? name : "<unknown>",
20120 parent_name ? parent_name : "<unknown>");
20121 return "";
20122 }
20123 else
20124 switch (parent->tag)
20125 {
20126 case DW_TAG_namespace:
20127 parent_type = read_type_die (parent, cu);
20128 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20129 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20130 Work around this problem here. */
20131 if (cu->language == language_cplus
20132 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20133 return "";
20134 /* We give a name to even anonymous namespaces. */
20135 return TYPE_TAG_NAME (parent_type);
20136 case DW_TAG_class_type:
20137 case DW_TAG_interface_type:
20138 case DW_TAG_structure_type:
20139 case DW_TAG_union_type:
20140 case DW_TAG_module:
20141 parent_type = read_type_die (parent, cu);
20142 if (TYPE_TAG_NAME (parent_type) != NULL)
20143 return TYPE_TAG_NAME (parent_type);
20144 else
20145 /* An anonymous structure is only allowed non-static data
20146 members; no typedefs, no member functions, et cetera.
20147 So it does not need a prefix. */
20148 return "";
20149 case DW_TAG_compile_unit:
20150 case DW_TAG_partial_unit:
20151 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20152 if (cu->language == language_cplus
20153 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
20154 && die->child != NULL
20155 && (die->tag == DW_TAG_class_type
20156 || die->tag == DW_TAG_structure_type
20157 || die->tag == DW_TAG_union_type))
20158 {
20159 char *name = guess_full_die_structure_name (die, cu);
20160 if (name != NULL)
20161 return name;
20162 }
20163 return "";
20164 case DW_TAG_enumeration_type:
20165 parent_type = read_type_die (parent, cu);
20166 if (TYPE_DECLARED_CLASS (parent_type))
20167 {
20168 if (TYPE_TAG_NAME (parent_type) != NULL)
20169 return TYPE_TAG_NAME (parent_type);
20170 return "";
20171 }
20172 /* Fall through. */
20173 default:
20174 return determine_prefix (parent, cu);
20175 }
20176 }
20177
20178 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20179 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20180 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20181 an obconcat, otherwise allocate storage for the result. The CU argument is
20182 used to determine the language and hence, the appropriate separator. */
20183
20184 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
20185
20186 static char *
20187 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20188 int physname, struct dwarf2_cu *cu)
20189 {
20190 const char *lead = "";
20191 const char *sep;
20192
20193 if (suffix == NULL || suffix[0] == '\0'
20194 || prefix == NULL || prefix[0] == '\0')
20195 sep = "";
20196 else if (cu->language == language_d)
20197 {
20198 /* For D, the 'main' function could be defined in any module, but it
20199 should never be prefixed. */
20200 if (strcmp (suffix, "D main") == 0)
20201 {
20202 prefix = "";
20203 sep = "";
20204 }
20205 else
20206 sep = ".";
20207 }
20208 else if (cu->language == language_fortran && physname)
20209 {
20210 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20211 DW_AT_MIPS_linkage_name is preferred and used instead. */
20212
20213 lead = "__";
20214 sep = "_MOD_";
20215 }
20216 else
20217 sep = "::";
20218
20219 if (prefix == NULL)
20220 prefix = "";
20221 if (suffix == NULL)
20222 suffix = "";
20223
20224 if (obs == NULL)
20225 {
20226 char *retval
20227 = ((char *)
20228 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
20229
20230 strcpy (retval, lead);
20231 strcat (retval, prefix);
20232 strcat (retval, sep);
20233 strcat (retval, suffix);
20234 return retval;
20235 }
20236 else
20237 {
20238 /* We have an obstack. */
20239 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
20240 }
20241 }
20242
20243 /* Return sibling of die, NULL if no sibling. */
20244
20245 static struct die_info *
20246 sibling_die (struct die_info *die)
20247 {
20248 return die->sibling;
20249 }
20250
20251 /* Get name of a die, return NULL if not found. */
20252
20253 static const char *
20254 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
20255 struct obstack *obstack)
20256 {
20257 if (name && cu->language == language_cplus)
20258 {
20259 std::string canon_name = cp_canonicalize_string (name);
20260
20261 if (!canon_name.empty ())
20262 {
20263 if (canon_name != name)
20264 name = (const char *) obstack_copy0 (obstack,
20265 canon_name.c_str (),
20266 canon_name.length ());
20267 }
20268 }
20269
20270 return name;
20271 }
20272
20273 /* Get name of a die, return NULL if not found.
20274 Anonymous namespaces are converted to their magic string. */
20275
20276 static const char *
20277 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
20278 {
20279 struct attribute *attr;
20280
20281 attr = dwarf2_attr (die, DW_AT_name, cu);
20282 if ((!attr || !DW_STRING (attr))
20283 && die->tag != DW_TAG_namespace
20284 && die->tag != DW_TAG_class_type
20285 && die->tag != DW_TAG_interface_type
20286 && die->tag != DW_TAG_structure_type
20287 && die->tag != DW_TAG_union_type)
20288 return NULL;
20289
20290 switch (die->tag)
20291 {
20292 case DW_TAG_compile_unit:
20293 case DW_TAG_partial_unit:
20294 /* Compilation units have a DW_AT_name that is a filename, not
20295 a source language identifier. */
20296 case DW_TAG_enumeration_type:
20297 case DW_TAG_enumerator:
20298 /* These tags always have simple identifiers already; no need
20299 to canonicalize them. */
20300 return DW_STRING (attr);
20301
20302 case DW_TAG_namespace:
20303 if (attr != NULL && DW_STRING (attr) != NULL)
20304 return DW_STRING (attr);
20305 return CP_ANONYMOUS_NAMESPACE_STR;
20306
20307 case DW_TAG_class_type:
20308 case DW_TAG_interface_type:
20309 case DW_TAG_structure_type:
20310 case DW_TAG_union_type:
20311 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20312 structures or unions. These were of the form "._%d" in GCC 4.1,
20313 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20314 and GCC 4.4. We work around this problem by ignoring these. */
20315 if (attr && DW_STRING (attr)
20316 && (startswith (DW_STRING (attr), "._")
20317 || startswith (DW_STRING (attr), "<anonymous")))
20318 return NULL;
20319
20320 /* GCC might emit a nameless typedef that has a linkage name. See
20321 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20322 if (!attr || DW_STRING (attr) == NULL)
20323 {
20324 char *demangled = NULL;
20325
20326 attr = dw2_linkage_name_attr (die, cu);
20327 if (attr == NULL || DW_STRING (attr) == NULL)
20328 return NULL;
20329
20330 /* Avoid demangling DW_STRING (attr) the second time on a second
20331 call for the same DIE. */
20332 if (!DW_STRING_IS_CANONICAL (attr))
20333 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
20334
20335 if (demangled)
20336 {
20337 const char *base;
20338
20339 /* FIXME: we already did this for the partial symbol... */
20340 DW_STRING (attr)
20341 = ((const char *)
20342 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20343 demangled, strlen (demangled)));
20344 DW_STRING_IS_CANONICAL (attr) = 1;
20345 xfree (demangled);
20346
20347 /* Strip any leading namespaces/classes, keep only the base name.
20348 DW_AT_name for named DIEs does not contain the prefixes. */
20349 base = strrchr (DW_STRING (attr), ':');
20350 if (base && base > DW_STRING (attr) && base[-1] == ':')
20351 return &base[1];
20352 else
20353 return DW_STRING (attr);
20354 }
20355 }
20356 break;
20357
20358 default:
20359 break;
20360 }
20361
20362 if (!DW_STRING_IS_CANONICAL (attr))
20363 {
20364 DW_STRING (attr)
20365 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
20366 &cu->objfile->per_bfd->storage_obstack);
20367 DW_STRING_IS_CANONICAL (attr) = 1;
20368 }
20369 return DW_STRING (attr);
20370 }
20371
20372 /* Return the die that this die in an extension of, or NULL if there
20373 is none. *EXT_CU is the CU containing DIE on input, and the CU
20374 containing the return value on output. */
20375
20376 static struct die_info *
20377 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
20378 {
20379 struct attribute *attr;
20380
20381 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
20382 if (attr == NULL)
20383 return NULL;
20384
20385 return follow_die_ref (die, attr, ext_cu);
20386 }
20387
20388 /* Convert a DIE tag into its string name. */
20389
20390 static const char *
20391 dwarf_tag_name (unsigned tag)
20392 {
20393 const char *name = get_DW_TAG_name (tag);
20394
20395 if (name == NULL)
20396 return "DW_TAG_<unknown>";
20397
20398 return name;
20399 }
20400
20401 /* Convert a DWARF attribute code into its string name. */
20402
20403 static const char *
20404 dwarf_attr_name (unsigned attr)
20405 {
20406 const char *name;
20407
20408 #ifdef MIPS /* collides with DW_AT_HP_block_index */
20409 if (attr == DW_AT_MIPS_fde)
20410 return "DW_AT_MIPS_fde";
20411 #else
20412 if (attr == DW_AT_HP_block_index)
20413 return "DW_AT_HP_block_index";
20414 #endif
20415
20416 name = get_DW_AT_name (attr);
20417
20418 if (name == NULL)
20419 return "DW_AT_<unknown>";
20420
20421 return name;
20422 }
20423
20424 /* Convert a DWARF value form code into its string name. */
20425
20426 static const char *
20427 dwarf_form_name (unsigned form)
20428 {
20429 const char *name = get_DW_FORM_name (form);
20430
20431 if (name == NULL)
20432 return "DW_FORM_<unknown>";
20433
20434 return name;
20435 }
20436
20437 static const char *
20438 dwarf_bool_name (unsigned mybool)
20439 {
20440 if (mybool)
20441 return "TRUE";
20442 else
20443 return "FALSE";
20444 }
20445
20446 /* Convert a DWARF type code into its string name. */
20447
20448 static const char *
20449 dwarf_type_encoding_name (unsigned enc)
20450 {
20451 const char *name = get_DW_ATE_name (enc);
20452
20453 if (name == NULL)
20454 return "DW_ATE_<unknown>";
20455
20456 return name;
20457 }
20458
20459 static void
20460 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
20461 {
20462 unsigned int i;
20463
20464 print_spaces (indent, f);
20465 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
20466 dwarf_tag_name (die->tag), die->abbrev,
20467 to_underlying (die->sect_off));
20468
20469 if (die->parent != NULL)
20470 {
20471 print_spaces (indent, f);
20472 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
20473 to_underlying (die->parent->sect_off));
20474 }
20475
20476 print_spaces (indent, f);
20477 fprintf_unfiltered (f, " has children: %s\n",
20478 dwarf_bool_name (die->child != NULL));
20479
20480 print_spaces (indent, f);
20481 fprintf_unfiltered (f, " attributes:\n");
20482
20483 for (i = 0; i < die->num_attrs; ++i)
20484 {
20485 print_spaces (indent, f);
20486 fprintf_unfiltered (f, " %s (%s) ",
20487 dwarf_attr_name (die->attrs[i].name),
20488 dwarf_form_name (die->attrs[i].form));
20489
20490 switch (die->attrs[i].form)
20491 {
20492 case DW_FORM_addr:
20493 case DW_FORM_GNU_addr_index:
20494 fprintf_unfiltered (f, "address: ");
20495 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
20496 break;
20497 case DW_FORM_block2:
20498 case DW_FORM_block4:
20499 case DW_FORM_block:
20500 case DW_FORM_block1:
20501 fprintf_unfiltered (f, "block: size %s",
20502 pulongest (DW_BLOCK (&die->attrs[i])->size));
20503 break;
20504 case DW_FORM_exprloc:
20505 fprintf_unfiltered (f, "expression: size %s",
20506 pulongest (DW_BLOCK (&die->attrs[i])->size));
20507 break;
20508 case DW_FORM_data16:
20509 fprintf_unfiltered (f, "constant of 16 bytes");
20510 break;
20511 case DW_FORM_ref_addr:
20512 fprintf_unfiltered (f, "ref address: ");
20513 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20514 break;
20515 case DW_FORM_GNU_ref_alt:
20516 fprintf_unfiltered (f, "alt ref address: ");
20517 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20518 break;
20519 case DW_FORM_ref1:
20520 case DW_FORM_ref2:
20521 case DW_FORM_ref4:
20522 case DW_FORM_ref8:
20523 case DW_FORM_ref_udata:
20524 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
20525 (long) (DW_UNSND (&die->attrs[i])));
20526 break;
20527 case DW_FORM_data1:
20528 case DW_FORM_data2:
20529 case DW_FORM_data4:
20530 case DW_FORM_data8:
20531 case DW_FORM_udata:
20532 case DW_FORM_sdata:
20533 fprintf_unfiltered (f, "constant: %s",
20534 pulongest (DW_UNSND (&die->attrs[i])));
20535 break;
20536 case DW_FORM_sec_offset:
20537 fprintf_unfiltered (f, "section offset: %s",
20538 pulongest (DW_UNSND (&die->attrs[i])));
20539 break;
20540 case DW_FORM_ref_sig8:
20541 fprintf_unfiltered (f, "signature: %s",
20542 hex_string (DW_SIGNATURE (&die->attrs[i])));
20543 break;
20544 case DW_FORM_string:
20545 case DW_FORM_strp:
20546 case DW_FORM_line_strp:
20547 case DW_FORM_GNU_str_index:
20548 case DW_FORM_GNU_strp_alt:
20549 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
20550 DW_STRING (&die->attrs[i])
20551 ? DW_STRING (&die->attrs[i]) : "",
20552 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
20553 break;
20554 case DW_FORM_flag:
20555 if (DW_UNSND (&die->attrs[i]))
20556 fprintf_unfiltered (f, "flag: TRUE");
20557 else
20558 fprintf_unfiltered (f, "flag: FALSE");
20559 break;
20560 case DW_FORM_flag_present:
20561 fprintf_unfiltered (f, "flag: TRUE");
20562 break;
20563 case DW_FORM_indirect:
20564 /* The reader will have reduced the indirect form to
20565 the "base form" so this form should not occur. */
20566 fprintf_unfiltered (f,
20567 "unexpected attribute form: DW_FORM_indirect");
20568 break;
20569 case DW_FORM_implicit_const:
20570 fprintf_unfiltered (f, "constant: %s",
20571 plongest (DW_SND (&die->attrs[i])));
20572 break;
20573 default:
20574 fprintf_unfiltered (f, "unsupported attribute form: %d.",
20575 die->attrs[i].form);
20576 break;
20577 }
20578 fprintf_unfiltered (f, "\n");
20579 }
20580 }
20581
20582 static void
20583 dump_die_for_error (struct die_info *die)
20584 {
20585 dump_die_shallow (gdb_stderr, 0, die);
20586 }
20587
20588 static void
20589 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20590 {
20591 int indent = level * 4;
20592
20593 gdb_assert (die != NULL);
20594
20595 if (level >= max_level)
20596 return;
20597
20598 dump_die_shallow (f, indent, die);
20599
20600 if (die->child != NULL)
20601 {
20602 print_spaces (indent, f);
20603 fprintf_unfiltered (f, " Children:");
20604 if (level + 1 < max_level)
20605 {
20606 fprintf_unfiltered (f, "\n");
20607 dump_die_1 (f, level + 1, max_level, die->child);
20608 }
20609 else
20610 {
20611 fprintf_unfiltered (f,
20612 " [not printed, max nesting level reached]\n");
20613 }
20614 }
20615
20616 if (die->sibling != NULL && level > 0)
20617 {
20618 dump_die_1 (f, level, max_level, die->sibling);
20619 }
20620 }
20621
20622 /* This is called from the pdie macro in gdbinit.in.
