]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarfread.c
Initial creation of sourceware repository
[thirdparty/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1998
3 Free Software Foundation, Inc.
4 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
5 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24
25 FIXME: Do we need to generate dependencies in partial symtabs?
26 (Perhaps we don't need to).
27
28 FIXME: Resolve minor differences between what information we put in the
29 partial symbol table and what dbxread puts in. For example, we don't yet
30 put enum constants there. And dbxread seems to invent a lot of typedefs
31 we never see. Use the new printpsym command to see the partial symbol table
32 contents.
33
34 FIXME: Figure out a better way to tell gdb about the name of the function
35 contain the user's entry point (I.E. main())
36
37 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
38 other things to work on, if you get bored. :-)
39
40 */
41
42 #include "defs.h"
43 #include "symtab.h"
44 #include "gdbtypes.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "elf/dwarf.h"
48 #include "buildsym.h"
49 #include "demangle.h"
50 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
51 #include "language.h"
52 #include "complaints.h"
53
54 #include <fcntl.h>
55 #include "gdb_string.h"
56
57 /* Some macros to provide DIE info for complaints. */
58
59 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
60 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
61
62 /* Complaints that can be issued during DWARF debug info reading. */
63
64 struct complaint no_bfd_get_N =
65 {
66 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
67 };
68
69 struct complaint malformed_die =
70 {
71 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
72 };
73
74 struct complaint bad_die_ref =
75 {
76 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
77 };
78
79 struct complaint unknown_attribute_form =
80 {
81 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
82 };
83
84 struct complaint unknown_attribute_length =
85 {
86 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
87 };
88
89 struct complaint unexpected_fund_type =
90 {
91 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
92 };
93
94 struct complaint unknown_type_modifier =
95 {
96 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
97 };
98
99 struct complaint volatile_ignored =
100 {
101 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
102 };
103
104 struct complaint const_ignored =
105 {
106 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
107 };
108
109 struct complaint botched_modified_type =
110 {
111 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
112 };
113
114 struct complaint op_deref2 =
115 {
116 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
117 };
118
119 struct complaint op_deref4 =
120 {
121 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
122 };
123
124 struct complaint basereg_not_handled =
125 {
126 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
127 };
128
129 struct complaint dup_user_type_allocation =
130 {
131 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
132 };
133
134 struct complaint dup_user_type_definition =
135 {
136 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
137 };
138
139 struct complaint missing_tag =
140 {
141 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
142 };
143
144 struct complaint bad_array_element_type =
145 {
146 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
147 };
148
149 struct complaint subscript_data_items =
150 {
151 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
152 };
153
154 struct complaint unhandled_array_subscript_format =
155 {
156 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
157 };
158
159 struct complaint unknown_array_subscript_format =
160 {
161 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
162 };
163
164 struct complaint not_row_major =
165 {
166 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
167 };
168
169 struct complaint missing_at_name =
170 {
171 "DIE @ 0x%x, AT_name tag missing", 0, 0
172 };
173
174 typedef unsigned int DIE_REF; /* Reference to a DIE */
175
176 #ifndef GCC_PRODUCER
177 #define GCC_PRODUCER "GNU C "
178 #endif
179
180 #ifndef GPLUS_PRODUCER
181 #define GPLUS_PRODUCER "GNU C++ "
182 #endif
183
184 #ifndef LCC_PRODUCER
185 #define LCC_PRODUCER "NCR C/C++"
186 #endif
187
188 #ifndef CHILL_PRODUCER
189 #define CHILL_PRODUCER "GNU Chill "
190 #endif
191
192 /* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
193 #ifndef DWARF_REG_TO_REGNUM
194 #define DWARF_REG_TO_REGNUM(num) (num)
195 #endif
196
197 /* Flags to target_to_host() that tell whether or not the data object is
198 expected to be signed. Used, for example, when fetching a signed
199 integer in the target environment which is used as a signed integer
200 in the host environment, and the two environments have different sized
201 ints. In this case, *somebody* has to sign extend the smaller sized
202 int. */
203
204 #define GET_UNSIGNED 0 /* No sign extension required */
205 #define GET_SIGNED 1 /* Sign extension required */
206
207 /* Defines for things which are specified in the document "DWARF Debugging
208 Information Format" published by UNIX International, Programming Languages
209 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
210
211 #define SIZEOF_DIE_LENGTH 4
212 #define SIZEOF_DIE_TAG 2
213 #define SIZEOF_ATTRIBUTE 2
214 #define SIZEOF_FORMAT_SPECIFIER 1
215 #define SIZEOF_FMT_FT 2
216 #define SIZEOF_LINETBL_LENGTH 4
217 #define SIZEOF_LINETBL_LINENO 4
218 #define SIZEOF_LINETBL_STMT 2
219 #define SIZEOF_LINETBL_DELTA 4
220 #define SIZEOF_LOC_ATOM_CODE 1
221
222 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
223
224 /* Macros that return the sizes of various types of data in the target
225 environment.
226
227 FIXME: Currently these are just compile time constants (as they are in
228 other parts of gdb as well). They need to be able to get the right size
229 either from the bfd or possibly from the DWARF info. It would be nice if
230 the DWARF producer inserted DIES that describe the fundamental types in
231 the target environment into the DWARF info, similar to the way dbx stabs
232 producers produce information about their fundamental types. */
233
234 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
235 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
236
237 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
238 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
239 However, the Issue 2 DWARF specification from AT&T defines it as
240 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
241 For backwards compatibility with the AT&T compiler produced executables
242 we define AT_short_element_list for this variant. */
243
244 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
245
246 /* External variables referenced. */
247
248 extern int info_verbose; /* From main.c; nonzero => verbose */
249 extern char *warning_pre_print; /* From utils.c */
250
251 /* The DWARF debugging information consists of two major pieces,
252 one is a block of DWARF Information Entries (DIE's) and the other
253 is a line number table. The "struct dieinfo" structure contains
254 the information for a single DIE, the one currently being processed.
255
256 In order to make it easier to randomly access the attribute fields
257 of the current DIE, which are specifically unordered within the DIE,
258 each DIE is scanned and an instance of the "struct dieinfo"
259 structure is initialized.
260
261 Initialization is done in two levels. The first, done by basicdieinfo(),
262 just initializes those fields that are vital to deciding whether or not
263 to use this DIE, how to skip past it, etc. The second, done by the
264 function completedieinfo(), fills in the rest of the information.
265
266 Attributes which have block forms are not interpreted at the time
267 the DIE is scanned, instead we just save pointers to the start
268 of their value fields.
269
270 Some fields have a flag <name>_p that is set when the value of the
271 field is valid (I.E. we found a matching attribute in the DIE). Since
272 we may want to test for the presence of some attributes in the DIE,
273 such as AT_low_pc, without restricting the values of the field,
274 we need someway to note that we found such an attribute.
275
276 */
277
278 typedef char BLOCK;
279
280 struct dieinfo {
281 char * die; /* Pointer to the raw DIE data */
282 unsigned long die_length; /* Length of the raw DIE data */
283 DIE_REF die_ref; /* Offset of this DIE */
284 unsigned short die_tag; /* Tag for this DIE */
285 unsigned long at_padding;
286 unsigned long at_sibling;
287 BLOCK * at_location;
288 char * at_name;
289 unsigned short at_fund_type;
290 BLOCK * at_mod_fund_type;
291 unsigned long at_user_def_type;
292 BLOCK * at_mod_u_d_type;
293 unsigned short at_ordering;
294 BLOCK * at_subscr_data;
295 unsigned long at_byte_size;
296 unsigned short at_bit_offset;
297 unsigned long at_bit_size;
298 BLOCK * at_element_list;
299 unsigned long at_stmt_list;
300 CORE_ADDR at_low_pc;
301 CORE_ADDR at_high_pc;
302 unsigned long at_language;
303 unsigned long at_member;
304 unsigned long at_discr;
305 BLOCK * at_discr_value;
306 BLOCK * at_string_length;
307 char * at_comp_dir;
308 char * at_producer;
309 unsigned long at_start_scope;
310 unsigned long at_stride_size;
311 unsigned long at_src_info;
312 char * at_prototyped;
313 unsigned int has_at_low_pc:1;
314 unsigned int has_at_stmt_list:1;
315 unsigned int has_at_byte_size:1;
316 unsigned int short_element_list:1;
317
318 /* Kludge to identify register variables */
319
320 unsigned int isreg;
321
322 /* Kludge to identify optimized out variables */
323
324 unsigned int optimized_out;
325
326 /* Kludge to identify basereg references.
327 Nonzero if we have an offset relative to a basereg. */
328
329 unsigned int offreg;
330
331 /* Kludge to identify which base register is it relative to. */
332
333 unsigned int basereg;
334 };
335
336 static int diecount; /* Approximate count of dies for compilation unit */
337 static struct dieinfo *curdie; /* For warnings and such */
338
339 static char *dbbase; /* Base pointer to dwarf info */
340 static int dbsize; /* Size of dwarf info in bytes */
341 static int dbroff; /* Relative offset from start of .debug section */
342 static char *lnbase; /* Base pointer to line section */
343
344 /* This value is added to each symbol value. FIXME: Generalize to
345 the section_offsets structure used by dbxread (once this is done,
346 pass the appropriate section number to end_symtab). */
347 static CORE_ADDR baseaddr; /* Add to each symbol value */
348
349 /* The section offsets used in the current psymtab or symtab. FIXME,
350 only used to pass one value (baseaddr) at the moment. */
351 static struct section_offsets *base_section_offsets;
352
353 /* We put a pointer to this structure in the read_symtab_private field
354 of the psymtab. */
355
356 struct dwfinfo {
357 /* Always the absolute file offset to the start of the ".debug"
358 section for the file containing the DIE's being accessed. */
359 file_ptr dbfoff;
360 /* Relative offset from the start of the ".debug" section to the
361 first DIE to be accessed. When building the partial symbol
362 table, this value will be zero since we are accessing the
363 entire ".debug" section. When expanding a partial symbol
364 table entry, this value will be the offset to the first
365 DIE for the compilation unit containing the symbol that
366 triggers the expansion. */
367 int dbroff;
368 /* The size of the chunk of DIE's being examined, in bytes. */
369 int dblength;
370 /* The absolute file offset to the line table fragment. Ignored
371 when building partial symbol tables, but used when expanding
372 them, and contains the absolute file offset to the fragment
373 of the ".line" section containing the line numbers for the
374 current compilation unit. */
375 file_ptr lnfoff;
376 };
377
378 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
379 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
380 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
381 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
382
383 /* The generic symbol table building routines have separate lists for
384 file scope symbols and all all other scopes (local scopes). So
385 we need to select the right one to pass to add_symbol_to_list().
386 We do it by keeping a pointer to the correct list in list_in_scope.
387
388 FIXME: The original dwarf code just treated the file scope as the first
389 local scope, and all other local scopes as nested local scopes, and worked
390 fine. Check to see if we really need to distinguish these in buildsym.c */
391
392 struct pending **list_in_scope = &file_symbols;
393
394 /* DIES which have user defined types or modified user defined types refer to
395 other DIES for the type information. Thus we need to associate the offset
396 of a DIE for a user defined type with a pointer to the type information.
397
398 Originally this was done using a simple but expensive algorithm, with an
399 array of unsorted structures, each containing an offset/type-pointer pair.
400 This array was scanned linearly each time a lookup was done. The result
401 was that gdb was spending over half it's startup time munging through this
402 array of pointers looking for a structure that had the right offset member.
403
404 The second attempt used the same array of structures, but the array was
405 sorted using qsort each time a new offset/type was recorded, and a binary
406 search was used to find the type pointer for a given DIE offset. This was
407 even slower, due to the overhead of sorting the array each time a new
408 offset/type pair was entered.
409
410 The third attempt uses a fixed size array of type pointers, indexed by a
411 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
412 we can divide any DIE offset by 4 to obtain a unique index into this fixed
413 size array. Since each element is a 4 byte pointer, it takes exactly as
414 much memory to hold this array as to hold the DWARF info for a given
415 compilation unit. But it gets freed as soon as we are done with it.
416 This has worked well in practice, as a reasonable tradeoff between memory
417 consumption and speed, without having to resort to much more complicated
418 algorithms. */
419
420 static struct type **utypes; /* Pointer to array of user type pointers */
421 static int numutypes; /* Max number of user type pointers */
422
423 /* Maintain an array of referenced fundamental types for the current
424 compilation unit being read. For DWARF version 1, we have to construct
425 the fundamental types on the fly, since no information about the
426 fundamental types is supplied. Each such fundamental type is created by
427 calling a language dependent routine to create the type, and then a
428 pointer to that type is then placed in the array at the index specified
429 by it's FT_<TYPENAME> value. The array has a fixed size set by the
430 FT_NUM_MEMBERS compile time constant, which is the number of predefined
431 fundamental types gdb knows how to construct. */
432
433 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
434
435 /* Record the language for the compilation unit which is currently being
436 processed. We know it once we have seen the TAG_compile_unit DIE,
437 and we need it while processing the DIE's for that compilation unit.
