]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarfread.c
import gdb-1999-09-08 snapshot
[thirdparty/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1998
3 Free Software Foundation, Inc.
4 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
5 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24
25 FIXME: Do we need to generate dependencies in partial symtabs?
26 (Perhaps we don't need to).
27
28 FIXME: Resolve minor differences between what information we put in the
29 partial symbol table and what dbxread puts in. For example, we don't yet
30 put enum constants there. And dbxread seems to invent a lot of typedefs
31 we never see. Use the new printpsym command to see the partial symbol table
32 contents.
33
34 FIXME: Figure out a better way to tell gdb about the name of the function
35 contain the user's entry point (I.E. main())
36
37 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
38 other things to work on, if you get bored. :-)
39
40 */
41
42 #include "defs.h"
43 #include "symtab.h"
44 #include "gdbtypes.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "elf/dwarf.h"
48 #include "buildsym.h"
49 #include "demangle.h"
50 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
51 #include "language.h"
52 #include "complaints.h"
53
54 #include <fcntl.h>
55 #include "gdb_string.h"
56
57 /* Some macros to provide DIE info for complaints. */
58
59 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
60 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
61
62 /* Complaints that can be issued during DWARF debug info reading. */
63
64 struct complaint no_bfd_get_N =
65 {
66 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
67 };
68
69 struct complaint malformed_die =
70 {
71 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
72 };
73
74 struct complaint bad_die_ref =
75 {
76 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
77 };
78
79 struct complaint unknown_attribute_form =
80 {
81 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
82 };
83
84 struct complaint unknown_attribute_length =
85 {
86 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
87 };
88
89 struct complaint unexpected_fund_type =
90 {
91 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
92 };
93
94 struct complaint unknown_type_modifier =
95 {
96 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
97 };
98
99 struct complaint volatile_ignored =
100 {
101 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
102 };
103
104 struct complaint const_ignored =
105 {
106 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
107 };
108
109 struct complaint botched_modified_type =
110 {
111 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
112 };
113
114 struct complaint op_deref2 =
115 {
116 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
117 };
118
119 struct complaint op_deref4 =
120 {
121 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
122 };
123
124 struct complaint basereg_not_handled =
125 {
126 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
127 };
128
129 struct complaint dup_user_type_allocation =
130 {
131 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
132 };
133
134 struct complaint dup_user_type_definition =
135 {
136 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
137 };
138
139 struct complaint missing_tag =
140 {
141 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
142 };
143
144 struct complaint bad_array_element_type =
145 {
146 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
147 };
148
149 struct complaint subscript_data_items =
150 {
151 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
152 };
153
154 struct complaint unhandled_array_subscript_format =
155 {
156 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
157 };
158
159 struct complaint unknown_array_subscript_format =
160 {
161 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
162 };
163
164 struct complaint not_row_major =
165 {
166 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
167 };
168
169 struct complaint missing_at_name =
170 {
171 "DIE @ 0x%x, AT_name tag missing", 0, 0
172 };
173
174 typedef unsigned int DIE_REF; /* Reference to a DIE */
175
176 #ifndef GCC_PRODUCER
177 #define GCC_PRODUCER "GNU C "
178 #endif
179
180 #ifndef GPLUS_PRODUCER
181 #define GPLUS_PRODUCER "GNU C++ "
182 #endif
183
184 #ifndef LCC_PRODUCER
185 #define LCC_PRODUCER "NCR C/C++"
186 #endif
187
188 #ifndef CHILL_PRODUCER
189 #define CHILL_PRODUCER "GNU Chill "
190 #endif
191
192 /* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
193 #ifndef DWARF_REG_TO_REGNUM
194 #define DWARF_REG_TO_REGNUM(num) (num)
195 #endif
196
197 /* Flags to target_to_host() that tell whether or not the data object is
198 expected to be signed. Used, for example, when fetching a signed
199 integer in the target environment which is used as a signed integer
200 in the host environment, and the two environments have different sized
201 ints. In this case, *somebody* has to sign extend the smaller sized
202 int. */
203
204 #define GET_UNSIGNED 0 /* No sign extension required */
205 #define GET_SIGNED 1 /* Sign extension required */
206
207 /* Defines for things which are specified in the document "DWARF Debugging
208 Information Format" published by UNIX International, Programming Languages
209 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
210
211 #define SIZEOF_DIE_LENGTH 4
212 #define SIZEOF_DIE_TAG 2
213 #define SIZEOF_ATTRIBUTE 2
214 #define SIZEOF_FORMAT_SPECIFIER 1
215 #define SIZEOF_FMT_FT 2
216 #define SIZEOF_LINETBL_LENGTH 4
217 #define SIZEOF_LINETBL_LINENO 4
218 #define SIZEOF_LINETBL_STMT 2
219 #define SIZEOF_LINETBL_DELTA 4
220 #define SIZEOF_LOC_ATOM_CODE 1
221
222 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
223
224 /* Macros that return the sizes of various types of data in the target
225 environment.
226
227 FIXME: Currently these are just compile time constants (as they are in
228 other parts of gdb as well). They need to be able to get the right size
229 either from the bfd or possibly from the DWARF info. It would be nice if
230 the DWARF producer inserted DIES that describe the fundamental types in
231 the target environment into the DWARF info, similar to the way dbx stabs
232 producers produce information about their fundamental types. */
233
234 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
235 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
236
237 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
238 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
239 However, the Issue 2 DWARF specification from AT&T defines it as
240 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
241 For backwards compatibility with the AT&T compiler produced executables
242 we define AT_short_element_list for this variant. */
243
244 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
245
246 /* External variables referenced. */
247
248 extern int info_verbose; /* From main.c; nonzero => verbose */
249 extern char *warning_pre_print; /* From utils.c */
250
251 /* The DWARF debugging information consists of two major pieces,
252 one is a block of DWARF Information Entries (DIE's) and the other
253 is a line number table. The "struct dieinfo" structure contains
254 the information for a single DIE, the one currently being processed.
255
256 In order to make it easier to randomly access the attribute fields
257 of the current DIE, which are specifically unordered within the DIE,
258 each DIE is scanned and an instance of the "struct dieinfo"
259 structure is initialized.
260
261 Initialization is done in two levels. The first, done by basicdieinfo(),
262 just initializes those fields that are vital to deciding whether or not
263 to use this DIE, how to skip past it, etc. The second, done by the
264 function completedieinfo(), fills in the rest of the information.
265
266 Attributes which have block forms are not interpreted at the time
267 the DIE is scanned, instead we just save pointers to the start
268 of their value fields.
269
270 Some fields have a flag <name>_p that is set when the value of the
271 field is valid (I.E. we found a matching attribute in the DIE). Since
272 we may want to test for the presence of some attributes in the DIE,
273 such as AT_low_pc, without restricting the values of the field,
274 we need someway to note that we found such an attribute.
275
276 */
277
278 typedef char BLOCK;
279
280 struct dieinfo
281 {
282 char *die; /* Pointer to the raw DIE data */
283 unsigned long die_length; /* Length of the raw DIE data */
284 DIE_REF die_ref; /* Offset of this DIE */
285 unsigned short die_tag; /* Tag for this DIE */
286 unsigned long at_padding;
287 unsigned long at_sibling;
288 BLOCK *at_location;
289 char *at_name;
290 unsigned short at_fund_type;
291 BLOCK *at_mod_fund_type;
292 unsigned long at_user_def_type;
293 BLOCK *at_mod_u_d_type;
294 unsigned short at_ordering;
295 BLOCK *at_subscr_data;
296 unsigned long at_byte_size;
297 unsigned short at_bit_offset;
298 unsigned long at_bit_size;
299 BLOCK *at_element_list;
300 unsigned long at_stmt_list;
301 CORE_ADDR at_low_pc;
302 CORE_ADDR at_high_pc;
303 unsigned long at_language;
304 unsigned long at_member;
305 unsigned long at_discr;
306 BLOCK *at_discr_value;
307 BLOCK *at_string_length;
308 char *at_comp_dir;
309 char *at_producer;
310 unsigned long at_start_scope;
311 unsigned long at_stride_size;
312 unsigned long at_src_info;
313 char *at_prototyped;
314 unsigned int has_at_low_pc:1;
315 unsigned int has_at_stmt_list:1;
316 unsigned int has_at_byte_size:1;
317 unsigned int short_element_list:1;
318
319 /* Kludge to identify register variables */
320
321 unsigned int isreg;
322
323 /* Kludge to identify optimized out variables */
324
325 unsigned int optimized_out;
326
327 /* Kludge to identify basereg references.
328 Nonzero if we have an offset relative to a basereg. */
329
330 unsigned int offreg;
331
332 /* Kludge to identify which base register is it relative to. */
333
334 unsigned int basereg;
335 };
336
337 static int diecount; /* Approximate count of dies for compilation unit */
338 static struct dieinfo *curdie; /* For warnings and such */
339
340 static char *dbbase; /* Base pointer to dwarf info */
341 static int dbsize; /* Size of dwarf info in bytes */
342 static int dbroff; /* Relative offset from start of .debug section */
343 static char *lnbase; /* Base pointer to line section */
344
345 /* This value is added to each symbol value. FIXME: Generalize to
346 the section_offsets structure used by dbxread (once this is done,
347 pass the appropriate section number to end_symtab). */
348 static CORE_ADDR baseaddr; /* Add to each symbol value */
349
350 /* The section offsets used in the current psymtab or symtab. FIXME,
351 only used to pass one value (baseaddr) at the moment. */
352 static struct section_offsets *base_section_offsets;
353
354 /* We put a pointer to this structure in the read_symtab_private field
355 of the psymtab. */
356
357 struct dwfinfo
358 {
359 /* Always the absolute file offset to the start of the ".debug"
360 section for the file containing the DIE's being accessed. */
361 file_ptr dbfoff;
362 /* Relative offset from the start of the ".debug" section to the
363 first DIE to be accessed. When building the partial symbol
364 table, this value will be zero since we are accessing the
365 entire ".debug" section. When expanding a partial symbol
366 table entry, this value will be the offset to the first
367 DIE for the compilation unit containing the symbol that
368 triggers the expansion. */
369 int dbroff;
370 /* The size of the chunk of DIE's being examined, in bytes. */
371 int dblength;
372 /* The absolute file offset to the line table fragment. Ignored
373 when building partial symbol tables, but used when expanding
374 them, and contains the absolute file offset to the fragment
375 of the ".line" section containing the line numbers for the
376 current compilation unit. */
377 file_ptr lnfoff;
378 };
379
380 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
381 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
382 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
383 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
384
385 /* The generic symbol table building routines have separate lists for
386 file scope symbols and all all other scopes (local scopes). So
387 we need to select the right one to pass to add_symbol_to_list().
388 We do it by keeping a pointer to the correct list in list_in_scope.
389
390 FIXME: The original dwarf code just treated the file scope as the first
391 local scope, and all other local scopes as nested local scopes, and worked
392 fine. Check to see if we really need to distinguish these in buildsym.c */
393
394 struct pending **list_in_scope = &file_symbols;
395
396 /* DIES which have user defined types or modified user defined types refer to
397 other DIES for the type information. Thus we need to associate the offset
398 of a DIE for a user defined type with a pointer to the type information.
399
400 Originally this was done using a simple but expensive algorithm, with an
401 array of unsorted structures, each containing an offset/type-pointer pair.
402 This array was scanned linearly each time a lookup was done. The result
403 was that gdb was spending over half it's startup time munging through this
404 array of pointers looking for a structure that had the right offset member.
405
406 The second attempt used the same array of structures, but the array was
407 sorted using qsort each time a new offset/type was recorded, and a binary
408 search was used to find the type pointer for a given DIE offset. This was
409 even slower, due to the overhead of sorting the array each time a new
410 offset/type pair was entered.
411
412 The third attempt uses a fixed size array of type pointers, indexed by a
413 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
414 we can divide any DIE offset by 4 to obtain a unique index into this fixed
415 size array. Since each element is a 4 byte pointer, it takes exactly as
416 much memory to hold this array as to hold the DWARF info for a given
417 compilation unit. But it gets freed as soon as we are done with it.
418 This has worked well in practice, as a reasonable tradeoff between memory
419 consumption and speed, without having to resort to much more complicated
420 algorithms. */
421
422 static struct type **utypes; /* Pointer to array of user type pointers */
423 static int numutypes; /* Max number of user type pointers */
424
425 /* Maintain an array of referenced fundamental types for the current
426 compilation unit being read. For DWARF version 1, we have to construct
427 the fundamental types on the fly, since no information about the
428 fundamental types is supplied. Each such fundamental type is created by
429 calling a language dependent routine to create the type, and then a
430 pointer to that type is then placed in the array at the index specified
431 by it's FT_<TYPENAME> value. The array has a fixed size set by the
432 FT_NUM_MEMBERS compile time constant, which is the number of predefined
433 fundamental types gdb knows how to construct. */
434
435 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
436
437 /* Record the language for the compilation unit which is currently being
438 processed. We know it once we have seen the TAG_compile_unit DIE,
439 and we need it while processing the DIE's for that compilation unit.
