]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbarch.sh
43e51341f97b2271a17f80db2a2be89864acb671
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2021 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27 # Format of the input table
28 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
29
30 do_read ()
31 {
32 comment=""
33 class=""
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
37 # shellcheck disable=SC2162
38 while IFS='' read line
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
44 then
45 continue
46 elif expr "${line}" : "#" > /dev/null
47 then
48 comment="${comment}
49 ${line}"
50 else
51
52 # The semantics of IFS varies between different SH's. Some
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
56
57 OFS="${IFS}" ; IFS="[;]"
58 eval read "${read}" <<EOF
59 ${line}
60 EOF
61 IFS="${OFS}"
62
63 if test -n "${garbage_at_eol:-}"
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
74 if eval test "\"\${${r}}\" = ' '"
75 then
76 eval "${r}="
77 fi
78 done
79
80 case "${class}" in
81 m ) staticdefault="${predefault:-}" ;;
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
85
86 case "${class}" in
87 F | V | M )
88 case "${invalid_p:-}" in
89 "" )
90 if test -n "${predefault}"
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
93 predicate="gdbarch->${function:-} != ${predefault}"
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
100 fi
101 ;;
102 * )
103 echo "Predicate function ${function} with invalid_p." 1>&2
104 kill $$
105 exit 1
106 ;;
107 esac
108 esac
109
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
114 fi
115 done
116 if [ -n "${class}" ]
117 then
118 true
119 else
120 false
121 fi
122 }
123
124
125 fallback_default_p ()
126 {
127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
129 }
130
131 class_is_variable_p ()
132 {
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
137 }
138
139 class_is_function_p ()
140 {
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145 }
146
147 class_is_multiarch_p ()
148 {
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
153 }
154
155 class_is_predicate_p ()
156 {
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
161 }
162
163 class_is_info_p ()
164 {
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171
172 # dump out/verify the doco
173 for field in ${read}
174 do
175 case ${field} in
176
177 class ) : ;;
178
179 # # -> line disable
180 # f -> function
181 # hiding a function
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
184 # v -> variable
185 # hiding a variable
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
188 # i -> set from info
189 # hiding something from the ``struct info'' object
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
192 # M -> multi-arch function + predicate
193 # hiding a multi-arch function + predicate to test function validity
194
195 returntype ) : ;;
196
197 # For functions, the return type; for variables, the data type
198
199 function ) : ;;
200
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
204
205 formal ) : ;;
206
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
211
212 actual ) : ;;
213
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
217
218 staticdefault ) : ;;
219
220 # To help with the GDB startup a static gdbarch object is
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
224
225 # If STATICDEFAULT is empty, zero is used.
226
227 predefault ) : ;;
228
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
233
234 # If PREDEFAULT is empty, zero is used.
235
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
265 # Variable declarations can refer to ``gdbarch'' which
266 # will contain the current architecture. Care should be
267 # taken.
268
269 invalid_p ) : ;;
270
271 # A predicate equation that validates MEMBER. Non-zero is
272 # returned if the code creating the new architecture failed to
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
283
284 # See also PREDEFAULT and POSTDEFAULT.
285
286 print ) : ;;
287
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
290
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
293
294 garbage_at_eol ) : ;;
295
296 # Catches stray fields.
297
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
301 esac
302 done
303
304
305 function_list ()
306 {
307 # See below (DOCO) for description of each field
308 cat <<EOF
309 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
310 #
311 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
313 #
314 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
315 #
316 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
317
318 # Number of bits in a short or unsigned short for the target machine.
319 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
320 # Number of bits in an int or unsigned int for the target machine.
321 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
322 # Number of bits in a long or unsigned long for the target machine.
323 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
324 # Number of bits in a long long or unsigned long long for the target
325 # machine.
326 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
327
328 # The ABI default bit-size and format for "bfloat16", "half", "float", "double", and
329 # "long double". These bit/format pairs should eventually be combined
330 # into a single object. For the moment, just initialize them as a pair.
331 # Each format describes both the big and little endian layouts (if
332 # useful).
333
334 v;int;bfloat16_bit;;;16;2*TARGET_CHAR_BIT;;0
335 v;const struct floatformat **;bfloat16_format;;;;;floatformats_bfloat16;;pformat (gdbarch->bfloat16_format)
336 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
337 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
338 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
339 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
340 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
341 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
342 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
343 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
344
345 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
346 # starting with C++11.
347 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
348 # One if \`wchar_t' is signed, zero if unsigned.
349 v;int;wchar_signed;;;1;-1;1
350
351 # Returns the floating-point format to be used for values of length LENGTH.
352 # NAME, if non-NULL, is the type name, which may be used to distinguish
353 # different target formats of the same length.
354 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
355
356 # For most targets, a pointer on the target and its representation as an
357 # address in GDB have the same size and "look the same". For such a
358 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
359 # / addr_bit will be set from it.
360 #
361 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
362 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
363 # gdbarch_address_to_pointer as well.
364 #
365 # ptr_bit is the size of a pointer on the target
366 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
367 # addr_bit is the size of a target address as represented in gdb
368 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
369 #
370 # dwarf2_addr_size is the target address size as used in the Dwarf debug
371 # info. For .debug_frame FDEs, this is supposed to be the target address
372 # size from the associated CU header, and which is equivalent to the
373 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
374 # Unfortunately there is no good way to determine this value. Therefore
375 # dwarf2_addr_size simply defaults to the target pointer size.
376 #
377 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
378 # defined using the target's pointer size so far.
379 #
380 # Note that dwarf2_addr_size only needs to be redefined by a target if the
381 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
382 # and if Dwarf versions < 4 need to be supported.
383 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
384 #
385 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
386 v;int;char_signed;;;1;-1;1
387 #
388 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
389 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
390 # Function for getting target's idea of a frame pointer. FIXME: GDB's
391 # whole scheme for dealing with "frames" and "frame pointers" needs a
392 # serious shakedown.
393 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
394 #
395 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
396 # Read a register into a new struct value. If the register is wholly
397 # or partly unavailable, this should call mark_value_bytes_unavailable
398 # as appropriate. If this is defined, then pseudo_register_read will
399 # never be called.
400 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
401 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
402 #
403 v;int;num_regs;;;0;-1
404 # This macro gives the number of pseudo-registers that live in the
405 # register namespace but do not get fetched or stored on the target.
406 # These pseudo-registers may be aliases for other registers,
407 # combinations of other registers, or they may be computed by GDB.
408 v;int;num_pseudo_regs;;;0;0;;0
409
410 # Assemble agent expression bytecode to collect pseudo-register REG.
411 # Return -1 if something goes wrong, 0 otherwise.
412 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
413
414 # Assemble agent expression bytecode to push the value of pseudo-register
415 # REG on the interpreter stack.
416 # Return -1 if something goes wrong, 0 otherwise.
417 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
418
419 # Some architectures can display additional information for specific
420 # signals.
421 # UIOUT is the output stream where the handler will place information.
422 M;void;report_signal_info;struct ui_out *uiout, enum gdb_signal siggnal;uiout, siggnal
423
424 # GDB's standard (or well known) register numbers. These can map onto
425 # a real register or a pseudo (computed) register or not be defined at
426 # all (-1).
427 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
428 v;int;sp_regnum;;;-1;-1;;0
429 v;int;pc_regnum;;;-1;-1;;0
430 v;int;ps_regnum;;;-1;-1;;0
431 v;int;fp0_regnum;;;0;-1;;0
432 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
433 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
434 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
435 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
436 # Convert from an sdb register number to an internal gdb register number.
437 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
438 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
439 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
440 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
441 m;const char *;register_name;int regnr;regnr;;0
442
443 # Return the type of a register specified by the architecture. Only
444 # the register cache should call this function directly; others should
445 # use "register_type".
446 M;struct type *;register_type;int reg_nr;reg_nr
447
448 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
449 # a dummy frame. A dummy frame is created before an inferior call,
450 # the frame_id returned here must match the frame_id that was built
451 # for the inferior call. Usually this means the returned frame_id's
452 # stack address should match the address returned by
453 # gdbarch_push_dummy_call, and the returned frame_id's code address
454 # should match the address at which the breakpoint was set in the dummy
455 # frame.
456 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
457 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
458 # deprecated_fp_regnum.
459 v;int;deprecated_fp_regnum;;;-1;-1;;0
460
461 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
462 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
463 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
464
465 # Return true if the code of FRAME is writable.
466 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
467
468 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
469 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
470 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
471 # MAP a GDB RAW register number onto a simulator register number. See
472 # also include/...-sim.h.
473 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
474 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
475 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
476
477 # Determine the address where a longjmp will land and save this address
478 # in PC. Return nonzero on success.
479 #
480 # FRAME corresponds to the longjmp frame.
481 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
482
483 #
484 v;int;believe_pcc_promotion;;;;;;;
485 #
486 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
487 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
488 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
489 # Construct a value representing the contents of register REGNUM in
490 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
491 # allocate and return a struct value with all value attributes
492 # (but not the value contents) filled in.
493 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
494 #
495 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
496 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
497 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
498
499 # Return the return-value convention that will be used by FUNCTION
500 # to return a value of type VALTYPE. FUNCTION may be NULL in which
501 # case the return convention is computed based only on VALTYPE.
502 #
503 # If READBUF is not NULL, extract the return value and save it in this buffer.
504 #
505 # If WRITEBUF is not NULL, it contains a return value which will be
506 # stored into the appropriate register. This can be used when we want
507 # to force the value returned by a function (see the "return" command
508 # for instance).
509 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
510
511 # Return true if the return value of function is stored in the first hidden
512 # parameter. In theory, this feature should be language-dependent, specified
513 # by language and its ABI, such as C++. Unfortunately, compiler may
514 # implement it to a target-dependent feature. So that we need such hook here
515 # to be aware of this in GDB.
