]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/frame.c
53d2fba6dafbc0fecb817a57105d80b1fabe63d3
[thirdparty/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44 #include "block.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
49 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
50
51 /* We keep a cache of stack frames, each of which is a "struct
52 frame_info". The innermost one gets allocated (in
53 wait_for_inferior) each time the inferior stops; current_frame
54 points to it. Additional frames get allocated (in get_prev_frame)
55 as needed, and are chained through the next and prev fields. Any
56 time that the frame cache becomes invalid (most notably when we
57 execute something, but also if we change how we interpret the
58 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
59 which reads new symbols)), we should call reinit_frame_cache. */
60
61 struct frame_info
62 {
63 /* Level of this frame. The inner-most (youngest) frame is at level
64 0. As you move towards the outer-most (oldest) frame, the level
65 increases. This is a cached value. It could just as easily be
66 computed by counting back from the selected frame to the inner
67 most frame. */
68 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
69 reserved to indicate a bogus frame - one that has been created
70 just to keep GDB happy (GDB always needs a frame). For the
71 moment leave this as speculation. */
72 int level;
73
74 /* The frame's program space. */
75 struct program_space *pspace;
76
77 /* The frame's address space. */
78 struct address_space *aspace;
79
80 /* The frame's low-level unwinder and corresponding cache. The
81 low-level unwinder is responsible for unwinding register values
82 for the previous frame. The low-level unwind methods are
83 selected based on the presence, or otherwise, of register unwind
84 information such as CFI. */
85 void *prologue_cache;
86 const struct frame_unwind *unwind;
87
88 /* Cached copy of the previous frame's architecture. */
89 struct
90 {
91 int p;
92 struct gdbarch *arch;
93 } prev_arch;
94
95 /* Cached copy of the previous frame's resume address. */
96 struct {
97 int p;
98 CORE_ADDR value;
99 } prev_pc;
100
101 /* Cached copy of the previous frame's function address. */
102 struct
103 {
104 CORE_ADDR addr;
105 int p;
106 } prev_func;
107
108 /* This frame's ID. */
109 struct
110 {
111 int p;
112 struct frame_id value;
113 } this_id;
114
115 /* The frame's high-level base methods, and corresponding cache.
116 The high level base methods are selected based on the frame's
117 debug info. */
118 const struct frame_base *base;
119 void *base_cache;
120
121 /* Pointers to the next (down, inner, younger) and previous (up,
122 outer, older) frame_info's in the frame cache. */
123 struct frame_info *next; /* down, inner, younger */
124 int prev_p;
125 struct frame_info *prev; /* up, outer, older */
126
127 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
128 could. Only valid when PREV_P is set. */
129 enum unwind_stop_reason stop_reason;
130 };
131
132 /* A frame stash used to speed up frame lookups. */
133
134 /* We currently only stash one frame at a time, as this seems to be
135 sufficient for now. */
136 static struct frame_info *frame_stash = NULL;
137
138 /* Add the following FRAME to the frame stash. */
139
140 static void
141 frame_stash_add (struct frame_info *frame)
142 {
143 frame_stash = frame;
144 }
145
146 /* Search the frame stash for an entry with the given frame ID.
147 If found, return that frame. Otherwise return NULL. */
148
149 static struct frame_info *
150 frame_stash_find (struct frame_id id)
151 {
152 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
153 return frame_stash;
154
155 return NULL;
156 }
157
158 /* Invalidate the frame stash by removing all entries in it. */
159
160 static void
161 frame_stash_invalidate (void)
162 {
163 frame_stash = NULL;
164 }
165
166 /* Flag to control debugging. */
167
168 int frame_debug;
169 static void
170 show_frame_debug (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
174 }
175
176 /* Flag to indicate whether backtraces should stop at main et.al. */
177
178 static int backtrace_past_main;
179 static void
180 show_backtrace_past_main (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("\
184 Whether backtraces should continue past \"main\" is %s.\n"),
185 value);
186 }
187
188 static int backtrace_past_entry;
189 static void
190 show_backtrace_past_entry (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 fprintf_filtered (file, _("\
194 Whether backtraces should continue past the entry point of a program is %s.\n"),
195 value);
196 }
197
198 static int backtrace_limit = INT_MAX;
199 static void
200 show_backtrace_limit (struct ui_file *file, int from_tty,
201 struct cmd_list_element *c, const char *value)
202 {
203 fprintf_filtered (file, _("\
204 An upper bound on the number of backtrace levels is %s.\n"),
205 value);
206 }
207
208
209 static void
210 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
211 {
212 if (p)
213 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
214 else
215 fprintf_unfiltered (file, "!%s", name);
216 }
217
218 void
219 fprint_frame_id (struct ui_file *file, struct frame_id id)
220 {
221 fprintf_unfiltered (file, "{");
222 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
223 fprintf_unfiltered (file, ",");
224 fprint_field (file, "code", id.code_addr_p, id.code_addr);
225 fprintf_unfiltered (file, ",");
226 fprint_field (file, "special", id.special_addr_p, id.special_addr);
227 if (id.inline_depth)
228 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
229 fprintf_unfiltered (file, "}");
230 }
231
232 static void
233 fprint_frame_type (struct ui_file *file, enum frame_type type)
234 {
235 switch (type)
236 {
237 case NORMAL_FRAME:
238 fprintf_unfiltered (file, "NORMAL_FRAME");
239 return;
240 case DUMMY_FRAME:
241 fprintf_unfiltered (file, "DUMMY_FRAME");
242 return;
243 case INLINE_FRAME:
244 fprintf_unfiltered (file, "INLINE_FRAME");
245 return;
246 case SENTINEL_FRAME:
247 fprintf_unfiltered (file, "SENTINEL_FRAME");
248 return;
249 case SIGTRAMP_FRAME:
250 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
251 return;
252 case ARCH_FRAME:
253 fprintf_unfiltered (file, "ARCH_FRAME");
254 return;
255 default:
256 fprintf_unfiltered (file, "<unknown type>");
257 return;
258 };
259 }
260
261 static void
262 fprint_frame (struct ui_file *file, struct frame_info *fi)
263 {
264 if (fi == NULL)
265 {
266 fprintf_unfiltered (file, "<NULL frame>");
267 return;
268 }
269 fprintf_unfiltered (file, "{");
270 fprintf_unfiltered (file, "level=%d", fi->level);
271 fprintf_unfiltered (file, ",");
272 fprintf_unfiltered (file, "type=");
273 if (fi->unwind != NULL)
274 fprint_frame_type (file, fi->unwind->type);
275 else
276 fprintf_unfiltered (file, "<unknown>");
277 fprintf_unfiltered (file, ",");
278 fprintf_unfiltered (file, "unwind=");
279 if (fi->unwind != NULL)
280 gdb_print_host_address (fi->unwind, file);
281 else
282 fprintf_unfiltered (file, "<unknown>");
283 fprintf_unfiltered (file, ",");
284 fprintf_unfiltered (file, "pc=");
285 if (fi->next != NULL && fi->next->prev_pc.p)
286 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
287 else
288 fprintf_unfiltered (file, "<unknown>");
289 fprintf_unfiltered (file, ",");
290 fprintf_unfiltered (file, "id=");
291 if (fi->this_id.p)
292 fprint_frame_id (file, fi->this_id.value);
293 else
294 fprintf_unfiltered (file, "<unknown>");
295 fprintf_unfiltered (file, ",");
296 fprintf_unfiltered (file, "func=");
297 if (fi->next != NULL && fi->next->prev_func.p)
298 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
299 else
300 fprintf_unfiltered (file, "<unknown>");
301 fprintf_unfiltered (file, "}");
302 }
303
304 /* Given FRAME, return the enclosing normal frame for inlined
305 function frames. Otherwise return the original frame. */
306
307 static struct frame_info *
308 skip_inlined_frames (struct frame_info *frame)
309 {
310 while (get_frame_type (frame) == INLINE_FRAME)
311 frame = get_prev_frame (frame);
312
313 return frame;
314 }
315
316 /* Return a frame uniq ID that can be used to, later, re-find the
317 frame. */
318
319 struct frame_id
320 get_frame_id (struct frame_info *fi)
321 {
322 if (fi == NULL)
323 return null_frame_id;
324
325 if (!fi->this_id.p)
326 {
327 if (frame_debug)
328 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
329 fi->level);
330 /* Find the unwinder. */
331 if (fi->unwind == NULL)
332 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
333 /* Find THIS frame's ID. */
334 /* Default to outermost if no ID is found. */
335 fi->this_id.value = outer_frame_id;
336 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
337 gdb_assert (frame_id_p (fi->this_id.value));
338 fi->this_id.p = 1;
339 if (frame_debug)
340 {
341 fprintf_unfiltered (gdb_stdlog, "-> ");
342 fprint_frame_id (gdb_stdlog, fi->this_id.value);
343 fprintf_unfiltered (gdb_stdlog, " }\n");
344 }
345 }
346
347 frame_stash_add (fi);
348
349 return fi->this_id.value;
350 }
351
352 struct frame_id
353 get_stack_frame_id (struct frame_info *next_frame)
354 {
355 return get_frame_id (skip_inlined_frames (next_frame));
356 }
357
358 struct frame_id
359 frame_unwind_caller_id (struct frame_info *next_frame)
360 {
361 struct frame_info *this_frame;
362
363 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
364 the frame chain, leading to this function unintentionally
365 returning a null_frame_id (e.g., when a caller requests the frame
366 ID of "main()"s caller. */
367
368 next_frame = skip_inlined_frames (next_frame);
369 this_frame = get_prev_frame_1 (next_frame);
370 if (this_frame)
371 return get_frame_id (skip_inlined_frames (this_frame));
372 else
373 return null_frame_id;
374 }
375
376 const struct frame_id null_frame_id; /* All zeros. */
377 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
378
379 struct frame_id
380 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
381 CORE_ADDR special_addr)
382 {
383 struct frame_id id = null_frame_id;
384
385 id.stack_addr = stack_addr;
386 id.stack_addr_p = 1;
387 id.code_addr = code_addr;
388 id.code_addr_p = 1;
389 id.special_addr = special_addr;
390 id.special_addr_p = 1;
391 return id;
392 }
393
394 struct frame_id
395 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
396 {
397 struct frame_id id = null_frame_id;
398
399 id.stack_addr = stack_addr;