440 It is eventually saved in the symtab structure, but we don't finalize
441 the symtab struct until we have processed all the DIE's for the
442 compilation unit. We also need to get and save a pointer to the
443 language struct for this language, so we can call the language
444 dependent routines for doing things such as creating fundamental
445 types. */
446
447 static enum language cu_language;
448 static const struct language_defn *cu_language_defn;
449
450 /* Forward declarations of static functions so we don't have to worry
451 about ordering within this file. */
452
453 static void
454 free_utypes PARAMS ((PTR));
455
456 static int
457 attribute_size PARAMS ((unsigned int));
458
459 static CORE_ADDR
460 target_to_host PARAMS ((char *, int, int, struct objfile *));
461
462 static void
463 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
464
465 static void
466 handle_producer PARAMS ((char *));
467
468 static void
469 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
470
471 static void
472 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
473
474 static void
475 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
476 struct objfile *));
477
478 static void
479 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
480
481 static void
482 scan_compilation_units PARAMS ((char *, char *, file_ptr,
483 file_ptr, struct objfile *));
484
485 static void
486 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
487
488 static void
489 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
490
491 static void
492 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
493
494 static void
495 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
496
497 static void
498 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
499
500 static void
501 read_ofile_symtab PARAMS ((struct partial_symtab *));
502
503 static void
504 process_dies PARAMS ((char *, char *, struct objfile *));
505
506 static void
507 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
508 struct objfile *));
509
510 static struct type *
511 decode_array_element_type PARAMS ((char *));
512
513 static struct type *
514 decode_subscript_data_item PARAMS ((char *, char *));
515
516 static void
517 dwarf_read_array_type PARAMS ((struct dieinfo *));
518
519 static void
520 read_tag_pointer_type PARAMS ((struct dieinfo * dip));
521
522 static void
523 read_tag_string_type PARAMS ((struct dieinfo * dip));
524
525 static void
526 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
527
528 static void
529 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
530
531 static struct type *
532 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
533
534 static struct type *
535 enum_type PARAMS ((struct dieinfo *, struct objfile *));
536
537 static void
538 decode_line_numbers PARAMS ((char *));
539
540 static struct type *
541 decode_die_type PARAMS ((struct dieinfo *));
542
543 static struct type *
544 decode_mod_fund_type PARAMS ((char *));
545
546 static struct type *
547 decode_mod_u_d_type PARAMS ((char *));
548
549 static struct type *
550 decode_modified_type PARAMS ((char *, unsigned int, int));
551
552 static struct type *
553 decode_fund_type PARAMS ((unsigned int));
554
555 static char *
556 create_name PARAMS ((char *, struct obstack *));
557
558 static struct type *
559 lookup_utype PARAMS ((DIE_REF));
560
561 static struct type *
562 alloc_utype PARAMS ((DIE_REF, struct type *));
563
564 static struct symbol *
565 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
566
567 static void
568 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
569 struct type *));
570
571 static int
572 locval PARAMS ((struct dieinfo *));
573
574 static void
575 set_cu_language PARAMS ((struct dieinfo *));
576
577 static struct type *
578 dwarf_fundamental_type PARAMS ((struct objfile *, int));
579
580
581 /*
582
583 LOCAL FUNCTION
584
585 dwarf_fundamental_type -- lookup or create a fundamental type
586
587 SYNOPSIS
588
589 struct type *
590 dwarf_fundamental_type (struct objfile *objfile, int typeid)
591
592 DESCRIPTION
593
594 DWARF version 1 doesn't supply any fundamental type information,
595 so gdb has to construct such types. It has a fixed number of
596 fundamental types that it knows how to construct, which is the
597 union of all types that it knows how to construct for all languages
598 that it knows about. These are enumerated in gdbtypes.h.
599
600 As an example, assume we find a DIE that references a DWARF
601 fundamental type of FT_integer. We first look in the ftypes
602 array to see if we already have such a type, indexed by the
603 gdb internal value of FT_INTEGER. If so, we simply return a
604 pointer to that type. If not, then we ask an appropriate
605 language dependent routine to create a type FT_INTEGER, using
606 defaults reasonable for the current target machine, and install
607 that type in ftypes for future reference.
608
609 RETURNS
610
611 Pointer to a fundamental type.
612
613 */
614
615 static struct type *
616 dwarf_fundamental_type (objfile, typeid)
617 struct objfile *objfile;
618 int typeid;
619 {
620 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
621 {
622 error ("internal error - invalid fundamental type id %d", typeid);
623 }
624
625 /* Look for this particular type in the fundamental type vector. If one is
626 not found, create and install one appropriate for the current language
627 and the current target machine. */
628
629 if (ftypes[typeid] == NULL)
630 {
631 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
632 }
633
634 return (ftypes[typeid]);
635 }
636
637 /*
638
639 LOCAL FUNCTION
640
641 set_cu_language -- set local copy of language for compilation unit
642
643 SYNOPSIS
644
645 void
646 set_cu_language (struct dieinfo *dip)
647
648 DESCRIPTION
649
650 Decode the language attribute for a compilation unit DIE and
651 remember what the language was. We use this at various times
652 when processing DIE's for a given compilation unit.
653
654 RETURNS
655
656 No return value.
657
658 */
659
660 static void
661 set_cu_language (dip)
662 struct dieinfo *dip;
663 {
664 switch (dip->at_language)
665 {
666 case LANG_C89:
667 case LANG_C:
668 cu_language = language_c;
669 break;
670 case LANG_C_PLUS_PLUS:
671 cu_language = language_cplus;
672 break;
673 case LANG_CHILL:
674 cu_language = language_chill;
675 break;
676 case LANG_MODULA2:
677 cu_language = language_m2;
678 break;
679 case LANG_FORTRAN77:
680 case LANG_FORTRAN90:
681 cu_language = language_fortran;
682 break;
683 case LANG_ADA83:
684 case LANG_COBOL74:
685 case LANG_COBOL85:
686 case LANG_PASCAL83:
687 /* We don't know anything special about these yet. */
688 cu_language = language_unknown;
689 break;
690 default:
691 /* If no at_language, try to deduce one from the filename */
692 cu_language = deduce_language_from_filename (dip->at_name);
693 break;
694 }
695 cu_language_defn = language_def (cu_language);
696 }
697
698 /*
699
700 GLOBAL FUNCTION
701
702 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
703
704 SYNOPSIS
705
706 void dwarf_build_psymtabs (struct objfile *objfile,
707 int mainline, file_ptr dbfoff, unsigned int dbfsize,
708 file_ptr lnoffset, unsigned int lnsize)
709
710 DESCRIPTION
711
712 This function is called upon to build partial symtabs from files
713 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
714
715 It is passed a bfd* containing the DIES
716 and line number information, the corresponding filename for that
717 file, a base address for relocating the symbols, a flag indicating
718 whether or not this debugging information is from a "main symbol
719 table" rather than a shared library or dynamically linked file,
720 and file offset/size pairs for the DIE information and line number
721 information.
722
723 RETURNS
724
725 No return value.
726
727 */
728
729 void
730 dwarf_build_psymtabs (objfile, mainline, dbfoff, dbfsize,
731 lnoffset, lnsize)
732 struct objfile *objfile;
733 int mainline;
734 file_ptr dbfoff;
735 unsigned int dbfsize;
736 file_ptr lnoffset;
737 unsigned int lnsize;
738 {
739 bfd *abfd = objfile->obfd;
740 struct cleanup *back_to;
741
742 current_objfile = objfile;
743 dbsize = dbfsize;
744 dbbase = xmalloc (dbsize);
745 dbroff = 0;
746 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
747 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
748 {
749 free (dbbase);
750 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
751 }
752 back_to = make_cleanup (free, dbbase);
753
754 /* If we are reinitializing, or if we have never loaded syms yet, init.
755 Since we have no idea how many DIES we are looking at, we just guess
756 some arbitrary value. */
757
758 if (mainline || objfile->global_psymbols.size == 0 ||
759 objfile->static_psymbols.size == 0)
760 {
761 init_psymbol_list (objfile, 1024);
762 }
763
764 /* Save the relocation factor where everybody can see it. */
765
766 base_section_offsets = objfile->section_offsets;
767 baseaddr = ANOFFSET (objfile->section_offsets, 0);
768
769 /* Follow the compilation unit sibling chain, building a partial symbol
770 table entry for each one. Save enough information about each compilation
771 unit to locate the full DWARF information later. */
772
773 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
774
775 do_cleanups (back_to);
776 current_objfile = NULL;
777 }
778
779 /*
780
781 LOCAL FUNCTION
782
783 read_lexical_block_scope -- process all dies in a lexical block
784
785 SYNOPSIS
786
787 static void read_lexical_block_scope (struct dieinfo *dip,
788 char *thisdie, char *enddie)
789
790 DESCRIPTION
791
792 Process all the DIES contained within a lexical block scope.
793 Start a new scope, process the dies, and then close the scope.
794
795 */
796
797 static void
798 read_lexical_block_scope (dip, thisdie, enddie, objfile)
799 struct dieinfo *dip;
800 char *thisdie;
801 char *enddie;
802 struct objfile *objfile;
803 {
804 register struct context_stack *new;
805
806 push_context (0, dip->at_low_pc);
807 process_dies (thisdie + dip->die_length, enddie, objfile);
808 new = pop_context ();
809 if (local_symbols != NULL)
810 {
811 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
812 dip->at_high_pc, objfile);
813 }
814 local_symbols = new->locals;
815 }
816
817 /*
818
819 LOCAL FUNCTION
820
821 lookup_utype -- look up a user defined type from die reference
822
823 SYNOPSIS
824
825 static type *lookup_utype (DIE_REF die_ref)
826
827 DESCRIPTION
828
829 Given a DIE reference, lookup the user defined type associated with
830 that DIE, if it has been registered already. If not registered, then
831 return NULL. Alloc_utype() can be called to register an empty
832 type for this reference, which will be filled in later when the
833 actual referenced DIE is processed.
834 */
835
836 static struct type *
837 lookup_utype (die_ref)
838 DIE_REF die_ref;
839 {
840 struct type *type = NULL;
841 int utypeidx;
842
843 utypeidx = (die_ref - dbroff) / 4;
844 if ((utypeidx < 0) || (utypeidx >= numutypes))
845 {
846 complain (&bad_die_ref, DIE_ID, DIE_NAME);
847 }
848 else
849 {
850 type = *(utypes + utypeidx);
851 }
852 return (type);
853 }
854
855
856 /*
857
858 LOCAL FUNCTION
859
860 alloc_utype -- add a user defined type for die reference
861
862 SYNOPSIS
863
864 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
865
866 DESCRIPTION
867
868 Given a die reference DIE_REF, and a possible pointer to a user
869 defined type UTYPEP, register that this reference has a user
870 defined type and either use the specified type in UTYPEP or
871 make a new empty type that will be filled in later.
872
873 We should only be called after calling lookup_utype() to verify that
874 there is not currently a type registered for DIE_REF.
875 */
876
877 static struct type *
878 alloc_utype (die_ref, utypep)
879 DIE_REF die_ref;
880 struct type *utypep;
881 {
882 struct type **typep;
883 int utypeidx;
884
885 utypeidx = (die_ref - dbroff) / 4;
886 typep = utypes + utypeidx;
887 if ((utypeidx < 0) || (utypeidx >= numutypes))
888 {
889 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
890 complain (&bad_die_ref, DIE_ID, DIE_NAME);
891 }
892 else if (*typep != NULL)
893 {
894 utypep = *typep;
895 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
896 }
897 else
898 {
899 if (utypep == NULL)
900 {
901 utypep = alloc_type (current_objfile);
902 }
903 *typep = utypep;
904 }
905 return (utypep);
906 }
907
908 /*
909
910 LOCAL FUNCTION
911
912 free_utypes -- free the utypes array and reset pointer & count
913
914 SYNOPSIS
915
916 static void free_utypes (PTR dummy)
917
918 DESCRIPTION
919
920 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
921 and set numutypes back to zero. This ensures that the utypes does not get
922 referenced after being freed.
923 */
924
925 static void
926 free_utypes (dummy)
927 PTR dummy;
928 {
929 free (utypes);
930 utypes = NULL;
931 numutypes = 0;
932 }
933
934
935 /*
936
937 LOCAL FUNCTION
938
939 decode_die_type -- return a type for a specified die
940
941 SYNOPSIS
942
943 static struct type *decode_die_type (struct dieinfo *dip)
944
945 DESCRIPTION
946
947 Given a pointer to a die information structure DIP, decode the
948 type of the die and return a pointer to the decoded type. All
949 dies without specific types default to type int.
950 */
951
952 static struct type *
953 decode_die_type (dip)
954 struct dieinfo *dip;
955 {
956 struct type *type = NULL;
957
958 if (dip->at_fund_type != 0)
959 {
960 type = decode_fund_type (dip->at_fund_type);
961 }
962 else if (dip->at_mod_fund_type != NULL)
963 {
964 type = decode_mod_fund_type (dip->at_mod_fund_type);
965 }
966 else if (dip->at_user_def_type)
967 {
968 if ((type = lookup_utype (dip->at_user_def_type)) == NULL)
969 {
970 type = alloc_utype (dip->at_user_def_type, NULL);
971 }
972 }
973 else if (dip->at_mod_u_d_type)
974 {
975 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
976 }
977 else
978 {
979 type = dwarf_fundamental_type (current_objfile, FT_VOID);
980 }
981 return (type);
982 }
983
984 /*
985
986 LOCAL FUNCTION
987
988 struct_type -- compute and return the type for a struct or union
989
990 SYNOPSIS
991
992 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
993 char *enddie, struct objfile *objfile)
994
995 DESCRIPTION
996
997 Given pointer to a die information structure for a die which
998 defines a union or structure (and MUST define one or the other),
999 and pointers to the raw die data that define the range of dies which
1000 define the members, compute and return the user defined type for the
1001 structure or union.
1002 */
1003
1004 static struct type *
1005 struct_type (dip, thisdie, enddie, objfile)
1006 struct dieinfo *dip;
1007 char *thisdie;
1008 char *enddie;
1009 struct objfile *objfile;
1010 {
1011 struct type *type;
1012 struct nextfield
1013 {
1014 struct nextfield *next;
1015 struct field field;
1016 };
1017 struct nextfield *list = NULL;
1018 struct nextfield *new;
1019 int nfields = 0;
1020 int n;
1021 struct dieinfo mbr;
1022 char *nextdie;
1023 int anonymous_size;
1024
1025 if ((type = lookup_utype (dip->die_ref)) == NULL)
1026 {
1027 /* No forward references created an empty type, so install one now */
1028 type = alloc_utype (dip->die_ref, NULL);
1029 }
1030 INIT_CPLUS_SPECIFIC (type);
1031 switch (dip->die_tag)
1032 {
1033 case TAG_class_type:
1034 TYPE_CODE (type) = TYPE_CODE_CLASS;
1035 break;
1036 case TAG_structure_type:
1037 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1038 break;
1039 case TAG_union_type:
1040 TYPE_CODE (type) = TYPE_CODE_UNION;
1041 break;
1042 default:
1043 /* Should never happen */
1044 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1045 complain (&missing_tag, DIE_ID, DIE_NAME);
1046 break;
1047 }
1048 /* Some compilers try to be helpful by inventing "fake" names for
1049 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1050 Thanks, but no thanks... */
1051 if (dip->at_name != NULL
1052 && *dip->at_name != '~'
1053 && *dip->at_name != '.')