516 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
517
518 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
519 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
520 # On some platforms, a single function may provide multiple entry points,
521 # e.g. one that is used for function-pointer calls and a different one
522 # that is used for direct function calls.
523 # In order to ensure that breakpoints set on the function will trigger
524 # no matter via which entry point the function is entered, a platform
525 # may provide the skip_entrypoint callback. It is called with IP set
526 # to the main entry point of a function (as determined by the symbol table),
527 # and should return the address of the innermost entry point, where the
528 # actual breakpoint needs to be set. Note that skip_entrypoint is used
529 # by GDB common code even when debugging optimized code, where skip_prologue
530 # is not used.
531 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
532
533 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
534 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
535
536 # Return the breakpoint kind for this target based on *PCPTR.
537 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
538
539 # Return the software breakpoint from KIND. KIND can have target
540 # specific meaning like the Z0 kind parameter.
541 # SIZE is set to the software breakpoint's length in memory.
542 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
543
544 # Return the breakpoint kind for this target based on the current
545 # processor state (e.g. the current instruction mode on ARM) and the
546 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
547 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
548
549 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
550 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
551 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
552 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
553
554 # A function can be addressed by either it's "pointer" (possibly a
555 # descriptor address) or "entry point" (first executable instruction).
556 # The method "convert_from_func_ptr_addr" converting the former to the
557 # latter. gdbarch_deprecated_function_start_offset is being used to implement
558 # a simplified subset of that functionality - the function's address
559 # corresponds to the "function pointer" and the function's start
560 # corresponds to the "function entry point" - and hence is redundant.
561
562 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
563
564 # Return the remote protocol register number associated with this
565 # register. Normally the identity mapping.
566 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
567
568 # Fetch the target specific address used to represent a load module.
569 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
570
571 # Return the thread-local address at OFFSET in the thread-local
572 # storage for the thread PTID and the shared library or executable
573 # file given by LM_ADDR. If that block of thread-local storage hasn't
574 # been allocated yet, this function may throw an error. LM_ADDR may
575 # be zero for statically linked multithreaded inferiors.
576
577 M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
578 #
579 v;CORE_ADDR;frame_args_skip;;;0;;;0
580 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
581 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
582 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
583 # frame-base. Enable frame-base before frame-unwind.
584 F;int;frame_num_args;struct frame_info *frame;frame
585 #
586 M;CORE_ADDR;frame_align;CORE_ADDR address;address
587 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
588 v;int;frame_red_zone_size
589 #
590 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
591 # On some machines there are bits in addresses which are not really
592 # part of the address, but are used by the kernel, the hardware, etc.
593 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
594 # we get a "real" address such as one would find in a symbol table.
595 # This is used only for addresses of instructions, and even then I'm
596 # not sure it's used in all contexts. It exists to deal with there
597 # being a few stray bits in the PC which would mislead us, not as some
598 # sort of generic thing to handle alignment or segmentation (it's
599 # possible it should be in TARGET_READ_PC instead).
600 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
601
602 # On some machines, not all bits of an address word are significant.
603 # For example, on AArch64, the top bits of an address known as the "tag"
604 # are ignored by the kernel, the hardware, etc. and can be regarded as
605 # additional data associated with the address.
606 v;int;significant_addr_bit;;;;;;0
607
608 # Return a string representation of the memory tag TAG.
609 m;std::string;memtag_to_string;struct value *tag;tag;;default_memtag_to_string;;0
610
611 # Return true if ADDRESS contains a tag and false otherwise.
612 m;bool;tagged_address_p;struct value *address;address;;default_tagged_address_p;;0
613
614 # Return true if the tag from ADDRESS matches the memory tag for that
615 # particular address. Return false otherwise.
616 m;bool;memtag_matches_p;struct value *address;address;;default_memtag_matches_p;;0
617
618 # Set the tags of type TAG_TYPE, for the memory address range
619 # [ADDRESS, ADDRESS + LENGTH) to TAGS.
620 # Return true if successful and false otherwise.
621 m;bool;set_memtags;struct value *address, size_t length, const gdb::byte_vector \&tags, memtag_type tag_type;address, length, tags, tag_type;;default_set_memtags;;0
622
623 # Return the tag of type TAG_TYPE associated with the memory address ADDRESS,
624 # assuming ADDRESS is tagged.
625 m;struct value *;get_memtag;struct value *address, memtag_type tag_type;address, tag_type;;default_get_memtag;;0
626
627 # memtag_granule_size is the size of the allocation tag granule, for
628 # architectures that support memory tagging.
629 # This is 0 for architectures that do not support memory tagging.
630 # For a non-zero value, this represents the number of bytes of memory per tag.
631 v;CORE_ADDR;memtag_granule_size;;;;;;0
632
633 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
634 # indicates if the target needs software single step. An ISA method to
635 # implement it.
636 #
637 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
638 # target can single step. If not, then implement single step using breakpoints.
639 #
640 # Return a vector of addresses on which the software single step
641 # breakpoints should be inserted. NULL means software single step is
642 # not used.
643 # Multiple breakpoints may be inserted for some instructions such as
644 # conditional branch. However, each implementation must always evaluate
645 # the condition and only put the breakpoint at the branch destination if
646 # the condition is true, so that we ensure forward progress when stepping
647 # past a conditional branch to self.
648 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
649
650 # Return non-zero if the processor is executing a delay slot and a
651 # further single-step is needed before the instruction finishes.
652 M;int;single_step_through_delay;struct frame_info *frame;frame
653 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
654 # disassembler. Perhaps objdump can handle it?
655 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
656 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
657
658
659 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
660 # evaluates non-zero, this is the address where the debugger will place
661 # a step-resume breakpoint to get us past the dynamic linker.
662 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
663 # Some systems also have trampoline code for returning from shared libs.
664 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
665
666 # Return true if PC lies inside an indirect branch thunk.
667 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
668
669 # A target might have problems with watchpoints as soon as the stack
670 # frame of the current function has been destroyed. This mostly happens
671 # as the first action in a function's epilogue. stack_frame_destroyed_p()
672 # is defined to return a non-zero value if either the given addr is one
673 # instruction after the stack destroying instruction up to the trailing
674 # return instruction or if we can figure out that the stack frame has
675 # already been invalidated regardless of the value of addr. Targets
676 # which don't suffer from that problem could just let this functionality
677 # untouched.
678 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
679 # Process an ELF symbol in the minimal symbol table in a backend-specific
680 # way. Normally this hook is supposed to do nothing, however if required,
681 # then this hook can be used to apply tranformations to symbols that are
682 # considered special in some way. For example the MIPS backend uses it
683 # to interpret \`st_other' information to mark compressed code symbols so
684 # that they can be treated in the appropriate manner in the processing of
685 # the main symbol table and DWARF-2 records.
686 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
687 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
688 # Process a symbol in the main symbol table in a backend-specific way.
689 # Normally this hook is supposed to do nothing, however if required,
690 # then this hook can be used to apply tranformations to symbols that
691 # are considered special in some way. This is currently used by the
692 # MIPS backend to make sure compressed code symbols have the ISA bit
693 # set. This in turn is needed for symbol values seen in GDB to match
694 # the values used at the runtime by the program itself, for function
695 # and label references.
696 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
697 # Adjust the address retrieved from a DWARF-2 record other than a line
698 # entry in a backend-specific way. Normally this hook is supposed to
699 # return the address passed unchanged, however if that is incorrect for
700 # any reason, then this hook can be used to fix the address up in the
701 # required manner. This is currently used by the MIPS backend to make
702 # sure addresses in FDE, range records, etc. referring to compressed
703 # code have the ISA bit set, matching line information and the symbol
704 # table.
705 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
706 # Adjust the address updated by a line entry in a backend-specific way.
707 # Normally this hook is supposed to return the address passed unchanged,
708 # however in the case of inconsistencies in these records, this hook can
709 # be used to fix them up in the required manner. This is currently used
710 # by the MIPS backend to make sure all line addresses in compressed code
711 # are presented with the ISA bit set, which is not always the case. This
712 # in turn ensures breakpoint addresses are correctly matched against the
713 # stop PC.
714 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
715 v;int;cannot_step_breakpoint;;;0;0;;0
716 # See comment in target.h about continuable, steppable and
717 # non-steppable watchpoints.
718 v;int;have_nonsteppable_watchpoint;;;0;0;;0
719 F;type_instance_flags;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
720 M;const char *;address_class_type_flags_to_name;type_instance_flags type_flags;type_flags
721 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
722 # FS are passed from the generic execute_cfa_program function.
723 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
724
725 # Return the appropriate type_flags for the supplied address class.
726 # This function should return true if the address class was recognized and
727 # type_flags was set, false otherwise.
728 M;bool;address_class_name_to_type_flags;const char *name, type_instance_flags *type_flags_ptr;name, type_flags_ptr
729 # Is a register in a group
730 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
731 # Fetch the pointer to the ith function argument.
732 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
733
734 # Iterate over all supported register notes in a core file. For each
735 # supported register note section, the iterator must call CB and pass
736 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
737 # the supported register note sections based on the current register
738 # values. Otherwise it should enumerate all supported register note
739 # sections.
740 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
741
742 # Create core file notes
743 M;gdb::unique_xmalloc_ptr<char>;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
744
745 # Find core file memory regions
746 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
747
748 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
749 # core file into buffer READBUF with length LEN. Return the number of bytes read
750 # (zero indicates failure).
751 # failed, otherwise, return the red length of READBUF.
752 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
753
754 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
755 # libraries list from core file into buffer READBUF with length LEN.
756 # Return the number of bytes read (zero indicates failure).
