]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/frv-linux-tdep.c
6ed0a74666fa3e5a4bec42d323e5d30fcdc7da71
[thirdparty/binutils-gdb.git] / gdb / frv-linux-tdep.c
1 /* Target-dependent code for GNU/Linux running on the Fujitsu FR-V,
2 for GDB.
3
4 Copyright (C) 2004, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "target.h"
24 #include "frame.h"
25 #include "osabi.h"
26 #include "regcache.h"
27 #include "elf-bfd.h"
28 #include "elf/frv.h"
29 #include "frv-tdep.h"
30 #include "trad-frame.h"
31 #include "frame-unwind.h"
32 #include "regset.h"
33 #include "gdb_string.h"
34
35 /* Define the size (in bytes) of an FR-V instruction. */
36 static const int frv_instr_size = 4;
37
38 enum {
39 NORMAL_SIGTRAMP = 1,
40 RT_SIGTRAMP = 2
41 };
42
43 static int
44 frv_linux_pc_in_sigtramp (CORE_ADDR pc, char *name)
45 {
46 char buf[frv_instr_size];
47 LONGEST instr;
48 int retval = 0;
49
50 if (target_read_memory (pc, buf, sizeof buf) != 0)
51 return 0;
52
53 instr = extract_unsigned_integer (buf, sizeof buf);
54
55 if (instr == 0x8efc0077) /* setlos #__NR_sigreturn, gr7 */
56 retval = NORMAL_SIGTRAMP;
57 else if (instr -= 0x8efc00ad) /* setlos #__NR_rt_sigreturn, gr7 */
58 retval = RT_SIGTRAMP;
59 else
60 return 0;
61
62 if (target_read_memory (pc + frv_instr_size, buf, sizeof buf) != 0)
63 return 0;
64 instr = extract_unsigned_integer (buf, sizeof buf);
65 if (instr != 0xc0700000) /* tira gr0, 0 */
66 return 0;
67
68 /* If we get this far, we'll return a non-zero value, either
69 NORMAL_SIGTRAMP (1) or RT_SIGTRAMP (2). */
70 return retval;
71 }
72
73 /* Given NEXT_FRAME, the "callee" frame of the sigtramp frame that we
74 wish to decode, and REGNO, one of the frv register numbers defined
75 in frv-tdep.h, return the address of the saved register (corresponding
76 to REGNO) in the sigtramp frame. Return -1 if the register is not
77 found in the sigtramp frame. The magic numbers in the code below
78 were computed by examining the following kernel structs:
79
80 From arch/frv/kernel/signal.c:
81
82 struct sigframe
83 {
84 void (*pretcode)(void);
85 int sig;
86 struct sigcontext sc;
87 unsigned long extramask[_NSIG_WORDS-1];
88 uint32_t retcode[2];
89 };
90
91 struct rt_sigframe
92 {
93 void (*pretcode)(void);
94 int sig;
95 struct siginfo *pinfo;
96 void *puc;
97 struct siginfo info;
98 struct ucontext uc;
99 uint32_t retcode[2];
100 };
101
102 From include/asm-frv/ucontext.h:
103
104 struct ucontext {
105 unsigned long uc_flags;
106 struct ucontext *uc_link;
107 stack_t uc_stack;
108 struct sigcontext uc_mcontext;
109 sigset_t uc_sigmask;
110 };
111
112 From include/asm-frv/signal.h:
113
114 typedef struct sigaltstack {
115 void *ss_sp;
116 int ss_flags;
117 size_t ss_size;
118 } stack_t;
119
120 From include/asm-frv/sigcontext.h:
121
122 struct sigcontext {
123 struct user_context sc_context;
124 unsigned long sc_oldmask;
125 } __attribute__((aligned(8)));