400 id.stack_addr_p = 1;
401 id.code_addr = code_addr;
402 id.code_addr_p = 1;
403 return id;
404 }
405
406 struct frame_id
407 frame_id_build_wild (CORE_ADDR stack_addr)
408 {
409 struct frame_id id = null_frame_id;
410
411 id.stack_addr = stack_addr;
412 id.stack_addr_p = 1;
413 return id;
414 }
415
416 int
417 frame_id_p (struct frame_id l)
418 {
419 int p;
420
421 /* The frame is valid iff it has a valid stack address. */
422 p = l.stack_addr_p;
423 /* outer_frame_id is also valid. */
424 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
425 p = 1;
426 if (frame_debug)
427 {
428 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
429 fprint_frame_id (gdb_stdlog, l);
430 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
431 }
432 return p;
433 }
434
435 int
436 frame_id_inlined_p (struct frame_id l)
437 {
438 if (!frame_id_p (l))
439 return 0;
440
441 return (l.inline_depth != 0);
442 }
443
444 int
445 frame_id_eq (struct frame_id l, struct frame_id r)
446 {
447 int eq;
448
449 if (!l.stack_addr_p && l.special_addr_p && !r.stack_addr_p && r.special_addr_p)
450 /* The outermost frame marker is equal to itself. This is the
451 dodgy thing about outer_frame_id, since between execution steps
452 we might step into another function - from which we can't
453 unwind either. More thought required to get rid of
454 outer_frame_id. */
455 eq = 1;
456 else if (!l.stack_addr_p || !r.stack_addr_p)
457 /* Like a NaN, if either ID is invalid, the result is false.
458 Note that a frame ID is invalid iff it is the null frame ID. */
459 eq = 0;
460 else if (l.stack_addr != r.stack_addr)
461 /* If .stack addresses are different, the frames are different. */
462 eq = 0;
463 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
464 /* An invalid code addr is a wild card. If .code addresses are
465 different, the frames are different. */
466 eq = 0;
467 else if (l.special_addr_p && r.special_addr_p
468 && l.special_addr != r.special_addr)
469 /* An invalid special addr is a wild card (or unused). Otherwise
470 if special addresses are different, the frames are different. */
471 eq = 0;
472 else if (l.inline_depth != r.inline_depth)
473 /* If inline depths are different, the frames must be different. */
474 eq = 0;
475 else
476 /* Frames are equal. */
477 eq = 1;
478
479 if (frame_debug)
480 {
481 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
482 fprint_frame_id (gdb_stdlog, l);
483 fprintf_unfiltered (gdb_stdlog, ",r=");
484 fprint_frame_id (gdb_stdlog, r);
485 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
486 }
487 return eq;
488 }
489
490 /* Safety net to check whether frame ID L should be inner to
491 frame ID R, according to their stack addresses.
492
493 This method cannot be used to compare arbitrary frames, as the
494 ranges of valid stack addresses may be discontiguous (e.g. due
495 to sigaltstack).
496
497 However, it can be used as safety net to discover invalid frame
498 IDs in certain circumstances. Assuming that NEXT is the immediate
499 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
500
501 * The stack address of NEXT must be inner-than-or-equal to the stack
502 address of THIS.
503
504 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
505 error has occurred.
506
507 * If NEXT and THIS have different stack addresses, no other frame
508 in the frame chain may have a stack address in between.
509
510 Therefore, if frame_id_inner (TEST, THIS) holds, but
511 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
512 to a valid frame in the frame chain.
513
514 The sanity checks above cannot be performed when a SIGTRAMP frame
515 is involved, because signal handlers might be executed on a different
516 stack than the stack used by the routine that caused the signal
517 to be raised. This can happen for instance when a thread exceeds
518 its maximum stack size. In this case, certain compilers implement
519 a stack overflow strategy that cause the handler to be run on a
520 different stack. */
521
522 static int
523 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
524 {
525 int inner;
526
527 if (!l.stack_addr_p || !r.stack_addr_p)
528 /* Like NaN, any operation involving an invalid ID always fails. */
529 inner = 0;
530 else if (l.inline_depth > r.inline_depth
531 && l.stack_addr == r.stack_addr
532 && l.code_addr_p == r.code_addr_p
533 && l.special_addr_p == r.special_addr_p
534 && l.special_addr == r.special_addr)
535 {
536 /* Same function, different inlined functions. */
537 struct block *lb, *rb;
538
539 gdb_assert (l.code_addr_p && r.code_addr_p);
540
541 lb = block_for_pc (l.code_addr);
542 rb = block_for_pc (r.code_addr);
543
544 if (lb == NULL || rb == NULL)
545 /* Something's gone wrong. */
546 inner = 0;
547 else
548 /* This will return true if LB and RB are the same block, or
549 if the block with the smaller depth lexically encloses the
550 block with the greater depth. */
551 inner = contained_in (lb, rb);
552 }
553 else
554 /* Only return non-zero when strictly inner than. Note that, per
555 comment in "frame.h", there is some fuzz here. Frameless
556 functions are not strictly inner than (same .stack but
557 different .code and/or .special address). */
558 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
559 if (frame_debug)
560 {
561 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
562 fprint_frame_id (gdb_stdlog, l);
563 fprintf_unfiltered (gdb_stdlog, ",r=");
564 fprint_frame_id (gdb_stdlog, r);
565 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
566 }
567 return inner;
568 }
569
570 struct frame_info *
571 frame_find_by_id (struct frame_id id)
572 {
573 struct frame_info *frame, *prev_frame;
574
575 /* ZERO denotes the null frame, let the caller decide what to do
576 about it. Should it instead return get_current_frame()? */
577 if (!frame_id_p (id))
578 return NULL;
579
580 /* Try using the frame stash first. Finding it there removes the need
581 to perform the search by looping over all frames, which can be very
582 CPU-intensive if the number of frames is very high (the loop is O(n)
583 and get_prev_frame performs a series of checks that are relatively
584 expensive). This optimization is particularly useful when this function
585 is called from another function (such as value_fetch_lazy, case
586 VALUE_LVAL (val) == lval_register) which already loops over all frames,
587 making the overall behavior O(n^2). */
588 frame = frame_stash_find (id);
589 if (frame)
590 return frame;
591
592 for (frame = get_current_frame (); ; frame = prev_frame)
593 {
594 struct frame_id this = get_frame_id (frame);
595
596 if (frame_id_eq (id, this))
597 /* An exact match. */
598 return frame;
599
600 prev_frame = get_prev_frame (frame);
601 if (!prev_frame)
602 return NULL;
603
604 /* As a safety net to avoid unnecessary backtracing while trying
605 to find an invalid ID, we check for a common situation where
606 we can detect from comparing stack addresses that no other
607 frame in the current frame chain can have this ID. See the
608 comment at frame_id_inner for details. */
609 if (get_frame_type (frame) == NORMAL_FRAME
610 && !frame_id_inner (get_frame_arch (frame), id, this)
611 && frame_id_inner (get_frame_arch (prev_frame), id,
612 get_frame_id (prev_frame)))
613 return NULL;
614 }
615 return NULL;
616 }
617
618 static CORE_ADDR
619 frame_unwind_pc (struct frame_info *this_frame)
620 {
621 if (!this_frame->prev_pc.p)
622 {
623 CORE_ADDR pc;
624
625 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
626 {
627 /* The right way. The `pure' way. The one true way. This
628 method depends solely on the register-unwind code to
629 determine the value of registers in THIS frame, and hence
630 the value of this frame's PC (resume address). A typical
631 implementation is no more than:
632
633 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
634 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
635
636 Note: this method is very heavily dependent on a correct
637 register-unwind implementation, it pays to fix that
638 method first; this method is frame type agnostic, since
639 it only deals with register values, it works with any
640 frame. This is all in stark contrast to the old
641 FRAME_SAVED_PC which would try to directly handle all the
642 different ways that a PC could be unwound. */
643 pc = gdbarch_unwind_pc (frame_unwind_arch (this_frame), this_frame);
644 }
645 else
646 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
647 this_frame->prev_pc.value = pc;
648 this_frame->prev_pc.p = 1;
649 if (frame_debug)
650 fprintf_unfiltered (gdb_stdlog,
651 "{ frame_unwind_caller_pc (this_frame=%d) -> %s }\n",
652 this_frame->level,
653 hex_string (this_frame->prev_pc.value));
654 }
655 return this_frame->prev_pc.value;
656 }
657
658 CORE_ADDR
659 frame_unwind_caller_pc (struct frame_info *this_frame)
660 {
661 return frame_unwind_pc (skip_inlined_frames (this_frame));
662 }
663
664 CORE_ADDR
665 get_frame_func (struct frame_info *this_frame)
666 {
667 struct frame_info *next_frame = this_frame->next;
668
669 if (!next_frame->prev_func.p)
670 {
671 /* Make certain that this, and not the adjacent, function is
672 found. */
673 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
674 next_frame->prev_func.p = 1;
675 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
676 if (frame_debug)
677 fprintf_unfiltered (gdb_stdlog,
678 "{ get_frame_func (this_frame=%d) -> %s }\n",
679 this_frame->level,
680 hex_string (next_frame->prev_func.addr));
681 }
682 return next_frame->prev_func.addr;
683 }
684
685 static int
686 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
687 {
688 return frame_register_read (src, regnum, buf);
689 }
690
691 struct regcache *
692 frame_save_as_regcache (struct frame_info *this_frame)
693 {
694 struct address_space *aspace = get_frame_address_space (this_frame);
695 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
696 aspace);
697 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
698
699 regcache_save (regcache, do_frame_register_read, this_frame);
700 discard_cleanups (cleanups);
701 return regcache;
702 }
703
704 void
705 frame_pop (struct frame_info *this_frame)
706 {
707 struct frame_info *prev_frame;
708 struct regcache *scratch;
709 struct cleanup *cleanups;
710
711 if (get_frame_type (this_frame) == DUMMY_FRAME)
712 {
713 /* Popping a dummy frame involves restoring more than just registers.
