]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbarch.sh
GDB copyright headers update after running GDB's copyright.py script.
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2016 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
465 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
466 m:const char *:register_name:int regnr:regnr::0
467
468 # Return the type of a register specified by the architecture. Only
469 # the register cache should call this function directly; others should
470 # use "register_type".
471 M:struct type *:register_type:int reg_nr:reg_nr
472
473 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
474 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
475 # deprecated_fp_regnum.
476 v:int:deprecated_fp_regnum:::-1:-1::0
477
478 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
479 v:int:call_dummy_location::::AT_ENTRY_POINT::0
480 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
481
482 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
483 m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
484 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 # MAP a GDB RAW register number onto a simulator register number. See
486 # also include/...-sim.h.
487 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
488 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
489 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
490
491 # Determine the address where a longjmp will land and save this address
492 # in PC. Return nonzero on success.
493 #
494 # FRAME corresponds to the longjmp frame.
495 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
496
497 #
498 v:int:believe_pcc_promotion:::::::
499 #
500 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
501 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
502 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
503 # Construct a value representing the contents of register REGNUM in
504 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
505 # allocate and return a struct value with all value attributes
506 # (but not the value contents) filled in.
507 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
508 #
509 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
510 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
511 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
512
513 # Return the return-value convention that will be used by FUNCTION
514 # to return a value of type VALTYPE. FUNCTION may be NULL in which
515 # case the return convention is computed based only on VALTYPE.
516 #
517 # If READBUF is not NULL, extract the return value and save it in this buffer.
518 #
519 # If WRITEBUF is not NULL, it contains a return value which will be
520 # stored into the appropriate register. This can be used when we want
521 # to force the value returned by a function (see the "return" command
522 # for instance).
523 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
524
525 # Return true if the return value of function is stored in the first hidden
526 # parameter. In theory, this feature should be language-dependent, specified
527 # by language and its ABI, such as C++. Unfortunately, compiler may
528 # implement it to a target-dependent feature. So that we need such hook here
529 # to be aware of this in GDB.
530 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
531
532 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
533 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
534 # On some platforms, a single function may provide multiple entry points,
535 # e.g. one that is used for function-pointer calls and a different one
536 # that is used for direct function calls.
537 # In order to ensure that breakpoints set on the function will trigger
538 # no matter via which entry point the function is entered, a platform
539 # may provide the skip_entrypoint callback. It is called with IP set
540 # to the main entry point of a function (as determined by the symbol table),
541 # and should return the address of the innermost entry point, where the
542 # actual breakpoint needs to be set. Note that skip_entrypoint is used
543 # by GDB common code even when debugging optimized code, where skip_prologue
544 # is not used.
545 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
546
547 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
548 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
549 # Return the adjusted address and kind to use for Z0/Z1 packets.
550 # KIND is usually the memory length of the breakpoint, but may have a
551 # different target-specific meaning.
552 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
553 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
554 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
555 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
556 v:CORE_ADDR:decr_pc_after_break:::0:::0
557
558 # A function can be addressed by either it's "pointer" (possibly a
559 # descriptor address) or "entry point" (first executable instruction).
560 # The method "convert_from_func_ptr_addr" converting the former to the
561 # latter. gdbarch_deprecated_function_start_offset is being used to implement
562 # a simplified subset of that functionality - the function's address
563 # corresponds to the "function pointer" and the function's start
564 # corresponds to the "function entry point" - and hence is redundant.
565
566 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
567
568 # Return the remote protocol register number associated with this
569 # register. Normally the identity mapping.
570 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
571
572 # Fetch the target specific address used to represent a load module.
573 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
574 #
575 v:CORE_ADDR:frame_args_skip:::0:::0
576 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
577 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
578 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
579 # frame-base. Enable frame-base before frame-unwind.
580 F:int:frame_num_args:struct frame_info *frame:frame
581 #
582 M:CORE_ADDR:frame_align:CORE_ADDR address:address
583 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
584 v:int:frame_red_zone_size
585 #
586 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
587 # On some machines there are bits in addresses which are not really
588 # part of the address, but are used by the kernel, the hardware, etc.
589 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
590 # we get a "real" address such as one would find in a symbol table.
591 # This is used only for addresses of instructions, and even then I'm
592 # not sure it's used in all contexts. It exists to deal with there
593 # being a few stray bits in the PC which would mislead us, not as some
594 # sort of generic thing to handle alignment or segmentation (it's
595 # possible it should be in TARGET_READ_PC instead).
596 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
597
598 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
599 # indicates if the target needs software single step. An ISA method to
600 # implement it.
601 #
602 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
603 # breakpoints using the breakpoint system instead of blatting memory directly
604 # (as with rs6000).
605 #
606 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
607 # target can single step. If not, then implement single step using breakpoints.
608 #
609 # A return value of 1 means that the software_single_step breakpoints
610 # were inserted; 0 means they were not.
611 F:int:software_single_step:struct frame_info *frame:frame
612
613 # Return non-zero if the processor is executing a delay slot and a
614 # further single-step is needed before the instruction finishes.
615 M:int:single_step_through_delay:struct frame_info *frame:frame
616 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
617 # disassembler. Perhaps objdump can handle it?
618 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
619 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
620
621
622 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
623 # evaluates non-zero, this is the address where the debugger will place
624 # a step-resume breakpoint to get us past the dynamic linker.
625 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
626 # Some systems also have trampoline code for returning from shared libs.
627 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
628
629 # A target might have problems with watchpoints as soon as the stack
630 # frame of the current function has been destroyed. This mostly happens
631 # as the first action in a function's epilogue. stack_frame_destroyed_p()
632 # is defined to return a non-zero value if either the given addr is one
633 # instruction after the stack destroying instruction up to the trailing
634 # return instruction or if we can figure out that the stack frame has
635 # already been invalidated regardless of the value of addr. Targets
636 # which don't suffer from that problem could just let this functionality
637 # untouched.
638 m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
639 # Process an ELF symbol in the minimal symbol table in a backend-specific
640 # way. Normally this hook is supposed to do nothing, however if required,
641 # then this hook can be used to apply tranformations to symbols that are
642 # considered special in some way. For example the MIPS backend uses it
643 # to interpret \`st_other' information to mark compressed code symbols so
644 # that they can be treated in the appropriate manner in the processing of
645 # the main symbol table and DWARF-2 records.
646 F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
647 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
648 # Process a symbol in the main symbol table in a backend-specific way.
649 # Normally this hook is supposed to do nothing, however if required,
650 # then this hook can be used to apply tranformations to symbols that
651 # are considered special in some way. This is currently used by the
652 # MIPS backend to make sure compressed code symbols have the ISA bit
653 # set. This in turn is needed for symbol values seen in GDB to match
654 # the values used at the runtime by the program itself, for function
655 # and label references.
656 f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
657 # Adjust the address retrieved from a DWARF-2 record other than a line
658 # entry in a backend-specific way. Normally this hook is supposed to
659 # return the address passed unchanged, however if that is incorrect for
660 # any reason, then this hook can be used to fix the address up in the
661 # required manner. This is currently used by the MIPS backend to make
662 # sure addresses in FDE, range records, etc. referring to compressed
663 # code have the ISA bit set, matching line information and the symbol
664 # table.
665 f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
666 # Adjust the address updated by a line entry in a backend-specific way.
667 # Normally this hook is supposed to return the address passed unchanged,
668 # however in the case of inconsistencies in these records, this hook can
669 # be used to fix them up in the required manner. This is currently used
670 # by the MIPS backend to make sure all line addresses in compressed code
671 # are presented with the ISA bit set, which is not always the case. This
672 # in turn ensures breakpoint addresses are correctly matched against the
673 # stop PC.
674 f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
675 v:int:cannot_step_breakpoint:::0:0::0
676 v:int:have_nonsteppable_watchpoint:::0:0::0
677 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
678 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
679
680 # Return the appropriate type_flags for the supplied address class.
681 # This function should return 1 if the address class was recognized and
682 # type_flags was set, zero otherwise.
