]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbtypes.c
Protoization.
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2 Copyright (C) 1992, 93, 94, 95, 96, 1998 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36 #include "wrapper.h"
37
38 /* These variables point to the objects
39 representing the predefined C data types. */
40
41 struct type *builtin_type_void;
42 struct type *builtin_type_char;
43 struct type *builtin_type_true_char;
44 struct type *builtin_type_short;
45 struct type *builtin_type_int;
46 struct type *builtin_type_long;
47 struct type *builtin_type_long_long;
48 struct type *builtin_type_signed_char;
49 struct type *builtin_type_unsigned_char;
50 struct type *builtin_type_unsigned_short;
51 struct type *builtin_type_unsigned_int;
52 struct type *builtin_type_unsigned_long;
53 struct type *builtin_type_unsigned_long_long;
54 struct type *builtin_type_float;
55 struct type *builtin_type_double;
56 struct type *builtin_type_long_double;
57 struct type *builtin_type_complex;
58 struct type *builtin_type_double_complex;
59 struct type *builtin_type_string;
60 struct type *builtin_type_int8;
61 struct type *builtin_type_uint8;
62 struct type *builtin_type_int16;
63 struct type *builtin_type_uint16;
64 struct type *builtin_type_int32;
65 struct type *builtin_type_uint32;
66 struct type *builtin_type_int64;
67 struct type *builtin_type_uint64;
68 struct type *builtin_type_bool;
69 struct type *builtin_type_v4sf;
70 struct type *builtin_type_v4si;
71 struct type *builtin_type_v8qi;
72 struct type *builtin_type_v4hi;
73 struct type *builtin_type_v2si;
74 struct type *builtin_type_ptr;
75 struct type *builtin_type_CORE_ADDR;
76 struct type *builtin_type_bfd_vma;
77
78 int opaque_type_resolution = 1;
79 int overload_debug = 0;
80
81 struct extra
82 {
83 char str[128];
84 int len;
85 }; /* maximum extention is 128! FIXME */
86
87 static void add_name (struct extra *, char *);
88 static void add_mangled_type (struct extra *, struct type *);
89 #if 0
90 static void cfront_mangle_name (struct type *, int, int);
91 #endif
92 static void print_bit_vector (B_TYPE *, int);
93 static void print_arg_types (struct type **, int);
94 static void dump_fn_fieldlists (struct type *, int);
95 static void print_cplus_stuff (struct type *, int);
96 static void virtual_base_list_aux (struct type *dclass);
97
98
99 /* Alloc a new type structure and fill it with some defaults. If
100 OBJFILE is non-NULL, then allocate the space for the type structure
101 in that objfile's type_obstack. */
102
103 struct type *
104 alloc_type (struct objfile *objfile)
105 {
106 register struct type *type;
107
108 /* Alloc the structure and start off with all fields zeroed. */
109
110 if (objfile == NULL)
111 {
112 type = (struct type *) xmalloc (sizeof (struct type));
113 }
114 else
115 {
116 type = (struct type *) obstack_alloc (&objfile->type_obstack,
117 sizeof (struct type));
118 OBJSTAT (objfile, n_types++);
119 }
120 memset ((char *) type, 0, sizeof (struct type));
121
122 /* Initialize the fields that might not be zero. */
123
124 TYPE_CODE (type) = TYPE_CODE_UNDEF;
125 TYPE_OBJFILE (type) = objfile;
126 TYPE_VPTR_FIELDNO (type) = -1;
127 TYPE_CV_TYPE (type) = type; /* chain back to itself */
128
129 return (type);
130 }
131
132 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
133 to a pointer to memory where the pointer type should be stored.
134 If *TYPEPTR is zero, update it to point to the pointer type we return.
135 We allocate new memory if needed. */
136
137 struct type *
138 make_pointer_type (struct type *type, struct type **typeptr)
139 {
140 register struct type *ntype; /* New type */
141 struct objfile *objfile;
142
143 ntype = TYPE_POINTER_TYPE (type);
144
145 if (ntype)
146 {
147 if (typeptr == 0)
148 return ntype; /* Don't care about alloc, and have new type. */
149 else if (*typeptr == 0)
150 {
151 *typeptr = ntype; /* Tracking alloc, and we have new type. */
152 return ntype;
153 }
154 }
155
156 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
157 {
158 ntype = alloc_type (TYPE_OBJFILE (type));
159 if (typeptr)
160 *typeptr = ntype;
161 }
162 else
163 /* We have storage, but need to reset it. */
164 {
165 ntype = *typeptr;
166 objfile = TYPE_OBJFILE (ntype);
167 memset ((char *) ntype, 0, sizeof (struct type));
168 TYPE_OBJFILE (ntype) = objfile;
169 }
170
171 TYPE_TARGET_TYPE (ntype) = type;
172 TYPE_POINTER_TYPE (type) = ntype;
173
174 /* FIXME! Assume the machine has only one representation for pointers! */
175
176 TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
177 TYPE_CODE (ntype) = TYPE_CODE_PTR;
178
179 /* Mark pointers as unsigned. The target converts between pointers
180 and addresses (CORE_ADDRs) using POINTER_TO_ADDRESS() and
181 ADDRESS_TO_POINTER(). */
182 TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
183
184 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
185 TYPE_POINTER_TYPE (type) = ntype;
186
187 return ntype;
188 }
189
190 /* Given a type TYPE, return a type of pointers to that type.
191 May need to construct such a type if this is the first use. */
192
193 struct type *
194 lookup_pointer_type (struct type *type)
195 {
196 return make_pointer_type (type, (struct type **) 0);
197 }
198
199 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero, points
200 to a pointer to memory where the reference type should be stored.
201 If *TYPEPTR is zero, update it to point to the reference type we return.
202 We allocate new memory if needed. */
203
204 struct type *
205 make_reference_type (struct type *type, struct type **typeptr)
206 {
207 register struct type *ntype; /* New type */
208 struct objfile *objfile;
209
210 ntype = TYPE_REFERENCE_TYPE (type);
211
212 if (ntype)
213 {
214 if (typeptr == 0)
215 return ntype; /* Don't care about alloc, and have new type. */
216 else if (*typeptr == 0)
217 {
218 *typeptr = ntype; /* Tracking alloc, and we have new type. */
219 return ntype;
220 }
221 }
222
223 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
224 {
225 ntype = alloc_type (TYPE_OBJFILE (type));
226 if (typeptr)
227 *typeptr = ntype;
228 }
229 else
230 /* We have storage, but need to reset it. */
231 {
232 ntype = *typeptr;
233 objfile = TYPE_OBJFILE (ntype);
234 memset ((char *) ntype, 0, sizeof (struct type));
235 TYPE_OBJFILE (ntype) = objfile;
236 }
237
238 TYPE_TARGET_TYPE (ntype) = type;
239 TYPE_REFERENCE_TYPE (type) = ntype;
240
241 /* FIXME! Assume the machine has only one representation for references,
242 and that it matches the (only) representation for pointers! */
243
244 TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
245 TYPE_CODE (ntype) = TYPE_CODE_REF;
246
247 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
248 TYPE_REFERENCE_TYPE (type) = ntype;
249
250 return ntype;
251 }
252
253 /* Same as above, but caller doesn't care about memory allocation details. */
254
255 struct type *
256 lookup_reference_type (struct type *type)
257 {
258 return make_reference_type (type, (struct type **) 0);
259 }
260
261 /* Lookup a function type that returns type TYPE. TYPEPTR, if nonzero, points
262 to a pointer to memory where the function type should be stored.
263 If *TYPEPTR is zero, update it to point to the function type we return.
264 We allocate new memory if needed. */
265
266 struct type *
267 make_function_type (struct type *type, struct type **typeptr)
268 {
269 register struct type *ntype; /* New type */
270 struct objfile *objfile;
271
272 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
273 {
274 ntype = alloc_type (TYPE_OBJFILE (type));
275 if (typeptr)
276 *typeptr = ntype;
277 }
278 else
279 /* We have storage, but need to reset it. */
280 {
281 ntype = *typeptr;
282 objfile = TYPE_OBJFILE (ntype);
283 memset ((char *) ntype, 0, sizeof (struct type));
284 TYPE_OBJFILE (ntype) = objfile;
285 }
286
287 TYPE_TARGET_TYPE (ntype) = type;
288
289 TYPE_LENGTH (ntype) = 1;
290 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
291
292 return ntype;
293 }
294
295
296 /* Given a type TYPE, return a type of functions that return that type.
297 May need to construct such a type if this is the first use. */
298
299 struct type *
300 lookup_function_type (struct type *type)
301 {
302 return make_function_type (type, (struct type **) 0);
303 }
304
305
306 /* Make a "c-v" variant of a type -- a type that is identical to the
307 one supplied except that it may have const or volatile attributes
308 CNST is a flag for setting the const attribute
309 VOLTL is a flag for setting the volatile attribute
310 TYPE is the base type whose variant we are creating.
311 TYPEPTR, if nonzero, points
312 to a pointer to memory where the reference type should be stored.
313 If *TYPEPTR is zero, update it to point to the reference type we return.
314 We allocate new memory if needed. */
315
316 struct type *
317 make_cv_type (int cnst, int voltl, struct type *type, struct type **typeptr)
318 {
319 register struct type *ntype; /* New type */
320 register struct type *tmp_type = type; /* tmp type */
321 struct objfile *objfile;
322
323 ntype = TYPE_CV_TYPE (type);
324
325 while (ntype != type)
326 {
327 if ((TYPE_CONST (ntype) == cnst) &&
328 (TYPE_VOLATILE (ntype) == voltl))
329 {
330 if (typeptr == 0)
331 return ntype;
332 else if (*typeptr == 0)
333 {
334 *typeptr = ntype; /* Tracking alloc, and we have new type. */
335 return ntype;
336 }
337 }
338 tmp_type = ntype;
339 ntype = TYPE_CV_TYPE (ntype);
340 }
341
342 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
343 {
344 ntype = alloc_type (TYPE_OBJFILE (type));
345 if (typeptr)
346 *typeptr = ntype;
347 }
348 else
349 /* We have storage, but need to reset it. */
350 {
351 ntype = *typeptr;
352 objfile = TYPE_OBJFILE (ntype);
353 /* memset ((char *) ntype, 0, sizeof (struct type)); */
354 TYPE_OBJFILE (ntype) = objfile;
355 }
356
357 /* Copy original type */
358 memcpy ((char *) ntype, (char *) type, sizeof (struct type));
359 /* But zero out fields that shouldn't be copied */
360 TYPE_POINTER_TYPE (ntype) = (struct type *) 0; /* Need new pointer kind */
361 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0; /* Need new referene kind */
362 /* Note: TYPE_TARGET_TYPE can be left as is */
363
364 /* Set flags appropriately */
365 if (cnst)
366 TYPE_FLAGS (ntype) |= TYPE_FLAG_CONST;
367 else
368 TYPE_FLAGS (ntype) &= ~TYPE_FLAG_CONST;
369
370 if (voltl)
371 TYPE_FLAGS (ntype) |= TYPE_FLAG_VOLATILE;
372 else
373 TYPE_FLAGS (ntype) &= ~TYPE_FLAG_VOLATILE;
374
375 /* Fix the chain of cv variants */
376 TYPE_CV_TYPE (ntype) = type;
377 TYPE_CV_TYPE (tmp_type) = ntype;
378
379 return ntype;
380 }
381
382
383
384
385 /* Implement direct support for MEMBER_TYPE in GNU C++.
386 May need to construct such a type if this is the first use.
387 The TYPE is the type of the member. The DOMAIN is the type
388 of the aggregate that the member belongs to. */
389
390 struct type *
391 lookup_member_type (struct type *type, struct type *domain)
392 {
393 register struct type *mtype;
394
395 mtype = alloc_type (TYPE_OBJFILE (type));
396 smash_to_member_type (mtype, domain, type);
397 return (mtype);
398 }
399
400 /* Allocate a stub method whose return type is TYPE.
401 This apparently happens for speed of symbol reading, since parsing
402 out the arguments to the method is cpu-intensive, the way we are doing
403 it. So, we will fill in arguments later.
404 This always returns a fresh type. */
405
406 struct type *
407 allocate_stub_method (struct type *type)
408 {
409 struct type *mtype;
410
411 mtype = alloc_type (TYPE_OBJFILE (type));
412 TYPE_TARGET_TYPE (mtype) = type;
413 /* _DOMAIN_TYPE (mtype) = unknown yet */
414 /* _ARG_TYPES (mtype) = unknown yet */
415 TYPE_FLAGS (mtype) = TYPE_FLAG_STUB;
416 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
417 TYPE_LENGTH (mtype) = 1;
418 return (mtype);
419 }
420
421 /* Create a range type using either a blank type supplied in RESULT_TYPE,
422 or creating a new type, inheriting the objfile from INDEX_TYPE.