714 dummy_frame_pop does all the work. */
715 dummy_frame_pop (get_frame_id (this_frame));
716 return;
717 }
718
719 /* Ensure that we have a frame to pop to. */
720 prev_frame = get_prev_frame_1 (this_frame);
721
722 if (!prev_frame)
723 error (_("Cannot pop the initial frame."));
724
725 /* Make a copy of all the register values unwound from this frame.
726 Save them in a scratch buffer so that there isn't a race between
727 trying to extract the old values from the current regcache while
728 at the same time writing new values into that same cache. */
729 scratch = frame_save_as_regcache (prev_frame);
730 cleanups = make_cleanup_regcache_xfree (scratch);
731
732 /* FIXME: cagney/2003-03-16: It should be possible to tell the
733 target's register cache that it is about to be hit with a burst
734 register transfer and that the sequence of register writes should
735 be batched. The pair target_prepare_to_store() and
736 target_store_registers() kind of suggest this functionality.
737 Unfortunately, they don't implement it. Their lack of a formal
738 definition can lead to targets writing back bogus values
739 (arguably a bug in the target code mind). */
740 /* Now copy those saved registers into the current regcache.
741 Here, regcache_cpy() calls regcache_restore(). */
742 regcache_cpy (get_current_regcache (), scratch);
743 do_cleanups (cleanups);
744
745 /* We've made right mess of GDB's local state, just discard
746 everything. */
747 reinit_frame_cache ();
748 }
749
750 void
751 frame_register_unwind (struct frame_info *frame, int regnum,
752 int *optimizedp, enum lval_type *lvalp,
753 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
754 {
755 struct value *value;
756
757 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
758 that the value proper does not need to be fetched. */
759 gdb_assert (optimizedp != NULL);
760 gdb_assert (lvalp != NULL);
761 gdb_assert (addrp != NULL);
762 gdb_assert (realnump != NULL);
763 /* gdb_assert (bufferp != NULL); */
764
765 value = frame_unwind_register_value (frame, regnum);
766
767 gdb_assert (value != NULL);
768
769 *optimizedp = value_optimized_out (value);
770 *lvalp = VALUE_LVAL (value);
771 *addrp = value_address (value);
772 *realnump = VALUE_REGNUM (value);
773
774 if (bufferp && !*optimizedp)
775 memcpy (bufferp, value_contents_all (value),
776 TYPE_LENGTH (value_type (value)));
777
778 /* Dispose of the new value. This prevents watchpoints from
779 trying to watch the saved frame pointer. */
780 release_value (value);
781 value_free (value);
782 }
783
784 void
785 frame_register (struct frame_info *frame, int regnum,
786 int *optimizedp, enum lval_type *lvalp,
787 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
788 {
789 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
790 that the value proper does not need to be fetched. */
791 gdb_assert (optimizedp != NULL);
792 gdb_assert (lvalp != NULL);
793 gdb_assert (addrp != NULL);
794 gdb_assert (realnump != NULL);
795 /* gdb_assert (bufferp != NULL); */
796
797 /* Obtain the register value by unwinding the register from the next
798 (more inner frame). */
799 gdb_assert (frame != NULL && frame->next != NULL);
800 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
801 realnump, bufferp);
802 }
803
804 void
805 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
806 {
807 int optimized;
808 CORE_ADDR addr;
809 int realnum;
810 enum lval_type lval;
811
812 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
813 &realnum, buf);
814 }
815
816 void
817 get_frame_register (struct frame_info *frame,
818 int regnum, gdb_byte *buf)
819 {
820 frame_unwind_register (frame->next, regnum, buf);
821 }
822
823 struct value *
824 frame_unwind_register_value (struct frame_info *frame, int regnum)
825 {
826 struct gdbarch *gdbarch;
827 struct value *value;
828
829 gdb_assert (frame != NULL);
830 gdbarch = frame_unwind_arch (frame);
831
832 if (frame_debug)
833 {
834 fprintf_unfiltered (gdb_stdlog, "\
835 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
836 frame->level, regnum,
837 user_reg_map_regnum_to_name (gdbarch, regnum));
838 }
839
840 /* Find the unwinder. */
841 if (frame->unwind == NULL)
842 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
843
844 /* Ask this frame to unwind its register. */
845 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
846
847 if (frame_debug)
848 {
849 fprintf_unfiltered (gdb_stdlog, "->");
850 if (value_optimized_out (value))
851 fprintf_unfiltered (gdb_stdlog, " optimized out");
852 else
853 {
854 if (VALUE_LVAL (value) == lval_register)
855 fprintf_unfiltered (gdb_stdlog, " register=%d",
856 VALUE_REGNUM (value));
857 else if (VALUE_LVAL (value) == lval_memory)
858 fprintf_unfiltered (gdb_stdlog, " address=%s",
859 paddress (gdbarch,
860 value_address (value)));
861 else
862 fprintf_unfiltered (gdb_stdlog, " computed");
863
864 if (value_lazy (value))
865 fprintf_unfiltered (gdb_stdlog, " lazy");
866 else
867 {
868 int i;
869 const gdb_byte *buf = value_contents (value);
870
871 fprintf_unfiltered (gdb_stdlog, " bytes=");
872 fprintf_unfiltered (gdb_stdlog, "[");
873 for (i = 0; i < register_size (gdbarch, regnum); i++)
874 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
875 fprintf_unfiltered (gdb_stdlog, "]");
876 }
877 }
878
879 fprintf_unfiltered (gdb_stdlog, " }\n");
880 }
881
882 return value;
883 }
884
885 struct value *
886 get_frame_register_value (struct frame_info *frame, int regnum)
887 {
888 return frame_unwind_register_value (frame->next, regnum);
889 }
890
891 LONGEST
892 frame_unwind_register_signed (struct frame_info *frame, int regnum)
893 {
894 struct gdbarch *gdbarch = frame_unwind_arch (frame);
895 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
896 int size = register_size (gdbarch, regnum);
897 gdb_byte buf[MAX_REGISTER_SIZE];
898
899 frame_unwind_register (frame, regnum, buf);
900 return extract_signed_integer (buf, size, byte_order);
901 }
902
903 LONGEST
904 get_frame_register_signed (struct frame_info *frame, int regnum)
905 {
906 return frame_unwind_register_signed (frame->next, regnum);
907 }
908
909 ULONGEST
910 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
911 {
912 struct gdbarch *gdbarch = frame_unwind_arch (frame);
913 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
914 int size = register_size (gdbarch, regnum);
915 gdb_byte buf[MAX_REGISTER_SIZE];
916
917 frame_unwind_register (frame, regnum, buf);
918 return extract_unsigned_integer (buf, size, byte_order);
919 }
920
921 ULONGEST
922 get_frame_register_unsigned (struct frame_info *frame, int regnum)
923 {
924 return frame_unwind_register_unsigned (frame->next, regnum);
925 }
926
927 void
928 put_frame_register (struct frame_info *frame, int regnum,
929 const gdb_byte *buf)
930 {
931 struct gdbarch *gdbarch = get_frame_arch (frame);
932 int realnum;
933 int optim;
934 enum lval_type lval;
935 CORE_ADDR addr;
936
937 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
938 if (optim)
939 error (_("Attempt to assign to a value that was optimized out."));
940 switch (lval)
941 {
942 case lval_memory:
943 {
944 /* FIXME: write_memory doesn't yet take constant buffers.