683 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
684 # Is a register in a group
685 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
686 # Fetch the pointer to the ith function argument.
687 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
688
689 # Iterate over all supported register notes in a core file. For each
690 # supported register note section, the iterator must call CB and pass
691 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
692 # the supported register note sections based on the current register
693 # values. Otherwise it should enumerate all supported register note
694 # sections.
695 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
696
697 # Create core file notes
698 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
699
700 # The elfcore writer hook to use to write Linux prpsinfo notes to core
701 # files. Most Linux architectures use the same prpsinfo32 or
702 # prpsinfo64 layouts, and so won't need to provide this hook, as we
703 # call the Linux generic routines in bfd to write prpsinfo notes by
704 # default.
705 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
706
707 # Find core file memory regions
708 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
709
710 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
711 # core file into buffer READBUF with length LEN. Return the number of bytes read
712 # (zero indicates failure).
713 # failed, otherwise, return the red length of READBUF.
714 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
715
716 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
717 # libraries list from core file into buffer READBUF with length LEN.
718 # Return the number of bytes read (zero indicates failure).
719 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
720
721 # How the core target converts a PTID from a core file to a string.
722 M:char *:core_pid_to_str:ptid_t ptid:ptid
723
724 # BFD target to use when generating a core file.
725 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
726
727 # If the elements of C++ vtables are in-place function descriptors rather
728 # than normal function pointers (which may point to code or a descriptor),
729 # set this to one.
730 v:int:vtable_function_descriptors:::0:0::0
731
732 # Set if the least significant bit of the delta is used instead of the least
733 # significant bit of the pfn for pointers to virtual member functions.
734 v:int:vbit_in_delta:::0:0::0
735
736 # Advance PC to next instruction in order to skip a permanent breakpoint.
737 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
738
739 # The maximum length of an instruction on this architecture in bytes.
740 V:ULONGEST:max_insn_length:::0:0
741
742 # Copy the instruction at FROM to TO, and make any adjustments
743 # necessary to single-step it at that address.
744 #
745 # REGS holds the state the thread's registers will have before
746 # executing the copied instruction; the PC in REGS will refer to FROM,
747 # not the copy at TO. The caller should update it to point at TO later.
748 #
749 # Return a pointer to data of the architecture's choice to be passed
750 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
751 # the instruction's effects have been completely simulated, with the
752 # resulting state written back to REGS.
753 #
754 # For a general explanation of displaced stepping and how GDB uses it,
755 # see the comments in infrun.c.
756 #
757 # The TO area is only guaranteed to have space for
758 # gdbarch_max_insn_length (arch) bytes, so this function must not
759 # write more bytes than that to that area.
760 #
761 # If you do not provide this function, GDB assumes that the
762 # architecture does not support displaced stepping.
763 #
764 # If your architecture doesn't need to adjust instructions before
765 # single-stepping them, consider using simple_displaced_step_copy_insn
766 # here.
767 #
768 # If the instruction cannot execute out of line, return NULL. The
769 # core falls back to stepping past the instruction in-line instead in
770 # that case.
771 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
772
773 # Return true if GDB should use hardware single-stepping to execute
774 # the displaced instruction identified by CLOSURE. If false,
775 # GDB will simply restart execution at the displaced instruction
776 # location, and it is up to the target to ensure GDB will receive
777 # control again (e.g. by placing a software breakpoint instruction
778 # into the displaced instruction buffer).
779 #
780 # The default implementation returns false on all targets that
781 # provide a gdbarch_software_single_step routine, and true otherwise.
782 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
783
784 # Fix up the state resulting from successfully single-stepping a
785 # displaced instruction, to give the result we would have gotten from
786 # stepping the instruction in its original location.
787 #
788 # REGS is the register state resulting from single-stepping the
789 # displaced instruction.
790 #
791 # CLOSURE is the result from the matching call to
792 # gdbarch_displaced_step_copy_insn.
793 #
794 # If you provide gdbarch_displaced_step_copy_insn.but not this
795 # function, then GDB assumes that no fixup is needed after
796 # single-stepping the instruction.
797 #
798 # For a general explanation of displaced stepping and how GDB uses it,
799 # see the comments in infrun.c.
800 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
801
802 # Free a closure returned by gdbarch_displaced_step_copy_insn.
803 #
804 # If you provide gdbarch_displaced_step_copy_insn, you must provide
805 # this function as well.
806 #
807 # If your architecture uses closures that don't need to be freed, then
808 # you can use simple_displaced_step_free_closure here.
809 #
810 # For a general explanation of displaced stepping and how GDB uses it,
811 # see the comments in infrun.c.
812 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
813
814 # Return the address of an appropriate place to put displaced
815 # instructions while we step over them. There need only be one such
816 # place, since we're only stepping one thread over a breakpoint at a
817 # time.
818 #
819 # For a general explanation of displaced stepping and how GDB uses it,
820 # see the comments in infrun.c.
821 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
822
823 # Relocate an instruction to execute at a different address. OLDLOC
824 # is the address in the inferior memory where the instruction to
825 # relocate is currently at. On input, TO points to the destination
826 # where we want the instruction to be copied (and possibly adjusted)
827 # to. On output, it points to one past the end of the resulting
828 # instruction(s). The effect of executing the instruction at TO shall
829 # be the same as if executing it at FROM. For example, call
830 # instructions that implicitly push the return address on the stack
831 # should be adjusted to return to the instruction after OLDLOC;
832 # relative branches, and other PC-relative instructions need the
833 # offset adjusted; etc.
834 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
835
836 # Refresh overlay mapped state for section OSECT.
837 F:void:overlay_update:struct obj_section *osect:osect
838
839 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
840
841 # Handle special encoding of static variables in stabs debug info.
842 F:const char *:static_transform_name:const char *name:name
843 # Set if the address in N_SO or N_FUN stabs may be zero.
844 v:int:sofun_address_maybe_missing:::0:0::0
845
846 # Parse the instruction at ADDR storing in the record execution log
847 # the registers REGCACHE and memory ranges that will be affected when
848 # the instruction executes, along with their current values.
849 # Return -1 if something goes wrong, 0 otherwise.
850 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
851
852 # Save process state after a signal.
853 # Return -1 if something goes wrong, 0 otherwise.
854 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
855
856 # Signal translation: translate inferior's signal (target's) number
857 # into GDB's representation. The implementation of this method must
858 # be host independent. IOW, don't rely on symbols of the NAT_FILE
859 # header (the nm-*.h files), the host <signal.h> header, or similar
860 # headers. This is mainly used when cross-debugging core files ---
861 # "Live" targets hide the translation behind the target interface
862 # (target_wait, target_resume, etc.).
863 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
864
865 # Signal translation: translate the GDB's internal signal number into
866 # the inferior's signal (target's) representation. The implementation
867 # of this method must be host independent. IOW, don't rely on symbols
868 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
869 # header, or similar headers.
870 # Return the target signal number if found, or -1 if the GDB internal
871 # signal number is invalid.
872 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
873
874 # Extra signal info inspection.
875 #
876 # Return a type suitable to inspect extra signal information.
877 M:struct type *:get_siginfo_type:void:
878
879 # Record architecture-specific information from the symbol table.
880 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
881
882 # Function for the 'catch syscall' feature.
883
884 # Get architecture-specific system calls information from registers.
885 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
886
887 # The filename of the XML syscall for this architecture.
888 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
889
890 # Information about system calls from this architecture
891 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
892
893 # SystemTap related fields and functions.
894
895 # A NULL-terminated array of prefixes used to mark an integer constant
896 # on the architecture's assembly.
897 # For example, on x86 integer constants are written as:
898 #
899 # \$10 ;; integer constant 10
900 #
901 # in this case, this prefix would be the character \`\$\'.
902 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
903
904 # A NULL-terminated array of suffixes used to mark an integer constant
905 # on the architecture's assembly.
906 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
907
908 # A NULL-terminated array of prefixes used to mark a register name on
909 # the architecture's assembly.