757 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
758
759 # How the core target converts a PTID from a core file to a string.
760 M;std::string;core_pid_to_str;ptid_t ptid;ptid
761
762 # How the core target extracts the name of a thread from a core file.
763 M;const char *;core_thread_name;struct thread_info *thr;thr
764
765 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
766 # from core file into buffer READBUF with length LEN. Return the number
767 # of bytes read (zero indicates EOF, a negative value indicates failure).
768 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
769
770 # BFD target to use when generating a core file.
771 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
772
773 # If the elements of C++ vtables are in-place function descriptors rather
774 # than normal function pointers (which may point to code or a descriptor),
775 # set this to one.
776 v;int;vtable_function_descriptors;;;0;0;;0
777
778 # Set if the least significant bit of the delta is used instead of the least
779 # significant bit of the pfn for pointers to virtual member functions.
780 v;int;vbit_in_delta;;;0;0;;0
781
782 # Advance PC to next instruction in order to skip a permanent breakpoint.
783 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
784
785 # The maximum length of an instruction on this architecture in bytes.
786 V;ULONGEST;max_insn_length;;;0;0
787
788 # Copy the instruction at FROM to TO, and make any adjustments
789 # necessary to single-step it at that address.
790 #
791 # REGS holds the state the thread's registers will have before
792 # executing the copied instruction; the PC in REGS will refer to FROM,
793 # not the copy at TO. The caller should update it to point at TO later.
794 #
795 # Return a pointer to data of the architecture's choice to be passed
796 # to gdbarch_displaced_step_fixup.
797 #
798 # For a general explanation of displaced stepping and how GDB uses it,
799 # see the comments in infrun.c.
800 #
801 # The TO area is only guaranteed to have space for
802 # gdbarch_max_insn_length (arch) bytes, so this function must not
803 # write more bytes than that to that area.
804 #
805 # If you do not provide this function, GDB assumes that the
806 # architecture does not support displaced stepping.
807 #
808 # If the instruction cannot execute out of line, return NULL. The
809 # core falls back to stepping past the instruction in-line instead in
810 # that case.
811 M;displaced_step_copy_insn_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
812
813 # Return true if GDB should use hardware single-stepping to execute a displaced
814 # step instruction. If false, GDB will simply restart execution at the
815 # displaced instruction location, and it is up to the target to ensure GDB will
816 # receive control again (e.g. by placing a software breakpoint instruction into
817 # the displaced instruction buffer).
818 #
819 # The default implementation returns false on all targets that provide a
820 # gdbarch_software_single_step routine, and true otherwise.
821 m;bool;displaced_step_hw_singlestep;void;;;default_displaced_step_hw_singlestep;;0
822
823 # Fix up the state resulting from successfully single-stepping a
824 # displaced instruction, to give the result we would have gotten from
825 # stepping the instruction in its original location.
826 #
827 # REGS is the register state resulting from single-stepping the
828 # displaced instruction.
829 #
830 # CLOSURE is the result from the matching call to
831 # gdbarch_displaced_step_copy_insn.
832 #
833 # If you provide gdbarch_displaced_step_copy_insn.but not this
834 # function, then GDB assumes that no fixup is needed after
835 # single-stepping the instruction.
836 #
837 # For a general explanation of displaced stepping and how GDB uses it,
838 # see the comments in infrun.c.
839 M;void;displaced_step_fixup;struct displaced_step_copy_insn_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
840
841 # Prepare THREAD for it to displaced step the instruction at its current PC.
842 #
843 # Throw an exception if any unexpected error happens.
844 M;displaced_step_prepare_status;displaced_step_prepare;thread_info *thread, CORE_ADDR &displaced_pc;thread, displaced_pc
845
846 # Clean up after a displaced step of THREAD.
847 m;displaced_step_finish_status;displaced_step_finish;thread_info *thread, gdb_signal sig;thread, sig;;NULL;;(! gdbarch->displaced_step_finish) != (! gdbarch->displaced_step_prepare)
848
849 # Return the closure associated to the displaced step buffer that is at ADDR.
850 F;const displaced_step_copy_insn_closure *;displaced_step_copy_insn_closure_by_addr;inferior *inf, CORE_ADDR addr;inf, addr
851
852 # PARENT_INF has forked and CHILD_PTID is the ptid of the child. Restore the
853 # contents of all displaced step buffers in the child's address space.
854 f;void;displaced_step_restore_all_in_ptid;inferior *parent_inf, ptid_t child_ptid;parent_inf, child_ptid
855
856 # Relocate an instruction to execute at a different address. OLDLOC
857 # is the address in the inferior memory where the instruction to
858 # relocate is currently at. On input, TO points to the destination
859 # where we want the instruction to be copied (and possibly adjusted)
860 # to. On output, it points to one past the end of the resulting
861 # instruction(s). The effect of executing the instruction at TO shall
862 # be the same as if executing it at FROM. For example, call
863 # instructions that implicitly push the return address on the stack
864 # should be adjusted to return to the instruction after OLDLOC;
865 # relative branches, and other PC-relative instructions need the
866 # offset adjusted; etc.
867 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
868
869 # Refresh overlay mapped state for section OSECT.
870 F;void;overlay_update;struct obj_section *osect;osect
871
872 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
873
874 # Set if the address in N_SO or N_FUN stabs may be zero.
875 v;int;sofun_address_maybe_missing;;;0;0;;0
876
877 # Parse the instruction at ADDR storing in the record execution log
878 # the registers REGCACHE and memory ranges that will be affected when
879 # the instruction executes, along with their current values.
880 # Return -1 if something goes wrong, 0 otherwise.
881 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
882
883 # Save process state after a signal.
884 # Return -1 if something goes wrong, 0 otherwise.
885 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
886
887 # Signal translation: translate inferior's signal (target's) number
888 # into GDB's representation. The implementation of this method must
889 # be host independent. IOW, don't rely on symbols of the NAT_FILE
890 # header (the nm-*.h files), the host <signal.h> header, or similar
891 # headers. This is mainly used when cross-debugging core files ---
892 # "Live" targets hide the translation behind the target interface
893 # (target_wait, target_resume, etc.).
894 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
895
896 # Signal translation: translate the GDB's internal signal number into
897 # the inferior's signal (target's) representation. The implementation
898 # of this method must be host independent. IOW, don't rely on symbols
899 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
900 # header, or similar headers.
901 # Return the target signal number if found, or -1 if the GDB internal
902 # signal number is invalid.
903 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
904
905 # Extra signal info inspection.
906 #
907 # Return a type suitable to inspect extra signal information.
908 M;struct type *;get_siginfo_type;void;
909
910 # Record architecture-specific information from the symbol table.
911 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
912
913 # Function for the 'catch syscall' feature.
914
915 # Get architecture-specific system calls information from registers.
916 M;LONGEST;get_syscall_number;thread_info *thread;thread
917
918 # The filename of the XML syscall for this architecture.
919 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
920
921 # Information about system calls from this architecture
922 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
923
924 # SystemTap related fields and functions.
925
926 # A NULL-terminated array of prefixes used to mark an integer constant
927 # on the architecture's assembly.
928 # For example, on x86 integer constants are written as:
929 #
930 # \$10 ;; integer constant 10
931 #
932 # in this case, this prefix would be the character \`\$\'.
933 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
934
935 # A NULL-terminated array of suffixes used to mark an integer constant
936 # on the architecture's assembly.
937 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
938
939 # A NULL-terminated array of prefixes used to mark a register name on
940 # the architecture's assembly.
941 # For example, on x86 the register name is written as:
942 #
943 # \%eax ;; register eax
944 #
945 # in this case, this prefix would be the character \`\%\'.
946 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
947
948 # A NULL-terminated array of suffixes used to mark a register name on
949 # the architecture's assembly.
950 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
951
952 # A NULL-terminated array of prefixes used to mark a register
953 # indirection on the architecture's assembly.
954 # For example, on x86 the register indirection is written as:
955 #
956 # \(\%eax\) ;; indirecting eax
957 #
958 # in this case, this prefix would be the charater \`\(\'.
959 #
960 # Please note that we use the indirection prefix also for register
961 # displacement, e.g., \`4\(\%eax\)\' on x86.
962 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
963
964 # A NULL-terminated array of suffixes used to mark a register
965 # indirection on the architecture's assembly.
966 # For example, on x86 the register indirection is written as:
967 #
968 # \(\%eax\) ;; indirecting eax
969 #
970 # in this case, this prefix would be the charater \`\)\'.
971 #
972 # Please note that we use the indirection suffix also for register
973 # displacement, e.g., \`4\(\%eax\)\' on x86.
974 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
975
976 # Prefix(es) used to name a register using GDB's nomenclature.
977 #
978 # For example, on PPC a register is represented by a number in the assembly
979 # language (e.g., \`10\' is the 10th general-purpose register). However,
980 # inside GDB this same register has an \`r\' appended to its name, so the 10th
981 # register would be represented as \`r10\' internally.
982 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
983
984 # Suffix used to name a register using GDB's nomenclature.
985 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
986
987 # Check if S is a single operand.
988 #
989 # Single operands can be:
990 # \- Literal integers, e.g. \`\$10\' on x86
991 # \- Register access, e.g. \`\%eax\' on x86
992 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
993 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
994 #
995 # This function should check for these patterns on the string
996 # and return 1 if some were found, or zero otherwise. Please try to match
997 # as much info as you can from the string, i.e., if you have to match
998 # something like \`\(\%\', do not match just the \`\(\'.
999 M;int;stap_is_single_operand;const char *s;s
1000
1001 # Function used to handle a "special case" in the parser.
