]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/elfread.c
ae84e43837c865ddace5ab281515c578ef51abb2
[thirdparty/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2017 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "buildsym.h"
32 #include "stabsread.h"
33 #include "gdb-stabs.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "psympriv.h"
37 #include "filenames.h"
38 #include "probe.h"
39 #include "arch-utils.h"
40 #include "gdbtypes.h"
41 #include "value.h"
42 #include "infcall.h"
43 #include "gdbthread.h"
44 #include "regcache.h"
45 #include "bcache.h"
46 #include "gdb_bfd.h"
47 #include "build-id.h"
48 #include "location.h"
49 #include "auxv.h"
50
51 extern void _initialize_elfread (void);
52
53 /* Forward declarations. */
54 extern const struct sym_fns elf_sym_fns_gdb_index;
55 extern const struct sym_fns elf_sym_fns_lazy_psyms;
56
57 /* The struct elfinfo is available only during ELF symbol table and
58 psymtab reading. It is destroyed at the completion of psymtab-reading.
59 It's local to elf_symfile_read. */
60
61 struct elfinfo
62 {
63 asection *stabsect; /* Section pointer for .stab section */
64 asection *mdebugsect; /* Section pointer for .mdebug section */
65 };
66
67 /* Per-BFD data for probe info. */
68
69 static const struct bfd_data *probe_key = NULL;
70
71 /* Minimal symbols located at the GOT entries for .plt - that is the real
72 pointer where the given entry will jump to. It gets updated by the real
73 function address during lazy ld.so resolving in the inferior. These
74 minimal symbols are indexed for <tab>-completion. */
75
76 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
77
78 /* Locate the segments in ABFD. */
79
80 static struct symfile_segment_data *
81 elf_symfile_segments (bfd *abfd)
82 {
83 Elf_Internal_Phdr *phdrs, **segments;
84 long phdrs_size;
85 int num_phdrs, num_segments, num_sections, i;
86 asection *sect;
87 struct symfile_segment_data *data;
88
89 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
90 if (phdrs_size == -1)
91 return NULL;
92
93 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
94 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
95 if (num_phdrs == -1)
96 return NULL;
97
98 num_segments = 0;
99 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
100 for (i = 0; i < num_phdrs; i++)
101 if (phdrs[i].p_type == PT_LOAD)
102 segments[num_segments++] = &phdrs[i];
103
104 if (num_segments == 0)
105 return NULL;
106
107 data = XCNEW (struct symfile_segment_data);
108 data->num_segments = num_segments;
109 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
110 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
111
112 for (i = 0; i < num_segments; i++)
113 {
114 data->segment_bases[i] = segments[i]->p_vaddr;
115 data->segment_sizes[i] = segments[i]->p_memsz;
116 }
117
118 num_sections = bfd_count_sections (abfd);
119 data->segment_info = XCNEWVEC (int, num_sections);
120
121 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
122 {
123 int j;
124 CORE_ADDR vma;
125
126 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
127 continue;
128
129 vma = bfd_get_section_vma (abfd, sect);
130
131 for (j = 0; j < num_segments; j++)
132 if (segments[j]->p_memsz > 0
133 && vma >= segments[j]->p_vaddr
134 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
135 {
136 data->segment_info[i] = j + 1;
137 break;
138 }
139
140 /* We should have found a segment for every non-empty section.
141 If we haven't, we will not relocate this section by any
142 offsets we apply to the segments. As an exception, do not
143 warn about SHT_NOBITS sections; in normal ELF execution
144 environments, SHT_NOBITS means zero-initialized and belongs
145 in a segment, but in no-OS environments some tools (e.g. ARM
146 RealView) use SHT_NOBITS for uninitialized data. Since it is
147 uninitialized, it doesn't need a program header. Such
148 binaries are not relocatable. */
149 if (bfd_get_section_size (sect) > 0 && j == num_segments
150 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
151 warning (_("Loadable section \"%s\" outside of ELF segments"),
152 bfd_section_name (abfd, sect));
153 }
154
155 return data;
156 }
157
158 /* We are called once per section from elf_symfile_read. We
159 need to examine each section we are passed, check to see
160 if it is something we are interested in processing, and
161 if so, stash away some access information for the section.
162
163 For now we recognize the dwarf debug information sections and
164 line number sections from matching their section names. The
165 ELF definition is no real help here since it has no direct
166 knowledge of DWARF (by design, so any debugging format can be
167 used).
168
169 We also recognize the ".stab" sections used by the Sun compilers
170 released with Solaris 2.
171
172 FIXME: The section names should not be hardwired strings (what
173 should they be? I don't think most object file formats have enough
174 section flags to specify what kind of debug section it is.
175 -kingdon). */
176
177 static void
178 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
179 {
180 struct elfinfo *ei;
181
182 ei = (struct elfinfo *) eip;
183 if (strcmp (sectp->name, ".stab") == 0)
184 {
185 ei->stabsect = sectp;
186 }
187 else if (strcmp (sectp->name, ".mdebug") == 0)
188 {
189 ei->mdebugsect = sectp;
190 }
191 }
192
193 static struct minimal_symbol *
194 record_minimal_symbol (minimal_symbol_reader &reader,
195 const char *name, int name_len, bool copy_name,
196 CORE_ADDR address,
197 enum minimal_symbol_type ms_type,
198 asection *bfd_section, struct objfile *objfile)
199 {
200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
201
202 if (ms_type == mst_text || ms_type == mst_file_text
203 || ms_type == mst_text_gnu_ifunc)
204 address = gdbarch_addr_bits_remove (gdbarch, address);
205
206 return reader.record_full (name, name_len, copy_name, address,
207 ms_type,
208 gdb_bfd_section_index (objfile->obfd,
209 bfd_section));
210 }
211
212 /* Read the symbol table of an ELF file.
