]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/findvar.c
95d0ff03a276dff47bd174eef17122a5fd9a490f
[thirdparty/binutils-gdb.git] / gdb / findvar.c
1 /* Find a variable's value in memory, for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "inferior.h"
27 #include "target.h"
28 #include "symfile.h" /* for overlay functions */
29 #include "regcache.h"
30 #include "user-regs.h"
31 #include "block.h"
32 #include "objfiles.h"
33 #include "language.h"
34 #include "dwarf2/loc.h"
35 #include "gdbsupport/selftest.h"
36
37 /* Basic byte-swapping routines. All 'extract' functions return a
38 host-format integer from a target-format integer at ADDR which is
39 LEN bytes long. */
40
41 #if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
42 /* 8 bit characters are a pretty safe assumption these days, so we
43 assume it throughout all these swapping routines. If we had to deal with
44 9 bit characters, we would need to make len be in bits and would have
45 to re-write these routines... */
46 you lose
47 #endif
48
49 template<typename T, typename>
50 T
51 extract_integer (const gdb_byte *addr, int len, enum bfd_endian byte_order)
52 {
53 typename std::make_unsigned<T>::type retval = 0;
54 const unsigned char *p;
55 const unsigned char *startaddr = addr;
56 const unsigned char *endaddr = startaddr + len;
57
58 if (len > (int) sizeof (T))
59 error (_("\
60 That operation is not available on integers of more than %d bytes."),
61 (int) sizeof (T));
62
63 /* Start at the most significant end of the integer, and work towards
64 the least significant. */
65 if (byte_order == BFD_ENDIAN_BIG)
66 {
67 p = startaddr;
68 if (std::is_signed<T>::value)
69 {
70 /* Do the sign extension once at the start. */
71 retval = ((LONGEST) * p ^ 0x80) - 0x80;
72 ++p;
73 }
74 for (; p < endaddr; ++p)
75 retval = (retval << 8) | *p;
76 }
77 else
78 {
79 p = endaddr - 1;
80 if (std::is_signed<T>::value)
81 {
82 /* Do the sign extension once at the start. */
83 retval = ((LONGEST) * p ^ 0x80) - 0x80;
84 --p;
85 }
86 for (; p >= startaddr; --p)
87 retval = (retval << 8) | *p;
88 }
89 return retval;
90 }
91
92 /* Explicit instantiations. */
93 template LONGEST extract_integer<LONGEST> (const gdb_byte *addr, int len,
94 enum bfd_endian byte_order);
95 template ULONGEST extract_integer<ULONGEST> (const gdb_byte *addr, int len,
96 enum bfd_endian byte_order);
97
98 /* Sometimes a long long unsigned integer can be extracted as a
99 LONGEST value. This is done so that we can print these values
100 better. If this integer can be converted to a LONGEST, this
101 function returns 1 and sets *PVAL. Otherwise it returns 0. */
102
103 int
104 extract_long_unsigned_integer (const gdb_byte *addr, int orig_len,
105 enum bfd_endian byte_order, LONGEST *pval)
106 {
107 const gdb_byte *p;
108 const gdb_byte *first_addr;
109 int len;
110
111 len = orig_len;
112 if (byte_order == BFD_ENDIAN_BIG)
113 {
114 for (p = addr;
115 len > (int) sizeof (LONGEST) && p < addr + orig_len;
116 p++)
117 {
118 if (*p == 0)
119 len--;
120 else
121 break;
122 }
123 first_addr = p;
124 }
125 else
126 {
127 first_addr = addr;
128 for (p = addr + orig_len - 1;
129 len > (int) sizeof (LONGEST) && p >= addr;
130 p--)
131 {
132 if (*p == 0)
133 len--;
134 else
135 break;
136 }
137 }
138
139 if (len <= (int) sizeof (LONGEST))
140 {
141 *pval = (LONGEST) extract_unsigned_integer (first_addr,
142 sizeof (LONGEST),
143 byte_order);
144 return 1;
145 }
146
147 return 0;
148 }
149
150
151 /* Treat the bytes at BUF as a pointer of type TYPE, and return the
152 address it represents. */
153 CORE_ADDR
154 extract_typed_address (const gdb_byte *buf, struct type *type)
155 {
156 if (type->code () != TYPE_CODE_PTR && !TYPE_IS_REFERENCE (type))
157 internal_error (__FILE__, __LINE__,
158 _("extract_typed_address: "
159 "type is not a pointer or reference"));
160
161 return gdbarch_pointer_to_address (get_type_arch (type), type, buf);
162 }
163