1002 #
1003 # A "special case" is considered to be an unknown token, i.e., a token
1004 # that the parser does not know how to parse. A good example of special
1005 # case would be ARM's register displacement syntax:
1006 #
1007 # [R0, #4] ;; displacing R0 by 4
1008 #
1009 # Since the parser assumes that a register displacement is of the form:
1010 #
1011 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1012 #
1013 # it means that it will not be able to recognize and parse this odd syntax.
1014 # Therefore, we should add a special case function that will handle this token.
1015 #
1016 # This function should generate the proper expression form of the expression
1017 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1018 # and so on). It should also return 1 if the parsing was successful, or zero
1019 # if the token was not recognized as a special token (in this case, returning
1020 # zero means that the special parser is deferring the parsing to the generic
1021 # parser), and should advance the buffer pointer (p->arg).
1022 M;expr::operation_up;stap_parse_special_token;struct stap_parse_info *p;p
1023
1024 # Perform arch-dependent adjustments to a register name.
1025 #
1026 # In very specific situations, it may be necessary for the register
1027 # name present in a SystemTap probe's argument to be handled in a
1028 # special way. For example, on i386, GCC may over-optimize the
1029 # register allocation and use smaller registers than necessary. In
1030 # such cases, the client that is reading and evaluating the SystemTap
1031 # probe (ourselves) will need to actually fetch values from the wider
1032 # version of the register in question.
1033 #
1034 # To illustrate the example, consider the following probe argument
1035 # (i386):
1036 #
1037 # 4@%ax
1038 #
1039 # This argument says that its value can be found at the %ax register,
1040 # which is a 16-bit register. However, the argument's prefix says
1041 # that its type is "uint32_t", which is 32-bit in size. Therefore, in
1042 # this case, GDB should actually fetch the probe's value from register
1043 # %eax, not %ax. In this scenario, this function would actually
1044 # replace the register name from %ax to %eax.
1045 #
1046 # The rationale for this can be found at PR breakpoints/24541.
1047 M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
1048
1049 # DTrace related functions.
1050
1051 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1052 # NARG must be >= 0.
1053 M;expr::operation_up;dtrace_parse_probe_argument;int narg;narg
1054
1055 # True if the given ADDR does not contain the instruction sequence
1056 # corresponding to a disabled DTrace is-enabled probe.
1057 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1058
1059 # Enable a DTrace is-enabled probe at ADDR.
1060 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1061
1062 # Disable a DTrace is-enabled probe at ADDR.
1063 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1064
1065 # True if the list of shared libraries is one and only for all
1066 # processes, as opposed to a list of shared libraries per inferior.
1067 # This usually means that all processes, although may or may not share
1068 # an address space, will see the same set of symbols at the same
1069 # addresses.
1070 v;int;has_global_solist;;;0;0;;0
1071
1072 # On some targets, even though each inferior has its own private
1073 # address space, the debug interface takes care of making breakpoints
1074 # visible to all address spaces automatically. For such cases,
1075 # this property should be set to true.
1076 v;int;has_global_breakpoints;;;0;0;;0
1077
1078 # True if inferiors share an address space (e.g., uClinux).
1079 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1080
1081 # True if a fast tracepoint can be set at an address.
1082 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1083
1084 # Guess register state based on tracepoint location. Used for tracepoints
1085 # where no registers have been collected, but there's only one location,
1086 # allowing us to guess the PC value, and perhaps some other registers.
1087 # On entry, regcache has all registers marked as unavailable.
1088 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1089
1090 # Return the "auto" target charset.
1091 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1092 # Return the "auto" target wide charset.
1093 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1094
1095 # If non-empty, this is a file extension that will be opened in place
1096 # of the file extension reported by the shared library list.
1097 #
1098 # This is most useful for toolchains that use a post-linker tool,
1099 # where the names of the files run on the target differ in extension
1100 # compared to the names of the files GDB should load for debug info.
1101 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1102
1103 # If true, the target OS has DOS-based file system semantics. That
1104 # is, absolute paths include a drive name, and the backslash is
1105 # considered a directory separator.
1106 v;int;has_dos_based_file_system;;;0;0;;0
1107
1108 # Generate bytecodes to collect the return address in a frame.
1109 # Since the bytecodes run on the target, possibly with GDB not even
1110 # connected, the full unwinding machinery is not available, and
1111 # typically this function will issue bytecodes for one or more likely
1112 # places that the return address may be found.
1113 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1114
1115 # Implement the "info proc" command.
1116 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1117
1118 # Implement the "info proc" command for core files. Noe that there
1119 # are two "info_proc"-like methods on gdbarch -- one for core files,
1120 # one for live targets.
1121 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1122
1123 # Iterate over all objfiles in the order that makes the most sense
1124 # for the architecture to make global symbol searches.
1125 #
1126 # CB is a callback function where OBJFILE is the objfile to be searched,
1127 # and CB_DATA a pointer to user-defined data (the same data that is passed
1128 # when calling this gdbarch method). The iteration stops if this function
1129 # returns nonzero.
1130 #
1131 # CB_DATA is a pointer to some user-defined data to be passed to
1132 # the callback.
1133 #
1134 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1135 # inspected when the symbol search was requested.
1136 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1137
1138 # Ravenscar arch-dependent ops.
1139 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1140
1141 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1142 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1143
1144 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1145 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1146
1147 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1148 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1149
1150 # Return true if there's a program/permanent breakpoint planted in
1151 # memory at ADDRESS, return false otherwise.
1152 m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1153
1154 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1155 # Return 0 if *READPTR is already at the end of the buffer.
1156 # Return -1 if there is insufficient buffer for a whole entry.
1157 # Return 1 if an entry was read into *TYPEP and *VALP.
1158 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1159
1160 # Print the description of a single auxv entry described by TYPE and VAL
1161 # to FILE.
1162 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1163
1164 # Find the address range of the current inferior's vsyscall/vDSO, and
1165 # write it to *RANGE. If the vsyscall's length can't be determined, a
1166 # range with zero length is returned. Returns true if the vsyscall is
1167 # found, false otherwise.
1168 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1169
1170 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1171 # PROT has GDB_MMAP_PROT_* bitmask format.
1172 # Throw an error if it is not possible. Returned address is always valid.
1173 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1174
1175 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1176 # Print a warning if it is not possible.
1177 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1178
1179 # Return string (caller has to use xfree for it) with options for GCC
1180 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1181 # These options are put before CU's DW_AT_producer compilation options so that
1182 # they can override it.
1183 m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
1184
1185 # Return a regular expression that matches names used by this
1186 # architecture in GNU configury triplets. The result is statically
1187 # allocated and must not be freed. The default implementation simply
1188 # returns the BFD architecture name, which is correct in nearly every
1189 # case.
1190 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1191
1192 # Return the size in 8-bit bytes of an addressable memory unit on this
1193 # architecture. This corresponds to the number of 8-bit bytes associated to
1194 # each address in memory.
1195 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1196
1197 # Functions for allowing a target to modify its disassembler options.
1198 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1199 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1200 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1201
1202 # Type alignment override method. Return the architecture specific
1203 # alignment required for TYPE. If there is no special handling
1204 # required for TYPE then return the value 0, GDB will then apply the
1205 # default rules as laid out in gdbtypes.c:type_align.
1206 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1207
1208 # Return a string containing any flags for the given PC in the given FRAME.
1209 f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1210
1211 # Read core file mappings
1212 m;void;read_core_file_mappings;struct bfd *cbfd, gdb::function_view<void (ULONGEST count)> pre_loop_cb, gdb::function_view<void (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs, const char *filename)> loop_cb;cbfd, pre_loop_cb, loop_cb;;default_read_core_file_mappings;;0
1213
1214 EOF
1215 }
1216
1217 #
1218 # The .log file
1219 #
1220 exec > gdbarch.log
1221 function_list | while do_read
1222 do
1223 cat <<EOF
1224 ${class} ${returntype:-} ${function} (${formal:-})
1225 EOF
1226 for r in ${read}
1227 do
1228 eval echo "\" ${r}=\${${r}}\""
1229 done
1230 if class_is_predicate_p && fallback_default_p
1231 then
1232 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1233 kill $$
1234 exit 1
1235 fi
1236 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
1237 then
1238 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1239 kill $$
1240 exit 1
1241 fi
1242 if class_is_multiarch_p
1243 then
1244 if class_is_predicate_p ; then :
1245 elif test "x${predefault}" = "x"
1246 then
1247 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1248 kill $$
1249 exit 1
1250 fi
1251 fi
1252 echo ""
1253 done
1254
1255 exec 1>&2
1256
1257
1258 copyright ()
1259 {
1260 cat <<EOF
1261 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1262 /* vi:set ro: */
1263
1264 /* Dynamic architecture support for GDB, the GNU debugger.
1265
1266 Copyright (C) 1998-2021 Free Software Foundation, Inc.
1267
1268 This file is part of GDB.
1269
1270 This program is free software; you can redistribute it and/or modify
1271 it under the terms of the GNU General Public License as published by
1272 the Free Software Foundation; either version 3 of the License, or
1273 (at your option) any later version.
1274
1275 This program is distributed in the hope that it will be useful,
1276 but WITHOUT ANY WARRANTY; without even the implied warranty of
1277 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1278 GNU General Public License for more details.