213
214 Given an objfile, a symbol table, and a flag indicating whether the
215 symbol table contains regular, dynamic, or synthetic symbols, add all
216 the global function and data symbols to the minimal symbol table.
217
218 In stabs-in-ELF, as implemented by Sun, there are some local symbols
219 defined in the ELF symbol table, which can be used to locate
220 the beginnings of sections from each ".o" file that was linked to
221 form the executable objfile. We gather any such info and record it
222 in data structures hung off the objfile's private data. */
223
224 #define ST_REGULAR 0
225 #define ST_DYNAMIC 1
226 #define ST_SYNTHETIC 2
227
228 static void
229 elf_symtab_read (minimal_symbol_reader &reader,
230 struct objfile *objfile, int type,
231 long number_of_symbols, asymbol **symbol_table,
232 bool copy_names)
233 {
234 struct gdbarch *gdbarch = get_objfile_arch (objfile);
235 asymbol *sym;
236 long i;
237 CORE_ADDR symaddr;
238 enum minimal_symbol_type ms_type;
239 /* Name of the last file symbol. This is either a constant string or is
240 saved on the objfile's filename cache. */
241 const char *filesymname = "";
242 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
243 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
244 int elf_make_msymbol_special_p
245 = gdbarch_elf_make_msymbol_special_p (gdbarch);
246
247 for (i = 0; i < number_of_symbols; i++)
248 {
249 sym = symbol_table[i];
250 if (sym->name == NULL || *sym->name == '\0')
251 {
252 /* Skip names that don't exist (shouldn't happen), or names
253 that are null strings (may happen). */
254 continue;
255 }
256
257 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
258 symbols which do not correspond to objects in the symbol table,
259 but have some other target-specific meaning. */
260 if (bfd_is_target_special_symbol (objfile->obfd, sym))
261 {
262 if (gdbarch_record_special_symbol_p (gdbarch))
263 gdbarch_record_special_symbol (gdbarch, objfile, sym);
264 continue;
265 }
266
267 if (type == ST_DYNAMIC
268 && sym->section == bfd_und_section_ptr
269 && (sym->flags & BSF_FUNCTION))
270 {
271 struct minimal_symbol *msym;
272 bfd *abfd = objfile->obfd;
273 asection *sect;
274
275 /* Symbol is a reference to a function defined in
276 a shared library.
277 If its value is non zero then it is usually the address
278 of the corresponding entry in the procedure linkage table,
279 plus the desired section offset.
280 If its value is zero then the dynamic linker has to resolve
281 the symbol. We are unable to find any meaningful address
282 for this symbol in the executable file, so we skip it. */
283 symaddr = sym->value;
284 if (symaddr == 0)
285 continue;
286
287 /* sym->section is the undefined section. However, we want to
288 record the section where the PLT stub resides with the
289 minimal symbol. Search the section table for the one that
290 covers the stub's address. */
291 for (sect = abfd->sections; sect != NULL; sect = sect->next)
292 {
293 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
294 continue;
295
296 if (symaddr >= bfd_get_section_vma (abfd, sect)
297 && symaddr < bfd_get_section_vma (abfd, sect)
298 + bfd_get_section_size (sect))
299 break;
300 }
301 if (!sect)
302 continue;
303
304 /* On ia64-hpux, we have discovered that the system linker
305 adds undefined symbols with nonzero addresses that cannot
306 be right (their address points inside the code of another
307 function in the .text section). This creates problems
308 when trying to determine which symbol corresponds to
309 a given address.
310
311 We try to detect those buggy symbols by checking which
312 section we think they correspond to. Normally, PLT symbols
313 are stored inside their own section, and the typical name
314 for that section is ".plt". So, if there is a ".plt"
315 section, and yet the section name of our symbol does not
316 start with ".plt", we ignore that symbol. */
317 if (!startswith (sect->name, ".plt")
318 && bfd_get_section_by_name (abfd, ".plt") != NULL)
319 continue;
320
321 msym = record_minimal_symbol
322 (reader, sym->name, strlen (sym->name), copy_names,
323 symaddr, mst_solib_trampoline, sect, objfile);
324 if (msym != NULL)
325 {
326 msym->filename = filesymname;
327 if (elf_make_msymbol_special_p)
328 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
329 }
330 continue;
331 }
332
333 /* If it is a nonstripped executable, do not enter dynamic
334 symbols, as the dynamic symbol table is usually a subset
335 of the main symbol table. */
336 if (type == ST_DYNAMIC && !stripped)
337 continue;
338 if (sym->flags & BSF_FILE)
339 {
340 filesymname
341 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
342 objfile->per_bfd->filename_cache);
343 }
344 else if (sym->flags & BSF_SECTION_SYM)
345 continue;
346 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
347 | BSF_GNU_UNIQUE))
348 {
349 struct minimal_symbol *msym;
350
351 /* Select global/local/weak symbols. Note that bfd puts abs
352 symbols in their own section, so all symbols we are
353 interested in will have a section. */
354 /* Bfd symbols are section relative. */
355 symaddr = sym->value + sym->section->vma;
356 /* For non-absolute symbols, use the type of the section
357 they are relative to, to intuit text/data. Bfd provides
358 no way of figuring this out for absolute symbols. */
359 if (sym->section == bfd_abs_section_ptr)
360 {
361 /* This is a hack to get the minimal symbol type
362 right for Irix 5, which has absolute addresses
363 with special section indices for dynamic symbols.