126
127 From include/asm-frv/registers.h:
128 struct user_int_regs
129 {
130 unsigned long psr;
131 unsigned long isr;
132 unsigned long ccr;
133 unsigned long cccr;
134 unsigned long lr;
135 unsigned long lcr;
136 unsigned long pc;
137 unsigned long __status;
138 unsigned long syscallno;
139 unsigned long orig_gr8;
140 unsigned long gner[2];
141 unsigned long long iacc[1];
142
143 union {
144 unsigned long tbr;
145 unsigned long gr[64];
146 };
147 };
148
149 struct user_fpmedia_regs
150 {
151 unsigned long fr[64];
152 unsigned long fner[2];
153 unsigned long msr[2];
154 unsigned long acc[8];
155 unsigned char accg[8];
156 unsigned long fsr[1];
157 };
158
159 struct user_context
160 {
161 struct user_int_regs i;
162 struct user_fpmedia_regs f;
163
164 void *extension;
165 } __attribute__((aligned(8))); */
166
167 static LONGEST
168 frv_linux_sigcontext_reg_addr (struct frame_info *next_frame, int regno,
169 CORE_ADDR *sc_addr_cache_ptr)
170 {
171 CORE_ADDR sc_addr;
172
173 if (sc_addr_cache_ptr && *sc_addr_cache_ptr)
174 {
175 sc_addr = *sc_addr_cache_ptr;
176 }
177 else
178 {
179 CORE_ADDR pc, sp;
180 char buf[4];
181 int tramp_type;
182
183 pc = frame_pc_unwind (next_frame);
184 tramp_type = frv_linux_pc_in_sigtramp (pc, 0);
185
186 frame_unwind_register (next_frame, sp_regnum, buf);
187 sp = extract_unsigned_integer (buf, sizeof buf);
188
189 if (tramp_type == NORMAL_SIGTRAMP)
190 {
191 /* For a normal sigtramp frame, the sigcontext struct starts
192 at SP + 8. */
193 sc_addr = sp + 8;
194 }
195 else if (tramp_type == RT_SIGTRAMP)
196 {
197 /* For a realtime sigtramp frame, SP + 12 contains a pointer
198 to a ucontext struct. The ucontext struct contains a
199 sigcontext struct starting 24 bytes in. (The offset of
200 uc_mcontext within struct ucontext is derived as follows:
201 stack_t is a 12-byte struct and struct sigcontext is
202 8-byte aligned. This gives an offset of 8 + 12 + 4 (for
203 padding) = 24.) */
204 if (target_read_memory (sp + 12, buf, sizeof buf) != 0)
205 {
206 warning (_("Can't read realtime sigtramp frame."));
207 return 0;
208 }
209 sc_addr = extract_unsigned_integer (buf, sizeof buf);
210 sc_addr += 24;
211 }
212 else
213 internal_error (__FILE__, __LINE__, _("not a signal trampoline"));
214
215 if (sc_addr_cache_ptr)
216 *sc_addr_cache_ptr = sc_addr;
217 }
218
219 switch (regno)
220 {
221 case psr_regnum :
222 return sc_addr + 0;
223 /* sc_addr + 4 has "isr", the Integer Status Register. */
224 case ccr_regnum :
225 return sc_addr + 8;
226 case cccr_regnum :
227 return sc_addr + 12;
228 case lr_regnum :
229 return sc_addr + 16;
230 case lcr_regnum :
231 return sc_addr + 20;
232 case pc_regnum :
233 return sc_addr + 24;
234 /* sc_addr + 28 is __status, the exception status.
235 sc_addr + 32 is syscallno, the syscall number or -1.
236 sc_addr + 36 is orig_gr8, the original syscall arg #1.
237 sc_addr + 40 is gner[0].