1054 {
1055 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1056 "", "", dip->at_name);
1057 }
1058 /* Use whatever size is known. Zero is a valid size. We might however
1059 wish to check has_at_byte_size to make sure that some byte size was
1060 given explicitly, but DWARF doesn't specify that explicit sizes of
1061 zero have to present, so complaining about missing sizes should
1062 probably not be the default. */
1063 TYPE_LENGTH (type) = dip->at_byte_size;
1064 thisdie += dip->die_length;
1065 while (thisdie < enddie)
1066 {
1067 basicdieinfo (&mbr, thisdie, objfile);
1068 completedieinfo (&mbr, objfile);
1069 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1070 {
1071 break;
1072 }
1073 else if (mbr.at_sibling != 0)
1074 {
1075 nextdie = dbbase + mbr.at_sibling - dbroff;
1076 }
1077 else
1078 {
1079 nextdie = thisdie + mbr.die_length;
1080 }
1081 switch (mbr.die_tag)
1082 {
1083 case TAG_member:
1084 /* Get space to record the next field's data. */
1085 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1086 new->next = list;
1087 list = new;
1088 /* Save the data. */
1089 list->field.name =
1090 obsavestring (mbr.at_name, strlen (mbr.at_name),
1091 &objfile->type_obstack);
1092 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1093 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1094 /* Handle bit fields. */
1095 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1096 if (BITS_BIG_ENDIAN)
1097 {
1098 /* For big endian bits, the at_bit_offset gives the
1099 additional bit offset from the MSB of the containing
1100 anonymous object to the MSB of the field. We don't
1101 have to do anything special since we don't need to
1102 know the size of the anonymous object. */
1103 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1104 }
1105 else
1106 {
1107 /* For little endian bits, we need to have a non-zero
1108 at_bit_size, so that we know we are in fact dealing
1109 with a bitfield. Compute the bit offset to the MSB
1110 of the anonymous object, subtract off the number of
1111 bits from the MSB of the field to the MSB of the
1112 object, and then subtract off the number of bits of
1113 the field itself. The result is the bit offset of
1114 the LSB of the field. */
1115 if (mbr.at_bit_size > 0)
1116 {
1117 if (mbr.has_at_byte_size)
1118 {
1119 /* The size of the anonymous object containing
1120 the bit field is explicit, so use the
1121 indicated size (in bytes). */
1122 anonymous_size = mbr.at_byte_size;
1123 }
1124 else
1125 {
1126 /* The size of the anonymous object containing
1127 the bit field matches the size of an object
1128 of the bit field's type. DWARF allows
1129 at_byte_size to be left out in such cases, as
1130 a debug information size optimization. */
1131 anonymous_size = TYPE_LENGTH (list->field.type);
1132 }
1133 FIELD_BITPOS (list->field) +=
1134 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1135 }
1136 }
1137 nfields++;
1138 break;
1139 default:
1140 process_dies (thisdie, nextdie, objfile);
1141 break;
1142 }
1143 thisdie = nextdie;
1144 }
1145 /* Now create the vector of fields, and record how big it is. We may
1146 not even have any fields, if this DIE was generated due to a reference
1147 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1148 set, which clues gdb in to the fact that it needs to search elsewhere
1149 for the full structure definition. */
1150 if (nfields == 0)
1151 {
1152 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1153 }
1154 else
1155 {
1156 TYPE_NFIELDS (type) = nfields;
1157 TYPE_FIELDS (type) = (struct field *)
1158 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1159 /* Copy the saved-up fields into the field vector. */
1160 for (n = nfields; list; list = list->next)
1161 {
1162 TYPE_FIELD (type, --n) = list->field;
1163 }
1164 }
1165 return (type);
1166 }
1167
1168 /*
1169
1170 LOCAL FUNCTION
1171
1172 read_structure_scope -- process all dies within struct or union
1173
1174 SYNOPSIS
1175
1176 static void read_structure_scope (struct dieinfo *dip,
1177 char *thisdie, char *enddie, struct objfile *objfile)
1178
1179 DESCRIPTION
1180
1181 Called when we find the DIE that starts a structure or union
1182 scope (definition) to process all dies that define the members
1183 of the structure or union. DIP is a pointer to the die info
1184 struct for the DIE that names the structure or union.
1185
1186 NOTES
1187
1188 Note that we need to call struct_type regardless of whether or not
1189 the DIE has an at_name attribute, since it might be an anonymous
1190 structure or union. This gets the type entered into our set of
1191 user defined types.
1192
1193 However, if the structure is incomplete (an opaque struct/union)
1194 then suppress creating a symbol table entry for it since gdb only
1195 wants to find the one with the complete definition. Note that if
1196 it is complete, we just call new_symbol, which does it's own
1197 checking about whether the struct/union is anonymous or not (and
1198 suppresses creating a symbol table entry itself).
1199
1200 */
1201
1202 static void
1203 read_structure_scope (dip, thisdie, enddie, objfile)
1204 struct dieinfo *dip;
1205 char *thisdie;
1206 char *enddie;
1207 struct objfile *objfile;
1208 {
1209 struct type *type;
1210 struct symbol *sym;
1211
1212 type = struct_type (dip, thisdie, enddie, objfile);
1213 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1214 {
1215 sym = new_symbol (dip, objfile);
1216 if (sym != NULL)
1217 {
1218 SYMBOL_TYPE (sym) = type;
1219 if (cu_language == language_cplus)
1220 {
1221 synthesize_typedef (dip, objfile, type);
1222 }
1223 }
1224 }
1225 }
1226
1227 /*
1228
1229 LOCAL FUNCTION
1230
1231 decode_array_element_type -- decode type of the array elements
1232
1233 SYNOPSIS
1234
1235 static struct type *decode_array_element_type (char *scan, char *end)
1236
1237 DESCRIPTION
1238
1239 As the last step in decoding the array subscript information for an
1240 array DIE, we need to decode the type of the array elements. We are
1241 passed a pointer to this last part of the subscript information and
1242 must return the appropriate type. If the type attribute is not
1243 recognized, just warn about the problem and return type int.
1244 */
1245
1246 static struct type *
1247 decode_array_element_type (scan)
1248 char *scan;
1249 {
1250 struct type *typep;
1251 DIE_REF die_ref;
1252 unsigned short attribute;
1253 unsigned short fundtype;
1254 int nbytes;
1255
1256 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1257 current_objfile);
1258 scan += SIZEOF_ATTRIBUTE;
1259 if ((nbytes = attribute_size (attribute)) == -1)
1260 {
1261 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1262 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1263 }
1264 else
1265 {
1266 switch (attribute)
1267 {
1268 case AT_fund_type:
1269 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1270 current_objfile);
1271 typep = decode_fund_type (fundtype);
1272 break;
1273 case AT_mod_fund_type:
1274 typep = decode_mod_fund_type (scan);
1275 break;
1276 case AT_user_def_type:
1277 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1278 current_objfile);
1279 if ((typep = lookup_utype (die_ref)) == NULL)
1280 {
1281 typep = alloc_utype (die_ref, NULL);
1282 }
1283 break;
1284 case AT_mod_u_d_type:
1285 typep = decode_mod_u_d_type (scan);
1286 break;
1287 default:
1288 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1289 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1290 break;
1291 }
1292 }
1293 return (typep);
1294 }
1295
1296 /*
1297
1298 LOCAL FUNCTION
1299
1300 decode_subscript_data_item -- decode array subscript item
1301
1302 SYNOPSIS
1303
1304 static struct type *
1305 decode_subscript_data_item (char *scan, char *end)
1306
1307 DESCRIPTION
1308
1309 The array subscripts and the data type of the elements of an
1310 array are described by a list of data items, stored as a block
1311 of contiguous bytes. There is a data item describing each array
1312 dimension, and a final data item describing the element type.
1313 The data items are ordered the same as their appearance in the
1314 source (I.E. leftmost dimension first, next to leftmost second,
1315 etc).
1316
1317 The data items describing each array dimension consist of four
1318 parts: (1) a format specifier, (2) type type of the subscript
1319 index, (3) a description of the low bound of the array dimension,
1320 and (4) a description of the high bound of the array dimension.
1321
1322 The last data item is the description of the type of each of
1323 the array elements.
1324
1325 We are passed a pointer to the start of the block of bytes
1326 containing the remaining data items, and a pointer to the first
1327 byte past the data. This function recursively decodes the
1328 remaining data items and returns a type.
1329
1330 If we somehow fail to decode some data, we complain about it
1331 and return a type "array of int".
1332
1333 BUGS
1334 FIXME: This code only implements the forms currently used
1335 by the AT&T and GNU C compilers.
1336
1337 The end pointer is supplied for error checking, maybe we should
1338 use it for that...
1339 */
1340
1341 static struct type *
1342 decode_subscript_data_item (scan, end)
1343 char *scan;
1344 char *end;
1345 {
1346 struct type *typep = NULL; /* Array type we are building */
1347 struct type *nexttype; /* Type of each element (may be array) */
1348 struct type *indextype; /* Type of this index */
1349 struct type *rangetype;
1350 unsigned int format;
1351 unsigned short fundtype;
1352 unsigned long lowbound;
1353 unsigned long highbound;
1354 int nbytes;
1355
1356 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1357 current_objfile);
1358 scan += SIZEOF_FORMAT_SPECIFIER;
1359 switch (format)
1360 {
1361 case FMT_ET:
1362 typep = decode_array_element_type (scan);
1363 break;
1364 case FMT_FT_C_C:
1365 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1366 current_objfile);
1367 indextype = decode_fund_type (fundtype);
1368 scan += SIZEOF_FMT_FT;
1369 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1370 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1371 scan += nbytes;
1372 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1373 scan += nbytes;
1374 nexttype = decode_subscript_data_item (scan, end);
1375 if (nexttype == NULL)
1376 {
1377 /* Munged subscript data or other problem, fake it. */
1378 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1379 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1380 }
1381 rangetype = create_range_type ((struct type *) NULL, indextype,
1382 lowbound, highbound);
1383 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1384 break;
1385 case FMT_FT_C_X:
1386 case FMT_FT_X_C:
1387 case FMT_FT_X_X:
1388 case FMT_UT_C_C:
1389 case FMT_UT_C_X:
1390 case FMT_UT_X_C:
1391 case FMT_UT_X_X:
1392 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1393 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1394 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1395 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1396 break;
1397 default:
1398 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1399 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1400 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1401 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1402 break;
1403 }
1404 return (typep);
1405 }
1406
1407 /*
1408
1409 LOCAL FUNCTION
1410
1411 dwarf_read_array_type -- read TAG_array_type DIE
1412
1413 SYNOPSIS
1414
1415 static void dwarf_read_array_type (struct dieinfo *dip)
1416
1417 DESCRIPTION
1418
1419 Extract all information from a TAG_array_type DIE and add to
1420 the user defined type vector.
1421 */
1422
1423 static void
1424 dwarf_read_array_type (dip)
1425 struct dieinfo *dip;
1426 {
1427 struct type *type;
1428 struct type *utype;
1429 char *sub;
1430 char *subend;
1431 unsigned short blocksz;
1432 int nbytes;
1433
1434 if (dip->at_ordering != ORD_row_major)
1435 {
1436 /* FIXME: Can gdb even handle column major arrays? */
1437 complain (&not_row_major, DIE_ID, DIE_NAME);
1438 }
1439 if ((sub = dip->at_subscr_data) != NULL)
1440 {
1441 nbytes = attribute_size (AT_subscr_data);
1442 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1443 subend = sub + nbytes + blocksz;
1444 sub += nbytes;
1445 type = decode_subscript_data_item (sub, subend);
1446 if ((utype = lookup_utype (dip->die_ref)) == NULL)
1447 {
1448 /* Install user defined type that has not been referenced yet. */
1449 alloc_utype (dip->die_ref, type);
1450 }
1451 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1452 {
1453 /* Ick! A forward ref has already generated a blank type in our
1454 slot, and this type probably already has things pointing to it
1455 (which is what caused it to be created in the first place).
1456 If it's just a place holder we can plop our fully defined type
1457 on top of it. We can't recover the space allocated for our
1458 new type since it might be on an obstack, but we could reuse
1459 it if we kept a list of them, but it might not be worth it
1460 (FIXME). */
1461 *utype = *type;
1462 }
1463 else
1464 {
1465 /* Double ick! Not only is a type already in our slot, but
1466 someone has decorated it. Complain and leave it alone. */
1467 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1468 }
1469 }
1470 }
1471
1472 /*
1473
1474 LOCAL FUNCTION
1475
1476 read_tag_pointer_type -- read TAG_pointer_type DIE
1477
1478 SYNOPSIS
1479
1480 static void read_tag_pointer_type (struct dieinfo *dip)
1481
1482 DESCRIPTION
1483
1484 Extract all information from a TAG_pointer_type DIE and add to
1485 the user defined type vector.