364
365 NOTE: uweigand-20071112: Synthetic symbols do not
366 have an ELF-private part, so do not touch those. */
367 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
368 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
369
370 switch (shndx)
371 {
372 case SHN_MIPS_TEXT:
373 ms_type = mst_text;
374 break;
375 case SHN_MIPS_DATA:
376 ms_type = mst_data;
377 break;
378 case SHN_MIPS_ACOMMON:
379 ms_type = mst_bss;
380 break;
381 default:
382 ms_type = mst_abs;
383 }
384
385 /* If it is an Irix dynamic symbol, skip section name
386 symbols, relocate all others by section offset. */
387 if (ms_type != mst_abs)
388 {
389 if (sym->name[0] == '.')
390 continue;
391 }
392 }
393 else if (sym->section->flags & SEC_CODE)
394 {
395 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
396 {
397 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
398 ms_type = mst_text_gnu_ifunc;
399 else
400 ms_type = mst_text;
401 }
402 /* The BSF_SYNTHETIC check is there to omit ppc64 function
403 descriptors mistaken for static functions starting with 'L'.
404 */
405 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
406 && (sym->flags & BSF_SYNTHETIC) == 0)
407 || ((sym->flags & BSF_LOCAL)
408 && sym->name[0] == '$'
409 && sym->name[1] == 'L'))
410 /* Looks like a compiler-generated label. Skip
411 it. The assembler should be skipping these (to
412 keep executables small), but apparently with
413 gcc on the (deleted) delta m88k SVR4, it loses.
414 So to have us check too should be harmless (but
415 I encourage people to fix this in the assembler
416 instead of adding checks here). */
417 continue;
418 else
419 {
420 ms_type = mst_file_text;
421 }
422 }
423 else if (sym->section->flags & SEC_ALLOC)
424 {
425 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
426 {
427 if (sym->section->flags & SEC_LOAD)
428 {
429 ms_type = mst_data;
430 }
431 else
432 {
433 ms_type = mst_bss;
434 }
435 }
436 else if (sym->flags & BSF_LOCAL)
437 {
438 if (sym->section->flags & SEC_LOAD)
439 {
440 ms_type = mst_file_data;
441 }
442 else
443 {
444 ms_type = mst_file_bss;
445 }
446 }
447 else
448 {
449 ms_type = mst_unknown;
450 }
451 }
452 else
453 {
454 /* FIXME: Solaris2 shared libraries include lots of
455 odd "absolute" and "undefined" symbols, that play
456 hob with actions like finding what function the PC
457 is in. Ignore them if they aren't text, data, or bss. */
458 /* ms_type = mst_unknown; */
459 continue; /* Skip this symbol. */
460 }
461 msym = record_minimal_symbol
462 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
463 ms_type, sym->section, objfile);
464
465 if (msym)
466 {
467 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
468 ELF-private part. */
469 if (type != ST_SYNTHETIC)
470 {
471 /* Pass symbol size field in via BFD. FIXME!!! */
472 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
473 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
474 }
475
476 msym->filename = filesymname;
477 if (elf_make_msymbol_special_p)
478 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
479 }
480
481 /* If we see a default versioned symbol, install it under
482 its version-less name. */
483 if (msym != NULL)
484 {
485 const char *atsign = strchr (sym->name, '@');
486
487 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
488 {
489 int len = atsign - sym->name;
490
491 record_minimal_symbol (reader, sym->name, len, true, symaddr,
492 ms_type, sym->section, objfile);
493 }
494 }
495
496 /* For @plt symbols, also record a trampoline to the
497 destination symbol. The @plt symbol will be used in
498 disassembly, and the trampoline will be used when we are
499 trying to find the target. */
500 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
501 {
502 int len = strlen (sym->name);
503
504 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
505 {
506 struct minimal_symbol *mtramp;
507
508 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
509 true, symaddr,
510 mst_solib_trampoline,
511 sym->section, objfile);
512 if (mtramp)
513 {
514 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
515 mtramp->created_by_gdb = 1;
516 mtramp->filename = filesymname;
517 if (elf_make_msymbol_special_p)
518 gdbarch_elf_make_msymbol_special (gdbarch,
519 sym, mtramp);
520 }
521 }
522 }
523 }
524 }
525 }
526
527 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
528 for later look ups of which function to call when user requests
529 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
530 library defining `function' we cannot yet know while reading OBJFILE which
531 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
532 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
533
534 static void
535 elf_rel_plt_read (minimal_symbol_reader &reader,
536 struct objfile *objfile, asymbol **dyn_symbol_table)
537 {
538 bfd *obfd = objfile->obfd;
539 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
540 asection *plt, *relplt, *got_plt;
541 int plt_elf_idx;
542 bfd_size_type reloc_count, reloc;
543 struct gdbarch *gdbarch = get_objfile_arch (objfile);
544 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
545 size_t ptr_size = TYPE_LENGTH (ptr_type);
546
547 if (objfile->separate_debug_objfile_backlink)
548 return;
549
550 plt = bfd_get_section_by_name (obfd, ".plt");
551 if (plt == NULL)
552 return;
553 plt_elf_idx = elf_section_data (plt)->this_idx;
554
555 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
556 if (got_plt == NULL)
557 {