423
424 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND to
425 HIGH_BOUND, inclusive.
426
427 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
428 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
429
430 struct type *
431 create_range_type (struct type *result_type, struct type *index_type,
432 int low_bound, int high_bound)
433 {
434 if (result_type == NULL)
435 {
436 result_type = alloc_type (TYPE_OBJFILE (index_type));
437 }
438 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
439 TYPE_TARGET_TYPE (result_type) = index_type;
440 if (TYPE_FLAGS (index_type) & TYPE_FLAG_STUB)
441 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
442 else
443 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
444 TYPE_NFIELDS (result_type) = 2;
445 TYPE_FIELDS (result_type) = (struct field *)
446 TYPE_ALLOC (result_type, 2 * sizeof (struct field));
447 memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
448 TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
449 TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
450 TYPE_FIELD_TYPE (result_type, 0) = builtin_type_int; /* FIXME */
451 TYPE_FIELD_TYPE (result_type, 1) = builtin_type_int; /* FIXME */
452
453 if (low_bound >= 0)
454 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
455
456 return (result_type);
457 }
458
459 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type TYPE.
460 Return 1 of type is a range type, 0 if it is discrete (and bounds
461 will fit in LONGEST), or -1 otherwise. */
462
463 int
464 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
465 {
466 CHECK_TYPEDEF (type);
467 switch (TYPE_CODE (type))
468 {
469 case TYPE_CODE_RANGE:
470 *lowp = TYPE_LOW_BOUND (type);
471 *highp = TYPE_HIGH_BOUND (type);
472 return 1;
473 case TYPE_CODE_ENUM:
474 if (TYPE_NFIELDS (type) > 0)
475 {
476 /* The enums may not be sorted by value, so search all
477 entries */
478 int i;
479
480 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
481 for (i = 0; i < TYPE_NFIELDS (type); i++)
482 {
483 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
484 *lowp = TYPE_FIELD_BITPOS (type, i);
485 if (TYPE_FIELD_BITPOS (type, i) > *highp)
486 *highp = TYPE_FIELD_BITPOS (type, i);
487 }
488
489 /* Set unsigned indicator if warranted. */
490 if (*lowp >= 0)
491 {
492 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
493 }
494 }
495 else
496 {
497 *lowp = 0;
498 *highp = -1;
499 }
500 return 0;
501 case TYPE_CODE_BOOL:
502 *lowp = 0;
503 *highp = 1;
504 return 0;
505 case TYPE_CODE_INT:
506 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
507 return -1;
508 if (!TYPE_UNSIGNED (type))
509 {
510 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
511 *highp = -*lowp - 1;
512 return 0;
513 }
514 /* ... fall through for unsigned ints ... */
515 case TYPE_CODE_CHAR:
516 *lowp = 0;
517 /* This round-about calculation is to avoid shifting by
518 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
519 if TYPE_LENGTH (type) == sizeof (LONGEST). */
520 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
521 *highp = (*highp - 1) | *highp;
522 return 0;
523 default:
524 return -1;
525 }
526 }
527
528 /* Create an array type using either a blank type supplied in RESULT_TYPE,
529 or creating a new type, inheriting the objfile from RANGE_TYPE.
530
531 Elements will be of type ELEMENT_TYPE, the indices will be of type
532 RANGE_TYPE.
533
534 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
535 sure it is TYPE_CODE_UNDEF before we bash it into an array type? */
536
537 struct type *
538 create_array_type (struct type *result_type, struct type *element_type,
539 struct type *range_type)
540 {
541 LONGEST low_bound, high_bound;
542
543 if (result_type == NULL)
544 {
545 result_type = alloc_type (TYPE_OBJFILE (range_type));
546 }
547 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
548 TYPE_TARGET_TYPE (result_type) = element_type;
549 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
550 low_bound = high_bound = 0;
551 CHECK_TYPEDEF (element_type);
552 TYPE_LENGTH (result_type) =
553 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
554 TYPE_NFIELDS (result_type) = 1;
555 TYPE_FIELDS (result_type) =
556 (struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
557 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
558 TYPE_FIELD_TYPE (result_type, 0) = range_type;
559 TYPE_VPTR_FIELDNO (result_type) = -1;
560
561 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
562 if (TYPE_LENGTH (result_type) == 0)
563 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
564
565 return (result_type);
566 }
567
568 /* Create a string type using either a blank type supplied in RESULT_TYPE,
569 or creating a new type. String types are similar enough to array of
570 char types that we can use create_array_type to build the basic type
571 and then bash it into a string type.
572
573 For fixed length strings, the range type contains 0 as the lower
574 bound and the length of the string minus one as the upper bound.
575
576 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
577 sure it is TYPE_CODE_UNDEF before we bash it into a string type? */
578
579 struct type *
580 create_string_type (struct type *result_type, struct type *range_type)
581 {
582 result_type = create_array_type (result_type,
583 *current_language->string_char_type,
584 range_type);
585 TYPE_CODE (result_type) = TYPE_CODE_STRING;
586 return (result_type);
587 }
588
589 struct type *
590 create_set_type (struct type *result_type, struct type *domain_type)
591 {
592 LONGEST low_bound, high_bound, bit_length;
593 if (result_type == NULL)
594 {
595 result_type = alloc_type (TYPE_OBJFILE (domain_type));
596 }
597 TYPE_CODE (result_type) = TYPE_CODE_SET;
598 TYPE_NFIELDS (result_type) = 1;
599 TYPE_FIELDS (result_type) = (struct field *)
600 TYPE_ALLOC (result_type, 1 * sizeof (struct field));
601 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
602
603 if (!(TYPE_FLAGS (domain_type) & TYPE_FLAG_STUB))
604 {
605 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
606 low_bound = high_bound = 0;
607 bit_length = high_bound - low_bound + 1;
608 TYPE_LENGTH (result_type)
609 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
610 }
611 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
612
613 if (low_bound >= 0)
614 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
615
616 return (result_type);
617 }
618
619
620 /* Construct and return a type of the form:
621 struct NAME { ELT_TYPE ELT_NAME[N]; }
622 We use these types for SIMD registers. For example, the type of
623 the SSE registers on the late x86-family processors is:
624 struct __builtin_v4sf { float f[4]; }
625 built by the function call:
626 init_simd_type ("__builtin_v4sf", builtin_type_float, "f", 4)
627 The type returned is a permanent type, allocated using malloc; it
628 doesn't live in any objfile's obstack. */
629 static struct type *
630 init_simd_type (char *name,
631 struct type *elt_type,
632 char *elt_name,
633 int n)
634 {
635 struct type *t;
636 struct field *f;
637
638 /* Build the field structure. */
639 f = xmalloc (sizeof (*f));
640 memset (f, 0, sizeof (*f));
641 f->loc.bitpos = 0;
642 f->type = create_array_type (0, elt_type,
643 create_range_type (0, builtin_type_int,
644 0, n-1));
645 f->name = elt_name;
646
647 /* Build a struct type with that field. */
648 t = init_type (TYPE_CODE_STRUCT, n * TYPE_LENGTH (elt_type), 0, 0, 0);
649 t->nfields = 1;
650 t->fields = f;
651 t->tag_name = name;
652
653 return t;
654 }
655
656
657 /* Smash TYPE to be a type of members of DOMAIN with type TO_TYPE.
658 A MEMBER is a wierd thing -- it amounts to a typed offset into
659 a struct, e.g. "an int at offset 8". A MEMBER TYPE doesn't
660 include the offset (that's the value of the MEMBER itself), but does
661 include the structure type into which it points (for some reason).
662
663 When "smashing" the type, we preserve the objfile that the
664 old type pointed to, since we aren't changing where the type is actually
665 allocated. */
666
667 void
668 smash_to_member_type (struct type *type, struct type *domain,
669 struct type *to_type)
670 {
671 struct objfile *objfile;
672
673 objfile = TYPE_OBJFILE (type);
674
675 memset ((char *) type, 0, sizeof (struct type));
676 TYPE_OBJFILE (type) = objfile;
677 TYPE_TARGET_TYPE (type) = to_type;
678 TYPE_DOMAIN_TYPE (type) = domain;
679 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
680 TYPE_CODE (type) = TYPE_CODE_MEMBER;
681 }
682
683 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
684 METHOD just means `function that gets an extra "this" argument'.
685
686 When "smashing" the type, we preserve the objfile that the
687 old type pointed to, since we aren't changing where the type is actually
688 allocated. */
689
690 void
691 smash_to_method_type (struct type *type, struct type *domain,
692 struct type *to_type, struct type **args)
693 {
694 struct objfile *objfile;
695
696 objfile = TYPE_OBJFILE (type);
697
698 memset ((char *) type, 0, sizeof (struct type));
699 TYPE_OBJFILE (type) = objfile;
700 TYPE_TARGET_TYPE (type) = to_type;
701 TYPE_DOMAIN_TYPE (type) = domain;
702 TYPE_ARG_TYPES (type) = args;
703 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
704 TYPE_CODE (type) = TYPE_CODE_METHOD;
705 }
706
707 /* Return a typename for a struct/union/enum type without "struct ",
708 "union ", or "enum ". If the type has a NULL name, return NULL. */
709
710 char *
711 type_name_no_tag (register const struct type *type)
712 {
713 if (TYPE_TAG_NAME (type) != NULL)
714 return TYPE_TAG_NAME (type);
715
716 /* Is there code which expects this to return the name if there is no
717 tag name? My guess is that this is mainly used for C++ in cases where
718 the two will always be the same. */
719 return TYPE_NAME (type);
720 }
721
722 /* Lookup a primitive type named NAME.
723 Return zero if NAME is not a primitive type. */
724
725 struct type *
726 lookup_primitive_typename (char *name)
727 {
728 struct type **const *p;
729
730 for (p = current_language->la_builtin_type_vector; *p != NULL; p++)
731 {
732 if (STREQ ((**p)->name, name))
733 {
734 return (**p);
735 }
736 }
737 return (NULL);
738 }
739
740 /* Lookup a typedef or primitive type named NAME,
741 visible in lexical block BLOCK.
742 If NOERR is nonzero, return zero if NAME is not suitably defined. */
743
744 struct type *
745 lookup_typename (char *name, struct block *block, int noerr)
746 {
747 register struct symbol *sym;
748 register struct type *tmp;
749
750 sym = lookup_symbol (name, block, VAR_NAMESPACE, 0, (struct symtab **) NULL);
751 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
752 {
753 tmp = lookup_primitive_typename (name);
754 if (tmp)
755 {
756 return (tmp);
757 }
758 else if (!tmp && noerr)
759 {
760 return (NULL);
761 }
762 else
763 {
764 error ("No type named %s.", name);
765 }
766 }
767 return (SYMBOL_TYPE (sym));
768 }
769
770 struct type *
771 lookup_unsigned_typename (char *name)
772 {
773 char *uns = alloca (strlen (name) + 10);
774
775 strcpy (uns, "unsigned ");
776 strcpy (uns + 9, name);
777 return (lookup_typename (uns, (struct block *) NULL, 0));
778 }
779
780 struct type *
781 lookup_signed_typename (char *name)
782 {
783 struct type *t;
784 char *uns = alloca (strlen (name) + 8);
785
786 strcpy (uns, "signed ");
787 strcpy (uns + 7, name);
788 t = lookup_typename (uns, (struct block *) NULL, 1);
789 /* If we don't find "signed FOO" just try again with plain "FOO". */
790 if (t != NULL)
791 return t;
792 return lookup_typename (name, (struct block *) NULL, 0);
793 }
794
795 /* Lookup a structure type named "struct NAME",
796 visible in lexical block BLOCK. */
797
798 struct type *
799 lookup_struct (char *name, struct block *block)
800 {
801 register struct symbol *sym;
802
803 sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
804 (struct symtab **) NULL);
805
806 if (sym == NULL)
807 {
808 error ("No struct type named %s.", name);
809 }
810 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
811 {
812 error ("This context has class, union or enum %s, not a struct.", name);
813 }
814 return (SYMBOL_TYPE (sym));
815 }
816
817 /* Lookup a union type named "union NAME",
818 visible in lexical block BLOCK. */
819
820 struct type *
821 lookup_union (char *name, struct block *block)
822 {
823 register struct symbol *sym;
824 struct type *t;
825
826 sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
827 (struct symtab **) NULL);
828
829 if (sym == NULL)
830 error ("No union type named %s.", name);
831
832 t = SYMBOL_TYPE (sym);
833
834 if (TYPE_CODE (t) == TYPE_CODE_UNION)
835 return (t);
836
837 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
838 * a further "declared_type" field to discover it is really a union.