945 Arrrg! */
946 gdb_byte tmp[MAX_REGISTER_SIZE];
947
948 memcpy (tmp, buf, register_size (gdbarch, regnum));
949 write_memory (addr, tmp, register_size (gdbarch, regnum));
950 break;
951 }
952 case lval_register:
953 regcache_cooked_write (get_current_regcache (), realnum, buf);
954 break;
955 default:
956 error (_("Attempt to assign to an unmodifiable value."));
957 }
958 }
959
960 /* frame_register_read ()
961
962 Find and return the value of REGNUM for the specified stack frame.
963 The number of bytes copied is REGISTER_SIZE (REGNUM).
964
965 Returns 0 if the register value could not be found. */
966
967 int
968 frame_register_read (struct frame_info *frame, int regnum,
969 gdb_byte *myaddr)
970 {
971 int optimized;
972 enum lval_type lval;
973 CORE_ADDR addr;
974 int realnum;
975
976 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
977
978 return !optimized;
979 }
980
981 int
982 get_frame_register_bytes (struct frame_info *frame, int regnum,
983 CORE_ADDR offset, int len, gdb_byte *myaddr)
984 {
985 struct gdbarch *gdbarch = get_frame_arch (frame);
986 int i;
987 int maxsize;
988 int numregs;
989
990 /* Skip registers wholly inside of OFFSET. */
991 while (offset >= register_size (gdbarch, regnum))
992 {
993 offset -= register_size (gdbarch, regnum);
994 regnum++;
995 }
996
997 /* Ensure that we will not read beyond the end of the register file.
998 This can only ever happen if the debug information is bad. */
999 maxsize = -offset;
1000 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1001 for (i = regnum; i < numregs; i++)
1002 {
1003 int thissize = register_size (gdbarch, i);
1004
1005 if (thissize == 0)
1006 break; /* This register is not available on this architecture. */
1007 maxsize += thissize;
1008 }
1009 if (len > maxsize)
1010 {
1011 warning (_("Bad debug information detected: "
1012 "Attempt to read %d bytes from registers."), len);
1013 return 0;
1014 }
1015
1016 /* Copy the data. */
1017 while (len > 0)
1018 {
1019 int curr_len = register_size (gdbarch, regnum) - offset;
1020
1021 if (curr_len > len)
1022 curr_len = len;
1023
1024 if (curr_len == register_size (gdbarch, regnum))
1025 {
1026 if (!frame_register_read (frame, regnum, myaddr))
1027 return 0;
1028 }
1029 else
1030 {
1031 gdb_byte buf[MAX_REGISTER_SIZE];
1032
1033 if (!frame_register_read (frame, regnum, buf))
1034 return 0;
1035 memcpy (myaddr, buf + offset, curr_len);
1036 }
1037
1038 myaddr += curr_len;
1039 len -= curr_len;
1040 offset = 0;
1041 regnum++;
1042 }
1043
1044 return 1;
1045 }
1046
1047 void
1048 put_frame_register_bytes (struct frame_info *frame, int regnum,
1049 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1050 {
1051 struct gdbarch *gdbarch = get_frame_arch (frame);
1052
1053 /* Skip registers wholly inside of OFFSET. */
1054 while (offset >= register_size (gdbarch, regnum))
1055 {
1056 offset -= register_size (gdbarch, regnum);
1057 regnum++;
1058 }
1059
1060 /* Copy the data. */
1061 while (len > 0)
1062 {
1063 int curr_len = register_size (gdbarch, regnum) - offset;
1064
1065 if (curr_len > len)
1066 curr_len = len;
1067
1068 if (curr_len == register_size (gdbarch, regnum))
1069 {
1070 put_frame_register (frame, regnum, myaddr);
1071 }
1072 else
1073 {
1074 gdb_byte buf[MAX_REGISTER_SIZE];
1075
1076 frame_register_read (frame, regnum, buf);
1077 memcpy (buf + offset, myaddr, curr_len);
1078 put_frame_register (frame, regnum, buf);
1079 }
1080
1081 myaddr += curr_len;
1082 len -= curr_len;
1083 offset = 0;
1084 regnum++;
1085 }
1086 }
1087
1088 /* Create a sentinel frame. */
1089
1090 static struct frame_info *
1091 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1092 {
1093 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1094
1095 frame->level = -1;
1096 frame->pspace = pspace;
1097 frame->aspace = get_regcache_aspace (regcache);
1098 /* Explicitly initialize the sentinel frame's cache. Provide it
1099 with the underlying regcache. In the future additional
1100 information, such as the frame's thread will be added. */
1101 frame->prologue_cache = sentinel_frame_cache (regcache);
1102 /* For the moment there is only one sentinel frame implementation. */
1103 frame->unwind = &sentinel_frame_unwind;
1104 /* Link this frame back to itself. The frame is self referential
1105 (the unwound PC is the same as the pc), so make it so. */
1106 frame->next = frame;
1107 /* Make the sentinel frame's ID valid, but invalid. That way all
1108 comparisons with it should fail. */
1109 frame->this_id.p = 1;
1110 frame->this_id.value = null_frame_id;
1111 if (frame_debug)
1112 {
1113 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1114 fprint_frame (gdb_stdlog, frame);
1115 fprintf_unfiltered (gdb_stdlog, " }\n");
1116 }
1117 return frame;
1118 }
1119
1120 /* Info about the innermost stack frame (contents of FP register) */
1121
1122 static struct frame_info *current_frame;
1123
1124 /* Cache for frame addresses already read by gdb. Valid only while
1125 inferior is stopped. Control variables for the frame cache should
1126 be local to this module. */
1127
1128 static struct obstack frame_cache_obstack;
1129
1130 void *
1131 frame_obstack_zalloc (unsigned long size)
1132 {
1133 void *data = obstack_alloc (&frame_cache_obstack, size);
1134
1135 memset (data, 0, size);
1136 return data;
1137 }
1138
1139 /* Return the innermost (currently executing) stack frame. This is
1140 split into two functions. The function unwind_to_current_frame()
1141 is wrapped in catch exceptions so that, even when the unwind of the
1142 sentinel frame fails, the function still returns a stack frame. */
1143
1144 static int
1145 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1146 {
1147 struct frame_info *frame = get_prev_frame (args);
1148
1149 /* A sentinel frame can fail to unwind, e.g., because its PC value
1150 lands in somewhere like start. */
1151 if (frame == NULL)
1152 return 1;
1153 current_frame = frame;
1154 return 0;
1155 }
1156
1157 struct frame_info *
1158 get_current_frame (void)
1159 {
1160 /* First check, and report, the lack of registers. Having GDB
1161 report "No stack!" or "No memory" when the target doesn't even
1162 have registers is very confusing. Besides, "printcmd.exp"
1163 explicitly checks that ``print $pc'' with no registers prints "No
1164 registers". */
1165 if (!target_has_registers)
1166 error (_("No registers."));
1167 if (!target_has_stack)
1168 error (_("No stack."));
1169 if (!target_has_memory)
1170 error (_("No memory."));
1171 /* Traceframes are effectively a substitute for the live inferior. */
1172 if (get_traceframe_number () < 0)
1173 {
1174 if (ptid_equal (inferior_ptid, null_ptid))
1175 error (_("No selected thread."));
1176 if (is_exited (inferior_ptid))
1177 error (_("Invalid selected thread."));
1178 if (is_executing (inferior_ptid))
1179 error (_("Target is executing."));
1180 }
1181
1182 if (current_frame == NULL)
1183 {
1184 struct frame_info *sentinel_frame =
1185 create_sentinel_frame (current_program_space, get_current_regcache ());
1186 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
1187 RETURN_MASK_ERROR) != 0)
1188 {
1189 /* Oops! Fake a current frame? Is this useful? It has a PC
1190 of zero, for instance. */
1191 current_frame = sentinel_frame;
1192 }
1193 }
1194 return current_frame;
1195 }
1196
1197 /* The "selected" stack frame is used by default for local and arg
1198 access. May be zero, for no selected frame. */
1199
1200 static struct frame_info *selected_frame;
1201
1202 int
1203 has_stack_frames (void)
1204 {
1205 if (!target_has_registers || !target_has_stack || !target_has_memory)
1206 return 0;
1207
1208 /* No current inferior, no frame. */
1209 if (ptid_equal (inferior_ptid, null_ptid))
1210 return 0;
1211
1212 /* Don't try to read from a dead thread. */
1213 if (is_exited (inferior_ptid))
1214 return 0;
1215
1216 /* ... or from a spinning thread. */
1217 if (is_executing (inferior_ptid))
1218 return 0;
1219
1220 return 1;
1221 }
1222
1223 /* Return the selected frame. Always non-NULL (unless there isn't an
1224 inferior sufficient for creating a frame) in which case an error is
1225 thrown. */
1226
1227 struct frame_info *
1228 get_selected_frame (const char *message)
1229 {
1230 if (selected_frame == NULL)
1231 {
1232 if (message != NULL && !has_stack_frames ())
1233 error (("%s"), message);
1234 /* Hey! Don't trust this. It should really be re-finding the
1235 last selected frame of the currently selected thread. This,
1236 though, is better than nothing. */
1237 select_frame (get_current_frame ());
1238 }
1239 /* There is always a frame. */
1240 gdb_assert (selected_frame != NULL);
1241 return selected_frame;
1242 }
1243
1244 /* This is a variant of get_selected_frame() which can be called when
1245 the inferior does not have a frame; in that case it will return
1246 NULL instead of calling error(). */
1247
1248 struct frame_info *
1249 deprecated_safe_get_selected_frame (void)
1250 {
1251 if (!has_stack_frames ())
1252 return NULL;
1253 return get_selected_frame (NULL);
1254 }
1255
1256 /* Select frame FI (or NULL - to invalidate the current frame). */
1257
1258 void
1259 select_frame (struct frame_info *fi)
1260 {
1261 struct symtab *s;
1262
1263 selected_frame = fi;
1264 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1265 frame is being invalidated. */
1266 if (deprecated_selected_frame_level_changed_hook)
1267 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1268
1269 /* FIXME: kseitz/2002-08-28: It would be nice to call
1270 selected_frame_level_changed_event() right here, but due to limitations
1271 in the current interfaces, we would end up flooding UIs with events
1272 because select_frame() is used extensively internally.