20623 It's not static so gcc will keep a copy callable from gdb. */
20624
20625 void
20626 dump_die (struct die_info *die, int max_level)
20627 {
20628 dump_die_1 (gdb_stdlog, 0, max_level, die);
20629 }
20630
20631 static void
20632 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
20633 {
20634 void **slot;
20635
20636 slot = htab_find_slot_with_hash (cu->die_hash, die,
20637 to_underlying (die->sect_off),
20638 INSERT);
20639
20640 *slot = die;
20641 }
20642
20643 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20644 required kind. */
20645
20646 static sect_offset
20647 dwarf2_get_ref_die_offset (const struct attribute *attr)
20648 {
20649 if (attr_form_is_ref (attr))
20650 return (sect_offset) DW_UNSND (attr);
20651
20652 complaint (&symfile_complaints,
20653 _("unsupported die ref attribute form: '%s'"),
20654 dwarf_form_name (attr->form));
20655 return {};
20656 }
20657
20658 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20659 * the value held by the attribute is not constant. */
20660
20661 static LONGEST
20662 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
20663 {
20664 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
20665 return DW_SND (attr);
20666 else if (attr->form == DW_FORM_udata
20667 || attr->form == DW_FORM_data1
20668 || attr->form == DW_FORM_data2
20669 || attr->form == DW_FORM_data4
20670 || attr->form == DW_FORM_data8)
20671 return DW_UNSND (attr);
20672 else
20673 {
20674 /* For DW_FORM_data16 see attr_form_is_constant. */
20675 complaint (&symfile_complaints,
20676 _("Attribute value is not a constant (%s)"),
20677 dwarf_form_name (attr->form));
20678 return default_value;
20679 }
20680 }
20681
20682 /* Follow reference or signature attribute ATTR of SRC_DIE.
20683 On entry *REF_CU is the CU of SRC_DIE.
20684 On exit *REF_CU is the CU of the result. */
20685
20686 static struct die_info *
20687 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
20688 struct dwarf2_cu **ref_cu)
20689 {
20690 struct die_info *die;
20691
20692 if (attr_form_is_ref (attr))
20693 die = follow_die_ref (src_die, attr, ref_cu);
20694 else if (attr->form == DW_FORM_ref_sig8)
20695 die = follow_die_sig (src_die, attr, ref_cu);
20696 else
20697 {
20698 dump_die_for_error (src_die);
20699 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
20700 objfile_name ((*ref_cu)->objfile));
20701 }
20702
20703 return die;
20704 }
20705
20706 /* Follow reference OFFSET.
20707 On entry *REF_CU is the CU of the source die referencing OFFSET.
20708 On exit *REF_CU is the CU of the result.
20709 Returns NULL if OFFSET is invalid. */
20710
20711 static struct die_info *
20712 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
20713 struct dwarf2_cu **ref_cu)
20714 {
20715 struct die_info temp_die;
20716 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20717
20718 gdb_assert (cu->per_cu != NULL);
20719
20720 target_cu = cu;
20721
20722 if (cu->per_cu->is_debug_types)
20723 {
20724 /* .debug_types CUs cannot reference anything outside their CU.
20725 If they need to, they have to reference a signatured type via
20726 DW_FORM_ref_sig8. */
20727 if (!offset_in_cu_p (&cu->header, sect_off))
20728 return NULL;
20729 }
20730 else if (offset_in_dwz != cu->per_cu->is_dwz
20731 || !offset_in_cu_p (&cu->header, sect_off))
20732 {
20733 struct dwarf2_per_cu_data *per_cu;
20734
20735 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
20736 cu->objfile);
20737
20738 /* If necessary, add it to the queue and load its DIEs. */
20739 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20740 load_full_comp_unit (per_cu, cu->language);
20741
20742 target_cu = per_cu->cu;
20743 }
20744 else if (cu->dies == NULL)
20745 {
20746 /* We're loading full DIEs during partial symbol reading. */
20747 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20748 load_full_comp_unit (cu->per_cu, language_minimal);
20749 }
20750
20751 *ref_cu = target_cu;
20752 temp_die.sect_off = sect_off;
20753 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20754 &temp_die,
20755 to_underlying (sect_off));
20756 }
20757
20758 /* Follow reference attribute ATTR of SRC_DIE.
20759 On entry *REF_CU is the CU of SRC_DIE.
20760 On exit *REF_CU is the CU of the result. */
20761
20762 static struct die_info *
20763 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20764 struct dwarf2_cu **ref_cu)
20765 {
20766 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20767 struct dwarf2_cu *cu = *ref_cu;
20768 struct die_info *die;
20769
20770 die = follow_die_offset (sect_off,
20771 (attr->form == DW_FORM_GNU_ref_alt
20772 || cu->per_cu->is_dwz),
20773 ref_cu);
20774 if (!die)
20775 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20776 "at 0x%x [in module %s]"),
20777 to_underlying (sect_off), to_underlying (src_die->sect_off),
20778 objfile_name (cu->objfile));
20779
20780 return die;
20781 }
20782
20783 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
20784 Returned value is intended for DW_OP_call*. Returned
20785 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20786
20787 struct dwarf2_locexpr_baton
20788 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
20789 struct dwarf2_per_cu_data *per_cu,
20790 CORE_ADDR (*get_frame_pc) (void *baton),
20791 void *baton)
20792 {
20793 struct dwarf2_cu *cu;
20794 struct die_info *die;
20795 struct attribute *attr;
20796 struct dwarf2_locexpr_baton retval;
20797
20798 dw2_setup (per_cu->objfile);
20799
20800 if (per_cu->cu == NULL)
20801 load_cu (per_cu);
20802 cu = per_cu->cu;
20803 if (cu == NULL)
20804 {
20805 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20806 Instead just throw an error, not much else we can do. */
20807 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20808 to_underlying (sect_off), objfile_name (per_cu->objfile));
20809 }
20810
20811 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20812 if (!die)
20813 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20814 to_underlying (sect_off), objfile_name (per_cu->objfile));
20815
20816 attr = dwarf2_attr (die, DW_AT_location, cu);
20817 if (!attr)
20818 {
20819 /* DWARF: "If there is no such attribute, then there is no effect.".
20820 DATA is ignored if SIZE is 0. */
20821
20822 retval.data = NULL;
20823 retval.size = 0;
20824 }
20825 else if (attr_form_is_section_offset (attr))
20826 {
20827 struct dwarf2_loclist_baton loclist_baton;
20828 CORE_ADDR pc = (*get_frame_pc) (baton);
20829 size_t size;
20830
20831 fill_in_loclist_baton (cu, &loclist_baton, attr);
20832
20833 retval.data = dwarf2_find_location_expression (&loclist_baton,
20834 &size, pc);
20835 retval.size = size;
20836 }
20837 else
20838 {
20839 if (!attr_form_is_block (attr))
20840 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20841 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20842 to_underlying (sect_off), objfile_name (per_cu->objfile));
20843
20844 retval.data = DW_BLOCK (attr)->data;
20845 retval.size = DW_BLOCK (attr)->size;
20846 }
20847 retval.per_cu = cu->per_cu;
20848
20849 age_cached_comp_units ();
20850
20851 return retval;
20852 }
20853
20854 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20855 offset. */
20856
20857 struct dwarf2_locexpr_baton
20858 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20859 struct dwarf2_per_cu_data *per_cu,
20860 CORE_ADDR (*get_frame_pc) (void *baton),
20861 void *baton)
20862 {
20863 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
20864
20865 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
20866 }
20867
20868 /* Write a constant of a given type as target-ordered bytes into
20869 OBSTACK. */
20870
20871 static const gdb_byte *
20872 write_constant_as_bytes (struct obstack *obstack,
20873 enum bfd_endian byte_order,
20874 struct type *type,
20875 ULONGEST value,
20876 LONGEST *len)
20877 {
20878 gdb_byte *result;
20879
20880 *len = TYPE_LENGTH (type);
20881 result = (gdb_byte *) obstack_alloc (obstack, *len);
20882 store_unsigned_integer (result, *len, byte_order, value);
20883
20884 return result;
20885 }
20886
20887 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20888 pointer to the constant bytes and set LEN to the length of the
20889 data. If memory is needed, allocate it on OBSTACK. If the DIE
20890 does not have a DW_AT_const_value, return NULL. */
20891
20892 const gdb_byte *
20893 dwarf2_fetch_constant_bytes (sect_offset sect_off,
20894 struct dwarf2_per_cu_data *per_cu,
20895 struct obstack *obstack,
20896 LONGEST *len)
20897 {
20898 struct dwarf2_cu *cu;
20899 struct die_info *die;
20900 struct attribute *attr;
20901 const gdb_byte *result = NULL;
20902 struct type *type;
20903 LONGEST value;
20904 enum bfd_endian byte_order;
20905
20906 dw2_setup (per_cu->objfile);
20907
20908 if (per_cu->cu == NULL)
20909 load_cu (per_cu);
20910 cu = per_cu->cu;
20911 if (cu == NULL)
20912 {
20913 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20914 Instead just throw an error, not much else we can do. */
20915 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20916 to_underlying (sect_off), objfile_name (per_cu->objfile));
20917 }
20918
20919 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20920 if (!die)
20921 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20922 to_underlying (sect_off), objfile_name (per_cu->objfile));
20923
20924
20925 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20926 if (attr == NULL)
20927 return NULL;
20928
20929 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20930 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20931
20932 switch (attr->form)
20933 {
20934 case DW_FORM_addr:
20935 case DW_FORM_GNU_addr_index:
20936 {
20937 gdb_byte *tem;
20938
20939 *len = cu->header.addr_size;
20940 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20941 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20942 result = tem;
20943 }
20944 break;
20945 case DW_FORM_string:
20946 case DW_FORM_strp:
20947 case DW_FORM_GNU_str_index:
20948 case DW_FORM_GNU_strp_alt:
20949 /* DW_STRING is already allocated on the objfile obstack, point
20950 directly to it. */
20951 result = (const gdb_byte *) DW_STRING (attr);
20952 *len = strlen (DW_STRING (attr));
20953 break;
20954 case DW_FORM_block1:
20955 case DW_FORM_block2:
20956 case DW_FORM_block4:
20957 case DW_FORM_block:
20958 case DW_FORM_exprloc:
20959 case DW_FORM_data16:
20960 result = DW_BLOCK (attr)->data;
20961 *len = DW_BLOCK (attr)->size;
20962 break;
20963
20964 /* The DW_AT_const_value attributes are supposed to carry the
20965 symbol's value "represented as it would be on the target
20966 architecture." By the time we get here, it's already been
20967 converted to host endianness, so we just need to sign- or
20968 zero-extend it as appropriate. */
20969 case DW_FORM_data1:
20970 type = die_type (die, cu);
20971 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20972 if (result == NULL)
20973 result = write_constant_as_bytes (obstack, byte_order,
20974 type, value, len);
20975 break;
20976 case DW_FORM_data2:
20977 type = die_type (die, cu);
20978 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20979 if (result == NULL)
20980 result = write_constant_as_bytes (obstack, byte_order,
20981 type, value, len);
20982 break;
20983 case DW_FORM_data4:
20984 type = die_type (die, cu);
20985 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20986 if (result == NULL)
20987 result = write_constant_as_bytes (obstack, byte_order,
20988 type, value, len);
20989 break;
20990 case DW_FORM_data8:
20991 type = die_type (die, cu);
20992 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20993 if (result == NULL)
20994 result = write_constant_as_bytes (obstack, byte_order,
20995 type, value, len);
20996 break;
20997
20998 case DW_FORM_sdata:
20999 case DW_FORM_implicit_const:
21000 type = die_type (die, cu);
21001 result = write_constant_as_bytes (obstack, byte_order,
21002 type, DW_SND (attr), len);
21003 break;
21004
21005 case DW_FORM_udata:
21006 type = die_type (die, cu);
21007 result = write_constant_as_bytes (obstack, byte_order,
21008 type, DW_UNSND (attr), len);
21009 break;
21010
21011 default:
21012 complaint (&symfile_complaints,
21013 _("unsupported const value attribute form: '%s'"),
21014 dwarf_form_name (attr->form));
21015 break;
21016 }
21017
21018 return result;
21019 }
21020
21021 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
21022 valid type for this die is found. */
21023
21024 struct type *
21025 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
21026 struct dwarf2_per_cu_data *per_cu)
21027 {
21028 struct dwarf2_cu *cu;
21029 struct die_info *die;
21030
21031 dw2_setup (per_cu->objfile);
21032
21033 if (per_cu->cu == NULL)
21034 load_cu (per_cu);
21035 cu = per_cu->cu;
21036 if (!cu)
21037 return NULL;
21038
21039 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21040 if (!die)
21041 return NULL;
21042
21043 return die_type (die, cu);
21044 }
21045
21046 /* Return the type of the DIE at DIE_OFFSET in the CU named by
21047 PER_CU. */
21048
21049 struct type *
21050 dwarf2_get_die_type (cu_offset die_offset,
21051 struct dwarf2_per_cu_data *per_cu)
21052 {
21053 dw2_setup (per_cu->objfile);
21054
21055 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
21056 return get_die_type_at_offset (die_offset_sect, per_cu);
21057 }
21058
21059 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
21060 On entry *REF_CU is the CU of SRC_DIE.
21061 On exit *REF_CU is the CU of the result.
21062 Returns NULL if the referenced DIE isn't found. */
21063
21064 static struct die_info *
21065 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
21066 struct dwarf2_cu **ref_cu)
21067 {
21068 struct die_info temp_die;
21069 struct dwarf2_cu *sig_cu;
21070 struct die_info *die;
21071
21072 /* While it might be nice to assert sig_type->type == NULL here,
21073 we can get here for DW_AT_imported_declaration where we need
21074 the DIE not the type. */
21075
21076 /* If necessary, add it to the queue and load its DIEs. */
21077
21078 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
21079 read_signatured_type (sig_type);
21080
21081 sig_cu = sig_type->per_cu.cu;
21082 gdb_assert (sig_cu != NULL);
21083 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
21084 temp_die.sect_off = sig_type->type_offset_in_section;
21085 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
21086 to_underlying (temp_die.sect_off));
21087 if (die)
21088 {
21089 /* For .gdb_index version 7 keep track of included TUs.
21090 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
21091 if (dwarf2_per_objfile->index_table != NULL
21092 && dwarf2_per_objfile->index_table->version <= 7)
21093 {
21094 VEC_safe_push (dwarf2_per_cu_ptr,
21095 (*ref_cu)->per_cu->imported_symtabs,
21096 sig_cu->per_cu);
21097 }
21098
21099 *ref_cu = sig_cu;
21100 return die;
21101 }
21102
21103 return NULL;
21104 }
21105
21106 /* Follow signatured type referenced by ATTR in SRC_DIE.