839 */
840 if (HAVE_CPLUS_STRUCT (t))
841 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
842 return (t);
843
844 /* If we get here, it's not a union */
845 error ("This context has class, struct or enum %s, not a union.", name);
846 }
847
848
849 /* Lookup an enum type named "enum NAME",
850 visible in lexical block BLOCK. */
851
852 struct type *
853 lookup_enum (char *name, struct block *block)
854 {
855 register struct symbol *sym;
856
857 sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
858 (struct symtab **) NULL);
859 if (sym == NULL)
860 {
861 error ("No enum type named %s.", name);
862 }
863 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
864 {
865 error ("This context has class, struct or union %s, not an enum.", name);
866 }
867 return (SYMBOL_TYPE (sym));
868 }
869
870 /* Lookup a template type named "template NAME<TYPE>",
871 visible in lexical block BLOCK. */
872
873 struct type *
874 lookup_template_type (char *name, struct type *type, struct block *block)
875 {
876 struct symbol *sym;
877 char *nam = (char *) alloca (strlen (name) + strlen (type->name) + 4);
878 strcpy (nam, name);
879 strcat (nam, "<");
880 strcat (nam, type->name);
881 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
882
883 sym = lookup_symbol (nam, block, VAR_NAMESPACE, 0, (struct symtab **) NULL);
884
885 if (sym == NULL)
886 {
887 error ("No template type named %s.", name);
888 }
889 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
890 {
891 error ("This context has class, union or enum %s, not a struct.", name);
892 }
893 return (SYMBOL_TYPE (sym));
894 }
895
896 /* Given a type TYPE, lookup the type of the component of type named NAME.
897
898 TYPE can be either a struct or union, or a pointer or reference to a struct or
899 union. If it is a pointer or reference, its target type is automatically used.
900 Thus '.' and '->' are interchangable, as specified for the definitions of the
901 expression element types STRUCTOP_STRUCT and STRUCTOP_PTR.
902
903 If NOERR is nonzero, return zero if NAME is not suitably defined.
904 If NAME is the name of a baseclass type, return that type. */
905
906 struct type *
907 lookup_struct_elt_type (struct type *type, char *name, int noerr)
908 {
909 int i;
910
911 for (;;)
912 {
913 CHECK_TYPEDEF (type);
914 if (TYPE_CODE (type) != TYPE_CODE_PTR
915 && TYPE_CODE (type) != TYPE_CODE_REF)
916 break;
917 type = TYPE_TARGET_TYPE (type);
918 }
919
920 if (TYPE_CODE (type) != TYPE_CODE_STRUCT &&
921 TYPE_CODE (type) != TYPE_CODE_UNION)
922 {
923 target_terminal_ours ();
924 gdb_flush (gdb_stdout);
925 fprintf_unfiltered (gdb_stderr, "Type ");
926 type_print (type, "", gdb_stderr, -1);
927 error (" is not a structure or union type.");
928 }
929
930 #if 0
931 /* FIXME: This change put in by Michael seems incorrect for the case where
932 the structure tag name is the same as the member name. I.E. when doing
933 "ptype bell->bar" for "struct foo { int bar; int foo; } bell;"
934 Disabled by fnf. */
935 {
936 char *typename;
937
938 typename = type_name_no_tag (type);
939 if (typename != NULL && STREQ (typename, name))
940 return type;
941 }
942 #endif
943
944 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
945 {
946 char *t_field_name = TYPE_FIELD_NAME (type, i);
947
948 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
949 {
950 return TYPE_FIELD_TYPE (type, i);
951 }
952 }
953
954 /* OK, it's not in this class. Recursively check the baseclasses. */
955 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
956 {
957 struct type *t;
958
959 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, noerr);
960 if (t != NULL)
961 {
962 return t;
963 }
964 }
965
966 if (noerr)
967 {
968 return NULL;
969 }
970
971 target_terminal_ours ();
972 gdb_flush (gdb_stdout);
973 fprintf_unfiltered (gdb_stderr, "Type ");
974 type_print (type, "", gdb_stderr, -1);
975 fprintf_unfiltered (gdb_stderr, " has no component named ");
976 fputs_filtered (name, gdb_stderr);
977 error (".");
978 return (struct type *) -1; /* For lint */
979 }
980
981 /* If possible, make the vptr_fieldno and vptr_basetype fields of TYPE
982 valid. Callers should be aware that in some cases (for example,
983 the type or one of its baseclasses is a stub type and we are
984 debugging a .o file), this function will not be able to find the virtual
985 function table pointer, and vptr_fieldno will remain -1 and vptr_basetype
986 will remain NULL. */
987
988 void
989 fill_in_vptr_fieldno (struct type *type)
990 {
991 CHECK_TYPEDEF (type);
992
993 if (TYPE_VPTR_FIELDNO (type) < 0)
994 {
995 int i;
996
997 /* We must start at zero in case the first (and only) baseclass is
998 virtual (and hence we cannot share the table pointer). */
999 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1000 {
1001 fill_in_vptr_fieldno (TYPE_BASECLASS (type, i));
1002 if (TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i)) >= 0)
1003 {
1004 TYPE_VPTR_FIELDNO (type)
1005 = TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i));
1006 TYPE_VPTR_BASETYPE (type)
1007 = TYPE_VPTR_BASETYPE (TYPE_BASECLASS (type, i));
1008 break;
1009 }
1010 }
1011 }
1012 }
1013
1014 /* Find the method and field indices for the destructor in class type T.
1015 Return 1 if the destructor was found, otherwise, return 0. */
1016
1017 int
1018 get_destructor_fn_field (struct type *t, int *method_indexp, int *field_indexp)
1019 {
1020 int i;
1021
1022 for (i = 0; i < TYPE_NFN_FIELDS (t); i++)
1023 {
1024 int j;
1025 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1026
1027 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++)
1028 {
1029 if (DESTRUCTOR_PREFIX_P (TYPE_FN_FIELD_PHYSNAME (f, j)))
1030 {
1031 *method_indexp = i;
1032 *field_indexp = j;
1033 return 1;
1034 }
1035 }
1036 }
1037 return 0;
1038 }
1039
1040 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1041
1042 If this is a stubbed struct (i.e. declared as struct foo *), see if
1043 we can find a full definition in some other file. If so, copy this
1044 definition, so we can use it in future. There used to be a comment (but
1045 not any code) that if we don't find a full definition, we'd set a flag
1046 so we don't spend time in the future checking the same type. That would
1047 be a mistake, though--we might load in more symbols which contain a
1048 full definition for the type.
1049
1050 This used to be coded as a macro, but I don't think it is called
1051 often enough to merit such treatment. */
1052
1053 struct complaint stub_noname_complaint =
1054 {"stub type has NULL name", 0, 0};
1055
1056 struct type *
1057 check_typedef (register struct type *type)
1058 {
1059 struct type *orig_type = type;
1060 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1061 {
1062 if (!TYPE_TARGET_TYPE (type))
1063 {
1064 char *name;
1065 struct symbol *sym;
1066
1067 /* It is dangerous to call lookup_symbol if we are currently
1068 reading a symtab. Infinite recursion is one danger. */
1069 if (currently_reading_symtab)
1070 return type;
1071
1072 name = type_name_no_tag (type);
1073 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1074 TYPE_TAG_NAME, and look in STRUCT_NAMESPACE and/or VAR_NAMESPACE
1075 as appropriate? (this code was written before TYPE_NAME and
1076 TYPE_TAG_NAME were separate). */
1077 if (name == NULL)
1078 {
1079 complain (&stub_noname_complaint);
1080 return type;
1081 }
1082 sym = lookup_symbol (name, 0, STRUCT_NAMESPACE, 0,
1083 (struct symtab **) NULL);
1084 if (sym)
1085 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1086 else
1087 TYPE_TARGET_TYPE (type) = alloc_type (NULL); /* TYPE_CODE_UNDEF */
1088 }
1089 type = TYPE_TARGET_TYPE (type);
1090 }
1091
1092 /* If this is a struct/class/union with no fields, then check whether a
1093 full definition exists somewhere else. This is for systems where a
1094 type definition with no fields is issued for such types, instead of
1095 identifying them as stub types in the first place */
1096
1097 if (TYPE_IS_OPAQUE (type) && opaque_type_resolution && !currently_reading_symtab)
1098 {
1099 char *name = type_name_no_tag (type);
1100 struct type *newtype;
1101 if (name == NULL)
1102 {
1103 complain (&stub_noname_complaint);
1104 return type;
1105 }
1106 newtype = lookup_transparent_type (name);
1107 if (newtype)
1108 {
1109 memcpy ((char *) type, (char *) newtype, sizeof (struct type));
1110 }
1111 }
1112 /* Otherwise, rely on the stub flag being set for opaque/stubbed types */
1113 else if ((TYPE_FLAGS (type) & TYPE_FLAG_STUB) && !currently_reading_symtab)
1114 {
1115 char *name = type_name_no_tag (type);
1116 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1117 TYPE_TAG_NAME, and look in STRUCT_NAMESPACE and/or VAR_NAMESPACE
1118 as appropriate? (this code was written before TYPE_NAME and
1119 TYPE_TAG_NAME were separate). */
1120 struct symbol *sym;
1121 if (name == NULL)
1122 {
1123 complain (&stub_noname_complaint);
1124 return type;
1125 }
1126 sym = lookup_symbol (name, 0, STRUCT_NAMESPACE, 0, (struct symtab **) NULL);
1127 if (sym)
1128 {
1129 memcpy ((char *) type, (char *) SYMBOL_TYPE (sym), sizeof (struct type));
1130 }
1131 }
1132
1133 if (TYPE_FLAGS (type) & TYPE_FLAG_TARGET_STUB)
1134 {
1135 struct type *range_type;
1136 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1137
1138 if (TYPE_FLAGS (target_type) & (TYPE_FLAG_STUB | TYPE_FLAG_TARGET_STUB))
1139 {
1140 }
1141 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1142 && TYPE_NFIELDS (type) == 1
1143 && (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0))
1144 == TYPE_CODE_RANGE))
1145 {
1146 /* Now recompute the length of the array type, based on its
1147 number of elements and the target type's length. */
1148 TYPE_LENGTH (type) =
1149 ((TYPE_FIELD_BITPOS (range_type, 1)
1150 - TYPE_FIELD_BITPOS (range_type, 0)
1151 + 1)
1152 * TYPE_LENGTH (target_type));
1153 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1154 }
1155 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1156 {
1157 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1158 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1159 }
1160 }
1161 /* Cache TYPE_LENGTH for future use. */
1162 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1163 return type;
1164 }
1165
1166 /* New code added to support parsing of Cfront stabs strings */
1167 #include <ctype.h>
1168 #define INIT_EXTRA { pextras->len=0; pextras->str[0]='\0'; }
1169 #define ADD_EXTRA(c) { pextras->str[pextras->len++]=c; }
1170
1171 static void
1172 add_name (struct extra *pextras, char *n)
1173 {
1174 int nlen;
1175