238 sc_addr + 44 is gner[1]. */
239 case iacc0h_regnum :
240 return sc_addr + 48;
241 case iacc0l_regnum :
242 return sc_addr + 52;
243 default :
244 if (first_gpr_regnum <= regno && regno <= last_gpr_regnum)
245 return sc_addr + 56 + 4 * (regno - first_gpr_regnum);
246 else if (first_fpr_regnum <= regno && regno <= last_fpr_regnum)
247 return sc_addr + 312 + 4 * (regno - first_fpr_regnum);
248 else
249 return -1; /* not saved. */
250 }
251 }
252
253 /* Signal trampolines. */
254
255 static struct trad_frame_cache *
256 frv_linux_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
257 {
258 struct trad_frame_cache *cache;
259 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
260 CORE_ADDR addr;
261 char buf[4];
262 int regnum;
263 CORE_ADDR sc_addr_cache_val = 0;
264 struct frame_id this_id;
265
266 if (*this_cache)
267 return *this_cache;
268
269 cache = trad_frame_cache_zalloc (next_frame);
270
271 /* FIXME: cagney/2004-05-01: This is is long standing broken code.
272 The frame ID's code address should be the start-address of the
273 signal trampoline and not the current PC within that
274 trampoline. */
275 frame_unwind_register (next_frame, sp_regnum, buf);
276 this_id = frame_id_build (extract_unsigned_integer (buf, sizeof buf),
277 frame_pc_unwind (next_frame));
278 trad_frame_set_id (cache, this_id);
279
280 for (regnum = 0; regnum < frv_num_regs; regnum++)
281 {
282 LONGEST reg_addr = frv_linux_sigcontext_reg_addr (next_frame, regnum,
283 &sc_addr_cache_val);
284 if (reg_addr != -1)
285 trad_frame_set_reg_addr (cache, regnum, reg_addr);
286 }
287
288 *this_cache = cache;
289 return cache;
290 }
291
292 static void
293 frv_linux_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
294 struct frame_id *this_id)
295 {
296 struct trad_frame_cache *cache =
297 frv_linux_sigtramp_frame_cache (next_frame, this_cache);
298 trad_frame_get_id (cache, this_id);
299 }
300
301 static void
302 frv_linux_sigtramp_frame_prev_register (struct frame_info *next_frame,
303 void **this_cache,
304 int regnum, int *optimizedp,
305 enum lval_type *lvalp, CORE_ADDR *addrp,
306 int *realnump, gdb_byte *valuep)
307 {
308 /* Make sure we've initialized the cache. */
309 struct trad_frame_cache *cache =
310 frv_linux_sigtramp_frame_cache (next_frame, this_cache);
311 trad_frame_get_register (cache, next_frame, regnum, optimizedp, lvalp,
312 addrp, realnump, valuep);
313 }
314
315 static const struct frame_unwind frv_linux_sigtramp_frame_unwind =
316 {
317 SIGTRAMP_FRAME,
318 frv_linux_sigtramp_frame_this_id,
319 frv_linux_sigtramp_frame_prev_register
320 };
321
322 static const struct frame_unwind *
323 frv_linux_sigtramp_frame_sniffer (struct frame_info *next_frame)
324 {
325 CORE_ADDR pc = frame_pc_unwind (next_frame);
326 char *name;
327
328 find_pc_partial_function (pc, &name, NULL, NULL);
329 if (frv_linux_pc_in_sigtramp (pc, name))
330 return &frv_linux_sigtramp_frame_unwind;
331
332 return NULL;
333 }
334
335 \f
336 /* The FRV kernel defines ELF_NGREG as 46. We add 2 in order to include
337 the loadmap addresses in the register set. (See below for more info.) */