1273
1274 Once we have frame-parameterized frame (and frame-related) commands,
1275 the event notification can be moved here, since this function will only
1276 be called when the user's selected frame is being changed. */
1277
1278 /* Ensure that symbols for this frame are read in. Also, determine the
1279 source language of this frame, and switch to it if desired. */
1280 if (fi)
1281 {
1282 /* We retrieve the frame's symtab by using the frame PC. However
1283 we cannot use the frame PC as-is, because it usually points to
1284 the instruction following the "call", which is sometimes the
1285 first instruction of another function. So we rely on
1286 get_frame_address_in_block() which provides us with a PC which
1287 is guaranteed to be inside the frame's code block. */
1288 s = find_pc_symtab (get_frame_address_in_block (fi));
1289 if (s
1290 && s->language != current_language->la_language
1291 && s->language != language_unknown
1292 && language_mode == language_mode_auto)
1293 {
1294 set_language (s->language);
1295 }
1296 }
1297 }
1298
1299 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1300 Always returns a non-NULL value. */
1301
1302 struct frame_info *
1303 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1304 {
1305 struct frame_info *fi;
1306
1307 if (frame_debug)
1308 {
1309 fprintf_unfiltered (gdb_stdlog,
1310 "{ create_new_frame (addr=%s, pc=%s) ",
1311 hex_string (addr), hex_string (pc));
1312 }
1313
1314 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1315
1316 fi->next = create_sentinel_frame (current_program_space, get_current_regcache ());
1317
1318 /* Set/update this frame's cached PC value, found in the next frame.
1319 Do this before looking for this frame's unwinder. A sniffer is
1320 very likely to read this, and the corresponding unwinder is
1321 entitled to rely that the PC doesn't magically change. */
1322 fi->next->prev_pc.value = pc;
1323 fi->next->prev_pc.p = 1;
1324
1325 /* We currently assume that frame chain's can't cross spaces. */
1326 fi->pspace = fi->next->pspace;
1327 fi->aspace = fi->next->aspace;
1328
1329 /* Select/initialize both the unwind function and the frame's type
1330 based on the PC. */
1331 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1332
1333 fi->this_id.p = 1;
1334 fi->this_id.value = frame_id_build (addr, pc);
1335
1336 if (frame_debug)
1337 {
1338 fprintf_unfiltered (gdb_stdlog, "-> ");
1339 fprint_frame (gdb_stdlog, fi);
1340 fprintf_unfiltered (gdb_stdlog, " }\n");
1341 }
1342
1343 return fi;
1344 }
1345
1346 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1347 innermost frame). Be careful to not fall off the bottom of the
1348 frame chain and onto the sentinel frame. */
1349
1350 struct frame_info *
1351 get_next_frame (struct frame_info *this_frame)
1352 {
1353 if (this_frame->level > 0)
1354 return this_frame->next;
1355 else
1356 return NULL;
1357 }
1358
1359 /* Observer for the target_changed event. */
1360
1361 static void
1362 frame_observer_target_changed (struct target_ops *target)
1363 {
1364 reinit_frame_cache ();
1365 }
1366
1367 /* Flush the entire frame cache. */
1368
1369 void
1370 reinit_frame_cache (void)
1371 {
1372 struct frame_info *fi;
1373
1374 /* Tear down all frame caches. */
1375 for (fi = current_frame; fi != NULL; fi = fi->prev)
1376 {
1377 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1378 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1379 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1380 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1381 }
1382
1383 /* Since we can't really be sure what the first object allocated was */
1384 obstack_free (&frame_cache_obstack, 0);
1385 obstack_init (&frame_cache_obstack);
1386
1387 if (current_frame != NULL)
1388 annotate_frames_invalid ();
1389
1390 current_frame = NULL; /* Invalidate cache */
1391 select_frame (NULL);
1392 frame_stash_invalidate ();
1393 if (frame_debug)
1394 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1395 }
1396
1397 /* Find where a register is saved (in memory or another register).
1398 The result of frame_register_unwind is just where it is saved
1399 relative to this particular frame. */
1400
1401 static void
1402 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1403 int *optimizedp, enum lval_type *lvalp,
1404 CORE_ADDR *addrp, int *realnump)
1405 {
1406 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1407
1408 while (this_frame != NULL)
1409 {
1410 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1411 addrp, realnump, NULL);
1412
1413 if (*optimizedp)
1414 break;
1415
1416 if (*lvalp != lval_register)
1417 break;
1418
1419 regnum = *realnump;
1420 this_frame = get_next_frame (this_frame);
1421 }
1422 }
1423
1424 /* Return a "struct frame_info" corresponding to the frame that called
1425 THIS_FRAME. Returns NULL if there is no such frame.
1426
1427 Unlike get_prev_frame, this function always tries to unwind the
1428 frame. */
1429
1430 static struct frame_info *
1431 get_prev_frame_1 (struct frame_info *this_frame)
1432 {
1433 struct frame_id this_id;
1434 struct gdbarch *gdbarch;
1435
1436 gdb_assert (this_frame != NULL);
1437 gdbarch = get_frame_arch (this_frame);
1438
1439 if (frame_debug)
1440 {
1441 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1442 if (this_frame != NULL)
1443 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1444 else
1445 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1446 fprintf_unfiltered (gdb_stdlog, ") ");
1447 }
1448
1449 /* Only try to do the unwind once. */
1450 if (this_frame->prev_p)
1451 {
1452 if (frame_debug)
1453 {
1454 fprintf_unfiltered (gdb_stdlog, "-> ");
1455 fprint_frame (gdb_stdlog, this_frame->prev);
1456 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1457 }
1458 return this_frame->prev;
1459 }
1460
1461 /* If the frame unwinder hasn't been selected yet, we must do so
1462 before setting prev_p; otherwise the check for misbehaved
1463 sniffers will think that this frame's sniffer tried to unwind
1464 further (see frame_cleanup_after_sniffer). */
1465 if (this_frame->unwind == NULL)
1466 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1467
1468 this_frame->prev_p = 1;
1469 this_frame->stop_reason = UNWIND_NO_REASON;
1470
1471 /* If we are unwinding from an inline frame, all of the below tests
1472 were already performed when we unwound from the next non-inline
1473 frame. We must skip them, since we can not get THIS_FRAME's ID
1474 until we have unwound all the way down to the previous non-inline
1475 frame. */
1476 if (get_frame_type (this_frame) == INLINE_FRAME)
1477 return get_prev_frame_raw (this_frame);
1478
1479 /* Check that this frame's ID was valid. If it wasn't, don't try to
1480 unwind to the prev frame. Be careful to not apply this test to
1481 the sentinel frame. */
1482 this_id = get_frame_id (this_frame);
1483 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1484 {
1485 if (frame_debug)
1486 {
1487 fprintf_unfiltered (gdb_stdlog, "-> ");
1488 fprint_frame (gdb_stdlog, NULL);
1489 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1490 }
1491 this_frame->stop_reason = UNWIND_NULL_ID;
1492 return NULL;
1493 }
1494
1495 /* Check that this frame's ID isn't inner to (younger, below, next)
1496 the next frame. This happens when a frame unwind goes backwards.