1176 if ((nlen = (n ? strlen (n) : 0)) == 0)
1177 return;
1178 sprintf (pextras->str + pextras->len, "%d%s", nlen, n);
1179 pextras->len = strlen (pextras->str);
1180 }
1181
1182 static void
1183 add_mangled_type (struct extra *pextras, struct type *t)
1184 {
1185 enum type_code tcode;
1186 int tlen, tflags;
1187 char *tname;
1188
1189 tcode = TYPE_CODE (t);
1190 tlen = TYPE_LENGTH (t);
1191 tflags = TYPE_FLAGS (t);
1192 tname = TYPE_NAME (t);
1193 /* args of "..." seem to get mangled as "e" */
1194
1195 switch (tcode)
1196 {
1197 case TYPE_CODE_INT:
1198 if (tflags == 1)
1199 ADD_EXTRA ('U');
1200 switch (tlen)
1201 {
1202 case 1:
1203 ADD_EXTRA ('c');
1204 break;
1205 case 2:
1206 ADD_EXTRA ('s');
1207 break;
1208 case 4:
1209 {
1210 char *pname;
1211 if ((pname = strrchr (tname, 'l'), pname) && !strcmp (pname, "long"))
1212 {
1213 ADD_EXTRA ('l');
1214 }
1215 else
1216 {
1217 ADD_EXTRA ('i');
1218 }
1219 }
1220 break;
1221 default:
1222 {
1223
1224 static struct complaint msg =
1225 {"Bad int type code length x%x\n", 0, 0};
1226
1227 complain (&msg, tlen);
1228
1229 }
1230 }
1231 break;
1232 case TYPE_CODE_FLT:
1233 switch (tlen)
1234 {
1235 case 4:
1236 ADD_EXTRA ('f');
1237 break;
1238 case 8:
1239 ADD_EXTRA ('d');
1240 break;
1241 case 16:
1242 ADD_EXTRA ('r');
1243 break;
1244 default:
1245 {
1246 static struct complaint msg =
1247 {"Bad float type code length x%x\n", 0, 0};
1248 complain (&msg, tlen);
1249 }
1250 }
1251 break;
1252 case TYPE_CODE_REF:
1253 ADD_EXTRA ('R');
1254 /* followed by what it's a ref to */
1255 break;
1256 case TYPE_CODE_PTR:
1257 ADD_EXTRA ('P');
1258 /* followed by what it's a ptr to */
1259 break;
1260 case TYPE_CODE_TYPEDEF:
1261 {
1262 static struct complaint msg =
1263 {"Typedefs in overloaded functions not yet supported\n", 0, 0};
1264 complain (&msg);
1265 }
1266 /* followed by type bytes & name */
1267 break;
1268 case TYPE_CODE_FUNC:
1269 ADD_EXTRA ('F');
1270 /* followed by func's arg '_' & ret types */
1271 break;
1272 case TYPE_CODE_VOID:
1273 ADD_EXTRA ('v');
1274 break;
1275 case TYPE_CODE_METHOD:
1276 ADD_EXTRA ('M');
1277 /* followed by name of class and func's arg '_' & ret types */
1278 add_name (pextras, tname);
1279 ADD_EXTRA ('F'); /* then mangle function */
1280 break;
1281 case TYPE_CODE_STRUCT: /* C struct */
1282 case TYPE_CODE_UNION: /* C union */
1283 case TYPE_CODE_ENUM: /* Enumeration type */
1284 /* followed by name of type */
1285 add_name (pextras, tname);
1286 break;
1287
1288 /* errors possible types/not supported */
1289 case TYPE_CODE_CHAR:
1290 case TYPE_CODE_ARRAY: /* Array type */
1291 case TYPE_CODE_MEMBER: /* Member type */
1292 case TYPE_CODE_BOOL:
1293 case TYPE_CODE_COMPLEX: /* Complex float */
1294 case TYPE_CODE_UNDEF:
1295 case TYPE_CODE_SET: /* Pascal sets */
1296 case TYPE_CODE_RANGE:
1297 case TYPE_CODE_STRING:
1298 case TYPE_CODE_BITSTRING:
1299 case TYPE_CODE_ERROR:
1300 default:
1301 {
1302 static struct complaint msg =
1303 {"Unknown type code x%x\n", 0, 0};
1304 complain (&msg, tcode);
1305 }
1306 }
1307 if (t->target_type)
1308 add_mangled_type (pextras, t->target_type);
1309 }
1310
1311 #if 0
1312 void
1313 cfront_mangle_name (struct type *type, int i, int j)
1314 {
1315 struct fn_field *f;
1316 char *mangled_name = gdb_mangle_name (type, i, j);
1317
1318 f = TYPE_FN_FIELDLIST1 (type, i); /* moved from below */
1319
1320 /* kludge to support cfront methods - gdb expects to find "F" for
1321 ARM_mangled names, so when we mangle, we have to add it here */
1322 if (ARM_DEMANGLING)
1323 {
1324 int k;
1325 char *arm_mangled_name;
1326 struct fn_field *method = &f[j];
1327 char *field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1328 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1329 char *newname = type_name_no_tag (type);
1330
1331 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1332 int nargs = TYPE_NFIELDS (ftype); /* number of args */
1333 struct extra extras, *pextras = &extras;
1334 INIT_EXTRA
1335
1336 if (TYPE_FN_FIELD_STATIC_P (f, j)) /* j for sublist within this list */
1337 ADD_EXTRA ('S')
1338 ADD_EXTRA ('F')
1339 /* add args here! */
1340 if (nargs <= 1) /* no args besides this */
1341 ADD_EXTRA ('v')
1342 else
1343 {
1344 for (k = 1; k < nargs; k++)
1345 {
1346 struct type *t;
1347 t = TYPE_FIELD_TYPE (ftype, k);
1348 add_mangled_type (pextras, t);
1349 }
1350 }
1351 ADD_EXTRA ('\0')
1352 printf ("add_mangled_type: %s\n", extras.str); /* FIXME */
1353 arm_mangled_name = malloc (strlen (mangled_name) + extras.len);
1354 sprintf (arm_mangled_name, "%s%s", mangled_name, extras.str);
1355 free (mangled_name);
1356 mangled_name = arm_mangled_name;
1357 }
1358 }
1359 #endif /* 0 */
1360
1361 #undef ADD_EXTRA
1362 /* End of new code added to support parsing of Cfront stabs strings */
1363
1364 /* Parse a type expression in the string [P..P+LENGTH). If an error occurs,
1365 silently return builtin_type_void. */
1366
1367 struct type *
1368 safe_parse_type (char *p, int length)
1369 {
1370 struct ui_file *saved_gdb_stderr;
1371 struct type *type;
1372
1373 /* Suppress error messages. */
1374 saved_gdb_stderr = gdb_stderr;
1375 gdb_stderr = ui_file_new ();
1376
1377 /* Call parse_and_eval_type() without fear of longjmp()s. */
1378 if (!gdb_parse_and_eval_type (p, length, &type))
1379 type = builtin_type_void;
1380
1381 /* Stop suppressing error messages. */
1382 ui_file_delete (gdb_stderr);
1383 gdb_stderr = saved_gdb_stderr;
1384
1385 return type;
1386 }
1387
1388 /* Ugly hack to convert method stubs into method types.
1389
1390 He ain't kiddin'. This demangles the name of the method into a string
1391 including argument types, parses out each argument type, generates
1392 a string casting a zero to that type, evaluates the string, and stuffs
1393 the resulting type into an argtype vector!!! Then it knows the type
1394 of the whole function (including argument types for overloading),
1395 which info used to be in the stab's but was removed to hack back
1396 the space required for them. */
1397
1398 void
1399 check_stub_method (struct type *type, int method_id, int signature_id)
1400 {
1401 struct fn_field *f;
1402 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1403 char *demangled_name = cplus_demangle (mangled_name,
1404 DMGL_PARAMS | DMGL_ANSI);
1405 char *argtypetext, *p;
1406 int depth = 0, argcount = 1;
1407 struct type **argtypes;
1408 struct type *mtype;
1409
1410 /* Make sure we got back a function string that we can use. */
1411 if (demangled_name)
1412 p = strchr (demangled_name, '(');
1413
1414 if (demangled_name == NULL || p == NULL)
1415 error ("Internal: Cannot demangle mangled name `%s'.", mangled_name);
1416
1417 /* Now, read in the parameters that define this type. */
1418 p += 1;
1419 argtypetext = p;
1420 while (*p)
1421 {
1422 if (*p == '(' || *p == '<')
1423 {
1424 depth += 1;
1425 }
1426 else if (*p == ')' || *p == '>')
1427 {
1428 depth -= 1;
1429 }
1430 else if (*p == ',' && depth == 0)
1431 {
1432 argcount += 1;
1433 }
1434
1435 p += 1;
1436 }
1437
1438 /* We need two more slots: one for the THIS pointer, and one for the
1439 NULL [...] or void [end of arglist]. */
1440
1441 argtypes = (struct type **)
1442 TYPE_ALLOC (type, (argcount + 2) * sizeof (struct type *));
1443 p = argtypetext;
1444 /* FIXME: This is wrong for static member functions. */
1445 argtypes[0] = lookup_pointer_type (type);
1446 argcount = 1;
1447
1448 if (*p != ')') /* () means no args, skip while */
1449 {
1450 depth = 0;
1451 while (*p)
1452 {
1453 if (depth <= 0 && (*p == ',' || *p == ')'))
1454 {
1455 /* Avoid parsing of ellipsis, they will be handled below. */
1456 if (strncmp (argtypetext, "...", p - argtypetext) != 0)
1457 {
1458 argtypes[argcount] =
1459 safe_parse_type (argtypetext, p - argtypetext);
1460 argcount += 1;
1461 }
1462 argtypetext = p + 1;
1463 }
1464
1465 if (*p == '(' || *p == '<')
1466 {
1467 depth += 1;
1468 }
1469 else if (*p == ')' || *p == '>')
1470 {
1471 depth -= 1;
1472 }
1473
1474 p += 1;
1475 }
1476 }
1477
1478 if (p[-2] != '.') /* Not '...' */
1479 {
1480 argtypes[argcount] = builtin_type_void; /* List terminator */
1481 }
1482 else
1483 {
1484 argtypes[argcount] = NULL; /* Ellist terminator */
1485 }
1486
1487 free (demangled_name);
1488
1489 f = TYPE_FN_FIELDLIST1 (type, method_id);
1490
1491 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1492
1493 /* Now update the old "stub" type into a real type. */
1494 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1495 TYPE_DOMAIN_TYPE (mtype) = type;
1496 TYPE_ARG_TYPES (mtype) = argtypes;
1497 TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB;
1498 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1499 }
1500
1501 const struct cplus_struct_type cplus_struct_default;
1502
1503 void
1504 allocate_cplus_struct_type (struct type *type)
1505 {
1506 if (!HAVE_CPLUS_STRUCT (type))
1507 {
1508 TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1509 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1510 *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1511 }
1512 }
1513
1514 /* Helper function to initialize the standard scalar types.
1515
1516 If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy
1517 of the string pointed to by name in the type_obstack for that objfile,
1518 and initialize the type name to that copy. There are places (mipsread.c
1519 in particular, where init_type is called with a NULL value for NAME). */
1520
1521 struct type *
1522 init_type (enum type_code code, int length, int flags, char *name,
1523 struct objfile *objfile)
1524 {
1525 register struct type *type;
1526
1527 type = alloc_type (objfile);
1528 TYPE_CODE (type) = code;
1529 TYPE_LENGTH (type) = length;
1530 TYPE_FLAGS (type) |= flags;
1531 if ((name != NULL) && (objfile != NULL))
1532 {
1533 TYPE_NAME (type) =
1534 obsavestring (name, strlen (name), &objfile->type_obstack);
1535 }
1536 else
1537 {
1538 TYPE_NAME (type) = name;
1539 }
1540
1541 /* C++ fancies. */
1542
1543 if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1544 {
1545 INIT_CPLUS_SPECIFIC (type);
1546 }
1547 return (type);
1548 }
1549
1550 /* Look up a fundamental type for the specified objfile.
1551 May need to construct such a type if this is the first use.
1552
1553 Some object file formats (ELF, COFF, etc) do not define fundamental
1554 types such as "int" or "double". Others (stabs for example), do
1555 define fundamental types.
1556
1557 For the formats which don't provide fundamental types, gdb can create
1558 such types, using defaults reasonable for the current language and
1559 the current target machine.
