]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/f-valprint.c
Update copyright year range in header of all files managed by GDB
[thirdparty/binutils-gdb.git] / gdb / f-valprint.c
1 /* Support for printing Fortran values for GDB, the GNU debugger.
2
3 Copyright (C) 1993-2023 Free Software Foundation, Inc.
4
5 Contributed by Motorola. Adapted from the C definitions by Farooq Butt
6 (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "annotate.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "expression.h"
28 #include "value.h"
29 #include "valprint.h"
30 #include "language.h"
31 #include "f-lang.h"
32 #include "frame.h"
33 #include "gdbcore.h"
34 #include "command.h"
35 #include "block.h"
36 #include "dictionary.h"
37 #include "cli/cli-style.h"
38 #include "gdbarch.h"
39 #include "f-array-walker.h"
40
41 static void f77_get_dynamic_length_of_aggregate (struct type *);
42
43 LONGEST
44 f77_get_lowerbound (struct type *type)
45 {
46 if (type->bounds ()->low.kind () != PROP_CONST)
47 error (_("Lower bound may not be '*' in F77"));
48
49 return type->bounds ()->low.const_val ();
50 }
51
52 LONGEST
53 f77_get_upperbound (struct type *type)
54 {
55 if (type->bounds ()->high.kind () != PROP_CONST)
56 {
57 /* We have an assumed size array on our hands. Assume that
58 upper_bound == lower_bound so that we show at least 1 element.
59 If the user wants to see more elements, let him manually ask for 'em
60 and we'll subscript the array and show him. */
61
62 return f77_get_lowerbound (type);
63 }
64
65 return type->bounds ()->high.const_val ();
66 }
67
68 /* Obtain F77 adjustable array dimensions. */
69
70 static void
71 f77_get_dynamic_length_of_aggregate (struct type *type)
72 {
73 int upper_bound = -1;
74 int lower_bound = 1;
75
76 /* Recursively go all the way down into a possibly multi-dimensional
77 F77 array and get the bounds. For simple arrays, this is pretty
78 easy but when the bounds are dynamic, we must be very careful
79 to add up all the lengths correctly. Not doing this right
80 will lead to horrendous-looking arrays in parameter lists.
81
82 This function also works for strings which behave very
83 similarly to arrays. */
84
85 if (type->target_type ()->code () == TYPE_CODE_ARRAY
86 || type->target_type ()->code () == TYPE_CODE_STRING)
87 f77_get_dynamic_length_of_aggregate (type->target_type ());
88
89 /* Recursion ends here, start setting up lengths. */
90 lower_bound = f77_get_lowerbound (type);
91 upper_bound = f77_get_upperbound (type);
92
93 /* Patch in a valid length value. */
94 type->set_length ((upper_bound - lower_bound + 1)
95 * check_typedef (type->target_type ())->length ());
96 }
97
98 /* Per-dimension statistics. */
99
100 struct dimension_stats
101 {
102 /* The type of the index used to address elements in the dimension. */
103 struct type *index_type;
104
105 /* Total number of elements in the dimension, counted as we go. */
106 int nelts;
107 };
108
109 /* A class used by FORTRAN_PRINT_ARRAY as a specialisation of the array
110 walking template. This specialisation prints Fortran arrays. */
111
112 class fortran_array_printer_impl : public fortran_array_walker_base_impl
113 {
114 public:
115 /* Constructor. TYPE is the array type being printed, ADDRESS is the
116 address in target memory for the object of TYPE being printed. VAL is
117 the GDB value (of TYPE) being printed. STREAM is where to print to,
118 RECOURSE is passed through (and prevents infinite recursion), and
119 OPTIONS are the printing control options. */
120 explicit fortran_array_printer_impl (struct type *type,
121 CORE_ADDR address,
122 struct value *val,
123 struct ui_file *stream,
124 int recurse,
125 const struct value_print_options *options)