438 It is eventually saved in the symtab structure, but we don't finalize
439 the symtab struct until we have processed all the DIE's for the
440 compilation unit. We also need to get and save a pointer to the
441 language struct for this language, so we can call the language
442 dependent routines for doing things such as creating fundamental
443 types. */
444
445 static enum language cu_language;
446 static const struct language_defn *cu_language_defn;
447
448 /* Forward declarations of static functions so we don't have to worry
449 about ordering within this file. */
450
451 static void
452 free_utypes PARAMS ((PTR));
453
454 static int
455 attribute_size PARAMS ((unsigned int));
456
457 static CORE_ADDR
458 target_to_host PARAMS ((char *, int, int, struct objfile *));
459
460 static void
461 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
462
463 static void
464 handle_producer PARAMS ((char *));
465
466 static void
467 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
468
469 static void
470 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
471
472 static void
473 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
474 struct objfile *));
475
476 static void
477 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
478
479 static void
480 scan_compilation_units PARAMS ((char *, char *, file_ptr,
481 file_ptr, struct objfile *));
482
483 static void
484 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
485
486 static void
487 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
488
489 static void
490 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
491
492 static void
493 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
494
495 static void
496 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
497
498 static void
499 read_ofile_symtab PARAMS ((struct partial_symtab *));
500
501 static void
502 process_dies PARAMS ((char *, char *, struct objfile *));
503
504 static void
505 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
506 struct objfile *));
507
508 static struct type *
509 decode_array_element_type PARAMS ((char *));
510
511 static struct type *
512 decode_subscript_data_item PARAMS ((char *, char *));
513
514 static void
515 dwarf_read_array_type PARAMS ((struct dieinfo *));
516
517 static void
518 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
519
520 static void
521 read_tag_string_type PARAMS ((struct dieinfo *dip));
522
523 static void
524 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
525
526 static void
527 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
528
529 static struct type *
530 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
531
532 static struct type *
533 enum_type PARAMS ((struct dieinfo *, struct objfile *));
534
535 static void
536 decode_line_numbers PARAMS ((char *));
537
538 static struct type *
539 decode_die_type PARAMS ((struct dieinfo *));
540
541 static struct type *
542 decode_mod_fund_type PARAMS ((char *));
543
544 static struct type *
545 decode_mod_u_d_type PARAMS ((char *));
546
547 static struct type *
548 decode_modified_type PARAMS ((char *, unsigned int, int));
549
550 static struct type *
551 decode_fund_type PARAMS ((unsigned int));
552
553 static char *
554 create_name PARAMS ((char *, struct obstack *));
555
556 static struct type *
557 lookup_utype PARAMS ((DIE_REF));
558
559 static struct type *
560 alloc_utype PARAMS ((DIE_REF, struct type *));
561
562 static struct symbol *
563 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
564
565 static void
566 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
567 struct type *));
568
569 static int
570 locval PARAMS ((struct dieinfo *));
571
572 static void
573 set_cu_language PARAMS ((struct dieinfo *));
574
575 static struct type *
576 dwarf_fundamental_type PARAMS ((struct objfile *, int));
577
578
579 /*
580
581 LOCAL FUNCTION
582
583 dwarf_fundamental_type -- lookup or create a fundamental type
584
585 SYNOPSIS
586
587 struct type *
588 dwarf_fundamental_type (struct objfile *objfile, int typeid)
589
590 DESCRIPTION
591
592 DWARF version 1 doesn't supply any fundamental type information,
593 so gdb has to construct such types. It has a fixed number of
594 fundamental types that it knows how to construct, which is the
595 union of all types that it knows how to construct for all languages
596 that it knows about. These are enumerated in gdbtypes.h.
597
598 As an example, assume we find a DIE that references a DWARF
599 fundamental type of FT_integer. We first look in the ftypes
600 array to see if we already have such a type, indexed by the
601 gdb internal value of FT_INTEGER. If so, we simply return a
602 pointer to that type. If not, then we ask an appropriate
603 language dependent routine to create a type FT_INTEGER, using
604 defaults reasonable for the current target machine, and install
605 that type in ftypes for future reference.
606
607 RETURNS
608
609 Pointer to a fundamental type.
610
611 */
612
613 static struct type *
614 dwarf_fundamental_type (objfile, typeid)
615 struct objfile *objfile;
616 int typeid;
617 {
618 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
619 {
620 error ("internal error - invalid fundamental type id %d", typeid);
621 }
622
623 /* Look for this particular type in the fundamental type vector. If one is
624 not found, create and install one appropriate for the current language
625 and the current target machine. */
626
627 if (ftypes[typeid] == NULL)
628 {
629 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
630 }
631
632 return (ftypes[typeid]);
633 }
634
635 /*
636
637 LOCAL FUNCTION
638
639 set_cu_language -- set local copy of language for compilation unit
640
641 SYNOPSIS
642
643 void
644 set_cu_language (struct dieinfo *dip)
645
646 DESCRIPTION
647
648 Decode the language attribute for a compilation unit DIE and
649 remember what the language was. We use this at various times
650 when processing DIE's for a given compilation unit.
651
652 RETURNS
653
654 No return value.
655
656 */
657
658 static void
659 set_cu_language (dip)
660 struct dieinfo *dip;
661 {
662 switch (dip -> at_language)
663 {
664 case LANG_C89:
665 case LANG_C:
666 cu_language = language_c;
667 break;
668 case LANG_C_PLUS_PLUS:
669 cu_language = language_cplus;
670 break;
671 case LANG_CHILL:
672 cu_language = language_chill;
673 break;
674 case LANG_MODULA2:
675 cu_language = language_m2;
676 break;
677 case LANG_FORTRAN77:
678 case LANG_FORTRAN90:
679 cu_language = language_fortran;
680 break;
681 case LANG_ADA83:
682 case LANG_COBOL74:
683 case LANG_COBOL85:
684 case LANG_PASCAL83:
685 /* We don't know anything special about these yet. */
686 cu_language = language_unknown;
687 break;
688 default:
689 /* If no at_language, try to deduce one from the filename */
690 cu_language = deduce_language_from_filename (dip -> at_name);
691 break;
692 }
693 cu_language_defn = language_def (cu_language);
694 }
695
696 /*
697
698 GLOBAL FUNCTION
699
700 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
701
702 SYNOPSIS
703
704 void dwarf_build_psymtabs (struct objfile *objfile,
705 struct section_offsets *section_offsets,
706 int mainline, file_ptr dbfoff, unsigned int dbfsize,
707 file_ptr lnoffset, unsigned int lnsize)
708
709 DESCRIPTION
710
711 This function is called upon to build partial symtabs from files
712 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
713
714 It is passed a bfd* containing the DIES
715 and line number information, the corresponding filename for that
716 file, a base address for relocating the symbols, a flag indicating
717 whether or not this debugging information is from a "main symbol
718 table" rather than a shared library or dynamically linked file,
719 and file offset/size pairs for the DIE information and line number
720 information.
721
722 RETURNS
723
724 No return value.
725
726 */
727
728 void
729 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
730 lnoffset, lnsize)
731 struct objfile *objfile;
732 struct section_offsets *section_offsets;
733 int mainline;
734 file_ptr dbfoff;
735 unsigned int dbfsize;
736 file_ptr lnoffset;
737 unsigned int lnsize;
738 {
739 bfd *abfd = objfile->obfd;
740 struct cleanup *back_to;
741
742 current_objfile = objfile;
743 dbsize = dbfsize;
744 dbbase = xmalloc (dbsize);
745 dbroff = 0;
746 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
747 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
748 {
749 free (dbbase);
750 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
751 }
752 back_to = make_cleanup (free, dbbase);
753
754 /* If we are reinitializing, or if we have never loaded syms yet, init.
755 Since we have no idea how many DIES we are looking at, we just guess
756 some arbitrary value. */
757
758 if (mainline || objfile -> global_psymbols.size == 0 ||
759 objfile -> static_psymbols.size == 0)
760 {
761 init_psymbol_list (objfile, 1024);
762 }
763
764 /* Save the relocation factor where everybody can see it. */
765
766 base_section_offsets = section_offsets;
767 baseaddr = ANOFFSET (section_offsets, 0);
768
769 /* Follow the compilation unit sibling chain, building a partial symbol
770 table entry for each one. Save enough information about each compilation
771 unit to locate the full DWARF information later. */
772
773 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
774
775 do_cleanups (back_to);
776 current_objfile = NULL;
777 }
778
779 /*
780
781 LOCAL FUNCTION
782
783 read_lexical_block_scope -- process all dies in a lexical block
784
785 SYNOPSIS
786
787 static void read_lexical_block_scope (struct dieinfo *dip,
788 char *thisdie, char *enddie)
789
790 DESCRIPTION
791
792 Process all the DIES contained within a lexical block scope.
793 Start a new scope, process the dies, and then close the scope.
794
795 */
796
797 static void
798 read_lexical_block_scope (dip, thisdie, enddie, objfile)
799 struct dieinfo *dip;
800 char *thisdie;
801 char *enddie;
802 struct objfile *objfile;
803 {
804 register struct context_stack *new;
805
806 push_context (0, dip -> at_low_pc);
807 process_dies (thisdie + dip -> die_length, enddie, objfile);
808 new = pop_context ();
809 if (local_symbols != NULL)
810 {
811 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
812 dip -> at_high_pc, objfile);
813 }
814 local_symbols = new -> locals;
815 }
816
817 /*
818
819 LOCAL FUNCTION
820
821 lookup_utype -- look up a user defined type from die reference
822
823 SYNOPSIS
824
825 static type *lookup_utype (DIE_REF die_ref)
826
827 DESCRIPTION
828
829 Given a DIE reference, lookup the user defined type associated with
830 that DIE, if it has been registered already. If not registered, then
831 return NULL. Alloc_utype() can be called to register an empty
832 type for this reference, which will be filled in later when the
833 actual referenced DIE is processed.
834 */
835
836 static struct type *
837 lookup_utype (die_ref)
838 DIE_REF die_ref;
839 {
840 struct type *type = NULL;
841 int utypeidx;
842
843 utypeidx = (die_ref - dbroff) / 4;
844 if ((utypeidx < 0) || (utypeidx >= numutypes))
845 {
846 complain (&bad_die_ref, DIE_ID, DIE_NAME);
847 }
848 else
849 {
850 type = *(utypes + utypeidx);
851 }
852 return (type);
853 }
854
855
856 /*
857
858 LOCAL FUNCTION
859
860 alloc_utype -- add a user defined type for die reference
861
862 SYNOPSIS
863
864 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
865
866 DESCRIPTION
867
868 Given a die reference DIE_REF, and a possible pointer to a user
869 defined type UTYPEP, register that this reference has a user
870 defined type and either use the specified type in UTYPEP or
871 make a new empty type that will be filled in later.
872
873 We should only be called after calling lookup_utype() to verify that
874 there is not currently a type registered for DIE_REF.
875 */
876
877 static struct type *
878 alloc_utype (die_ref, utypep)
879 DIE_REF die_ref;
880 struct type *utypep;
881 {
882 struct type **typep;
883 int utypeidx;
884
885 utypeidx = (die_ref - dbroff) / 4;
886 typep = utypes + utypeidx;
887 if ((utypeidx < 0) || (utypeidx >= numutypes))
888 {
889 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
890 complain (&bad_die_ref, DIE_ID, DIE_NAME);
891 }
892 else if (*typep != NULL)
893 {
894 utypep = *typep;
895 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
896 }
897 else
898 {
899 if (utypep == NULL)
900 {
901 utypep = alloc_type (current_objfile);
902 }
903 *typep = utypep;
904 }
905 return (utypep);
906 }
907
908 /*
909
910 LOCAL FUNCTION
911
912 free_utypes -- free the utypes array and reset pointer & count
913
914 SYNOPSIS
915
916 static void free_utypes (PTR dummy)
917
918 DESCRIPTION
919
920 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
921 and set numutypes back to zero. This ensures that the utypes does not get
922 referenced after being freed.
923 */
924
925 static void
926 free_utypes (dummy)
927 PTR dummy;
928 {
929 free (utypes);
930 utypes = NULL;
931 numutypes = 0;
932 }
933
934
935 /*
936
937 LOCAL FUNCTION
938
939 decode_die_type -- return a type for a specified die
940
941 SYNOPSIS
942
943 static struct type *decode_die_type (struct dieinfo *dip)
944
945 DESCRIPTION
946
947 Given a pointer to a die information structure DIP, decode the
948 type of the die and return a pointer to the decoded type. All
949 dies without specific types default to type int.
950 */
951
952 static struct type *
953 decode_die_type (dip)
954 struct dieinfo *dip;
955 {
956 struct type *type = NULL;
957
958 if (dip -> at_fund_type != 0)
959 {
960 type = decode_fund_type (dip -> at_fund_type);
961 }
962 else if (dip -> at_mod_fund_type != NULL)
963 {
964 type = decode_mod_fund_type (dip -> at_mod_fund_type);
965 }
966 else if (dip -> at_user_def_type)
967 {
968 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
969 {
970 type = alloc_utype (dip -> at_user_def_type, NULL);
971 }
972 }
973 else if (dip -> at_mod_u_d_type)
974 {
975 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
976 }
977 else
978 {
979 type = dwarf_fundamental_type (current_objfile, FT_VOID);
980 }
981 return (type);
982 }
983
984 /*
985
986 LOCAL FUNCTION
987
988 struct_type -- compute and return the type for a struct or union
989
990 SYNOPSIS
991
992 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
993 char *enddie, struct objfile *objfile)
994
995 DESCRIPTION
996
997 Given pointer to a die information structure for a die which
998 defines a union or structure (and MUST define one or the other),
999 and pointers to the raw die data that define the range of dies which
1000 define the members, compute and return the user defined type for the
1001 structure or union.