164 /* All 'store' functions accept a host-format integer and store a
165 target-format integer at ADDR which is LEN bytes long. */
166 template<typename T, typename>
167 void
168 store_integer (gdb_byte *addr, int len, enum bfd_endian byte_order,
169 T val)
170 {
171 gdb_byte *p;
172 gdb_byte *startaddr = addr;
173 gdb_byte *endaddr = startaddr + len;
174
175 /* Start at the least significant end of the integer, and work towards
176 the most significant. */
177 if (byte_order == BFD_ENDIAN_BIG)
178 {
179 for (p = endaddr - 1; p >= startaddr; --p)
180 {
181 *p = val & 0xff;
182 val >>= 8;
183 }
184 }
185 else
186 {
187 for (p = startaddr; p < endaddr; ++p)
188 {
189 *p = val & 0xff;
190 val >>= 8;
191 }
192 }
193 }
194
195 /* Explicit instantiations. */
196 template void store_integer (gdb_byte *addr, int len,
197 enum bfd_endian byte_order,
198 LONGEST val);
199
200 template void store_integer (gdb_byte *addr, int len,
201 enum bfd_endian byte_order,
202 ULONGEST val);
203
204 /* Store the address ADDR as a pointer of type TYPE at BUF, in target
205 form. */
206 void
207 store_typed_address (gdb_byte *buf, struct type *type, CORE_ADDR addr)
208 {
209 if (type->code () != TYPE_CODE_PTR && !TYPE_IS_REFERENCE (type))
210 internal_error (__FILE__, __LINE__,
211 _("store_typed_address: "
212 "type is not a pointer or reference"));
213
214 gdbarch_address_to_pointer (get_type_arch (type), type, buf, addr);
215 }
216
217 /* Copy a value from SOURCE of size SOURCE_SIZE bytes to DEST of size DEST_SIZE
218 bytes. If SOURCE_SIZE is greater than DEST_SIZE, then truncate the most
219 significant bytes. If SOURCE_SIZE is less than DEST_SIZE then either sign
220 or zero extended according to IS_SIGNED. Values are stored in memory with
221 endianness BYTE_ORDER. */
222
223 void
224 copy_integer_to_size (gdb_byte *dest, int dest_size, const gdb_byte *source,
225 int source_size, bool is_signed,
226 enum bfd_endian byte_order)
227 {
228 signed int size_diff = dest_size - source_size;
229
230 /* Copy across everything from SOURCE that can fit into DEST. */
231
232 if (byte_order == BFD_ENDIAN_BIG && size_diff > 0)
233 memcpy (dest + size_diff, source, source_size);
234 else if (byte_order == BFD_ENDIAN_BIG && size_diff < 0)
235 memcpy (dest, source - size_diff, dest_size);
236 else
237 memcpy (dest, source, std::min (source_size, dest_size));
238
239 /* Fill the remaining space in DEST by either zero extending or sign
240 extending. */
241
242 if (size_diff > 0)
243 {
244 gdb_byte extension = 0;
245 if (is_signed
246 && ((byte_order != BFD_ENDIAN_BIG && source[source_size - 1] & 0x80)
247 || (byte_order == BFD_ENDIAN_BIG && source[0] & 0x80)))
248 extension = 0xff;
249
250 /* Extend into MSBs of SOURCE. */
251 if (byte_order == BFD_ENDIAN_BIG)
252 memset (dest, extension, size_diff);
253 else
254 memset (dest + source_size, extension, size_diff);
255 }
256 }
257
258 /* Return a `value' with the contents of (virtual or cooked) register
259 REGNUM as found in the specified FRAME. The register's type is
260 determined by register_type (). */
261
262 struct value *
263 value_of_register (int regnum, struct frame_info *frame)
264 {
265 struct gdbarch *gdbarch = get_frame_arch (frame);
266 struct value *reg_val;
267
268 /* User registers lie completely outside of the range of normal
269 registers. Catch them early so that the target never sees them. */
270 if (regnum >= gdbarch_num_cooked_regs (gdbarch))
271 return value_of_user_reg (regnum, frame);
272
273 reg_val = value_of_register_lazy (frame, regnum);
274 value_fetch_lazy (reg_val);
275 return reg_val;
276 }
277
278 /* Return a `value' with the contents of (virtual or cooked) register
279 REGNUM as found in the specified FRAME. The register's type is
280 determined by register_type (). The value is not fetched. */
281
282 struct value *
283 value_of_register_lazy (struct frame_info *frame, int regnum)
284 {