126 : m_elts (0),
127 m_val (val),
128 m_stream (stream),
129 m_recurse (recurse),
130 m_options (options),
131 m_dimension (0),
132 m_nrepeats (0),
133 m_stats (0)
134 { /* Nothing. */ }
135
136 /* Called while iterating over the array bounds. When SHOULD_CONTINUE is
137 false then we must return false, as we have reached the end of the
138 array bounds for this dimension. However, we also return false if we
139 have printed too many elements (after printing '...'). In all other
140 cases, return true. */
141 bool continue_walking (bool should_continue)
142 {
143 bool cont = should_continue && (m_elts < m_options->print_max);
144 if (!cont && should_continue)
145 gdb_puts ("...", m_stream);
146 return cont;
147 }
148
149 /* Called when we start iterating over a dimension. If it's not the
150 inner most dimension then print an opening '(' character. */
151 void start_dimension (struct type *index_type, LONGEST nelts, bool inner_p)
152 {
153 size_t dim_indx = m_dimension++;
154
155 m_elt_type_prev = nullptr;
156 if (m_stats.size () < m_dimension)
157 {
158 m_stats.resize (m_dimension);
159 m_stats[dim_indx].index_type = index_type;
160 m_stats[dim_indx].nelts = nelts;
161 }
162
163 gdb_puts ("(", m_stream);
164 }
165
166 /* Called when we finish processing a batch of items within a dimension
167 of the array. Depending on whether this is the inner most dimension
168 or not we print different things, but this is all about adding
169 separators between elements, and dimensions of the array. */
170 void finish_dimension (bool inner_p, bool last_p)
171 {
172 gdb_puts (")", m_stream);
173 if (!last_p)
174 gdb_puts (" ", m_stream);
175
176 m_dimension--;
177 }
178
179 /* Called when processing dimensions of the array other than the
180 innermost one. WALK_1 is the walker to normally call, ELT_TYPE is
181 the type of the element being extracted, and ELT_OFF is the offset
182 of the element from the start of array being walked, INDEX_TYPE
183 and INDEX is the type and the value respectively of the element's
184 index in the dimension currently being walked and LAST_P is true
185 only when this is the last element that will be processed in this
186 dimension. */
187 void process_dimension (gdb::function_view<void (struct type *,
188 int, bool)> walk_1,
189 struct type *elt_type, LONGEST elt_off,
190 LONGEST index, bool last_p)
191 {
192 size_t dim_indx = m_dimension - 1;
193 struct type *elt_type_prev = m_elt_type_prev;
194 LONGEST elt_off_prev = m_elt_off_prev;
195 bool repeated = (m_options->repeat_count_threshold < UINT_MAX
196 && elt_type_prev != nullptr
197 && (m_elts + ((m_nrepeats + 1)
198 * m_stats[dim_indx + 1].nelts)
199 <= m_options->print_max)
200 && dimension_contents_eq (m_val, elt_type,
201 elt_off_prev, elt_off));
202
203 if (repeated)
204 m_nrepeats++;
205 if (!repeated || last_p)
206 {
207 LONGEST nrepeats = m_nrepeats;
208
209 m_nrepeats = 0;
210 if (nrepeats >= m_options->repeat_count_threshold)
211 {
212 annotate_elt_rep (nrepeats + 1);
213 gdb_printf (m_stream, "%p[<repeats %s times>%p]",
214 metadata_style.style ().ptr (),
215 plongest (nrepeats + 1),
216 nullptr);
217 annotate_elt_rep_end ();
218 if (!repeated)
219 gdb_puts (" ", m_stream);
220 m_elts += nrepeats * m_stats[dim_indx + 1].nelts;
221 }
222 else
223 for (LONGEST i = nrepeats; i > 0; i--)
224 {
225 maybe_print_array_index (m_stats[dim_indx].index_type,
226 index - nrepeats + repeated,
227 m_stream, m_options);
228 walk_1 (elt_type_prev, elt_off_prev, repeated && i == 1);
229 }
230
231 if (!repeated)
232 {
233 /* We need to specially handle the case of hitting `print_max'
234 exactly as recursing would cause lone `(...)' to be printed.