1002 */
1003
1004 static struct type *
1005 struct_type (dip, thisdie, enddie, objfile)
1006 struct dieinfo *dip;
1007 char *thisdie;
1008 char *enddie;
1009 struct objfile *objfile;
1010 {
1011 struct type *type;
1012 struct nextfield {
1013 struct nextfield *next;
1014 struct field field;
1015 };
1016 struct nextfield *list = NULL;
1017 struct nextfield *new;
1018 int nfields = 0;
1019 int n;
1020 struct dieinfo mbr;
1021 char *nextdie;
1022 int anonymous_size;
1023
1024 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1025 {
1026 /* No forward references created an empty type, so install one now */
1027 type = alloc_utype (dip -> die_ref, NULL);
1028 }
1029 INIT_CPLUS_SPECIFIC(type);
1030 switch (dip -> die_tag)
1031 {
1032 case TAG_class_type:
1033 TYPE_CODE (type) = TYPE_CODE_CLASS;
1034 break;
1035 case TAG_structure_type:
1036 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1037 break;
1038 case TAG_union_type:
1039 TYPE_CODE (type) = TYPE_CODE_UNION;
1040 break;
1041 default:
1042 /* Should never happen */
1043 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1044 complain (&missing_tag, DIE_ID, DIE_NAME);
1045 break;
1046 }
1047 /* Some compilers try to be helpful by inventing "fake" names for
1048 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1049 Thanks, but no thanks... */
1050 if (dip -> at_name != NULL
1051 && *dip -> at_name != '~'
1052 && *dip -> at_name != '.')
1053 {
1054 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1055 "", "", dip -> at_name);
1056 }
1057 /* Use whatever size is known. Zero is a valid size. We might however
1058 wish to check has_at_byte_size to make sure that some byte size was
1059 given explicitly, but DWARF doesn't specify that explicit sizes of
1060 zero have to present, so complaining about missing sizes should
1061 probably not be the default. */
1062 TYPE_LENGTH (type) = dip -> at_byte_size;
1063 thisdie += dip -> die_length;
1064 while (thisdie < enddie)
1065 {
1066 basicdieinfo (&mbr, thisdie, objfile);
1067 completedieinfo (&mbr, objfile);
1068 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1069 {
1070 break;
1071 }
1072 else if (mbr.at_sibling != 0)
1073 {
1074 nextdie = dbbase + mbr.at_sibling - dbroff;
1075 }
1076 else
1077 {
1078 nextdie = thisdie + mbr.die_length;
1079 }
1080 switch (mbr.die_tag)
1081 {
1082 case TAG_member:
1083 /* Get space to record the next field's data. */
1084 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1085 new -> next = list;
1086 list = new;
1087 /* Save the data. */
1088 list -> field.name =
1089 obsavestring (mbr.at_name, strlen (mbr.at_name),
1090 &objfile -> type_obstack);
1091 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1092 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1093 /* Handle bit fields. */
1094 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1095 if (BITS_BIG_ENDIAN)
1096 {
1097 /* For big endian bits, the at_bit_offset gives the
1098 additional bit offset from the MSB of the containing
1099 anonymous object to the MSB of the field. We don't
1100 have to do anything special since we don't need to
1101 know the size of the anonymous object. */
1102 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1103 }
1104 else
1105 {
1106 /* For little endian bits, we need to have a non-zero
1107 at_bit_size, so that we know we are in fact dealing
1108 with a bitfield. Compute the bit offset to the MSB
1109 of the anonymous object, subtract off the number of
1110 bits from the MSB of the field to the MSB of the
1111 object, and then subtract off the number of bits of
1112 the field itself. The result is the bit offset of
1113 the LSB of the field. */
1114 if (mbr.at_bit_size > 0)
1115 {
1116 if (mbr.has_at_byte_size)
1117 {
1118 /* The size of the anonymous object containing
1119 the bit field is explicit, so use the
1120 indicated size (in bytes). */
1121 anonymous_size = mbr.at_byte_size;
1122 }
1123 else
1124 {
1125 /* The size of the anonymous object containing
1126 the bit field matches the size of an object
1127 of the bit field's type. DWARF allows
1128 at_byte_size to be left out in such cases, as
1129 a debug information size optimization. */
1130 anonymous_size = TYPE_LENGTH (list -> field.type);
1131 }
1132 FIELD_BITPOS (list->field) +=
1133 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1134 }
1135 }
1136 nfields++;
1137 break;
1138 default:
1139 process_dies (thisdie, nextdie, objfile);
1140 break;
1141 }
1142 thisdie = nextdie;
1143 }
1144 /* Now create the vector of fields, and record how big it is. We may
1145 not even have any fields, if this DIE was generated due to a reference
1146 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1147 set, which clues gdb in to the fact that it needs to search elsewhere
1148 for the full structure definition. */
1149 if (nfields == 0)
1150 {
1151 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1152 }
1153 else
1154 {
1155 TYPE_NFIELDS (type) = nfields;
1156 TYPE_FIELDS (type) = (struct field *)
1157 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1158 /* Copy the saved-up fields into the field vector. */
1159 for (n = nfields; list; list = list -> next)
1160 {
1161 TYPE_FIELD (type, --n) = list -> field;
1162 }
1163 }
1164 return (type);
1165 }
1166
1167 /*
1168
1169 LOCAL FUNCTION
1170
1171 read_structure_scope -- process all dies within struct or union
1172
1173 SYNOPSIS
1174
1175 static void read_structure_scope (struct dieinfo *dip,
1176 char *thisdie, char *enddie, struct objfile *objfile)
1177
1178 DESCRIPTION
1179
1180 Called when we find the DIE that starts a structure or union
1181 scope (definition) to process all dies that define the members
1182 of the structure or union. DIP is a pointer to the die info
1183 struct for the DIE that names the structure or union.
1184
1185 NOTES
1186
1187 Note that we need to call struct_type regardless of whether or not
1188 the DIE has an at_name attribute, since it might be an anonymous
1189 structure or union. This gets the type entered into our set of
1190 user defined types.
1191
1192 However, if the structure is incomplete (an opaque struct/union)
1193 then suppress creating a symbol table entry for it since gdb only
1194 wants to find the one with the complete definition. Note that if
1195 it is complete, we just call new_symbol, which does it's own
1196 checking about whether the struct/union is anonymous or not (and
1197 suppresses creating a symbol table entry itself).
1198
1199 */
1200
1201 static void
1202 read_structure_scope (dip, thisdie, enddie, objfile)
1203 struct dieinfo *dip;
1204 char *thisdie;
1205 char *enddie;
1206 struct objfile *objfile;
1207 {
1208 struct type *type;
1209 struct symbol *sym;
1210
1211 type = struct_type (dip, thisdie, enddie, objfile);
1212 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1213 {
1214 sym = new_symbol (dip, objfile);
1215 if (sym != NULL)
1216 {
1217 SYMBOL_TYPE (sym) = type;
1218 if (cu_language == language_cplus)
1219 {
1220 synthesize_typedef (dip, objfile, type);
1221 }
1222 }
1223 }
1224 }
1225
1226 /*
1227
1228 LOCAL FUNCTION
1229
1230 decode_array_element_type -- decode type of the array elements
1231
1232 SYNOPSIS
1233
1234 static struct type *decode_array_element_type (char *scan, char *end)
1235
1236 DESCRIPTION
1237
1238 As the last step in decoding the array subscript information for an
1239 array DIE, we need to decode the type of the array elements. We are
1240 passed a pointer to this last part of the subscript information and
1241 must return the appropriate type. If the type attribute is not
1242 recognized, just warn about the problem and return type int.
1243 */
1244
1245 static struct type *
1246 decode_array_element_type (scan)
1247 char *scan;
1248 {
1249 struct type *typep;
1250 DIE_REF die_ref;
1251 unsigned short attribute;
1252 unsigned short fundtype;
1253 int nbytes;
1254
1255 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1256 current_objfile);
1257 scan += SIZEOF_ATTRIBUTE;
1258 if ((nbytes = attribute_size (attribute)) == -1)
1259 {
1260 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1261 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1262 }
1263 else
1264 {
1265 switch (attribute)
1266 {
1267 case AT_fund_type:
1268 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1269 current_objfile);
1270 typep = decode_fund_type (fundtype);
1271 break;
1272 case AT_mod_fund_type:
1273 typep = decode_mod_fund_type (scan);
1274 break;
1275 case AT_user_def_type:
1276 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1277 current_objfile);
1278 if ((typep = lookup_utype (die_ref)) == NULL)
1279 {
1280 typep = alloc_utype (die_ref, NULL);
1281 }
1282 break;
1283 case AT_mod_u_d_type:
1284 typep = decode_mod_u_d_type (scan);
1285 break;
1286 default:
1287 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1288 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1289 break;
1290 }
1291 }
1292 return (typep);
1293 }
1294
1295 /*
1296
1297 LOCAL FUNCTION
1298
1299 decode_subscript_data_item -- decode array subscript item
1300
1301 SYNOPSIS
1302
1303 static struct type *
1304 decode_subscript_data_item (char *scan, char *end)
1305
1306 DESCRIPTION
1307
1308 The array subscripts and the data type of the elements of an
1309 array are described by a list of data items, stored as a block
1310 of contiguous bytes. There is a data item describing each array
1311 dimension, and a final data item describing the element type.
1312 The data items are ordered the same as their appearance in the
1313 source (I.E. leftmost dimension first, next to leftmost second,
1314 etc).
1315
1316 The data items describing each array dimension consist of four
1317 parts: (1) a format specifier, (2) type type of the subscript
1318 index, (3) a description of the low bound of the array dimension,
1319 and (4) a description of the high bound of the array dimension.
1320
1321 The last data item is the description of the type of each of
1322 the array elements.
1323
1324 We are passed a pointer to the start of the block of bytes
1325 containing the remaining data items, and a pointer to the first
1326 byte past the data. This function recursively decodes the
1327 remaining data items and returns a type.
1328
1329 If we somehow fail to decode some data, we complain about it
1330 and return a type "array of int".
1331
1332 BUGS
1333 FIXME: This code only implements the forms currently used
1334 by the AT&T and GNU C compilers.
1335
1336 The end pointer is supplied for error checking, maybe we should
1337 use it for that...
1338 */
1339
1340 static struct type *
1341 decode_subscript_data_item (scan, end)
1342 char *scan;
1343 char *end;
1344 {
1345 struct type *typep = NULL; /* Array type we are building */
1346 struct type *nexttype; /* Type of each element (may be array) */
1347 struct type *indextype; /* Type of this index */
1348 struct type *rangetype;
1349 unsigned int format;
1350 unsigned short fundtype;
1351 unsigned long lowbound;
1352 unsigned long highbound;
1353 int nbytes;
1354
1355 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1356 current_objfile);
1357 scan += SIZEOF_FORMAT_SPECIFIER;
1358 switch (format)
1359 {
1360 case FMT_ET:
1361 typep = decode_array_element_type (scan);
1362 break;
1363 case FMT_FT_C_C:
1364 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1365 current_objfile);
1366 indextype = decode_fund_type (fundtype);
1367 scan += SIZEOF_FMT_FT;
1368 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1369 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1370 scan += nbytes;
1371 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1372 scan += nbytes;
1373 nexttype = decode_subscript_data_item (scan, end);
1374 if (nexttype == NULL)
1375 {
1376 /* Munged subscript data or other problem, fake it. */
1377 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1378 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1379 }
1380 rangetype = create_range_type ((struct type *) NULL, indextype,
1381 lowbound, highbound);
1382 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1383 break;
1384 case FMT_FT_C_X:
1385 case FMT_FT_X_C:
1386 case FMT_FT_X_X:
1387 case FMT_UT_C_C:
1388 case FMT_UT_C_X:
1389 case FMT_UT_X_C:
1390 case FMT_UT_X_X:
1391 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1392 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1393 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1394 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1395 break;
1396 default:
1397 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1398 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1399 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1400 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1401 break;
1402 }
1403 return (typep);
1404 }
1405
1406 /*
1407
1408 LOCAL FUNCTION
1409
1410 dwarf_read_array_type -- read TAG_array_type DIE
1411
1412 SYNOPSIS
1413
1414 static void dwarf_read_array_type (struct dieinfo *dip)
1415
1416 DESCRIPTION
1417
1418 Extract all information from a TAG_array_type DIE and add to
1419 the user defined type vector.
1420 */
1421
1422 static void
1423 dwarf_read_array_type (dip)
1424 struct dieinfo *dip;
1425 {
1426 struct type *type;
1427 struct type *utype;
1428 char *sub;
1429 char *subend;
1430 unsigned short blocksz;
1431 int nbytes;
1432
1433 if (dip -> at_ordering != ORD_row_major)
1434 {
1435 /* FIXME: Can gdb even handle column major arrays? */
1436 complain (&not_row_major, DIE_ID, DIE_NAME);
1437 }
1438 if ((sub = dip -> at_subscr_data) != NULL)
1439 {
1440 nbytes = attribute_size (AT_subscr_data);
1441 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1442 subend = sub + nbytes + blocksz;
1443 sub += nbytes;
1444 type = decode_subscript_data_item (sub, subend);
1445 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1446 {
1447 /* Install user defined type that has not been referenced yet. */
1448 alloc_utype (dip -> die_ref, type);
1449 }
1450 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1451 {
1452 /* Ick! A forward ref has already generated a blank type in our
1453 slot, and this type probably already has things pointing to it
1454 (which is what caused it to be created in the first place).
1455 If it's just a place holder we can plop our fully defined type
1456 on top of it. We can't recover the space allocated for our
1457 new type since it might be on an obstack, but we could reuse
1458 it if we kept a list of them, but it might not be worth it
1459 (FIXME). */
1460 *utype = *type;
1461 }
1462 else
1463 {
1464 /* Double ick! Not only is a type already in our slot, but
1465 someone has decorated it. Complain and leave it alone. */
1466 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1467 }
1468 }
1469 }
1470
1471 /*
1472
1473 LOCAL FUNCTION
1474
1475 read_tag_pointer_type -- read TAG_pointer_type DIE
1476
1477 SYNOPSIS
1478
1479 static void read_tag_pointer_type (struct dieinfo *dip)
1480
1481 DESCRIPTION
1482
1483 Extract all information from a TAG_pointer_type DIE and add to
1484 the user defined type vector.