558 /* For platforms where there is no separate .got.plt. */
559 got_plt = bfd_get_section_by_name (obfd, ".got");
560 if (got_plt == NULL)
561 return;
562 }
563
564 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
565 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
566 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
567 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
568 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
569 break;
570 if (relplt == NULL)
571 return;
572
573 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
574 return;
575
576 std::string string_buffer;
577
578 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
579 for (reloc = 0; reloc < reloc_count; reloc++)
580 {
581 const char *name;
582 struct minimal_symbol *msym;
583 CORE_ADDR address;
584 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
585 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
586
587 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
588 address = relplt->relocation[reloc].address;
589
590 /* Does the pointer reside in the .got.plt section? */
591 if (!(bfd_get_section_vma (obfd, got_plt) <= address
592 && address < bfd_get_section_vma (obfd, got_plt)
593 + bfd_get_section_size (got_plt)))
594 continue;
595
596 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
597 OBJFILE the symbol is undefined and the objfile having NAME defined
598 may not yet have been loaded. */
599
600 string_buffer.assign (name);
601 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
602
603 msym = record_minimal_symbol (reader, string_buffer.c_str (),
604 string_buffer.size (),
605 true, address, mst_slot_got_plt, got_plt,
606 objfile);
607 if (msym)
608 SET_MSYMBOL_SIZE (msym, ptr_size);
609 }
610 }
611
612 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
613
614 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
615
616 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
617
618 struct elf_gnu_ifunc_cache
619 {
620 /* This is always a function entry address, not a function descriptor. */
621 CORE_ADDR addr;
622
623 char name[1];
624 };
625
626 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
627
628 static hashval_t
629 elf_gnu_ifunc_cache_hash (const void *a_voidp)
630 {
631 const struct elf_gnu_ifunc_cache *a
632 = (const struct elf_gnu_ifunc_cache *) a_voidp;
633
634 return htab_hash_string (a->name);
635 }
636
637 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
638
639 static int
640 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
641 {
642 const struct elf_gnu_ifunc_cache *a
643 = (const struct elf_gnu_ifunc_cache *) a_voidp;
644 const struct elf_gnu_ifunc_cache *b
645 = (const struct elf_gnu_ifunc_cache *) b_voidp;
646
647 return strcmp (a->name, b->name) == 0;
648 }
649
650 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
651 function entry address ADDR. Return 1 if NAME and ADDR are considered as
652 valid and therefore they were successfully recorded, return 0 otherwise.
653
654 Function does not expect a duplicate entry. Use
655 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
656 exists. */
657
658 static int
659 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
660 {
661 struct bound_minimal_symbol msym;
662 asection *sect;
663 struct objfile *objfile;
664 htab_t htab;
665 struct elf_gnu_ifunc_cache entry_local, *entry_p;
666 void **slot;
667
668 msym = lookup_minimal_symbol_by_pc (addr);
669 if (msym.minsym == NULL)
670 return 0;
671 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
672 return 0;
673 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
674 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
675 objfile = msym.objfile;
676
677 /* If .plt jumps back to .plt the symbol is still deferred for later
678 resolution and it has no use for GDB. Besides ".text" this symbol can
679 reside also in ".opd" for ppc64 function descriptor. */
680 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
681 return 0;
682
683 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
684 if (htab == NULL)
685 {
686 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
687 elf_gnu_ifunc_cache_eq,
688 NULL, &objfile->objfile_obstack,
689 hashtab_obstack_allocate,
690 dummy_obstack_deallocate);
691 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
692 }
693
694 entry_local.addr = addr;
695 obstack_grow (&objfile->objfile_obstack, &entry_local,
696 offsetof (struct elf_gnu_ifunc_cache, name));
697 obstack_grow_str0 (&objfile->objfile_obstack, name);
698 entry_p
699 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
700
701 slot = htab_find_slot (htab, entry_p, INSERT);
702 if (*slot != NULL)
703 {
704 struct elf_gnu_ifunc_cache *entry_found_p
705 = (struct elf_gnu_ifunc_cache *) *slot;
706 struct gdbarch *gdbarch = get_objfile_arch (objfile);
707
708 if (entry_found_p->addr != addr)
709 {
710 /* This case indicates buggy inferior program, the resolved address
711 should never change. */
712
713 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
714 "function_address from %s to %s"),
715 name, paddress (gdbarch, entry_found_p->addr),
716 paddress (gdbarch, addr));
717 }
718
719 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
720 }
721 *slot = entry_p;
722
723 return 1;
724 }
725
726 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
727 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
728 is not NULL) and the function returns 1. It returns 0 otherwise.