1279
1280 You should have received a copy of the GNU General Public License
1281 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1282
1283 /* This file was created with the aid of \`\`gdbarch.sh''. */
1284
1285 EOF
1286 }
1287
1288 #
1289 # The .h file
1290 #
1291
1292 exec > new-gdbarch.h
1293 copyright
1294 cat <<EOF
1295 #ifndef GDBARCH_H
1296 #define GDBARCH_H
1297
1298 #include <vector>
1299 #include "frame.h"
1300 #include "dis-asm.h"
1301 #include "gdb_obstack.h"
1302 #include "infrun.h"
1303 #include "osabi.h"
1304 #include "displaced-stepping.h"
1305
1306 struct floatformat;
1307 struct ui_file;
1308 struct value;
1309 struct objfile;
1310 struct obj_section;
1311 struct minimal_symbol;
1312 struct regcache;
1313 struct reggroup;
1314 struct regset;
1315 struct disassemble_info;
1316 struct target_ops;
1317 struct obstack;
1318 struct bp_target_info;
1319 struct target_desc;
1320 struct symbol;
1321 struct syscall;
1322 struct agent_expr;
1323 struct axs_value;
1324 struct stap_parse_info;
1325 struct expr_builder;
1326 struct ravenscar_arch_ops;
1327 struct mem_range;
1328 struct syscalls_info;
1329 struct thread_info;
1330 struct ui_out;
1331 struct inferior;
1332
1333 #include "regcache.h"
1334
1335 /* The architecture associated with the inferior through the
1336 connection to the target.
1337
1338 The architecture vector provides some information that is really a
1339 property of the inferior, accessed through a particular target:
1340 ptrace operations; the layout of certain RSP packets; the solib_ops
1341 vector; etc. To differentiate architecture accesses to
1342 per-inferior/target properties from
1343 per-thread/per-frame/per-objfile properties, accesses to
1344 per-inferior/target properties should be made through this
1345 gdbarch. */
1346
1347 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1348 extern struct gdbarch *target_gdbarch (void);
1349
1350 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1351 gdbarch method. */
1352
1353 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1354 (struct objfile *objfile, void *cb_data);
1355
1356 /* Callback type for regset section iterators. The callback usually
1357 invokes the REGSET's supply or collect method, to which it must
1358 pass a buffer - for collects this buffer will need to be created using
1359 COLLECT_SIZE, for supply the existing buffer being read from should
1360 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1361 is used for diagnostic messages. CB_DATA should have been passed
1362 unchanged through the iterator. */
1363
1364 typedef void (iterate_over_regset_sections_cb)
1365 (const char *sect_name, int supply_size, int collect_size,
1366 const struct regset *regset, const char *human_name, void *cb_data);
1367
1368 /* For a function call, does the function return a value using a
1369 normal value return or a structure return - passing a hidden
1370 argument pointing to storage. For the latter, there are two
1371 cases: language-mandated structure return and target ABI
1372 structure return. */
1373
1374 enum function_call_return_method
1375 {
1376 /* Standard value return. */
1377 return_method_normal = 0,
1378
1379 /* Language ABI structure return. This is handled
1380 by passing the return location as the first parameter to
1381 the function, even preceding "this". */
1382 return_method_hidden_param,
1383
1384 /* Target ABI struct return. This is target-specific; for instance,
1385 on ia64 the first argument is passed in out0 but the hidden
1386 structure return pointer would normally be passed in r8. */
1387 return_method_struct,
1388 };
1389
1390 enum class memtag_type
1391 {
1392 /* Logical tag, the tag that is stored in unused bits of a pointer to a
1393 virtual address. */
1394 logical = 0,
1395
1396 /* Allocation tag, the tag that is associated with every granule of memory in
1397 the physical address space. Allocation tags are used to validate memory
1398 accesses via pointers containing logical tags. */
1399 allocation,
1400 };
1401
1402 EOF
1403
1404 # function typedef's
1405 printf "\n"
1406 printf "\n"
1407 printf "/* The following are pre-initialized by GDBARCH. */\n"
1408 function_list | while do_read
1409 do
1410 if class_is_info_p
1411 then
1412 printf "\n"
1413 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1414 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
1415 fi
1416 done
1417
1418 # function typedef's
1419 printf "\n"
1420 printf "\n"
1421 printf "/* The following are initialized by the target dependent code. */\n"
1422 function_list | while do_read
1423 do
1424 if [ -n "${comment}" ]
1425 then
1426 echo "${comment}" | sed \
1427 -e '2 s,#,/*,' \
1428 -e '3,$ s,#, ,' \
1429 -e '$ s,$, */,'
1430 fi
1431
1432 if class_is_predicate_p
1433 then
1434 printf "\n"
1435 printf "extern bool gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
1436 fi
1437 if class_is_variable_p
1438 then
1439 printf "\n"
1440 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1441 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
1442 fi
1443 if class_is_function_p
1444 then
1445 printf "\n"
1446 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1447 then
1448 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1449 elif class_is_multiarch_p
1450 then
1451 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1452 else
1453 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
1454 fi
1455 if [ "x${formal}" = "xvoid" ]
1456 then
1457 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1458 else
1459 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1460 fi
1461 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
1462 fi
1463 done
1464
1465 # close it off
1466 cat <<EOF
1467
1468 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1469
1470
1471 /* Mechanism for co-ordinating the selection of a specific
1472 architecture.
1473
1474 GDB targets (*-tdep.c) can register an interest in a specific
1475 architecture. Other GDB components can register a need to maintain
1476 per-architecture data.
1477
1478 The mechanisms below ensures that there is only a loose connection
1479 between the set-architecture command and the various GDB
1480 components. Each component can independently register their need
1481 to maintain architecture specific data with gdbarch.
1482
1483 Pragmatics:
1484
1485 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1486 didn't scale.
1487
1488 The more traditional mega-struct containing architecture specific
1489 data for all the various GDB components was also considered. Since
1490 GDB is built from a variable number of (fairly independent)
1491 components it was determined that the global aproach was not
1492 applicable. */
1493
1494
1495 /* Register a new architectural family with GDB.
1496
1497 Register support for the specified ARCHITECTURE with GDB. When
1498 gdbarch determines that the specified architecture has been
1499 selected, the corresponding INIT function is called.
1500
1501 --
1502
1503 The INIT function takes two parameters: INFO which contains the
1504 information available to gdbarch about the (possibly new)
1505 architecture; ARCHES which is a list of the previously created
1506 \`\`struct gdbarch'' for this architecture.
1507
1508 The INFO parameter is, as far as possible, be pre-initialized with
1509 information obtained from INFO.ABFD or the global defaults.
1510
1511 The ARCHES parameter is a linked list (sorted most recently used)
1512 of all the previously created architures for this architecture
1513 family. The (possibly NULL) ARCHES->gdbarch can used to access
1514 values from the previously selected architecture for this
1515 architecture family.
1516
1517 The INIT function shall return any of: NULL - indicating that it
1518 doesn't recognize the selected architecture; an existing \`\`struct
1519 gdbarch'' from the ARCHES list - indicating that the new
1520 architecture is just a synonym for an earlier architecture (see
1521 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1522 - that describes the selected architecture (see gdbarch_alloc()).
1523
1524 The DUMP_TDEP function shall print out all target specific values.
1525 Care should be taken to ensure that the function works in both the
1526 multi-arch and non- multi-arch cases. */
1527
1528 struct gdbarch_list
1529 {
1530 struct gdbarch *gdbarch;
1531 struct gdbarch_list *next;
1532 };
1533
1534 struct gdbarch_info
1535 {
1536 /* Use default: NULL (ZERO). */
1537 const struct bfd_arch_info *bfd_arch_info;
1538
1539 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1540 enum bfd_endian byte_order;
1541
1542 enum bfd_endian byte_order_for_code;
1543
1544 /* Use default: NULL (ZERO). */
1545 bfd *abfd;
1546
1547 /* Use default: NULL (ZERO). */
1548 union
1549 {
1550 /* Architecture-specific information. The generic form for targets
1551 that have extra requirements. */
1552 struct gdbarch_tdep_info *tdep_info;
1553
1554 /* Architecture-specific target description data. Numerous targets
1555 need only this, so give them an easy way to hold it. */
1556 struct tdesc_arch_data *tdesc_data;
1557
1558 /* SPU file system ID. This is a single integer, so using the
1559 generic form would only complicate code. Other targets may
1560 reuse this member if suitable. */
1561 int *id;
1562 };
1563
1564 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1565 enum gdb_osabi osabi;
1566
1567 /* Use default: NULL (ZERO). */
1568 const struct target_desc *target_desc;
1569 };
1570
1571 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1572 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1573
1574 /* DEPRECATED - use gdbarch_register() */
1575 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1576
1577 extern void gdbarch_register (enum bfd_architecture architecture,
1578 gdbarch_init_ftype *,
1579 gdbarch_dump_tdep_ftype *);
1580
1581
1582 /* Return a freshly allocated, NULL terminated, array of the valid
1583 architecture names. Since architectures are registered during the
1584 _initialize phase this function only returns useful information
1585 once initialization has been completed. */
1586
1587 extern const char **gdbarch_printable_names (void);
1588
1589
1590 /* Helper function. Search the list of ARCHES for a GDBARCH that
1591 matches the information provided by INFO. */
1592
1593 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1594
1595
1596 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1597 basic initialization using values obtained from the INFO and TDEP
1598 parameters. set_gdbarch_*() functions are called to complete the
1599 initialization of the object. */
1600
1601 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1602
1603
1604 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1605 It is assumed that the caller freeds the \`\`struct
1606 gdbarch_tdep''. */
1607
1608 extern void gdbarch_free (struct gdbarch *);
1609
1610 /* Get the obstack owned by ARCH. */
1611
1612 extern obstack *gdbarch_obstack (gdbarch *arch);
1613
1614 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1615 obstack. The memory is freed when the corresponding architecture
1616 is also freed. */
1617
1618 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1619 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1620
1621 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1622 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1623
1624 /* Duplicate STRING, returning an equivalent string that's allocated on the
1625 obstack associated with GDBARCH. The string is freed when the corresponding
1626 architecture is also freed. */
1627
1628 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1629
1630 /* Helper function. Force an update of the current architecture.