910 # For example, on x86 the register name is written as:
911 #
912 # \%eax ;; register eax
913 #
914 # in this case, this prefix would be the character \`\%\'.
915 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
916
917 # A NULL-terminated array of suffixes used to mark a register name on
918 # the architecture's assembly.
919 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
920
921 # A NULL-terminated array of prefixes used to mark a register
922 # indirection on the architecture's assembly.
923 # For example, on x86 the register indirection is written as:
924 #
925 # \(\%eax\) ;; indirecting eax
926 #
927 # in this case, this prefix would be the charater \`\(\'.
928 #
929 # Please note that we use the indirection prefix also for register
930 # displacement, e.g., \`4\(\%eax\)\' on x86.
931 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
932
933 # A NULL-terminated array of suffixes used to mark a register
934 # indirection on the architecture's assembly.
935 # For example, on x86 the register indirection is written as:
936 #
937 # \(\%eax\) ;; indirecting eax
938 #
939 # in this case, this prefix would be the charater \`\)\'.
940 #
941 # Please note that we use the indirection suffix also for register
942 # displacement, e.g., \`4\(\%eax\)\' on x86.
943 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
944
945 # Prefix(es) used to name a register using GDB's nomenclature.
946 #
947 # For example, on PPC a register is represented by a number in the assembly
948 # language (e.g., \`10\' is the 10th general-purpose register). However,
949 # inside GDB this same register has an \`r\' appended to its name, so the 10th
950 # register would be represented as \`r10\' internally.
951 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
952
953 # Suffix used to name a register using GDB's nomenclature.
954 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
955
956 # Check if S is a single operand.
957 #
958 # Single operands can be:
959 # \- Literal integers, e.g. \`\$10\' on x86
960 # \- Register access, e.g. \`\%eax\' on x86
961 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
962 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
963 #
964 # This function should check for these patterns on the string
965 # and return 1 if some were found, or zero otherwise. Please try to match
966 # as much info as you can from the string, i.e., if you have to match
967 # something like \`\(\%\', do not match just the \`\(\'.
968 M:int:stap_is_single_operand:const char *s:s
969
970 # Function used to handle a "special case" in the parser.
971 #
972 # A "special case" is considered to be an unknown token, i.e., a token
973 # that the parser does not know how to parse. A good example of special
974 # case would be ARM's register displacement syntax:
975 #
976 # [R0, #4] ;; displacing R0 by 4
977 #
978 # Since the parser assumes that a register displacement is of the form:
979 #
980 # <number> <indirection_prefix> <register_name> <indirection_suffix>
981 #
982 # it means that it will not be able to recognize and parse this odd syntax.
983 # Therefore, we should add a special case function that will handle this token.
984 #
985 # This function should generate the proper expression form of the expression
986 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
987 # and so on). It should also return 1 if the parsing was successful, or zero
988 # if the token was not recognized as a special token (in this case, returning
989 # zero means that the special parser is deferring the parsing to the generic
990 # parser), and should advance the buffer pointer (p->arg).
991 M:int:stap_parse_special_token:struct stap_parse_info *p:p
992
993 # DTrace related functions.
994
995 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
996 # NARG must be >= 0.
997 M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
998
999 # True if the given ADDR does not contain the instruction sequence
1000 # corresponding to a disabled DTrace is-enabled probe.
1001 M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1002
1003 # Enable a DTrace is-enabled probe at ADDR.
1004 M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1005
1006 # Disable a DTrace is-enabled probe at ADDR.
1007 M:void:dtrace_disable_probe:CORE_ADDR addr:addr
1008
1009 # True if the list of shared libraries is one and only for all
1010 # processes, as opposed to a list of shared libraries per inferior.
1011 # This usually means that all processes, although may or may not share
1012 # an address space, will see the same set of symbols at the same
1013 # addresses.
1014 v:int:has_global_solist:::0:0::0
1015
1016 # On some targets, even though each inferior has its own private
1017 # address space, the debug interface takes care of making breakpoints
1018 # visible to all address spaces automatically. For such cases,
1019 # this property should be set to true.
1020 v:int:has_global_breakpoints:::0:0::0
1021
1022 # True if inferiors share an address space (e.g., uClinux).
1023 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1024
1025 # True if a fast tracepoint can be set at an address.
1026 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
1027
1028 # Return the "auto" target charset.
1029 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1030 # Return the "auto" target wide charset.
1031 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1032
1033 # If non-empty, this is a file extension that will be opened in place
1034 # of the file extension reported by the shared library list.
1035 #
1036 # This is most useful for toolchains that use a post-linker tool,
1037 # where the names of the files run on the target differ in extension
1038 # compared to the names of the files GDB should load for debug info.
1039 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1040
1041 # If true, the target OS has DOS-based file system semantics. That
1042 # is, absolute paths include a drive name, and the backslash is
1043 # considered a directory separator.
1044 v:int:has_dos_based_file_system:::0:0::0
1045
1046 # Generate bytecodes to collect the return address in a frame.
1047 # Since the bytecodes run on the target, possibly with GDB not even
1048 # connected, the full unwinding machinery is not available, and
1049 # typically this function will issue bytecodes for one or more likely
1050 # places that the return address may be found.
1051 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1052
1053 # Implement the "info proc" command.
1054 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1055
1056 # Implement the "info proc" command for core files. Noe that there
1057 # are two "info_proc"-like methods on gdbarch -- one for core files,
1058 # one for live targets.
1059 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1060
1061 # Iterate over all objfiles in the order that makes the most sense
1062 # for the architecture to make global symbol searches.
1063 #
1064 # CB is a callback function where OBJFILE is the objfile to be searched,
1065 # and CB_DATA a pointer to user-defined data (the same data that is passed
1066 # when calling this gdbarch method). The iteration stops if this function
1067 # returns nonzero.
1068 #
1069 # CB_DATA is a pointer to some user-defined data to be passed to
1070 # the callback.
1071 #
1072 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1073 # inspected when the symbol search was requested.
1074 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1075
1076 # Ravenscar arch-dependent ops.
1077 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1078
1079 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1080 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1081
1082 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1083 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1084
1085 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1086 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1087
1088 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1089 # Return 0 if *READPTR is already at the end of the buffer.
1090 # Return -1 if there is insufficient buffer for a whole entry.
1091 # Return 1 if an entry was read into *TYPEP and *VALP.
1092 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1093
1094 # Find the address range of the current inferior's vsyscall/vDSO, and
1095 # write it to *RANGE. If the vsyscall's length can't be determined, a
1096 # range with zero length is returned. Returns true if the vsyscall is
1097 # found, false otherwise.
1098 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1099
1100 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1101 # PROT has GDB_MMAP_PROT_* bitmask format.
1102 # Throw an error if it is not possible. Returned address is always valid.
1103 f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1104
1105 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1106 # Print a warning if it is not possible.
1107 f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1108
1109 # Return string (caller has to use xfree for it) with options for GCC
1110 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1111 # These options are put before CU's DW_AT_producer compilation options so that
1112 # they can override it. Method may also return NULL.
1113 m:char *:gcc_target_options:void:::default_gcc_target_options::0
1114
1115 # Return a regular expression that matches names used by this
1116 # architecture in GNU configury triplets. The result is statically
1117 # allocated and must not be freed. The default implementation simply
1118 # returns the BFD architecture name, which is correct in nearly every
1119 # case.
1120 m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
1121
1122 # Return the size in 8-bit bytes of an addressable memory unit on this
1123 # architecture. This corresponds to the number of 8-bit bytes associated to
1124 # each address in memory.