1486 */
1487
1488 static void
1489 read_tag_pointer_type (dip)
1490 struct dieinfo *dip;
1491 {
1492 struct type *type;
1493 struct type *utype;
1494
1495 type = decode_die_type (dip);
1496 if ((utype = lookup_utype (dip->die_ref)) == NULL)
1497 {
1498 utype = lookup_pointer_type (type);
1499 alloc_utype (dip->die_ref, utype);
1500 }
1501 else
1502 {
1503 TYPE_TARGET_TYPE (utype) = type;
1504 TYPE_POINTER_TYPE (type) = utype;
1505
1506 /* We assume the machine has only one representation for pointers! */
1507 /* FIXME: Possably a poor assumption */
1508 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1509 TYPE_CODE (utype) = TYPE_CODE_PTR;
1510 }
1511 }
1512
1513 /*
1514
1515 LOCAL FUNCTION
1516
1517 read_tag_string_type -- read TAG_string_type DIE
1518
1519 SYNOPSIS
1520
1521 static void read_tag_string_type (struct dieinfo *dip)
1522
1523 DESCRIPTION
1524
1525 Extract all information from a TAG_string_type DIE and add to
1526 the user defined type vector. It isn't really a user defined
1527 type, but it behaves like one, with other DIE's using an
1528 AT_user_def_type attribute to reference it.
1529 */
1530
1531 static void
1532 read_tag_string_type (dip)
1533 struct dieinfo *dip;
1534 {
1535 struct type *utype;
1536 struct type *indextype;
1537 struct type *rangetype;
1538 unsigned long lowbound = 0;
1539 unsigned long highbound;
1540
1541 if (dip->has_at_byte_size)
1542 {
1543 /* A fixed bounds string */
1544 highbound = dip->at_byte_size - 1;
1545 }
1546 else
1547 {
1548 /* A varying length string. Stub for now. (FIXME) */
1549 highbound = 1;
1550 }
1551 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1552 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1553 highbound);
1554
1555 utype = lookup_utype (dip->die_ref);
1556 if (utype == NULL)
1557 {
1558 /* No type defined, go ahead and create a blank one to use. */
1559 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
1560 }
1561 else
1562 {
1563 /* Already a type in our slot due to a forward reference. Make sure it
1564 is a blank one. If not, complain and leave it alone. */
1565 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1566 {
1567 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1568 return;
1569 }
1570 }
1571
1572 /* Create the string type using the blank type we either found or created. */
1573 utype = create_string_type (utype, rangetype);
1574 }
1575
1576 /*
1577
1578 LOCAL FUNCTION
1579
1580 read_subroutine_type -- process TAG_subroutine_type dies
1581
1582 SYNOPSIS
1583
1584 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1585 char *enddie)
1586
1587 DESCRIPTION
1588
1589 Handle DIES due to C code like:
1590
1591 struct foo {
1592 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1593 int b;
1594 };
1595
1596 NOTES
1597
1598 The parameter DIES are currently ignored. See if gdb has a way to
1599 include this info in it's type system, and decode them if so. Is
1600 this what the type structure's "arg_types" field is for? (FIXME)
1601 */
1602
1603 static void
1604 read_subroutine_type (dip, thisdie, enddie)
1605 struct dieinfo *dip;
1606 char *thisdie;
1607 char *enddie;
1608 {
1609 struct type *type; /* Type that this function returns */
1610 struct type *ftype; /* Function that returns above type */
1611
1612 /* Decode the type that this subroutine returns */
1613
1614 type = decode_die_type (dip);
1615
1616 /* Check to see if we already have a partially constructed user
1617 defined type for this DIE, from a forward reference. */
1618
1619 if ((ftype = lookup_utype (dip->die_ref)) == NULL)
1620 {
1621 /* This is the first reference to one of these types. Make
1622 a new one and place it in the user defined types. */
1623 ftype = lookup_function_type (type);
1624 alloc_utype (dip->die_ref, ftype);
1625 }
1626 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1627 {
1628 /* We have an existing partially constructed type, so bash it
1629 into the correct type. */
1630 TYPE_TARGET_TYPE (ftype) = type;
1631 TYPE_LENGTH (ftype) = 1;
1632 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1633 }
1634 else
1635 {
1636 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1637 }
1638 }
1639
1640 /*
1641
1642 LOCAL FUNCTION
1643
1644 read_enumeration -- process dies which define an enumeration
1645
1646 SYNOPSIS
1647
1648 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1649 char *enddie, struct objfile *objfile)
1650
1651 DESCRIPTION
1652
1653 Given a pointer to a die which begins an enumeration, process all
1654 the dies that define the members of the enumeration.
1655
1656 NOTES
1657
1658 Note that we need to call enum_type regardless of whether or not we
1659 have a symbol, since we might have an enum without a tag name (thus
1660 no symbol for the tagname).
1661 */
1662
1663 static void
1664 read_enumeration (dip, thisdie, enddie, objfile)
1665 struct dieinfo *dip;
1666 char *thisdie;
1667 char *enddie;
1668 struct objfile *objfile;
1669 {
1670 struct type *type;
1671 struct symbol *sym;
1672
1673 type = enum_type (dip, objfile);
1674 sym = new_symbol (dip, objfile);
1675 if (sym != NULL)
1676 {
1677 SYMBOL_TYPE (sym) = type;
1678 if (cu_language == language_cplus)
1679 {
1680 synthesize_typedef (dip, objfile, type);
1681 }
1682 }
1683 }
1684
1685 /*
1686
1687 LOCAL FUNCTION
1688
1689 enum_type -- decode and return a type for an enumeration
1690
1691 SYNOPSIS
1692
1693 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1694
1695 DESCRIPTION
1696
1697 Given a pointer to a die information structure for the die which
1698 starts an enumeration, process all the dies that define the members
1699 of the enumeration and return a type pointer for the enumeration.
1700
1701 At the same time, for each member of the enumeration, create a
1702 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1703 and give it the type of the enumeration itself.
1704
1705 NOTES
1706
1707 Note that the DWARF specification explicitly mandates that enum
1708 constants occur in reverse order from the source program order,
1709 for "consistency" and because this ordering is easier for many
1710 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1711 Entries). Because gdb wants to see the enum members in program
1712 source order, we have to ensure that the order gets reversed while
1713 we are processing them.
1714 */
1715
1716 static struct type *
1717 enum_type (dip, objfile)
1718 struct dieinfo *dip;
1719 struct objfile *objfile;
1720 {
1721 struct type *type;
1722 struct nextfield
1723 {
1724 struct nextfield *next;
1725 struct field field;
1726 };
1727 struct nextfield *list = NULL;
1728 struct nextfield *new;
1729 int nfields = 0;
1730 int n;
1731 char *scan;
1732 char *listend;
1733 unsigned short blocksz;
1734 struct symbol *sym;
1735 int nbytes;
1736 int unsigned_enum = 1;
1737
1738 if ((type = lookup_utype (dip->die_ref)) == NULL)
1739 {
1740 /* No forward references created an empty type, so install one now */
1741 type = alloc_utype (dip->die_ref, NULL);
1742 }
1743 TYPE_CODE (type) = TYPE_CODE_ENUM;
1744 /* Some compilers try to be helpful by inventing "fake" names for
1745 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1746 Thanks, but no thanks... */
1747 if (dip->at_name != NULL
1748 && *dip->at_name != '~'
1749 && *dip->at_name != '.')
1750 {
1751 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1752 "", "", dip->at_name);
1753 }
1754 if (dip->at_byte_size != 0)
1755 {
1756 TYPE_LENGTH (type) = dip->at_byte_size;
1757 }
1758 if ((scan = dip->at_element_list) != NULL)
1759 {
1760 if (dip->short_element_list)
1761 {
1762 nbytes = attribute_size (AT_short_element_list);
1763 }
1764 else
1765 {
1766 nbytes = attribute_size (AT_element_list);
1767 }
1768 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1769 listend = scan + nbytes + blocksz;
1770 scan += nbytes;
1771 while (scan < listend)
1772 {
1773 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1774 new->next = list;
1775 list = new;
1776 FIELD_TYPE (list->field) = NULL;
1777 FIELD_BITSIZE (list->field) = 0;
1778 FIELD_BITPOS (list->field) =
1779 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1780 objfile);
1781 scan += TARGET_FT_LONG_SIZE (objfile);
1782 list->field.name = obsavestring (scan, strlen (scan),
1783 &objfile->type_obstack);
1784 scan += strlen (scan) + 1;
1785 nfields++;
1786 /* Handcraft a new symbol for this enum member. */
1787 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1788 sizeof (struct symbol));
1789 memset (sym, 0, sizeof (struct symbol));
1790 SYMBOL_NAME (sym) = create_name (list->field.name,
1791 &objfile->symbol_obstack);
1792 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1793 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1794 SYMBOL_CLASS (sym) = LOC_CONST;
1795 SYMBOL_TYPE (sym) = type;
1796 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1797 if (SYMBOL_VALUE (sym) < 0)
1798 unsigned_enum = 0;
1799 add_symbol_to_list (sym, list_in_scope);
1800 }
1801 /* Now create the vector of fields, and record how big it is. This is
1802 where we reverse the order, by pulling the members off the list in
1803 reverse order from how they were inserted. If we have no fields
1804 (this is apparently possible in C++) then skip building a field
1805 vector. */
1806 if (nfields > 0)
1807 {
1808 if (unsigned_enum)
1809 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1810 TYPE_NFIELDS (type) = nfields;
1811 TYPE_FIELDS (type) = (struct field *)
1812 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1813 /* Copy the saved-up fields into the field vector. */
1814 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
1815 {
1816 TYPE_FIELD (type, n++) = list->field;
1817 }
1818 }
1819 }
1820 return (type);
1821 }
1822
1823 /*
1824
1825 LOCAL FUNCTION
1826
1827 read_func_scope -- process all dies within a function scope
1828
1829 DESCRIPTION
1830
1831 Process all dies within a given function scope. We are passed
1832 a die information structure pointer DIP for the die which
1833 starts the function scope, and pointers into the raw die data
1834 that define the dies within the function scope.
1835
1836 For now, we ignore lexical block scopes within the function.
1837 The problem is that AT&T cc does not define a DWARF lexical
1838 block scope for the function itself, while gcc defines a
1839 lexical block scope for the function. We need to think about
1840 how to handle this difference, or if it is even a problem.
1841 (FIXME)
1842 */
1843
1844 static void
1845 read_func_scope (dip, thisdie, enddie, objfile)
1846 struct dieinfo *dip;
1847 char *thisdie;
1848 char *enddie;
1849 struct objfile *objfile;
1850 {
1851 register struct context_stack *new;
1852
1853 /* AT_name is absent if the function is described with an
1854 AT_abstract_origin tag.
1855 Ignore the function description for now to avoid GDB core dumps.
1856 FIXME: Add code to handle AT_abstract_origin tags properly. */
1857 if (dip->at_name == NULL)
1858 {
1859 complain (&missing_at_name, DIE_ID);
1860 return;
1861 }
1862
1863 if (objfile->ei.entry_point >= dip->at_low_pc &&
1864 objfile->ei.entry_point < dip->at_high_pc)
1865 {
1866 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1867 objfile->ei.entry_func_highpc = dip->at_high_pc;
1868 }
1869 if (STREQ (dip->at_name, "main")) /* FIXME: hardwired name */
1870 {
1871 objfile->ei.main_func_lowpc = dip->at_low_pc;
1872 objfile->ei.main_func_highpc = dip->at_high_pc;
1873 }
1874 new = push_context (0, dip->at_low_pc);
1875 new->name = new_symbol (dip, objfile);
1876 list_in_scope = &local_symbols;
1877 process_dies (thisdie + dip->die_length, enddie, objfile);
1878 new = pop_context ();
1879 /* Make a block for the local symbols within. */
1880 finish_block (new->name, &local_symbols, new->old_blocks,
1881 new->start_addr, dip->at_high_pc, objfile);
1882 list_in_scope = &file_symbols;
1883 }
1884
1885
1886 /*
1887
1888 LOCAL FUNCTION
1889
1890 handle_producer -- process the AT_producer attribute
1891
1892 DESCRIPTION
1893
1894 Perform any operations that depend on finding a particular
1895 AT_producer attribute.
1896
1897 */
1898
1899 static void
1900 handle_producer (producer)
1901 char *producer;
1902 {
1903
1904 /* If this compilation unit was compiled with g++ or gcc, then set the
1905 processing_gcc_compilation flag. */
1906
1907 if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1908 {
1909 char version = producer[strlen (GCC_PRODUCER)];
1910 processing_gcc_compilation = (version == '2' ? 2 : 1);
1911 }
1912 else
1913 {
1914 processing_gcc_compilation =
1915 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1916 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER));
1917 }
1918
1919 /* Select a demangling style if we can identify the producer and if
1920 the current style is auto. We leave the current style alone if it
1921 is not auto. We also leave the demangling style alone if we find a
1922 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1923
1924 if (AUTO_DEMANGLING)
1925 {
1926 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1927 {
1928 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1929 }
1930 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1931 {
1932 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1933 }
1934 }
1935 }
1936
1937
1938 /*
1939
1940 LOCAL FUNCTION
1941
1942 read_file_scope -- process all dies within a file scope
1943
1944 DESCRIPTION
1945
1946 Process all dies within a given file scope. We are passed a
1947 pointer to the die information structure for the die which
1948 starts the file scope, and pointers into the raw die data which
1949 mark the range of dies within the file scope.
1950
1951 When the partial symbol table is built, the file offset for the line
1952 number table for each compilation unit is saved in the partial symbol
1953 table entry for that compilation unit. As the symbols for each
1954 compilation unit are read, the line number table is read into memory
1955 and the variable lnbase is set to point to it. Thus all we have to
1956 do is use lnbase to access the line number table for the current
1957 compilation unit.