21107 On entry *REF_CU is the CU of SRC_DIE.
21108 On exit *REF_CU is the CU of the result.
21109 The result is the DIE of the type.
21110 If the referenced type cannot be found an error is thrown. */
21111
21112 static struct die_info *
21113 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
21114 struct dwarf2_cu **ref_cu)
21115 {
21116 ULONGEST signature = DW_SIGNATURE (attr);
21117 struct signatured_type *sig_type;
21118 struct die_info *die;
21119
21120 gdb_assert (attr->form == DW_FORM_ref_sig8);
21121
21122 sig_type = lookup_signatured_type (*ref_cu, signature);
21123 /* sig_type will be NULL if the signatured type is missing from
21124 the debug info. */
21125 if (sig_type == NULL)
21126 {
21127 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21128 " from DIE at 0x%x [in module %s]"),
21129 hex_string (signature), to_underlying (src_die->sect_off),
21130 objfile_name ((*ref_cu)->objfile));
21131 }
21132
21133 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21134 if (die == NULL)
21135 {
21136 dump_die_for_error (src_die);
21137 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21138 " from DIE at 0x%x [in module %s]"),
21139 hex_string (signature), to_underlying (src_die->sect_off),
21140 objfile_name ((*ref_cu)->objfile));
21141 }
21142
21143 return die;
21144 }
21145
21146 /* Get the type specified by SIGNATURE referenced in DIE/CU,
21147 reading in and processing the type unit if necessary. */
21148
21149 static struct type *
21150 get_signatured_type (struct die_info *die, ULONGEST signature,
21151 struct dwarf2_cu *cu)
21152 {
21153 struct signatured_type *sig_type;
21154 struct dwarf2_cu *type_cu;
21155 struct die_info *type_die;
21156 struct type *type;
21157
21158 sig_type = lookup_signatured_type (cu, signature);
21159 /* sig_type will be NULL if the signatured type is missing from
21160 the debug info. */
21161 if (sig_type == NULL)
21162 {
21163 complaint (&symfile_complaints,
21164 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21165 " from DIE at 0x%x [in module %s]"),
21166 hex_string (signature), to_underlying (die->sect_off),
21167 objfile_name (dwarf2_per_objfile->objfile));
21168 return build_error_marker_type (cu, die);
21169 }
21170
21171 /* If we already know the type we're done. */
21172 if (sig_type->type != NULL)
21173 return sig_type->type;
21174
21175 type_cu = cu;
21176 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21177 if (type_die != NULL)
21178 {
21179 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21180 is created. This is important, for example, because for c++ classes
21181 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21182 type = read_type_die (type_die, type_cu);
21183 if (type == NULL)
21184 {
21185 complaint (&symfile_complaints,
21186 _("Dwarf Error: Cannot build signatured type %s"
21187 " referenced from DIE at 0x%x [in module %s]"),
21188 hex_string (signature), to_underlying (die->sect_off),
21189 objfile_name (dwarf2_per_objfile->objfile));
21190 type = build_error_marker_type (cu, die);
21191 }
21192 }
21193 else
21194 {
21195 complaint (&symfile_complaints,
21196 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21197 " from DIE at 0x%x [in module %s]"),
21198 hex_string (signature), to_underlying (die->sect_off),
21199 objfile_name (dwarf2_per_objfile->objfile));
21200 type = build_error_marker_type (cu, die);
21201 }
21202 sig_type->type = type;
21203
21204 return type;
21205 }
21206
21207 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21208 reading in and processing the type unit if necessary. */
21209
21210 static struct type *
21211 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
21212 struct dwarf2_cu *cu) /* ARI: editCase function */
21213 {
21214 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
21215 if (attr_form_is_ref (attr))
21216 {
21217 struct dwarf2_cu *type_cu = cu;
21218 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21219
21220 return read_type_die (type_die, type_cu);
21221 }
21222 else if (attr->form == DW_FORM_ref_sig8)
21223 {
21224 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21225 }
21226 else
21227 {
21228 complaint (&symfile_complaints,
21229 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21230 " at 0x%x [in module %s]"),
21231 dwarf_form_name (attr->form), to_underlying (die->sect_off),
21232 objfile_name (dwarf2_per_objfile->objfile));
21233 return build_error_marker_type (cu, die);
21234 }
21235 }
21236
21237 /* Load the DIEs associated with type unit PER_CU into memory. */
21238
21239 static void
21240 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
21241 {
21242 struct signatured_type *sig_type;
21243
21244 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21245 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21246
21247 /* We have the per_cu, but we need the signatured_type.
21248 Fortunately this is an easy translation. */
21249 gdb_assert (per_cu->is_debug_types);
21250 sig_type = (struct signatured_type *) per_cu;
21251
21252 gdb_assert (per_cu->cu == NULL);
21253
21254 read_signatured_type (sig_type);
21255
21256 gdb_assert (per_cu->cu != NULL);
21257 }
21258
21259 /* die_reader_func for read_signatured_type.
21260 This is identical to load_full_comp_unit_reader,
21261 but is kept separate for now. */
21262
21263 static void
21264 read_signatured_type_reader (const struct die_reader_specs *reader,
21265 const gdb_byte *info_ptr,
21266 struct die_info *comp_unit_die,
21267 int has_children,
21268 void *data)
21269 {
21270 struct dwarf2_cu *cu = reader->cu;
21271
21272 gdb_assert (cu->die_hash == NULL);
21273 cu->die_hash =
21274 htab_create_alloc_ex (cu->header.length / 12,
21275 die_hash,
21276 die_eq,
21277 NULL,
21278 &cu->comp_unit_obstack,
21279 hashtab_obstack_allocate,
21280 dummy_obstack_deallocate);
21281
21282 if (has_children)
21283 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21284 &info_ptr, comp_unit_die);
21285 cu->dies = comp_unit_die;
21286 /* comp_unit_die is not stored in die_hash, no need. */
21287
21288 /* We try not to read any attributes in this function, because not
21289 all CUs needed for references have been loaded yet, and symbol
21290 table processing isn't initialized. But we have to set the CU language,
21291 or we won't be able to build types correctly.
21292 Similarly, if we do not read the producer, we can not apply
21293 producer-specific interpretation. */
21294 prepare_one_comp_unit (cu, cu->dies, language_minimal);
21295 }
21296
21297 /* Read in a signatured type and build its CU and DIEs.
21298 If the type is a stub for the real type in a DWO file,
21299 read in the real type from the DWO file as well. */
21300
21301 static void
21302 read_signatured_type (struct signatured_type *sig_type)
21303 {
21304 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
21305
21306 gdb_assert (per_cu->is_debug_types);
21307 gdb_assert (per_cu->cu == NULL);
21308
21309 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21310 read_signatured_type_reader, NULL);
21311 sig_type->per_cu.tu_read = 1;
21312 }
21313
21314 /* Decode simple location descriptions.
21315 Given a pointer to a dwarf block that defines a location, compute
21316 the location and return the value.
21317
21318 NOTE drow/2003-11-18: This function is called in two situations
21319 now: for the address of static or global variables (partial symbols
21320 only) and for offsets into structures which are expected to be
21321 (more or less) constant. The partial symbol case should go away,
21322 and only the constant case should remain. That will let this
21323 function complain more accurately. A few special modes are allowed
21324 without complaint for global variables (for instance, global
21325 register values and thread-local values).
21326
21327 A location description containing no operations indicates that the
21328 object is optimized out. The return value is 0 for that case.
21329 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21330 callers will only want a very basic result and this can become a
21331 complaint.
21332
21333 Note that stack[0] is unused except as a default error return. */
21334
21335 static CORE_ADDR
21336 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
21337 {
21338 struct objfile *objfile = cu->objfile;
21339 size_t i;
21340 size_t size = blk->size;
21341 const gdb_byte *data = blk->data;
21342 CORE_ADDR stack[64];
21343 int stacki;
21344 unsigned int bytes_read, unsnd;
21345 gdb_byte op;
21346
21347 i = 0;
21348 stacki = 0;
21349 stack[stacki] = 0;
21350 stack[++stacki] = 0;
21351
21352 while (i < size)
21353 {
21354 op = data[i++];
21355 switch (op)
21356 {
21357 case DW_OP_lit0:
21358 case DW_OP_lit1:
21359 case DW_OP_lit2:
21360 case DW_OP_lit3:
21361 case DW_OP_lit4:
21362 case DW_OP_lit5:
21363 case DW_OP_lit6:
21364 case DW_OP_lit7:
21365 case DW_OP_lit8:
21366 case DW_OP_lit9:
21367 case DW_OP_lit10:
21368 case DW_OP_lit11:
21369 case DW_OP_lit12:
21370 case DW_OP_lit13:
21371 case DW_OP_lit14:
21372 case DW_OP_lit15:
21373 case DW_OP_lit16:
21374 case DW_OP_lit17:
21375 case DW_OP_lit18:
21376 case DW_OP_lit19:
21377 case DW_OP_lit20:
21378 case DW_OP_lit21:
21379 case DW_OP_lit22:
21380 case DW_OP_lit23:
21381 case DW_OP_lit24:
21382 case DW_OP_lit25:
21383 case DW_OP_lit26:
21384 case DW_OP_lit27:
21385 case DW_OP_lit28:
21386 case DW_OP_lit29:
21387 case DW_OP_lit30:
21388 case DW_OP_lit31:
21389 stack[++stacki] = op - DW_OP_lit0;
21390 break;
21391
21392 case DW_OP_reg0:
21393 case DW_OP_reg1:
21394 case DW_OP_reg2:
21395 case DW_OP_reg3:
21396 case DW_OP_reg4:
21397 case DW_OP_reg5:
21398 case DW_OP_reg6:
21399 case DW_OP_reg7:
21400 case DW_OP_reg8:
21401 case DW_OP_reg9:
21402 case DW_OP_reg10:
21403 case DW_OP_reg11:
21404 case DW_OP_reg12:
21405 case DW_OP_reg13:
21406 case DW_OP_reg14:
21407 case DW_OP_reg15:
21408 case DW_OP_reg16:
21409 case DW_OP_reg17:
21410 case DW_OP_reg18:
21411 case DW_OP_reg19:
21412 case DW_OP_reg20:
21413 case DW_OP_reg21:
21414 case DW_OP_reg22:
21415 case DW_OP_reg23:
21416 case DW_OP_reg24:
21417 case DW_OP_reg25:
21418 case DW_OP_reg26:
21419 case DW_OP_reg27:
21420 case DW_OP_reg28:
21421 case DW_OP_reg29:
21422 case DW_OP_reg30:
21423 case DW_OP_reg31:
21424 stack[++stacki] = op - DW_OP_reg0;
21425 if (i < size)
21426 dwarf2_complex_location_expr_complaint ();
21427 break;
21428
21429 case DW_OP_regx:
21430 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21431 i += bytes_read;
21432 stack[++stacki] = unsnd;
21433 if (i < size)
21434 dwarf2_complex_location_expr_complaint ();
21435 break;
21436
21437 case DW_OP_addr:
21438 stack[++stacki] = read_address (objfile->obfd, &data[i],
21439 cu, &bytes_read);
21440 i += bytes_read;
21441 break;
21442
21443 case DW_OP_const1u:
21444 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21445 i += 1;
21446 break;
21447
21448 case DW_OP_const1s:
21449 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21450 i += 1;
21451 break;
21452
21453 case DW_OP_const2u:
21454 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21455 i += 2;
21456 break;
21457
21458 case DW_OP_const2s:
21459 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21460 i += 2;
21461 break;
21462
21463 case DW_OP_const4u:
21464 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21465 i += 4;
21466 break;
21467
21468 case DW_OP_const4s:
21469 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21470 i += 4;
21471 break;
21472
21473 case DW_OP_const8u:
21474 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21475 i += 8;
21476 break;
21477
21478 case DW_OP_constu:
21479 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21480 &bytes_read);
21481 i += bytes_read;
21482 break;
21483
21484 case DW_OP_consts:
21485 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21486 i += bytes_read;
21487 break;
21488
21489 case DW_OP_dup:
21490 stack[stacki + 1] = stack[stacki];
21491 stacki++;
21492 break;
21493
21494 case DW_OP_plus:
21495 stack[stacki - 1] += stack[stacki];
21496 stacki--;
21497 break;
21498
21499 case DW_OP_plus_uconst:
21500 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21501 &bytes_read);
21502 i += bytes_read;
21503 break;
21504
21505 case DW_OP_minus:
21506 stack[stacki - 1] -= stack[stacki];
21507 stacki--;
21508 break;
21509
21510 case DW_OP_deref:
21511 /* If we're not the last op, then we definitely can't encode
21512 this using GDB's address_class enum. This is valid for partial
21513 global symbols, although the variable's address will be bogus
21514 in the psymtab. */
21515 if (i < size)
21516 dwarf2_complex_location_expr_complaint ();
21517 break;
21518
21519 case DW_OP_GNU_push_tls_address:
21520 case DW_OP_form_tls_address:
21521 /* The top of the stack has the offset from the beginning
21522 of the thread control block at which the variable is located. */
21523 /* Nothing should follow this operator, so the top of stack would
21524 be returned. */
21525 /* This is valid for partial global symbols, but the variable's
21526 address will be bogus in the psymtab. Make it always at least
21527 non-zero to not look as a variable garbage collected by linker
21528 which have DW_OP_addr 0. */
21529 if (i < size)
21530 dwarf2_complex_location_expr_complaint ();
21531 stack[stacki]++;
21532 break;
21533
21534 case DW_OP_GNU_uninit:
21535 break;
21536
21537 case DW_OP_GNU_addr_index:
21538 case DW_OP_GNU_const_index:
21539 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21540 &bytes_read);
21541 i += bytes_read;
21542 break;
21543
21544 default:
21545 {
21546 const char *name = get_DW_OP_name (op);
21547
21548 if (name)
21549 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21550 name);
21551 else
21552 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21553 op);
21554 }
21555
21556 return (stack[stacki]);
21557 }
21558
21559 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21560 outside of the allocated space. Also enforce minimum>0. */
21561 if (stacki >= ARRAY_SIZE (stack) - 1)
21562 {
21563 complaint (&symfile_complaints,
21564 _("location description stack overflow"));
21565 return 0;
21566 }
21567
21568 if (stacki <= 0)
21569 {
21570 complaint (&symfile_complaints,
21571 _("location description stack underflow"));
21572 return 0;
21573 }
21574 }
21575 return (stack[stacki]);
21576 }
21577
21578 /* memory allocation interface */
21579
21580 static struct dwarf_block *
21581 dwarf_alloc_block (struct dwarf2_cu *cu)
21582 {
21583 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
21584 }
21585
21586 static struct die_info *
21587 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
21588 {
21589 struct die_info *die;
21590 size_t size = sizeof (struct die_info);
21591
21592 if (num_attrs > 1)
21593 size += (num_attrs - 1) * sizeof (struct attribute);
21594
21595 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
21596 memset (die, 0, sizeof (struct die_info));
21597 return (die);
21598 }
21599
21600 \f
21601 /* Macro support. */
21602
21603 /* Return file name relative to the compilation directory of file number I in
21604 *LH's file name table. The result is allocated using xmalloc; the caller is
21605 responsible for freeing it. */
21606
21607 static char *
21608 file_file_name (int file, struct line_header *lh)
21609 {
21610 /* Is the file number a valid index into the line header's file name
21611 table? Remember that file numbers start with one, not zero. */
21612 if (1 <= file && file <= lh->file_names.size ())
21613 {
21614 const file_entry &fe = lh->file_names[file - 1];
21615
21616 if (!IS_ABSOLUTE_PATH (fe.name))
21617 {
21618 const char *dir = fe.include_dir (lh);
21619 if (dir != NULL)
21620 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21621 }
21622 return xstrdup (fe.name);
21623 }
21624 else
21625 {
21626 /* The compiler produced a bogus file number. We can at least
21627 record the macro definitions made in the file, even if we
21628 won't be able to find the file by name. */
21629 char fake_name[80];
21630
21631 xsnprintf (fake_name, sizeof (fake_name),
21632 "<bad macro file number %d>", file);
21633
21634 complaint (&symfile_complaints,
21635 _("bad file number in macro information (%d)"),
21636 file);
21637
21638 return xstrdup (fake_name);
21639 }
21640 }
21641
21642 /* Return the full name of file number I in *LH's file name table.