1125 m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1126
1127 EOF
1128 }
1129
1130 #
1131 # The .log file
1132 #
1133 exec > new-gdbarch.log
1134 function_list | while do_read
1135 do
1136 cat <<EOF
1137 ${class} ${returntype} ${function} ($formal)
1138 EOF
1139 for r in ${read}
1140 do
1141 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1142 done
1143 if class_is_predicate_p && fallback_default_p
1144 then
1145 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1146 kill $$
1147 exit 1
1148 fi
1149 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1150 then
1151 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1152 kill $$
1153 exit 1
1154 fi
1155 if class_is_multiarch_p
1156 then
1157 if class_is_predicate_p ; then :
1158 elif test "x${predefault}" = "x"
1159 then
1160 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1161 kill $$
1162 exit 1
1163 fi
1164 fi
1165 echo ""
1166 done
1167
1168 exec 1>&2
1169 compare_new gdbarch.log
1170
1171
1172 copyright ()
1173 {
1174 cat <<EOF
1175 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1176 /* vi:set ro: */
1177
1178 /* Dynamic architecture support for GDB, the GNU debugger.
1179
1180 Copyright (C) 1998-2016 Free Software Foundation, Inc.
1181
1182 This file is part of GDB.
1183
1184 This program is free software; you can redistribute it and/or modify
1185 it under the terms of the GNU General Public License as published by
1186 the Free Software Foundation; either version 3 of the License, or
1187 (at your option) any later version.
1188
1189 This program is distributed in the hope that it will be useful,
1190 but WITHOUT ANY WARRANTY; without even the implied warranty of
1191 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1192 GNU General Public License for more details.
1193
1194 You should have received a copy of the GNU General Public License
1195 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1196
1197 /* This file was created with the aid of \`\`gdbarch.sh''.
1198
1199 The Bourne shell script \`\`gdbarch.sh'' creates the files
1200 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1201 against the existing \`\`gdbarch.[hc]''. Any differences found
1202 being reported.
1203
1204 If editing this file, please also run gdbarch.sh and merge any
1205 changes into that script. Conversely, when making sweeping changes
1206 to this file, modifying gdbarch.sh and using its output may prove
1207 easier. */
1208
1209 EOF
1210 }
1211
1212 #
1213 # The .h file
1214 #
1215
1216 exec > new-gdbarch.h
1217 copyright
1218 cat <<EOF
1219 #ifndef GDBARCH_H
1220 #define GDBARCH_H
1221
1222 #include "frame.h"
1223
1224 struct floatformat;
1225 struct ui_file;
1226 struct value;
1227 struct objfile;
1228 struct obj_section;
1229 struct minimal_symbol;
1230 struct regcache;
1231 struct reggroup;
1232 struct regset;
1233 struct disassemble_info;
1234 struct target_ops;
1235 struct obstack;
1236 struct bp_target_info;
1237 struct target_desc;
1238 struct objfile;
1239 struct symbol;
1240 struct displaced_step_closure;
1241 struct syscall;
1242 struct agent_expr;
1243 struct axs_value;
1244 struct stap_parse_info;
1245 struct parser_state;
1246 struct ravenscar_arch_ops;
1247 struct elf_internal_linux_prpsinfo;
1248 struct mem_range;
1249 struct syscalls_info;
1250
1251 #include "regcache.h"
1252
1253 /* The architecture associated with the inferior through the
1254 connection to the target.
1255
1256 The architecture vector provides some information that is really a
1257 property of the inferior, accessed through a particular target:
1258 ptrace operations; the layout of certain RSP packets; the solib_ops
1259 vector; etc. To differentiate architecture accesses to
1260 per-inferior/target properties from
1261 per-thread/per-frame/per-objfile properties, accesses to
1262 per-inferior/target properties should be made through this
1263 gdbarch. */
1264
1265 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1266 extern struct gdbarch *target_gdbarch (void);
1267
1268 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1269 gdbarch method. */
1270
1271 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1272 (struct objfile *objfile, void *cb_data);
1273
1274 /* Callback type for regset section iterators. The callback usually
1275 invokes the REGSET's supply or collect method, to which it must
1276 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1277 section name, and HUMAN_NAME is used for diagnostic messages.
1278 CB_DATA should have been passed unchanged through the iterator. */
1279
1280 typedef void (iterate_over_regset_sections_cb)
1281 (const char *sect_name, int size, const struct regset *regset,
1282 const char *human_name, void *cb_data);
1283 EOF
1284
1285 # function typedef's
1286 printf "\n"
1287 printf "\n"
1288 printf "/* The following are pre-initialized by GDBARCH. */\n"
1289 function_list | while do_read
1290 do
1291 if class_is_info_p
1292 then
1293 printf "\n"
1294 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1295 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1296 fi
1297 done
1298
1299 # function typedef's
1300 printf "\n"
1301 printf "\n"
1302 printf "/* The following are initialized by the target dependent code. */\n"
1303 function_list | while do_read
1304 do
1305 if [ -n "${comment}" ]
1306 then
1307 echo "${comment}" | sed \
1308 -e '2 s,#,/*,' \
1309 -e '3,$ s,#, ,' \
1310 -e '$ s,$, */,'
1311 fi
1312
1313 if class_is_predicate_p
1314 then
1315 printf "\n"
1316 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1317 fi
1318 if class_is_variable_p
1319 then
1320 printf "\n"
1321 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1322 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1323 fi
1324 if class_is_function_p
1325 then
1326 printf "\n"
1327 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1328 then
1329 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1330 elif class_is_multiarch_p
1331 then
1332 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1333 else
1334 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1335 fi
1336 if [ "x${formal}" = "xvoid" ]
1337 then
1338 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1339 else
1340 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1341 fi
1342 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1343 fi
1344 done
1345
1346 # close it off
1347 cat <<EOF
1348
1349 /* Definition for an unknown syscall, used basically in error-cases. */
1350 #define UNKNOWN_SYSCALL (-1)
1351
1352 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1353
1354
1355 /* Mechanism for co-ordinating the selection of a specific
1356 architecture.
1357
1358 GDB targets (*-tdep.c) can register an interest in a specific
1359 architecture. Other GDB components can register a need to maintain
1360 per-architecture data.
1361
1362 The mechanisms below ensures that there is only a loose connection
1363 between the set-architecture command and the various GDB
1364 components. Each component can independently register their need
1365 to maintain architecture specific data with gdbarch.
1366
1367 Pragmatics:
1368
1369 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1370 didn't scale.
1371
1372 The more traditional mega-struct containing architecture specific
1373 data for all the various GDB components was also considered. Since
1374 GDB is built from a variable number of (fairly independent)
1375 components it was determined that the global aproach was not
1376 applicable. */
1377
1378
1379 /* Register a new architectural family with GDB.
1380
1381 Register support for the specified ARCHITECTURE with GDB. When
1382 gdbarch determines that the specified architecture has been
1383 selected, the corresponding INIT function is called.
1384
1385 --
1386
1387 The INIT function takes two parameters: INFO which contains the
1388 information available to gdbarch about the (possibly new)
1389 architecture; ARCHES which is a list of the previously created
1390 \`\`struct gdbarch'' for this architecture.
1391
1392 The INFO parameter is, as far as possible, be pre-initialized with
1393 information obtained from INFO.ABFD or the global defaults.
1394
1395 The ARCHES parameter is a linked list (sorted most recently used)
1396 of all the previously created architures for this architecture
1397 family. The (possibly NULL) ARCHES->gdbarch can used to access
1398 values from the previously selected architecture for this
1399 architecture family.
1400
1401 The INIT function shall return any of: NULL - indicating that it
1402 doesn't recognize the selected architecture; an existing \`\`struct
1403 gdbarch'' from the ARCHES list - indicating that the new
1404 architecture is just a synonym for an earlier architecture (see
1405 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1406 - that describes the selected architecture (see gdbarch_alloc()).