729
730 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
731 function. */
732
733 static int
734 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
735 {
736 struct objfile *objfile;
737
738 ALL_PSPACE_OBJFILES (current_program_space, objfile)
739 {
740 htab_t htab;
741 struct elf_gnu_ifunc_cache *entry_p;
742 void **slot;
743
744 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
745 if (htab == NULL)
746 continue;
747
748 entry_p = ((struct elf_gnu_ifunc_cache *)
749 alloca (sizeof (*entry_p) + strlen (name)));
750 strcpy (entry_p->name, name);
751
752 slot = htab_find_slot (htab, entry_p, NO_INSERT);
753 if (slot == NULL)
754 continue;
755 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
756 gdb_assert (entry_p != NULL);
757
758 if (addr_p)
759 *addr_p = entry_p->addr;
760 return 1;
761 }
762
763 return 0;
764 }
765
766 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
767 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
768 is not NULL) and the function returns 1. It returns 0 otherwise.
769
770 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
771 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
772 prevent cache entries duplicates. */
773
774 static int
775 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
776 {
777 char *name_got_plt;
778 struct objfile *objfile;
779 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
780
781 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
782 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
783
784 ALL_PSPACE_OBJFILES (current_program_space, objfile)
785 {
786 bfd *obfd = objfile->obfd;
787 struct gdbarch *gdbarch = get_objfile_arch (objfile);
788 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
789 size_t ptr_size = TYPE_LENGTH (ptr_type);
790 CORE_ADDR pointer_address, addr;
791 asection *plt;
792 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
793 struct bound_minimal_symbol msym;
794
795 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
796 if (msym.minsym == NULL)
797 continue;
798 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
799 continue;
800 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
801
802 plt = bfd_get_section_by_name (obfd, ".plt");
803 if (plt == NULL)
804 continue;
805
806 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
807 continue;
808 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
809 continue;
810 addr = extract_typed_address (buf, ptr_type);
811 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
812 &current_target);
813 addr = gdbarch_addr_bits_remove (gdbarch, addr);
814
815 if (addr_p)
816 *addr_p = addr;
817 if (elf_gnu_ifunc_record_cache (name, addr))
818 return 1;
819 }
820
821 return 0;
822 }
823
824 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
825 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
826 is not NULL) and the function returns 1. It returns 0 otherwise.
827
828 Both the elf_objfile_gnu_ifunc_cache_data hash table and
829 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
830
831 static int
832 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
833 {
834 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
835 return 1;
836
837 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
838 return 1;
839
840 return 0;
841 }
842
843 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
844 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
845 is the entry point of the resolved STT_GNU_IFUNC target function to call.
846 */
847
848 static CORE_ADDR
849 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
850 {
851 const char *name_at_pc;
852 CORE_ADDR start_at_pc, address;
853 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
854 struct value *function, *address_val;
855 CORE_ADDR hwcap = 0;
856 struct value *hwcap_val;
857
858 /* Try first any non-intrusive methods without an inferior call. */
859
860 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
861 && start_at_pc == pc)
862 {
863 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
864 return address;
865 }
866 else
867 name_at_pc = NULL;
868
869 function = allocate_value (func_func_type);
870 VALUE_LVAL (function) = lval_memory;
871 set_value_address (function, pc);
872
873 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
874 parameter. FUNCTION is the function entry address. ADDRESS may be a
875 function descriptor. */
876
877 target_auxv_search (&current_target, AT_HWCAP, &hwcap);
878 hwcap_val = value_from_longest (builtin_type (gdbarch)
879 ->builtin_unsigned_long, hwcap);
880 address_val = call_function_by_hand (function, NULL, 1, &hwcap_val);
881 address = value_as_address (address_val);
882 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
883 &current_target);
884 address = gdbarch_addr_bits_remove (gdbarch, address);
885
886 if (name_at_pc)
887 elf_gnu_ifunc_record_cache (name_at_pc, address);
888
889 return address;
890 }
891
892 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
893
894 static void
895 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
896 {
897 struct breakpoint *b_return;
898 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
899 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
900 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
901 int thread_id = ptid_to_global_thread_id (inferior_ptid);
902
903 gdb_assert (b->type == bp_gnu_ifunc_resolver);
904
905 for (b_return = b->related_breakpoint; b_return != b;
906 b_return = b_return->related_breakpoint)
907 {
908 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
909 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
910 gdb_assert (frame_id_p (b_return->frame_id));
911
912 if (b_return->thread == thread_id
913 && b_return->loc->requested_address == prev_pc
914 && frame_id_eq (b_return->frame_id, prev_frame_id))
915 break;
916 }
917
918 if (b_return == b)
919 {
920 /* No need to call find_pc_line for symbols resolving as this is only
921 a helper breakpointer never shown to the user. */
922
923 symtab_and_line sal;
924 sal.pspace = current_inferior ()->pspace;
925 sal.pc = prev_pc;
926 sal.section = find_pc_overlay (sal.pc);
927 sal.explicit_pc = 1;
928 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
929 prev_frame_id,
930 bp_gnu_ifunc_resolver_return);
931
932 /* set_momentary_breakpoint invalidates PREV_FRAME. */
933 prev_frame = NULL;
934
935 /* Add new b_return to the ring list b->related_breakpoint. */
936 gdb_assert (b_return->related_breakpoint == b_return);
937 b_return->related_breakpoint = b->related_breakpoint;
938 b->related_breakpoint = b_return;
939 }
940 }
941
942 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
943
944 static void
945 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