1958 */
1959
1960 static void
1961 read_file_scope (dip, thisdie, enddie, objfile)
1962 struct dieinfo *dip;
1963 char *thisdie;
1964 char *enddie;
1965 struct objfile *objfile;
1966 {
1967 struct cleanup *back_to;
1968 struct symtab *symtab;
1969
1970 if (objfile->ei.entry_point >= dip->at_low_pc &&
1971 objfile->ei.entry_point < dip->at_high_pc)
1972 {
1973 objfile->ei.entry_file_lowpc = dip->at_low_pc;
1974 objfile->ei.entry_file_highpc = dip->at_high_pc;
1975 }
1976 set_cu_language (dip);
1977 if (dip->at_producer != NULL)
1978 {
1979 handle_producer (dip->at_producer);
1980 }
1981 numutypes = (enddie - thisdie) / 4;
1982 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1983 back_to = make_cleanup (free_utypes, NULL);
1984 memset (utypes, 0, numutypes * sizeof (struct type *));
1985 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1986 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
1987 record_debugformat ("DWARF 1");
1988 decode_line_numbers (lnbase);
1989 process_dies (thisdie + dip->die_length, enddie, objfile);
1990
1991 symtab = end_symtab (dip->at_high_pc, objfile, 0);
1992 if (symtab != NULL)
1993 {
1994 symtab->language = cu_language;
1995 }
1996 do_cleanups (back_to);
1997 }
1998
1999 /*
2000
2001 LOCAL FUNCTION
2002
2003 process_dies -- process a range of DWARF Information Entries
2004
2005 SYNOPSIS
2006
2007 static void process_dies (char *thisdie, char *enddie,
2008 struct objfile *objfile)
2009
2010 DESCRIPTION
2011
2012 Process all DIE's in a specified range. May be (and almost
2013 certainly will be) called recursively.
2014 */
2015
2016 static void
2017 process_dies (thisdie, enddie, objfile)
2018 char *thisdie;
2019 char *enddie;
2020 struct objfile *objfile;
2021 {
2022 char *nextdie;
2023 struct dieinfo di;
2024
2025 while (thisdie < enddie)
2026 {
2027 basicdieinfo (&di, thisdie, objfile);
2028 if (di.die_length < SIZEOF_DIE_LENGTH)
2029 {
2030 break;
2031 }
2032 else if (di.die_tag == TAG_padding)
2033 {
2034 nextdie = thisdie + di.die_length;
2035 }
2036 else
2037 {
2038 completedieinfo (&di, objfile);
2039 if (di.at_sibling != 0)
2040 {
2041 nextdie = dbbase + di.at_sibling - dbroff;
2042 }
2043 else
2044 {
2045 nextdie = thisdie + di.die_length;
2046 }
2047 #ifdef SMASH_TEXT_ADDRESS
2048 /* I think that these are always text, not data, addresses. */
2049 SMASH_TEXT_ADDRESS (di.at_low_pc);
2050 SMASH_TEXT_ADDRESS (di.at_high_pc);
2051 #endif
2052 switch (di.die_tag)
2053 {
2054 case TAG_compile_unit:
2055 /* Skip Tag_compile_unit if we are already inside a compilation
2056 unit, we are unable to handle nested compilation units
2057 properly (FIXME). */
2058 if (current_subfile == NULL)
2059 read_file_scope (&di, thisdie, nextdie, objfile);
2060 else
2061 nextdie = thisdie + di.die_length;
2062 break;
2063 case TAG_global_subroutine:
2064 case TAG_subroutine:
2065 if (di.has_at_low_pc)
2066 {
2067 read_func_scope (&di, thisdie, nextdie, objfile);
2068 }
2069 break;
2070 case TAG_lexical_block:
2071 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2072 break;
2073 case TAG_class_type:
2074 case TAG_structure_type:
2075 case TAG_union_type:
2076 read_structure_scope (&di, thisdie, nextdie, objfile);
2077 break;
2078 case TAG_enumeration_type:
2079 read_enumeration (&di, thisdie, nextdie, objfile);
2080 break;
2081 case TAG_subroutine_type:
2082 read_subroutine_type (&di, thisdie, nextdie);
2083 break;
2084 case TAG_array_type:
2085 dwarf_read_array_type (&di);
2086 break;
2087 case TAG_pointer_type:
2088 read_tag_pointer_type (&di);
2089 break;
2090 case TAG_string_type:
2091 read_tag_string_type (&di);
2092 break;
2093 default:
2094 new_symbol (&di, objfile);
2095 break;
2096 }
2097 }
2098 thisdie = nextdie;
2099 }
2100 }
2101
2102 /*
2103
2104 LOCAL FUNCTION
2105
2106 decode_line_numbers -- decode a line number table fragment
2107
2108 SYNOPSIS
2109
2110 static void decode_line_numbers (char *tblscan, char *tblend,
2111 long length, long base, long line, long pc)
2112
2113 DESCRIPTION
2114
2115 Translate the DWARF line number information to gdb form.
2116
2117 The ".line" section contains one or more line number tables, one for
2118 each ".line" section from the objects that were linked.
2119
2120 The AT_stmt_list attribute for each TAG_source_file entry in the
2121 ".debug" section contains the offset into the ".line" section for the
2122 start of the table for that file.
2123
2124 The table itself has the following structure:
2125
2126 <table length><base address><source statement entry>
2127 4 bytes 4 bytes 10 bytes
2128
2129 The table length is the total size of the table, including the 4 bytes
2130 for the length information.
2131
2132 The base address is the address of the first instruction generated
2133 for the source file.
2134
2135 Each source statement entry has the following structure:
2136
2137 <line number><statement position><address delta>
2138 4 bytes 2 bytes 4 bytes
2139
2140 The line number is relative to the start of the file, starting with
2141 line 1.
2142
2143 The statement position either -1 (0xFFFF) or the number of characters
2144 from the beginning of the line to the beginning of the statement.
2145
2146 The address delta is the difference between the base address and
2147 the address of the first instruction for the statement.
2148
2149 Note that we must copy the bytes from the packed table to our local
2150 variables before attempting to use them, to avoid alignment problems
2151 on some machines, particularly RISC processors.
2152
2153 BUGS
2154
2155 Does gdb expect the line numbers to be sorted? They are now by
2156 chance/luck, but are not required to be. (FIXME)
2157
2158 The line with number 0 is unused, gdb apparently can discover the
2159 span of the last line some other way. How? (FIXME)
2160 */
2161
2162 static void
2163 decode_line_numbers (linetable)
2164 char *linetable;
2165 {
2166 char *tblscan;
2167 char *tblend;
2168 unsigned long length;
2169 unsigned long base;
2170 unsigned long line;
2171 unsigned long pc;
2172
2173 if (linetable != NULL)
2174 {
2175 tblscan = tblend = linetable;
2176 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2177 current_objfile);
2178 tblscan += SIZEOF_LINETBL_LENGTH;
2179 tblend += length;
2180 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2181 GET_UNSIGNED, current_objfile);
2182 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2183 base += baseaddr;
2184 while (tblscan < tblend)
2185 {
2186 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2187 current_objfile);
2188 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2189 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2190 current_objfile);
2191 tblscan += SIZEOF_LINETBL_DELTA;
2192 pc += base;
2193 if (line != 0)
2194 {
2195 record_line (current_subfile, line, pc);
2196 }
2197 }
2198 }
2199 }
2200
2201 /*
2202
2203 LOCAL FUNCTION
2204
2205 locval -- compute the value of a location attribute
2206
2207 SYNOPSIS
2208
2209 static int locval (struct dieinfo *dip)
2210
2211 DESCRIPTION
2212
2213 Given pointer to a string of bytes that define a location, compute
2214 the location and return the value.
2215 A location description containing no atoms indicates that the
2216 object is optimized out. The optimized_out flag is set for those,
2217 the return value is meaningless.
2218
2219 When computing values involving the current value of the frame pointer,
2220 the value zero is used, which results in a value relative to the frame
2221 pointer, rather than the absolute value. This is what GDB wants
2222 anyway.
2223
2224 When the result is a register number, the isreg flag is set, otherwise
2225 it is cleared. This is a kludge until we figure out a better
2226 way to handle the problem. Gdb's design does not mesh well with the
2227 DWARF notion of a location computing interpreter, which is a shame
2228 because the flexibility goes unused.
2229
2230 NOTES
2231
2232 Note that stack[0] is unused except as a default error return.
2233 Note that stack overflow is not yet handled.
2234 */
2235
2236 static int
2237 locval (dip)
2238 struct dieinfo *dip;
2239 {
2240 unsigned short nbytes;
2241 unsigned short locsize;
2242 auto long stack[64];
2243 int stacki;
2244 char *loc;
2245 char *end;
2246 int loc_atom_code;
2247 int loc_value_size;
2248
2249 loc = dip->at_location;
2250 nbytes = attribute_size (AT_location);
2251 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2252 loc += nbytes;
2253 end = loc + locsize;
2254 stacki = 0;
2255 stack[stacki] = 0;
2256 dip->isreg = 0;
2257 dip->offreg = 0;
2258 dip->optimized_out = 1;
2259 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2260 while (loc < end)
2261 {
2262 dip->optimized_out = 0;
2263 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2264 current_objfile);
2265 loc += SIZEOF_LOC_ATOM_CODE;
2266 switch (loc_atom_code)
2267 {
2268 case 0:
2269 /* error */
2270 loc = end;
2271 break;
2272 case OP_REG:
2273 /* push register (number) */
2274 stack[++stacki]
2275 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2276 GET_UNSIGNED,
2277 current_objfile));
2278 loc += loc_value_size;
2279 dip->isreg = 1;
2280 break;
2281 case OP_BASEREG:
2282 /* push value of register (number) */
2283 /* Actually, we compute the value as if register has 0, so the
2284 value ends up being the offset from that register. */
2285 dip->offreg = 1;
2286 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2287 current_objfile);
2288 loc += loc_value_size;
2289 stack[++stacki] = 0;
2290 break;
2291 case OP_ADDR:
2292 /* push address (relocated address) */
2293 stack[++stacki] = target_to_host (loc, loc_value_size,
2294 GET_UNSIGNED, current_objfile);
2295 loc += loc_value_size;
2296 break;
2297 case OP_CONST:
2298 /* push constant (number) FIXME: signed or unsigned! */
2299 stack[++stacki] = target_to_host (loc, loc_value_size,
2300 GET_SIGNED, current_objfile);
2301 loc += loc_value_size;
2302 break;
2303 case OP_DEREF2:
2304 /* pop, deref and push 2 bytes (as a long) */
2305 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2306 break;
2307 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2308 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2309 break;
2310 case OP_ADD: /* pop top 2 items, add, push result */
2311 stack[stacki - 1] += stack[stacki];
2312 stacki--;
2313 break;
2314 }
2315 }
2316 return (stack[stacki]);
2317 }
2318
2319 /*
2320
2321 LOCAL FUNCTION
2322
2323 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2324
2325 SYNOPSIS
2326
2327 static void read_ofile_symtab (struct partial_symtab *pst)
2328
2329 DESCRIPTION
2330
2331 When expanding a partial symbol table entry to a full symbol table
2332 entry, this is the function that gets called to read in the symbols
2333 for the compilation unit. A pointer to the newly constructed symtab,
2334 which is now the new first one on the objfile's symtab list, is
2335 stashed in the partial symbol table entry.
2336 */
2337
2338 static void
2339 read_ofile_symtab (pst)
2340 struct partial_symtab *pst;
2341 {
2342 struct cleanup *back_to;
2343 unsigned long lnsize;
2344 file_ptr foffset;
2345 bfd *abfd;
2346 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2347
2348 abfd = pst->objfile->obfd;
2349 current_objfile = pst->objfile;
2350
2351 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2352 unit, seek to the location in the file, and read in all the DIE's. */
2353
2354 diecount = 0;
2355 dbsize = DBLENGTH (pst);
2356 dbbase = xmalloc (dbsize);
2357 dbroff = DBROFF (pst);
2358 foffset = DBFOFF (pst) + dbroff;
2359 base_section_offsets = pst->section_offsets;
2360 baseaddr = ANOFFSET (pst->section_offsets, 0);
2361 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2362 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2363 {
2364 free (dbbase);
2365 error ("can't read DWARF data");
2366 }
2367 back_to = make_cleanup (free, dbbase);
2368
2369 /* If there is a line number table associated with this compilation unit
2370 then read the size of this fragment in bytes, from the fragment itself.
2371 Allocate a buffer for the fragment and read it in for future
2372 processing. */
2373
2374 lnbase = NULL;
2375 if (LNFOFF (pst))
2376 {
2377 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2378 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2379 sizeof (lnsizedata)))
2380 {
2381 error ("can't read DWARF line number table size");
2382 }
2383 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2384 GET_UNSIGNED, pst->objfile);
2385 lnbase = xmalloc (lnsize);
2386 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2387 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2388 {
2389 free (lnbase);
2390 error ("can't read DWARF line numbers");
2391 }
2392 make_cleanup (free, lnbase);
2393 }
2394
2395 process_dies (dbbase, dbbase + dbsize, pst->objfile);
2396 do_cleanups (back_to);
2397 current_objfile = NULL;
2398 pst->symtab = pst->objfile->symtabs;
2399 }
2400
2401 /*
2402
2403 LOCAL FUNCTION
2404
2405 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2406
2407 SYNOPSIS
2408
2409 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2410
2411 DESCRIPTION
2412
2413 Called once for each partial symbol table entry that needs to be
2414 expanded into a full symbol table entry.