1560
1561 NOTE: This routine is obsolescent. Each debugging format reader
1562 should manage it's own fundamental types, either creating them from
1563 suitable defaults or reading them from the debugging information,
1564 whichever is appropriate. The DWARF reader has already been
1565 fixed to do this. Once the other readers are fixed, this routine
1566 will go away. Also note that fundamental types should be managed
1567 on a compilation unit basis in a multi-language environment, not
1568 on a linkage unit basis as is done here. */
1569
1570
1571 struct type *
1572 lookup_fundamental_type (struct objfile *objfile, int typeid)
1573 {
1574 register struct type **typep;
1575 register int nbytes;
1576
1577 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
1578 {
1579 error ("internal error - invalid fundamental type id %d", typeid);
1580 }
1581
1582 /* If this is the first time we need a fundamental type for this objfile
1583 then we need to initialize the vector of type pointers. */
1584
1585 if (objfile->fundamental_types == NULL)
1586 {
1587 nbytes = FT_NUM_MEMBERS * sizeof (struct type *);
1588 objfile->fundamental_types = (struct type **)
1589 obstack_alloc (&objfile->type_obstack, nbytes);
1590 memset ((char *) objfile->fundamental_types, 0, nbytes);
1591 OBJSTAT (objfile, n_types += FT_NUM_MEMBERS);
1592 }
1593
1594 /* Look for this particular type in the fundamental type vector. If one is
1595 not found, create and install one appropriate for the current language. */
1596
1597 typep = objfile->fundamental_types + typeid;
1598 if (*typep == NULL)
1599 {
1600 *typep = create_fundamental_type (objfile, typeid);
1601 }
1602
1603 return (*typep);
1604 }
1605
1606 int
1607 can_dereference (struct type *t)
1608 {
1609 /* FIXME: Should we return true for references as well as pointers? */
1610 CHECK_TYPEDEF (t);
1611 return
1612 (t != NULL
1613 && TYPE_CODE (t) == TYPE_CODE_PTR
1614 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1615 }
1616
1617 int
1618 is_integral_type (struct type *t)
1619 {
1620 CHECK_TYPEDEF (t);
1621 return
1622 ((t != NULL)
1623 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1624 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1625 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1626 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1627 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1628 }
1629
1630 /* Chill varying string and arrays are represented as follows:
1631
1632 struct { int __var_length; ELEMENT_TYPE[MAX_SIZE] __var_data};
1633
1634 Return true if TYPE is such a Chill varying type. */
1635
1636 int
1637 chill_varying_type (struct type *type)
1638 {
1639 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1640 || TYPE_NFIELDS (type) != 2
1641 || strcmp (TYPE_FIELD_NAME (type, 0), "__var_length") != 0)
1642 return 0;
1643 return 1;
1644 }
1645
1646 /* Check whether BASE is an ancestor or base class or DCLASS
1647 Return 1 if so, and 0 if not.
1648 Note: callers may want to check for identity of the types before
1649 calling this function -- identical types are considered to satisfy
1650 the ancestor relationship even if they're identical */
1651
1652 int
1653 is_ancestor (struct type *base, struct type *dclass)
1654 {
1655 int i;
1656
1657 CHECK_TYPEDEF (base);
1658 CHECK_TYPEDEF (dclass);
1659
1660 if (base == dclass)
1661 return 1;
1662 if (TYPE_NAME (base) && TYPE_NAME (dclass) &&
1663 !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
1664 return 1;
1665
1666 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1667 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1668 return 1;
1669
1670 return 0;
1671 }
1672
1673
1674
1675 /* See whether DCLASS has a virtual table. This routine is aimed at
1676 the HP/Taligent ANSI C++ runtime model, and may not work with other
1677 runtime models. Return 1 => Yes, 0 => No. */
1678
1679 int
1680 has_vtable (struct type *dclass)
1681 {
1682 /* In the HP ANSI C++ runtime model, a class has a vtable only if it
1683 has virtual functions or virtual bases. */
1684
1685 register int i;
1686
1687 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
1688 return 0;
1689
1690 /* First check for the presence of virtual bases */
1691 if (TYPE_FIELD_VIRTUAL_BITS (dclass))
1692 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1693 if (B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i))
1694 return 1;
1695
1696 /* Next check for virtual functions */
1697 if (TYPE_FN_FIELDLISTS (dclass))
1698 for (i = 0; i < TYPE_NFN_FIELDS (dclass); i++)
1699 if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, i), 0))
1700 return 1;
1701
1702 /* Recurse on non-virtual bases to see if any of them needs a vtable */
1703 if (TYPE_FIELD_VIRTUAL_BITS (dclass))
1704 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1705 if ((!B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i)) &&
1706 (has_vtable (TYPE_FIELD_TYPE (dclass, i))))
1707 return 1;
1708
1709 /* Well, maybe we don't need a virtual table */
1710 return 0;
1711 }
1712
1713 /* Return a pointer to the "primary base class" of DCLASS.
1714
1715 A NULL return indicates that DCLASS has no primary base, or that it
1716 couldn't be found (insufficient information).
1717
1718 This routine is aimed at the HP/Taligent ANSI C++ runtime model,
1719 and may not work with other runtime models. */
1720
1721 struct type *
1722 primary_base_class (struct type *dclass)
1723 {
1724 /* In HP ANSI C++'s runtime model, a "primary base class" of a class
1725 is the first directly inherited, non-virtual base class that
1726 requires a virtual table */
1727
1728 register int i;
1729
1730 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
1731 return NULL;
1732
1733 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1734 if (!TYPE_FIELD_VIRTUAL (dclass, i) &&
1735 has_vtable (TYPE_FIELD_TYPE (dclass, i)))
1736 return TYPE_FIELD_TYPE (dclass, i);
1737
1738 return NULL;
1739 }
1740
1741 /* Global manipulated by virtual_base_list[_aux]() */
1742
1743 static struct vbase *current_vbase_list = NULL;
1744
1745 /* Return a pointer to a null-terminated list of struct vbase
1746 items. The vbasetype pointer of each item in the list points to the
1747 type information for a virtual base of the argument DCLASS.
1748
1749 Helper function for virtual_base_list().
1750 Note: the list goes backward, right-to-left. virtual_base_list()
1751 copies the items out in reverse order. */
1752
1753 static void
1754 virtual_base_list_aux (struct type *dclass)
1755 {
1756 struct vbase *tmp_vbase;
1757 register int i;
1758
1759 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
1760 return;
1761
1762 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1763 {
1764 /* Recurse on this ancestor, first */
1765 virtual_base_list_aux (TYPE_FIELD_TYPE (dclass, i));
1766
1767 /* If this current base is itself virtual, add it to the list */
1768 if (BASETYPE_VIA_VIRTUAL (dclass, i))
1769 {
1770 struct type *basetype = TYPE_FIELD_TYPE (dclass, i);
1771
1772 /* Check if base already recorded */
1773 tmp_vbase = current_vbase_list;
1774 while (tmp_vbase)
1775 {
1776 if (tmp_vbase->vbasetype == basetype)
1777 break; /* found it */
1778 tmp_vbase = tmp_vbase->next;
1779 }
1780
1781 if (!tmp_vbase) /* normal exit from loop */
1782 {
1783 /* Allocate new item for this virtual base */
1784 tmp_vbase = (struct vbase *) xmalloc (sizeof (struct vbase));
1785
1786 /* Stick it on at the end of the list */
1787 tmp_vbase->vbasetype = basetype;
1788 tmp_vbase->next = current_vbase_list;
1789 current_vbase_list = tmp_vbase;
1790 }
1791 } /* if virtual */
1792 } /* for loop over bases */
1793 }
1794
1795
1796 /* Compute the list of virtual bases in the right order. Virtual
1797 bases are laid out in the object's memory area in order of their
1798 occurrence in a depth-first, left-to-right search through the
1799 ancestors.
1800
1801 Argument DCLASS is the type whose virtual bases are required.
1802 Return value is the address of a null-terminated array of pointers
1803 to struct type items.
1804
1805 This routine is aimed at the HP/Taligent ANSI C++ runtime model,
1806 and may not work with other runtime models.
1807
1808 This routine merely hands off the argument to virtual_base_list_aux()
1809 and then copies the result into an array to save space. */
1810
1811 struct type **
1812 virtual_base_list (struct type *dclass)
1813 {
1814 register struct vbase *tmp_vbase;
1815 register struct vbase *tmp_vbase_2;
1816 register int i;
1817 int count;
1818 struct type **vbase_array;
1819
1820 current_vbase_list = NULL;
1821 virtual_base_list_aux (dclass);
1822
1823 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; i++, tmp_vbase = tmp_vbase->next)
1824 /* no body */ ;
1825
1826 count = i;
1827
1828 vbase_array = (struct type **) xmalloc ((count + 1) * sizeof (struct type *));
1829
1830 for (i = count - 1, tmp_vbase = current_vbase_list; i >= 0; i--, tmp_vbase = tmp_vbase->next)
1831 vbase_array[i] = tmp_vbase->vbasetype;
1832
1833 /* Get rid of constructed chain */
1834 tmp_vbase_2 = tmp_vbase = current_vbase_list;
1835 while (tmp_vbase)
1836 {
1837 tmp_vbase = tmp_vbase->next;
1838 free (tmp_vbase_2);
1839 tmp_vbase_2 = tmp_vbase;
1840 }
1841
1842 vbase_array[count] = NULL;
1843 return vbase_array;
1844 }
1845
1846 /* Return the length of the virtual base list of the type DCLASS. */
1847
1848 int
1849 virtual_base_list_length (struct type *dclass)
1850 {
1851 register int i;
1852 register struct vbase *tmp_vbase;
1853
1854 current_vbase_list = NULL;
1855 virtual_base_list_aux (dclass);
1856
1857 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; i++, tmp_vbase = tmp_vbase->next)
1858 /* no body */ ;
1859 return i;
1860 }
1861
1862 /* Return the number of elements of the virtual base list of the type
1863 DCLASS, ignoring those appearing in the primary base (and its
1864 primary base, recursively). */
1865
1866 int
1867 virtual_base_list_length_skip_primaries (struct type *dclass)
1868 {
1869 register int i;
1870 register struct vbase *tmp_vbase;
1871 struct type *primary;
1872
1873 primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
1874
1875 if (!primary)
1876 return virtual_base_list_length (dclass);
1877
1878 current_vbase_list = NULL;
1879 virtual_base_list_aux (dclass);
1880
1881 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; tmp_vbase = tmp_vbase->next)
1882 {
1883 if (virtual_base_index (tmp_vbase->vbasetype, primary) >= 0)
1884 continue;
1885 i++;
1886 }
1887 return i;
1888 }
1889
1890
1891 /* Return the index (position) of type BASE, which is a virtual base
1892 class of DCLASS, in the latter's virtual base list. A return of -1
1893 indicates "not found" or a problem. */
1894
1895 int
1896 virtual_base_index (struct type *base, struct type *dclass)
1897 {
1898 register struct type *vbase;
1899 register int i;
1900
1901 if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS) ||
1902 (TYPE_CODE (base) != TYPE_CODE_CLASS))
1903 return -1;
1904
1905 i = 0;
1906 vbase = TYPE_VIRTUAL_BASE_LIST (dclass)[0];
1907 while (vbase)
1908 {
1909 if (vbase == base)
1910 break;
1911 vbase = TYPE_VIRTUAL_BASE_LIST (dclass)[++i];
1912 }
1913
1914 return vbase ? i : -1;
1915 }
1916
1917
1918
1919 /* Return the index (position) of type BASE, which is a virtual base
1920 class of DCLASS, in the latter's virtual base list. Skip over all
1921 bases that may appear in the virtual base list of the primary base
1922 class of DCLASS (recursively). A return of -1 indicates "not
1923 found" or a problem. */
1924
1925 int
1926 virtual_base_index_skip_primaries (struct type *base, struct type *dclass)
1927 {
1928 register struct type *vbase;
1929 register int i, j;
1930 struct type *primary;
1931
1932 if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS) ||
1933 (TYPE_CODE (base) != TYPE_CODE_CLASS))
1934 return -1;
1935
1936 primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
1937
1938 j = -1;
1939 i = 0;
1940 vbase = TYPE_VIRTUAL_BASE_LIST (dclass)[0];
1941 while (vbase)
1942 {
1943 if (!primary || (virtual_base_index_skip_primaries (vbase, primary) < 0))
1944 j++;
1945 if (vbase == base)
1946 break;
1947 vbase = TYPE_VIRTUAL_BASE_LIST (dclass)[++i];
1948 }
1949
1950 return vbase ? j : -1;
1951 }
1952
1953 /* Return position of a derived class DCLASS in the list of
1954 * primary bases starting with the remotest ancestor.
1955 * Position returned is 0-based. */
1956
1957 int
1958 class_index_in_primary_list (struct type *dclass)
1959 {
1960 struct type *pbc; /* primary base class */
1961
1962 /* Simply recurse on primary base */
1963 pbc = TYPE_PRIMARY_BASE (dclass);
1964 if (pbc)
1965 return 1 + class_index_in_primary_list (pbc);
1966 else
1967 return 0;
1968 }
1969
1970 /* Return a count of the number of virtual functions a type has.
1971 * This includes all the virtual functions it inherits from its
1972 * base classes too.
1973 */
1974
1975 /* pai: FIXME This doesn't do the right thing: count redefined virtual
1976 * functions only once (latest redefinition)
1977 */
1978
1979 int
1980 count_virtual_fns (struct type *dclass)
1981 {
1982 int fn, oi; /* function and overloaded instance indices */
1983 int vfuncs; /* count to return */
1984
1985 /* recurse on bases that can share virtual table */
1986 struct type *pbc = primary_base_class (dclass);
1987 if (pbc)
1988 vfuncs = count_virtual_fns (pbc);
1989
1990 for (fn = 0; fn < TYPE_NFN_FIELDS (dclass); fn++)
1991 for (oi = 0; oi < TYPE_FN_FIELDLIST_LENGTH (dclass, fn); oi++)
1992 if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, fn), oi))
1993 vfuncs++;
1994
1995 return vfuncs;
1996 }
1997 \f
1998
1999
2000 /* Functions for overload resolution begin here */
2001
2002 /* Compare two badness vectors A and B and return the result.