946 {
947 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
948 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
949 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
950 struct regcache *regcache = get_thread_regcache (inferior_ptid);
951 struct value *func_func;
952 struct value *value;
953 CORE_ADDR resolved_address, resolved_pc;
954
955 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
956
957 while (b->related_breakpoint != b)
958 {
959 struct breakpoint *b_next = b->related_breakpoint;
960
961 switch (b->type)
962 {
963 case bp_gnu_ifunc_resolver:
964 break;
965 case bp_gnu_ifunc_resolver_return:
966 delete_breakpoint (b);
967 break;
968 default:
969 internal_error (__FILE__, __LINE__,
970 _("handle_inferior_event: Invalid "
971 "gnu-indirect-function breakpoint type %d"),
972 (int) b->type);
973 }
974 b = b_next;
975 }
976 gdb_assert (b->type == bp_gnu_ifunc_resolver);
977 gdb_assert (b->loc->next == NULL);
978
979 func_func = allocate_value (func_func_type);
980 VALUE_LVAL (func_func) = lval_memory;
981 set_value_address (func_func, b->loc->related_address);
982
983 value = allocate_value (value_type);
984 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
985 value_contents_raw (value), NULL);
986 resolved_address = value_as_address (value);
987 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
988 resolved_address,
989 &current_target);
990 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
991
992 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
993 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
994 resolved_pc);
995
996 b->type = bp_breakpoint;
997 update_breakpoint_locations (b, current_program_space,
998 find_pc_line (resolved_pc, 0), {});
999 }
1000
1001 /* A helper function for elf_symfile_read that reads the minimal
1002 symbols. */
1003
1004 static void
1005 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1006 const struct elfinfo *ei)
1007 {
1008 bfd *synth_abfd, *abfd = objfile->obfd;
1009 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1010 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1011 asymbol *synthsyms;
1012 struct dbx_symfile_info *dbx;
1013
1014 if (symtab_create_debug)
1015 {
1016 fprintf_unfiltered (gdb_stdlog,
1017 "Reading minimal symbols of objfile %s ...\n",
1018 objfile_name (objfile));
1019 }
1020
1021 /* If we already have minsyms, then we can skip some work here.
1022 However, if there were stabs or mdebug sections, we go ahead and
1023 redo all the work anyway, because the psym readers for those
1024 kinds of debuginfo need extra information found here. This can
1025 go away once all types of symbols are in the per-BFD object. */
1026 if (objfile->per_bfd->minsyms_read
1027 && ei->stabsect == NULL
1028 && ei->mdebugsect == NULL)
1029 {
1030 if (symtab_create_debug)
1031 fprintf_unfiltered (gdb_stdlog,
1032 "... minimal symbols previously read\n");
1033 return;
1034 }
1035
1036 minimal_symbol_reader reader (objfile);
1037
1038 /* Allocate struct to keep track of the symfile. */
1039 dbx = XCNEW (struct dbx_symfile_info);
1040 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1041
1042 /* Process the normal ELF symbol table first. */
1043
1044 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1045 if (storage_needed < 0)
1046 error (_("Can't read symbols from %s: %s"),
1047 bfd_get_filename (objfile->obfd),
1048 bfd_errmsg (bfd_get_error ()));
1049
1050 if (storage_needed > 0)
1051 {
1052 /* Memory gets permanently referenced from ABFD after
1053 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1054
1055 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1056 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1057
1058 if (symcount < 0)
1059 error (_("Can't read symbols from %s: %s"),
1060 bfd_get_filename (objfile->obfd),
1061 bfd_errmsg (bfd_get_error ()));
1062
1063 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1064 false);
1065 }
1066
1067 /* Add the dynamic symbols. */
1068
1069 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1070
1071 if (storage_needed > 0)
1072 {
1073 /* Memory gets permanently referenced from ABFD after
1074 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1075 It happens only in the case when elf_slurp_reloc_table sees
1076 asection->relocation NULL. Determining which section is asection is
1077 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1078 implementation detail, though. */
1079
1080 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1081 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1082 dyn_symbol_table);
1083
1084 if (dynsymcount < 0)
1085 error (_("Can't read symbols from %s: %s"),
1086 bfd_get_filename (objfile->obfd),
1087 bfd_errmsg (bfd_get_error ()));
1088
1089 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1090 dyn_symbol_table, false);
1091
1092 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1093 }
1094
1095 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1096 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1097
1098 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1099 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1100 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1101 read the code address from .opd while it reads the .symtab section from
1102 a separate debug info file as the .opd section is SHT_NOBITS there.
1103
1104 With SYNTH_ABFD the .opd section will be read from the original
1105 backlinked binary where it is valid. */
1106
1107 if (objfile->separate_debug_objfile_backlink)
1108 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1109 else
1110 synth_abfd = abfd;
1111
1112 /* Add synthetic symbols - for instance, names for any PLT entries. */
1113
1114 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1115 dynsymcount, dyn_symbol_table,
1116 &synthsyms);
1117 if (synthcount > 0)
1118 {
1119 long i;
1120
1121 std::unique_ptr<asymbol *[]>
1122 synth_symbol_table (new asymbol *[synthcount]);
1123 for (i = 0; i < synthcount; i++)
1124 synth_symbol_table[i] = synthsyms + i;
1125 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1126 synth_symbol_table.get (), true);
1127
1128 xfree (synthsyms);
1129 synthsyms = NULL;
1130 }
1131
1132 /* Install any minimal symbols that have been collected as the current
1133 minimal symbols for this objfile. The debug readers below this point
1134 should not generate new minimal symbols; if they do it's their
1135 responsibility to install them. "mdebug" appears to be the only one
1136 which will do this. */
1137
1138 reader.install ();
1139
1140 if (symtab_create_debug)
1141 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1142 }
1143
1144 /* Scan and build partial symbols for a symbol file.