2415
2416 */
2417
2418 static void
2419 psymtab_to_symtab_1 (pst)
2420 struct partial_symtab *pst;
2421 {
2422 int i;
2423 struct cleanup *old_chain;
2424
2425 if (pst != NULL)
2426 {
2427 if (pst->readin)
2428 {
2429 warning ("psymtab for %s already read in. Shouldn't happen.",
2430 pst->filename);
2431 }
2432 else
2433 {
2434 /* Read in all partial symtabs on which this one is dependent */
2435 for (i = 0; i < pst->number_of_dependencies; i++)
2436 {
2437 if (!pst->dependencies[i]->readin)
2438 {
2439 /* Inform about additional files that need to be read in. */
2440 if (info_verbose)
2441 {
2442 fputs_filtered (" ", gdb_stdout);
2443 wrap_here ("");
2444 fputs_filtered ("and ", gdb_stdout);
2445 wrap_here ("");
2446 printf_filtered ("%s...",
2447 pst->dependencies[i]->filename);
2448 wrap_here ("");
2449 gdb_flush (gdb_stdout); /* Flush output */
2450 }
2451 psymtab_to_symtab_1 (pst->dependencies[i]);
2452 }
2453 }
2454 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2455 {
2456 buildsym_init ();
2457 old_chain = make_cleanup (really_free_pendings, 0);
2458 read_ofile_symtab (pst);
2459 if (info_verbose)
2460 {
2461 printf_filtered ("%d DIE's, sorting...", diecount);
2462 wrap_here ("");
2463 gdb_flush (gdb_stdout);
2464 }
2465 sort_symtab_syms (pst->symtab);
2466 do_cleanups (old_chain);
2467 }
2468 pst->readin = 1;
2469 }
2470 }
2471 }
2472
2473 /*
2474
2475 LOCAL FUNCTION
2476
2477 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2478
2479 SYNOPSIS
2480
2481 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2482
2483 DESCRIPTION
2484
2485 This is the DWARF support entry point for building a full symbol
2486 table entry from a partial symbol table entry. We are passed a
2487 pointer to the partial symbol table entry that needs to be expanded.
2488
2489 */
2490
2491 static void
2492 dwarf_psymtab_to_symtab (pst)
2493 struct partial_symtab *pst;
2494 {
2495
2496 if (pst != NULL)
2497 {
2498 if (pst->readin)
2499 {
2500 warning ("psymtab for %s already read in. Shouldn't happen.",
2501 pst->filename);
2502 }
2503 else
2504 {
2505 if (DBLENGTH (pst) || pst->number_of_dependencies)
2506 {
2507 /* Print the message now, before starting serious work, to avoid
2508 disconcerting pauses. */
2509 if (info_verbose)
2510 {
2511 printf_filtered ("Reading in symbols for %s...",
2512 pst->filename);
2513 gdb_flush (gdb_stdout);
2514 }
2515
2516 psymtab_to_symtab_1 (pst);
2517
2518 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2519 we need to do an equivalent or is this something peculiar to
2520 stabs/a.out format.
2521 Match with global symbols. This only needs to be done once,
2522 after all of the symtabs and dependencies have been read in.
2523 */
2524 scan_file_globals (pst->objfile);
2525 #endif
2526
2527 /* Finish up the verbose info message. */
2528 if (info_verbose)
2529 {
2530 printf_filtered ("done.\n");
2531 gdb_flush (gdb_stdout);
2532 }
2533 }
2534 }
2535 }
2536 }
2537
2538 /*
2539
2540 LOCAL FUNCTION
2541
2542 add_enum_psymbol -- add enumeration members to partial symbol table
2543
2544 DESCRIPTION
2545
2546 Given pointer to a DIE that is known to be for an enumeration,
2547 extract the symbolic names of the enumeration members and add
2548 partial symbols for them.
2549 */
2550
2551 static void
2552 add_enum_psymbol (dip, objfile)
2553 struct dieinfo *dip;
2554 struct objfile *objfile;
2555 {
2556 char *scan;
2557 char *listend;
2558 unsigned short blocksz;
2559 int nbytes;
2560
2561 if ((scan = dip->at_element_list) != NULL)
2562 {
2563 if (dip->short_element_list)
2564 {
2565 nbytes = attribute_size (AT_short_element_list);
2566 }
2567 else
2568 {
2569 nbytes = attribute_size (AT_element_list);
2570 }
2571 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2572 scan += nbytes;
2573 listend = scan + blocksz;
2574 while (scan < listend)
2575 {
2576 scan += TARGET_FT_LONG_SIZE (objfile);
2577 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2578 &objfile->static_psymbols, 0, 0, cu_language,
2579 objfile);
2580 scan += strlen (scan) + 1;
2581 }
2582 }
2583 }
2584
2585 /*
2586
2587 LOCAL FUNCTION
2588
2589 add_partial_symbol -- add symbol to partial symbol table
2590
2591 DESCRIPTION
2592
2593 Given a DIE, if it is one of the types that we want to
2594 add to a partial symbol table, finish filling in the die info
2595 and then add a partial symbol table entry for it.
2596
2597 NOTES
2598
2599 The caller must ensure that the DIE has a valid name attribute.
2600 */
2601
2602 static void
2603 add_partial_symbol (dip, objfile)
2604 struct dieinfo *dip;
2605 struct objfile *objfile;
2606 {
2607 switch (dip->die_tag)
2608 {
2609 case TAG_global_subroutine:
2610 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2611 VAR_NAMESPACE, LOC_BLOCK,
2612 &objfile->global_psymbols,
2613 0, dip->at_low_pc, cu_language, objfile);
2614 break;
2615 case TAG_global_variable:
2616 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2617 VAR_NAMESPACE, LOC_STATIC,
2618 &objfile->global_psymbols,
2619 0, 0, cu_language, objfile);
2620 break;
2621 case TAG_subroutine:
2622 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2623 VAR_NAMESPACE, LOC_BLOCK,
2624 &objfile->static_psymbols,
2625 0, dip->at_low_pc, cu_language, objfile);
2626 break;
2627 case TAG_local_variable:
2628 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2629 VAR_NAMESPACE, LOC_STATIC,
2630 &objfile->static_psymbols,
2631 0, 0, cu_language, objfile);
2632 break;
2633 case TAG_typedef:
2634 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2635 VAR_NAMESPACE, LOC_TYPEDEF,
2636 &objfile->static_psymbols,
2637 0, 0, cu_language, objfile);
2638 break;
2639 case TAG_class_type:
2640 case TAG_structure_type:
2641 case TAG_union_type:
2642 case TAG_enumeration_type:
2643 /* Do not add opaque aggregate definitions to the psymtab. */
2644 if (!dip->has_at_byte_size)
2645 break;
2646 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2647 STRUCT_NAMESPACE, LOC_TYPEDEF,
2648 &objfile->static_psymbols,
2649 0, 0, cu_language, objfile);
2650 if (cu_language == language_cplus)
2651 {
2652 /* For C++, these implicitly act as typedefs as well. */
2653 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2654 VAR_NAMESPACE, LOC_TYPEDEF,
2655 &objfile->static_psymbols,
2656 0, 0, cu_language, objfile);
2657 }
2658 break;
2659 }
2660 }
2661 /* *INDENT-OFF* */
2662 /*
2663
2664 LOCAL FUNCTION
2665
2666 scan_partial_symbols -- scan DIE's within a single compilation unit
2667
2668 DESCRIPTION
2669
2670 Process the DIE's within a single compilation unit, looking for
2671 interesting DIE's that contribute to the partial symbol table entry
2672 for this compilation unit.
2673
2674 NOTES
2675
2676 There are some DIE's that may appear both at file scope and within
2677 the scope of a function. We are only interested in the ones at file
2678 scope, and the only way to tell them apart is to keep track of the
2679 scope. For example, consider the test case:
2680
2681 static int i;
2682 main () { int j; }
2683
2684 for which the relevant DWARF segment has the structure:
2685
2686 0x51:
2687 0x23 global subrtn sibling 0x9b
2688 name main
2689 fund_type FT_integer
2690 low_pc 0x800004cc
2691 high_pc 0x800004d4
2692
2693 0x74:
2694 0x23 local var sibling 0x97
2695 name j
2696 fund_type FT_integer
2697 location OP_BASEREG 0xe
2698 OP_CONST 0xfffffffc
2699 OP_ADD
2700 0x97:
2701 0x4
2702
2703 0x9b:
2704 0x1d local var sibling 0xb8
2705 name i
2706 fund_type FT_integer
2707 location OP_ADDR 0x800025dc
2708
2709 0xb8:
2710 0x4
2711
2712 We want to include the symbol 'i' in the partial symbol table, but
2713 not the symbol 'j'. In essence, we want to skip all the dies within
2714 the scope of a TAG_global_subroutine DIE.
2715
2716 Don't attempt to add anonymous structures or unions since they have
2717 no name. Anonymous enumerations however are processed, because we
2718 want to extract their member names (the check for a tag name is
2719 done later).
2720
2721 Also, for variables and subroutines, check that this is the place
2722 where the actual definition occurs, rather than just a reference
2723 to an external.
2724 */
2725 /* *INDENT-ON* */
2726
2727
2728
2729 static void
2730 scan_partial_symbols (thisdie, enddie, objfile)
2731 char *thisdie;
2732 char *enddie;
2733 struct objfile *objfile;
2734 {
2735 char *nextdie;
2736 char *temp;
2737 struct dieinfo di;
2738
2739 while (thisdie < enddie)
2740 {
2741 basicdieinfo (&di, thisdie, objfile);
2742 if (di.die_length < SIZEOF_DIE_LENGTH)
2743 {
2744 break;
2745 }
2746 else
2747 {
2748 nextdie = thisdie + di.die_length;
2749 /* To avoid getting complete die information for every die, we
2750 only do it (below) for the cases we are interested in. */
2751 switch (di.die_tag)
2752 {
2753 case TAG_global_subroutine:
2754 case TAG_subroutine:
2755 completedieinfo (&di, objfile);
2756 if (di.at_name && (di.has_at_low_pc || di.at_location))
2757 {
2758 add_partial_symbol (&di, objfile);
2759 /* If there is a sibling attribute, adjust the nextdie
2760 pointer to skip the entire scope of the subroutine.
2761 Apply some sanity checking to make sure we don't
2762 overrun or underrun the range of remaining DIE's */
2763 if (di.at_sibling != 0)
2764 {
2765 temp = dbbase + di.at_sibling - dbroff;
2766 if ((temp < thisdie) || (temp >= enddie))
2767 {
2768 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2769 di.at_sibling);
2770 }
2771 else
2772 {
2773 nextdie = temp;
2774 }
2775 }
2776 }
2777 break;
2778 case TAG_global_variable:
2779 case TAG_local_variable:
2780 completedieinfo (&di, objfile);
2781 if (di.at_name && (di.has_at_low_pc || di.at_location))
2782 {
2783 add_partial_symbol (&di, objfile);
2784 }
2785 break;
2786 case TAG_typedef:
2787 case TAG_class_type:
2788 case TAG_structure_type:
2789 case TAG_union_type:
2790 completedieinfo (&di, objfile);
2791 if (di.at_name)
2792 {
2793 add_partial_symbol (&di, objfile);
2794 }
2795 break;
2796 case TAG_enumeration_type:
2797 completedieinfo (&di, objfile);
2798 if (di.at_name)
2799 {
2800 add_partial_symbol (&di, objfile);
2801 }
2802 add_enum_psymbol (&di, objfile);
2803 break;
2804 }
2805 }
2806 thisdie = nextdie;
2807 }
2808 }
2809
2810 /*
2811
2812 LOCAL FUNCTION
2813
2814 scan_compilation_units -- build a psymtab entry for each compilation
2815
2816 DESCRIPTION
2817
2818 This is the top level dwarf parsing routine for building partial
2819 symbol tables.
2820
2821 It scans from the beginning of the DWARF table looking for the first
2822 TAG_compile_unit DIE, and then follows the sibling chain to locate
2823 each additional TAG_compile_unit DIE.
2824
2825 For each TAG_compile_unit DIE it creates a partial symtab structure,
2826 calls a subordinate routine to collect all the compilation unit's
2827 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2828 new partial symtab structure into the partial symbol table. It also
2829 records the appropriate information in the partial symbol table entry
2830 to allow the chunk of DIE's and line number table for this compilation
2831 unit to be located and re-read later, to generate a complete symbol
2832 table entry for the compilation unit.
2833
2834 Thus it effectively partitions up a chunk of DIE's for multiple
2835 compilation units into smaller DIE chunks and line number tables,
2836 and associates them with a partial symbol table entry.
2837
2838 NOTES
2839
2840 If any compilation unit has no line number table associated with
2841 it for some reason (a missing at_stmt_list attribute, rather than
2842 just one with a value of zero, which is valid) then we ensure that
2843 the recorded file offset is zero so that the routine which later
2844 reads line number table fragments knows that there is no fragment
2845 to read.
2846
2847 RETURNS
2848
2849 Returns no value.
2850
2851 */
2852
2853 static void
2854 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2855 char *thisdie;
2856 char *enddie;
2857 file_ptr dbfoff;
2858 file_ptr lnoffset;
2859 struct objfile *objfile;
2860 {
2861 char *nextdie;
2862 struct dieinfo di;
2863 struct partial_symtab *pst;
2864 int culength;
2865 int curoff;
2866 file_ptr curlnoffset;
2867
2868 while (thisdie < enddie)
2869 {
2870 basicdieinfo (&di, thisdie, objfile);
2871 if (di.die_length < SIZEOF_DIE_LENGTH)
2872 {
2873 break;
2874 }
2875 else if (di.die_tag != TAG_compile_unit)
2876 {
2877 nextdie = thisdie + di.die_length;
2878 }
2879 else
2880 {
2881 completedieinfo (&di, objfile);
2882 set_cu_language (&di);
2883 if (di.at_sibling != 0)
2884 {
2885 nextdie = dbbase + di.at_sibling - dbroff;
2886 }
2887 else
2888 {
2889 nextdie = thisdie + di.die_length;
2890 }
2891 curoff = thisdie - dbbase;
2892 culength = nextdie - thisdie;
2893 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2894
2895 /* First allocate a new partial symbol table structure */
2896
2897 pst = start_psymtab_common (objfile, base_section_offsets,
2898 di.at_name, di.at_low_pc,
2899 objfile->global_psymbols.next,
2900 objfile->static_psymbols.next);
2901
2902 pst->texthigh = di.at_high_pc;
2903 pst->read_symtab_private = (char *)
2904 obstack_alloc (&objfile->psymbol_obstack,
2905 sizeof (struct dwfinfo));
2906 DBFOFF (pst) = dbfoff;
2907 DBROFF (pst) = curoff;
2908 DBLENGTH (pst) = culength;
2909 LNFOFF (pst) = curlnoffset;
2910 pst->read_symtab = dwarf_psymtab_to_symtab;
2911
2912 /* Now look for partial symbols */
2913
2914 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2915
2916 pst->n_global_syms = objfile->global_psymbols.next -
2917 (objfile->global_psymbols.list + pst->globals_offset);
2918 pst->n_static_syms = objfile->static_psymbols.next -
2919 (objfile->static_psymbols.list + pst->statics_offset);
2920 sort_pst_symbols (pst);
2921 /* If there is already a psymtab or symtab for a file of this name,
2922 remove it. (If there is a symtab, more drastic things also
2923 happen.) This happens in VxWorks. */
2924 free_named_symtabs (pst->filename);
2925 }
2926 thisdie = nextdie;
2927 }
2928 }
2929
2930 /*
2931
2932 LOCAL FUNCTION
2933
2934 new_symbol -- make a symbol table entry for a new symbol
2935
2936 SYNOPSIS
2937
2938 static struct symbol *new_symbol (struct dieinfo *dip,
2939 struct objfile *objfile)
2940
2941 DESCRIPTION
2942
2943 Given a pointer to a DWARF information entry, figure out if we need
2944 to make a symbol table entry for it, and if so, create a new entry
2945 and return a pointer to it.