1485 */
1486
1487 static void
1488 read_tag_pointer_type (dip)
1489 struct dieinfo *dip;
1490 {
1491 struct type *type;
1492 struct type *utype;
1493
1494 type = decode_die_type (dip);
1495 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1496 {
1497 utype = lookup_pointer_type (type);
1498 alloc_utype (dip -> die_ref, utype);
1499 }
1500 else
1501 {
1502 TYPE_TARGET_TYPE (utype) = type;
1503 TYPE_POINTER_TYPE (type) = utype;
1504
1505 /* We assume the machine has only one representation for pointers! */
1506 /* FIXME: Possably a poor assumption */
1507 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT ;
1508 TYPE_CODE (utype) = TYPE_CODE_PTR;
1509 }
1510 }
1511
1512 /*
1513
1514 LOCAL FUNCTION
1515
1516 read_tag_string_type -- read TAG_string_type DIE
1517
1518 SYNOPSIS
1519
1520 static void read_tag_string_type (struct dieinfo *dip)
1521
1522 DESCRIPTION
1523
1524 Extract all information from a TAG_string_type DIE and add to
1525 the user defined type vector. It isn't really a user defined
1526 type, but it behaves like one, with other DIE's using an
1527 AT_user_def_type attribute to reference it.
1528 */
1529
1530 static void
1531 read_tag_string_type (dip)
1532 struct dieinfo *dip;
1533 {
1534 struct type *utype;
1535 struct type *indextype;
1536 struct type *rangetype;
1537 unsigned long lowbound = 0;
1538 unsigned long highbound;
1539
1540 if (dip -> has_at_byte_size)
1541 {
1542 /* A fixed bounds string */
1543 highbound = dip -> at_byte_size - 1;
1544 }
1545 else
1546 {
1547 /* A varying length string. Stub for now. (FIXME) */
1548 highbound = 1;
1549 }
1550 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1551 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1552 highbound);
1553
1554 utype = lookup_utype (dip -> die_ref);
1555 if (utype == NULL)
1556 {
1557 /* No type defined, go ahead and create a blank one to use. */
1558 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1559 }
1560 else
1561 {
1562 /* Already a type in our slot due to a forward reference. Make sure it
1563 is a blank one. If not, complain and leave it alone. */
1564 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1565 {
1566 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1567 return;
1568 }
1569 }
1570
1571 /* Create the string type using the blank type we either found or created. */
1572 utype = create_string_type (utype, rangetype);
1573 }
1574
1575 /*
1576
1577 LOCAL FUNCTION
1578
1579 read_subroutine_type -- process TAG_subroutine_type dies
1580
1581 SYNOPSIS
1582
1583 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1584 char *enddie)
1585
1586 DESCRIPTION
1587
1588 Handle DIES due to C code like:
1589
1590 struct foo {
1591 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1592 int b;
1593 };
1594
1595 NOTES
1596
1597 The parameter DIES are currently ignored. See if gdb has a way to
1598 include this info in it's type system, and decode them if so. Is
1599 this what the type structure's "arg_types" field is for? (FIXME)
1600 */
1601
1602 static void
1603 read_subroutine_type (dip, thisdie, enddie)
1604 struct dieinfo *dip;
1605 char *thisdie;
1606 char *enddie;
1607 {
1608 struct type *type; /* Type that this function returns */
1609 struct type *ftype; /* Function that returns above type */
1610
1611 /* Decode the type that this subroutine returns */
1612
1613 type = decode_die_type (dip);
1614
1615 /* Check to see if we already have a partially constructed user
1616 defined type for this DIE, from a forward reference. */
1617
1618 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1619 {
1620 /* This is the first reference to one of these types. Make
1621 a new one and place it in the user defined types. */
1622 ftype = lookup_function_type (type);
1623 alloc_utype (dip -> die_ref, ftype);
1624 }
1625 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1626 {
1627 /* We have an existing partially constructed type, so bash it
1628 into the correct type. */
1629 TYPE_TARGET_TYPE (ftype) = type;
1630 TYPE_LENGTH (ftype) = 1;
1631 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1632 }
1633 else
1634 {
1635 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1636 }
1637 }
1638
1639 /*
1640
1641 LOCAL FUNCTION
1642
1643 read_enumeration -- process dies which define an enumeration
1644
1645 SYNOPSIS
1646
1647 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1648 char *enddie, struct objfile *objfile)
1649
1650 DESCRIPTION
1651
1652 Given a pointer to a die which begins an enumeration, process all
1653 the dies that define the members of the enumeration.
1654
1655 NOTES
1656
1657 Note that we need to call enum_type regardless of whether or not we
1658 have a symbol, since we might have an enum without a tag name (thus
1659 no symbol for the tagname).
1660 */
1661
1662 static void
1663 read_enumeration (dip, thisdie, enddie, objfile)
1664 struct dieinfo *dip;
1665 char *thisdie;
1666 char *enddie;
1667 struct objfile *objfile;
1668 {
1669 struct type *type;
1670 struct symbol *sym;
1671
1672 type = enum_type (dip, objfile);
1673 sym = new_symbol (dip, objfile);
1674 if (sym != NULL)
1675 {
1676 SYMBOL_TYPE (sym) = type;
1677 if (cu_language == language_cplus)
1678 {
1679 synthesize_typedef (dip, objfile, type);
1680 }
1681 }
1682 }
1683
1684 /*
1685
1686 LOCAL FUNCTION
1687
1688 enum_type -- decode and return a type for an enumeration
1689
1690 SYNOPSIS
1691
1692 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1693
1694 DESCRIPTION
1695
1696 Given a pointer to a die information structure for the die which
1697 starts an enumeration, process all the dies that define the members
1698 of the enumeration and return a type pointer for the enumeration.
1699
1700 At the same time, for each member of the enumeration, create a
1701 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1702 and give it the type of the enumeration itself.
1703
1704 NOTES
1705
1706 Note that the DWARF specification explicitly mandates that enum
1707 constants occur in reverse order from the source program order,
1708 for "consistency" and because this ordering is easier for many
1709 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1710 Entries). Because gdb wants to see the enum members in program
1711 source order, we have to ensure that the order gets reversed while
1712 we are processing them.
1713 */
1714
1715 static struct type *
1716 enum_type (dip, objfile)
1717 struct dieinfo *dip;
1718 struct objfile *objfile;
1719 {
1720 struct type *type;
1721 struct nextfield {
1722 struct nextfield *next;
1723 struct field field;
1724 };
1725 struct nextfield *list = NULL;
1726 struct nextfield *new;
1727 int nfields = 0;
1728 int n;
1729 char *scan;
1730 char *listend;
1731 unsigned short blocksz;
1732 struct symbol *sym;
1733 int nbytes;
1734 int unsigned_enum = 1;
1735
1736 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1737 {
1738 /* No forward references created an empty type, so install one now */
1739 type = alloc_utype (dip -> die_ref, NULL);
1740 }
1741 TYPE_CODE (type) = TYPE_CODE_ENUM;
1742 /* Some compilers try to be helpful by inventing "fake" names for
1743 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1744 Thanks, but no thanks... */
1745 if (dip -> at_name != NULL
1746 && *dip -> at_name != '~'
1747 && *dip -> at_name != '.')
1748 {
1749 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1750 "", "", dip -> at_name);
1751 }
1752 if (dip -> at_byte_size != 0)
1753 {
1754 TYPE_LENGTH (type) = dip -> at_byte_size;
1755 }
1756 if ((scan = dip -> at_element_list) != NULL)
1757 {
1758 if (dip -> short_element_list)
1759 {
1760 nbytes = attribute_size (AT_short_element_list);
1761 }
1762 else
1763 {
1764 nbytes = attribute_size (AT_element_list);
1765 }
1766 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1767 listend = scan + nbytes + blocksz;
1768 scan += nbytes;
1769 while (scan < listend)
1770 {
1771 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1772 new -> next = list;
1773 list = new;
1774 FIELD_TYPE (list->field) = NULL;
1775 FIELD_BITSIZE (list->field) = 0;
1776 FIELD_BITPOS (list->field) =
1777 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1778 objfile);
1779 scan += TARGET_FT_LONG_SIZE (objfile);
1780 list -> field.name = obsavestring (scan, strlen (scan),
1781 &objfile -> type_obstack);
1782 scan += strlen (scan) + 1;
1783 nfields++;
1784 /* Handcraft a new symbol for this enum member. */
1785 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1786 sizeof (struct symbol));
1787 memset (sym, 0, sizeof (struct symbol));
1788 SYMBOL_NAME (sym) = create_name (list -> field.name,
1789 &objfile->symbol_obstack);
1790 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1791 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1792 SYMBOL_CLASS (sym) = LOC_CONST;
1793 SYMBOL_TYPE (sym) = type;
1794 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1795 if (SYMBOL_VALUE (sym) < 0)
1796 unsigned_enum = 0;
1797 add_symbol_to_list (sym, list_in_scope);
1798 }
1799 /* Now create the vector of fields, and record how big it is. This is
1800 where we reverse the order, by pulling the members off the list in
1801 reverse order from how they were inserted. If we have no fields
1802 (this is apparently possible in C++) then skip building a field
1803 vector. */
1804 if (nfields > 0)
1805 {
1806 if (unsigned_enum)
1807 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1808 TYPE_NFIELDS (type) = nfields;
1809 TYPE_FIELDS (type) = (struct field *)
1810 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1811 /* Copy the saved-up fields into the field vector. */
1812 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1813 {
1814 TYPE_FIELD (type, n++) = list -> field;
1815 }
1816 }
1817 }
1818 return (type);
1819 }
1820
1821 /*
1822
1823 LOCAL FUNCTION
1824
1825 read_func_scope -- process all dies within a function scope
1826
1827 DESCRIPTION
1828
1829 Process all dies within a given function scope. We are passed
1830 a die information structure pointer DIP for the die which
1831 starts the function scope, and pointers into the raw die data
1832 that define the dies within the function scope.
1833
1834 For now, we ignore lexical block scopes within the function.
1835 The problem is that AT&T cc does not define a DWARF lexical
1836 block scope for the function itself, while gcc defines a
1837 lexical block scope for the function. We need to think about
1838 how to handle this difference, or if it is even a problem.
1839 (FIXME)
1840 */
1841
1842 static void
1843 read_func_scope (dip, thisdie, enddie, objfile)
1844 struct dieinfo *dip;
1845 char *thisdie;
1846 char *enddie;
1847 struct objfile *objfile;
1848 {
1849 register struct context_stack *new;
1850
1851 /* AT_name is absent if the function is described with an
1852 AT_abstract_origin tag.
1853 Ignore the function description for now to avoid GDB core dumps.
1854 FIXME: Add code to handle AT_abstract_origin tags properly. */
1855 if (dip -> at_name == NULL)
1856 {
1857 complain (&missing_at_name, DIE_ID);
1858 return;
1859 }
1860
1861 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1862 objfile -> ei.entry_point < dip -> at_high_pc)
1863 {
1864 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1865 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1866 }
1867 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1868 {
1869 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1870 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1871 }
1872 new = push_context (0, dip -> at_low_pc);
1873 new -> name = new_symbol (dip, objfile);
1874 list_in_scope = &local_symbols;
1875 process_dies (thisdie + dip -> die_length, enddie, objfile);
1876 new = pop_context ();
1877 /* Make a block for the local symbols within. */
1878 finish_block (new -> name, &local_symbols, new -> old_blocks,
1879 new -> start_addr, dip -> at_high_pc, objfile);
1880 list_in_scope = &file_symbols;
1881 }
1882
1883
1884 /*
1885
1886 LOCAL FUNCTION
1887
1888 handle_producer -- process the AT_producer attribute
1889
1890 DESCRIPTION
1891
1892 Perform any operations that depend on finding a particular
1893 AT_producer attribute.
1894
1895 */
1896
1897 static void
1898 handle_producer (producer)
1899 char *producer;
1900 {
1901
1902 /* If this compilation unit was compiled with g++ or gcc, then set the
1903 processing_gcc_compilation flag. */
1904
1905 if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1906 {
1907 char version = producer[strlen (GCC_PRODUCER)];
1908 processing_gcc_compilation = (version == '2' ? 2 : 1);
1909 }
1910 else
1911 {
1912 processing_gcc_compilation =
1913 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1914 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER));
1915 }
1916
1917 /* Select a demangling style if we can identify the producer and if
1918 the current style is auto. We leave the current style alone if it
1919 is not auto. We also leave the demangling style alone if we find a
1920 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1921
1922 if (AUTO_DEMANGLING)
1923 {
1924 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1925 {
1926 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1927 }
1928 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1929 {
1930 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1931 }
1932 }
1933 }
1934
1935
1936 /*
1937
1938 LOCAL FUNCTION
1939
1940 read_file_scope -- process all dies within a file scope
1941
1942 DESCRIPTION
1943
1944 Process all dies within a given file scope. We are passed a
1945 pointer to the die information structure for the die which
1946 starts the file scope, and pointers into the raw die data which
1947 mark the range of dies within the file scope.
1948
1949 When the partial symbol table is built, the file offset for the line
1950 number table for each compilation unit is saved in the partial symbol
1951 table entry for that compilation unit. As the symbols for each
1952 compilation unit are read, the line number table is read into memory
1953 and the variable lnbase is set to point to it. Thus all we have to
1954 do is use lnbase to access the line number table for the current
1955 compilation unit.