21643 Use COMP_DIR as the name of the current directory of the
21644 compilation. The result is allocated using xmalloc; the caller is
21645 responsible for freeing it. */
21646 static char *
21647 file_full_name (int file, struct line_header *lh, const char *comp_dir)
21648 {
21649 /* Is the file number a valid index into the line header's file name
21650 table? Remember that file numbers start with one, not zero. */
21651 if (1 <= file && file <= lh->file_names.size ())
21652 {
21653 char *relative = file_file_name (file, lh);
21654
21655 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21656 return relative;
21657 return reconcat (relative, comp_dir, SLASH_STRING,
21658 relative, (char *) NULL);
21659 }
21660 else
21661 return file_file_name (file, lh);
21662 }
21663
21664
21665 static struct macro_source_file *
21666 macro_start_file (int file, int line,
21667 struct macro_source_file *current_file,
21668 struct line_header *lh)
21669 {
21670 /* File name relative to the compilation directory of this source file. */
21671 char *file_name = file_file_name (file, lh);
21672
21673 if (! current_file)
21674 {
21675 /* Note: We don't create a macro table for this compilation unit
21676 at all until we actually get a filename. */
21677 struct macro_table *macro_table = get_macro_table ();
21678
21679 /* If we have no current file, then this must be the start_file
21680 directive for the compilation unit's main source file. */
21681 current_file = macro_set_main (macro_table, file_name);
21682 macro_define_special (macro_table);
21683 }
21684 else
21685 current_file = macro_include (current_file, line, file_name);
21686
21687 xfree (file_name);
21688
21689 return current_file;
21690 }
21691
21692
21693 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
21694 followed by a null byte. */
21695 static char *
21696 copy_string (const char *buf, int len)
21697 {
21698 char *s = (char *) xmalloc (len + 1);
21699
21700 memcpy (s, buf, len);
21701 s[len] = '\0';
21702 return s;
21703 }
21704
21705
21706 static const char *
21707 consume_improper_spaces (const char *p, const char *body)
21708 {
21709 if (*p == ' ')
21710 {
21711 complaint (&symfile_complaints,
21712 _("macro definition contains spaces "
21713 "in formal argument list:\n`%s'"),
21714 body);
21715
21716 while (*p == ' ')
21717 p++;
21718 }
21719
21720 return p;
21721 }
21722
21723
21724 static void
21725 parse_macro_definition (struct macro_source_file *file, int line,
21726 const char *body)
21727 {
21728 const char *p;
21729
21730 /* The body string takes one of two forms. For object-like macro
21731 definitions, it should be:
21732
21733 <macro name> " " <definition>
21734
21735 For function-like macro definitions, it should be:
21736
21737 <macro name> "() " <definition>
21738 or
21739 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21740
21741 Spaces may appear only where explicitly indicated, and in the
21742 <definition>.
21743
21744 The Dwarf 2 spec says that an object-like macro's name is always
21745 followed by a space, but versions of GCC around March 2002 omit
21746 the space when the macro's definition is the empty string.
21747
21748 The Dwarf 2 spec says that there should be no spaces between the
21749 formal arguments in a function-like macro's formal argument list,
21750 but versions of GCC around March 2002 include spaces after the
21751 commas. */
21752
21753
21754 /* Find the extent of the macro name. The macro name is terminated
21755 by either a space or null character (for an object-like macro) or
21756 an opening paren (for a function-like macro). */
21757 for (p = body; *p; p++)
21758 if (*p == ' ' || *p == '(')
21759 break;
21760
21761 if (*p == ' ' || *p == '\0')
21762 {
21763 /* It's an object-like macro. */
21764 int name_len = p - body;
21765 char *name = copy_string (body, name_len);
21766 const char *replacement;
21767
21768 if (*p == ' ')
21769 replacement = body + name_len + 1;
21770 else
21771 {
21772 dwarf2_macro_malformed_definition_complaint (body);
21773 replacement = body + name_len;
21774 }
21775
21776 macro_define_object (file, line, name, replacement);
21777
21778 xfree (name);
21779 }
21780 else if (*p == '(')
21781 {
21782 /* It's a function-like macro. */
21783 char *name = copy_string (body, p - body);
21784 int argc = 0;
21785 int argv_size = 1;
21786 char **argv = XNEWVEC (char *, argv_size);
21787
21788 p++;
21789
21790 p = consume_improper_spaces (p, body);
21791
21792 /* Parse the formal argument list. */
21793 while (*p && *p != ')')
21794 {
21795 /* Find the extent of the current argument name. */
21796 const char *arg_start = p;
21797
21798 while (*p && *p != ',' && *p != ')' && *p != ' ')
21799 p++;
21800
21801 if (! *p || p == arg_start)
21802 dwarf2_macro_malformed_definition_complaint (body);
21803 else
21804 {
21805 /* Make sure argv has room for the new argument. */
21806 if (argc >= argv_size)
21807 {
21808 argv_size *= 2;
21809 argv = XRESIZEVEC (char *, argv, argv_size);
21810 }
21811
21812 argv[argc++] = copy_string (arg_start, p - arg_start);
21813 }
21814
21815 p = consume_improper_spaces (p, body);
21816
21817 /* Consume the comma, if present. */
21818 if (*p == ',')
21819 {
21820 p++;
21821
21822 p = consume_improper_spaces (p, body);
21823 }
21824 }
21825
21826 if (*p == ')')
21827 {
21828 p++;
21829
21830 if (*p == ' ')
21831 /* Perfectly formed definition, no complaints. */
21832 macro_define_function (file, line, name,
21833 argc, (const char **) argv,
21834 p + 1);
21835 else if (*p == '\0')
21836 {
21837 /* Complain, but do define it. */
21838 dwarf2_macro_malformed_definition_complaint (body);
21839 macro_define_function (file, line, name,
21840 argc, (const char **) argv,
21841 p);
21842 }
21843 else
21844 /* Just complain. */
21845 dwarf2_macro_malformed_definition_complaint (body);
21846 }
21847 else
21848 /* Just complain. */
21849 dwarf2_macro_malformed_definition_complaint (body);
21850
21851 xfree (name);
21852 {
21853 int i;
21854
21855 for (i = 0; i < argc; i++)
21856 xfree (argv[i]);
21857 }
21858 xfree (argv);
21859 }
21860 else
21861 dwarf2_macro_malformed_definition_complaint (body);
21862 }
21863
21864 /* Skip some bytes from BYTES according to the form given in FORM.
21865 Returns the new pointer. */
21866
21867 static const gdb_byte *
21868 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21869 enum dwarf_form form,
21870 unsigned int offset_size,
21871 struct dwarf2_section_info *section)
21872 {
21873 unsigned int bytes_read;
21874
21875 switch (form)
21876 {
21877 case DW_FORM_data1:
21878 case DW_FORM_flag:
21879 ++bytes;
21880 break;
21881
21882 case DW_FORM_data2:
21883 bytes += 2;
21884 break;
21885
21886 case DW_FORM_data4:
21887 bytes += 4;
21888 break;
21889
21890 case DW_FORM_data8:
21891 bytes += 8;
21892 break;
21893
21894 case DW_FORM_data16:
21895 bytes += 16;
21896 break;
21897
21898 case DW_FORM_string:
21899 read_direct_string (abfd, bytes, &bytes_read);
21900 bytes += bytes_read;
21901 break;
21902
21903 case DW_FORM_sec_offset:
21904 case DW_FORM_strp:
21905 case DW_FORM_GNU_strp_alt:
21906 bytes += offset_size;
21907 break;
21908
21909 case DW_FORM_block:
21910 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21911 bytes += bytes_read;
21912 break;
21913
21914 case DW_FORM_block1:
21915 bytes += 1 + read_1_byte (abfd, bytes);
21916 break;
21917 case DW_FORM_block2:
21918 bytes += 2 + read_2_bytes (abfd, bytes);
21919 break;
21920 case DW_FORM_block4:
21921 bytes += 4 + read_4_bytes (abfd, bytes);
21922 break;
21923
21924 case DW_FORM_sdata:
21925 case DW_FORM_udata:
21926 case DW_FORM_GNU_addr_index:
21927 case DW_FORM_GNU_str_index:
21928 bytes = gdb_skip_leb128 (bytes, buffer_end);
21929 if (bytes == NULL)
21930 {
21931 dwarf2_section_buffer_overflow_complaint (section);
21932 return NULL;
21933 }
21934 break;
21935
21936 case DW_FORM_implicit_const:
21937 break;
21938
21939 default:
21940 {
21941 complain:
21942 complaint (&symfile_complaints,
21943 _("invalid form 0x%x in `%s'"),
21944 form, get_section_name (section));
21945 return NULL;
21946 }
21947 }
21948
21949 return bytes;
21950 }
21951
21952 /* A helper for dwarf_decode_macros that handles skipping an unknown
21953 opcode. Returns an updated pointer to the macro data buffer; or,
21954 on error, issues a complaint and returns NULL. */
21955
21956 static const gdb_byte *
21957 skip_unknown_opcode (unsigned int opcode,
21958 const gdb_byte **opcode_definitions,
21959 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21960 bfd *abfd,
21961 unsigned int offset_size,
21962 struct dwarf2_section_info *section)
21963 {
21964 unsigned int bytes_read, i;
21965 unsigned long arg;
21966 const gdb_byte *defn;
21967
21968 if (opcode_definitions[opcode] == NULL)
21969 {
21970 complaint (&symfile_complaints,
21971 _("unrecognized DW_MACFINO opcode 0x%x"),
21972 opcode);
21973 return NULL;
21974 }
21975
21976 defn = opcode_definitions[opcode];
21977 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21978 defn += bytes_read;
21979
21980 for (i = 0; i < arg; ++i)
21981 {
21982 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21983 (enum dwarf_form) defn[i], offset_size,
21984 section);
21985 if (mac_ptr == NULL)
21986 {
21987 /* skip_form_bytes already issued the complaint. */
21988 return NULL;
21989 }
21990 }
21991
21992 return mac_ptr;
21993 }
21994
21995 /* A helper function which parses the header of a macro section.
21996 If the macro section is the extended (for now called "GNU") type,
21997 then this updates *OFFSET_SIZE. Returns a pointer to just after
21998 the header, or issues a complaint and returns NULL on error. */
21999
22000 static const gdb_byte *
22001 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
22002 bfd *abfd,
22003 const gdb_byte *mac_ptr,
22004 unsigned int *offset_size,
22005 int section_is_gnu)
22006 {
22007 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
22008
22009 if (section_is_gnu)
22010 {
22011 unsigned int version, flags;
22012
22013 version = read_2_bytes (abfd, mac_ptr);
22014 if (version != 4 && version != 5)
22015 {
22016 complaint (&symfile_complaints,
22017 _("unrecognized version `%d' in .debug_macro section"),
22018 version);
22019 return NULL;
22020 }
22021 mac_ptr += 2;
22022
22023 flags = read_1_byte (abfd, mac_ptr);
22024 ++mac_ptr;
22025 *offset_size = (flags & 1) ? 8 : 4;
22026
22027 if ((flags & 2) != 0)
22028 /* We don't need the line table offset. */
22029 mac_ptr += *offset_size;
22030
22031 /* Vendor opcode descriptions. */
22032 if ((flags & 4) != 0)
22033 {
22034 unsigned int i, count;
22035
22036 count = read_1_byte (abfd, mac_ptr);
22037 ++mac_ptr;
22038 for (i = 0; i < count; ++i)
22039 {
22040 unsigned int opcode, bytes_read;
22041 unsigned long arg;
22042
22043 opcode = read_1_byte (abfd, mac_ptr);
22044 ++mac_ptr;
22045 opcode_definitions[opcode] = mac_ptr;
22046 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22047 mac_ptr += bytes_read;
22048 mac_ptr += arg;
22049 }
22050 }
22051 }
22052
22053 return mac_ptr;
22054 }
22055
22056 /* A helper for dwarf_decode_macros that handles the GNU extensions,
22057 including DW_MACRO_import. */
22058
22059 static void
22060 dwarf_decode_macro_bytes (bfd *abfd,
22061 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
22062 struct macro_source_file *current_file,
22063 struct line_header *lh,
22064 struct dwarf2_section_info *section,
22065 int section_is_gnu, int section_is_dwz,
22066 unsigned int offset_size,
22067 htab_t include_hash)
22068 {
22069 struct objfile *objfile = dwarf2_per_objfile->objfile;
22070 enum dwarf_macro_record_type macinfo_type;
22071 int at_commandline;
22072 const gdb_byte *opcode_definitions[256];
22073
22074 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22075 &offset_size, section_is_gnu);
22076 if (mac_ptr == NULL)
22077 {
22078 /* We already issued a complaint. */
22079 return;
22080 }
22081
22082 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
22083 GDB is still reading the definitions from command line. First
22084 DW_MACINFO_start_file will need to be ignored as it was already executed
22085 to create CURRENT_FILE for the main source holding also the command line
22086 definitions. On first met DW_MACINFO_start_file this flag is reset to
22087 normally execute all the remaining DW_MACINFO_start_file macinfos. */
22088
22089 at_commandline = 1;
22090
22091 do
22092 {
22093 /* Do we at least have room for a macinfo type byte? */
22094 if (mac_ptr >= mac_end)
22095 {
22096 dwarf2_section_buffer_overflow_complaint (section);
22097 break;
22098 }
22099
22100 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22101 mac_ptr++;
22102
22103 /* Note that we rely on the fact that the corresponding GNU and
22104 DWARF constants are the same. */
22105 switch (macinfo_type)
22106 {
22107 /* A zero macinfo type indicates the end of the macro
22108 information. */
22109 case 0:
22110 break;
22111
22112 case DW_MACRO_define:
22113 case DW_MACRO_undef:
22114 case DW_MACRO_define_strp:
22115 case DW_MACRO_undef_strp:
22116 case DW_MACRO_define_sup:
22117 case DW_MACRO_undef_sup:
22118 {
22119 unsigned int bytes_read;
22120 int line;
22121 const char *body;
22122 int is_define;
22123
22124 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22125 mac_ptr += bytes_read;
22126
22127 if (macinfo_type == DW_MACRO_define
22128 || macinfo_type == DW_MACRO_undef)
22129 {
22130 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22131 mac_ptr += bytes_read;
22132 }
22133 else
22134 {
22135 LONGEST str_offset;
22136
22137 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22138 mac_ptr += offset_size;
22139
22140 if (macinfo_type == DW_MACRO_define_sup
22141 || macinfo_type == DW_MACRO_undef_sup
22142 || section_is_dwz)
22143 {
22144 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22145
22146 body = read_indirect_string_from_dwz (dwz, str_offset);
22147 }