2946 */
2947
2948 static struct symbol *
2949 new_symbol (dip, objfile)
2950 struct dieinfo *dip;
2951 struct objfile *objfile;
2952 {
2953 struct symbol *sym = NULL;
2954
2955 if (dip->at_name != NULL)
2956 {
2957 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
2958 sizeof (struct symbol));
2959 OBJSTAT (objfile, n_syms++);
2960 memset (sym, 0, sizeof (struct symbol));
2961 SYMBOL_NAME (sym) = create_name (dip->at_name,
2962 &objfile->symbol_obstack);
2963 /* default assumptions */
2964 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2965 SYMBOL_CLASS (sym) = LOC_STATIC;
2966 SYMBOL_TYPE (sym) = decode_die_type (dip);
2967
2968 /* If this symbol is from a C++ compilation, then attempt to cache the
2969 demangled form for future reference. This is a typical time versus
2970 space tradeoff, that was decided in favor of time because it sped up
2971 C++ symbol lookups by a factor of about 20. */
2972
2973 SYMBOL_LANGUAGE (sym) = cu_language;
2974 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
2975 switch (dip->die_tag)
2976 {
2977 case TAG_label:
2978 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2979 SYMBOL_CLASS (sym) = LOC_LABEL;
2980 break;
2981 case TAG_global_subroutine:
2982 case TAG_subroutine:
2983 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2984 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2985 if (dip->at_prototyped)
2986 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2987 SYMBOL_CLASS (sym) = LOC_BLOCK;
2988 if (dip->die_tag == TAG_global_subroutine)
2989 {
2990 add_symbol_to_list (sym, &global_symbols);
2991 }
2992 else
2993 {
2994 add_symbol_to_list (sym, list_in_scope);
2995 }
2996 break;
2997 case TAG_global_variable:
2998 if (dip->at_location != NULL)
2999 {
3000 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
3001 add_symbol_to_list (sym, &global_symbols);
3002 SYMBOL_CLASS (sym) = LOC_STATIC;
3003 SYMBOL_VALUE (sym) += baseaddr;
3004 }
3005 break;
3006 case TAG_local_variable:
3007 if (dip->at_location != NULL)
3008 {
3009 int loc = locval (dip);
3010 if (dip->optimized_out)
3011 {
3012 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
3013 }
3014 else if (dip->isreg)
3015 {
3016 SYMBOL_CLASS (sym) = LOC_REGISTER;
3017 }
3018 else if (dip->offreg)
3019 {
3020 SYMBOL_CLASS (sym) = LOC_BASEREG;
3021 SYMBOL_BASEREG (sym) = dip->basereg;
3022 }
3023 else
3024 {
3025 SYMBOL_CLASS (sym) = LOC_STATIC;
3026 SYMBOL_VALUE (sym) += baseaddr;
3027 }
3028 if (SYMBOL_CLASS (sym) == LOC_STATIC)
3029 {
3030 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
3031 which may store to a bigger location than SYMBOL_VALUE. */
3032 SYMBOL_VALUE_ADDRESS (sym) = loc;
3033 }
3034 else
3035 {
3036 SYMBOL_VALUE (sym) = loc;
3037 }
3038 add_symbol_to_list (sym, list_in_scope);
3039 }
3040 break;
3041 case TAG_formal_parameter:
3042 if (dip->at_location != NULL)
3043 {
3044 SYMBOL_VALUE (sym) = locval (dip);
3045 }
3046 add_symbol_to_list (sym, list_in_scope);
3047 if (dip->isreg)
3048 {
3049 SYMBOL_CLASS (sym) = LOC_REGPARM;
3050 }
3051 else if (dip->offreg)
3052 {
3053 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3054 SYMBOL_BASEREG (sym) = dip->basereg;
3055 }
3056 else
3057 {
3058 SYMBOL_CLASS (sym) = LOC_ARG;
3059 }
3060 break;
3061 case TAG_unspecified_parameters:
3062 /* From varargs functions; gdb doesn't seem to have any interest in
3063 this information, so just ignore it for now. (FIXME?) */
3064 break;
3065 case TAG_class_type:
3066 case TAG_structure_type:
3067 case TAG_union_type:
3068 case TAG_enumeration_type:
3069 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3070 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3071 add_symbol_to_list (sym, list_in_scope);
3072 break;
3073 case TAG_typedef:
3074 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3075 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3076 add_symbol_to_list (sym, list_in_scope);
3077 break;
3078 default:
3079 /* Not a tag we recognize. Hopefully we aren't processing trash
3080 data, but since we must specifically ignore things we don't
3081 recognize, there is nothing else we should do at this point. */
3082 break;
3083 }
3084 }
3085 return (sym);
3086 }
3087
3088 /*
3089
3090 LOCAL FUNCTION
3091
3092 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3093
3094 SYNOPSIS
3095
3096 static void synthesize_typedef (struct dieinfo *dip,
3097 struct objfile *objfile,
3098 struct type *type);
3099
3100 DESCRIPTION
3101
3102 Given a pointer to a DWARF information entry, synthesize a typedef
3103 for the name in the DIE, using the specified type.
3104
3105 This is used for C++ class, structs, unions, and enumerations to
3106 set up the tag name as a type.
3107
3108 */
3109
3110 static void
3111 synthesize_typedef (dip, objfile, type)
3112 struct dieinfo *dip;
3113 struct objfile *objfile;
3114 struct type *type;
3115 {
3116 struct symbol *sym = NULL;
3117
3118 if (dip->at_name != NULL)
3119 {
3120 sym = (struct symbol *)
3121 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
3122 OBJSTAT (objfile, n_syms++);
3123 memset (sym, 0, sizeof (struct symbol));
3124 SYMBOL_NAME (sym) = create_name (dip->at_name,
3125 &objfile->symbol_obstack);
3126 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3127 SYMBOL_TYPE (sym) = type;
3128 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3129 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3130 add_symbol_to_list (sym, list_in_scope);
3131 }
3132 }
3133
3134 /*
3135
3136 LOCAL FUNCTION
3137
3138 decode_mod_fund_type -- decode a modified fundamental type
3139
3140 SYNOPSIS
3141
3142 static struct type *decode_mod_fund_type (char *typedata)
3143
3144 DESCRIPTION
3145
3146 Decode a block of data containing a modified fundamental
3147 type specification. TYPEDATA is a pointer to the block,
3148 which starts with a length containing the size of the rest
3149 of the block. At the end of the block is a fundmental type
3150 code value that gives the fundamental type. Everything
3151 in between are type modifiers.
3152
3153 We simply compute the number of modifiers and call the general
3154 function decode_modified_type to do the actual work.
3155 */
3156
3157 static struct type *
3158 decode_mod_fund_type (typedata)
3159 char *typedata;
3160 {
3161 struct type *typep = NULL;
3162 unsigned short modcount;
3163 int nbytes;
3164
3165 /* Get the total size of the block, exclusive of the size itself */
3166
3167 nbytes = attribute_size (AT_mod_fund_type);
3168 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3169 typedata += nbytes;
3170
3171 /* Deduct the size of the fundamental type bytes at the end of the block. */
3172
3173 modcount -= attribute_size (AT_fund_type);
3174
3175 /* Now do the actual decoding */
3176
3177 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3178 return (typep);
3179 }
3180
3181 /*
3182
3183 LOCAL FUNCTION
3184
3185 decode_mod_u_d_type -- decode a modified user defined type
3186
3187 SYNOPSIS
3188
3189 static struct type *decode_mod_u_d_type (char *typedata)
3190
3191 DESCRIPTION
3192
3193 Decode a block of data containing a modified user defined
3194 type specification. TYPEDATA is a pointer to the block,
3195 which consists of a two byte length, containing the size
3196 of the rest of the block. At the end of the block is a
3197 four byte value that gives a reference to a user defined type.
3198 Everything in between are type modifiers.
3199
3200 We simply compute the number of modifiers and call the general
3201 function decode_modified_type to do the actual work.
3202 */
3203
3204 static struct type *
3205 decode_mod_u_d_type (typedata)
3206 char *typedata;
3207 {
3208 struct type *typep = NULL;
3209 unsigned short modcount;
3210 int nbytes;
3211
3212 /* Get the total size of the block, exclusive of the size itself */
3213
3214 nbytes = attribute_size (AT_mod_u_d_type);
3215 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3216 typedata += nbytes;
3217
3218 /* Deduct the size of the reference type bytes at the end of the block. */
3219
3220 modcount -= attribute_size (AT_user_def_type);
3221
3222 /* Now do the actual decoding */
3223
3224 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3225 return (typep);
3226 }
3227
3228 /*
3229
3230 LOCAL FUNCTION
3231
3232 decode_modified_type -- decode modified user or fundamental type
3233
3234 SYNOPSIS
3235
3236 static struct type *decode_modified_type (char *modifiers,
3237 unsigned short modcount, int mtype)
3238
3239 DESCRIPTION
3240
3241 Decode a modified type, either a modified fundamental type or
3242 a modified user defined type. MODIFIERS is a pointer to the
3243 block of bytes that define MODCOUNT modifiers. Immediately
3244 following the last modifier is a short containing the fundamental
3245 type or a long containing the reference to the user defined
3246 type. Which one is determined by MTYPE, which is either
3247 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3248 type we are generating.
3249
3250 We call ourself recursively to generate each modified type,`
3251 until MODCOUNT reaches zero, at which point we have consumed
3252 all the modifiers and generate either the fundamental type or
3253 user defined type. When the recursion unwinds, each modifier
3254 is applied in turn to generate the full modified type.
3255
3256 NOTES
3257
3258 If we find a modifier that we don't recognize, and it is not one
3259 of those reserved for application specific use, then we issue a
3260 warning and simply ignore the modifier.
3261
3262 BUGS
3263
3264 We currently ignore MOD_const and MOD_volatile. (FIXME)
3265
3266 */
3267
3268 static struct type *
3269 decode_modified_type (modifiers, modcount, mtype)
3270 char *modifiers;
3271 unsigned int modcount;
3272 int mtype;
3273 {
3274 struct type *typep = NULL;
3275 unsigned short fundtype;
3276 DIE_REF die_ref;
3277 char modifier;
3278 int nbytes;
3279
3280 if (modcount == 0)
3281 {
3282 switch (mtype)
3283 {
3284 case AT_mod_fund_type:
3285 nbytes = attribute_size (AT_fund_type);
3286 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3287 current_objfile);
3288 typep = decode_fund_type (fundtype);
3289 break;
3290 case AT_mod_u_d_type:
3291 nbytes = attribute_size (AT_user_def_type);
3292 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3293 current_objfile);
3294 if ((typep = lookup_utype (die_ref)) == NULL)
3295 {
3296 typep = alloc_utype (die_ref, NULL);
3297 }
3298 break;
3299 default:
3300 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3301 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3302 break;
3303 }
3304 }
3305 else
3306 {
3307 modifier = *modifiers++;
3308 typep = decode_modified_type (modifiers, --modcount, mtype);
3309 switch (modifier)
3310 {
3311 case MOD_pointer_to:
3312 typep = lookup_pointer_type (typep);
3313 break;
3314 case MOD_reference_to:
3315 typep = lookup_reference_type (typep);
3316 break;
3317 case MOD_const:
3318 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3319 break;
3320 case MOD_volatile:
3321 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3322 break;
3323 default:
3324 if (!(MOD_lo_user <= (unsigned char) modifier
3325 && (unsigned char) modifier <= MOD_hi_user))
3326 {
3327 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3328 }
3329 break;
3330 }
3331 }
3332 return (typep);
3333 }
3334
3335 /*
3336
3337 LOCAL FUNCTION
3338
3339 decode_fund_type -- translate basic DWARF type to gdb base type
3340
3341 DESCRIPTION
3342
3343 Given an integer that is one of the fundamental DWARF types,
3344 translate it to one of the basic internal gdb types and return
3345 a pointer to the appropriate gdb type (a "struct type *").
3346
3347 NOTES
3348
3349 For robustness, if we are asked to translate a fundamental
3350 type that we are unprepared to deal with, we return int so
3351 callers can always depend upon a valid type being returned,
3352 and so gdb may at least do something reasonable by default.
3353 If the type is not in the range of those types defined as
3354 application specific types, we also issue a warning.