1497 This check is valid only if this frame and the next frame are NORMAL.
1498 See the comment at frame_id_inner for details. */
1499 if (get_frame_type (this_frame) == NORMAL_FRAME
1500 && this_frame->next->unwind->type == NORMAL_FRAME
1501 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1502 get_frame_id (this_frame->next)))
1503 {
1504 if (frame_debug)
1505 {
1506 fprintf_unfiltered (gdb_stdlog, "-> ");
1507 fprint_frame (gdb_stdlog, NULL);
1508 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1509 }
1510 this_frame->stop_reason = UNWIND_INNER_ID;
1511 return NULL;
1512 }
1513
1514 /* Check that this and the next frame are not identical. If they
1515 are, there is most likely a stack cycle. As with the inner-than
1516 test above, avoid comparing the inner-most and sentinel frames. */
1517 if (this_frame->level > 0
1518 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1519 {
1520 if (frame_debug)
1521 {
1522 fprintf_unfiltered (gdb_stdlog, "-> ");
1523 fprint_frame (gdb_stdlog, NULL);
1524 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1525 }
1526 this_frame->stop_reason = UNWIND_SAME_ID;
1527 return NULL;
1528 }
1529
1530 /* Check that this and the next frame do not unwind the PC register
1531 to the same memory location. If they do, then even though they
1532 have different frame IDs, the new frame will be bogus; two
1533 functions can't share a register save slot for the PC. This can
1534 happen when the prologue analyzer finds a stack adjustment, but
1535 no PC save.
1536
1537 This check does assume that the "PC register" is roughly a
1538 traditional PC, even if the gdbarch_unwind_pc method adjusts
1539 it (we do not rely on the value, only on the unwound PC being
1540 dependent on this value). A potential improvement would be
1541 to have the frame prev_pc method and the gdbarch unwind_pc
1542 method set the same lval and location information as
1543 frame_register_unwind. */
1544 if (this_frame->level > 0
1545 && gdbarch_pc_regnum (gdbarch) >= 0
1546 && get_frame_type (this_frame) == NORMAL_FRAME
1547 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1548 || get_frame_type (this_frame->next) == INLINE_FRAME))
1549 {
1550 int optimized, realnum, nrealnum;
1551 enum lval_type lval, nlval;
1552 CORE_ADDR addr, naddr;
1553
1554 frame_register_unwind_location (this_frame,
1555 gdbarch_pc_regnum (gdbarch),
1556 &optimized, &lval, &addr, &realnum);
1557 frame_register_unwind_location (get_next_frame (this_frame),
1558 gdbarch_pc_regnum (gdbarch),
1559 &optimized, &nlval, &naddr, &nrealnum);
1560
1561 if ((lval == lval_memory && lval == nlval && addr == naddr)
1562 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1563 {
1564 if (frame_debug)
1565 {
1566 fprintf_unfiltered (gdb_stdlog, "-> ");
1567 fprint_frame (gdb_stdlog, NULL);
1568 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1569 }
1570
1571 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1572 this_frame->prev = NULL;
1573 return NULL;
1574 }
1575 }
1576
1577 return get_prev_frame_raw (this_frame);
1578 }
1579
1580 /* Construct a new "struct frame_info" and link it previous to
1581 this_frame. */
1582
1583 static struct frame_info *
1584 get_prev_frame_raw (struct frame_info *this_frame)
1585 {
1586 struct frame_info *prev_frame;
1587
1588 /* Allocate the new frame but do not wire it in to the frame chain.
1589 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1590 frame->next to pull some fancy tricks (of course such code is, by
1591 definition, recursive). Try to prevent it.
1592
1593 There is no reason to worry about memory leaks, should the
1594 remainder of the function fail. The allocated memory will be
1595 quickly reclaimed when the frame cache is flushed, and the `we've
1596 been here before' check above will stop repeated memory
1597 allocation calls. */
1598 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1599 prev_frame->level = this_frame->level + 1;
1600
1601 /* For now, assume we don't have frame chains crossing address
1602 spaces. */
1603 prev_frame->pspace = this_frame->pspace;
1604 prev_frame->aspace = this_frame->aspace;
1605
1606 /* Don't yet compute ->unwind (and hence ->type). It is computed
1607 on-demand in get_frame_type, frame_register_unwind, and
1608 get_frame_id. */
1609
1610 /* Don't yet compute the frame's ID. It is computed on-demand by
1611 get_frame_id(). */
1612
1613 /* The unwound frame ID is validate at the start of this function,
1614 as part of the logic to decide if that frame should be further
1615 unwound, and not here while the prev frame is being created.
1616 Doing this makes it possible for the user to examine a frame that
1617 has an invalid frame ID.
1618
1619 Some very old VAX code noted: [...] For the sake of argument,
1620 suppose that the stack is somewhat trashed (which is one reason
1621 that "info frame" exists). So, return 0 (indicating we don't
1622 know the address of the arglist) if we don't know what frame this
1623 frame calls. */
1624
1625 /* Link it in. */
1626 this_frame->prev = prev_frame;
1627 prev_frame->next = this_frame;
1628
1629 if (frame_debug)
1630 {
1631 fprintf_unfiltered (gdb_stdlog, "-> ");
1632 fprint_frame (gdb_stdlog, prev_frame);
1633 fprintf_unfiltered (gdb_stdlog, " }\n");
1634 }
1635
1636 return prev_frame;
1637 }
1638
1639 /* Debug routine to print a NULL frame being returned. */
1640
1641 static void
1642 frame_debug_got_null_frame (struct frame_info *this_frame,
1643 const char *reason)
1644 {
1645 if (frame_debug)
1646 {
1647 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1648 if (this_frame != NULL)
1649 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1650 else
1651 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1652 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1653 }
1654 }
1655
1656 /* Is this (non-sentinel) frame in the "main"() function? */
1657
1658 static int
1659 inside_main_func (struct frame_info *this_frame)
1660 {
1661 struct minimal_symbol *msymbol;
1662 CORE_ADDR maddr;
1663
1664 if (symfile_objfile == 0)
1665 return 0;
1666 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1667 if (msymbol == NULL)
1668 return 0;
1669 /* Make certain that the code, and not descriptor, address is
1670 returned. */
1671 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1672 SYMBOL_VALUE_ADDRESS (msymbol),
1673 &current_target);
1674 return maddr == get_frame_func (this_frame);
1675 }
1676
1677 /* Test whether THIS_FRAME is inside the process entry point function. */
1678
1679 static int
1680 inside_entry_func (struct frame_info *this_frame)
1681 {
1682 CORE_ADDR entry_point;
1683
1684 if (!entry_point_address_query (&entry_point))
1685 return 0;
1686
1687 return get_frame_func (this_frame) == entry_point;
1688 }
1689
1690 /* Return a structure containing various interesting information about
1691 the frame that called THIS_FRAME. Returns NULL if there is entier
1692 no such frame or the frame fails any of a set of target-independent
1693 condition that should terminate the frame chain (e.g., as unwinding
1694 past main()).
1695
1696 This function should not contain target-dependent tests, such as
1697 checking whether the program-counter is zero. */
1698
1699 struct frame_info *
1700 get_prev_frame (struct frame_info *this_frame)
1701 {
1702 /* There is always a frame. If this assertion fails, suspect that
1703 something should be calling get_selected_frame() or
1704 get_current_frame(). */
1705 gdb_assert (this_frame != NULL);
1706
1707 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1708 sense to stop unwinding at a dummy frame. One place where a dummy
1709 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1710 pcsqh register (space register for the instruction at the head of the
1711 instruction queue) cannot be written directly; the only way to set it
1712 is to branch to code that is in the target space. In order to implement
1713 frame dummies on HPUX, the called function is made to jump back to where
1714 the inferior was when the user function was called. If gdb was inside
1715 the main function when we created the dummy frame, the dummy frame will
1716 point inside the main function. */
1717 if (this_frame->level >= 0
1718 && get_frame_type (this_frame) == NORMAL_FRAME
1719 && !backtrace_past_main
1720 && inside_main_func (this_frame))
1721 /* Don't unwind past main(). Note, this is done _before_ the
1722 frame has been marked as previously unwound. That way if the
1723 user later decides to enable unwinds past main(), that will
1724 automatically happen. */
1725 {
1726 frame_debug_got_null_frame (this_frame, "inside main func");
1727 return NULL;
1728 }
1729
1730 /* If the user's backtrace limit has been exceeded, stop. We must
1731 add two to the current level; one of those accounts for backtrace_limit
1732 being 1-based and the level being 0-based, and the other accounts for
1733 the level of the new frame instead of the level of the current
1734 frame. */
1735 if (this_frame->level + 2 > backtrace_limit)
1736 {
1737 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1738 return NULL;
1739 }
1740
1741 /* If we're already inside the entry function for the main objfile,
1742 then it isn't valid. Don't apply this test to a dummy frame -
1743 dummy frame PCs typically land in the entry func. Don't apply
1744 this test to the sentinel frame. Sentinel frames should always
1745 be allowed to unwind. */
1746 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1747 wasn't checking for "main" in the minimal symbols. With that
1748 fixed asm-source tests now stop in "main" instead of halting the
1749 backtrace in weird and wonderful ways somewhere inside the entry
1750 file. Suspect that tests for inside the entry file/func were
1751 added to work around that (now fixed) case. */
1752 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1753 suggested having the inside_entry_func test use the
1754 inside_main_func() msymbol trick (along with entry_point_address()