338 #define FRV_ELF_NGREG (46 + 2)
339 typedef unsigned char frv_elf_greg_t[4];
340 typedef struct { frv_elf_greg_t reg[FRV_ELF_NGREG]; } frv_elf_gregset_t;
341
342 typedef unsigned char frv_elf_fpreg_t[4];
343 typedef struct
344 {
345 frv_elf_fpreg_t fr[64];
346 frv_elf_fpreg_t fner[2];
347 frv_elf_fpreg_t msr[2];
348 frv_elf_fpreg_t acc[8];
349 unsigned char accg[8];
350 frv_elf_fpreg_t fsr[1];
351 } frv_elf_fpregset_t;
352
353 /* Constants for accessing elements of frv_elf_gregset_t. */
354
355 #define FRV_PT_PSR 0
356 #define FRV_PT_ISR 1
357 #define FRV_PT_CCR 2
358 #define FRV_PT_CCCR 3
359 #define FRV_PT_LR 4
360 #define FRV_PT_LCR 5
361 #define FRV_PT_PC 6
362 #define FRV_PT_GNER0 10
363 #define FRV_PT_GNER1 11
364 #define FRV_PT_IACC0H 12
365 #define FRV_PT_IACC0L 13
366
367 /* Note: Only 32 of the GRs will be found in the corefile. */
368 #define FRV_PT_GR(j) ( 14 + (j)) /* GRj for 0<=j<=63. */
369
370 #define FRV_PT_TBR FRV_PT_GR(0) /* gr0 is always 0, so TBR is stuffed
371 there. */
372
373 /* Technically, the loadmap addresses are not part of `pr_reg' as
374 found in the elf_prstatus struct. The fields which communicate the
375 loadmap address appear (by design) immediately after `pr_reg'
376 though, and the BFD function elf32_frv_grok_prstatus() has been
377 implemented to include these fields in the register section that it
378 extracts from the core file. So, for our purposes, they may be
379 viewed as registers. */
380
381 #define FRV_PT_EXEC_FDPIC_LOADMAP 46
382 #define FRV_PT_INTERP_FDPIC_LOADMAP 47
383
384
385 /* Unpack an frv_elf_gregset_t into GDB's register cache. */
386
387 static void
388 frv_linux_supply_gregset (const struct regset *regset,
389 struct regcache *regcache,
390 int regnum, const void *gregs, size_t len)
391 {
392 int regi;
393 char zerobuf[MAX_REGISTER_SIZE];
394 const frv_elf_gregset_t *gregsetp = gregs;
395
396 memset (zerobuf, 0, MAX_REGISTER_SIZE);
397
398 /* gr0 always contains 0. Also, the kernel passes the TBR value in
399 this slot. */
400 regcache_raw_supply (regcache, first_gpr_regnum, zerobuf);
401
402 for (regi = first_gpr_regnum + 1; regi <= last_gpr_regnum; regi++)
403 {
404 if (regi >= first_gpr_regnum + 32)
405 regcache_raw_supply (regcache, regi, zerobuf);
406 else
407 regcache_raw_supply (regcache, regi,
408 gregsetp->reg[FRV_PT_GR (regi - first_gpr_regnum)]);
409 }
410
411 regcache_raw_supply (regcache, pc_regnum, gregsetp->reg[FRV_PT_PC]);
412 regcache_raw_supply (regcache, psr_regnum, gregsetp->reg[FRV_PT_PSR]);
413 regcache_raw_supply (regcache, ccr_regnum, gregsetp->reg[FRV_PT_CCR]);
414 regcache_raw_supply (regcache, cccr_regnum, gregsetp->reg[FRV_PT_CCCR]);
415 regcache_raw_supply (regcache, lr_regnum, gregsetp->reg[FRV_PT_LR]);
416 regcache_raw_supply (regcache, lcr_regnum, gregsetp->reg[FRV_PT_LCR]);
417 regcache_raw_supply (regcache, gner0_regnum, gregsetp->reg[FRV_PT_GNER0]);
418 regcache_raw_supply (regcache, gner1_regnum, gregsetp->reg[FRV_PT_GNER1]);
419 regcache_raw_supply (regcache, tbr_regnum, gregsetp->reg[FRV_PT_TBR]);