1956 */
1957
1958 static void
1959 read_file_scope (dip, thisdie, enddie, objfile)
1960 struct dieinfo *dip;
1961 char *thisdie;
1962 char *enddie;
1963 struct objfile *objfile;
1964 {
1965 struct cleanup *back_to;
1966 struct symtab *symtab;
1967
1968 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1969 objfile -> ei.entry_point < dip -> at_high_pc)
1970 {
1971 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1972 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1973 }
1974 set_cu_language (dip);
1975 if (dip -> at_producer != NULL)
1976 {
1977 handle_producer (dip -> at_producer);
1978 }
1979 numutypes = (enddie - thisdie) / 4;
1980 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1981 back_to = make_cleanup (free_utypes, NULL);
1982 memset (utypes, 0, numutypes * sizeof (struct type *));
1983 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1984 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1985 record_debugformat ("DWARF 1");
1986 decode_line_numbers (lnbase);
1987 process_dies (thisdie + dip -> die_length, enddie, objfile);
1988
1989 symtab = end_symtab (dip -> at_high_pc, objfile, 0);
1990 if (symtab != NULL)
1991 {
1992 symtab -> language = cu_language;
1993 }
1994 do_cleanups (back_to);
1995 }
1996
1997 /*
1998
1999 LOCAL FUNCTION
2000
2001 process_dies -- process a range of DWARF Information Entries
2002
2003 SYNOPSIS
2004
2005 static void process_dies (char *thisdie, char *enddie,
2006 struct objfile *objfile)
2007
2008 DESCRIPTION
2009
2010 Process all DIE's in a specified range. May be (and almost
2011 certainly will be) called recursively.
2012 */
2013
2014 static void
2015 process_dies (thisdie, enddie, objfile)
2016 char *thisdie;
2017 char *enddie;
2018 struct objfile *objfile;
2019 {
2020 char *nextdie;
2021 struct dieinfo di;
2022
2023 while (thisdie < enddie)
2024 {
2025 basicdieinfo (&di, thisdie, objfile);
2026 if (di.die_length < SIZEOF_DIE_LENGTH)
2027 {
2028 break;
2029 }
2030 else if (di.die_tag == TAG_padding)
2031 {
2032 nextdie = thisdie + di.die_length;
2033 }
2034 else
2035 {
2036 completedieinfo (&di, objfile);
2037 if (di.at_sibling != 0)
2038 {
2039 nextdie = dbbase + di.at_sibling - dbroff;
2040 }
2041 else
2042 {
2043 nextdie = thisdie + di.die_length;
2044 }
2045 #ifdef SMASH_TEXT_ADDRESS
2046 /* I think that these are always text, not data, addresses. */
2047 SMASH_TEXT_ADDRESS (di.at_low_pc);
2048 SMASH_TEXT_ADDRESS (di.at_high_pc);
2049 #endif
2050 switch (di.die_tag)
2051 {
2052 case TAG_compile_unit:
2053 /* Skip Tag_compile_unit if we are already inside a compilation
2054 unit, we are unable to handle nested compilation units
2055 properly (FIXME). */
2056 if (current_subfile == NULL)
2057 read_file_scope (&di, thisdie, nextdie, objfile);
2058 else
2059 nextdie = thisdie + di.die_length;
2060 break;
2061 case TAG_global_subroutine:
2062 case TAG_subroutine:
2063 if (di.has_at_low_pc)
2064 {
2065 read_func_scope (&di, thisdie, nextdie, objfile);
2066 }
2067 break;
2068 case TAG_lexical_block:
2069 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2070 break;
2071 case TAG_class_type:
2072 case TAG_structure_type:
2073 case TAG_union_type:
2074 read_structure_scope (&di, thisdie, nextdie, objfile);
2075 break;
2076 case TAG_enumeration_type:
2077 read_enumeration (&di, thisdie, nextdie, objfile);
2078 break;
2079 case TAG_subroutine_type:
2080 read_subroutine_type (&di, thisdie, nextdie);
2081 break;
2082 case TAG_array_type:
2083 dwarf_read_array_type (&di);
2084 break;
2085 case TAG_pointer_type:
2086 read_tag_pointer_type (&di);
2087 break;
2088 case TAG_string_type:
2089 read_tag_string_type (&di);
2090 break;
2091 default:
2092 new_symbol (&di, objfile);
2093 break;
2094 }
2095 }
2096 thisdie = nextdie;
2097 }
2098 }
2099
2100 /*
2101
2102 LOCAL FUNCTION
2103
2104 decode_line_numbers -- decode a line number table fragment
2105
2106 SYNOPSIS
2107
2108 static void decode_line_numbers (char *tblscan, char *tblend,
2109 long length, long base, long line, long pc)
2110
2111 DESCRIPTION
2112
2113 Translate the DWARF line number information to gdb form.
2114
2115 The ".line" section contains one or more line number tables, one for
2116 each ".line" section from the objects that were linked.
2117
2118 The AT_stmt_list attribute for each TAG_source_file entry in the
2119 ".debug" section contains the offset into the ".line" section for the
2120 start of the table for that file.
2121
2122 The table itself has the following structure:
2123
2124 <table length><base address><source statement entry>
2125 4 bytes 4 bytes 10 bytes
2126
2127 The table length is the total size of the table, including the 4 bytes
2128 for the length information.
2129
2130 The base address is the address of the first instruction generated
2131 for the source file.
2132
2133 Each source statement entry has the following structure:
2134
2135 <line number><statement position><address delta>
2136 4 bytes 2 bytes 4 bytes
2137
2138 The line number is relative to the start of the file, starting with
2139 line 1.
2140
2141 The statement position either -1 (0xFFFF) or the number of characters
2142 from the beginning of the line to the beginning of the statement.
2143
2144 The address delta is the difference between the base address and
2145 the address of the first instruction for the statement.
2146
2147 Note that we must copy the bytes from the packed table to our local
2148 variables before attempting to use them, to avoid alignment problems
2149 on some machines, particularly RISC processors.
2150
2151 BUGS
2152
2153 Does gdb expect the line numbers to be sorted? They are now by
2154 chance/luck, but are not required to be. (FIXME)
2155
2156 The line with number 0 is unused, gdb apparently can discover the
2157 span of the last line some other way. How? (FIXME)
2158 */
2159
2160 static void
2161 decode_line_numbers (linetable)
2162 char *linetable;
2163 {
2164 char *tblscan;
2165 char *tblend;
2166 unsigned long length;
2167 unsigned long base;
2168 unsigned long line;
2169 unsigned long pc;
2170
2171 if (linetable != NULL)
2172 {
2173 tblscan = tblend = linetable;
2174 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2175 current_objfile);
2176 tblscan += SIZEOF_LINETBL_LENGTH;
2177 tblend += length;
2178 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2179 GET_UNSIGNED, current_objfile);
2180 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2181 base += baseaddr;
2182 while (tblscan < tblend)
2183 {
2184 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2185 current_objfile);
2186 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2187 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2188 current_objfile);
2189 tblscan += SIZEOF_LINETBL_DELTA;
2190 pc += base;
2191 if (line != 0)
2192 {
2193 record_line (current_subfile, line, pc);
2194 }
2195 }
2196 }
2197 }
2198
2199 /*
2200
2201 LOCAL FUNCTION
2202
2203 locval -- compute the value of a location attribute
2204
2205 SYNOPSIS
2206
2207 static int locval (struct dieinfo *dip)
2208
2209 DESCRIPTION
2210
2211 Given pointer to a string of bytes that define a location, compute
2212 the location and return the value.
2213 A location description containing no atoms indicates that the
2214 object is optimized out. The optimized_out flag is set for those,
2215 the return value is meaningless.
2216
2217 When computing values involving the current value of the frame pointer,
2218 the value zero is used, which results in a value relative to the frame
2219 pointer, rather than the absolute value. This is what GDB wants
2220 anyway.
2221
2222 When the result is a register number, the isreg flag is set, otherwise
2223 it is cleared. This is a kludge until we figure out a better
2224 way to handle the problem. Gdb's design does not mesh well with the
2225 DWARF notion of a location computing interpreter, which is a shame
2226 because the flexibility goes unused.
2227
2228 NOTES
2229
2230 Note that stack[0] is unused except as a default error return.
2231 Note that stack overflow is not yet handled.
2232 */
2233
2234 static int
2235 locval (dip)
2236 struct dieinfo *dip;
2237 {
2238 unsigned short nbytes;
2239 unsigned short locsize;
2240 auto long stack[64];
2241 int stacki;
2242 char *loc;
2243 char *end;
2244 int loc_atom_code;
2245 int loc_value_size;
2246
2247 loc = dip -> at_location;
2248 nbytes = attribute_size (AT_location);
2249 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2250 loc += nbytes;
2251 end = loc + locsize;
2252 stacki = 0;
2253 stack[stacki] = 0;
2254 dip -> isreg = 0;
2255 dip -> offreg = 0;
2256 dip -> optimized_out = 1;
2257 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2258 while (loc < end)
2259 {
2260 dip -> optimized_out = 0;
2261 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2262 current_objfile);
2263 loc += SIZEOF_LOC_ATOM_CODE;
2264 switch (loc_atom_code)
2265 {
2266 case 0:
2267 /* error */
2268 loc = end;
2269 break;
2270 case OP_REG:
2271 /* push register (number) */
2272 stack[++stacki]
2273 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2274 GET_UNSIGNED,
2275 current_objfile));
2276 loc += loc_value_size;
2277 dip -> isreg = 1;
2278 break;
2279 case OP_BASEREG:
2280 /* push value of register (number) */
2281 /* Actually, we compute the value as if register has 0, so the
2282 value ends up being the offset from that register. */
2283 dip -> offreg = 1;
2284 dip -> basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2285 current_objfile);
2286 loc += loc_value_size;
2287 stack[++stacki] = 0;
2288 break;
2289 case OP_ADDR:
2290 /* push address (relocated address) */
2291 stack[++stacki] = target_to_host (loc, loc_value_size,
2292 GET_UNSIGNED, current_objfile);
2293 loc += loc_value_size;
2294 break;
2295 case OP_CONST:
2296 /* push constant (number) FIXME: signed or unsigned! */
2297 stack[++stacki] = target_to_host (loc, loc_value_size,
2298 GET_SIGNED, current_objfile);
2299 loc += loc_value_size;
2300 break;
2301 case OP_DEREF2:
2302 /* pop, deref and push 2 bytes (as a long) */
2303 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2304 break;
2305 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2306 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2307 break;
2308 case OP_ADD: /* pop top 2 items, add, push result */
2309 stack[stacki - 1] += stack[stacki];
2310 stacki--;
2311 break;
2312 }
2313 }
2314 return (stack[stacki]);
2315 }
2316
2317 /*
2318
2319 LOCAL FUNCTION
2320
2321 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2322
2323 SYNOPSIS
2324
2325 static void read_ofile_symtab (struct partial_symtab *pst)
2326
2327 DESCRIPTION
2328
2329 When expanding a partial symbol table entry to a full symbol table
2330 entry, this is the function that gets called to read in the symbols
2331 for the compilation unit. A pointer to the newly constructed symtab,
2332 which is now the new first one on the objfile's symtab list, is
2333 stashed in the partial symbol table entry.
2334 */
2335
2336 static void
2337 read_ofile_symtab (pst)
2338 struct partial_symtab *pst;
2339 {
2340 struct cleanup *back_to;
2341 unsigned long lnsize;
2342 file_ptr foffset;
2343 bfd *abfd;
2344 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2345
2346 abfd = pst -> objfile -> obfd;
2347 current_objfile = pst -> objfile;
2348
2349 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2350 unit, seek to the location in the file, and read in all the DIE's. */
2351
2352 diecount = 0;
2353 dbsize = DBLENGTH (pst);
2354 dbbase = xmalloc (dbsize);
2355 dbroff = DBROFF(pst);
2356 foffset = DBFOFF(pst) + dbroff;
2357 base_section_offsets = pst->section_offsets;
2358 baseaddr = ANOFFSET (pst->section_offsets, 0);
2359 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2360 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2361 {
2362 free (dbbase);
2363 error ("can't read DWARF data");
2364 }
2365 back_to = make_cleanup (free, dbbase);
2366
2367 /* If there is a line number table associated with this compilation unit
2368 then read the size of this fragment in bytes, from the fragment itself.
2369 Allocate a buffer for the fragment and read it in for future
2370 processing. */
2371
2372 lnbase = NULL;
2373 if (LNFOFF (pst))
2374 {
2375 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2376 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2377 sizeof (lnsizedata)))
2378 {
2379 error ("can't read DWARF line number table size");
2380 }
2381 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2382 GET_UNSIGNED, pst -> objfile);
2383 lnbase = xmalloc (lnsize);
2384 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2385 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2386 {
2387 free (lnbase);
2388 error ("can't read DWARF line numbers");
2389 }
2390 make_cleanup (free, lnbase);
2391 }
2392
2393 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2394 do_cleanups (back_to);
2395 current_objfile = NULL;
2396 pst -> symtab = pst -> objfile -> symtabs;
2397 }
2398
2399 /*
2400
2401 LOCAL FUNCTION
2402
2403 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2404
2405 SYNOPSIS
2406
2407 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2408
2409 DESCRIPTION
2410
2411 Called once for each partial symbol table entry that needs to be
2412 expanded into a full symbol table entry.
2413
2414 */
2415
2416 static void
2417 psymtab_to_symtab_1 (pst)
2418 struct partial_symtab *pst;
2419 {
2420 int i;
2421 struct cleanup *old_chain;
2422
2423 if (pst != NULL)
2424 {
2425 if (pst->readin)
2426 {
2427 warning ("psymtab for %s already read in. Shouldn't happen.",
2428 pst -> filename);
2429 }
2430 else
2431 {
2432 /* Read in all partial symtabs on which this one is dependent */
2433 for (i = 0; i < pst -> number_of_dependencies; i++)
2434 {
2435 if (!pst -> dependencies[i] -> readin)
2436 {
2437 /* Inform about additional files that need to be read in. */
2438 if (info_verbose)
2439 {
2440 fputs_filtered (" ", gdb_stdout);
2441 wrap_here ("");
2442 fputs_filtered ("and ", gdb_stdout);
2443 wrap_here ("");
2444 printf_filtered ("%s...",
2445 pst -> dependencies[i] -> filename);
2446 wrap_here ("");
2447 gdb_flush (gdb_stdout); /* Flush output */
2448 }
2449 psymtab_to_symtab_1 (pst -> dependencies[i]);
2450 }
2451 }
2452 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2453 {
2454 buildsym_init ();
2455 old_chain = make_cleanup ((make_cleanup_func)
2456 really_free_pendings, 0);
2457 read_ofile_symtab (pst);
2458 if (info_verbose)
2459 {
2460 printf_filtered ("%d DIE's, sorting...", diecount);
2461 wrap_here ("");
2462 gdb_flush (gdb_stdout);
2463 }
2464 sort_symtab_syms (pst -> symtab);
2465 do_cleanups (old_chain);
2466 }
2467 pst -> readin = 1;
2468 }
2469 }
2470 }
2471
2472 /*
2473
2474 LOCAL FUNCTION
2475
2476 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2477
2478 SYNOPSIS
2479
2480 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2481
2482 DESCRIPTION
2483
2484 This is the DWARF support entry point for building a full symbol
2485 table entry from a partial symbol table entry. We are passed a
2486 pointer to the partial symbol table entry that needs to be expanded.