285 struct gdbarch *gdbarch = get_frame_arch (frame);
286 struct value *reg_val;
287 struct frame_info *next_frame;
288
289 gdb_assert (regnum < gdbarch_num_cooked_regs (gdbarch));
290
291 gdb_assert (frame != NULL);
292
293 next_frame = get_next_frame_sentinel_okay (frame);
294
295 /* In some cases NEXT_FRAME may not have a valid frame-id yet. This can
296 happen if we end up trying to unwind a register as part of the frame
297 sniffer. The only time that we get here without a valid frame-id is
298 if NEXT_FRAME is an inline frame. If this is the case then we can
299 avoid getting into trouble here by skipping past the inline frames. */
300 while (get_frame_type (next_frame) == INLINE_FRAME)
301 next_frame = get_next_frame_sentinel_okay (next_frame);
302
303 /* We should have a valid next frame. */
304 gdb_assert (frame_id_p (get_frame_id (next_frame)));
305
306 reg_val = allocate_value_lazy (register_type (gdbarch, regnum));
307 VALUE_LVAL (reg_val) = lval_register;
308 VALUE_REGNUM (reg_val) = regnum;
309 VALUE_NEXT_FRAME_ID (reg_val) = get_frame_id (next_frame);
310
311 return reg_val;
312 }
313
314 /* Given a pointer of type TYPE in target form in BUF, return the
315 address it represents. */
316 CORE_ADDR
317 unsigned_pointer_to_address (struct gdbarch *gdbarch,
318 struct type *type, const gdb_byte *buf)
319 {
320 enum bfd_endian byte_order = type_byte_order (type);
321
322 return extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
323 }
324
325 CORE_ADDR
326 signed_pointer_to_address (struct gdbarch *gdbarch,
327 struct type *type, const gdb_byte *buf)
328 {
329 enum bfd_endian byte_order = type_byte_order (type);
330
331 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
332 }
333
334 /* Given an address, store it as a pointer of type TYPE in target
335 format in BUF. */
336 void
337 unsigned_address_to_pointer (struct gdbarch *gdbarch, struct type *type,
338 gdb_byte *buf, CORE_ADDR addr)
339 {
340 enum bfd_endian byte_order = type_byte_order (type);
341
342 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
343 }
344
345 void
346 address_to_signed_pointer (struct gdbarch *gdbarch, struct type *type,
347 gdb_byte *buf, CORE_ADDR addr)
348 {
349 enum bfd_endian byte_order = type_byte_order (type);
350
351 store_signed_integer (buf, TYPE_LENGTH (type), byte_order, addr);
352 }
353 \f
354 /* See value.h. */
355
356 enum symbol_needs_kind
357 symbol_read_needs (struct symbol *sym)
358 {
359 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
360 return SYMBOL_COMPUTED_OPS (sym)->get_symbol_read_needs (sym);
361
362 switch (SYMBOL_CLASS (sym))
363 {
364 /* All cases listed explicitly so that gcc -Wall will detect it if
365 we failed to consider one. */
366 case LOC_COMPUTED:
367 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
368
369 case LOC_REGISTER:
370 case LOC_ARG:
371 case LOC_REF_ARG:
372 case LOC_REGPARM_ADDR:
373 case LOC_LOCAL:
374 return SYMBOL_NEEDS_FRAME;
375
376 case LOC_UNDEF:
377 case LOC_CONST:
378 case LOC_STATIC:
379 case LOC_TYPEDEF:
380
381 case LOC_LABEL:
382 /* Getting the address of a label can be done independently of the block,
383 even if some *uses* of that address wouldn't work so well without
384 the right frame. */
385
386 case LOC_BLOCK:
387 case LOC_CONST_BYTES:
388 case LOC_UNRESOLVED:
389 case LOC_OPTIMIZED_OUT:
390 return SYMBOL_NEEDS_NONE;
391 }
392 return SYMBOL_NEEDS_FRAME;
393 }
394
395 /* See value.h. */
396
397 int
398 symbol_read_needs_frame (struct symbol *sym)
399 {
400 return symbol_read_needs (sym) == SYMBOL_NEEDS_FRAME;
401 }
402
403 /* Private data to be used with minsym_lookup_iterator_cb. */
404
405 struct minsym_lookup_data
406 {
407 /* The name of the minimal symbol we are searching for. */
408 const char *name;
409
410 /* The field where the callback should store the minimal symbol
411 if found. It should be initialized to NULL before the search
412 is started. */
413 struct bound_minimal_symbol result;
414 };