1145 We have been initialized by a call to elf_symfile_init, which
1146 currently does nothing.
1147
1148 This function only does the minimum work necessary for letting the
1149 user "name" things symbolically; it does not read the entire symtab.
1150 Instead, it reads the external and static symbols and puts them in partial
1151 symbol tables. When more extensive information is requested of a
1152 file, the corresponding partial symbol table is mutated into a full
1153 fledged symbol table by going back and reading the symbols
1154 for real.
1155
1156 We look for sections with specific names, to tell us what debug
1157 format to look for: FIXME!!!
1158
1159 elfstab_build_psymtabs() handles STABS symbols;
1160 mdebug_build_psymtabs() handles ECOFF debugging information.
1161
1162 Note that ELF files have a "minimal" symbol table, which looks a lot
1163 like a COFF symbol table, but has only the minimal information necessary
1164 for linking. We process this also, and use the information to
1165 build gdb's minimal symbol table. This gives us some minimal debugging
1166 capability even for files compiled without -g. */
1167
1168 static void
1169 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1170 {
1171 bfd *abfd = objfile->obfd;
1172 struct elfinfo ei;
1173
1174 memset ((char *) &ei, 0, sizeof (ei));
1175 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1176
1177 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1178
1179 /* ELF debugging information is inserted into the psymtab in the
1180 order of least informative first - most informative last. Since
1181 the psymtab table is searched `most recent insertion first' this
1182 increases the probability that more detailed debug information
1183 for a section is found.
1184
1185 For instance, an object file might contain both .mdebug (XCOFF)
1186 and .debug_info (DWARF2) sections then .mdebug is inserted first
1187 (searched last) and DWARF2 is inserted last (searched first). If
1188 we don't do this then the XCOFF info is found first - for code in
1189 an included file XCOFF info is useless. */
1190
1191 if (ei.mdebugsect)
1192 {
1193 const struct ecoff_debug_swap *swap;
1194
1195 /* .mdebug section, presumably holding ECOFF debugging
1196 information. */
1197 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1198 if (swap)
1199 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1200 }
1201 if (ei.stabsect)
1202 {
1203 asection *str_sect;
1204
1205 /* Stab sections have an associated string table that looks like
1206 a separate section. */
1207 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1208
1209 /* FIXME should probably warn about a stab section without a stabstr. */
1210 if (str_sect)
1211 elfstab_build_psymtabs (objfile,
1212 ei.stabsect,
1213 str_sect->filepos,
1214 bfd_section_size (abfd, str_sect));
1215 }
1216
1217 if (dwarf2_has_info (objfile, NULL))
1218 {
1219 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1220 information present in OBJFILE. If there is such debug info present
1221 never use .gdb_index. */
1222
1223 if (!objfile_has_partial_symbols (objfile)
1224 && dwarf2_initialize_objfile (objfile))
1225 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1226 else
1227 {
1228 /* It is ok to do this even if the stabs reader made some
1229 partial symbols, because OBJF_PSYMTABS_READ has not been
1230 set, and so our lazy reader function will still be called
1231 when needed. */
1232 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1233 }
1234 }
1235 /* If the file has its own symbol tables it has no separate debug
1236 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1237 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1238 `.note.gnu.build-id'.
1239
1240 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1241 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1242 an objfile via find_separate_debug_file_in_section there was no separate
1243 debug info available. Therefore do not attempt to search for another one,
1244 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1245 be NULL and we would possibly violate it. */
1246
1247 else if (!objfile_has_partial_symbols (objfile)
1248 && objfile->separate_debug_objfile == NULL
1249 && objfile->separate_debug_objfile_backlink == NULL)
1250 {
1251 gdb::unique_xmalloc_ptr<char> debugfile
1252 (find_separate_debug_file_by_buildid (objfile));
1253
1254 if (debugfile == NULL)
1255 debugfile.reset (find_separate_debug_file_by_debuglink (objfile));
1256
1257 if (debugfile != NULL)
1258 {
1259 gdb_bfd_ref_ptr abfd (symfile_bfd_open (debugfile.get ()));
1260
1261 symbol_file_add_separate (abfd.get (), debugfile.get (),
1262 symfile_flags, objfile);
1263 }
1264 }
1265 }
1266
1267 /* Callback to lazily read psymtabs. */
1268
1269 static void
1270 read_psyms (struct objfile *objfile)
1271 {
1272 if (dwarf2_has_info (objfile, NULL))
1273 dwarf2_build_psymtabs (objfile);
1274 }
1275
1276 /* Initialize anything that needs initializing when a completely new symbol
1277 file is specified (not just adding some symbols from another file, e.g. a
1278 shared library).