235 And we need to print `...' by hand if the skipped element
236 would be the last one processed, because the subsequent call
237 to `continue_walking' from our caller won't do that. */
238 if (m_elts < m_options->print_max)
239 {
240 maybe_print_array_index (m_stats[dim_indx].index_type, index,
241 m_stream, m_options);
242 walk_1 (elt_type, elt_off, last_p);
243 nrepeats++;
244 }
245 else if (last_p)
246 gdb_puts ("...", m_stream);
247 }
248 }
249
250 m_elt_type_prev = elt_type;
251 m_elt_off_prev = elt_off;
252 }
253
254 /* Called to process an element of ELT_TYPE at offset ELT_OFF from the
255 start of the parent object, where INDEX is the value of the element's
256 index in the dimension currently being walked and LAST_P is true only
257 when this is the last element to be processed in this dimension. */
258 void process_element (struct type *elt_type, LONGEST elt_off,
259 LONGEST index, bool last_p)
260 {
261 size_t dim_indx = m_dimension - 1;
262 struct type *elt_type_prev = m_elt_type_prev;
263 LONGEST elt_off_prev = m_elt_off_prev;
264 bool repeated = (m_options->repeat_count_threshold < UINT_MAX
265 && elt_type_prev != nullptr
266 && value_contents_eq (m_val, elt_off_prev, m_val, elt_off,
267 elt_type->length ()));
268
269 if (repeated)
270 m_nrepeats++;
271 if (!repeated || last_p || m_elts + 1 == m_options->print_max)
272 {
273 LONGEST nrepeats = m_nrepeats;
274 bool printed = false;
275
276 if (nrepeats != 0)
277 {
278 m_nrepeats = 0;
279 if (nrepeats >= m_options->repeat_count_threshold)
280 {
281 annotate_elt_rep (nrepeats + 1);
282 gdb_printf (m_stream, "%p[<repeats %s times>%p]",
283 metadata_style.style ().ptr (),
284 plongest (nrepeats + 1),
285 nullptr);
286 annotate_elt_rep_end ();
287 }
288 else
289 {
290 /* Extract the element value from the parent value. */
291 struct value *e_val
292 = value_from_component (m_val, elt_type, elt_off_prev);
293
294 for (LONGEST i = nrepeats; i > 0; i--)
295 {
296 maybe_print_array_index (m_stats[dim_indx].index_type,
297 index - i + 1,
298 m_stream, m_options);
299 common_val_print (e_val, m_stream, m_recurse, m_options,
300 current_language);
301 if (i > 1)
302 gdb_puts (", ", m_stream);
303 }
304 }
305 printed = true;
306 }
307
308 if (!repeated)
309 {
310 /* Extract the element value from the parent value. */
311 struct value *e_val
312 = value_from_component (m_val, elt_type, elt_off);
313
314 if (printed)
315 gdb_puts (", ", m_stream);
316 maybe_print_array_index (m_stats[dim_indx].index_type, index,
317 m_stream, m_options);
318 common_val_print (e_val, m_stream, m_recurse, m_options,
319 current_language);
320 }
321 if (!last_p)
322 gdb_puts (", ", m_stream);
323 }
324
325 m_elt_type_prev = elt_type;
326 m_elt_off_prev = elt_off;
327 ++m_elts;
328 }
329
330 private:
331 /* Called to compare two VAL elements of ELT_TYPE at offsets OFFSET1
332 and OFFSET2 each. Handle subarrays recursively, because they may
333 have been sliced and we do not want to compare any memory contents
334 present between the slices requested. */
335 bool
336 dimension_contents_eq (const struct value *val, struct type *type,
337 LONGEST offset1, LONGEST offset2)
338 {
339 if (type->code () == TYPE_CODE_ARRAY
340 && type->target_type ()->code () != TYPE_CODE_CHAR)
341 {
342 /* Extract the range, and get lower and upper bounds. */
343 struct type *range_type = check_typedef (type)->index_type ();
344 LONGEST lowerbound, upperbound;
345 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
346 error ("failed to get range bounds");
347
348 /* CALC is used to calculate the offsets for each element. */
349 fortran_array_offset_calculator calc (type);
350
351 struct type *subarray_type = check_typedef (type->target_type ());
352 for (LONGEST i = lowerbound; i < upperbound + 1; i++)
353 {
354 /* Use the index and the stride to work out a new offset. */
355 LONGEST index_offset = calc.index_offset (i);
356
357 if (!dimension_contents_eq (val, subarray_type,
358 offset1 + index_offset,
359 offset2 + index_offset))
360 return false;
361 }
362 return true;
363 }
364 else
365 return value_contents_eq (val, offset1, val, offset2,
366 type->length ());
367 }
368
369 /* The number of elements printed so far. */
370 int m_elts;
371
372 /* The value from which we are printing elements. */
373 struct value *m_val;
374
375 /* The stream we should print too. */
376 struct ui_file *m_stream;
377
378 /* The recursion counter, passed through when we print each element. */
379 int m_recurse;
380