415
416 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
417 It searches by name for a minimal symbol within the given OBJFILE.
418 The arguments are passed via CB_DATA, which in reality is a pointer
419 to struct minsym_lookup_data. */
420
421 static int
422 minsym_lookup_iterator_cb (struct objfile *objfile, void *cb_data)
423 {
424 struct minsym_lookup_data *data = (struct minsym_lookup_data *) cb_data;
425
426 gdb_assert (data->result.minsym == NULL);
427
428 data->result = lookup_minimal_symbol (data->name, NULL, objfile);
429
430 /* The iterator should stop iff a match was found. */
431 return (data->result.minsym != NULL);
432 }
433
434 /* Given static link expression and the frame it lives in, look for the frame
435 the static links points to and return it. Return NULL if we could not find
436 such a frame. */
437
438 static struct frame_info *
439 follow_static_link (struct frame_info *frame,
440 const struct dynamic_prop *static_link)
441 {
442 CORE_ADDR upper_frame_base;
443
444 if (!dwarf2_evaluate_property (static_link, frame, NULL, &upper_frame_base))
445 return NULL;
446
447 /* Now climb up the stack frame until we reach the frame we are interested
448 in. */
449 for (; frame != NULL; frame = get_prev_frame (frame))
450 {
451 struct symbol *framefunc = get_frame_function (frame);
452
453 /* Stacks can be quite deep: give the user a chance to stop this. */
454 QUIT;
455
456 /* If we don't know how to compute FRAME's base address, don't give up:
457 maybe the frame we are looking for is upper in the stack frame. */
458 if (framefunc != NULL
459 && SYMBOL_BLOCK_OPS (framefunc) != NULL
460 && SYMBOL_BLOCK_OPS (framefunc)->get_frame_base != NULL
461 && (SYMBOL_BLOCK_OPS (framefunc)->get_frame_base (framefunc, frame)
462 == upper_frame_base))
463 break;
464 }
465
466 return frame;
467 }
468
469 /* Assuming VAR is a symbol that can be reached from FRAME thanks to lexical
470 rules, look for the frame that is actually hosting VAR and return it. If,
471 for some reason, we found no such frame, return NULL.
472
473 This kind of computation is necessary to correctly handle lexically nested
474 functions.
475
476 Note that in some cases, we know what scope VAR comes from but we cannot
477 reach the specific frame that hosts the instance of VAR we are looking for.
478 For backward compatibility purposes (with old compilers), we then look for
479 the first frame that can host it. */
480
481 static struct frame_info *
482 get_hosting_frame (struct symbol *var, const struct block *var_block,
483 struct frame_info *frame)
484 {
485 const struct block *frame_block = NULL;
486
487 if (!symbol_read_needs_frame (var))
488 return NULL;
489
490 /* Some symbols for local variables have no block: this happens when they are
491 not produced by a debug information reader, for instance when GDB creates
492 synthetic symbols. Without block information, we must assume they are
493 local to FRAME. In this case, there is nothing to do. */
494 else if (var_block == NULL)
495 return frame;
496
497 /* We currently assume that all symbols with a location list need a frame.
498 This is true in practice because selecting the location description
499 requires to compute the CFA, hence requires a frame. However we have
500 tests that embed global/static symbols with null location lists.
501 We want to get <optimized out> instead of <frame required> when evaluating
502 them so return a frame instead of raising an error. */
503 else if (var_block == block_global_block (var_block)
504 || var_block == block_static_block (var_block))
505 return frame;
506
507 /* We have to handle the "my_func::my_local_var" notation. This requires us
508 to look for upper frames when we find no block for the current frame: here
509 and below, handle when frame_block == NULL. */
510 if (frame != NULL)
511 frame_block = get_frame_block (frame, NULL);
512
513 /* Climb up the call stack until reaching the frame we are looking for. */
514 while (frame != NULL && frame_block != var_block)
515 {
516 /* Stacks can be quite deep: give the user a chance to stop this. */
517 QUIT;
518
519 if (frame_block == NULL)
520 {
521 frame = get_prev_frame (frame);
522 if (frame == NULL)
523 break;
524 frame_block = get_frame_block (frame, NULL);
525 }
526
527 /* If we failed to find the proper frame, fallback to the heuristic
528 method below. */
529 else if (frame_block == block_global_block (frame_block))
530 {
531 frame = NULL;
532 break;
533 }
534
535 /* Assuming we have a block for this frame: if we are at the function
536 level, the immediate upper lexical block is in an outer function:
537 follow the static link. */
538 else if (BLOCK_FUNCTION (frame_block))
539 {
540 const struct dynamic_prop *static_link
541 = block_static_link (frame_block);
542 int could_climb_up = 0;
543
544 if (static_link != NULL)
545 {
546 frame = follow_static_link (frame, static_link);
547 if (frame != NULL)
548 {
549 frame_block = get_frame_block (frame, NULL);
550 could_climb_up = frame_block != NULL;
551 }
552 }
553 if (!could_climb_up)
554 {
555 frame = NULL;
556 break;
557 }
558 }
559
560 else
561 /* We must be in some function nested lexical block. Just get the
562 outer block: both must share the same frame. */
563 frame_block = BLOCK_SUPERBLOCK (frame_block);
564 }
565
566 /* Old compilers may not provide a static link, or they may provide an
567 invalid one. For such cases, fallback on the old way to evaluate
568 non-local references: just climb up the call stack and pick the first
569 frame that contains the variable we are looking for. */
570 if (frame == NULL)
571 {