1631
1632 The actual architecture selected is determined by INFO, \`\`(gdb) set
1633 architecture'' et.al., the existing architecture and BFD's default
1634 architecture. INFO should be initialized to zero and then selected
1635 fields should be updated.
1636
1637 Returns non-zero if the update succeeds. */
1638
1639 extern int gdbarch_update_p (struct gdbarch_info info);
1640
1641
1642 /* Helper function. Find an architecture matching info.
1643
1644 INFO should be initialized using gdbarch_info_init, relevant fields
1645 set, and then finished using gdbarch_info_fill.
1646
1647 Returns the corresponding architecture, or NULL if no matching
1648 architecture was found. */
1649
1650 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1651
1652
1653 /* Helper function. Set the target gdbarch to "gdbarch". */
1654
1655 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1656
1657
1658 /* Register per-architecture data-pointer.
1659
1660 Reserve space for a per-architecture data-pointer. An identifier
1661 for the reserved data-pointer is returned. That identifer should
1662 be saved in a local static variable.
1663
1664 Memory for the per-architecture data shall be allocated using
1665 gdbarch_obstack_zalloc. That memory will be deleted when the
1666 corresponding architecture object is deleted.
1667
1668 When a previously created architecture is re-selected, the
1669 per-architecture data-pointer for that previous architecture is
1670 restored. INIT() is not re-called.
1671
1672 Multiple registrarants for any architecture are allowed (and
1673 strongly encouraged). */
1674
1675 struct gdbarch_data;
1676
1677 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1678 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1679 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1680 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1681
1682 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1683
1684
1685 /* Set the dynamic target-system-dependent parameters (architecture,
1686 byte-order, ...) using information found in the BFD. */
1687
1688 extern void set_gdbarch_from_file (bfd *);
1689
1690
1691 /* Initialize the current architecture to the "first" one we find on
1692 our list. */
1693
1694 extern void initialize_current_architecture (void);
1695
1696 /* gdbarch trace variable */
1697 extern unsigned int gdbarch_debug;
1698
1699 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1700
1701 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1702
1703 static inline int
1704 gdbarch_num_cooked_regs (gdbarch *arch)
1705 {
1706 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1707 }
1708
1709 #endif
1710 EOF
1711 exec 1>&2
1712 ../move-if-change new-gdbarch.h gdbarch.h
1713 rm -f new-gdbarch.h
1714
1715
1716 #
1717 # C file
1718 #
1719
1720 exec > new-gdbarch.c
1721 copyright
1722 cat <<EOF
1723
1724 #include "defs.h"
1725 #include "arch-utils.h"
1726
1727 #include "gdbcmd.h"
1728 #include "inferior.h"
1729 #include "symcat.h"
1730
1731 #include "floatformat.h"
1732 #include "reggroups.h"
1733 #include "osabi.h"
1734 #include "gdb_obstack.h"
1735 #include "observable.h"
1736 #include "regcache.h"
1737 #include "objfiles.h"
1738 #include "auxv.h"
1739 #include "frame-unwind.h"
1740 #include "dummy-frame.h"
1741
1742 /* Static function declarations */
1743
1744 static void alloc_gdbarch_data (struct gdbarch *);
1745
1746 /* Non-zero if we want to trace architecture code. */
1747
1748 #ifndef GDBARCH_DEBUG
1749 #define GDBARCH_DEBUG 0
1750 #endif
1751 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1752 static void
1753 show_gdbarch_debug (struct ui_file *file, int from_tty,
1754 struct cmd_list_element *c, const char *value)
1755 {
1756 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1757 }
1758
1759 static const char *
1760 pformat (const struct floatformat **format)
1761 {
1762 if (format == NULL)
1763 return "(null)";
1764 else
1765 /* Just print out one of them - this is only for diagnostics. */
1766 return format[0]->name;
1767 }
1768
1769 static const char *
1770 pstring (const char *string)
1771 {
1772 if (string == NULL)
1773 return "(null)";
1774 return string;
1775 }
1776
1777 static const char *
1778 pstring_ptr (char **string)
1779 {
1780 if (string == NULL || *string == NULL)
1781 return "(null)";
1782 return *string;
1783 }
1784
1785 /* Helper function to print a list of strings, represented as "const
1786 char *const *". The list is printed comma-separated. */
1787
1788 static const char *
1789 pstring_list (const char *const *list)
1790 {
1791 static char ret[100];
1792 const char *const *p;
1793 size_t offset = 0;
1794
1795 if (list == NULL)
1796 return "(null)";
1797
1798 ret[0] = '\0';
1799 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1800 {
1801 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1802 offset += 2 + s;
1803 }
1804
1805 if (offset > 0)
1806 {
1807 gdb_assert (offset - 2 < sizeof (ret));
1808 ret[offset - 2] = '\0';
1809 }
1810
1811 return ret;
1812 }
1813
1814 EOF
1815
1816 # gdbarch open the gdbarch object
1817 printf "\n"
1818 printf "/* Maintain the struct gdbarch object. */\n"
1819 printf "\n"
1820 printf "struct gdbarch\n"
1821 printf "{\n"
1822 printf " /* Has this architecture been fully initialized? */\n"
1823 printf " int initialized_p;\n"
1824 printf "\n"
1825 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1826 printf " struct obstack *obstack;\n"
1827 printf "\n"
1828 printf " /* basic architectural information. */\n"
1829 function_list | while do_read
1830 do
1831 if class_is_info_p
1832 then
1833 printf " %s %s;\n" "$returntype" "$function"
1834 fi
1835 done
1836 printf "\n"
1837 printf " /* target specific vector. */\n"
1838 printf " struct gdbarch_tdep *tdep;\n"
1839 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1840 printf "\n"
1841 printf " /* per-architecture data-pointers. */\n"
1842 printf " unsigned nr_data;\n"
1843 printf " void **data;\n"
1844 printf "\n"
1845 cat <<EOF
1846 /* Multi-arch values.
1847
1848 When extending this structure you must:
1849
1850 Add the field below.
1851
1852 Declare set/get functions and define the corresponding
1853 macro in gdbarch.h.
1854
1855 gdbarch_alloc(): If zero/NULL is not a suitable default,
1856 initialize the new field.
1857
1858 verify_gdbarch(): Confirm that the target updated the field
1859 correctly.
1860
1861 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1862 field is dumped out
1863
1864 get_gdbarch(): Implement the set/get functions (probably using
1865 the macro's as shortcuts).
1866
1867 */
1868
1869 EOF
1870 function_list | while do_read
1871 do
1872 if class_is_variable_p
1873 then
1874 printf " %s %s;\n" "$returntype" "$function"
1875 elif class_is_function_p
1876 then
1877 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
1878 fi
1879 done
1880 printf "};\n"
1881
1882 # Create a new gdbarch struct
1883 cat <<EOF
1884
1885 /* Create a new \`\`struct gdbarch'' based on information provided by
1886 \`\`struct gdbarch_info''. */
1887 EOF
1888 printf "\n"
1889 cat <<EOF
1890 struct gdbarch *
1891 gdbarch_alloc (const struct gdbarch_info *info,
1892 struct gdbarch_tdep *tdep)
1893 {
1894 struct gdbarch *gdbarch;
1895
1896 /* Create an obstack for allocating all the per-architecture memory,
1897 then use that to allocate the architecture vector. */
1898 struct obstack *obstack = XNEW (struct obstack);
1899 obstack_init (obstack);
1900 gdbarch = XOBNEW (obstack, struct gdbarch);
1901 memset (gdbarch, 0, sizeof (*gdbarch));
1902 gdbarch->obstack = obstack;
1903
1904 alloc_gdbarch_data (gdbarch);
1905
1906 gdbarch->tdep = tdep;
1907 EOF
1908 printf "\n"
1909 function_list | while do_read
1910 do
1911 if class_is_info_p
1912 then
1913 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
1914 fi
1915 done
1916 printf "\n"
1917 printf " /* Force the explicit initialization of these. */\n"
1918 function_list | while do_read
1919 do
1920 if class_is_function_p || class_is_variable_p
1921 then
1922 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
1923 then
1924 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
1925 fi
1926 fi
1927 done
1928 cat <<EOF
1929 /* gdbarch_alloc() */
1930
1931 return gdbarch;
1932 }
1933 EOF
1934
1935 # Free a gdbarch struct.
1936 printf "\n"
1937 printf "\n"
1938 cat <<EOF
1939
1940 obstack *gdbarch_obstack (gdbarch *arch)
1941 {
1942 return arch->obstack;
1943 }
1944
1945 /* See gdbarch.h. */
1946
1947 char *
1948 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1949 {
1950 return obstack_strdup (arch->obstack, string);
1951 }
1952
1953
1954 /* Free a gdbarch struct. This should never happen in normal
1955 operation --- once you've created a gdbarch, you keep it around.