420 regcache_raw_supply (regcache, fdpic_loadmap_exec_regnum,
421 gregsetp->reg[FRV_PT_EXEC_FDPIC_LOADMAP]);
422 regcache_raw_supply (regcache, fdpic_loadmap_interp_regnum,
423 gregsetp->reg[FRV_PT_INTERP_FDPIC_LOADMAP]);
424 }
425
426 /* Unpack an frv_elf_fpregset_t into GDB's register cache. */
427
428 static void
429 frv_linux_supply_fpregset (const struct regset *regset,
430 struct regcache *regcache,
431 int regnum, const void *gregs, size_t len)
432 {
433 int regi;
434 const frv_elf_fpregset_t *fpregsetp = gregs;
435
436 for (regi = first_fpr_regnum; regi <= last_fpr_regnum; regi++)
437 regcache_raw_supply (regcache, regi, fpregsetp->fr[regi - first_fpr_regnum]);
438
439 regcache_raw_supply (regcache, fner0_regnum, fpregsetp->fner[0]);
440 regcache_raw_supply (regcache, fner1_regnum, fpregsetp->fner[1]);
441
442 regcache_raw_supply (regcache, msr0_regnum, fpregsetp->msr[0]);
443 regcache_raw_supply (regcache, msr1_regnum, fpregsetp->msr[1]);
444
445 for (regi = acc0_regnum; regi <= acc7_regnum; regi++)
446 regcache_raw_supply (regcache, regi, fpregsetp->acc[regi - acc0_regnum]);
447
448 regcache_raw_supply (regcache, accg0123_regnum, fpregsetp->accg);
449 regcache_raw_supply (regcache, accg4567_regnum, fpregsetp->accg + 4);
450
451 regcache_raw_supply (regcache, fsr0_regnum, fpregsetp->fsr[0]);
452 }
453
454 /* FRV Linux kernel register sets. */
455
456 static struct regset frv_linux_gregset =
457 {
458 NULL,
459 frv_linux_supply_gregset
460 };
461
462 static struct regset frv_linux_fpregset =
463 {
464 NULL,
465 frv_linux_supply_fpregset
466 };
467
468 static const struct regset *
469 frv_linux_regset_from_core_section (struct gdbarch *gdbarch,
470 const char *sect_name, size_t sect_size)
471 {
472 if (strcmp (sect_name, ".reg") == 0
473 && sect_size >= sizeof (frv_elf_gregset_t))
474 return &frv_linux_gregset;
475
476 if (strcmp (sect_name, ".reg2") == 0
477 && sect_size >= sizeof (frv_elf_fpregset_t))
478 return &frv_linux_fpregset;
479
480 return NULL;
481 }
482
483 \f
484 static void
485 frv_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
486 {
487 /* Set the sigtramp frame sniffer. */
488 frame_unwind_append_sniffer (gdbarch, frv_linux_sigtramp_frame_sniffer);
489 set_gdbarch_regset_from_core_section (gdbarch,
490 frv_linux_regset_from_core_section);
491 }
492
493 static enum gdb_osabi
494 frv_linux_elf_osabi_sniffer (bfd *abfd)
495 {
496 int elf_flags;
497
498 elf_flags = elf_elfheader (abfd)->e_flags;
499
500 /* Assume GNU/Linux if using the FDPIC ABI. If/when another OS shows
501 up that uses this ABI, we'll need to start using .note sections
502 or some such. */
503 if (elf_flags & EF_FRV_FDPIC)
504 return GDB_OSABI_LINUX;
505 else
506 return GDB_OSABI_UNKNOWN;
507 }
508
509 /* Provide a prototype to silence -Wmissing-prototypes. */
510 void _initialize_frv_linux_tdep (void);
511
512 void
513 _initialize_frv_linux_tdep (void)
514 {
515 gdbarch_register_osabi (bfd_arch_frv, 0, GDB_OSABI_LINUX, frv_linux_init_abi);
516 gdbarch_register_osabi_sniffer (bfd_arch_frv,
517 bfd_target_elf_flavour,
518 frv_linux_elf_osabi_sniffer);
519 }