572 frame = block_innermost_frame (var_block);
573 if (frame == NULL)
574 {
575 if (BLOCK_FUNCTION (var_block)
576 && !block_inlined_p (var_block)
577 && BLOCK_FUNCTION (var_block)->print_name ())
578 error (_("No frame is currently executing in block %s."),
579 BLOCK_FUNCTION (var_block)->print_name ());
580 else
581 error (_("No frame is currently executing in specified"
582 " block"));
583 }
584 }
585
586 return frame;
587 }
588
589 /* See language.h. */
590
591 struct value *
592 language_defn::read_var_value (struct symbol *var,
593 const struct block *var_block,
594 struct frame_info *frame) const
595 {
596 struct value *v;
597 struct type *type = SYMBOL_TYPE (var);
598 CORE_ADDR addr;
599 enum symbol_needs_kind sym_need;
600
601 /* Call check_typedef on our type to make sure that, if TYPE is
602 a TYPE_CODE_TYPEDEF, its length is set to the length of the target type
603 instead of zero. However, we do not replace the typedef type by the
604 target type, because we want to keep the typedef in order to be able to
605 set the returned value type description correctly. */
606 check_typedef (type);
607
608 sym_need = symbol_read_needs (var);
609 if (sym_need == SYMBOL_NEEDS_FRAME)
610 gdb_assert (frame != NULL);
611 else if (sym_need == SYMBOL_NEEDS_REGISTERS && !target_has_registers ())
612 error (_("Cannot read `%s' without registers"), var->print_name ());
613
614 if (frame != NULL)
615 frame = get_hosting_frame (var, var_block, frame);
616
617 if (SYMBOL_COMPUTED_OPS (var) != NULL)
618 return SYMBOL_COMPUTED_OPS (var)->read_variable (var, frame);
619
620 switch (SYMBOL_CLASS (var))
621 {
622 case LOC_CONST:
623 if (is_dynamic_type (type))
624 {
625 /* Value is a constant byte-sequence and needs no memory access. */
626 type = resolve_dynamic_type (type, {}, /* Unused address. */ 0);
627 }
628 /* Put the constant back in target format. */
629 v = allocate_value (type);
630 store_signed_integer (value_contents_raw (v), TYPE_LENGTH (type),
631 type_byte_order (type),
632 (LONGEST) SYMBOL_VALUE (var));
633 VALUE_LVAL (v) = not_lval;
634 return v;
635
636 case LOC_LABEL:
637 /* Put the constant back in target format. */
638 v = allocate_value (type);
639 if (overlay_debugging)
640 {
641 addr
642 = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
643 SYMBOL_OBJ_SECTION (symbol_objfile (var),
644 var));
645
646 store_typed_address (value_contents_raw (v), type, addr);
647 }
648 else
649 store_typed_address (value_contents_raw (v), type,
650 SYMBOL_VALUE_ADDRESS (var));
651 VALUE_LVAL (v) = not_lval;
652 return v;
653
654 case LOC_CONST_BYTES:
655 if (is_dynamic_type (type))
656 {
657 /* Value is a constant byte-sequence and needs no memory access. */
658 type = resolve_dynamic_type (type, {}, /* Unused address. */ 0);
659 }
660 v = allocate_value (type);
661 memcpy (value_contents_raw (v), SYMBOL_VALUE_BYTES (var),
662 TYPE_LENGTH (type));
663 VALUE_LVAL (v) = not_lval;
664 return v;
665
666 case LOC_STATIC:
667 if (overlay_debugging)
668 addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
669 SYMBOL_OBJ_SECTION (symbol_objfile (var),
670 var));
671 else
672 addr = SYMBOL_VALUE_ADDRESS (var);
673 break;
674
675 case LOC_ARG:
676 addr = get_frame_args_address (frame);
677 if (!addr)
678 error (_("Unknown argument list address for `%s'."),
679 var->print_name ());
680 addr += SYMBOL_VALUE (var);
681 break;
682
683 case LOC_REF_ARG:
684 {
685 struct value *ref;
686 CORE_ADDR argref;
687
688 argref = get_frame_args_address (frame);
689 if (!argref)
690 error (_("Unknown argument list address for `%s'."),
691 var->print_name ());
692 argref += SYMBOL_VALUE (var);
693 ref = value_at (lookup_pointer_type (type), argref);
694 addr = value_as_address (ref);
695 break;
696 }
697
698 case LOC_LOCAL:
699 addr = get_frame_locals_address (frame);
700 addr += SYMBOL_VALUE (var);
701 break;
702
703 case LOC_TYPEDEF:
704 error (_("Cannot look up value of a typedef `%s'."),
705 var->print_name ());
706 break;
707
708 case LOC_BLOCK:
709 if (overlay_debugging)
710 addr = symbol_overlayed_address
711 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (var)),
712 SYMBOL_OBJ_SECTION (symbol_objfile (var), var));
713 else
714 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (var));
715 break;
716
717 case LOC_REGISTER:
718 case LOC_REGPARM_ADDR:
719 {
720 int regno = SYMBOL_REGISTER_OPS (var)
721 ->register_number (var, get_frame_arch (frame));
722 struct value *regval;
723
724 if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
725 {
726 regval = value_from_register (lookup_pointer_type (type),
727 regno,
728 frame);
729
730 if (regval == NULL)
731 error (_("Value of register variable not available for `%s'."),
732 var->print_name ());
733
734 addr = value_as_address (regval);
735 }
736 else
737 {
738 regval = value_from_register (type, regno, frame);
739
740 if (regval == NULL)
741 error (_("Value of register variable not available for `%s'."),
742 var->print_name ());
743 return regval;
744 }
745 }
746 break;
747
748 case LOC_COMPUTED:
749 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
750
751 case LOC_UNRESOLVED:
752 {
753 struct minsym_lookup_data lookup_data;
754 struct minimal_symbol *msym;
755 struct obj_section *obj_section;
756
757 memset (&lookup_data, 0, sizeof (lookup_data));
758 lookup_data.name = var->linkage_name ();
759
760 gdbarch_iterate_over_objfiles_in_search_order
761 (symbol_arch (var),
762 minsym_lookup_iterator_cb, &lookup_data,
763 symbol_objfile (var));
764 msym = lookup_data.result.minsym;
765
766 /* If we can't find the minsym there's a problem in the symbol info.