2003 * 0 => A and B are identical
2004 * 1 => A and B are incomparable
2005 * 2 => A is better than B
2006 * 3 => A is worse than B */
2007
2008 int
2009 compare_badness (struct badness_vector *a, struct badness_vector *b)
2010 {
2011 int i;
2012 int tmp;
2013 short found_pos = 0; /* any positives in c? */
2014 short found_neg = 0; /* any negatives in c? */
2015
2016 /* differing lengths => incomparable */
2017 if (a->length != b->length)
2018 return 1;
2019
2020 /* Subtract b from a */
2021 for (i = 0; i < a->length; i++)
2022 {
2023 tmp = a->rank[i] - b->rank[i];
2024 if (tmp > 0)
2025 found_pos = 1;
2026 else if (tmp < 0)
2027 found_neg = 1;
2028 }
2029
2030 if (found_pos)
2031 {
2032 if (found_neg)
2033 return 1; /* incomparable */
2034 else
2035 return 3; /* A > B */
2036 }
2037 else
2038 /* no positives */
2039 {
2040 if (found_neg)
2041 return 2; /* A < B */
2042 else
2043 return 0; /* A == B */
2044 }
2045 }
2046
2047 /* Rank a function by comparing its parameter types (PARMS, length NPARMS),
2048 * to the types of an argument list (ARGS, length NARGS).
2049 * Return a pointer to a badness vector. This has NARGS + 1 entries. */
2050
2051 struct badness_vector *
2052 rank_function (struct type **parms, int nparms, struct type **args, int nargs)
2053 {
2054 int i;
2055 struct badness_vector *bv;
2056 int min_len = nparms < nargs ? nparms : nargs;
2057
2058 bv = xmalloc (sizeof (struct badness_vector));
2059 bv->length = nargs + 1; /* add 1 for the length-match rank */
2060 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2061
2062 /* First compare the lengths of the supplied lists.
2063 * If there is a mismatch, set it to a high value. */
2064
2065 /* pai/1997-06-03 FIXME: when we have debug info about default
2066 * arguments and ellipsis parameter lists, we should consider those
2067 * and rank the length-match more finely. */
2068
2069 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
2070
2071 /* Now rank all the parameters of the candidate function */
2072 for (i = 1; i <= min_len; i++)
2073 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
2074
2075 /* If more arguments than parameters, add dummy entries */
2076 for (i = min_len + 1; i <= nargs; i++)
2077 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2078
2079 return bv;
2080 }
2081
2082 /* Compare one type (PARM) for compatibility with another (ARG).
2083 * PARM is intended to be the parameter type of a function; and
2084 * ARG is the supplied argument's type. This function tests if
2085 * the latter can be converted to the former.
2086 *
2087 * Return 0 if they are identical types;
2088 * Otherwise, return an integer which corresponds to how compatible
2089 * PARM is to ARG. The higher the return value, the worse the match.
2090 * Generally the "bad" conversions are all uniformly assigned a 100 */
2091
2092 int
2093 rank_one_type (struct type *parm, struct type *arg)
2094 {
2095 /* Identical type pointers */
2096 /* However, this still doesn't catch all cases of same type for arg
2097 * and param. The reason is that builtin types are different from
2098 * the same ones constructed from the object. */
2099 if (parm == arg)
2100 return 0;
2101
2102 /* Resolve typedefs */
2103 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2104 parm = check_typedef (parm);
2105 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2106 arg = check_typedef (arg);
2107
2108 /*
2109 Well, damnit, if the names are exactly the same,
2110 i'll say they are exactly the same. This happens when we generate
2111 method stubs. The types won't point to the same address, but they
2112 really are the same.
2113 */
2114
2115 if (TYPE_NAME (parm) && TYPE_NAME (arg) &&
2116 !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
2117 return 0;
2118
2119 /* Check if identical after resolving typedefs */
2120 if (parm == arg)
2121 return 0;
2122
2123 /* See through references, since we can almost make non-references
2124 references. */
2125 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2126 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
2127 + REFERENCE_CONVERSION_BADNESS);
2128 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2129 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
2130 + REFERENCE_CONVERSION_BADNESS);
2131 if (overload_debug)
2132 /* Debugging only. */
2133 fprintf_filtered (gdb_stderr,"------ Arg is %s [%d], parm is %s [%d]\n",
2134 TYPE_NAME (arg), TYPE_CODE (arg), TYPE_NAME (parm), TYPE_CODE (parm));
2135
2136 /* x -> y means arg of type x being supplied for parameter of type y */
2137
2138 switch (TYPE_CODE (parm))
2139 {
2140 case TYPE_CODE_PTR:
2141 switch (TYPE_CODE (arg))
2142 {
2143 case TYPE_CODE_PTR:
2144 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2145 return VOID_PTR_CONVERSION_BADNESS;
2146 else
2147 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2148 case TYPE_CODE_ARRAY:
2149 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2150 case TYPE_CODE_FUNC:
2151 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2152 case TYPE_CODE_INT:
2153 case TYPE_CODE_ENUM:
2154 case TYPE_CODE_CHAR:
2155 case TYPE_CODE_RANGE:
2156 case TYPE_CODE_BOOL:
2157 return POINTER_CONVERSION_BADNESS;
2158 default:
2159 return INCOMPATIBLE_TYPE_BADNESS;
2160 }
2161 case TYPE_CODE_ARRAY:
2162 switch (TYPE_CODE (arg))
2163 {
2164 case TYPE_CODE_PTR:
2165 case TYPE_CODE_ARRAY:
2166 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2167 default:
2168 return INCOMPATIBLE_TYPE_BADNESS;
2169 }
2170 case TYPE_CODE_FUNC:
2171 switch (TYPE_CODE (arg))
2172 {
2173 case TYPE_CODE_PTR: /* funcptr -> func */
2174 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2175 default:
2176 return INCOMPATIBLE_TYPE_BADNESS;
2177 }
2178 case TYPE_CODE_INT:
2179 switch (TYPE_CODE (arg))
2180 {
2181 case TYPE_CODE_INT:
2182 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2183 {
2184 /* Deal with signed, unsigned, and plain chars and
2185 signed and unsigned ints */
2186 if (TYPE_NOSIGN (parm))
2187 {
2188 /* This case only for character types */
2189 if (TYPE_NOSIGN (arg)) /* plain char -> plain char */
2190 return 0;
2191 else
2192 return INTEGER_COERCION_BADNESS; /* signed/unsigned char -> plain char */
2193 }
2194 else if (TYPE_UNSIGNED (parm))
2195 {
2196 if (TYPE_UNSIGNED (arg))
2197 {
2198 if (!strcmp_iw (TYPE_NAME (parm), TYPE_NAME (arg)))
2199 return 0; /* unsigned int -> unsigned int, or unsigned long -> unsigned long */
2200 else if (!strcmp_iw (TYPE_NAME (arg), "int") && !strcmp_iw (TYPE_NAME (parm), "long"))
2201 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2202 else
2203 return INTEGER_COERCION_BADNESS; /* unsigned long -> unsigned int */
2204 }
2205 else
2206 {
2207 if (!strcmp_iw (TYPE_NAME (arg), "long") && !strcmp_iw (TYPE_NAME (parm), "int"))
2208 return INTEGER_COERCION_BADNESS; /* signed long -> unsigned int */
2209 else
2210 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2211 }
2212 }
2213 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2214 {
2215 if (!strcmp_iw (TYPE_NAME (parm), TYPE_NAME (arg)))
2216 return 0;
2217 else if (!strcmp_iw (TYPE_NAME (arg), "int") && !strcmp_iw (TYPE_NAME (parm), "long"))
2218 return INTEGER_PROMOTION_BADNESS;
2219 else
2220 return INTEGER_COERCION_BADNESS;
2221 }
2222 else
2223 return INTEGER_COERCION_BADNESS;
2224 }
2225 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2226 return INTEGER_PROMOTION_BADNESS;
2227 else
2228 return INTEGER_COERCION_BADNESS;
2229 case TYPE_CODE_ENUM:
2230 case TYPE_CODE_CHAR:
2231 case TYPE_CODE_RANGE:
2232 case TYPE_CODE_BOOL:
2233 return INTEGER_PROMOTION_BADNESS;
2234 case TYPE_CODE_FLT:
2235 return INT_FLOAT_CONVERSION_BADNESS;
2236 case TYPE_CODE_PTR:
2237 return NS_POINTER_CONVERSION_BADNESS;
2238 default:
2239 return INCOMPATIBLE_TYPE_BADNESS;
2240 }
2241 break;
2242 case TYPE_CODE_ENUM:
2243 switch (TYPE_CODE (arg))
2244 {
2245 case TYPE_CODE_INT:
2246 case TYPE_CODE_CHAR:
2247 case TYPE_CODE_RANGE:
2248 case TYPE_CODE_BOOL:
2249 case TYPE_CODE_ENUM:
2250 return INTEGER_COERCION_BADNESS;
2251 case TYPE_CODE_FLT:
2252 return INT_FLOAT_CONVERSION_BADNESS;
2253 default:
2254 return INCOMPATIBLE_TYPE_BADNESS;
2255 }
2256 break;
2257 case TYPE_CODE_CHAR:
2258 switch (TYPE_CODE (arg))
2259 {
2260 case TYPE_CODE_RANGE:
2261 case TYPE_CODE_BOOL:
2262 case TYPE_CODE_ENUM:
2263 return INTEGER_COERCION_BADNESS;
2264 case TYPE_CODE_FLT:
2265 return INT_FLOAT_CONVERSION_BADNESS;
2266 case TYPE_CODE_INT:
2267 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2268 return INTEGER_COERCION_BADNESS;
2269 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2270 return INTEGER_PROMOTION_BADNESS;
2271 /* >>> !! else fall through !! <<< */
2272 case TYPE_CODE_CHAR:
2273 /* Deal with signed, unsigned, and plain chars for C++
2274 and with int cases falling through from previous case */
2275 if (TYPE_NOSIGN (parm))
2276 {
2277 if (TYPE_NOSIGN (arg))
2278 return 0;
2279 else
2280 return INTEGER_COERCION_BADNESS;
2281 }
2282 else if (TYPE_UNSIGNED (parm))
2283 {
2284 if (TYPE_UNSIGNED (arg))
2285 return 0;
2286 else
2287 return INTEGER_PROMOTION_BADNESS;
2288 }
2289 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2290 return 0;
2291 else
2292 return INTEGER_COERCION_BADNESS;
2293 default:
2294 return INCOMPATIBLE_TYPE_BADNESS;
2295 }
2296 break;
2297 case TYPE_CODE_RANGE:
2298 switch (TYPE_CODE (arg))
2299 {
2300 case TYPE_CODE_INT:
2301 case TYPE_CODE_CHAR:
2302 case TYPE_CODE_RANGE:
2303 case TYPE_CODE_BOOL:
2304 case TYPE_CODE_ENUM:
2305 return INTEGER_COERCION_BADNESS;
2306 case TYPE_CODE_FLT:
2307 return INT_FLOAT_CONVERSION_BADNESS;
2308 default:
2309 return INCOMPATIBLE_TYPE_BADNESS;
2310 }
2311 break;
2312 case TYPE_CODE_BOOL:
2313 switch (TYPE_CODE (arg))
2314 {
2315 case TYPE_CODE_INT:
2316 case TYPE_CODE_CHAR:
2317 case TYPE_CODE_RANGE:
2318 case TYPE_CODE_ENUM:
2319 case TYPE_CODE_FLT:
2320 case TYPE_CODE_PTR:
2321 return BOOLEAN_CONVERSION_BADNESS;
2322 case TYPE_CODE_BOOL:
2323 return 0;
2324 default:
2325 return INCOMPATIBLE_TYPE_BADNESS;
2326 }
2327 break;
2328 case TYPE_CODE_FLT:
2329 switch (TYPE_CODE (arg))
2330 {
2331 case TYPE_CODE_FLT:
2332 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2333 return FLOAT_PROMOTION_BADNESS;
2334 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2335 return 0;
2336 else
2337 return FLOAT_CONVERSION_BADNESS;
2338 case TYPE_CODE_INT:
2339 case TYPE_CODE_BOOL:
2340 case TYPE_CODE_ENUM:
2341 case TYPE_CODE_RANGE:
2342 case TYPE_CODE_CHAR:
2343 return INT_FLOAT_CONVERSION_BADNESS;
2344 default:
2345 return INCOMPATIBLE_TYPE_BADNESS;
2346 }
2347 break;
2348 case TYPE_CODE_COMPLEX:
2349 switch (TYPE_CODE (arg))
2350 { /* Strictly not needed for C++, but... */
2351 case TYPE_CODE_FLT:
2352 return FLOAT_PROMOTION_BADNESS;
2353 case TYPE_CODE_COMPLEX:
2354 return 0;
2355 default:
2356 return INCOMPATIBLE_TYPE_BADNESS;
2357 }
2358 break;
2359 case TYPE_CODE_STRUCT:
2360 /* currently same as TYPE_CODE_CLASS */
2361 switch (TYPE_CODE (arg))
2362 {
2363 case TYPE_CODE_STRUCT:
2364 /* Check for derivation */
2365 if (is_ancestor (parm, arg))
2366 return BASE_CONVERSION_BADNESS;
2367 /* else fall through */
2368 default:
2369 return INCOMPATIBLE_TYPE_BADNESS;
2370 }
2371 break;
2372 case TYPE_CODE_UNION:
2373 switch (TYPE_CODE (arg))
2374 {
2375 case TYPE_CODE_UNION:
2376 default:
2377 return INCOMPATIBLE_TYPE_BADNESS;
2378 }
2379 break;
2380 case TYPE_CODE_MEMBER:
2381 switch (TYPE_CODE (arg))
2382 {
2383 default:
2384 return INCOMPATIBLE_TYPE_BADNESS;
2385 }
2386 break;
2387 case TYPE_CODE_METHOD:
2388 switch (TYPE_CODE (arg))
2389 {
2390
2391 default:
2392 return INCOMPATIBLE_TYPE_BADNESS;
2393 }
2394 break;
2395 case TYPE_CODE_REF:
2396 switch (TYPE_CODE (arg))
2397 {
2398
2399 default:
2400 return INCOMPATIBLE_TYPE_BADNESS;
2401 }
2402
2403 break;
2404 case TYPE_CODE_SET:
2405 switch (TYPE_CODE (arg))
2406 {
2407 /* Not in C++ */
2408 case TYPE_CODE_SET:
2409 return rank_one_type (TYPE_FIELD_TYPE (parm, 0), TYPE_FIELD_TYPE (arg, 0));
2410 default:
2411 return INCOMPATIBLE_TYPE_BADNESS;
2412 }
2413 break;
2414 case TYPE_CODE_VOID:
2415 default:
2416 return INCOMPATIBLE_TYPE_BADNESS;
2417 } /* switch (TYPE_CODE (arg)) */
2418 }
2419
2420
2421 /* End of functions for overload resolution */
2422
2423 static void
2424 print_bit_vector (B_TYPE *bits, int nbits)
2425 {
2426 int bitno;
2427
2428 for (bitno = 0; bitno < nbits; bitno++)
2429 {
2430 if ((bitno % 8) == 0)
2431 {
2432 puts_filtered (" ");
2433 }
2434 if (B_TST (bits, bitno))
2435 {
2436 printf_filtered ("1");
2437 }
2438 else
2439 {
2440 printf_filtered ("0");
2441 }
2442 }
2443 }
2444
2445 /* The args list is a strange beast. It is either terminated by a NULL
2446 pointer for varargs functions, or by a pointer to a TYPE_CODE_VOID
2447 type for normal fixed argcount functions. (FIXME someday)
2448 Also note the first arg should be the "this" pointer, we may not want to
2449 include it since we may get into a infinitely recursive situation. */
2450
2451 static void
2452 print_arg_types (struct type **args, int spaces)
2453 {
2454 if (args != NULL)
2455 {
2456 while (*args != NULL)
2457 {
2458 recursive_dump_type (*args, spaces + 2);
2459 if ((*args++)->code == TYPE_CODE_VOID)
2460 {
2461 break;
2462 }
2463 }
2464 }
2465 }
2466
2467 static void
2468 dump_fn_fieldlists (struct type *type, int spaces)
2469 {
2470 int method_idx;
2471 int overload_idx;
2472 struct fn_field *f;
2473
2474 printfi_filtered (spaces, "fn_fieldlists ");
2475 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2476 printf_filtered ("\n");
2477 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2478 {
2479 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2480 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2481 method_idx,
2482 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2483 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2484 gdb_stdout);
2485 printf_filtered (") length %d\n",
2486 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2487 for (overload_idx = 0;
2488 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2489 overload_idx++)
2490 {
2491 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2492 overload_idx,
2493 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2494 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2495 gdb_stdout);
2496 printf_filtered (")\n");
2497 printfi_filtered (spaces + 8, "type ");
2498 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx), gdb_stdout);
2499 printf_filtered ("\n");
2500
2501 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2502 spaces + 8 + 2);
2503
2504 printfi_filtered (spaces + 8, "args ");
2505 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx), gdb_stdout);
2506 printf_filtered ("\n");
2507
2508 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx), spaces);
2509 printfi_filtered (spaces + 8, "fcontext ");
2510 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2511 gdb_stdout);
2512 printf_filtered ("\n");
2513
2514 printfi_filtered (spaces + 8, "is_const %d\n",
2515 TYPE_FN_FIELD_CONST (f, overload_idx));
2516 printfi_filtered (spaces + 8, "is_volatile %d\n",
2517 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2518 printfi_filtered (spaces + 8, "is_private %d\n",
2519 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2520 printfi_filtered (spaces + 8, "is_protected %d\n",
2521 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2522 printfi_filtered (spaces + 8, "is_stub %d\n",
2523 TYPE_FN_FIELD_STUB (f, overload_idx));
2524 printfi_filtered (spaces + 8, "voffset %u\n",
2525 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2526 }
2527 }
2528 }
2529
2530 static void
2531 print_cplus_stuff (struct type *type, int spaces)
2532 {
2533 printfi_filtered (spaces, "n_baseclasses %d\n",
2534 TYPE_N_BASECLASSES (type));
2535 printfi_filtered (spaces, "nfn_fields %d\n",
2536 TYPE_NFN_FIELDS (type));
2537 printfi_filtered (spaces, "nfn_fields_total %d\n",
2538 TYPE_NFN_FIELDS_TOTAL (type));
2539 if (TYPE_N_BASECLASSES (type) > 0)
2540 {
2541 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2542 TYPE_N_BASECLASSES (type));
2543 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type), gdb_stdout);
2544 printf_filtered (")");
2545
2546 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2547 TYPE_N_BASECLASSES (type));
2548 puts_filtered ("\n");
2549 }
2550 if (TYPE_NFIELDS (type) > 0)
2551 {
2552 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2553 {
2554 printfi_filtered (spaces, "private_field_bits (%d bits at *",
2555 TYPE_NFIELDS (type));
2556 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type), gdb_stdout);
2557 printf_filtered (")");
2558 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2559 TYPE_NFIELDS (type));
2560 puts_filtered ("\n");
2561 }
2562 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2563 {
2564 printfi_filtered (spaces, "protected_field_bits (%d bits at *",
2565 TYPE_NFIELDS (type));
2566 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type), gdb_stdout);
2567 printf_filtered (")");
2568 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2569 TYPE_NFIELDS (type));
2570 puts_filtered ("\n");
2571 }
2572 }
2573 if (TYPE_NFN_FIELDS (type) > 0)
2574 {
2575 dump_fn_fieldlists (type, spaces);
2576 }
2577 }
2578
2579 static struct obstack dont_print_type_obstack;
2580
2581 void
2582 recursive_dump_type (struct type *type, int spaces)
2583 {
2584 int idx;
2585
2586 if (spaces == 0)
2587 obstack_begin (&dont_print_type_obstack, 0);
2588
2589 if (TYPE_NFIELDS (type) > 0
2590 || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2591 {
2592 struct type **first_dont_print
2593 = (struct type **) obstack_base (&dont_print_type_obstack);
2594
2595 int i = (struct type **) obstack_next_free (&dont_print_type_obstack)
2596 - first_dont_print;
2597
2598 while (--i >= 0)
2599 {
2600 if (type == first_dont_print[i])
2601 {
2602 printfi_filtered (spaces, "type node ");
2603 gdb_print_host_address (type, gdb_stdout);
2604 printf_filtered (" <same as already seen type>\n");
2605 return;
2606 }
2607 }
2608
2609 obstack_ptr_grow (&dont_print_type_obstack, type);
2610 }
2611
2612 printfi_filtered (spaces, "type node ");
2613 gdb_print_host_address (type, gdb_stdout);
2614 printf_filtered ("\n");
2615 printfi_filtered (spaces, "name '%s' (",
2616 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2617 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2618 printf_filtered (")\n");
2619 if (TYPE_TAG_NAME (type) != NULL)
2620 {
2621 printfi_filtered (spaces, "tagname '%s' (",
2622 TYPE_TAG_NAME (type));
2623 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2624 printf_filtered (")\n");
2625 }
2626 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2627 switch (TYPE_CODE (type))
2628 {
2629 case TYPE_CODE_UNDEF:
2630 printf_filtered ("(TYPE_CODE_UNDEF)");
2631 break;
2632 case TYPE_CODE_PTR:
2633 printf_filtered ("(TYPE_CODE_PTR)");
2634 break;
2635 case TYPE_CODE_ARRAY:
2636 printf_filtered ("(TYPE_CODE_ARRAY)");
2637 break;
2638 case TYPE_CODE_STRUCT:
2639 printf_filtered ("(TYPE_CODE_STRUCT)");
2640 break;
2641 case TYPE_CODE_UNION:
2642 printf_filtered ("(TYPE_CODE_UNION)");
2643 break;
2644 case TYPE_CODE_ENUM:
2645 printf_filtered ("(TYPE_CODE_ENUM)");
2646 break;
2647 case TYPE_CODE_FUNC:
2648 printf_filtered ("(TYPE_CODE_FUNC)");
2649 break;
2650 case TYPE_CODE_INT:
2651 printf_filtered ("(TYPE_CODE_INT)");
2652 break;
2653 case TYPE_CODE_FLT:
2654 printf_filtered ("(TYPE_CODE_FLT)");
2655 break;
2656 case TYPE_CODE_VOID:
2657 printf_filtered ("(TYPE_CODE_VOID)");
2658 break;
2659 case TYPE_CODE_SET:
2660 printf_filtered ("(TYPE_CODE_SET)");
2661 break;
2662 case TYPE_CODE_RANGE:
2663 printf_filtered ("(TYPE_CODE_RANGE)");
2664 break;
2665 case TYPE_CODE_STRING:
2666 printf_filtered ("(TYPE_CODE_STRING)");
2667 break;
2668 case TYPE_CODE_ERROR:
2669 printf_filtered ("(TYPE_CODE_ERROR)");
2670 break;
2671 case TYPE_CODE_MEMBER:
2672 printf_filtered ("(TYPE_CODE_MEMBER)");
2673 break;
2674 case TYPE_CODE_METHOD:
2675 printf_filtered ("(TYPE_CODE_METHOD)");
2676 break;
2677 case TYPE_CODE_REF:
2678 printf_filtered ("(TYPE_CODE_REF)");
2679 break;
2680 case TYPE_CODE_CHAR:
2681 printf_filtered ("(TYPE_CODE_CHAR)");
2682 break;
2683 case TYPE_CODE_BOOL:
2684 printf_filtered ("(TYPE_CODE_BOOL)");
2685 break;
2686 case TYPE_CODE_TYPEDEF:
2687 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2688 break;
2689 default:
2690 printf_filtered ("(UNKNOWN TYPE CODE)");
2691 break;
2692 }
2693 puts_filtered ("\n");
2694 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2695 printfi_filtered (spaces, "objfile ");
2696 gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
2697 printf_filtered ("\n");
2698 printfi_filtered (spaces, "target_type ");
2699 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
2700 printf_filtered ("\n");
2701 if (TYPE_TARGET_TYPE (type) != NULL)
2702 {
2703 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2704 }
2705 printfi_filtered (spaces, "pointer_type ");
2706 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
2707 printf_filtered ("\n");
2708 printfi_filtered (spaces, "reference_type ");
2709 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
2710 printf_filtered ("\n");
2711 printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type));
2712 if (TYPE_FLAGS (type) & TYPE_FLAG_UNSIGNED)
2713 {
2714 puts_filtered (" TYPE_FLAG_UNSIGNED");
2715 }
2716 if (TYPE_FLAGS (type) & TYPE_FLAG_STUB)
2717 {
2718 puts_filtered (" TYPE_FLAG_STUB");
2719 }
2720 puts_filtered ("\n");
2721 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
2722 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
2723 puts_filtered ("\n");
2724 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2725 {
2726 printfi_filtered (spaces + 2,
2727 "[%d] bitpos %d bitsize %d type ",