1755 I guess) to determine the address range of the start function.
1756 That should provide a far better stopper than the current
1757 heuristics. */
1758 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1759 applied tail-call optimizations to main so that a function called
1760 from main returns directly to the caller of main. Since we don't
1761 stop at main, we should at least stop at the entry point of the
1762 application. */
1763 if (this_frame->level >= 0
1764 && get_frame_type (this_frame) == NORMAL_FRAME
1765 && !backtrace_past_entry
1766 && inside_entry_func (this_frame))
1767 {
1768 frame_debug_got_null_frame (this_frame, "inside entry func");
1769 return NULL;
1770 }
1771
1772 /* Assume that the only way to get a zero PC is through something
1773 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1774 will never unwind a zero PC. */
1775 if (this_frame->level > 0
1776 && (get_frame_type (this_frame) == NORMAL_FRAME
1777 || get_frame_type (this_frame) == INLINE_FRAME)
1778 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1779 && get_frame_pc (this_frame) == 0)
1780 {
1781 frame_debug_got_null_frame (this_frame, "zero PC");
1782 return NULL;
1783 }
1784
1785 return get_prev_frame_1 (this_frame);
1786 }
1787
1788 CORE_ADDR
1789 get_frame_pc (struct frame_info *frame)
1790 {
1791 gdb_assert (frame->next != NULL);
1792 return frame_unwind_pc (frame->next);
1793 }
1794
1795 /* Return an address that falls within THIS_FRAME's code block. */
1796
1797 CORE_ADDR
1798 get_frame_address_in_block (struct frame_info *this_frame)
1799 {
1800 /* A draft address. */
1801 CORE_ADDR pc = get_frame_pc (this_frame);
1802
1803 struct frame_info *next_frame = this_frame->next;
1804
1805 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1806 Normally the resume address is inside the body of the function
1807 associated with THIS_FRAME, but there is a special case: when
1808 calling a function which the compiler knows will never return
1809 (for instance abort), the call may be the very last instruction
1810 in the calling function. The resume address will point after the
1811 call and may be at the beginning of a different function
1812 entirely.
1813
1814 If THIS_FRAME is a signal frame or dummy frame, then we should
1815 not adjust the unwound PC. For a dummy frame, GDB pushed the
1816 resume address manually onto the stack. For a signal frame, the
1817 OS may have pushed the resume address manually and invoked the
1818 handler (e.g. GNU/Linux), or invoked the trampoline which called
1819 the signal handler - but in either case the signal handler is
1820 expected to return to the trampoline. So in both of these
1821 cases we know that the resume address is executable and
1822 related. So we only need to adjust the PC if THIS_FRAME
1823 is a normal function.
1824
1825 If the program has been interrupted while THIS_FRAME is current,
1826 then clearly the resume address is inside the associated
1827 function. There are three kinds of interruption: debugger stop
1828 (next frame will be SENTINEL_FRAME), operating system
1829 signal or exception (next frame will be SIGTRAMP_FRAME),
1830 or debugger-induced function call (next frame will be
1831 DUMMY_FRAME). So we only need to adjust the PC if
1832 NEXT_FRAME is a normal function.
1833
1834 We check the type of NEXT_FRAME first, since it is already
1835 known; frame type is determined by the unwinder, and since
1836 we have THIS_FRAME we've already selected an unwinder for
1837 NEXT_FRAME.
1838
1839 If the next frame is inlined, we need to keep going until we find
1840 the real function - for instance, if a signal handler is invoked
1841 while in an inlined function, then the code address of the
1842 "calling" normal function should not be adjusted either. */
1843
1844 while (get_frame_type (next_frame) == INLINE_FRAME)
1845 next_frame = next_frame->next;
1846
1847 if (get_frame_type (next_frame) == NORMAL_FRAME
1848 && (get_frame_type (this_frame) == NORMAL_FRAME
1849 || get_frame_type (this_frame) == INLINE_FRAME))
1850 return pc - 1;
1851
1852 return pc;
1853 }
1854
1855 void
1856 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1857 {
1858 struct frame_info *next_frame;
1859 int notcurrent;
1860
1861 /* If the next frame represents an inlined function call, this frame's
1862 sal is the "call site" of that inlined function, which can not
1863 be inferred from get_frame_pc. */
1864 next_frame = get_next_frame (frame);
1865 if (frame_inlined_callees (frame) > 0)
1866 {
1867 struct symbol *sym;
1868
1869 if (next_frame)
1870 sym = get_frame_function (next_frame);
1871 else
1872 sym = inline_skipped_symbol (inferior_ptid);
1873
1874 init_sal (sal);
1875 if (SYMBOL_LINE (sym) != 0)
1876 {
1877 sal->symtab = SYMBOL_SYMTAB (sym);
1878 sal->line = SYMBOL_LINE (sym);
1879 }
1880 else
1881 /* If the symbol does not have a location, we don't know where
1882 the call site is. Do not pretend to. This is jarring, but
1883 we can't do much better. */
1884 sal->pc = get_frame_pc (frame);
1885
1886 return;
1887 }
1888
1889 /* If FRAME is not the innermost frame, that normally means that
1890 FRAME->pc points at the return instruction (which is *after* the
1891 call instruction), and we want to get the line containing the
1892 call (because the call is where the user thinks the program is).
1893 However, if the next frame is either a SIGTRAMP_FRAME or a
1894 DUMMY_FRAME, then the next frame will contain a saved interrupt
1895 PC and such a PC indicates the current (rather than next)
1896 instruction/line, consequently, for such cases, want to get the
1897 line containing fi->pc. */
1898 notcurrent = (get_frame_pc (frame) != get_frame_address_in_block (frame));
1899 (*sal) = find_pc_line (get_frame_pc (frame), notcurrent);
1900 }
1901
1902 /* Per "frame.h", return the ``address'' of the frame. Code should
1903 really be using get_frame_id(). */
1904 CORE_ADDR
1905 get_frame_base (struct frame_info *fi)
1906 {
1907 return get_frame_id (fi).stack_addr;
1908 }
1909
1910 /* High-level offsets into the frame. Used by the debug info. */
1911
1912 CORE_ADDR
1913 get_frame_base_address (struct frame_info *fi)
1914 {
1915 if (get_frame_type (fi) != NORMAL_FRAME)
1916 return 0;
1917 if (fi->base == NULL)
1918 fi->base = frame_base_find_by_frame (fi);
1919 /* Sneaky: If the low-level unwind and high-level base code share a
1920 common unwinder, let them share the prologue cache. */
1921 if (fi->base->unwind == fi->unwind)
1922 return fi->base->this_base (fi, &fi->prologue_cache);
1923 return fi->base->this_base (fi, &fi->base_cache);
1924 }
1925
1926 CORE_ADDR
1927 get_frame_locals_address (struct frame_info *fi)
1928 {
1929 if (get_frame_type (fi) != NORMAL_FRAME)
1930 return 0;
1931 /* If there isn't a frame address method, find it. */
1932 if (fi->base == NULL)
1933 fi->base = frame_base_find_by_frame (fi);
1934 /* Sneaky: If the low-level unwind and high-level base code share a
1935 common unwinder, let them share the prologue cache. */
1936 if (fi->base->unwind == fi->unwind)
1937 return fi->base->this_locals (fi, &fi->prologue_cache);
1938 return fi->base->this_locals (fi, &fi->base_cache);
1939 }
1940
1941 CORE_ADDR
1942 get_frame_args_address (struct frame_info *fi)
1943 {
1944 if (get_frame_type (fi) != NORMAL_FRAME)
1945 return 0;
1946 /* If there isn't a frame address method, find it. */
1947 if (fi->base == NULL)
1948 fi->base = frame_base_find_by_frame (fi);
1949 /* Sneaky: If the low-level unwind and high-level base code share a
1950 common unwinder, let them share the prologue cache. */
1951 if (fi->base->unwind == fi->unwind)
1952 return fi->base->this_args (fi, &fi->prologue_cache);
1953 return fi->base->this_args (fi, &fi->base_cache);
1954 }
1955
1956 /* Return true if the frame unwinder for frame FI is UNWINDER; false
1957 otherwise. */
1958
1959 int
1960 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
1961 {
1962 if (fi->unwind == NULL)
1963 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1964 return fi->unwind == unwinder;
1965 }
1966
1967 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1968 or -1 for a NULL frame. */
1969
1970 int
1971 frame_relative_level (struct frame_info *fi)
1972 {
1973 if (fi == NULL)
1974 return -1;
1975 else
1976 return fi->level;
1977 }
1978
1979 enum frame_type
1980 get_frame_type (struct frame_info *frame)
1981 {
1982 if (frame->unwind == NULL)
1983 /* Initialize the frame's unwinder because that's what
1984 provides the frame's type. */
1985 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1986 return frame->unwind->type;
1987 }
1988
1989 struct program_space *
1990 get_frame_program_space (struct frame_info *frame)
1991 {
1992 return frame->pspace;
1993 }
1994
1995 struct program_space *
1996 frame_unwind_program_space (struct frame_info *this_frame)
1997 {