381 /* The print control options. Gives us the maximum number of elements to
382 print, and is passed through to each element that we print. */
383 const struct value_print_options *m_options = nullptr;
384
385 /* The number of the current dimension being handled. */
386 LONGEST m_dimension;
387
388 /* The number of element repetitions in the current series. */
389 LONGEST m_nrepeats;
390
391 /* The type and offset from M_VAL of the element handled in the previous
392 iteration over the current dimension. */
393 struct type *m_elt_type_prev;
394 LONGEST m_elt_off_prev;
395
396 /* Per-dimension stats. */
397 std::vector<struct dimension_stats> m_stats;
398 };
399
400 /* This function gets called to print a Fortran array. */
401
402 static void
403 fortran_print_array (struct type *type, CORE_ADDR address,
404 struct ui_file *stream, int recurse,
405 const struct value *val,
406 const struct value_print_options *options)
407 {
408 fortran_array_walker<fortran_array_printer_impl> p
409 (type, address, (struct value *) val, stream, recurse, options);
410 p.walk ();
411 }
412 \f
413
414 /* Decorations for Fortran. */
415
416 static const struct generic_val_print_decorations f_decorations =
417 {
418 "(",
419 ",",
420 ")",
421 ".TRUE.",
422 ".FALSE.",
423 "void",
424 "{",
425 "}"
426 };
427
428 /* See f-lang.h. */
429
430 void
431 f_language::value_print_inner (struct value *val, struct ui_file *stream,
432 int recurse,
433 const struct value_print_options *options) const
434 {
435 struct type *type = check_typedef (value_type (val));
436 struct gdbarch *gdbarch = type->arch ();
437 int printed_field = 0; /* Number of fields printed. */
438 struct type *elttype;
439 CORE_ADDR addr;
440 int index;
441 const gdb_byte *valaddr = value_contents_for_printing (val).data ();
442 const CORE_ADDR address = value_address (val);
443
444 switch (type->code ())
445 {
446 case TYPE_CODE_STRING:
447 f77_get_dynamic_length_of_aggregate (type);
448 printstr (stream, builtin_type (gdbarch)->builtin_char, valaddr,
449 type->length (), NULL, 0, options);
450 break;
451
452 case TYPE_CODE_ARRAY:
453 if (type->target_type ()->code () != TYPE_CODE_CHAR)
454 fortran_print_array (type, address, stream, recurse, val, options);
455 else
456 {
457 struct type *ch_type = type->target_type ();
458
459 f77_get_dynamic_length_of_aggregate (type);
460 printstr (stream, ch_type, valaddr,
461 type->length () / ch_type->length (), NULL, 0,
462 options);
463 }
464 break;
465
466 case TYPE_CODE_PTR:
467 if (options->format && options->format != 's')
468 {
469 value_print_scalar_formatted (val, options, 0, stream);
470 break;
471 }
472 else
473 {
474 int want_space = 0;
475
476 addr = unpack_pointer (type, valaddr);
477 elttype = check_typedef (type->target_type ());
478
479 if (elttype->code () == TYPE_CODE_FUNC)
480 {
481 /* Try to print what function it points to. */
482 print_function_pointer_address (options, gdbarch, addr, stream);
483 return;
484 }
485
486 if (options->symbol_print)
487 want_space = print_address_demangle (options, gdbarch, addr,
488 stream, demangle);
489 else if (options->addressprint && options->format != 's')
490 {
491 gdb_puts (paddress (gdbarch, addr), stream);
492 want_space = 1;
493 }
494
495 /* For a pointer to char or unsigned char, also print the string
496 pointed to, unless pointer is null. */
497 if (elttype->length () == 1
498 && elttype->code () == TYPE_CODE_INT
499 && (options->format == 0 || options->format == 's')
500 && addr != 0)
501 {
502 if (want_space)
503 gdb_puts (" ", stream);
504 val_print_string (type->target_type (), NULL, addr, -1,
505 stream, options);
506 }
507 return;
508 }
509 break;
510
511 case TYPE_CODE_STRUCT:
512 case TYPE_CODE_UNION:
513 case TYPE_CODE_NAMELIST:
514 /* Starting from the Fortran 90 standard, Fortran supports derived
515 types. */
516 gdb_printf (stream, "( ");
517 for (index = 0; index < type->num_fields (); index++)
518 {
519 struct type *field_type
520 = check_typedef (type->field (index).type ());
521
522 if (field_type->code () != TYPE_CODE_FUNC)
523 {
524 const char *field_name = type->field (index).name ();
525 struct value *field;
526
527 if (type->code () == TYPE_CODE_NAMELIST)
528 {
529 /* While printing namelist items, fetch the appropriate
530 value field before printing its value. */
531 struct block_symbol sym
532 = lookup_symbol (field_name, get_selected_block (nullptr),
533 VAR_DOMAIN, nullptr);
534 if (sym.symbol == nullptr)