1407
1408 The DUMP_TDEP function shall print out all target specific values.
1409 Care should be taken to ensure that the function works in both the
1410 multi-arch and non- multi-arch cases. */
1411
1412 struct gdbarch_list
1413 {
1414 struct gdbarch *gdbarch;
1415 struct gdbarch_list *next;
1416 };
1417
1418 struct gdbarch_info
1419 {
1420 /* Use default: NULL (ZERO). */
1421 const struct bfd_arch_info *bfd_arch_info;
1422
1423 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1424 enum bfd_endian byte_order;
1425
1426 enum bfd_endian byte_order_for_code;
1427
1428 /* Use default: NULL (ZERO). */
1429 bfd *abfd;
1430
1431 /* Use default: NULL (ZERO). */
1432 void *tdep_info;
1433
1434 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1435 enum gdb_osabi osabi;
1436
1437 /* Use default: NULL (ZERO). */
1438 const struct target_desc *target_desc;
1439 };
1440
1441 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1442 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1443
1444 /* DEPRECATED - use gdbarch_register() */
1445 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1446
1447 extern void gdbarch_register (enum bfd_architecture architecture,
1448 gdbarch_init_ftype *,
1449 gdbarch_dump_tdep_ftype *);
1450
1451
1452 /* Return a freshly allocated, NULL terminated, array of the valid
1453 architecture names. Since architectures are registered during the
1454 _initialize phase this function only returns useful information
1455 once initialization has been completed. */
1456
1457 extern const char **gdbarch_printable_names (void);
1458
1459
1460 /* Helper function. Search the list of ARCHES for a GDBARCH that
1461 matches the information provided by INFO. */
1462
1463 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1464
1465
1466 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1467 basic initialization using values obtained from the INFO and TDEP
1468 parameters. set_gdbarch_*() functions are called to complete the
1469 initialization of the object. */
1470
1471 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1472
1473
1474 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1475 It is assumed that the caller freeds the \`\`struct
1476 gdbarch_tdep''. */
1477
1478 extern void gdbarch_free (struct gdbarch *);
1479
1480
1481 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1482 obstack. The memory is freed when the corresponding architecture
1483 is also freed. */
1484
1485 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1486 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1487 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1488
1489 /* Duplicate STRING, returning an equivalent string that's allocated on the
1490 obstack associated with GDBARCH. The string is freed when the corresponding
1491 architecture is also freed. */
1492
1493 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1494
1495 /* Helper function. Force an update of the current architecture.
1496
1497 The actual architecture selected is determined by INFO, \`\`(gdb) set
1498 architecture'' et.al., the existing architecture and BFD's default
1499 architecture. INFO should be initialized to zero and then selected
1500 fields should be updated.
1501
1502 Returns non-zero if the update succeeds. */
1503
1504 extern int gdbarch_update_p (struct gdbarch_info info);
1505
1506
1507 /* Helper function. Find an architecture matching info.
1508
1509 INFO should be initialized using gdbarch_info_init, relevant fields
1510 set, and then finished using gdbarch_info_fill.
1511
1512 Returns the corresponding architecture, or NULL if no matching
1513 architecture was found. */
1514
1515 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1516
1517
1518 /* Helper function. Set the target gdbarch to "gdbarch". */
1519
1520 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1521
1522
1523 /* Register per-architecture data-pointer.
1524
1525 Reserve space for a per-architecture data-pointer. An identifier
1526 for the reserved data-pointer is returned. That identifer should
1527 be saved in a local static variable.
1528
1529 Memory for the per-architecture data shall be allocated using
1530 gdbarch_obstack_zalloc. That memory will be deleted when the
1531 corresponding architecture object is deleted.
1532
1533 When a previously created architecture is re-selected, the
1534 per-architecture data-pointer for that previous architecture is
1535 restored. INIT() is not re-called.
1536
1537 Multiple registrarants for any architecture are allowed (and
1538 strongly encouraged). */
1539
1540 struct gdbarch_data;
1541
1542 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1543 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1544 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1545 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1546 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1547 struct gdbarch_data *data,
1548 void *pointer);
1549
1550 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1551
1552
1553 /* Set the dynamic target-system-dependent parameters (architecture,
1554 byte-order, ...) using information found in the BFD. */
1555
1556 extern void set_gdbarch_from_file (bfd *);
1557
1558
1559 /* Initialize the current architecture to the "first" one we find on
1560 our list. */
1561
1562 extern void initialize_current_architecture (void);
1563
1564 /* gdbarch trace variable */
1565 extern unsigned int gdbarch_debug;
1566
1567 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1568
1569 #endif
1570 EOF
1571 exec 1>&2
1572 #../move-if-change new-gdbarch.h gdbarch.h
1573 compare_new gdbarch.h
1574
1575
1576 #
1577 # C file
1578 #
1579
1580 exec > new-gdbarch.c
1581 copyright
1582 cat <<EOF
1583
1584 #include "defs.h"
1585 #include "arch-utils.h"
1586
1587 #include "gdbcmd.h"
1588 #include "inferior.h"
1589 #include "symcat.h"
1590
1591 #include "floatformat.h"
1592 #include "reggroups.h"
1593 #include "osabi.h"
1594 #include "gdb_obstack.h"
1595 #include "observer.h"
1596 #include "regcache.h"
1597 #include "objfiles.h"
1598
1599 /* Static function declarations */
1600
1601 static void alloc_gdbarch_data (struct gdbarch *);
1602
1603 /* Non-zero if we want to trace architecture code. */
1604
1605 #ifndef GDBARCH_DEBUG
1606 #define GDBARCH_DEBUG 0
1607 #endif
1608 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1609 static void
1610 show_gdbarch_debug (struct ui_file *file, int from_tty,
1611 struct cmd_list_element *c, const char *value)
1612 {
1613 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1614 }
1615
1616 static const char *
1617 pformat (const struct floatformat **format)
1618 {
1619 if (format == NULL)
1620 return "(null)";
1621 else
1622 /* Just print out one of them - this is only for diagnostics. */
1623 return format[0]->name;
1624 }
1625
1626 static const char *
1627 pstring (const char *string)
1628 {
1629 if (string == NULL)
1630 return "(null)";
1631 return string;
1632 }
1633
1634 /* Helper function to print a list of strings, represented as "const
1635 char *const *". The list is printed comma-separated. */
1636
1637 static char *
1638 pstring_list (const char *const *list)
1639 {
1640 static char ret[100];
1641 const char *const *p;
1642 size_t offset = 0;
1643
1644 if (list == NULL)
1645 return "(null)";
1646
1647 ret[0] = '\0';
1648 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1649 {
1650 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1651 offset += 2 + s;
1652 }
1653
1654 if (offset > 0)
1655 {
1656 gdb_assert (offset - 2 < sizeof (ret));
1657 ret[offset - 2] = '\0';
1658 }
1659
1660 return ret;
1661 }
1662
1663 EOF
1664
1665 # gdbarch open the gdbarch object
1666 printf "\n"
1667 printf "/* Maintain the struct gdbarch object. */\n"
1668 printf "\n"
1669 printf "struct gdbarch\n"
1670 printf "{\n"
1671 printf " /* Has this architecture been fully initialized? */\n"
1672 printf " int initialized_p;\n"
1673 printf "\n"
1674 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1675 printf " struct obstack *obstack;\n"
1676 printf "\n"
1677 printf " /* basic architectural information. */\n"
1678 function_list | while do_read
1679 do
1680 if class_is_info_p
1681 then
1682 printf " ${returntype} ${function};\n"
1683 fi
1684 done
1685 printf "\n"
1686 printf " /* target specific vector. */\n"
1687 printf " struct gdbarch_tdep *tdep;\n"
1688 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1689 printf "\n"
1690 printf " /* per-architecture data-pointers. */\n"
1691 printf " unsigned nr_data;\n"
1692 printf " void **data;\n"
1693 printf "\n"
1694 cat <<EOF
1695 /* Multi-arch values.
1696
1697 When extending this structure you must:
1698
1699 Add the field below.
1700
1701 Declare set/get functions and define the corresponding
1702 macro in gdbarch.h.
1703
1704 gdbarch_alloc(): If zero/NULL is not a suitable default,
1705 initialize the new field.
1706
1707 verify_gdbarch(): Confirm that the target updated the field
1708 correctly.
1709
1710 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1711 field is dumped out
1712
1713 get_gdbarch(): Implement the set/get functions (probably using
1714 the macro's as shortcuts).