767 The symbol exists in the debug info, but it's missing in the minsym
768 table. */
769 if (msym == NULL)
770 {
771 const char *flavour_name
772 = objfile_flavour_name (symbol_objfile (var));
773
774 /* We can't get here unless we've opened the file, so flavour_name
775 can't be NULL. */
776 gdb_assert (flavour_name != NULL);
777 error (_("Missing %s symbol \"%s\"."),
778 flavour_name, var->linkage_name ());
779 }
780 obj_section = MSYMBOL_OBJ_SECTION (lookup_data.result.objfile, msym);
781 /* Relocate address, unless there is no section or the variable is
782 a TLS variable. */
783 if (obj_section == NULL
784 || (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
785 addr = MSYMBOL_VALUE_RAW_ADDRESS (msym);
786 else
787 addr = BMSYMBOL_VALUE_ADDRESS (lookup_data.result);
788 if (overlay_debugging)
789 addr = symbol_overlayed_address (addr, obj_section);
790 /* Determine address of TLS variable. */
791 if (obj_section
792 && (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
793 addr = target_translate_tls_address (obj_section->objfile, addr);
794 }
795 break;
796
797 case LOC_OPTIMIZED_OUT:
798 if (is_dynamic_type (type))
799 type = resolve_dynamic_type (type, {}, /* Unused address. */ 0);
800 return allocate_optimized_out_value (type);
801
802 default:
803 error (_("Cannot look up value of a botched symbol `%s'."),
804 var->print_name ());
805 break;
806 }
807
808 v = value_at_lazy (type, addr);
809 return v;
810 }
811
812 /* Calls VAR's language read_var_value hook with the given arguments. */
813
814 struct value *
815 read_var_value (struct symbol *var, const struct block *var_block,
816 struct frame_info *frame)
817 {
818 const struct language_defn *lang = language_def (var->language ());
819
820 gdb_assert (lang != NULL);
821
822 return lang->read_var_value (var, var_block, frame);
823 }
824
825 /* Install default attributes for register values. */
826
827 struct value *
828 default_value_from_register (struct gdbarch *gdbarch, struct type *type,
829 int regnum, struct frame_id frame_id)
830 {
831 int len = TYPE_LENGTH (type);
832 struct value *value = allocate_value (type);
833 struct frame_info *frame;
834
835 VALUE_LVAL (value) = lval_register;
836 frame = frame_find_by_id (frame_id);
837
838 if (frame == NULL)
839 frame_id = null_frame_id;
840 else
841 frame_id = get_frame_id (get_next_frame_sentinel_okay (frame));
842
843 VALUE_NEXT_FRAME_ID (value) = frame_id;
844 VALUE_REGNUM (value) = regnum;
845
846 /* Any structure stored in more than one register will always be
847 an integral number of registers. Otherwise, you need to do
848 some fiddling with the last register copied here for little
849 endian machines. */
850 if (type_byte_order (type) == BFD_ENDIAN_BIG
851 && len < register_size (gdbarch, regnum))
852 /* Big-endian, and we want less than full size. */
853 set_value_offset (value, register_size (gdbarch, regnum) - len);
854 else
855 set_value_offset (value, 0);
856
857 return value;
858 }
859
860 /* VALUE must be an lval_register value. If regnum is the value's
861 associated register number, and len the length of the values type,
862 read one or more registers in FRAME, starting with register REGNUM,
863 until we've read LEN bytes.