22148 else
22149 body = read_indirect_string_at_offset (abfd, str_offset);
22150 }
22151
22152 is_define = (macinfo_type == DW_MACRO_define
22153 || macinfo_type == DW_MACRO_define_strp
22154 || macinfo_type == DW_MACRO_define_sup);
22155 if (! current_file)
22156 {
22157 /* DWARF violation as no main source is present. */
22158 complaint (&symfile_complaints,
22159 _("debug info with no main source gives macro %s "
22160 "on line %d: %s"),
22161 is_define ? _("definition") : _("undefinition"),
22162 line, body);
22163 break;
22164 }
22165 if ((line == 0 && !at_commandline)
22166 || (line != 0 && at_commandline))
22167 complaint (&symfile_complaints,
22168 _("debug info gives %s macro %s with %s line %d: %s"),
22169 at_commandline ? _("command-line") : _("in-file"),
22170 is_define ? _("definition") : _("undefinition"),
22171 line == 0 ? _("zero") : _("non-zero"), line, body);
22172
22173 if (is_define)
22174 parse_macro_definition (current_file, line, body);
22175 else
22176 {
22177 gdb_assert (macinfo_type == DW_MACRO_undef
22178 || macinfo_type == DW_MACRO_undef_strp
22179 || macinfo_type == DW_MACRO_undef_sup);
22180 macro_undef (current_file, line, body);
22181 }
22182 }
22183 break;
22184
22185 case DW_MACRO_start_file:
22186 {
22187 unsigned int bytes_read;
22188 int line, file;
22189
22190 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22191 mac_ptr += bytes_read;
22192 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22193 mac_ptr += bytes_read;
22194
22195 if ((line == 0 && !at_commandline)
22196 || (line != 0 && at_commandline))
22197 complaint (&symfile_complaints,
22198 _("debug info gives source %d included "
22199 "from %s at %s line %d"),
22200 file, at_commandline ? _("command-line") : _("file"),
22201 line == 0 ? _("zero") : _("non-zero"), line);
22202
22203 if (at_commandline)
22204 {
22205 /* This DW_MACRO_start_file was executed in the
22206 pass one. */
22207 at_commandline = 0;
22208 }
22209 else
22210 current_file = macro_start_file (file, line, current_file, lh);
22211 }
22212 break;
22213
22214 case DW_MACRO_end_file:
22215 if (! current_file)
22216 complaint (&symfile_complaints,
22217 _("macro debug info has an unmatched "
22218 "`close_file' directive"));
22219 else
22220 {
22221 current_file = current_file->included_by;
22222 if (! current_file)
22223 {
22224 enum dwarf_macro_record_type next_type;
22225
22226 /* GCC circa March 2002 doesn't produce the zero
22227 type byte marking the end of the compilation
22228 unit. Complain if it's not there, but exit no
22229 matter what. */
22230
22231 /* Do we at least have room for a macinfo type byte? */
22232 if (mac_ptr >= mac_end)
22233 {
22234 dwarf2_section_buffer_overflow_complaint (section);
22235 return;
22236 }
22237
22238 /* We don't increment mac_ptr here, so this is just
22239 a look-ahead. */
22240 next_type
22241 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22242 mac_ptr);
22243 if (next_type != 0)
22244 complaint (&symfile_complaints,
22245 _("no terminating 0-type entry for "
22246 "macros in `.debug_macinfo' section"));
22247
22248 return;
22249 }
22250 }
22251 break;
22252
22253 case DW_MACRO_import:
22254 case DW_MACRO_import_sup:
22255 {
22256 LONGEST offset;
22257 void **slot;
22258 bfd *include_bfd = abfd;
22259 struct dwarf2_section_info *include_section = section;
22260 const gdb_byte *include_mac_end = mac_end;
22261 int is_dwz = section_is_dwz;
22262 const gdb_byte *new_mac_ptr;
22263
22264 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22265 mac_ptr += offset_size;
22266
22267 if (macinfo_type == DW_MACRO_import_sup)
22268 {
22269 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22270
22271 dwarf2_read_section (objfile, &dwz->macro);
22272
22273 include_section = &dwz->macro;
22274 include_bfd = get_section_bfd_owner (include_section);
22275 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22276 is_dwz = 1;
22277 }
22278
22279 new_mac_ptr = include_section->buffer + offset;
22280 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22281
22282 if (*slot != NULL)
22283 {
22284 /* This has actually happened; see
22285 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22286 complaint (&symfile_complaints,
22287 _("recursive DW_MACRO_import in "
22288 ".debug_macro section"));
22289 }
22290 else
22291 {
22292 *slot = (void *) new_mac_ptr;
22293
22294 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
22295 include_mac_end, current_file, lh,
22296 section, section_is_gnu, is_dwz,
22297 offset_size, include_hash);
22298
22299 htab_remove_elt (include_hash, (void *) new_mac_ptr);
22300 }
22301 }
22302 break;
22303
22304 case DW_MACINFO_vendor_ext:
22305 if (!section_is_gnu)
22306 {
22307 unsigned int bytes_read;
22308
22309 /* This reads the constant, but since we don't recognize
22310 any vendor extensions, we ignore it. */
22311 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22312 mac_ptr += bytes_read;
22313 read_direct_string (abfd, mac_ptr, &bytes_read);
22314 mac_ptr += bytes_read;
22315
22316 /* We don't recognize any vendor extensions. */
22317 break;
22318 }
22319 /* FALLTHROUGH */
22320
22321 default:
22322 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22323 mac_ptr, mac_end, abfd, offset_size,
22324 section);
22325 if (mac_ptr == NULL)
22326 return;
22327 break;
22328 }
22329 } while (macinfo_type != 0);
22330 }
22331
22332 static void
22333 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22334 int section_is_gnu)
22335 {
22336 struct objfile *objfile = dwarf2_per_objfile->objfile;
22337 struct line_header *lh = cu->line_header;
22338 bfd *abfd;
22339 const gdb_byte *mac_ptr, *mac_end;
22340 struct macro_source_file *current_file = 0;
22341 enum dwarf_macro_record_type macinfo_type;
22342 unsigned int offset_size = cu->header.offset_size;
22343 const gdb_byte *opcode_definitions[256];
22344 struct cleanup *cleanup;
22345 void **slot;
22346 struct dwarf2_section_info *section;
22347 const char *section_name;
22348
22349 if (cu->dwo_unit != NULL)
22350 {
22351 if (section_is_gnu)
22352 {
22353 section = &cu->dwo_unit->dwo_file->sections.macro;
22354 section_name = ".debug_macro.dwo";
22355 }
22356 else
22357 {
22358 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22359 section_name = ".debug_macinfo.dwo";
22360 }
22361 }
22362 else
22363 {
22364 if (section_is_gnu)
22365 {
22366 section = &dwarf2_per_objfile->macro;
22367 section_name = ".debug_macro";
22368 }
22369 else
22370 {
22371 section = &dwarf2_per_objfile->macinfo;
22372 section_name = ".debug_macinfo";
22373 }
22374 }
22375
22376 dwarf2_read_section (objfile, section);
22377 if (section->buffer == NULL)
22378 {
22379 complaint (&symfile_complaints, _("missing %s section"), section_name);
22380 return;
22381 }
22382 abfd = get_section_bfd_owner (section);
22383
22384 /* First pass: Find the name of the base filename.
22385 This filename is needed in order to process all macros whose definition
22386 (or undefinition) comes from the command line. These macros are defined
22387 before the first DW_MACINFO_start_file entry, and yet still need to be
22388 associated to the base file.
22389
22390 To determine the base file name, we scan the macro definitions until we
22391 reach the first DW_MACINFO_start_file entry. We then initialize
22392 CURRENT_FILE accordingly so that any macro definition found before the
22393 first DW_MACINFO_start_file can still be associated to the base file. */
22394
22395 mac_ptr = section->buffer + offset;
22396 mac_end = section->buffer + section->size;
22397
22398 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22399 &offset_size, section_is_gnu);
22400 if (mac_ptr == NULL)
22401 {
22402 /* We already issued a complaint. */
22403 return;
22404 }
22405
22406 do
22407 {
22408 /* Do we at least have room for a macinfo type byte? */
22409 if (mac_ptr >= mac_end)
22410 {
22411 /* Complaint is printed during the second pass as GDB will probably
22412 stop the first pass earlier upon finding
22413 DW_MACINFO_start_file. */
22414 break;
22415 }
22416
22417 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22418 mac_ptr++;
22419
22420 /* Note that we rely on the fact that the corresponding GNU and
22421 DWARF constants are the same. */
22422 switch (macinfo_type)
22423 {
22424 /* A zero macinfo type indicates the end of the macro
22425 information. */
22426 case 0:
22427 break;
22428
22429 case DW_MACRO_define:
22430 case DW_MACRO_undef:
22431 /* Only skip the data by MAC_PTR. */
22432 {
22433 unsigned int bytes_read;
22434
22435 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22436 mac_ptr += bytes_read;
22437 read_direct_string (abfd, mac_ptr, &bytes_read);
22438 mac_ptr += bytes_read;
22439 }
22440 break;
22441
22442 case DW_MACRO_start_file:
22443 {
22444 unsigned int bytes_read;
22445 int line, file;
22446
22447 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22448 mac_ptr += bytes_read;
22449 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22450 mac_ptr += bytes_read;
22451
22452 current_file = macro_start_file (file, line, current_file, lh);
22453 }
22454 break;
22455
22456 case DW_MACRO_end_file:
22457 /* No data to skip by MAC_PTR. */
22458 break;
22459
22460 case DW_MACRO_define_strp:
22461 case DW_MACRO_undef_strp:
22462 case DW_MACRO_define_sup:
22463 case DW_MACRO_undef_sup:
22464 {
22465 unsigned int bytes_read;
22466
22467 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22468 mac_ptr += bytes_read;
22469 mac_ptr += offset_size;
22470 }
22471 break;
22472
22473 case DW_MACRO_import:
22474 case DW_MACRO_import_sup:
22475 /* Note that, according to the spec, a transparent include
22476 chain cannot call DW_MACRO_start_file. So, we can just
22477 skip this opcode. */
22478 mac_ptr += offset_size;
22479 break;
22480
22481 case DW_MACINFO_vendor_ext:
22482 /* Only skip the data by MAC_PTR. */
22483 if (!section_is_gnu)
22484 {
22485 unsigned int bytes_read;
22486
22487 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22488 mac_ptr += bytes_read;
22489 read_direct_string (abfd, mac_ptr, &bytes_read);
22490 mac_ptr += bytes_read;
22491 }
22492 /* FALLTHROUGH */
22493
22494 default:
22495 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22496 mac_ptr, mac_end, abfd, offset_size,
22497 section);
22498 if (mac_ptr == NULL)
22499 return;
22500 break;
22501 }
22502 } while (macinfo_type != 0 && current_file == NULL);
22503
22504 /* Second pass: Process all entries.
22505
22506 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22507 command-line macro definitions/undefinitions. This flag is unset when we
22508 reach the first DW_MACINFO_start_file entry. */
22509
22510 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22511 htab_eq_pointer,
22512 NULL, xcalloc, xfree));
22513 mac_ptr = section->buffer + offset;
22514 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
22515 *slot = (void *) mac_ptr;
22516 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
22517 current_file, lh, section,
22518 section_is_gnu, 0, offset_size,
22519 include_hash.get ());
22520 }
22521
22522 /* Check if the attribute's form is a DW_FORM_block*
22523 if so return true else false. */
22524
22525 static int
22526 attr_form_is_block (const struct attribute *attr)
22527 {
22528 return (attr == NULL ? 0 :
22529 attr->form == DW_FORM_block1
22530 || attr->form == DW_FORM_block2
22531 || attr->form == DW_FORM_block4
22532 || attr->form == DW_FORM_block
22533 || attr->form == DW_FORM_exprloc);
22534 }
22535
22536 /* Return non-zero if ATTR's value is a section offset --- classes
22537 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22538 You may use DW_UNSND (attr) to retrieve such offsets.
22539
22540 Section 7.5.4, "Attribute Encodings", explains that no attribute
22541 may have a value that belongs to more than one of these classes; it
22542 would be ambiguous if we did, because we use the same forms for all
22543 of them. */
22544
22545 static int
22546 attr_form_is_section_offset (const struct attribute *attr)
22547 {
22548 return (attr->form == DW_FORM_data4
22549 || attr->form == DW_FORM_data8
22550 || attr->form == DW_FORM_sec_offset);
22551 }
22552
22553 /* Return non-zero if ATTR's value falls in the 'constant' class, or
22554 zero otherwise. When this function returns true, you can apply
22555 dwarf2_get_attr_constant_value to it.
22556
22557 However, note that for some attributes you must check
22558 attr_form_is_section_offset before using this test. DW_FORM_data4
22559 and DW_FORM_data8 are members of both the constant class, and of
22560 the classes that contain offsets into other debug sections
22561 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22562 that, if an attribute's can be either a constant or one of the
22563 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
22564 taken as section offsets, not constants.
22565
22566 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22567 cannot handle that. */
22568
22569 static int
22570 attr_form_is_constant (const struct attribute *attr)
22571 {
22572 switch (attr->form)
22573 {
22574 case DW_FORM_sdata:
22575 case DW_FORM_udata:
22576 case DW_FORM_data1:
22577 case DW_FORM_data2:
22578 case DW_FORM_data4:
22579 case DW_FORM_data8:
22580 case DW_FORM_implicit_const:
22581 return 1;
22582 default:
22583 return 0;
22584 }
22585 }
22586
22587
22588 /* DW_ADDR is always stored already as sect_offset; despite for the forms
22589 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22590
22591 static int
22592 attr_form_is_ref (const struct attribute *attr)
22593 {
22594 switch (attr->form)
22595 {
22596 case DW_FORM_ref_addr:
22597 case DW_FORM_ref1:
22598 case DW_FORM_ref2:
22599 case DW_FORM_ref4:
22600 case DW_FORM_ref8:
22601 case DW_FORM_ref_udata:
22602 case DW_FORM_GNU_ref_alt:
22603 return 1;
22604 default:
22605 return 0;
22606 }
22607 }
22608
22609 /* Return the .debug_loc section to use for CU.