1998 gdb_assert (this_frame);
1999
2000 /* This is really a placeholder to keep the API consistent --- we
2001 assume for now that we don't have frame chains crossing
2002 spaces. */
2003 return this_frame->pspace;
2004 }
2005
2006 struct address_space *
2007 get_frame_address_space (struct frame_info *frame)
2008 {
2009 return frame->aspace;
2010 }
2011
2012 /* Memory access methods. */
2013
2014 void
2015 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2016 gdb_byte *buf, int len)
2017 {
2018 read_memory (addr, buf, len);
2019 }
2020
2021 LONGEST
2022 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2023 int len)
2024 {
2025 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2026 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2027
2028 return read_memory_integer (addr, len, byte_order);
2029 }
2030
2031 ULONGEST
2032 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2033 int len)
2034 {
2035 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2036 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2037
2038 return read_memory_unsigned_integer (addr, len, byte_order);
2039 }
2040
2041 int
2042 safe_frame_unwind_memory (struct frame_info *this_frame,
2043 CORE_ADDR addr, gdb_byte *buf, int len)
2044 {
2045 /* NOTE: target_read_memory returns zero on success! */
2046 return !target_read_memory (addr, buf, len);
2047 }
2048
2049 /* Architecture methods. */
2050
2051 struct gdbarch *
2052 get_frame_arch (struct frame_info *this_frame)
2053 {
2054 return frame_unwind_arch (this_frame->next);
2055 }
2056
2057 struct gdbarch *
2058 frame_unwind_arch (struct frame_info *next_frame)
2059 {
2060 if (!next_frame->prev_arch.p)
2061 {
2062 struct gdbarch *arch;
2063
2064 if (next_frame->unwind == NULL)
2065 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2066
2067 if (next_frame->unwind->prev_arch != NULL)
2068 arch = next_frame->unwind->prev_arch (next_frame,
2069 &next_frame->prologue_cache);
2070 else
2071 arch = get_frame_arch (next_frame);
2072
2073 next_frame->prev_arch.arch = arch;
2074 next_frame->prev_arch.p = 1;
2075 if (frame_debug)
2076 fprintf_unfiltered (gdb_stdlog,
2077 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2078 next_frame->level,
2079 gdbarch_bfd_arch_info (arch)->printable_name);
2080 }
2081
2082 return next_frame->prev_arch.arch;
2083 }
2084
2085 struct gdbarch *
2086 frame_unwind_caller_arch (struct frame_info *next_frame)
2087 {
2088 return frame_unwind_arch (skip_inlined_frames (next_frame));
2089 }
2090
2091 /* Stack pointer methods. */
2092
2093 CORE_ADDR
2094 get_frame_sp (struct frame_info *this_frame)
2095 {
2096 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2097
2098 /* Normality - an architecture that provides a way of obtaining any
2099 frame inner-most address. */
2100 if (gdbarch_unwind_sp_p (gdbarch))
2101 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2102 operate on THIS_FRAME now. */
2103 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2104 /* Now things are really are grim. Hope that the value returned by
2105 the gdbarch_sp_regnum register is meaningful. */
2106 if (gdbarch_sp_regnum (gdbarch) >= 0)
2107 return get_frame_register_unsigned (this_frame,
2108 gdbarch_sp_regnum (gdbarch));
2109 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2110 }
2111
2112 /* Return the reason why we can't unwind past FRAME. */
2113
2114 enum unwind_stop_reason
2115 get_frame_unwind_stop_reason (struct frame_info *frame)
2116 {
2117 /* If we haven't tried to unwind past this point yet, then assume
2118 that unwinding would succeed. */
2119 if (frame->prev_p == 0)
2120 return UNWIND_NO_REASON;
2121
2122 /* Otherwise, we set a reason when we succeeded (or failed) to
2123 unwind. */
2124 return frame->stop_reason;
2125 }
2126
2127 /* Return a string explaining REASON. */
2128
2129 const char *
2130 frame_stop_reason_string (enum unwind_stop_reason reason)
2131 {
2132 switch (reason)
2133 {
2134 case UNWIND_NULL_ID:
2135 return _("unwinder did not report frame ID");
2136
2137 case UNWIND_INNER_ID:
2138 return _("previous frame inner to this frame (corrupt stack?)");
2139
2140 case UNWIND_SAME_ID:
2141 return _("previous frame identical to this frame (corrupt stack?)");
2142
2143 case UNWIND_NO_SAVED_PC:
2144 return _("frame did not save the PC");
2145
2146 case UNWIND_NO_REASON:
2147 case UNWIND_FIRST_ERROR:
2148 default:
2149 internal_error (__FILE__, __LINE__,
2150 "Invalid frame stop reason");
2151 }
2152 }
2153
2154 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2155 FRAME. */
2156
2157 static void
2158 frame_cleanup_after_sniffer (void *arg)
2159 {
2160 struct frame_info *frame = arg;
2161
2162 /* The sniffer should not allocate a prologue cache if it did not
2163 match this frame. */
2164 gdb_assert (frame->prologue_cache == NULL);
2165
2166 /* No sniffer should extend the frame chain; sniff based on what is
2167 already certain. */
2168 gdb_assert (!frame->prev_p);
2169
2170 /* The sniffer should not check the frame's ID; that's circular. */
2171 gdb_assert (!frame->this_id.p);
2172
2173 /* Clear cached fields dependent on the unwinder.
2174
2175 The previous PC is independent of the unwinder, but the previous
2176 function is not (see get_frame_address_in_block). */
2177 frame->prev_func.p = 0;
2178 frame->prev_func.addr = 0;
2179
2180 /* Discard the unwinder last, so that we can easily find it if an assertion
2181 in this function triggers. */
2182 frame->unwind = NULL;
2183 }
2184
2185 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2186 Return a cleanup which should be called if unwinding fails, and
2187 discarded if it succeeds. */
2188
2189 struct cleanup *
2190 frame_prepare_for_sniffer (struct frame_info *frame,
2191 const struct frame_unwind *unwind)
2192 {
2193 gdb_assert (frame->unwind == NULL);
2194 frame->unwind = unwind;
2195 return make_cleanup (frame_cleanup_after_sniffer, frame);
2196 }
2197
2198 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2199
2200 static struct cmd_list_element *set_backtrace_cmdlist;
2201 static struct cmd_list_element *show_backtrace_cmdlist;
2202
2203 static void
2204 set_backtrace_cmd (char *args, int from_tty)
2205 {
2206 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2207 }
2208
2209 static void
2210 show_backtrace_cmd (char *args, int from_tty)
2211 {
2212 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2213 }
2214
2215 void
2216 _initialize_frame (void)
2217 {
2218 obstack_init (&frame_cache_obstack);
2219
2220 observer_attach_target_changed (frame_observer_target_changed);
2221
2222 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2223 Set backtrace specific variables.\n\
2224 Configure backtrace variables such as the backtrace limit"),
2225 &set_backtrace_cmdlist, "set backtrace ",
2226 0/*allow-unknown*/, &setlist);
2227 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2228 Show backtrace specific variables\n\
2229 Show backtrace variables such as the backtrace limit"),
2230 &show_backtrace_cmdlist, "show backtrace ",
2231 0/*allow-unknown*/, &showlist);
2232
2233 add_setshow_boolean_cmd ("past-main", class_obscure,
2234 &backtrace_past_main, _("\
2235 Set whether backtraces should continue past \"main\"."), _("\
2236 Show whether backtraces should continue past \"main\"."), _("\
2237 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2238 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2239 of the stack trace."),
2240 NULL,
2241 show_backtrace_past_main,
2242 &set_backtrace_cmdlist,
2243 &show_backtrace_cmdlist);
2244
2245 add_setshow_boolean_cmd ("past-entry", class_obscure,
2246 &backtrace_past_entry, _("\
2247 Set whether backtraces should continue past the entry point of a program."),
2248 _("\
2249 Show whether backtraces should continue past the entry point of a program."),
2250 _("\
2251 Normally there are no callers beyond the entry point of a program, so GDB\n\
2252 will terminate the backtrace there. Set this variable if you need to see\n\
2253 the rest of the stack trace."),
2254 NULL,
2255 show_backtrace_past_entry,
2256 &set_backtrace_cmdlist,
2257 &show_backtrace_cmdlist);
2258
2259 add_setshow_integer_cmd ("limit", class_obscure,
2260 &backtrace_limit, _("\
2261 Set an upper bound on the number of backtrace levels."), _("\
2262 Show the upper bound on the number of backtrace levels."), _("\
2263 No more than the specified number of frames can be displayed or examined.\n\
2264 Zero is unlimited."),
2265 NULL,
2266 show_backtrace_limit,
2267 &set_backtrace_cmdlist,
2268 &show_backtrace_cmdlist);
2269
2270 /* Debug this files internals. */
2271 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2272 Set frame debugging."), _("\
2273 Show frame debugging."), _("\
2274 When non-zero, frame specific internal debugging is enabled."),
2275 NULL,
2276 show_frame_debug,
2277 &setdebuglist, &showdebuglist);
2278 }