1715
1716 */
1717
1718 EOF
1719 function_list | while do_read
1720 do
1721 if class_is_variable_p
1722 then
1723 printf " ${returntype} ${function};\n"
1724 elif class_is_function_p
1725 then
1726 printf " gdbarch_${function}_ftype *${function};\n"
1727 fi
1728 done
1729 printf "};\n"
1730
1731 # Create a new gdbarch struct
1732 cat <<EOF
1733
1734 /* Create a new \`\`struct gdbarch'' based on information provided by
1735 \`\`struct gdbarch_info''. */
1736 EOF
1737 printf "\n"
1738 cat <<EOF
1739 struct gdbarch *
1740 gdbarch_alloc (const struct gdbarch_info *info,
1741 struct gdbarch_tdep *tdep)
1742 {
1743 struct gdbarch *gdbarch;
1744
1745 /* Create an obstack for allocating all the per-architecture memory,
1746 then use that to allocate the architecture vector. */
1747 struct obstack *obstack = XNEW (struct obstack);
1748 obstack_init (obstack);
1749 gdbarch = XOBNEW (obstack, struct gdbarch);
1750 memset (gdbarch, 0, sizeof (*gdbarch));
1751 gdbarch->obstack = obstack;
1752
1753 alloc_gdbarch_data (gdbarch);
1754
1755 gdbarch->tdep = tdep;
1756 EOF
1757 printf "\n"
1758 function_list | while do_read
1759 do
1760 if class_is_info_p
1761 then
1762 printf " gdbarch->${function} = info->${function};\n"
1763 fi
1764 done
1765 printf "\n"
1766 printf " /* Force the explicit initialization of these. */\n"
1767 function_list | while do_read
1768 do
1769 if class_is_function_p || class_is_variable_p
1770 then
1771 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1772 then
1773 printf " gdbarch->${function} = ${predefault};\n"
1774 fi
1775 fi
1776 done
1777 cat <<EOF
1778 /* gdbarch_alloc() */
1779
1780 return gdbarch;
1781 }
1782 EOF
1783
1784 # Free a gdbarch struct.
1785 printf "\n"
1786 printf "\n"
1787 cat <<EOF
1788 /* Allocate extra space using the per-architecture obstack. */
1789
1790 void *
1791 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1792 {
1793 void *data = obstack_alloc (arch->obstack, size);
1794
1795 memset (data, 0, size);
1796 return data;
1797 }
1798
1799 /* See gdbarch.h. */
1800
1801 char *
1802 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1803 {
1804 return obstack_strdup (arch->obstack, string);
1805 }
1806
1807
1808 /* Free a gdbarch struct. This should never happen in normal
1809 operation --- once you've created a gdbarch, you keep it around.
1810 However, if an architecture's init function encounters an error
1811 building the structure, it may need to clean up a partially
1812 constructed gdbarch. */
1813
1814 void
1815 gdbarch_free (struct gdbarch *arch)
1816 {
1817 struct obstack *obstack;
1818
1819 gdb_assert (arch != NULL);
1820 gdb_assert (!arch->initialized_p);
1821 obstack = arch->obstack;
1822 obstack_free (obstack, 0); /* Includes the ARCH. */
1823 xfree (obstack);
1824 }
1825 EOF
1826
1827 # verify a new architecture
1828 cat <<EOF
1829
1830
1831 /* Ensure that all values in a GDBARCH are reasonable. */
1832
1833 static void
1834 verify_gdbarch (struct gdbarch *gdbarch)
1835 {
1836 struct ui_file *log;
1837 struct cleanup *cleanups;
1838 long length;
1839 char *buf;
1840
1841 log = mem_fileopen ();
1842 cleanups = make_cleanup_ui_file_delete (log);
1843 /* fundamental */
1844 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1845 fprintf_unfiltered (log, "\n\tbyte-order");
1846 if (gdbarch->bfd_arch_info == NULL)
1847 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1848 /* Check those that need to be defined for the given multi-arch level. */
1849 EOF
1850 function_list | while do_read
1851 do
1852 if class_is_function_p || class_is_variable_p
1853 then
1854 if [ "x${invalid_p}" = "x0" ]
1855 then
1856 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1857 elif class_is_predicate_p
1858 then
1859 printf " /* Skip verify of ${function}, has predicate. */\n"
1860 # FIXME: See do_read for potential simplification
1861 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1862 then
1863 printf " if (${invalid_p})\n"
1864 printf " gdbarch->${function} = ${postdefault};\n"
1865 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1866 then
1867 printf " if (gdbarch->${function} == ${predefault})\n"
1868 printf " gdbarch->${function} = ${postdefault};\n"
1869 elif [ -n "${postdefault}" ]
1870 then
1871 printf " if (gdbarch->${function} == 0)\n"
1872 printf " gdbarch->${function} = ${postdefault};\n"
1873 elif [ -n "${invalid_p}" ]
1874 then
1875 printf " if (${invalid_p})\n"
1876 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1877 elif [ -n "${predefault}" ]
1878 then
1879 printf " if (gdbarch->${function} == ${predefault})\n"
1880 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1881 fi
1882 fi
1883 done
1884 cat <<EOF
1885 buf = ui_file_xstrdup (log, &length);
1886 make_cleanup (xfree, buf);
1887 if (length > 0)
1888 internal_error (__FILE__, __LINE__,
1889 _("verify_gdbarch: the following are invalid ...%s"),
1890 buf);
1891 do_cleanups (cleanups);
1892 }
1893 EOF
1894
1895 # dump the structure
1896 printf "\n"
1897 printf "\n"
1898 cat <<EOF
1899 /* Print out the details of the current architecture. */
1900
1901 void
1902 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1903 {
1904 const char *gdb_nm_file = "<not-defined>";
1905
1906 #if defined (GDB_NM_FILE)
1907 gdb_nm_file = GDB_NM_FILE;
1908 #endif
1909 fprintf_unfiltered (file,
1910 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1911 gdb_nm_file);
1912 EOF
1913 function_list | sort -t: -k 3 | while do_read
1914 do
1915 # First the predicate
1916 if class_is_predicate_p
1917 then
1918 printf " fprintf_unfiltered (file,\n"
1919 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1920 printf " gdbarch_${function}_p (gdbarch));\n"
1921 fi
1922 # Print the corresponding value.
1923 if class_is_function_p
1924 then
1925 printf " fprintf_unfiltered (file,\n"
1926 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1927 printf " host_address_to_string (gdbarch->${function}));\n"
1928 else
1929 # It is a variable
1930 case "${print}:${returntype}" in
1931 :CORE_ADDR )
1932 fmt="%s"
1933 print="core_addr_to_string_nz (gdbarch->${function})"
1934 ;;
1935 :* )
1936 fmt="%s"
1937 print="plongest (gdbarch->${function})"
1938 ;;
1939 * )
1940 fmt="%s"
1941 ;;
1942 esac
1943 printf " fprintf_unfiltered (file,\n"
1944 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1945 printf " ${print});\n"
1946 fi
1947 done
1948 cat <<EOF
1949 if (gdbarch->dump_tdep != NULL)
1950 gdbarch->dump_tdep (gdbarch, file);
1951 }
1952 EOF
1953
1954
1955 # GET/SET
1956 printf "\n"
1957 cat <<EOF
1958 struct gdbarch_tdep *
1959 gdbarch_tdep (struct gdbarch *gdbarch)
1960 {
1961 if (gdbarch_debug >= 2)
1962 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1963 return gdbarch->tdep;
1964 }
1965 EOF
1966 printf "\n"
1967 function_list | while do_read
1968 do
1969 if class_is_predicate_p
1970 then
1971 printf "\n"
1972 printf "int\n"
1973 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1974 printf "{\n"
1975 printf " gdb_assert (gdbarch != NULL);\n"
1976 printf " return ${predicate};\n"
1977 printf "}\n"
1978 fi
1979 if class_is_function_p
1980 then
1981 printf "\n"
1982 printf "${returntype}\n"
1983 if [ "x${formal}" = "xvoid" ]
1984 then
1985 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1986 else
1987 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1988 fi
1989 printf "{\n"
1990 printf " gdb_assert (gdbarch != NULL);\n"
1991 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1992 if class_is_predicate_p && test -n "${predefault}"
1993 then
1994 # Allow a call to a function with a predicate.