864
865 If any of the registers we try to read are optimized out, then mark the
866 complete resulting value as optimized out. */
867
868 void
869 read_frame_register_value (struct value *value, struct frame_info *frame)
870 {
871 struct gdbarch *gdbarch = get_frame_arch (frame);
872 LONGEST offset = 0;
873 LONGEST reg_offset = value_offset (value);
874 int regnum = VALUE_REGNUM (value);
875 int len = type_length_units (check_typedef (value_type (value)));
876
877 gdb_assert (VALUE_LVAL (value) == lval_register);
878
879 /* Skip registers wholly inside of REG_OFFSET. */
880 while (reg_offset >= register_size (gdbarch, regnum))
881 {
882 reg_offset -= register_size (gdbarch, regnum);
883 regnum++;
884 }
885
886 /* Copy the data. */
887 while (len > 0)
888 {
889 struct value *regval = get_frame_register_value (frame, regnum);
890 int reg_len = type_length_units (value_type (regval)) - reg_offset;
891
892 /* If the register length is larger than the number of bytes
893 remaining to copy, then only copy the appropriate bytes. */
894 if (reg_len > len)
895 reg_len = len;
896
897 value_contents_copy (value, offset, regval, reg_offset, reg_len);
898
899 offset += reg_len;
900 len -= reg_len;
901 reg_offset = 0;
902 regnum++;
903 }
904 }
905
906 /* Return a value of type TYPE, stored in register REGNUM, in frame FRAME. */
907
908 struct value *
909 value_from_register (struct type *type, int regnum, struct frame_info *frame)
910 {
911 struct gdbarch *gdbarch = get_frame_arch (frame);
912 struct type *type1 = check_typedef (type);
913 struct value *v;
914
915 if (gdbarch_convert_register_p (gdbarch, regnum, type1))
916 {
917 int optim, unavail, ok;
918
919 /* The ISA/ABI need to something weird when obtaining the
920 specified value from this register. It might need to
921 re-order non-adjacent, starting with REGNUM (see MIPS and
922 i386). It might need to convert the [float] register into
923 the corresponding [integer] type (see Alpha). The assumption
924 is that gdbarch_register_to_value populates the entire value
925 including the location. */
926 v = allocate_value (type);
927 VALUE_LVAL (v) = lval_register;
928 VALUE_NEXT_FRAME_ID (v) = get_frame_id (get_next_frame_sentinel_okay (frame));
929 VALUE_REGNUM (v) = regnum;
930 ok = gdbarch_register_to_value (gdbarch, frame, regnum, type1,
931 value_contents_raw (v), &optim,
932 &unavail);
933
934 if (!ok)
935 {
936 if (optim)
937 mark_value_bytes_optimized_out (v, 0, TYPE_LENGTH (type));
938 if (unavail)
939 mark_value_bytes_unavailable (v, 0, TYPE_LENGTH (type));
940 }
941 }
942 else
943 {
944 /* Construct the value. */
945 v = gdbarch_value_from_register (gdbarch, type,
946 regnum, get_frame_id (frame));
947
948 /* Get the data. */
949 read_frame_register_value (v, frame);
950 }
951
952 return v;
953 }
954
955 /* Return contents of register REGNUM in frame FRAME as address.
956 Will abort if register value is not available. */
957
958 CORE_ADDR
959 address_from_register (int regnum, struct frame_info *frame)
960 {
961 struct gdbarch *gdbarch = get_frame_arch (frame);
962 struct type *type = builtin_type (gdbarch)->builtin_data_ptr;
963 struct value *value;
964 CORE_ADDR result;
965 int regnum_max_excl = gdbarch_num_cooked_regs (gdbarch);
966
967 if (regnum < 0 || regnum >= regnum_max_excl)
968 error (_("Invalid register #%d, expecting 0 <= # < %d"), regnum,
969 regnum_max_excl);
970
971 /* This routine may be called during early unwinding, at a time
972 where the ID of FRAME is not yet known. Calling value_from_register
973 would therefore abort in get_frame_id. However, since we only need
974 a temporary value that is never used as lvalue, we actually do not
975 really need to set its VALUE_NEXT_FRAME_ID. Therefore, we re-implement
976 the core of value_from_register, but use the null_frame_id. */
977
978 /* Some targets require a special conversion routine even for plain
979 pointer types. Avoid constructing a value object in those cases. */
980 if (gdbarch_convert_register_p (gdbarch, regnum, type))
981 {
982 gdb_byte *buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
983 int optim, unavail, ok;
984
985 ok = gdbarch_register_to_value (gdbarch, frame, regnum, type,
986 buf, &optim, &unavail);
987 if (!ok)
988 {
989 /* This function is used while computing a location expression.
990 Complain about the value being optimized out, rather than
991 letting value_as_address complain about some random register
992 the expression depends on not being saved. */
993 error_value_optimized_out ();
994 }
995
996 return unpack_long (type, buf);
997 }
998
999 value = gdbarch_value_from_register (gdbarch, type, regnum, null_frame_id);
1000 read_frame_register_value (value, frame);
1001
1002 if (value_optimized_out (value))
1003 {
1004 /* This function is used while computing a location expression.