22610 For DWO files use .debug_loc.dwo. */
22611
22612 static struct dwarf2_section_info *
22613 cu_debug_loc_section (struct dwarf2_cu *cu)
22614 {
22615 if (cu->dwo_unit)
22616 {
22617 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22618
22619 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22620 }
22621 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22622 : &dwarf2_per_objfile->loc);
22623 }
22624
22625 /* A helper function that fills in a dwarf2_loclist_baton. */
22626
22627 static void
22628 fill_in_loclist_baton (struct dwarf2_cu *cu,
22629 struct dwarf2_loclist_baton *baton,
22630 const struct attribute *attr)
22631 {
22632 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22633
22634 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
22635
22636 baton->per_cu = cu->per_cu;
22637 gdb_assert (baton->per_cu);
22638 /* We don't know how long the location list is, but make sure we
22639 don't run off the edge of the section. */
22640 baton->size = section->size - DW_UNSND (attr);
22641 baton->data = section->buffer + DW_UNSND (attr);
22642 baton->base_address = cu->base_address;
22643 baton->from_dwo = cu->dwo_unit != NULL;
22644 }
22645
22646 static void
22647 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
22648 struct dwarf2_cu *cu, int is_block)
22649 {
22650 struct objfile *objfile = dwarf2_per_objfile->objfile;
22651 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22652
22653 if (attr_form_is_section_offset (attr)
22654 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
22655 the section. If so, fall through to the complaint in the
22656 other branch. */
22657 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
22658 {
22659 struct dwarf2_loclist_baton *baton;
22660
22661 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
22662
22663 fill_in_loclist_baton (cu, baton, attr);
22664
22665 if (cu->base_known == 0)
22666 complaint (&symfile_complaints,
22667 _("Location list used without "
22668 "specifying the CU base address."));
22669
22670 SYMBOL_ACLASS_INDEX (sym) = (is_block
22671 ? dwarf2_loclist_block_index
22672 : dwarf2_loclist_index);
22673 SYMBOL_LOCATION_BATON (sym) = baton;
22674 }
22675 else
22676 {
22677 struct dwarf2_locexpr_baton *baton;
22678
22679 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
22680 baton->per_cu = cu->per_cu;
22681 gdb_assert (baton->per_cu);
22682
22683 if (attr_form_is_block (attr))
22684 {
22685 /* Note that we're just copying the block's data pointer
22686 here, not the actual data. We're still pointing into the
22687 info_buffer for SYM's objfile; right now we never release
22688 that buffer, but when we do clean up properly this may
22689 need to change. */
22690 baton->size = DW_BLOCK (attr)->size;
22691 baton->data = DW_BLOCK (attr)->data;
22692 }
22693 else
22694 {
22695 dwarf2_invalid_attrib_class_complaint ("location description",
22696 SYMBOL_NATURAL_NAME (sym));
22697 baton->size = 0;
22698 }
22699
22700 SYMBOL_ACLASS_INDEX (sym) = (is_block
22701 ? dwarf2_locexpr_block_index
22702 : dwarf2_locexpr_index);
22703 SYMBOL_LOCATION_BATON (sym) = baton;
22704 }
22705 }
22706
22707 /* Return the OBJFILE associated with the compilation unit CU. If CU
22708 came from a separate debuginfo file, then the master objfile is
22709 returned. */
22710
22711 struct objfile *
22712 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22713 {
22714 struct objfile *objfile = per_cu->objfile;
22715
22716 /* Return the master objfile, so that we can report and look up the
22717 correct file containing this variable. */
22718 if (objfile->separate_debug_objfile_backlink)
22719 objfile = objfile->separate_debug_objfile_backlink;
22720
22721 return objfile;
22722 }
22723
22724 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22725 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22726 CU_HEADERP first. */
22727
22728 static const struct comp_unit_head *
22729 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22730 struct dwarf2_per_cu_data *per_cu)
22731 {
22732 const gdb_byte *info_ptr;
22733
22734 if (per_cu->cu)
22735 return &per_cu->cu->header;
22736
22737 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
22738
22739 memset (cu_headerp, 0, sizeof (*cu_headerp));
22740 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22741 rcuh_kind::COMPILE);
22742
22743 return cu_headerp;
22744 }
22745
22746 /* Return the address size given in the compilation unit header for CU. */
22747
22748 int
22749 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22750 {
22751 struct comp_unit_head cu_header_local;
22752 const struct comp_unit_head *cu_headerp;
22753
22754 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22755
22756 return cu_headerp->addr_size;
22757 }
22758
22759 /* Return the offset size given in the compilation unit header for CU. */
22760
22761 int
22762 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22763 {
22764 struct comp_unit_head cu_header_local;
22765 const struct comp_unit_head *cu_headerp;
22766
22767 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22768
22769 return cu_headerp->offset_size;
22770 }
22771
22772 /* See its dwarf2loc.h declaration. */
22773
22774 int
22775 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22776 {
22777 struct comp_unit_head cu_header_local;
22778 const struct comp_unit_head *cu_headerp;
22779
22780 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22781
22782 if (cu_headerp->version == 2)
22783 return cu_headerp->addr_size;
22784 else
22785 return cu_headerp->offset_size;
22786 }
22787
22788 /* Return the text offset of the CU. The returned offset comes from
22789 this CU's objfile. If this objfile came from a separate debuginfo
22790 file, then the offset may be different from the corresponding
22791 offset in the parent objfile. */
22792
22793 CORE_ADDR
22794 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22795 {
22796 struct objfile *objfile = per_cu->objfile;
22797
22798 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22799 }
22800
22801 /* Return DWARF version number of PER_CU. */
22802
22803 short
22804 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22805 {
22806 return per_cu->dwarf_version;
22807 }
22808
22809 /* Locate the .debug_info compilation unit from CU's objfile which contains
22810 the DIE at OFFSET. Raises an error on failure. */
22811
22812 static struct dwarf2_per_cu_data *
22813 dwarf2_find_containing_comp_unit (sect_offset sect_off,
22814 unsigned int offset_in_dwz,
22815 struct objfile *objfile)
22816 {
22817 struct dwarf2_per_cu_data *this_cu;
22818 int low, high;
22819 const sect_offset *cu_off;
22820
22821 low = 0;
22822 high = dwarf2_per_objfile->n_comp_units - 1;
22823 while (high > low)
22824 {
22825 struct dwarf2_per_cu_data *mid_cu;
22826 int mid = low + (high - low) / 2;
22827
22828 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22829 cu_off = &mid_cu->sect_off;
22830 if (mid_cu->is_dwz > offset_in_dwz
22831 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
22832 high = mid;
22833 else
22834 low = mid + 1;
22835 }
22836 gdb_assert (low == high);
22837 this_cu = dwarf2_per_objfile->all_comp_units[low];
22838 cu_off = &this_cu->sect_off;
22839 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
22840 {
22841 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22842 error (_("Dwarf Error: could not find partial DIE containing "
22843 "offset 0x%x [in module %s]"),
22844 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
22845
22846 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
22847 <= sect_off);
22848 return dwarf2_per_objfile->all_comp_units[low-1];
22849 }
22850 else
22851 {
22852 this_cu = dwarf2_per_objfile->all_comp_units[low];
22853 if (low == dwarf2_per_objfile->n_comp_units - 1
22854 && sect_off >= this_cu->sect_off + this_cu->length)
22855 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
22856 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
22857 return this_cu;
22858 }
22859 }
22860
22861 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22862
22863 static void
22864 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22865 {
22866 memset (cu, 0, sizeof (*cu));
22867 per_cu->cu = cu;
22868 cu->per_cu = per_cu;
22869 cu->objfile = per_cu->objfile;
22870 obstack_init (&cu->comp_unit_obstack);
22871 }
22872
22873 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22874
22875 static void
22876 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22877 enum language pretend_language)
22878 {
22879 struct attribute *attr;
22880
22881 /* Set the language we're debugging. */
22882 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22883 if (attr)
22884 set_cu_language (DW_UNSND (attr), cu);
22885 else
22886 {
22887 cu->language = pretend_language;
22888 cu->language_defn = language_def (cu->language);
22889 }
22890
22891 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22892 }
22893
22894 /* Release one cached compilation unit, CU. We unlink it from the tree
22895 of compilation units, but we don't remove it from the read_in_chain;
22896 the caller is responsible for that.
22897 NOTE: DATA is a void * because this function is also used as a
22898 cleanup routine. */
22899
22900 static void
22901 free_heap_comp_unit (void *data)
22902 {
22903 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22904
22905 gdb_assert (cu->per_cu != NULL);
22906 cu->per_cu->cu = NULL;
22907 cu->per_cu = NULL;
22908
22909 obstack_free (&cu->comp_unit_obstack, NULL);
22910
22911 xfree (cu);
22912 }
22913
22914 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22915 when we're finished with it. We can't free the pointer itself, but be
22916 sure to unlink it from the cache. Also release any associated storage. */
22917
22918 static void
22919 free_stack_comp_unit (void *data)
22920 {
22921 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22922
22923 gdb_assert (cu->per_cu != NULL);
22924 cu->per_cu->cu = NULL;
22925 cu->per_cu = NULL;
22926
22927 obstack_free (&cu->comp_unit_obstack, NULL);
22928 cu->partial_dies = NULL;
22929 }
22930
22931 /* Free all cached compilation units. */
22932
22933 static void
22934 free_cached_comp_units (void *data)
22935 {
22936 dwarf2_per_objfile->free_cached_comp_units ();
22937 }
22938
22939 /* Increase the age counter on each cached compilation unit, and free
22940 any that are too old. */
22941
22942 static void
22943 age_cached_comp_units (void)
22944 {
22945 struct dwarf2_per_cu_data *per_cu, **last_chain;
22946
22947 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22948 per_cu = dwarf2_per_objfile->read_in_chain;
22949 while (per_cu != NULL)
22950 {
22951 per_cu->cu->last_used ++;
22952 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22953 dwarf2_mark (per_cu->cu);
22954 per_cu = per_cu->cu->read_in_chain;
22955 }
22956
22957 per_cu = dwarf2_per_objfile->read_in_chain;
22958 last_chain = &dwarf2_per_objfile->read_in_chain;
22959 while (per_cu != NULL)
22960 {
22961 struct dwarf2_per_cu_data *next_cu;
22962
22963 next_cu = per_cu->cu->read_in_chain;
22964
22965 if (!per_cu->cu->mark)
22966 {
22967 free_heap_comp_unit (per_cu->cu);
22968 *last_chain = next_cu;
22969 }
22970 else
22971 last_chain = &per_cu->cu->read_in_chain;
22972
22973 per_cu = next_cu;
22974 }
22975 }
22976
22977 /* Remove a single compilation unit from the cache. */
22978
22979 static void
22980 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22981 {
22982 struct dwarf2_per_cu_data *per_cu, **last_chain;
22983
22984 per_cu = dwarf2_per_objfile->read_in_chain;
22985 last_chain = &dwarf2_per_objfile->read_in_chain;
22986 while (per_cu != NULL)
22987 {
22988 struct dwarf2_per_cu_data *next_cu;
22989
22990 next_cu = per_cu->cu->read_in_chain;
22991
22992 if (per_cu == target_per_cu)
22993 {
22994 free_heap_comp_unit (per_cu->cu);
22995 per_cu->cu = NULL;
22996 *last_chain = next_cu;
22997 break;
22998 }
22999 else
23000 last_chain = &per_cu->cu->read_in_chain;
23001
23002 per_cu = next_cu;
23003 }
23004 }
23005
23006 /* Release all extra memory associated with OBJFILE. */
23007
23008 void
23009 dwarf2_free_objfile (struct objfile *objfile)
23010 {
23011 dwarf2_per_objfile
23012 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23013 dwarf2_objfile_data_key);
23014
23015 if (dwarf2_per_objfile == NULL)
23016 return;
23017
23018 dwarf2_per_objfile->~dwarf2_per_objfile ();
23019 }
23020
23021 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23022 We store these in a hash table separate from the DIEs, and preserve them
23023 when the DIEs are flushed out of cache.
23024
23025 The CU "per_cu" pointer is needed because offset alone is not enough to
23026 uniquely identify the type. A file may have multiple .debug_types sections,
23027 or the type may come from a DWO file. Furthermore, while it's more logical
23028 to use per_cu->section+offset, with Fission the section with the data is in
23029 the DWO file but we don't know that section at the point we need it.
23030 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23031 because we can enter the lookup routine, get_die_type_at_offset, from
23032 outside this file, and thus won't necessarily have PER_CU->cu.
23033 Fortunately, PER_CU is stable for the life of the objfile. */
23034
23035 struct dwarf2_per_cu_offset_and_type
23036 {
23037 const struct dwarf2_per_cu_data *per_cu;
23038 sect_offset sect_off;
23039 struct type *type;
23040 };
23041
23042 /* Hash function for a dwarf2_per_cu_offset_and_type. */
23043
23044 static hashval_t
23045 per_cu_offset_and_type_hash (const void *item)
23046 {
23047 const struct dwarf2_per_cu_offset_and_type *ofs
23048 = (const struct dwarf2_per_cu_offset_and_type *) item;
23049
23050 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23051 }
23052
23053 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23054
23055 static int
23056 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23057 {
23058 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23059 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23060 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23061 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23062
23063 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23064 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23065 }
23066
23067 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23068 table if necessary. For convenience, return TYPE.
23069
23070 The DIEs reading must have careful ordering to:
23071 * Not cause infite loops trying to read in DIEs as a prerequisite for
23072 reading current DIE.
23073 * Not trying to dereference contents of still incompletely read in types
23074 while reading in other DIEs.
23075 * Enable referencing still incompletely read in types just by a pointer to
23076 the type without accessing its fields.
23077
23078 Therefore caller should follow these rules:
23079 * Try to fetch any prerequisite types we may need to build this DIE type
23080 before building the type and calling set_die_type.
23081 * After building type call set_die_type for current DIE as soon as
23082 possible before fetching more types to complete the current type.
23083 * Make the type as complete as possible before fetching more types. */
23084
23085 static struct type *
23086 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23087 {
23088 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23089 struct objfile *objfile = cu->objfile;
23090 struct attribute *attr;
23091 struct dynamic_prop prop;
23092
23093 /* For Ada types, make sure that the gnat-specific data is always
23094 initialized (if not already set). There are a few types where
23095 we should not be doing so, because the type-specific area is
23096 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23097 where the type-specific area is used to store the floatformat).