535 error (_("failed to find symbol for name list component %s"),
536 field_name);
537 field = value_of_variable (sym.symbol, sym.block);
538 }
539 else
540 field = value_field (val, index);
541
542 if (printed_field > 0)
543 gdb_puts (", ", stream);
544
545 if (field_name != NULL)
546 {
547 fputs_styled (field_name, variable_name_style.style (),
548 stream);
549 gdb_puts (" = ", stream);
550 }
551
552 common_val_print (field, stream, recurse + 1,
553 options, current_language);
554
555 ++printed_field;
556 }
557 }
558 gdb_printf (stream, " )");
559 break;
560
561 case TYPE_CODE_BOOL:
562 if (options->format || options->output_format)
563 {
564 struct value_print_options opts = *options;
565 opts.format = (options->format ? options->format
566 : options->output_format);
567 value_print_scalar_formatted (val, &opts, 0, stream);
568 }
569 else
570 {
571 LONGEST longval = value_as_long (val);
572 /* The Fortran standard doesn't specify how logical types are
573 represented. Different compilers use different non zero
574 values to represent logical true. */
575 if (longval == 0)
576 gdb_puts (f_decorations.false_name, stream);
577 else
578 gdb_puts (f_decorations.true_name, stream);
579 }
580 break;
581
582 case TYPE_CODE_INT:
583 case TYPE_CODE_REF:
584 case TYPE_CODE_FUNC:
585 case TYPE_CODE_FLAGS:
586 case TYPE_CODE_FLT:
587 case TYPE_CODE_VOID:
588 case TYPE_CODE_ERROR:
589 case TYPE_CODE_RANGE:
590 case TYPE_CODE_UNDEF:
591 case TYPE_CODE_COMPLEX:
592 case TYPE_CODE_CHAR:
593 default:
594 generic_value_print (val, stream, recurse, options, &f_decorations);
595 break;
596 }
597 }
598
599 static void
600 info_common_command_for_block (const struct block *block, const char *comname,
601 int *any_printed)
602 {
603 struct block_iterator iter;
604 struct symbol *sym;
605 struct value_print_options opts;
606
607 get_user_print_options (&opts);
608
609 ALL_BLOCK_SYMBOLS (block, iter, sym)
610 if (sym->domain () == COMMON_BLOCK_DOMAIN)
611 {
612 const struct common_block *common = sym->value_common_block ();
613 size_t index;
614
615 gdb_assert (sym->aclass () == LOC_COMMON_BLOCK);
616
617 if (comname && (!sym->linkage_name ()
618 || strcmp (comname, sym->linkage_name ()) != 0))
619 continue;
620
621 if (*any_printed)
622 gdb_putc ('\n');
623 else
624 *any_printed = 1;
625 if (sym->print_name ())
626 gdb_printf (_("Contents of F77 COMMON block '%s':\n"),
627 sym->print_name ());
628 else
629 gdb_printf (_("Contents of blank COMMON block:\n"));
630
631 for (index = 0; index < common->n_entries; index++)
632 {
633 struct value *val = NULL;
634
635 gdb_printf ("%s = ",
636 common->contents[index]->print_name ());
637
638 try
639 {
640 val = value_of_variable (common->contents[index], block);
641 value_print (val, gdb_stdout, &opts);
642 }
643
644 catch (const gdb_exception_error &except)
645 {
646 fprintf_styled (gdb_stdout, metadata_style.style (),
647 "<error reading variable: %s>",
648 except.what ());
649 }
650
651 gdb_putc ('\n');
652 }
653 }
654 }
655
656 /* This function is used to print out the values in a given COMMON
657 block. It will always use the most local common block of the
658 given name. */
659
660 static void
661 info_common_command (const char *comname, int from_tty)
662 {
663 frame_info_ptr fi;
664 const struct block *block;
665 int values_printed = 0;
666
667 /* We have been told to display the contents of F77 COMMON
668 block supposedly visible in this function. Let us
669 first make sure that it is visible and if so, let
670 us display its contents. */
671
672 fi = get_selected_frame (_("No frame selected"));
673
674 /* The following is generally ripped off from stack.c's routine
675 print_frame_info(). */
676
677 block = get_frame_block (fi, 0);
678 if (block == NULL)
679 {
680 gdb_printf (_("No symbol table info available.\n"));
681 return;
682 }
683
684 while (block)
685 {
686 info_common_command_for_block (block, comname, &values_printed);
687 /* After handling the function's top-level block, stop. Don't
688 continue to its superblock, the block of per-file symbols. */
689 if (block->function ())
690 break;
691 block = block->superblock ();
692 }
693
694 if (!values_printed)
695 {
696 if (comname)
697 gdb_printf (_("No common block '%s'.\n"), comname);
698 else
699 gdb_printf (_("No common blocks.\n"));
700 }
701 }
702
703 void _initialize_f_valprint ();
704 void
705 _initialize_f_valprint ()
706 {
707 add_info ("common", info_common_command,
708 _("Print out the values contained in a Fortran COMMON block."));
709 }