2487
2488 */
2489
2490 static void
2491 dwarf_psymtab_to_symtab (pst)
2492 struct partial_symtab *pst;
2493 {
2494
2495 if (pst != NULL)
2496 {
2497 if (pst -> readin)
2498 {
2499 warning ("psymtab for %s already read in. Shouldn't happen.",
2500 pst -> filename);
2501 }
2502 else
2503 {
2504 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2505 {
2506 /* Print the message now, before starting serious work, to avoid
2507 disconcerting pauses. */
2508 if (info_verbose)
2509 {
2510 printf_filtered ("Reading in symbols for %s...",
2511 pst -> filename);
2512 gdb_flush (gdb_stdout);
2513 }
2514
2515 psymtab_to_symtab_1 (pst);
2516
2517 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2518 we need to do an equivalent or is this something peculiar to
2519 stabs/a.out format.
2520 Match with global symbols. This only needs to be done once,
2521 after all of the symtabs and dependencies have been read in.
2522 */
2523 scan_file_globals (pst -> objfile);
2524 #endif
2525
2526 /* Finish up the verbose info message. */
2527 if (info_verbose)
2528 {
2529 printf_filtered ("done.\n");
2530 gdb_flush (gdb_stdout);
2531 }
2532 }
2533 }
2534 }
2535 }
2536
2537 /*
2538
2539 LOCAL FUNCTION
2540
2541 add_enum_psymbol -- add enumeration members to partial symbol table
2542
2543 DESCRIPTION
2544
2545 Given pointer to a DIE that is known to be for an enumeration,
2546 extract the symbolic names of the enumeration members and add
2547 partial symbols for them.
2548 */
2549
2550 static void
2551 add_enum_psymbol (dip, objfile)
2552 struct dieinfo *dip;
2553 struct objfile *objfile;
2554 {
2555 char *scan;
2556 char *listend;
2557 unsigned short blocksz;
2558 int nbytes;
2559
2560 if ((scan = dip -> at_element_list) != NULL)
2561 {
2562 if (dip -> short_element_list)
2563 {
2564 nbytes = attribute_size (AT_short_element_list);
2565 }
2566 else
2567 {
2568 nbytes = attribute_size (AT_element_list);
2569 }
2570 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2571 scan += nbytes;
2572 listend = scan + blocksz;
2573 while (scan < listend)
2574 {
2575 scan += TARGET_FT_LONG_SIZE (objfile);
2576 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2577 &objfile -> static_psymbols, 0, 0, cu_language,
2578 objfile);
2579 scan += strlen (scan) + 1;
2580 }
2581 }
2582 }
2583
2584 /*
2585
2586 LOCAL FUNCTION
2587
2588 add_partial_symbol -- add symbol to partial symbol table
2589
2590 DESCRIPTION
2591
2592 Given a DIE, if it is one of the types that we want to
2593 add to a partial symbol table, finish filling in the die info
2594 and then add a partial symbol table entry for it.
2595
2596 NOTES
2597
2598 The caller must ensure that the DIE has a valid name attribute.
2599 */
2600
2601 static void
2602 add_partial_symbol (dip, objfile)
2603 struct dieinfo *dip;
2604 struct objfile *objfile;
2605 {
2606 switch (dip -> die_tag)
2607 {
2608 case TAG_global_subroutine:
2609 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2610 VAR_NAMESPACE, LOC_BLOCK,
2611 &objfile -> global_psymbols,
2612 0, dip -> at_low_pc, cu_language, objfile);
2613 break;
2614 case TAG_global_variable:
2615 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2616 VAR_NAMESPACE, LOC_STATIC,
2617 &objfile -> global_psymbols,
2618 0, 0, cu_language, objfile);
2619 break;
2620 case TAG_subroutine:
2621 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2622 VAR_NAMESPACE, LOC_BLOCK,
2623 &objfile -> static_psymbols,
2624 0, dip -> at_low_pc, cu_language, objfile);
2625 break;
2626 case TAG_local_variable:
2627 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2628 VAR_NAMESPACE, LOC_STATIC,
2629 &objfile -> static_psymbols,
2630 0, 0, cu_language, objfile);
2631 break;
2632 case TAG_typedef:
2633 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2634 VAR_NAMESPACE, LOC_TYPEDEF,
2635 &objfile -> static_psymbols,
2636 0, 0, cu_language, objfile);
2637 break;
2638 case TAG_class_type:
2639 case TAG_structure_type:
2640 case TAG_union_type:
2641 case TAG_enumeration_type:
2642 /* Do not add opaque aggregate definitions to the psymtab. */
2643 if (!dip -> has_at_byte_size)
2644 break;
2645 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2646 STRUCT_NAMESPACE, LOC_TYPEDEF,
2647 &objfile -> static_psymbols,
2648 0, 0, cu_language, objfile);
2649 if (cu_language == language_cplus)
2650 {
2651 /* For C++, these implicitly act as typedefs as well. */
2652 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2653 VAR_NAMESPACE, LOC_TYPEDEF,
2654 &objfile -> static_psymbols,
2655 0, 0, cu_language, objfile);
2656 }
2657 break;
2658 }
2659 }
2660
2661 /*
2662
2663 LOCAL FUNCTION
2664
2665 scan_partial_symbols -- scan DIE's within a single compilation unit
2666
2667 DESCRIPTION
2668
2669 Process the DIE's within a single compilation unit, looking for
2670 interesting DIE's that contribute to the partial symbol table entry
2671 for this compilation unit.
2672
2673 NOTES
2674
2675 There are some DIE's that may appear both at file scope and within
2676 the scope of a function. We are only interested in the ones at file
2677 scope, and the only way to tell them apart is to keep track of the
2678 scope. For example, consider the test case:
2679
2680 static int i;
2681 main () { int j; }
2682
2683 for which the relevant DWARF segment has the structure:
2684
2685 0x51:
2686 0x23 global subrtn sibling 0x9b
2687 name main
2688 fund_type FT_integer
2689 low_pc 0x800004cc
2690 high_pc 0x800004d4
2691
2692 0x74:
2693 0x23 local var sibling 0x97
2694 name j
2695 fund_type FT_integer
2696 location OP_BASEREG 0xe
2697 OP_CONST 0xfffffffc
2698 OP_ADD
2699 0x97:
2700 0x4
2701
2702 0x9b:
2703 0x1d local var sibling 0xb8
2704 name i
2705 fund_type FT_integer
2706 location OP_ADDR 0x800025dc
2707
2708 0xb8:
2709 0x4
2710
2711 We want to include the symbol 'i' in the partial symbol table, but
2712 not the symbol 'j'. In essence, we want to skip all the dies within
2713 the scope of a TAG_global_subroutine DIE.
2714
2715 Don't attempt to add anonymous structures or unions since they have
2716 no name. Anonymous enumerations however are processed, because we
2717 want to extract their member names (the check for a tag name is
2718 done later).
2719
2720 Also, for variables and subroutines, check that this is the place
2721 where the actual definition occurs, rather than just a reference
2722 to an external.
2723 */
2724
2725 static void
2726 scan_partial_symbols (thisdie, enddie, objfile)
2727 char *thisdie;
2728 char *enddie;
2729 struct objfile *objfile;
2730 {
2731 char *nextdie;
2732 char *temp;
2733 struct dieinfo di;
2734
2735 while (thisdie < enddie)
2736 {
2737 basicdieinfo (&di, thisdie, objfile);
2738 if (di.die_length < SIZEOF_DIE_LENGTH)
2739 {
2740 break;
2741 }
2742 else
2743 {
2744 nextdie = thisdie + di.die_length;
2745 /* To avoid getting complete die information for every die, we
2746 only do it (below) for the cases we are interested in. */
2747 switch (di.die_tag)
2748 {
2749 case TAG_global_subroutine:
2750 case TAG_subroutine:
2751 completedieinfo (&di, objfile);
2752 if (di.at_name && (di.has_at_low_pc || di.at_location))
2753 {
2754 add_partial_symbol (&di, objfile);
2755 /* If there is a sibling attribute, adjust the nextdie
2756 pointer to skip the entire scope of the subroutine.
2757 Apply some sanity checking to make sure we don't
2758 overrun or underrun the range of remaining DIE's */
2759 if (di.at_sibling != 0)
2760 {
2761 temp = dbbase + di.at_sibling - dbroff;
2762 if ((temp < thisdie) || (temp >= enddie))
2763 {
2764 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2765 di.at_sibling);
2766 }
2767 else
2768 {
2769 nextdie = temp;
2770 }
2771 }
2772 }
2773 break;
2774 case TAG_global_variable:
2775 case TAG_local_variable:
2776 completedieinfo (&di, objfile);
2777 if (di.at_name && (di.has_at_low_pc || di.at_location))
2778 {
2779 add_partial_symbol (&di, objfile);
2780 }
2781 break;
2782 case TAG_typedef:
2783 case TAG_class_type:
2784 case TAG_structure_type:
2785 case TAG_union_type:
2786 completedieinfo (&di, objfile);
2787 if (di.at_name)
2788 {
2789 add_partial_symbol (&di, objfile);
2790 }
2791 break;
2792 case TAG_enumeration_type:
2793 completedieinfo (&di, objfile);
2794 if (di.at_name)
2795 {
2796 add_partial_symbol (&di, objfile);
2797 }
2798 add_enum_psymbol (&di, objfile);
2799 break;
2800 }
2801 }
2802 thisdie = nextdie;
2803 }
2804 }
2805
2806 /*
2807
2808 LOCAL FUNCTION
2809
2810 scan_compilation_units -- build a psymtab entry for each compilation
2811
2812 DESCRIPTION
2813
2814 This is the top level dwarf parsing routine for building partial
2815 symbol tables.
2816
2817 It scans from the beginning of the DWARF table looking for the first
2818 TAG_compile_unit DIE, and then follows the sibling chain to locate
2819 each additional TAG_compile_unit DIE.
2820
2821 For each TAG_compile_unit DIE it creates a partial symtab structure,
2822 calls a subordinate routine to collect all the compilation unit's
2823 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2824 new partial symtab structure into the partial symbol table. It also
2825 records the appropriate information in the partial symbol table entry
2826 to allow the chunk of DIE's and line number table for this compilation
2827 unit to be located and re-read later, to generate a complete symbol
2828 table entry for the compilation unit.
2829
2830 Thus it effectively partitions up a chunk of DIE's for multiple
2831 compilation units into smaller DIE chunks and line number tables,
2832 and associates them with a partial symbol table entry.
2833
2834 NOTES
2835
2836 If any compilation unit has no line number table associated with
2837 it for some reason (a missing at_stmt_list attribute, rather than
2838 just one with a value of zero, which is valid) then we ensure that
2839 the recorded file offset is zero so that the routine which later
2840 reads line number table fragments knows that there is no fragment
2841 to read.
2842
2843 RETURNS
2844
2845 Returns no value.
2846
2847 */
2848
2849 static void
2850 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2851 char *thisdie;
2852 char *enddie;
2853 file_ptr dbfoff;
2854 file_ptr lnoffset;
2855 struct objfile *objfile;
2856 {
2857 char *nextdie;
2858 struct dieinfo di;
2859 struct partial_symtab *pst;
2860 int culength;
2861 int curoff;
2862 file_ptr curlnoffset;
2863
2864 while (thisdie < enddie)
2865 {
2866 basicdieinfo (&di, thisdie, objfile);
2867 if (di.die_length < SIZEOF_DIE_LENGTH)
2868 {
2869 break;
2870 }
2871 else if (di.die_tag != TAG_compile_unit)
2872 {
2873 nextdie = thisdie + di.die_length;
2874 }
2875 else
2876 {
2877 completedieinfo (&di, objfile);
2878 set_cu_language (&di);
2879 if (di.at_sibling != 0)
2880 {
2881 nextdie = dbbase + di.at_sibling - dbroff;
2882 }
2883 else
2884 {
2885 nextdie = thisdie + di.die_length;
2886 }
2887 curoff = thisdie - dbbase;
2888 culength = nextdie - thisdie;
2889 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2890
2891 /* First allocate a new partial symbol table structure */
2892
2893 pst = start_psymtab_common (objfile, base_section_offsets,
2894 di.at_name, di.at_low_pc,
2895 objfile -> global_psymbols.next,
2896 objfile -> static_psymbols.next);
2897
2898 pst -> texthigh = di.at_high_pc;
2899 pst -> read_symtab_private = (char *)
2900 obstack_alloc (&objfile -> psymbol_obstack,
2901 sizeof (struct dwfinfo));
2902 DBFOFF (pst) = dbfoff;
2903 DBROFF (pst) = curoff;
2904 DBLENGTH (pst) = culength;
2905 LNFOFF (pst) = curlnoffset;
2906 pst -> read_symtab = dwarf_psymtab_to_symtab;
2907
2908 /* Now look for partial symbols */
2909
2910 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2911
2912 pst -> n_global_syms = objfile -> global_psymbols.next -
2913 (objfile -> global_psymbols.list + pst -> globals_offset);
2914 pst -> n_static_syms = objfile -> static_psymbols.next -
2915 (objfile -> static_psymbols.list + pst -> statics_offset);
2916 sort_pst_symbols (pst);
2917 /* If there is already a psymtab or symtab for a file of this name,
2918 remove it. (If there is a symtab, more drastic things also
2919 happen.) This happens in VxWorks. */
2920 free_named_symtabs (pst -> filename);
2921 }
2922 thisdie = nextdie;
2923 }
2924 }
2925
2926 /*
2927
2928 LOCAL FUNCTION
2929
2930 new_symbol -- make a symbol table entry for a new symbol
2931
2932 SYNOPSIS
2933
2934 static struct symbol *new_symbol (struct dieinfo *dip,
2935 struct objfile *objfile)
2936
2937 DESCRIPTION
2938
2939 Given a pointer to a DWARF information entry, figure out if we need
2940 to make a symbol table entry for it, and if so, create a new entry
2941 and return a pointer to it.