23098 But this is not a problem, because the gnat-specific information
23099 is actually not needed for these types. */
23100 if (need_gnat_info (cu)
23101 && TYPE_CODE (type) != TYPE_CODE_FUNC
23102 && TYPE_CODE (type) != TYPE_CODE_FLT
23103 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23104 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23105 && TYPE_CODE (type) != TYPE_CODE_METHOD
23106 && !HAVE_GNAT_AUX_INFO (type))
23107 INIT_GNAT_SPECIFIC (type);
23108
23109 /* Read DW_AT_allocated and set in type. */
23110 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23111 if (attr_form_is_block (attr))
23112 {
23113 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23114 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23115 }
23116 else if (attr != NULL)
23117 {
23118 complaint (&symfile_complaints,
23119 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23120 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23121 to_underlying (die->sect_off));
23122 }
23123
23124 /* Read DW_AT_associated and set in type. */
23125 attr = dwarf2_attr (die, DW_AT_associated, cu);
23126 if (attr_form_is_block (attr))
23127 {
23128 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23129 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23130 }
23131 else if (attr != NULL)
23132 {
23133 complaint (&symfile_complaints,
23134 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23135 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23136 to_underlying (die->sect_off));
23137 }
23138
23139 /* Read DW_AT_data_location and set in type. */
23140 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23141 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23142 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
23143
23144 if (dwarf2_per_objfile->die_type_hash == NULL)
23145 {
23146 dwarf2_per_objfile->die_type_hash =
23147 htab_create_alloc_ex (127,
23148 per_cu_offset_and_type_hash,
23149 per_cu_offset_and_type_eq,
23150 NULL,
23151 &objfile->objfile_obstack,
23152 hashtab_obstack_allocate,
23153 dummy_obstack_deallocate);
23154 }
23155
23156 ofs.per_cu = cu->per_cu;
23157 ofs.sect_off = die->sect_off;
23158 ofs.type = type;
23159 slot = (struct dwarf2_per_cu_offset_and_type **)
23160 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
23161 if (*slot)
23162 complaint (&symfile_complaints,
23163 _("A problem internal to GDB: DIE 0x%x has type already set"),
23164 to_underlying (die->sect_off));
23165 *slot = XOBNEW (&objfile->objfile_obstack,
23166 struct dwarf2_per_cu_offset_and_type);
23167 **slot = ofs;
23168 return type;
23169 }
23170
23171 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23172 or return NULL if the die does not have a saved type. */
23173
23174 static struct type *
23175 get_die_type_at_offset (sect_offset sect_off,
23176 struct dwarf2_per_cu_data *per_cu)
23177 {
23178 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23179
23180 if (dwarf2_per_objfile->die_type_hash == NULL)
23181 return NULL;
23182
23183 ofs.per_cu = per_cu;
23184 ofs.sect_off = sect_off;
23185 slot = ((struct dwarf2_per_cu_offset_and_type *)
23186 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
23187 if (slot)
23188 return slot->type;
23189 else
23190 return NULL;
23191 }
23192
23193 /* Look up the type for DIE in CU in die_type_hash,
23194 or return NULL if DIE does not have a saved type. */
23195
23196 static struct type *
23197 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23198 {
23199 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23200 }
23201
23202 /* Add a dependence relationship from CU to REF_PER_CU. */
23203
23204 static void
23205 dwarf2_add_dependence (struct dwarf2_cu *cu,
23206 struct dwarf2_per_cu_data *ref_per_cu)
23207 {
23208 void **slot;
23209
23210 if (cu->dependencies == NULL)
23211 cu->dependencies
23212 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23213 NULL, &cu->comp_unit_obstack,
23214 hashtab_obstack_allocate,
23215 dummy_obstack_deallocate);
23216
23217 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23218 if (*slot == NULL)
23219 *slot = ref_per_cu;
23220 }
23221
23222 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23223 Set the mark field in every compilation unit in the
23224 cache that we must keep because we are keeping CU. */
23225
23226 static int
23227 dwarf2_mark_helper (void **slot, void *data)
23228 {
23229 struct dwarf2_per_cu_data *per_cu;
23230
23231 per_cu = (struct dwarf2_per_cu_data *) *slot;
23232
23233 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23234 reading of the chain. As such dependencies remain valid it is not much
23235 useful to track and undo them during QUIT cleanups. */
23236 if (per_cu->cu == NULL)
23237 return 1;
23238
23239 if (per_cu->cu->mark)
23240 return 1;
23241 per_cu->cu->mark = 1;
23242
23243 if (per_cu->cu->dependencies != NULL)
23244 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23245
23246 return 1;
23247 }
23248
23249 /* Set the mark field in CU and in every other compilation unit in the
23250 cache that we must keep because we are keeping CU. */
23251
23252 static void
23253 dwarf2_mark (struct dwarf2_cu *cu)
23254 {
23255 if (cu->mark)
23256 return;
23257 cu->mark = 1;
23258 if (cu->dependencies != NULL)
23259 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23260 }
23261
23262 static void
23263 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23264 {
23265 while (per_cu)
23266 {
23267 per_cu->cu->mark = 0;
23268 per_cu = per_cu->cu->read_in_chain;
23269 }
23270 }
23271
23272 /* Trivial hash function for partial_die_info: the hash value of a DIE
23273 is its offset in .debug_info for this objfile. */
23274
23275 static hashval_t
23276 partial_die_hash (const void *item)
23277 {
23278 const struct partial_die_info *part_die
23279 = (const struct partial_die_info *) item;
23280
23281 return to_underlying (part_die->sect_off);
23282 }
23283
23284 /* Trivial comparison function for partial_die_info structures: two DIEs
23285 are equal if they have the same offset. */
23286
23287 static int
23288 partial_die_eq (const void *item_lhs, const void *item_rhs)
23289 {
23290 const struct partial_die_info *part_die_lhs
23291 = (const struct partial_die_info *) item_lhs;
23292 const struct partial_die_info *part_die_rhs
23293 = (const struct partial_die_info *) item_rhs;
23294
23295 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23296 }
23297
23298 static struct cmd_list_element *set_dwarf_cmdlist;
23299 static struct cmd_list_element *show_dwarf_cmdlist;
23300
23301 static void
23302 set_dwarf_cmd (char *args, int from_tty)
23303 {
23304 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
23305 gdb_stdout);
23306 }
23307
23308 static void
23309 show_dwarf_cmd (char *args, int from_tty)
23310 {
23311 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
23312 }
23313
23314 /* Free data associated with OBJFILE, if necessary. */
23315
23316 static void
23317 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
23318 {
23319 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
23320 int ix;
23321
23322 /* Make sure we don't accidentally use dwarf2_per_objfile while
23323 cleaning up. */
23324 dwarf2_per_objfile = NULL;
23325
23326 for (ix = 0; ix < data->n_comp_units; ++ix)
23327 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
23328
23329 for (ix = 0; ix < data->n_type_units; ++ix)
23330 VEC_free (dwarf2_per_cu_ptr,
23331 data->all_type_units[ix]->per_cu.imported_symtabs);
23332 xfree (data->all_type_units);
23333
23334 VEC_free (dwarf2_section_info_def, data->types);
23335
23336 if (data->dwo_files)
23337 free_dwo_files (data->dwo_files, objfile);
23338 if (data->dwp_file)
23339 gdb_bfd_unref (data->dwp_file->dbfd);
23340
23341 if (data->dwz_file && data->dwz_file->dwz_bfd)
23342 gdb_bfd_unref (data->dwz_file->dwz_bfd);
23343 }
23344
23345 \f
23346 /* The "save gdb-index" command. */
23347
23348 /* In-memory buffer to prepare data to be written later to a file. */
23349 class data_buf
23350 {
23351 public:
23352 /* Copy DATA to the end of the buffer. */
23353 template<typename T>
23354 void append_data (const T &data)
23355 {
23356 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23357 reinterpret_cast<const gdb_byte *> (&data + 1),
23358 grow (sizeof (data)));
23359 }
23360
23361 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23362 terminating zero is appended too. */
23363 void append_cstr0 (const char *cstr)
23364 {
23365 const size_t size = strlen (cstr) + 1;
23366 std::copy (cstr, cstr + size, grow (size));
23367 }
23368
23369 /* Accept a host-format integer in VAL and append it to the buffer
23370 as a target-format integer which is LEN bytes long. */
23371 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23372 {
23373 ::store_unsigned_integer (grow (len), len, byte_order, val);
23374 }
23375
23376 /* Return the size of the buffer. */
23377 size_t size () const
23378 {
23379 return m_vec.size ();
23380 }
23381
23382 /* Write the buffer to FILE. */
23383 void file_write (FILE *file) const
23384 {
23385 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23386 error (_("couldn't write data to file"));
23387 }
23388
23389 private:
23390 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23391 the start of the new block. */
23392 gdb_byte *grow (size_t size)
23393 {
23394 m_vec.resize (m_vec.size () + size);
23395 return &*m_vec.end () - size;
23396 }
23397
23398 gdb::byte_vector m_vec;
23399 };
23400
23401 /* An entry in the symbol table. */
23402 struct symtab_index_entry
23403 {
23404 /* The name of the symbol. */
23405 const char *name;
23406 /* The offset of the name in the constant pool. */
23407 offset_type index_offset;
23408 /* A sorted vector of the indices of all the CUs that hold an object
23409 of this name. */
23410 std::vector<offset_type> cu_indices;
23411 };
23412
23413 /* The symbol table. This is a power-of-2-sized hash table. */
23414 struct mapped_symtab
23415 {
23416 mapped_symtab ()
23417 {
23418 data.resize (1024);
23419 }
23420
23421 offset_type n_elements = 0;
23422 std::vector<symtab_index_entry> data;
23423 };
23424
23425 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
23426 the slot.
23427
23428 Function is used only during write_hash_table so no index format backward
23429 compatibility is needed. */
23430
23431 static symtab_index_entry &
23432 find_slot (struct mapped_symtab *symtab, const char *name)
23433 {
23434 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
23435
23436 index = hash & (symtab->data.size () - 1);
23437 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
23438
23439 for (;;)
23440 {
23441 if (symtab->data[index].name == NULL
23442 || strcmp (name, symtab->data[index].name) == 0)
23443 return symtab->data[index];
23444 index = (index + step) & (symtab->data.size () - 1);
23445 }
23446 }
23447
23448 /* Expand SYMTAB's hash table. */
23449
23450 static void
23451 hash_expand (struct mapped_symtab *symtab)
23452 {
23453 auto old_entries = std::move (symtab->data);
23454
23455 symtab->data.clear ();
23456 symtab->data.resize (old_entries.size () * 2);
23457
23458 for (auto &it : old_entries)
23459 if (it.name != NULL)
23460 {
23461 auto &ref = find_slot (symtab, it.name);
23462 ref = std::move (it);
23463 }
23464 }
23465
23466 /* Add an entry to SYMTAB. NAME is the name of the symbol.
23467 CU_INDEX is the index of the CU in which the symbol appears.
23468 IS_STATIC is one if the symbol is static, otherwise zero (global). */
23469
23470 static void
23471 add_index_entry (struct mapped_symtab *symtab, const char *name,
23472 int is_static, gdb_index_symbol_kind kind,
23473 offset_type cu_index)
23474 {
23475 offset_type cu_index_and_attrs;
23476
23477 ++symtab->n_elements;
23478 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
23479 hash_expand (symtab);
23480
23481 symtab_index_entry &slot = find_slot (symtab, name);
23482 if (slot.name == NULL)
23483 {
23484 slot.name = name;
23485 /* index_offset is set later. */
23486 }
23487
23488 cu_index_and_attrs = 0;
23489 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23490 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23491 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23492
23493 /* We don't want to record an index value twice as we want to avoid the
23494 duplication.
23495 We process all global symbols and then all static symbols
23496 (which would allow us to avoid the duplication by only having to check
23497 the last entry pushed), but a symbol could have multiple kinds in one CU.
23498 To keep things simple we don't worry about the duplication here and
23499 sort and uniqufy the list after we've processed all symbols. */
23500 slot.cu_indices.push_back (cu_index_and_attrs);
23501 }
23502
23503 /* Sort and remove duplicates of all symbols' cu_indices lists. */
23504
23505 static void
23506 uniquify_cu_indices (struct mapped_symtab *symtab)
23507 {
23508 for (auto &entry : symtab->data)
23509 {
23510 if (entry.name != NULL && !entry.cu_indices.empty ())
23511 {
23512 auto &cu_indices = entry.cu_indices;
23513 std::sort (cu_indices.begin (), cu_indices.end ());
23514 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23515 cu_indices.erase (from, cu_indices.end ());
23516 }
23517 }
23518 }
23519
23520 /* A form of 'const char *' suitable for container keys. Only the
23521 pointer is stored. The strings themselves are compared, not the
23522 pointers. */
23523 class c_str_view
23524 {
23525 public:
23526 c_str_view (const char *cstr)
23527 : m_cstr (cstr)
23528 {}
23529
23530 bool operator== (const c_str_view &other) const
23531 {
23532 return strcmp (m_cstr, other.m_cstr) == 0;
23533 }
23534
23535 private:
23536 friend class c_str_view_hasher;
23537 const char *const m_cstr;
23538 };
23539
23540 /* A std::unordered_map::hasher for c_str_view that uses the right
23541 hash function for strings in a mapped index. */
23542 class c_str_view_hasher
23543 {
23544 public:
23545 size_t operator () (const c_str_view &x) const
23546 {
23547 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23548 }
23549 };
23550
23551 /* A std::unordered_map::hasher for std::vector<>. */
23552 template<typename T>
23553 class vector_hasher
23554 {
23555 public:
23556 size_t operator () (const std::vector<T> &key) const
23557 {
23558 return iterative_hash (key.data (),
23559 sizeof (key.front ()) * key.size (), 0);
23560 }
23561 };
23562
23563 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23564 constant pool entries going into the data buffer CPOOL. */
23565
23566 static void
23567 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23568 {
23569 {
23570 /* Elements are sorted vectors of the indices of all the CUs that
23571 hold an object of this name. */
23572 std::unordered_map<std::vector<offset_type>, offset_type,
23573 vector_hasher<offset_type>>
23574 symbol_hash_table;
23575
23576 /* We add all the index vectors to the constant pool first, to
23577 ensure alignment is ok. */
23578 for (symtab_index_entry &entry : symtab->data)
23579 {
23580 if (entry.name == NULL)
23581 continue;
23582 gdb_assert (entry.index_offset == 0);
23583
23584 /* Finding before inserting is faster than always trying to
23585 insert, because inserting always allocates a node, does the
23586 lookup, and then destroys the new node if another node
23587 already had the same key. C++17 try_emplace will avoid
23588 this. */
23589 const auto found
23590 = symbol_hash_table.find (entry.cu_indices);
23591 if (found != symbol_hash_table.end ())
23592 {
23593 entry.index_offset = found->second;
23594 continue;
23595 }
23596
23597 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23598 entry.index_offset = cpool.size ();
23599 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23600 for (const auto index : entry.cu_indices)
23601 cpool.append_data (MAYBE_SWAP (index));
23602 }
23603 }
23604
23605 /* Now write out the hash table. */
23606 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
23607 for (const auto &entry : symtab->data)
23608 {
23609 offset_type str_off, vec_off;
23610
23611 if (entry.name != NULL)
23612 {
23613 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
23614 if (insertpair.second)
23615 cpool.append_cstr0 (entry.name);
23616 str_off = insertpair.first->second;
23617 vec_off = entry.index_offset;
23618 }
23619 else
23620 {
23621 /* While 0 is a valid constant pool index, it is not valid
23622 to have 0 for both offsets. */
23623 str_off = 0;
23624 vec_off = 0;
23625 }
23626
23627 output.append_data (MAYBE_SWAP (str_off));
23628 output.append_data (MAYBE_SWAP (vec_off));
23629 }
23630 }
23631
23632 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
23633
23634 /* Helper struct for building the address table. */
23635 struct addrmap_index_data
23636 {
23637 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23638 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23639 {}
23640
23641 struct objfile *objfile;
23642 data_buf &addr_vec;
23643 psym_index_map &cu_index_htab;
23644
23645 /* Non-zero if the previous_* fields are valid.
23646 We can't write an entry until we see the next entry (since it is only then
23647 that we know the end of the entry). */
23648 int previous_valid;
23649 /* Index of the CU in the table of all CUs in the index file. */
23650 unsigned int previous_cu_index;
23651 /* Start address of the CU. */
23652 CORE_ADDR previous_cu_start;
23653 };
23654
23655 /* Write an address entry to ADDR_VEC. */
23656
23657 static void
23658 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
23659 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23660 {
23661 CORE_ADDR baseaddr;
23662
23663 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23664
23665 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23666 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
23667 addr_vec.append_data (MAYBE_SWAP (cu_index));
23668 }
23669
23670 /* Worker function for traversing an addrmap to build the address table. */
23671
23672 static int
23673 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23674 {
23675 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23676 struct partial_symtab *pst = (struct partial_symtab *) obj;
23677
23678 if (data->previous_valid)
23679 add_address_entry (data->objfile, data->addr_vec,
23680 data->previous_cu_start, start_addr,
23681 data->previous_cu_index);
23682
23683 data->previous_cu_start = start_addr;
23684 if (pst != NULL)
23685 {
23686 const auto it = data->cu_index_htab.find (pst);
23687 gdb_assert (it != data->cu_index_htab.cend ());
23688 data->previous_cu_index = it->second;
23689 data->previous_valid = 1;
23690 }
23691 else
23692 data->previous_valid = 0;
23693
23694 return 0;
23695 }
23696
23697 /* Write OBJFILE's address map to ADDR_VEC.
23698 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23699 in the index file. */
23700
23701 static void
23702 write_address_map (struct objfile *objfile, data_buf &addr_vec,
23703 psym_index_map &cu_index_htab)
23704 {
23705 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
23706
23707 /* When writing the address table, we have to cope with the fact that
23708 the addrmap iterator only provides the start of a region; we have to
23709 wait until the next invocation to get the start of the next region. */
23710
23711 addrmap_index_data.objfile = objfile;
23712 addrmap_index_data.previous_valid = 0;
23713
23714 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23715 &addrmap_index_data);
23716
23717 /* It's highly unlikely the last entry (end address = 0xff...ff)
23718 is valid, but we should still handle it.