1995 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1996 fi
1997 printf " if (gdbarch_debug >= 2)\n"
1998 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1999 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2000 then
2001 if class_is_multiarch_p
2002 then
2003 params="gdbarch"
2004 else
2005 params=""
2006 fi
2007 else
2008 if class_is_multiarch_p
2009 then
2010 params="gdbarch, ${actual}"
2011 else
2012 params="${actual}"
2013 fi
2014 fi
2015 if [ "x${returntype}" = "xvoid" ]
2016 then
2017 printf " gdbarch->${function} (${params});\n"
2018 else
2019 printf " return gdbarch->${function} (${params});\n"
2020 fi
2021 printf "}\n"
2022 printf "\n"
2023 printf "void\n"
2024 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2025 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2026 printf "{\n"
2027 printf " gdbarch->${function} = ${function};\n"
2028 printf "}\n"
2029 elif class_is_variable_p
2030 then
2031 printf "\n"
2032 printf "${returntype}\n"
2033 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2034 printf "{\n"
2035 printf " gdb_assert (gdbarch != NULL);\n"
2036 if [ "x${invalid_p}" = "x0" ]
2037 then
2038 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2039 elif [ -n "${invalid_p}" ]
2040 then
2041 printf " /* Check variable is valid. */\n"
2042 printf " gdb_assert (!(${invalid_p}));\n"
2043 elif [ -n "${predefault}" ]
2044 then
2045 printf " /* Check variable changed from pre-default. */\n"
2046 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2047 fi
2048 printf " if (gdbarch_debug >= 2)\n"
2049 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2050 printf " return gdbarch->${function};\n"
2051 printf "}\n"
2052 printf "\n"
2053 printf "void\n"
2054 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2055 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2056 printf "{\n"
2057 printf " gdbarch->${function} = ${function};\n"
2058 printf "}\n"
2059 elif class_is_info_p
2060 then
2061 printf "\n"
2062 printf "${returntype}\n"
2063 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2064 printf "{\n"
2065 printf " gdb_assert (gdbarch != NULL);\n"
2066 printf " if (gdbarch_debug >= 2)\n"
2067 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2068 printf " return gdbarch->${function};\n"
2069 printf "}\n"
2070 fi
2071 done
2072
2073 # All the trailing guff
2074 cat <<EOF
2075
2076
2077 /* Keep a registry of per-architecture data-pointers required by GDB
2078 modules. */
2079
2080 struct gdbarch_data
2081 {
2082 unsigned index;
2083 int init_p;
2084 gdbarch_data_pre_init_ftype *pre_init;
2085 gdbarch_data_post_init_ftype *post_init;
2086 };
2087
2088 struct gdbarch_data_registration
2089 {
2090 struct gdbarch_data *data;
2091 struct gdbarch_data_registration *next;
2092 };
2093
2094 struct gdbarch_data_registry
2095 {
2096 unsigned nr;
2097 struct gdbarch_data_registration *registrations;
2098 };
2099
2100 struct gdbarch_data_registry gdbarch_data_registry =
2101 {
2102 0, NULL,
2103 };
2104
2105 static struct gdbarch_data *
2106 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2107 gdbarch_data_post_init_ftype *post_init)
2108 {
2109 struct gdbarch_data_registration **curr;
2110
2111 /* Append the new registration. */
2112 for (curr = &gdbarch_data_registry.registrations;
2113 (*curr) != NULL;
2114 curr = &(*curr)->next);
2115 (*curr) = XNEW (struct gdbarch_data_registration);
2116 (*curr)->next = NULL;
2117 (*curr)->data = XNEW (struct gdbarch_data);
2118 (*curr)->data->index = gdbarch_data_registry.nr++;
2119 (*curr)->data->pre_init = pre_init;
2120 (*curr)->data->post_init = post_init;
2121 (*curr)->data->init_p = 1;
2122 return (*curr)->data;
2123 }
2124
2125 struct gdbarch_data *
2126 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2127 {
2128 return gdbarch_data_register (pre_init, NULL);
2129 }
2130
2131 struct gdbarch_data *
2132 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2133 {
2134 return gdbarch_data_register (NULL, post_init);
2135 }
2136
2137 /* Create/delete the gdbarch data vector. */
2138
2139 static void
2140 alloc_gdbarch_data (struct gdbarch *gdbarch)
2141 {
2142 gdb_assert (gdbarch->data == NULL);
2143 gdbarch->nr_data = gdbarch_data_registry.nr;
2144 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2145 }
2146
2147 /* Initialize the current value of the specified per-architecture
2148 data-pointer. */
2149
2150 void
2151 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2152 struct gdbarch_data *data,
2153 void *pointer)
2154 {
2155 gdb_assert (data->index < gdbarch->nr_data);
2156 gdb_assert (gdbarch->data[data->index] == NULL);
2157 gdb_assert (data->pre_init == NULL);
2158 gdbarch->data[data->index] = pointer;
2159 }
2160
2161 /* Return the current value of the specified per-architecture
2162 data-pointer. */
2163
2164 void *
2165 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2166 {
2167 gdb_assert (data->index < gdbarch->nr_data);
2168 if (gdbarch->data[data->index] == NULL)
2169 {
2170 /* The data-pointer isn't initialized, call init() to get a
2171 value. */
2172 if (data->pre_init != NULL)
2173 /* Mid architecture creation: pass just the obstack, and not
2174 the entire architecture, as that way it isn't possible for
2175 pre-init code to refer to undefined architecture
2176 fields. */
2177 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2178 else if (gdbarch->initialized_p
2179 && data->post_init != NULL)
2180 /* Post architecture creation: pass the entire architecture
2181 (as all fields are valid), but be careful to also detect
2182 recursive references. */
2183 {
2184 gdb_assert (data->init_p);
2185 data->init_p = 0;
2186 gdbarch->data[data->index] = data->post_init (gdbarch);
2187 data->init_p = 1;
2188 }
2189 else
2190 /* The architecture initialization hasn't completed - punt -
2191 hope that the caller knows what they are doing. Once
2192 deprecated_set_gdbarch_data has been initialized, this can be
2193 changed to an internal error. */
2194 return NULL;
2195 gdb_assert (gdbarch->data[data->index] != NULL);
2196 }
2197 return gdbarch->data[data->index];
2198 }
2199
2200
2201 /* Keep a registry of the architectures known by GDB. */
2202
2203 struct gdbarch_registration
2204 {
2205 enum bfd_architecture bfd_architecture;
2206 gdbarch_init_ftype *init;
2207 gdbarch_dump_tdep_ftype *dump_tdep;
2208 struct gdbarch_list *arches;
2209 struct gdbarch_registration *next;
2210 };
2211
2212 static struct gdbarch_registration *gdbarch_registry = NULL;
2213
2214 static void
2215 append_name (const char ***buf, int *nr, const char *name)
2216 {
2217 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2218 (*buf)[*nr] = name;
2219 *nr += 1;
2220 }
2221
2222 const char **
2223 gdbarch_printable_names (void)
2224 {
2225 /* Accumulate a list of names based on the registed list of
2226 architectures. */
2227 int nr_arches = 0;
2228 const char **arches = NULL;
2229 struct gdbarch_registration *rego;
2230
2231 for (rego = gdbarch_registry;
2232 rego != NULL;
2233 rego = rego->next)
2234 {
2235 const struct bfd_arch_info *ap;
2236 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2237 if (ap == NULL)
2238 internal_error (__FILE__, __LINE__,
2239 _("gdbarch_architecture_names: multi-arch unknown"));
2240 do
2241 {
2242 append_name (&arches, &nr_arches, ap->printable_name);
2243 ap = ap->next;
2244 }
2245 while (ap != NULL);
2246 }
2247 append_name (&arches, &nr_arches, NULL);