1005 Complain about the value being optimized out, rather than
1006 letting value_as_address complain about some random register
1007 the expression depends on not being saved. */
1008 error_value_optimized_out ();
1009 }
1010
1011 result = value_as_address (value);
1012 release_value (value);
1013
1014 return result;
1015 }
1016
1017 #if GDB_SELF_TEST
1018 namespace selftests {
1019 namespace findvar_tests {
1020
1021 /* Function to test copy_integer_to_size. Store SOURCE_VAL with size
1022 SOURCE_SIZE to a buffer, making sure no sign extending happens at this
1023 stage. Copy buffer to a new buffer using copy_integer_to_size. Extract
1024 copied value and compare to DEST_VALU. Copy again with a signed
1025 copy_integer_to_size and compare to DEST_VALS. Do everything for both
1026 LITTLE and BIG target endians. Use unsigned values throughout to make
1027 sure there are no implicit sign extensions. */
1028
1029 static void
1030 do_cint_test (ULONGEST dest_valu, ULONGEST dest_vals, int dest_size,
1031 ULONGEST src_val, int src_size)
1032 {
1033 for (int i = 0; i < 2 ; i++)
1034 {
1035 gdb_byte srcbuf[sizeof (ULONGEST)] = {};
1036 gdb_byte destbuf[sizeof (ULONGEST)] = {};
1037 enum bfd_endian byte_order = i ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1038
1039 /* Fill the src buffer (and later the dest buffer) with non-zero junk,
1040 to ensure zero extensions aren't hidden. */
1041 memset (srcbuf, 0xaa, sizeof (srcbuf));
1042
1043 /* Store (and later extract) using unsigned to ensure there are no sign
1044 extensions. */
1045 store_unsigned_integer (srcbuf, src_size, byte_order, src_val);
1046
1047 /* Test unsigned. */
1048 memset (destbuf, 0xaa, sizeof (destbuf));
1049 copy_integer_to_size (destbuf, dest_size, srcbuf, src_size, false,
1050 byte_order);
1051 SELF_CHECK (dest_valu == extract_unsigned_integer (destbuf, dest_size,
1052 byte_order));
1053
1054 /* Test signed. */
1055 memset (destbuf, 0xaa, sizeof (destbuf));
1056 copy_integer_to_size (destbuf, dest_size, srcbuf, src_size, true,
1057 byte_order);
1058 SELF_CHECK (dest_vals == extract_unsigned_integer (destbuf, dest_size,
1059 byte_order));
1060 }
1061 }
1062
1063 static void
1064 copy_integer_to_size_test ()
1065 {
1066 /* Destination is bigger than the source, which has the signed bit unset. */
1067 do_cint_test (0x12345678, 0x12345678, 8, 0x12345678, 4);
1068 do_cint_test (0x345678, 0x345678, 8, 0x12345678, 3);
1069
1070 /* Destination is bigger than the source, which has the signed bit set. */
1071 do_cint_test (0xdeadbeef, 0xffffffffdeadbeef, 8, 0xdeadbeef, 4);
1072 do_cint_test (0xadbeef, 0xffffffffffadbeef, 8, 0xdeadbeef, 3);
1073
1074 /* Destination is smaller than the source. */
1075 do_cint_test (0x5678, 0x5678, 2, 0x12345678, 3);
1076 do_cint_test (0xbeef, 0xbeef, 2, 0xdeadbeef, 3);
1077
1078 /* Destination and source are the same size. */
1079 do_cint_test (0x8765432112345678, 0x8765432112345678, 8, 0x8765432112345678,
1080 8);
1081 do_cint_test (0x432112345678, 0x432112345678, 6, 0x8765432112345678, 6);
1082 do_cint_test (0xfeedbeaddeadbeef, 0xfeedbeaddeadbeef, 8, 0xfeedbeaddeadbeef,
1083 8);
1084 do_cint_test (0xbeaddeadbeef, 0xbeaddeadbeef, 6, 0xfeedbeaddeadbeef, 6);
1085
1086 /* Destination is bigger than the source. Source is bigger than 32bits. */
1087 do_cint_test (0x3412345678, 0x3412345678, 8, 0x3412345678, 6);
1088 do_cint_test (0xff12345678, 0xff12345678, 8, 0xff12345678, 6);
1089 do_cint_test (0x432112345678, 0x432112345678, 8, 0x8765432112345678, 6);
1090 do_cint_test (0xff2112345678, 0xffffff2112345678, 8, 0xffffff2112345678, 6);
1091 }
1092
1093 } // namespace findvar_test
1094 } // namespace selftests
1095
1096 #endif
1097
1098 void _initialize_findvar ();
1099 void
1100 _initialize_findvar ()
1101 {
1102 #if GDB_SELF_TEST
1103 selftests::register_test
1104 ("copy_integer_to_size",
1105 selftests::findvar_tests::copy_integer_to_size_test);
1106 #endif
1107 }