1956 However, if an architecture's init function encounters an error
1957 building the structure, it may need to clean up a partially
1958 constructed gdbarch. */
1959
1960 void
1961 gdbarch_free (struct gdbarch *arch)
1962 {
1963 struct obstack *obstack;
1964
1965 gdb_assert (arch != NULL);
1966 gdb_assert (!arch->initialized_p);
1967 obstack = arch->obstack;
1968 obstack_free (obstack, 0); /* Includes the ARCH. */
1969 xfree (obstack);
1970 }
1971 EOF
1972
1973 # verify a new architecture
1974 cat <<EOF
1975
1976
1977 /* Ensure that all values in a GDBARCH are reasonable. */
1978
1979 static void
1980 verify_gdbarch (struct gdbarch *gdbarch)
1981 {
1982 string_file log;
1983
1984 /* fundamental */
1985 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1986 log.puts ("\n\tbyte-order");
1987 if (gdbarch->bfd_arch_info == NULL)
1988 log.puts ("\n\tbfd_arch_info");
1989 /* Check those that need to be defined for the given multi-arch level. */
1990 EOF
1991 function_list | while do_read
1992 do
1993 if class_is_function_p || class_is_variable_p
1994 then
1995 if [ "x${invalid_p}" = "x0" ]
1996 then
1997 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
1998 elif class_is_predicate_p
1999 then
2000 printf " /* Skip verify of %s, has predicate. */\n" "$function"
2001 # FIXME: See do_read for potential simplification
2002 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
2003 then
2004 printf " if (%s)\n" "$invalid_p"
2005 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
2006 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
2007 then
2008 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
2009 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
2010 elif [ -n "${postdefault}" ]
2011 then
2012 printf " if (gdbarch->%s == 0)\n" "$function"
2013 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
2014 elif [ -n "${invalid_p}" ]
2015 then
2016 printf " if (%s)\n" "$invalid_p"
2017 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
2018 elif [ -n "${predefault}" ]
2019 then
2020 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
2021 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
2022 fi
2023 fi
2024 done
2025 cat <<EOF
2026 if (!log.empty ())
2027 internal_error (__FILE__, __LINE__,
2028 _("verify_gdbarch: the following are invalid ...%s"),
2029 log.c_str ());
2030 }
2031 EOF
2032
2033 # dump the structure
2034 printf "\n"
2035 printf "\n"
2036 cat <<EOF
2037 /* Print out the details of the current architecture. */
2038
2039 void
2040 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
2041 {
2042 const char *gdb_nm_file = "<not-defined>";
2043
2044 #if defined (GDB_NM_FILE)
2045 gdb_nm_file = GDB_NM_FILE;
2046 #endif
2047 fprintf_unfiltered (file,
2048 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2049 gdb_nm_file);
2050 EOF
2051 function_list | sort '-t;' -k 3 | while do_read
2052 do
2053 # First the predicate
2054 if class_is_predicate_p
2055 then
2056 printf " fprintf_unfiltered (file,\n"
2057 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2058 printf " gdbarch_%s_p (gdbarch));\n" "$function"
2059 fi
2060 # Print the corresponding value.
2061 if class_is_function_p
2062 then
2063 printf " fprintf_unfiltered (file,\n"
2064 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2065 printf " host_address_to_string (gdbarch->%s));\n" "$function"
2066 else
2067 # It is a variable
2068 case "${print}:${returntype}" in
2069 :CORE_ADDR )
2070 fmt="%s"
2071 print="core_addr_to_string_nz (gdbarch->${function})"
2072 ;;
2073 :* )
2074 fmt="%s"
2075 print="plongest (gdbarch->${function})"
2076 ;;
2077 * )
2078 fmt="%s"
2079 ;;
2080 esac
2081 printf " fprintf_unfiltered (file,\n"
2082 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2083 printf " %s);\n" "$print"
2084 fi
2085 done
2086 cat <<EOF
2087 if (gdbarch->dump_tdep != NULL)
2088 gdbarch->dump_tdep (gdbarch, file);
2089 }
2090 EOF
2091
2092
2093 # GET/SET
2094 printf "\n"
2095 cat <<EOF
2096 struct gdbarch_tdep *
2097 gdbarch_tdep (struct gdbarch *gdbarch)
2098 {
2099 if (gdbarch_debug >= 2)
2100 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2101 return gdbarch->tdep;
2102 }
2103 EOF
2104 printf "\n"
2105 function_list | while do_read
2106 do
2107 if class_is_predicate_p
2108 then
2109 printf "\n"
2110 printf "bool\n"
2111 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
2112 printf "{\n"
2113 printf " gdb_assert (gdbarch != NULL);\n"
2114 printf " return %s;\n" "$predicate"
2115 printf "}\n"
2116 fi
2117 if class_is_function_p
2118 then
2119 printf "\n"
2120 printf "%s\n" "$returntype"
2121 if [ "x${formal}" = "xvoid" ]
2122 then
2123 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2124 else
2125 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
2126 fi
2127 printf "{\n"
2128 printf " gdb_assert (gdbarch != NULL);\n"
2129 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
2130 if class_is_predicate_p && test -n "${predefault}"
2131 then
2132 # Allow a call to a function with a predicate.
2133 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
2134 fi
2135 printf " if (gdbarch_debug >= 2)\n"
2136 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2137 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
2138 then
2139 if class_is_multiarch_p
2140 then
2141 params="gdbarch"
2142 else
2143 params=""
2144 fi
2145 else
2146 if class_is_multiarch_p
2147 then
2148 params="gdbarch, ${actual}"
2149 else
2150 params="${actual}"
2151 fi
2152 fi
2153 if [ "x${returntype}" = "xvoid" ]
2154 then
2155 printf " gdbarch->%s (%s);\n" "$function" "$params"
2156 else
2157 printf " return gdbarch->%s (%s);\n" "$function" "$params"
2158 fi
2159 printf "}\n"
2160 printf "\n"
2161 printf "void\n"
2162 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2163 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
2164 printf "{\n"
2165 printf " gdbarch->%s = %s;\n" "$function" "$function"
2166 printf "}\n"
2167 elif class_is_variable_p
2168 then
2169 printf "\n"
2170 printf "%s\n" "$returntype"
2171 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2172 printf "{\n"
2173 printf " gdb_assert (gdbarch != NULL);\n"
2174 if [ "x${invalid_p}" = "x0" ]
2175 then
2176 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2177 elif [ -n "${invalid_p}" ]
2178 then
2179 printf " /* Check variable is valid. */\n"
2180 printf " gdb_assert (!(%s));\n" "$invalid_p"
2181 elif [ -n "${predefault}" ]
2182 then
2183 printf " /* Check variable changed from pre-default. */\n"
2184 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
2185 fi
2186 printf " if (gdbarch_debug >= 2)\n"
2187 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2188 printf " return gdbarch->%s;\n" "$function"
2189 printf "}\n"
2190 printf "\n"
2191 printf "void\n"
2192 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2193 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
2194 printf "{\n"
2195 printf " gdbarch->%s = %s;\n" "$function" "$function"
2196 printf "}\n"
2197 elif class_is_info_p
2198 then
2199 printf "\n"
2200 printf "%s\n" "$returntype"
2201 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2202 printf "{\n"
2203 printf " gdb_assert (gdbarch != NULL);\n"
2204 printf " if (gdbarch_debug >= 2)\n"
2205 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2206 printf " return gdbarch->%s;\n" "$function"
2207 printf "}\n"
2208 fi
2209 done
2210
2211 # All the trailing guff
2212 cat <<EOF
2213
2214
2215 /* Keep a registry of per-architecture data-pointers required by GDB
2216 modules. */
2217
2218 struct gdbarch_data
2219 {
2220 unsigned index;
2221 int init_p;
2222 gdbarch_data_pre_init_ftype *pre_init;
2223 gdbarch_data_post_init_ftype *post_init;
2224 };
2225
2226 struct gdbarch_data_registration
2227 {
2228 struct gdbarch_data *data;
2229 struct gdbarch_data_registration *next;
2230 };
2231
2232 struct gdbarch_data_registry
2233 {
2234 unsigned nr;
2235 struct gdbarch_data_registration *registrations;
2236 };
2237
2238 static struct gdbarch_data_registry gdbarch_data_registry =
2239 {
2240 0, NULL,
2241 };
2242
2243 static struct gdbarch_data *
2244 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2245 gdbarch_data_post_init_ftype *post_init)
2246 {
2247 struct gdbarch_data_registration **curr;
2248
2249 /* Append the new registration. */
2250 for (curr = &gdbarch_data_registry.registrations;
2251 (*curr) != NULL;
2252 curr = &(*curr)->next);
2253 (*curr) = XNEW (struct gdbarch_data_registration);
2254 (*curr)->next = NULL;
2255 (*curr)->data = XNEW (struct gdbarch_data);
2256 (*curr)->data->index = gdbarch_data_registry.nr++;
2257 (*curr)->data->pre_init = pre_init;
2258 (*curr)->data->post_init = post_init;
2259 (*curr)->data->init_p = 1;
2260 return (*curr)->data;
2261 }
2262
2263 struct gdbarch_data *
2264 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2265 {
2266 return gdbarch_data_register (pre_init, NULL);
2267 }
2268
2269 struct gdbarch_data *
2270 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2271 {
2272 return gdbarch_data_register (NULL, post_init);
2273 }
2274
2275 /* Create/delete the gdbarch data vector. */
2276
2277 static void
2278 alloc_gdbarch_data (struct gdbarch *gdbarch)
2279 {
2280 gdb_assert (gdbarch->data == NULL);
2281 gdbarch->nr_data = gdbarch_data_registry.nr;
2282 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2283 }
2284
2285 /* Return the current value of the specified per-architecture
2286 data-pointer. */
2287
2288 void *
2289 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2290 {
2291 gdb_assert (data->index < gdbarch->nr_data);
2292 if (gdbarch->data[data->index] == NULL)
2293 {
2294 /* The data-pointer isn't initialized, call init() to get a