2248 return arches;
2249 }
2250
2251
2252 void
2253 gdbarch_register (enum bfd_architecture bfd_architecture,
2254 gdbarch_init_ftype *init,
2255 gdbarch_dump_tdep_ftype *dump_tdep)
2256 {
2257 struct gdbarch_registration **curr;
2258 const struct bfd_arch_info *bfd_arch_info;
2259
2260 /* Check that BFD recognizes this architecture */
2261 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2262 if (bfd_arch_info == NULL)
2263 {
2264 internal_error (__FILE__, __LINE__,
2265 _("gdbarch: Attempt to register "
2266 "unknown architecture (%d)"),
2267 bfd_architecture);
2268 }
2269 /* Check that we haven't seen this architecture before. */
2270 for (curr = &gdbarch_registry;
2271 (*curr) != NULL;
2272 curr = &(*curr)->next)
2273 {
2274 if (bfd_architecture == (*curr)->bfd_architecture)
2275 internal_error (__FILE__, __LINE__,
2276 _("gdbarch: Duplicate registration "
2277 "of architecture (%s)"),
2278 bfd_arch_info->printable_name);
2279 }
2280 /* log it */
2281 if (gdbarch_debug)
2282 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2283 bfd_arch_info->printable_name,
2284 host_address_to_string (init));
2285 /* Append it */
2286 (*curr) = XNEW (struct gdbarch_registration);
2287 (*curr)->bfd_architecture = bfd_architecture;
2288 (*curr)->init = init;
2289 (*curr)->dump_tdep = dump_tdep;
2290 (*curr)->arches = NULL;
2291 (*curr)->next = NULL;
2292 }
2293
2294 void
2295 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2296 gdbarch_init_ftype *init)
2297 {
2298 gdbarch_register (bfd_architecture, init, NULL);
2299 }
2300
2301
2302 /* Look for an architecture using gdbarch_info. */
2303
2304 struct gdbarch_list *
2305 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2306 const struct gdbarch_info *info)
2307 {
2308 for (; arches != NULL; arches = arches->next)
2309 {
2310 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2311 continue;
2312 if (info->byte_order != arches->gdbarch->byte_order)
2313 continue;
2314 if (info->osabi != arches->gdbarch->osabi)
2315 continue;
2316 if (info->target_desc != arches->gdbarch->target_desc)
2317 continue;
2318 return arches;
2319 }
2320 return NULL;
2321 }
2322
2323
2324 /* Find an architecture that matches the specified INFO. Create a new
2325 architecture if needed. Return that new architecture. */
2326
2327 struct gdbarch *
2328 gdbarch_find_by_info (struct gdbarch_info info)
2329 {
2330 struct gdbarch *new_gdbarch;
2331 struct gdbarch_registration *rego;
2332
2333 /* Fill in missing parts of the INFO struct using a number of
2334 sources: "set ..."; INFOabfd supplied; and the global
2335 defaults. */
2336 gdbarch_info_fill (&info);
2337
2338 /* Must have found some sort of architecture. */
2339 gdb_assert (info.bfd_arch_info != NULL);
2340
2341 if (gdbarch_debug)
2342 {
2343 fprintf_unfiltered (gdb_stdlog,
2344 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2345 (info.bfd_arch_info != NULL
2346 ? info.bfd_arch_info->printable_name
2347 : "(null)"));
2348 fprintf_unfiltered (gdb_stdlog,
2349 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2350 info.byte_order,
2351 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2352 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2353 : "default"));
2354 fprintf_unfiltered (gdb_stdlog,
2355 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2356 info.osabi, gdbarch_osabi_name (info.osabi));
2357 fprintf_unfiltered (gdb_stdlog,
2358 "gdbarch_find_by_info: info.abfd %s\n",
2359 host_address_to_string (info.abfd));
2360 fprintf_unfiltered (gdb_stdlog,
2361 "gdbarch_find_by_info: info.tdep_info %s\n",
2362 host_address_to_string (info.tdep_info));
2363 }
2364
2365 /* Find the tdep code that knows about this architecture. */
2366 for (rego = gdbarch_registry;
2367 rego != NULL;
2368 rego = rego->next)
2369 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2370 break;
2371 if (rego == NULL)
2372 {
2373 if (gdbarch_debug)
2374 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2375 "No matching architecture\n");
2376 return 0;
2377 }
2378
2379 /* Ask the tdep code for an architecture that matches "info". */
2380 new_gdbarch = rego->init (info, rego->arches);
2381
2382 /* Did the tdep code like it? No. Reject the change and revert to
2383 the old architecture. */
2384 if (new_gdbarch == NULL)
2385 {
2386 if (gdbarch_debug)
2387 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2388 "Target rejected architecture\n");
2389 return NULL;
2390 }
2391
2392 /* Is this a pre-existing architecture (as determined by already
2393 being initialized)? Move it to the front of the architecture
2394 list (keeping the list sorted Most Recently Used). */
2395 if (new_gdbarch->initialized_p)
2396 {
2397 struct gdbarch_list **list;
2398 struct gdbarch_list *self;
2399 if (gdbarch_debug)
2400 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2401 "Previous architecture %s (%s) selected\n",
2402 host_address_to_string (new_gdbarch),
2403 new_gdbarch->bfd_arch_info->printable_name);
2404 /* Find the existing arch in the list. */
2405 for (list = &rego->arches;
2406 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2407 list = &(*list)->next);
2408 /* It had better be in the list of architectures. */
2409 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2410 /* Unlink SELF. */
2411 self = (*list);
2412 (*list) = self->next;
2413 /* Insert SELF at the front. */
2414 self->next = rego->arches;
2415 rego->arches = self;
2416 /* Return it. */
2417 return new_gdbarch;
2418 }
2419
2420 /* It's a new architecture. */
2421 if (gdbarch_debug)
2422 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2423 "New architecture %s (%s) selected\n",
2424 host_address_to_string (new_gdbarch),
2425 new_gdbarch->bfd_arch_info->printable_name);
2426
2427 /* Insert the new architecture into the front of the architecture
2428 list (keep the list sorted Most Recently Used). */
2429 {
2430 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2431 self->next = rego->arches;
2432 self->gdbarch = new_gdbarch;
2433 rego->arches = self;
2434 }
2435
2436 /* Check that the newly installed architecture is valid. Plug in
2437 any post init values. */
2438 new_gdbarch->dump_tdep = rego->dump_tdep;
2439 verify_gdbarch (new_gdbarch);
2440 new_gdbarch->initialized_p = 1;
2441
2442 if (gdbarch_debug)
2443 gdbarch_dump (new_gdbarch, gdb_stdlog);
2444
2445 return new_gdbarch;
2446 }
2447
2448 /* Make the specified architecture current. */
2449
2450 void
2451 set_target_gdbarch (struct gdbarch *new_gdbarch)
2452 {
2453 gdb_assert (new_gdbarch != NULL);
2454 gdb_assert (new_gdbarch->initialized_p);
2455 current_inferior ()->gdbarch = new_gdbarch;
2456 observer_notify_architecture_changed (new_gdbarch);
2457 registers_changed ();
2458 }
2459
2460 /* Return the current inferior's arch. */
2461
2462 struct gdbarch *
2463 target_gdbarch (void)
2464 {
2465 return current_inferior ()->gdbarch;
2466 }
2467
2468 extern void _initialize_gdbarch (void);
2469
2470 void
2471 _initialize_gdbarch (void)
2472 {
2473 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2474 Set architecture debugging."), _("\\
2475 Show architecture debugging."), _("\\
2476 When non-zero, architecture debugging is enabled."),
2477 NULL,
2478 show_gdbarch_debug,
2479 &setdebuglist, &showdebuglist);
2480 }
2481 EOF
2482
2483 # close things off
2484 exec 1>&2
2485 #../move-if-change new-gdbarch.c gdbarch.c
2486 compare_new gdbarch.c