1279
1280 We reinitialize buildsym, since we may be reading stabs from an ELF
1281 file. */
1282
1283 static void
1284 elf_new_init (struct objfile *ignore)
1285 {
1286 stabsread_new_init ();
1287 buildsym_new_init ();
1288 }
1289
1290 /* Perform any local cleanups required when we are done with a particular
1291 objfile. I.E, we are in the process of discarding all symbol information
1292 for an objfile, freeing up all memory held for it, and unlinking the
1293 objfile struct from the global list of known objfiles. */
1294
1295 static void
1296 elf_symfile_finish (struct objfile *objfile)
1297 {
1298 dwarf2_free_objfile (objfile);
1299 }
1300
1301 /* ELF specific initialization routine for reading symbols. */
1302
1303 static void
1304 elf_symfile_init (struct objfile *objfile)
1305 {
1306 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1307 find this causes a significant slowdown in gdb then we could
1308 set it in the debug symbol readers only when necessary. */
1309 objfile->flags |= OBJF_REORDERED;
1310 }
1311
1312 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1313
1314 static VEC (probe_p) *
1315 elf_get_probes (struct objfile *objfile)
1316 {
1317 VEC (probe_p) *probes_per_bfd;
1318
1319 /* Have we parsed this objfile's probes already? */
1320 probes_per_bfd = (VEC (probe_p) *) bfd_data (objfile->obfd, probe_key);
1321
1322 if (!probes_per_bfd)
1323 {
1324 int ix;
1325 const struct probe_ops *probe_ops;
1326
1327 /* Here we try to gather information about all types of probes from the
1328 objfile. */
1329 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1330 ix++)
1331 probe_ops->get_probes (&probes_per_bfd, objfile);
1332
1333 if (probes_per_bfd == NULL)
1334 {
1335 VEC_reserve (probe_p, probes_per_bfd, 1);
1336 gdb_assert (probes_per_bfd != NULL);
1337 }
1338
1339 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1340 }
1341
1342 return probes_per_bfd;
1343 }
1344
1345 /* Helper function used to free the space allocated for storing SystemTap
1346 probe information. */
1347
1348 static void
1349 probe_key_free (bfd *abfd, void *d)
1350 {
1351 int ix;
1352 VEC (probe_p) *probes = (VEC (probe_p) *) d;
1353 struct probe *probe;
1354
1355 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1356 probe->pops->destroy (probe);
1357
1358 VEC_free (probe_p, probes);
1359 }
1360
1361 \f
1362
1363 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1364
1365 static const struct sym_probe_fns elf_probe_fns =
1366 {
1367 elf_get_probes, /* sym_get_probes */
1368 };
1369
1370 /* Register that we are able to handle ELF object file formats. */
1371
1372 static const struct sym_fns elf_sym_fns =
1373 {
1374 elf_new_init, /* init anything gbl to entire symtab */
1375 elf_symfile_init, /* read initial info, setup for sym_read() */
1376 elf_symfile_read, /* read a symbol file into symtab */
1377 NULL, /* sym_read_psymbols */
1378 elf_symfile_finish, /* finished with file, cleanup */
1379 default_symfile_offsets, /* Translate ext. to int. relocation */
1380 elf_symfile_segments, /* Get segment information from a file. */
1381 NULL,
1382 default_symfile_relocate, /* Relocate a debug section. */
1383 &elf_probe_fns, /* sym_probe_fns */
1384 &psym_functions
1385 };
1386
1387 /* The same as elf_sym_fns, but not registered and lazily reads
1388 psymbols. */
1389
1390 const struct sym_fns elf_sym_fns_lazy_psyms =
1391 {
1392 elf_new_init, /* init anything gbl to entire symtab */
1393 elf_symfile_init, /* read initial info, setup for sym_read() */
1394 elf_symfile_read, /* read a symbol file into symtab */
1395 read_psyms, /* sym_read_psymbols */
1396 elf_symfile_finish, /* finished with file, cleanup */
1397 default_symfile_offsets, /* Translate ext. to int. relocation */
1398 elf_symfile_segments, /* Get segment information from a file. */
1399 NULL,
1400 default_symfile_relocate, /* Relocate a debug section. */
1401 &elf_probe_fns, /* sym_probe_fns */
1402 &psym_functions
1403 };
1404
1405 /* The same as elf_sym_fns, but not registered and uses the
1406 DWARF-specific GNU index rather than psymtab. */
1407 const struct sym_fns elf_sym_fns_gdb_index =
1408 {
1409 elf_new_init, /* init anything gbl to entire symab */
1410 elf_symfile_init, /* read initial info, setup for sym_red() */
1411 elf_symfile_read, /* read a symbol file into symtab */
1412 NULL, /* sym_read_psymbols */
1413 elf_symfile_finish, /* finished with file, cleanup */
1414 default_symfile_offsets, /* Translate ext. to int. relocatin */
1415 elf_symfile_segments, /* Get segment information from a file. */
1416 NULL,
1417 default_symfile_relocate, /* Relocate a debug section. */
1418 &elf_probe_fns, /* sym_probe_fns */
1419 &dwarf2_gdb_index_functions
1420 };
1421
1422 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1423
1424 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1425 {
1426 elf_gnu_ifunc_resolve_addr,
1427 elf_gnu_ifunc_resolve_name,
1428 elf_gnu_ifunc_resolver_stop,
1429 elf_gnu_ifunc_resolver_return_stop
1430 };
1431
1432 void
1433 _initialize_elfread (void)
1434 {
1435 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1436 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1437
1438 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1439 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1440 }