2942 */
2943
2944 static struct symbol *
2945 new_symbol (dip, objfile)
2946 struct dieinfo *dip;
2947 struct objfile *objfile;
2948 {
2949 struct symbol *sym = NULL;
2950
2951 if (dip -> at_name != NULL)
2952 {
2953 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2954 sizeof (struct symbol));
2955 OBJSTAT (objfile, n_syms++);
2956 memset (sym, 0, sizeof (struct symbol));
2957 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2958 &objfile->symbol_obstack);
2959 /* default assumptions */
2960 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2961 SYMBOL_CLASS (sym) = LOC_STATIC;
2962 SYMBOL_TYPE (sym) = decode_die_type (dip);
2963
2964 /* If this symbol is from a C++ compilation, then attempt to cache the
2965 demangled form for future reference. This is a typical time versus
2966 space tradeoff, that was decided in favor of time because it sped up
2967 C++ symbol lookups by a factor of about 20. */
2968
2969 SYMBOL_LANGUAGE (sym) = cu_language;
2970 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2971 switch (dip -> die_tag)
2972 {
2973 case TAG_label:
2974 SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc;
2975 SYMBOL_CLASS (sym) = LOC_LABEL;
2976 break;
2977 case TAG_global_subroutine:
2978 case TAG_subroutine:
2979 SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc;
2980 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2981 if (dip -> at_prototyped)
2982 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2983 SYMBOL_CLASS (sym) = LOC_BLOCK;
2984 if (dip -> die_tag == TAG_global_subroutine)
2985 {
2986 add_symbol_to_list (sym, &global_symbols);
2987 }
2988 else
2989 {
2990 add_symbol_to_list (sym, list_in_scope);
2991 }
2992 break;
2993 case TAG_global_variable:
2994 if (dip -> at_location != NULL)
2995 {
2996 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2997 add_symbol_to_list (sym, &global_symbols);
2998 SYMBOL_CLASS (sym) = LOC_STATIC;
2999 SYMBOL_VALUE (sym) += baseaddr;
3000 }
3001 break;
3002 case TAG_local_variable:
3003 if (dip -> at_location != NULL)
3004 {
3005 int loc = locval (dip);
3006 if (dip -> optimized_out)
3007 {
3008 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
3009 }
3010 else if (dip -> isreg)
3011 {
3012 SYMBOL_CLASS (sym) = LOC_REGISTER;
3013 }
3014 else if (dip -> offreg)
3015 {
3016 SYMBOL_CLASS (sym) = LOC_BASEREG;
3017 SYMBOL_BASEREG (sym) = dip -> basereg;
3018 }
3019 else
3020 {
3021 SYMBOL_CLASS (sym) = LOC_STATIC;
3022 SYMBOL_VALUE (sym) += baseaddr;
3023 }
3024 if (SYMBOL_CLASS (sym) == LOC_STATIC)
3025 {
3026 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
3027 which may store to a bigger location than SYMBOL_VALUE. */
3028 SYMBOL_VALUE_ADDRESS (sym) = loc;
3029 }
3030 else
3031 {
3032 SYMBOL_VALUE (sym) = loc;
3033 }
3034 add_symbol_to_list (sym, list_in_scope);
3035 }
3036 break;
3037 case TAG_formal_parameter:
3038 if (dip -> at_location != NULL)
3039 {
3040 SYMBOL_VALUE (sym) = locval (dip);
3041 }
3042 add_symbol_to_list (sym, list_in_scope);
3043 if (dip -> isreg)
3044 {
3045 SYMBOL_CLASS (sym) = LOC_REGPARM;
3046 }
3047 else if (dip -> offreg)
3048 {
3049 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3050 SYMBOL_BASEREG (sym) = dip -> basereg;
3051 }
3052 else
3053 {
3054 SYMBOL_CLASS (sym) = LOC_ARG;
3055 }
3056 break;
3057 case TAG_unspecified_parameters:
3058 /* From varargs functions; gdb doesn't seem to have any interest in
3059 this information, so just ignore it for now. (FIXME?) */
3060 break;
3061 case TAG_class_type:
3062 case TAG_structure_type:
3063 case TAG_union_type:
3064 case TAG_enumeration_type:
3065 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3066 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3067 add_symbol_to_list (sym, list_in_scope);
3068 break;
3069 case TAG_typedef:
3070 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3071 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3072 add_symbol_to_list (sym, list_in_scope);
3073 break;
3074 default:
3075 /* Not a tag we recognize. Hopefully we aren't processing trash
3076 data, but since we must specifically ignore things we don't
3077 recognize, there is nothing else we should do at this point. */
3078 break;
3079 }
3080 }
3081 return (sym);
3082 }
3083
3084 /*
3085
3086 LOCAL FUNCTION
3087
3088 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3089
3090 SYNOPSIS
3091
3092 static void synthesize_typedef (struct dieinfo *dip,
3093 struct objfile *objfile,
3094 struct type *type);
3095
3096 DESCRIPTION
3097
3098 Given a pointer to a DWARF information entry, synthesize a typedef
3099 for the name in the DIE, using the specified type.
3100
3101 This is used for C++ class, structs, unions, and enumerations to
3102 set up the tag name as a type.
3103
3104 */
3105
3106 static void
3107 synthesize_typedef (dip, objfile, type)
3108 struct dieinfo *dip;
3109 struct objfile *objfile;
3110 struct type *type;
3111 {
3112 struct symbol *sym = NULL;
3113
3114 if (dip -> at_name != NULL)
3115 {
3116 sym = (struct symbol *)
3117 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3118 OBJSTAT (objfile, n_syms++);
3119 memset (sym, 0, sizeof (struct symbol));
3120 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3121 &objfile->symbol_obstack);
3122 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3123 SYMBOL_TYPE (sym) = type;
3124 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3125 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3126 add_symbol_to_list (sym, list_in_scope);
3127 }
3128 }
3129
3130 /*
3131
3132 LOCAL FUNCTION
3133
3134 decode_mod_fund_type -- decode a modified fundamental type
3135
3136 SYNOPSIS
3137
3138 static struct type *decode_mod_fund_type (char *typedata)
3139
3140 DESCRIPTION
3141
3142 Decode a block of data containing a modified fundamental
3143 type specification. TYPEDATA is a pointer to the block,
3144 which starts with a length containing the size of the rest
3145 of the block. At the end of the block is a fundmental type
3146 code value that gives the fundamental type. Everything
3147 in between are type modifiers.
3148
3149 We simply compute the number of modifiers and call the general
3150 function decode_modified_type to do the actual work.
3151 */
3152
3153 static struct type *
3154 decode_mod_fund_type (typedata)
3155 char *typedata;
3156 {
3157 struct type *typep = NULL;
3158 unsigned short modcount;
3159 int nbytes;
3160
3161 /* Get the total size of the block, exclusive of the size itself */
3162
3163 nbytes = attribute_size (AT_mod_fund_type);
3164 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3165 typedata += nbytes;
3166
3167 /* Deduct the size of the fundamental type bytes at the end of the block. */
3168
3169 modcount -= attribute_size (AT_fund_type);
3170
3171 /* Now do the actual decoding */
3172
3173 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3174 return (typep);
3175 }
3176
3177 /*
3178
3179 LOCAL FUNCTION
3180
3181 decode_mod_u_d_type -- decode a modified user defined type
3182
3183 SYNOPSIS
3184
3185 static struct type *decode_mod_u_d_type (char *typedata)
3186
3187 DESCRIPTION
3188
3189 Decode a block of data containing a modified user defined
3190 type specification. TYPEDATA is a pointer to the block,
3191 which consists of a two byte length, containing the size
3192 of the rest of the block. At the end of the block is a
3193 four byte value that gives a reference to a user defined type.
3194 Everything in between are type modifiers.
3195
3196 We simply compute the number of modifiers and call the general
3197 function decode_modified_type to do the actual work.
3198 */
3199
3200 static struct type *
3201 decode_mod_u_d_type (typedata)
3202 char *typedata;
3203 {
3204 struct type *typep = NULL;
3205 unsigned short modcount;
3206 int nbytes;
3207
3208 /* Get the total size of the block, exclusive of the size itself */
3209
3210 nbytes = attribute_size (AT_mod_u_d_type);
3211 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3212 typedata += nbytes;
3213
3214 /* Deduct the size of the reference type bytes at the end of the block. */
3215
3216 modcount -= attribute_size (AT_user_def_type);
3217
3218 /* Now do the actual decoding */
3219
3220 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3221 return (typep);
3222 }
3223
3224 /*
3225
3226 LOCAL FUNCTION
3227
3228 decode_modified_type -- decode modified user or fundamental type
3229
3230 SYNOPSIS
3231
3232 static struct type *decode_modified_type (char *modifiers,
3233 unsigned short modcount, int mtype)
3234
3235 DESCRIPTION
3236
3237 Decode a modified type, either a modified fundamental type or
3238 a modified user defined type. MODIFIERS is a pointer to the
3239 block of bytes that define MODCOUNT modifiers. Immediately
3240 following the last modifier is a short containing the fundamental
3241 type or a long containing the reference to the user defined
3242 type. Which one is determined by MTYPE, which is either
3243 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3244 type we are generating.
3245
3246 We call ourself recursively to generate each modified type,`
3247 until MODCOUNT reaches zero, at which point we have consumed
3248 all the modifiers and generate either the fundamental type or
3249 user defined type. When the recursion unwinds, each modifier
3250 is applied in turn to generate the full modified type.
3251
3252 NOTES
3253
3254 If we find a modifier that we don't recognize, and it is not one
3255 of those reserved for application specific use, then we issue a
3256 warning and simply ignore the modifier.
3257
3258 BUGS
3259
3260 We currently ignore MOD_const and MOD_volatile. (FIXME)
3261
3262 */
3263
3264 static struct type *
3265 decode_modified_type (modifiers, modcount, mtype)
3266 char *modifiers;
3267 unsigned int modcount;
3268 int mtype;
3269 {
3270 struct type *typep = NULL;
3271 unsigned short fundtype;
3272 DIE_REF die_ref;
3273 char modifier;
3274 int nbytes;
3275
3276 if (modcount == 0)
3277 {
3278 switch (mtype)
3279 {
3280 case AT_mod_fund_type:
3281 nbytes = attribute_size (AT_fund_type);
3282 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3283 current_objfile);
3284 typep = decode_fund_type (fundtype);
3285 break;
3286 case AT_mod_u_d_type:
3287 nbytes = attribute_size (AT_user_def_type);
3288 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3289 current_objfile);
3290 if ((typep = lookup_utype (die_ref)) == NULL)
3291 {
3292 typep = alloc_utype (die_ref, NULL);
3293 }
3294 break;
3295 default:
3296 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3297 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3298 break;
3299 }
3300 }
3301 else
3302 {
3303 modifier = *modifiers++;
3304 typep = decode_modified_type (modifiers, --modcount, mtype);
3305 switch (modifier)
3306 {
3307 case MOD_pointer_to:
3308 typep = lookup_pointer_type (typep);
3309 break;
3310 case MOD_reference_to:
3311 typep = lookup_reference_type (typep);
3312 break;
3313 case MOD_const:
3314 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3315 break;
3316 case MOD_volatile:
3317 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3318 break;
3319 default:
3320 if (!(MOD_lo_user <= (unsigned char) modifier
3321 && (unsigned char) modifier <= MOD_hi_user))
3322 {
3323 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3324 }
3325 break;
3326 }
3327 }
3328 return (typep);
3329 }
3330
3331 /*
3332
3333 LOCAL FUNCTION
3334
3335 decode_fund_type -- translate basic DWARF type to gdb base type
3336
3337 DESCRIPTION
3338
3339 Given an integer that is one of the fundamental DWARF types,
3340 translate it to one of the basic internal gdb types and return
3341 a pointer to the appropriate gdb type (a "struct type *").
3342
3343 NOTES
3344
3345 For robustness, if we are asked to translate a fundamental
3346 type that we are unprepared to deal with, we return int so
3347 callers can always depend upon a valid type being returned,
3348 and so gdb may at least do something reasonable by default.
3349 If the type is not in the range of those types defined as
3350 application specific types, we also issue a warning.