3355 */
3356
3357 static struct type *
3358 decode_fund_type (fundtype)
3359 unsigned int fundtype;
3360 {
3361 struct type *typep = NULL;
3362
3363 switch (fundtype)
3364 {
3365
3366 case FT_void:
3367 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3368 break;
3369
3370 case FT_boolean: /* Was FT_set in AT&T version */
3371 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3372 break;
3373
3374 case FT_pointer: /* (void *) */
3375 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3376 typep = lookup_pointer_type (typep);
3377 break;
3378
3379 case FT_char:
3380 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3381 break;
3382
3383 case FT_signed_char:
3384 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3385 break;
3386
3387 case FT_unsigned_char:
3388 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3389 break;
3390
3391 case FT_short:
3392 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3393 break;
3394
3395 case FT_signed_short:
3396 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3397 break;
3398
3399 case FT_unsigned_short:
3400 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3401 break;
3402
3403 case FT_integer:
3404 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3405 break;
3406
3407 case FT_signed_integer:
3408 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3409 break;
3410
3411 case FT_unsigned_integer:
3412 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3413 break;
3414
3415 case FT_long:
3416 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3417 break;
3418
3419 case FT_signed_long:
3420 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3421 break;
3422
3423 case FT_unsigned_long:
3424 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3425 break;
3426
3427 case FT_long_long:
3428 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3429 break;
3430
3431 case FT_signed_long_long:
3432 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3433 break;
3434
3435 case FT_unsigned_long_long:
3436 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3437 break;
3438
3439 case FT_float:
3440 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3441 break;
3442
3443 case FT_dbl_prec_float:
3444 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3445 break;
3446
3447 case FT_ext_prec_float:
3448 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3449 break;
3450
3451 case FT_complex:
3452 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3453 break;
3454
3455 case FT_dbl_prec_complex:
3456 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3457 break;
3458
3459 case FT_ext_prec_complex:
3460 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3461 break;
3462
3463 }
3464
3465 if (typep == NULL)
3466 {
3467 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3468 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3469 {
3470 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3471 }
3472 }
3473
3474 return (typep);
3475 }
3476
3477 /*
3478
3479 LOCAL FUNCTION
3480
3481 create_name -- allocate a fresh copy of a string on an obstack
3482
3483 DESCRIPTION
3484
3485 Given a pointer to a string and a pointer to an obstack, allocates
3486 a fresh copy of the string on the specified obstack.
3487
3488 */
3489
3490 static char *
3491 create_name (name, obstackp)
3492 char *name;
3493 struct obstack *obstackp;
3494 {
3495 int length;
3496 char *newname;
3497
3498 length = strlen (name) + 1;
3499 newname = (char *) obstack_alloc (obstackp, length);
3500 strcpy (newname, name);
3501 return (newname);
3502 }
3503
3504 /*
3505
3506 LOCAL FUNCTION
3507
3508 basicdieinfo -- extract the minimal die info from raw die data
3509
3510 SYNOPSIS
3511
3512 void basicdieinfo (char *diep, struct dieinfo *dip,
3513 struct objfile *objfile)
3514
3515 DESCRIPTION
3516
3517 Given a pointer to raw DIE data, and a pointer to an instance of a
3518 die info structure, this function extracts the basic information
3519 from the DIE data required to continue processing this DIE, along
3520 with some bookkeeping information about the DIE.
3521
3522 The information we absolutely must have includes the DIE tag,
3523 and the DIE length. If we need the sibling reference, then we
3524 will have to call completedieinfo() to process all the remaining
3525 DIE information.
3526
3527 Note that since there is no guarantee that the data is properly
3528 aligned in memory for the type of access required (indirection
3529 through anything other than a char pointer), and there is no
3530 guarantee that it is in the same byte order as the gdb host,
3531 we call a function which deals with both alignment and byte
3532 swapping issues. Possibly inefficient, but quite portable.
3533
3534 We also take care of some other basic things at this point, such
3535 as ensuring that the instance of the die info structure starts
3536 out completely zero'd and that curdie is initialized for use
3537 in error reporting if we have a problem with the current die.
3538
3539 NOTES
3540
3541 All DIE's must have at least a valid length, thus the minimum
3542 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3543 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3544 are forced to be TAG_padding DIES.
3545
3546 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3547 that if a padding DIE is used for alignment and the amount needed is
3548 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3549 enough to align to the next alignment boundry.
3550
3551 We do some basic sanity checking here, such as verifying that the
3552 length of the die would not cause it to overrun the recorded end of
3553 the buffer holding the DIE info. If we find a DIE that is either
3554 too small or too large, we force it's length to zero which should
3555 cause the caller to take appropriate action.
3556 */
3557
3558 static void
3559 basicdieinfo (dip, diep, objfile)
3560 struct dieinfo *dip;
3561 char *diep;
3562 struct objfile *objfile;
3563 {
3564 curdie = dip;
3565 memset (dip, 0, sizeof (struct dieinfo));
3566 dip->die = diep;
3567 dip->die_ref = dbroff + (diep - dbbase);
3568 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3569 objfile);
3570 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3571 ((diep + dip->die_length) > (dbbase + dbsize)))
3572 {
3573 complain (&malformed_die, DIE_ID, DIE_NAME, dip->die_length);
3574 dip->die_length = 0;
3575 }
3576 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3577 {
3578 dip->die_tag = TAG_padding;
3579 }
3580 else
3581 {
3582 diep += SIZEOF_DIE_LENGTH;
3583 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3584 objfile);
3585 }
3586 }
3587
3588 /*
3589
3590 LOCAL FUNCTION
3591
3592 completedieinfo -- finish reading the information for a given DIE
3593
3594 SYNOPSIS
3595
3596 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3597
3598 DESCRIPTION
3599
3600 Given a pointer to an already partially initialized die info structure,
3601 scan the raw DIE data and finish filling in the die info structure
3602 from the various attributes found.
3603
3604 Note that since there is no guarantee that the data is properly
3605 aligned in memory for the type of access required (indirection
3606 through anything other than a char pointer), and there is no
3607 guarantee that it is in the same byte order as the gdb host,
3608 we call a function which deals with both alignment and byte
3609 swapping issues. Possibly inefficient, but quite portable.
3610
3611 NOTES
3612
3613 Each time we are called, we increment the diecount variable, which
3614 keeps an approximate count of the number of dies processed for
3615 each compilation unit. This information is presented to the user
3616 if the info_verbose flag is set.
3617
3618 */
3619
3620 static void
3621 completedieinfo (dip, objfile)
3622 struct dieinfo *dip;
3623 struct objfile *objfile;
3624 {
3625 char *diep; /* Current pointer into raw DIE data */
3626 char *end; /* Terminate DIE scan here */
3627 unsigned short attr; /* Current attribute being scanned */
3628 unsigned short form; /* Form of the attribute */
3629 int nbytes; /* Size of next field to read */
3630
3631 diecount++;
3632 diep = dip->die;
3633 end = diep + dip->die_length;
3634 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3635 while (diep < end)
3636 {
3637 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3638 diep += SIZEOF_ATTRIBUTE;
3639 if ((nbytes = attribute_size (attr)) == -1)
3640 {
3641 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3642 diep = end;
3643 continue;
3644 }
3645 switch (attr)
3646 {
3647 case AT_fund_type:
3648 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3649 objfile);
3650 break;
3651 case AT_ordering:
3652 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3653 objfile);
3654 break;
3655 case AT_bit_offset:
3656 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3657 objfile);
3658 break;
3659 case AT_sibling:
3660 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3661 objfile);
3662 break;
3663 case AT_stmt_list:
3664 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3665 objfile);
3666 dip->has_at_stmt_list = 1;
3667 break;
3668 case AT_low_pc:
3669 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3670 objfile);
3671 dip->at_low_pc += baseaddr;
3672 dip->has_at_low_pc = 1;
3673 break;
3674 case AT_high_pc:
3675 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3676 objfile);
3677 dip->at_high_pc += baseaddr;
3678 break;
3679 case AT_language:
3680 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3681 objfile);
3682 break;
3683 case AT_user_def_type:
3684 dip->at_user_def_type = target_to_host (diep, nbytes,
3685 GET_UNSIGNED, objfile);
3686 break;
3687 case AT_byte_size:
3688 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3689 objfile);
3690 dip->has_at_byte_size = 1;
3691 break;
3692 case AT_bit_size:
3693 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3694 objfile);
3695 break;
3696 case AT_member:
3697 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3698 objfile);
3699 break;
3700 case AT_discr:
3701 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3702 objfile);
3703 break;
3704 case AT_location:
3705 dip->at_location = diep;
3706 break;
3707 case AT_mod_fund_type:
3708 dip->at_mod_fund_type = diep;
3709 break;
3710 case AT_subscr_data:
3711 dip->at_subscr_data = diep;
3712 break;
3713 case AT_mod_u_d_type:
3714 dip->at_mod_u_d_type = diep;
3715 break;
3716 case AT_element_list:
3717 dip->at_element_list = diep;
3718 dip->short_element_list = 0;
3719 break;
3720 case AT_short_element_list:
3721 dip->at_element_list = diep;
3722 dip->short_element_list = 1;
3723 break;
3724 case AT_discr_value:
3725 dip->at_discr_value = diep;
3726 break;
3727 case AT_string_length:
3728 dip->at_string_length = diep;
3729 break;
3730 case AT_name:
3731 dip->at_name = diep;
3732 break;
3733 case AT_comp_dir:
3734 /* For now, ignore any "hostname:" portion, since gdb doesn't
3735 know how to deal with it. (FIXME). */
3736 dip->at_comp_dir = strrchr (diep, ':');
3737 if (dip->at_comp_dir != NULL)
3738 {
3739 dip->at_comp_dir++;
3740 }
3741 else
3742 {
3743 dip->at_comp_dir = diep;
3744 }
3745 break;
3746 case AT_producer:
3747 dip->at_producer = diep;
3748 break;
3749 case AT_start_scope:
3750 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3751 objfile);
3752 break;
3753 case AT_stride_size:
3754 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3755 objfile);
3756 break;
3757 case AT_src_info:
3758 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3759 objfile);
3760 break;
3761 case AT_prototyped:
3762 dip->at_prototyped = diep;
3763 break;
3764 default:
3765 /* Found an attribute that we are unprepared to handle. However
3766 it is specifically one of the design goals of DWARF that
3767 consumers should ignore unknown attributes. As long as the
3768 form is one that we recognize (so we know how to skip it),
3769 we can just ignore the unknown attribute. */
3770 break;
3771 }
3772 form = FORM_FROM_ATTR (attr);
3773 switch (form)
3774 {
3775 case FORM_DATA2:
3776 diep += 2;
3777 break;
3778 case FORM_DATA4:
3779 case FORM_REF:
3780 diep += 4;
3781 break;
3782 case FORM_DATA8:
3783 diep += 8;
3784 break;
3785 case FORM_ADDR:
3786 diep += TARGET_FT_POINTER_SIZE (objfile);
3787 break;
3788 case FORM_BLOCK2:
3789 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3790 break;
3791 case FORM_BLOCK4:
3792 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3793 break;
3794 case FORM_STRING:
3795 diep += strlen (diep) + 1;
3796 break;
3797 default:
3798 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3799 diep = end;
3800 break;
3801 }
3802 }
3803 }
3804
3805 /*
3806
3807 LOCAL FUNCTION
3808
3809 target_to_host -- swap in target data to host
3810
3811 SYNOPSIS
3812
3813 target_to_host (char *from, int nbytes, int signextend,
3814 struct objfile *objfile)
3815
3816 DESCRIPTION
3817
3818 Given pointer to data in target format in FROM, a byte count for
3819 the size of the data in NBYTES, a flag indicating whether or not
3820 the data is signed in SIGNEXTEND, and a pointer to the current
3821 objfile in OBJFILE, convert the data to host format and return
3822 the converted value.
3823
3824 NOTES
3825
3826 FIXME: If we read data that is known to be signed, and expect to
3827 use it as signed data, then we need to explicitly sign extend the
3828 result until the bfd library is able to do this for us.
3829
3830 FIXME: Would a 32 bit target ever need an 8 byte result?
3831
3832 */
3833
3834 static CORE_ADDR
3835 target_to_host (from, nbytes, signextend, objfile)
3836 char *from;
3837 int nbytes;
3838 int signextend; /* FIXME: Unused */
3839 struct objfile *objfile;
3840 {
3841 CORE_ADDR rtnval;
3842
3843 switch (nbytes)
3844 {
3845 case 8:
3846 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3847 break;
3848 case 4:
3849 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3850 break;
3851 case 2:
3852 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3853 break;
3854 case 1:
3855 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3856 break;
3857 default:
3858 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3859 rtnval = 0;
3860 break;
3861 }
3862 return (rtnval);
3863 }
3864
3865 /*
3866
3867 LOCAL FUNCTION
3868
3869 attribute_size -- compute size of data for a DWARF attribute
3870
3871 SYNOPSIS
3872
3873 static int attribute_size (unsigned int attr)
3874
3875 DESCRIPTION
3876
3877 Given a DWARF attribute in ATTR, compute the size of the first
3878 piece of data associated with this attribute and return that
3879 size.
3880
3881 Returns -1 for unrecognized attributes.
3882
3883 */
3884
3885 static int
3886 attribute_size (attr)
3887 unsigned int attr;
3888 {
3889 int nbytes; /* Size of next data for this attribute */
3890 unsigned short form; /* Form of the attribute */
3891
3892 form = FORM_FROM_ATTR (attr);
3893 switch (form)
3894 {
3895 case FORM_STRING: /* A variable length field is next */
3896 nbytes = 0;
3897 break;
3898 case FORM_DATA2: /* Next 2 byte field is the data itself */
3899 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3900 nbytes = 2;
3901 break;
3902 case FORM_DATA4: /* Next 4 byte field is the data itself */
3903 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3904 case FORM_REF: /* Next 4 byte field is a DIE offset */
3905 nbytes = 4;
3906 break;
3907 case FORM_DATA8: /* Next 8 byte field is the data itself */
3908 nbytes = 8;
3909 break;
3910 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3911 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3912 break;
3913 default:
3914 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3915 nbytes = -1;
3916 break;
3917 }
3918 return (nbytes);
3919 }