2728 idx, TYPE_FIELD_BITPOS (type, idx),
2729 TYPE_FIELD_BITSIZE (type, idx));
2730 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
2731 printf_filtered (" name '%s' (",
2732 TYPE_FIELD_NAME (type, idx) != NULL
2733 ? TYPE_FIELD_NAME (type, idx)
2734 : "<NULL>");
2735 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
2736 printf_filtered (")\n");
2737 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2738 {
2739 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2740 }
2741 }
2742 printfi_filtered (spaces, "vptr_basetype ");
2743 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
2744 puts_filtered ("\n");
2745 if (TYPE_VPTR_BASETYPE (type) != NULL)
2746 {
2747 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2748 }
2749 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
2750 switch (TYPE_CODE (type))
2751 {
2752 case TYPE_CODE_METHOD:
2753 case TYPE_CODE_FUNC:
2754 printfi_filtered (spaces, "arg_types ");
2755 gdb_print_host_address (TYPE_ARG_TYPES (type), gdb_stdout);
2756 puts_filtered ("\n");
2757 print_arg_types (TYPE_ARG_TYPES (type), spaces);
2758 break;
2759
2760 case TYPE_CODE_STRUCT:
2761 printfi_filtered (spaces, "cplus_stuff ");
2762 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
2763 puts_filtered ("\n");
2764 print_cplus_stuff (type, spaces);
2765 break;
2766
2767 default:
2768 /* We have to pick one of the union types to be able print and test
2769 the value. Pick cplus_struct_type, even though we know it isn't
2770 any particular one. */
2771 printfi_filtered (spaces, "type_specific ");
2772 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
2773 if (TYPE_CPLUS_SPECIFIC (type) != NULL)
2774 {
2775 printf_filtered (" (unknown data form)");
2776 }
2777 printf_filtered ("\n");
2778 break;
2779
2780 }
2781 if (spaces == 0)
2782 obstack_free (&dont_print_type_obstack, NULL);
2783 }
2784
2785 static void build_gdbtypes (void);
2786 static void
2787 build_gdbtypes (void)
2788 {
2789 builtin_type_void =
2790 init_type (TYPE_CODE_VOID, 1,
2791 0,
2792 "void", (struct objfile *) NULL);
2793 builtin_type_char =
2794 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
2795 0,
2796 "char", (struct objfile *) NULL);
2797 TYPE_FLAGS (builtin_type_char) |= TYPE_FLAG_NOSIGN;
2798 builtin_type_true_char =
2799 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
2800 0,
2801 "true character", (struct objfile *) NULL);
2802 builtin_type_signed_char =
2803 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
2804 0,
2805 "signed char", (struct objfile *) NULL);
2806 builtin_type_unsigned_char =
2807 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
2808 TYPE_FLAG_UNSIGNED,
2809 "unsigned char", (struct objfile *) NULL);
2810 builtin_type_short =
2811 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
2812 0,
2813 "short", (struct objfile *) NULL);
2814 builtin_type_unsigned_short =
2815 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
2816 TYPE_FLAG_UNSIGNED,
2817 "unsigned short", (struct objfile *) NULL);
2818 builtin_type_int =
2819 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
2820 0,
2821 "int", (struct objfile *) NULL);
2822 builtin_type_unsigned_int =
2823 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
2824 TYPE_FLAG_UNSIGNED,
2825 "unsigned int", (struct objfile *) NULL);
2826 builtin_type_long =
2827 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
2828 0,
2829 "long", (struct objfile *) NULL);
2830 builtin_type_unsigned_long =
2831 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
2832 TYPE_FLAG_UNSIGNED,
2833 "unsigned long", (struct objfile *) NULL);
2834 builtin_type_long_long =
2835 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
2836 0,
2837 "long long", (struct objfile *) NULL);
2838 builtin_type_unsigned_long_long =
2839 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
2840 TYPE_FLAG_UNSIGNED,
2841 "unsigned long long", (struct objfile *) NULL);
2842 builtin_type_float =
2843 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
2844 0,
2845 "float", (struct objfile *) NULL);
2846 builtin_type_double =
2847 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
2848 0,
2849 "double", (struct objfile *) NULL);
2850 builtin_type_long_double =
2851 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
2852 0,
2853 "long double", (struct objfile *) NULL);
2854 builtin_type_complex =
2855 init_type (TYPE_CODE_COMPLEX, 2 * TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
2856 0,
2857 "complex", (struct objfile *) NULL);
2858 TYPE_TARGET_TYPE (builtin_type_complex) = builtin_type_float;
2859 builtin_type_double_complex =
2860 init_type (TYPE_CODE_COMPLEX, 2 * TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
2861 0,
2862 "double complex", (struct objfile *) NULL);
2863 TYPE_TARGET_TYPE (builtin_type_double_complex) = builtin_type_double;
2864 builtin_type_string =
2865 init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
2866 0,
2867 "string", (struct objfile *) NULL);
2868 builtin_type_int8 =
2869 init_type (TYPE_CODE_INT, 8 / 8,
2870 0,
2871 "int8_t", (struct objfile *) NULL);
2872 builtin_type_uint8 =
2873 init_type (TYPE_CODE_INT, 8 / 8,
2874 TYPE_FLAG_UNSIGNED,
2875 "uint8_t", (struct objfile *) NULL);
2876 builtin_type_int16 =
2877 init_type (TYPE_CODE_INT, 16 / 8,
2878 0,
2879 "int16_t", (struct objfile *) NULL);
2880 builtin_type_uint16 =
2881 init_type (TYPE_CODE_INT, 16 / 8,
2882 TYPE_FLAG_UNSIGNED,
2883 "uint16_t", (struct objfile *) NULL);
2884 builtin_type_int32 =
2885 init_type (TYPE_CODE_INT, 32 / 8,
2886 0,
2887 "int32_t", (struct objfile *) NULL);
2888 builtin_type_uint32 =
2889 init_type (TYPE_CODE_INT, 32 / 8,
2890 TYPE_FLAG_UNSIGNED,
2891 "uint32_t", (struct objfile *) NULL);
2892 builtin_type_int64 =
2893 init_type (TYPE_CODE_INT, 64 / 8,
2894 0,
2895 "int64_t", (struct objfile *) NULL);
2896 builtin_type_uint64 =
2897 init_type (TYPE_CODE_INT, 64 / 8,
2898 TYPE_FLAG_UNSIGNED,
2899 "uint64_t", (struct objfile *) NULL);
2900 builtin_type_bool =
2901 init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
2902 0,
2903 "bool", (struct objfile *) NULL);
2904
2905 /* Add user knob for controlling resolution of opaque types */
2906 add_show_from_set
2907 (add_set_cmd ("opaque-type-resolution", class_support, var_boolean, (char *) &opaque_type_resolution,
2908 "Set resolution of opaque struct/class/union types (if set before loading symbols).",
2909 &setlist),
2910 &showlist);
2911 opaque_type_resolution = 1;
2912
2913
2914 /* Build SIMD types. */
2915 builtin_type_v4sf
2916 = init_simd_type ("__builtin_v4sf", builtin_type_float, "f", 4);
2917 builtin_type_v4si
2918 = init_simd_type ("__builtin_v4si", builtin_type_int32, "f", 4);
2919 builtin_type_v8qi
2920 = init_simd_type ("__builtin_v8qi", builtin_type_int8, "f", 8);
2921 builtin_type_v4hi
2922 = init_simd_type ("__builtin_v4hi", builtin_type_int16, "f", 4);
2923 builtin_type_v2si
2924 = init_simd_type ("__builtin_v2si", builtin_type_int32, "f", 2);
2925
2926 /* Pointer/Address types. */
2927 /* NOTE: At present there is no way of differentiating between at
2928 target address and the target C language pointer type type even
2929 though the two can be different (cf d10v) */
2930 builtin_type_ptr = make_pointer_type (builtin_type_void, NULL);
2931 builtin_type_CORE_ADDR =
2932 init_type (TYPE_CODE_INT, TARGET_PTR_BIT / 8,
2933 TYPE_FLAG_UNSIGNED,
2934 "__CORE_ADDR", (struct objfile *) NULL);
2935 builtin_type_bfd_vma =
2936 init_type (TYPE_CODE_INT, TARGET_BFD_VMA_BIT / 8,
2937 TYPE_FLAG_UNSIGNED,
2938 "__bfd_vma", (struct objfile *) NULL);
2939 }
2940
2941
2942 extern void _initialize_gdbtypes (void);
2943 void
2944 _initialize_gdbtypes (void)
2945 {
2946 struct cmd_list_element *c;
2947 build_gdbtypes ();
2948
2949 /* FIXME - For the moment, handle types by swapping them in and out.
2950 Should be using the per-architecture data-pointer and a large
2951 struct. */
2952 register_gdbarch_swap (&builtin_type_void, sizeof (struct type *), NULL);
2953 register_gdbarch_swap (&builtin_type_char, sizeof (struct type *), NULL);
2954 register_gdbarch_swap (&builtin_type_short, sizeof (struct type *), NULL);
2955 register_gdbarch_swap (&builtin_type_int, sizeof (struct type *), NULL);
2956 register_gdbarch_swap (&builtin_type_long, sizeof (struct type *), NULL);
2957 register_gdbarch_swap (&builtin_type_long_long, sizeof (struct type *), NULL);
2958 register_gdbarch_swap (&builtin_type_signed_char, sizeof (struct type *), NULL);
2959 register_gdbarch_swap (&builtin_type_unsigned_char, sizeof (struct type *), NULL);
2960 register_gdbarch_swap (&builtin_type_unsigned_short, sizeof (struct type *), NULL);
2961 register_gdbarch_swap (&builtin_type_unsigned_int, sizeof (struct type *), NULL);
2962 register_gdbarch_swap (&builtin_type_unsigned_long, sizeof (struct type *), NULL);
2963 register_gdbarch_swap (&builtin_type_unsigned_long_long, sizeof (struct type *), NULL);
2964 register_gdbarch_swap (&builtin_type_float, sizeof (struct type *), NULL);
2965 register_gdbarch_swap (&builtin_type_double, sizeof (struct type *), NULL);
2966 register_gdbarch_swap (&builtin_type_long_double, sizeof (struct type *), NULL);
2967 register_gdbarch_swap (&builtin_type_complex, sizeof (struct type *), NULL);
2968 register_gdbarch_swap (&builtin_type_double_complex, sizeof (struct type *), NULL);
2969 register_gdbarch_swap (&builtin_type_string, sizeof (struct type *), NULL);
2970 register_gdbarch_swap (&builtin_type_int8, sizeof (struct type *), NULL);
2971 register_gdbarch_swap (&builtin_type_uint8, sizeof (struct type *), NULL);
2972 register_gdbarch_swap (&builtin_type_int16, sizeof (struct type *), NULL);
2973 register_gdbarch_swap (&builtin_type_uint16, sizeof (struct type *), NULL);
2974 register_gdbarch_swap (&builtin_type_int32, sizeof (struct type *), NULL);
2975 register_gdbarch_swap (&builtin_type_uint32, sizeof (struct type *), NULL);
2976 register_gdbarch_swap (&builtin_type_int64, sizeof (struct type *), NULL);
2977 register_gdbarch_swap (&builtin_type_uint64, sizeof (struct type *), NULL);
2978 register_gdbarch_swap (&builtin_type_v4sf, sizeof (struct type *), NULL);
2979 register_gdbarch_swap (&builtin_type_v4si, sizeof (struct type *), NULL);
2980 register_gdbarch_swap (&builtin_type_v8qi, sizeof (struct type *), NULL);
2981 register_gdbarch_swap (&builtin_type_v4hi, sizeof (struct type *), NULL);
2982 register_gdbarch_swap (&builtin_type_v2si, sizeof (struct type *), NULL);
2983 REGISTER_GDBARCH_SWAP (builtin_type_ptr);
2984 REGISTER_GDBARCH_SWAP (builtin_type_CORE_ADDR);
2985 REGISTER_GDBARCH_SWAP (builtin_type_bfd_vma);
2986 register_gdbarch_swap (NULL, 0, build_gdbtypes);
2987
2988 add_show_from_set (
2989 add_set_cmd ("overload", no_class, var_zinteger, (char *) &overload_debug,
2990 "Set debugging of C++ overloading.\n\
2991 When enabled, ranking of the functions\n\
2992 is displayed.", &setdebuglist),
2993 &showdebuglist);
2994 }