3351 */
3352
3353 static struct type *
3354 decode_fund_type (fundtype)
3355 unsigned int fundtype;
3356 {
3357 struct type *typep = NULL;
3358
3359 switch (fundtype)
3360 {
3361
3362 case FT_void:
3363 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3364 break;
3365
3366 case FT_boolean: /* Was FT_set in AT&T version */
3367 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3368 break;
3369
3370 case FT_pointer: /* (void *) */
3371 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3372 typep = lookup_pointer_type (typep);
3373 break;
3374
3375 case FT_char:
3376 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3377 break;
3378
3379 case FT_signed_char:
3380 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3381 break;
3382
3383 case FT_unsigned_char:
3384 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3385 break;
3386
3387 case FT_short:
3388 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3389 break;
3390
3391 case FT_signed_short:
3392 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3393 break;
3394
3395 case FT_unsigned_short:
3396 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3397 break;
3398
3399 case FT_integer:
3400 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3401 break;
3402
3403 case FT_signed_integer:
3404 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3405 break;
3406
3407 case FT_unsigned_integer:
3408 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3409 break;
3410
3411 case FT_long:
3412 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3413 break;
3414
3415 case FT_signed_long:
3416 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3417 break;
3418
3419 case FT_unsigned_long:
3420 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3421 break;
3422
3423 case FT_long_long:
3424 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3425 break;
3426
3427 case FT_signed_long_long:
3428 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3429 break;
3430
3431 case FT_unsigned_long_long:
3432 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3433 break;
3434
3435 case FT_float:
3436 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3437 break;
3438
3439 case FT_dbl_prec_float:
3440 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3441 break;
3442
3443 case FT_ext_prec_float:
3444 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3445 break;
3446
3447 case FT_complex:
3448 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3449 break;
3450
3451 case FT_dbl_prec_complex:
3452 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3453 break;
3454
3455 case FT_ext_prec_complex:
3456 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3457 break;
3458
3459 }
3460
3461 if (typep == NULL)
3462 {
3463 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3464 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3465 {
3466 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3467 }
3468 }
3469
3470 return (typep);
3471 }
3472
3473 /*
3474
3475 LOCAL FUNCTION
3476
3477 create_name -- allocate a fresh copy of a string on an obstack
3478
3479 DESCRIPTION
3480
3481 Given a pointer to a string and a pointer to an obstack, allocates
3482 a fresh copy of the string on the specified obstack.
3483
3484 */
3485
3486 static char *
3487 create_name (name, obstackp)
3488 char *name;
3489 struct obstack *obstackp;
3490 {
3491 int length;
3492 char *newname;
3493
3494 length = strlen (name) + 1;
3495 newname = (char *) obstack_alloc (obstackp, length);
3496 strcpy (newname, name);
3497 return (newname);
3498 }
3499
3500 /*
3501
3502 LOCAL FUNCTION
3503
3504 basicdieinfo -- extract the minimal die info from raw die data
3505
3506 SYNOPSIS
3507
3508 void basicdieinfo (char *diep, struct dieinfo *dip,
3509 struct objfile *objfile)
3510
3511 DESCRIPTION
3512
3513 Given a pointer to raw DIE data, and a pointer to an instance of a
3514 die info structure, this function extracts the basic information
3515 from the DIE data required to continue processing this DIE, along
3516 with some bookkeeping information about the DIE.
3517
3518 The information we absolutely must have includes the DIE tag,
3519 and the DIE length. If we need the sibling reference, then we
3520 will have to call completedieinfo() to process all the remaining
3521 DIE information.
3522
3523 Note that since there is no guarantee that the data is properly
3524 aligned in memory for the type of access required (indirection
3525 through anything other than a char pointer), and there is no
3526 guarantee that it is in the same byte order as the gdb host,
3527 we call a function which deals with both alignment and byte
3528 swapping issues. Possibly inefficient, but quite portable.
3529
3530 We also take care of some other basic things at this point, such
3531 as ensuring that the instance of the die info structure starts
3532 out completely zero'd and that curdie is initialized for use
3533 in error reporting if we have a problem with the current die.
3534
3535 NOTES
3536
3537 All DIE's must have at least a valid length, thus the minimum
3538 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3539 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3540 are forced to be TAG_padding DIES.
3541
3542 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3543 that if a padding DIE is used for alignment and the amount needed is
3544 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3545 enough to align to the next alignment boundry.
3546
3547 We do some basic sanity checking here, such as verifying that the
3548 length of the die would not cause it to overrun the recorded end of
3549 the buffer holding the DIE info. If we find a DIE that is either
3550 too small or too large, we force it's length to zero which should
3551 cause the caller to take appropriate action.
3552 */
3553
3554 static void
3555 basicdieinfo (dip, diep, objfile)
3556 struct dieinfo *dip;
3557 char *diep;
3558 struct objfile *objfile;
3559 {
3560 curdie = dip;
3561 memset (dip, 0, sizeof (struct dieinfo));
3562 dip -> die = diep;
3563 dip -> die_ref = dbroff + (diep - dbbase);
3564 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3565 objfile);
3566 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3567 ((diep + dip -> die_length) > (dbbase + dbsize)))
3568 {
3569 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3570 dip -> die_length = 0;
3571 }
3572 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3573 {
3574 dip -> die_tag = TAG_padding;
3575 }
3576 else
3577 {
3578 diep += SIZEOF_DIE_LENGTH;
3579 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3580 objfile);
3581 }
3582 }
3583
3584 /*
3585
3586 LOCAL FUNCTION
3587
3588 completedieinfo -- finish reading the information for a given DIE
3589
3590 SYNOPSIS
3591
3592 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3593
3594 DESCRIPTION
3595
3596 Given a pointer to an already partially initialized die info structure,
3597 scan the raw DIE data and finish filling in the die info structure
3598 from the various attributes found.
3599
3600 Note that since there is no guarantee that the data is properly
3601 aligned in memory for the type of access required (indirection
3602 through anything other than a char pointer), and there is no
3603 guarantee that it is in the same byte order as the gdb host,
3604 we call a function which deals with both alignment and byte
3605 swapping issues. Possibly inefficient, but quite portable.
3606
3607 NOTES
3608
3609 Each time we are called, we increment the diecount variable, which
3610 keeps an approximate count of the number of dies processed for
3611 each compilation unit. This information is presented to the user
3612 if the info_verbose flag is set.
3613
3614 */
3615
3616 static void
3617 completedieinfo (dip, objfile)
3618 struct dieinfo *dip;
3619 struct objfile *objfile;
3620 {
3621 char *diep; /* Current pointer into raw DIE data */
3622 char *end; /* Terminate DIE scan here */
3623 unsigned short attr; /* Current attribute being scanned */
3624 unsigned short form; /* Form of the attribute */
3625 int nbytes; /* Size of next field to read */
3626
3627 diecount++;
3628 diep = dip -> die;
3629 end = diep + dip -> die_length;
3630 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3631 while (diep < end)
3632 {
3633 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3634 diep += SIZEOF_ATTRIBUTE;
3635 if ((nbytes = attribute_size (attr)) == -1)
3636 {
3637 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3638 diep = end;
3639 continue;
3640 }
3641 switch (attr)
3642 {
3643 case AT_fund_type:
3644 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3645 objfile);
3646 break;
3647 case AT_ordering:
3648 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3649 objfile);
3650 break;
3651 case AT_bit_offset:
3652 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3653 objfile);
3654 break;
3655 case AT_sibling:
3656 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3657 objfile);
3658 break;
3659 case AT_stmt_list:
3660 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3661 objfile);
3662 dip -> has_at_stmt_list = 1;
3663 break;
3664 case AT_low_pc:
3665 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3666 objfile);
3667 dip -> at_low_pc += baseaddr;
3668 dip -> has_at_low_pc = 1;
3669 break;
3670 case AT_high_pc:
3671 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3672 objfile);
3673 dip -> at_high_pc += baseaddr;
3674 break;
3675 case AT_language:
3676 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3677 objfile);
3678 break;
3679 case AT_user_def_type:
3680 dip -> at_user_def_type = target_to_host (diep, nbytes,
3681 GET_UNSIGNED, objfile);
3682 break;
3683 case AT_byte_size:
3684 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3685 objfile);
3686 dip -> has_at_byte_size = 1;
3687 break;
3688 case AT_bit_size:
3689 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3690 objfile);
3691 break;
3692 case AT_member:
3693 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3694 objfile);
3695 break;
3696 case AT_discr:
3697 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3698 objfile);
3699 break;
3700 case AT_location:
3701 dip -> at_location = diep;
3702 break;
3703 case AT_mod_fund_type:
3704 dip -> at_mod_fund_type = diep;
3705 break;
3706 case AT_subscr_data:
3707 dip -> at_subscr_data = diep;
3708 break;
3709 case AT_mod_u_d_type:
3710 dip -> at_mod_u_d_type = diep;
3711 break;
3712 case AT_element_list:
3713 dip -> at_element_list = diep;
3714 dip -> short_element_list = 0;
3715 break;
3716 case AT_short_element_list:
3717 dip -> at_element_list = diep;
3718 dip -> short_element_list = 1;
3719 break;
3720 case AT_discr_value:
3721 dip -> at_discr_value = diep;
3722 break;
3723 case AT_string_length:
3724 dip -> at_string_length = diep;
3725 break;
3726 case AT_name:
3727 dip -> at_name = diep;
3728 break;
3729 case AT_comp_dir:
3730 /* For now, ignore any "hostname:" portion, since gdb doesn't
3731 know how to deal with it. (FIXME). */
3732 dip -> at_comp_dir = strrchr (diep, ':');
3733 if (dip -> at_comp_dir != NULL)
3734 {
3735 dip -> at_comp_dir++;
3736 }
3737 else
3738 {
3739 dip -> at_comp_dir = diep;
3740 }
3741 break;
3742 case AT_producer:
3743 dip -> at_producer = diep;
3744 break;
3745 case AT_start_scope:
3746 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3747 objfile);
3748 break;
3749 case AT_stride_size:
3750 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3751 objfile);
3752 break;
3753 case AT_src_info:
3754 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3755 objfile);
3756 break;
3757 case AT_prototyped:
3758 dip -> at_prototyped = diep;
3759 break;
3760 default:
3761 /* Found an attribute that we are unprepared to handle. However
3762 it is specifically one of the design goals of DWARF that
3763 consumers should ignore unknown attributes. As long as the
3764 form is one that we recognize (so we know how to skip it),
3765 we can just ignore the unknown attribute. */
3766 break;
3767 }
3768 form = FORM_FROM_ATTR (attr);
3769 switch (form)
3770 {
3771 case FORM_DATA2:
3772 diep += 2;
3773 break;
3774 case FORM_DATA4:
3775 case FORM_REF:
3776 diep += 4;
3777 break;
3778 case FORM_DATA8:
3779 diep += 8;
3780 break;
3781 case FORM_ADDR:
3782 diep += TARGET_FT_POINTER_SIZE (objfile);
3783 break;
3784 case FORM_BLOCK2:
3785 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3786 break;
3787 case FORM_BLOCK4:
3788 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3789 break;
3790 case FORM_STRING:
3791 diep += strlen (diep) + 1;
3792 break;
3793 default:
3794 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3795 diep = end;
3796 break;
3797 }
3798 }
3799 }
3800
3801 /*
3802
3803 LOCAL FUNCTION
3804
3805 target_to_host -- swap in target data to host
3806
3807 SYNOPSIS
3808
3809 target_to_host (char *from, int nbytes, int signextend,
3810 struct objfile *objfile)
3811
3812 DESCRIPTION
3813
3814 Given pointer to data in target format in FROM, a byte count for
3815 the size of the data in NBYTES, a flag indicating whether or not
3816 the data is signed in SIGNEXTEND, and a pointer to the current
3817 objfile in OBJFILE, convert the data to host format and return
3818 the converted value.
3819
3820 NOTES
3821
3822 FIXME: If we read data that is known to be signed, and expect to
3823 use it as signed data, then we need to explicitly sign extend the
3824 result until the bfd library is able to do this for us.
3825
3826 FIXME: Would a 32 bit target ever need an 8 byte result?
3827
3828 */
3829
3830 static CORE_ADDR
3831 target_to_host (from, nbytes, signextend, objfile)
3832 char *from;
3833 int nbytes;
3834 int signextend; /* FIXME: Unused */
3835 struct objfile *objfile;
3836 {
3837 CORE_ADDR rtnval;
3838
3839 switch (nbytes)
3840 {
3841 case 8:
3842 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3843 break;
3844 case 4:
3845 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3846 break;
3847 case 2:
3848 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3849 break;
3850 case 1:
3851 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3852 break;
3853 default:
3854 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3855 rtnval = 0;
3856 break;
3857 }
3858 return (rtnval);
3859 }
3860
3861 /*
3862
3863 LOCAL FUNCTION
3864
3865 attribute_size -- compute size of data for a DWARF attribute
3866
3867 SYNOPSIS
3868
3869 static int attribute_size (unsigned int attr)
3870
3871 DESCRIPTION
3872
3873 Given a DWARF attribute in ATTR, compute the size of the first
3874 piece of data associated with this attribute and return that
3875 size.
3876
3877 Returns -1 for unrecognized attributes.
3878
3879 */
3880
3881 static int
3882 attribute_size (attr)
3883 unsigned int attr;
3884 {
3885 int nbytes; /* Size of next data for this attribute */
3886 unsigned short form; /* Form of the attribute */
3887
3888 form = FORM_FROM_ATTR (attr);
3889 switch (form)
3890 {
3891 case FORM_STRING: /* A variable length field is next */
3892 nbytes = 0;
3893 break;
3894 case FORM_DATA2: /* Next 2 byte field is the data itself */
3895 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3896 nbytes = 2;
3897 break;
3898 case FORM_DATA4: /* Next 4 byte field is the data itself */
3899 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3900 case FORM_REF: /* Next 4 byte field is a DIE offset */
3901 nbytes = 4;
3902 break;
3903 case FORM_DATA8: /* Next 8 byte field is the data itself */
3904 nbytes = 8;
3905 break;
3906 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3907 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3908 break;
3909 default:
3910 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3911 nbytes = -1;
3912 break;
3913 }
3914 return (nbytes);
3915 }