23719 The end address is recorded as the start of the next region, but that
23720 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23721 anyway. */
23722 if (addrmap_index_data.previous_valid)
23723 add_address_entry (objfile, addr_vec,
23724 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23725 addrmap_index_data.previous_cu_index);
23726 }
23727
23728 /* Return the symbol kind of PSYM. */
23729
23730 static gdb_index_symbol_kind
23731 symbol_kind (struct partial_symbol *psym)
23732 {
23733 domain_enum domain = PSYMBOL_DOMAIN (psym);
23734 enum address_class aclass = PSYMBOL_CLASS (psym);
23735
23736 switch (domain)
23737 {
23738 case VAR_DOMAIN:
23739 switch (aclass)
23740 {
23741 case LOC_BLOCK:
23742 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23743 case LOC_TYPEDEF:
23744 return GDB_INDEX_SYMBOL_KIND_TYPE;
23745 case LOC_COMPUTED:
23746 case LOC_CONST_BYTES:
23747 case LOC_OPTIMIZED_OUT:
23748 case LOC_STATIC:
23749 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23750 case LOC_CONST:
23751 /* Note: It's currently impossible to recognize psyms as enum values
23752 short of reading the type info. For now punt. */
23753 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23754 default:
23755 /* There are other LOC_FOO values that one might want to classify
23756 as variables, but dwarf2read.c doesn't currently use them. */
23757 return GDB_INDEX_SYMBOL_KIND_OTHER;
23758 }
23759 case STRUCT_DOMAIN:
23760 return GDB_INDEX_SYMBOL_KIND_TYPE;
23761 default:
23762 return GDB_INDEX_SYMBOL_KIND_OTHER;
23763 }
23764 }
23765
23766 /* Add a list of partial symbols to SYMTAB. */
23767
23768 static void
23769 write_psymbols (struct mapped_symtab *symtab,
23770 std::unordered_set<partial_symbol *> &psyms_seen,
23771 struct partial_symbol **psymp,
23772 int count,
23773 offset_type cu_index,
23774 int is_static)
23775 {
23776 for (; count-- > 0; ++psymp)
23777 {
23778 struct partial_symbol *psym = *psymp;
23779
23780 if (SYMBOL_LANGUAGE (psym) == language_ada)
23781 error (_("Ada is not currently supported by the index"));
23782
23783 /* Only add a given psymbol once. */
23784 if (psyms_seen.insert (psym).second)
23785 {
23786 gdb_index_symbol_kind kind = symbol_kind (psym);
23787
23788 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23789 is_static, kind, cu_index);
23790 }
23791 }
23792 }
23793
23794 /* A helper struct used when iterating over debug_types. */
23795 struct signatured_type_index_data
23796 {
23797 signatured_type_index_data (data_buf &types_list_,
23798 std::unordered_set<partial_symbol *> &psyms_seen_)
23799 : types_list (types_list_), psyms_seen (psyms_seen_)
23800 {}
23801
23802 struct objfile *objfile;
23803 struct mapped_symtab *symtab;
23804 data_buf &types_list;
23805 std::unordered_set<partial_symbol *> &psyms_seen;
23806 int cu_index;
23807 };
23808
23809 /* A helper function that writes a single signatured_type to an
23810 obstack. */
23811
23812 static int
23813 write_one_signatured_type (void **slot, void *d)
23814 {
23815 struct signatured_type_index_data *info
23816 = (struct signatured_type_index_data *) d;
23817 struct signatured_type *entry = (struct signatured_type *) *slot;
23818 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23819
23820 write_psymbols (info->symtab,
23821 info->psyms_seen,
23822 info->objfile->global_psymbols.list
23823 + psymtab->globals_offset,
23824 psymtab->n_global_syms, info->cu_index,
23825 0);
23826 write_psymbols (info->symtab,
23827 info->psyms_seen,
23828 info->objfile->static_psymbols.list
23829 + psymtab->statics_offset,
23830 psymtab->n_static_syms, info->cu_index,
23831 1);
23832
23833 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23834 to_underlying (entry->per_cu.sect_off));
23835 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23836 to_underlying (entry->type_offset_in_tu));
23837 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
23838
23839 ++info->cu_index;
23840
23841 return 1;
23842 }
23843
23844 /* Recurse into all "included" dependencies and count their symbols as
23845 if they appeared in this psymtab. */
23846
23847 static void
23848 recursively_count_psymbols (struct partial_symtab *psymtab,
23849 size_t &psyms_seen)
23850 {
23851 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
23852 if (psymtab->dependencies[i]->user != NULL)
23853 recursively_count_psymbols (psymtab->dependencies[i],
23854 psyms_seen);
23855
23856 psyms_seen += psymtab->n_global_syms;
23857 psyms_seen += psymtab->n_static_syms;
23858 }
23859
23860 /* Recurse into all "included" dependencies and write their symbols as
23861 if they appeared in this psymtab. */
23862
23863 static void
23864 recursively_write_psymbols (struct objfile *objfile,
23865 struct partial_symtab *psymtab,
23866 struct mapped_symtab *symtab,
23867 std::unordered_set<partial_symbol *> &psyms_seen,
23868 offset_type cu_index)
23869 {
23870 int i;
23871
23872 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23873 if (psymtab->dependencies[i]->user != NULL)
23874 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23875 symtab, psyms_seen, cu_index);
23876
23877 write_psymbols (symtab,
23878 psyms_seen,
23879 objfile->global_psymbols.list + psymtab->globals_offset,
23880 psymtab->n_global_syms, cu_index,
23881 0);
23882 write_psymbols (symtab,
23883 psyms_seen,
23884 objfile->static_psymbols.list + psymtab->statics_offset,
23885 psymtab->n_static_syms, cu_index,
23886 1);
23887 }
23888
23889 /* Create an index file for OBJFILE in the directory DIR. */
23890
23891 static void
23892 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23893 {
23894 if (dwarf2_per_objfile->using_index)
23895 error (_("Cannot use an index to create the index"));
23896
23897 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23898 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23899
23900 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23901 return;
23902
23903 struct stat st;
23904 if (stat (objfile_name (objfile), &st) < 0)
23905 perror_with_name (objfile_name (objfile));
23906
23907 std::string filename (std::string (dir) + SLASH_STRING
23908 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
23909
23910 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
23911 if (!out_file)
23912 error (_("Can't open `%s' for writing"), filename.c_str ());
23913
23914 /* Order matters here; we want FILE to be closed before FILENAME is
23915 unlinked, because on MS-Windows one cannot delete a file that is
23916 still open. (Don't call anything here that might throw until
23917 file_closer is created.) */
23918 gdb::unlinker unlink_file (filename.c_str ());
23919 gdb_file_up close_out_file (out_file);
23920
23921 mapped_symtab symtab;
23922 data_buf cu_list;
23923
23924 /* While we're scanning CU's create a table that maps a psymtab pointer
23925 (which is what addrmap records) to its index (which is what is recorded
23926 in the index file). This will later be needed to write the address
23927 table. */
23928 psym_index_map cu_index_htab;
23929 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
23930
23931 /* The CU list is already sorted, so we don't need to do additional
23932 work here. Also, the debug_types entries do not appear in
23933 all_comp_units, but only in their own hash table. */
23934
23935 /* The psyms_seen set is potentially going to be largish (~40k
23936 elements when indexing a -g3 build of GDB itself). Estimate the
23937 number of elements in order to avoid too many rehashes, which
23938 require rebuilding buckets and thus many trips to
23939 malloc/free. */
23940 size_t psyms_count = 0;
23941 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23942 {
23943 struct dwarf2_per_cu_data *per_cu
23944 = dwarf2_per_objfile->all_comp_units[i];
23945 struct partial_symtab *psymtab = per_cu->v.psymtab;
23946
23947 if (psymtab != NULL && psymtab->user == NULL)
23948 recursively_count_psymbols (psymtab, psyms_count);
23949 }
23950 /* Generating an index for gdb itself shows a ratio of
23951 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
23952 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
23953 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23954 {
23955 struct dwarf2_per_cu_data *per_cu
23956 = dwarf2_per_objfile->all_comp_units[i];
23957 struct partial_symtab *psymtab = per_cu->v.psymtab;
23958
23959 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23960 It may be referenced from a local scope but in such case it does not
23961 need to be present in .gdb_index. */
23962 if (psymtab == NULL)
23963 continue;
23964
23965 if (psymtab->user == NULL)
23966 recursively_write_psymbols (objfile, psymtab, &symtab,
23967 psyms_seen, i);
23968
23969 const auto insertpair = cu_index_htab.emplace (psymtab, i);
23970 gdb_assert (insertpair.second);
23971
23972 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
23973 to_underlying (per_cu->sect_off));
23974 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
23975 }
23976
23977 /* Dump the address map. */
23978 data_buf addr_vec;
23979 write_address_map (objfile, addr_vec, cu_index_htab);
23980
23981 /* Write out the .debug_type entries, if any. */
23982 data_buf types_cu_list;
23983 if (dwarf2_per_objfile->signatured_types)
23984 {
23985 signatured_type_index_data sig_data (types_cu_list,
23986 psyms_seen);
23987
23988 sig_data.objfile = objfile;
23989 sig_data.symtab = &symtab;
23990 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23991 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23992 write_one_signatured_type, &sig_data);
23993 }
23994
23995 /* Now that we've processed all symbols we can shrink their cu_indices
23996 lists. */
23997 uniquify_cu_indices (&symtab);
23998
23999 data_buf symtab_vec, constant_pool;
24000 write_hash_table (&symtab, symtab_vec, constant_pool);
24001
24002 data_buf contents;
24003 const offset_type size_of_contents = 6 * sizeof (offset_type);
24004 offset_type total_len = size_of_contents;
24005
24006 /* The version number. */
24007 contents.append_data (MAYBE_SWAP (8));
24008
24009 /* The offset of the CU list from the start of the file. */
24010 contents.append_data (MAYBE_SWAP (total_len));
24011 total_len += cu_list.size ();
24012
24013 /* The offset of the types CU list from the start of the file. */
24014 contents.append_data (MAYBE_SWAP (total_len));
24015 total_len += types_cu_list.size ();
24016
24017 /* The offset of the address table from the start of the file. */
24018 contents.append_data (MAYBE_SWAP (total_len));
24019 total_len += addr_vec.size ();
24020
24021 /* The offset of the symbol table from the start of the file. */
24022 contents.append_data (MAYBE_SWAP (total_len));
24023 total_len += symtab_vec.size ();
24024
24025 /* The offset of the constant pool from the start of the file. */
24026 contents.append_data (MAYBE_SWAP (total_len));
24027 total_len += constant_pool.size ();
24028
24029 gdb_assert (contents.size () == size_of_contents);
24030
24031 contents.file_write (out_file);
24032 cu_list.file_write (out_file);
24033 types_cu_list.file_write (out_file);
24034 addr_vec.file_write (out_file);
24035 symtab_vec.file_write (out_file);
24036 constant_pool.file_write (out_file);
24037
24038 /* We want to keep the file. */
24039 unlink_file.keep ();
24040 }
24041
24042 /* Implementation of the `save gdb-index' command.
24043
24044 Note that the file format used by this command is documented in the
24045 GDB manual. Any changes here must be documented there. */
24046
24047 static void
24048 save_gdb_index_command (char *arg, int from_tty)
24049 {
24050 struct objfile *objfile;
24051
24052 if (!arg || !*arg)
24053 error (_("usage: save gdb-index DIRECTORY"));
24054
24055 ALL_OBJFILES (objfile)
24056 {
24057 struct stat st;
24058
24059 /* If the objfile does not correspond to an actual file, skip it. */
24060 if (stat (objfile_name (objfile), &st) < 0)
24061 continue;
24062
24063 dwarf2_per_objfile
24064 = (struct dwarf2_per_objfile *) objfile_data (objfile,
24065 dwarf2_objfile_data_key);
24066 if (dwarf2_per_objfile)
24067 {
24068
24069 TRY
24070 {
24071 write_psymtabs_to_index (objfile, arg);
24072 }
24073 CATCH (except, RETURN_MASK_ERROR)
24074 {
24075 exception_fprintf (gdb_stderr, except,
24076 _("Error while writing index for `%s': "),
24077 objfile_name (objfile));
24078 }
24079 END_CATCH
24080 }
24081 }
24082 }
24083
24084 \f
24085
24086 int dwarf_always_disassemble;
24087
24088 static void
24089 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
24090 struct cmd_list_element *c, const char *value)
24091 {
24092 fprintf_filtered (file,
24093 _("Whether to always disassemble "
24094 "DWARF expressions is %s.\n"),
24095 value);
24096 }
24097
24098 static void
24099 show_check_physname (struct ui_file *file, int from_tty,
24100 struct cmd_list_element *c, const char *value)
24101 {
24102 fprintf_filtered (file,
24103 _("Whether to check \"physname\" is %s.\n"),
24104 value);
24105 }
24106
24107 void _initialize_dwarf2_read (void);
24108
24109 void
24110 _initialize_dwarf2_read (void)
24111 {
24112 struct cmd_list_element *c;
24113
24114 dwarf2_objfile_data_key
24115 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
24116
24117 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24118 Set DWARF specific variables.\n\
24119 Configure DWARF variables such as the cache size"),
24120 &set_dwarf_cmdlist, "maintenance set dwarf ",
24121 0/*allow-unknown*/, &maintenance_set_cmdlist);
24122
24123 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24124 Show DWARF specific variables\n\
24125 Show DWARF variables such as the cache size"),
24126 &show_dwarf_cmdlist, "maintenance show dwarf ",
24127 0/*allow-unknown*/, &maintenance_show_cmdlist);
24128
24129 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24130 &dwarf_max_cache_age, _("\
24131 Set the upper bound on the age of cached DWARF compilation units."), _("\
24132 Show the upper bound on the age of cached DWARF compilation units."), _("\
24133 A higher limit means that cached compilation units will be stored\n\
24134 in memory longer, and more total memory will be used. Zero disables\n\
24135 caching, which can slow down startup."),
24136 NULL,
24137 show_dwarf_max_cache_age,
24138 &set_dwarf_cmdlist,
24139 &show_dwarf_cmdlist);
24140
24141 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
24142 &dwarf_always_disassemble, _("\
24143 Set whether `info address' always disassembles DWARF expressions."), _("\
24144 Show whether `info address' always disassembles DWARF expressions."), _("\
24145 When enabled, DWARF expressions are always printed in an assembly-like\n\
24146 syntax. When disabled, expressions will be printed in a more\n\
24147 conversational style, when possible."),
24148 NULL,
24149 show_dwarf_always_disassemble,
24150 &set_dwarf_cmdlist,
24151 &show_dwarf_cmdlist);
24152
24153 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24154 Set debugging of the DWARF reader."), _("\
24155 Show debugging of the DWARF reader."), _("\
24156 When enabled (non-zero), debugging messages are printed during DWARF\n\
24157 reading and symtab expansion. A value of 1 (one) provides basic\n\
24158 information. A value greater than 1 provides more verbose information."),
24159 NULL,
24160 NULL,
24161 &setdebuglist, &showdebuglist);
24162
24163 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24164 Set debugging of the DWARF DIE reader."), _("\
24165 Show debugging of the DWARF DIE reader."), _("\
24166 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24167 The value is the maximum depth to print."),
24168 NULL,
24169 NULL,
24170 &setdebuglist, &showdebuglist);
24171
24172 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24173 Set debugging of the dwarf line reader."), _("\
24174 Show debugging of the dwarf line reader."), _("\
24175 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24176 A value of 1 (one) provides basic information.\n\
24177 A value greater than 1 provides more verbose information."),
24178 NULL,
24179 NULL,
24180 &setdebuglist, &showdebuglist);
24181
24182 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24183 Set cross-checking of \"physname\" code against demangler."), _("\
24184 Show cross-checking of \"physname\" code against demangler."), _("\
24185 When enabled, GDB's internal \"physname\" code is checked against\n\
24186 the demangler."),
24187 NULL, show_check_physname,
24188 &setdebuglist, &showdebuglist);
24189
24190 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24191 no_class, &use_deprecated_index_sections, _("\
24192 Set whether to use deprecated gdb_index sections."), _("\
24193 Show whether to use deprecated gdb_index sections."), _("\
24194 When enabled, deprecated .gdb_index sections are used anyway.\n\
24195 Normally they are ignored either because of a missing feature or\n\
24196 performance issue.\n\
24197 Warning: This option must be enabled before gdb reads the file."),
24198 NULL,
24199 NULL,
24200 &setlist, &showlist);
24201
24202 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
24203 _("\
24204 Save a gdb-index file.\n\
24205 Usage: save gdb-index DIRECTORY"),
24206 &save_cmdlist);
24207 set_cmd_completer (c, filename_completer);
24208
24209 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24210 &dwarf2_locexpr_funcs);
24211 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24212 &dwarf2_loclist_funcs);
24213
24214 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24215 &dwarf2_block_frame_base_locexpr_funcs);
24216 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24217 &dwarf2_block_frame_base_loclist_funcs);
24218 }