2295 value. */
2296 if (data->pre_init != NULL)
2297 /* Mid architecture creation: pass just the obstack, and not
2298 the entire architecture, as that way it isn't possible for
2299 pre-init code to refer to undefined architecture
2300 fields. */
2301 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2302 else if (gdbarch->initialized_p
2303 && data->post_init != NULL)
2304 /* Post architecture creation: pass the entire architecture
2305 (as all fields are valid), but be careful to also detect
2306 recursive references. */
2307 {
2308 gdb_assert (data->init_p);
2309 data->init_p = 0;
2310 gdbarch->data[data->index] = data->post_init (gdbarch);
2311 data->init_p = 1;
2312 }
2313 else
2314 internal_error (__FILE__, __LINE__,
2315 _("gdbarch post-init data field can only be used "
2316 "after gdbarch is fully initialised"));
2317 gdb_assert (gdbarch->data[data->index] != NULL);
2318 }
2319 return gdbarch->data[data->index];
2320 }
2321
2322
2323 /* Keep a registry of the architectures known by GDB. */
2324
2325 struct gdbarch_registration
2326 {
2327 enum bfd_architecture bfd_architecture;
2328 gdbarch_init_ftype *init;
2329 gdbarch_dump_tdep_ftype *dump_tdep;
2330 struct gdbarch_list *arches;
2331 struct gdbarch_registration *next;
2332 };
2333
2334 static struct gdbarch_registration *gdbarch_registry = NULL;
2335
2336 static void
2337 append_name (const char ***buf, int *nr, const char *name)
2338 {
2339 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2340 (*buf)[*nr] = name;
2341 *nr += 1;
2342 }
2343
2344 const char **
2345 gdbarch_printable_names (void)
2346 {
2347 /* Accumulate a list of names based on the registed list of
2348 architectures. */
2349 int nr_arches = 0;
2350 const char **arches = NULL;
2351 struct gdbarch_registration *rego;
2352
2353 for (rego = gdbarch_registry;
2354 rego != NULL;
2355 rego = rego->next)
2356 {
2357 const struct bfd_arch_info *ap;
2358 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2359 if (ap == NULL)
2360 internal_error (__FILE__, __LINE__,
2361 _("gdbarch_architecture_names: multi-arch unknown"));
2362 do
2363 {
2364 append_name (&arches, &nr_arches, ap->printable_name);
2365 ap = ap->next;
2366 }
2367 while (ap != NULL);
2368 }
2369 append_name (&arches, &nr_arches, NULL);
2370 return arches;
2371 }
2372
2373
2374 void
2375 gdbarch_register (enum bfd_architecture bfd_architecture,
2376 gdbarch_init_ftype *init,
2377 gdbarch_dump_tdep_ftype *dump_tdep)
2378 {
2379 struct gdbarch_registration **curr;
2380 const struct bfd_arch_info *bfd_arch_info;
2381
2382 /* Check that BFD recognizes this architecture */
2383 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2384 if (bfd_arch_info == NULL)
2385 {
2386 internal_error (__FILE__, __LINE__,
2387 _("gdbarch: Attempt to register "
2388 "unknown architecture (%d)"),
2389 bfd_architecture);
2390 }
2391 /* Check that we haven't seen this architecture before. */
2392 for (curr = &gdbarch_registry;
2393 (*curr) != NULL;
2394 curr = &(*curr)->next)
2395 {
2396 if (bfd_architecture == (*curr)->bfd_architecture)
2397 internal_error (__FILE__, __LINE__,
2398 _("gdbarch: Duplicate registration "
2399 "of architecture (%s)"),
2400 bfd_arch_info->printable_name);
2401 }
2402 /* log it */
2403 if (gdbarch_debug)
2404 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2405 bfd_arch_info->printable_name,
2406 host_address_to_string (init));
2407 /* Append it */
2408 (*curr) = XNEW (struct gdbarch_registration);
2409 (*curr)->bfd_architecture = bfd_architecture;
2410 (*curr)->init = init;
2411 (*curr)->dump_tdep = dump_tdep;
2412 (*curr)->arches = NULL;
2413 (*curr)->next = NULL;
2414 }
2415
2416 void
2417 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2418 gdbarch_init_ftype *init)
2419 {
2420 gdbarch_register (bfd_architecture, init, NULL);
2421 }
2422
2423
2424 /* Look for an architecture using gdbarch_info. */
2425
2426 struct gdbarch_list *
2427 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2428 const struct gdbarch_info *info)
2429 {
2430 for (; arches != NULL; arches = arches->next)
2431 {
2432 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2433 continue;
2434 if (info->byte_order != arches->gdbarch->byte_order)
2435 continue;
2436 if (info->osabi != arches->gdbarch->osabi)
2437 continue;
2438 if (info->target_desc != arches->gdbarch->target_desc)
2439 continue;
2440 return arches;
2441 }
2442 return NULL;
2443 }
2444
2445
2446 /* Find an architecture that matches the specified INFO. Create a new
2447 architecture if needed. Return that new architecture. */
2448
2449 struct gdbarch *
2450 gdbarch_find_by_info (struct gdbarch_info info)
2451 {
2452 struct gdbarch *new_gdbarch;
2453 struct gdbarch_registration *rego;
2454
2455 /* Fill in missing parts of the INFO struct using a number of
2456 sources: "set ..."; INFOabfd supplied; and the global
2457 defaults. */
2458 gdbarch_info_fill (&info);
2459
2460 /* Must have found some sort of architecture. */
2461 gdb_assert (info.bfd_arch_info != NULL);
2462
2463 if (gdbarch_debug)
2464 {
2465 fprintf_unfiltered (gdb_stdlog,
2466 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2467 (info.bfd_arch_info != NULL
2468 ? info.bfd_arch_info->printable_name
2469 : "(null)"));
2470 fprintf_unfiltered (gdb_stdlog,
2471 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2472 info.byte_order,
2473 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2474 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2475 : "default"));
2476 fprintf_unfiltered (gdb_stdlog,
2477 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2478 info.osabi, gdbarch_osabi_name (info.osabi));
2479 fprintf_unfiltered (gdb_stdlog,
2480 "gdbarch_find_by_info: info.abfd %s\n",
2481 host_address_to_string (info.abfd));
2482 fprintf_unfiltered (gdb_stdlog,
2483 "gdbarch_find_by_info: info.tdep_info %s\n",
2484 host_address_to_string (info.tdep_info));
2485 }
2486
2487 /* Find the tdep code that knows about this architecture. */
2488 for (rego = gdbarch_registry;
2489 rego != NULL;
2490 rego = rego->next)
2491 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2492 break;
2493 if (rego == NULL)
2494 {
2495 if (gdbarch_debug)
2496 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2497 "No matching architecture\n");
2498 return 0;
2499 }
2500
2501 /* Ask the tdep code for an architecture that matches "info". */
2502 new_gdbarch = rego->init (info, rego->arches);
2503
2504 /* Did the tdep code like it? No. Reject the change and revert to
2505 the old architecture. */
2506 if (new_gdbarch == NULL)
2507 {
2508 if (gdbarch_debug)
2509 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2510 "Target rejected architecture\n");
2511 return NULL;
2512 }
2513
2514 /* Is this a pre-existing architecture (as determined by already
2515 being initialized)? Move it to the front of the architecture
2516 list (keeping the list sorted Most Recently Used). */
2517 if (new_gdbarch->initialized_p)
2518 {
2519 struct gdbarch_list **list;
2520 struct gdbarch_list *self;
2521 if (gdbarch_debug)
2522 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2523 "Previous architecture %s (%s) selected\n",
2524 host_address_to_string (new_gdbarch),
2525 new_gdbarch->bfd_arch_info->printable_name);
2526 /* Find the existing arch in the list. */
2527 for (list = &rego->arches;
2528 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2529 list = &(*list)->next);
2530 /* It had better be in the list of architectures. */
2531 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2532 /* Unlink SELF. */
2533 self = (*list);
2534 (*list) = self->next;
2535 /* Insert SELF at the front. */
2536 self->next = rego->arches;
2537 rego->arches = self;
2538 /* Return it. */
2539 return new_gdbarch;
2540 }
2541
2542 /* It's a new architecture. */
2543 if (gdbarch_debug)
2544 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2545 "New architecture %s (%s) selected\n",
2546 host_address_to_string (new_gdbarch),
2547 new_gdbarch->bfd_arch_info->printable_name);
2548
2549 /* Insert the new architecture into the front of the architecture
2550 list (keep the list sorted Most Recently Used). */
2551 {
2552 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2553 self->next = rego->arches;
2554 self->gdbarch = new_gdbarch;
2555 rego->arches = self;
2556 }
2557
2558 /* Check that the newly installed architecture is valid. Plug in
2559 any post init values. */
2560 new_gdbarch->dump_tdep = rego->dump_tdep;
2561 verify_gdbarch (new_gdbarch);
2562 new_gdbarch->initialized_p = 1;
2563
2564 if (gdbarch_debug)
2565 gdbarch_dump (new_gdbarch, gdb_stdlog);
2566
2567 return new_gdbarch;
2568 }
2569
2570 /* Make the specified architecture current. */
2571
2572 void
2573 set_target_gdbarch (struct gdbarch *new_gdbarch)
2574 {
2575 gdb_assert (new_gdbarch != NULL);
2576 gdb_assert (new_gdbarch->initialized_p);
2577 current_inferior ()->gdbarch = new_gdbarch;
2578 gdb::observers::architecture_changed.notify (new_gdbarch);
2579 registers_changed ();
2580 }
2581
2582 /* Return the current inferior's arch. */
2583
2584 struct gdbarch *
2585 target_gdbarch (void)
2586 {
2587 return current_inferior ()->gdbarch;
2588 }
2589
2590 void _initialize_gdbarch ();
2591 void
2592 _initialize_gdbarch ()
2593 {
2594 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2595 Set architecture debugging."), _("\\
2596 Show architecture debugging."), _("\\
2597 When non-zero, architecture debugging is enabled."),
2598 NULL,
2599 show_gdbarch_debug,
2600 &setdebuglist, &showdebuglist);
2601 }
2602 EOF
2603
2604 # close things off
2605 exec 1>&2
2606 ../move-if-change new-gdbarch.c gdbarch.c
2607 rm -f new-gdbarch.c