]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gnu-regex.c
Initial creation of sourceware repository
[thirdparty/binutils-gdb.git] / gdb / gnu-regex.c
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993, 94, 95, 96, 97, 98 Free Software Foundation, Inc.
6
7 NOTE: The canonical source of this file is maintained with the
8 GNU C Library. Bugs can be reported to bug-glibc@prep.ai.mit.edu.
9
10 This program is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 2, or (at your option) any
13 later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software Foundation,
22 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 /* AIX requires this to be the first thing in the file. */
25 #if defined _AIX && !defined REGEX_MALLOC
26 #pragma alloca
27 #endif
28
29 #undef _GNU_SOURCE
30 #define _GNU_SOURCE
31
32 #ifdef HAVE_CONFIG_H
33 # include <config.h>
34 #endif
35
36 #ifndef PARAMS
37 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
38 # define PARAMS(args) args
39 # else
40 # define PARAMS(args) ()
41 # endif /* GCC. */
42 #endif /* Not PARAMS. */
43
44 #if defined STDC_HEADERS && !defined emacs
45 # include <stddef.h>
46 #else
47 /* We need this for `gnu-regex.h', and perhaps for the Emacs include files. */
48 # include <sys/types.h>
49 #endif
50
51 /* For platform which support the ISO C amendement 1 functionality we
52 support user defined character classes. */
53 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
54 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
55 # include <wchar.h>
56 # include <wctype.h>
57 #endif
58
59 /* This is for other GNU distributions with internationalized messages. */
60 /* CYGNUS LOCAL: ../intl will handle this for us */
61 #ifdef ENABLE_NLS
62 # include <libintl.h>
63 #else
64 # define gettext(msgid) (msgid)
65 #endif
66
67 #ifndef gettext_noop
68 /* This define is so xgettext can find the internationalizable
69 strings. */
70 # define gettext_noop(String) String
71 #endif
72
73 /* The `emacs' switch turns on certain matching commands
74 that make sense only in Emacs. */
75 #ifdef emacs
76
77 # include "lisp.h"
78 # include "buffer.h"
79 # include "syntax.h"
80
81 #else /* not emacs */
82
83 /* If we are not linking with Emacs proper,
84 we can't use the relocating allocator
85 even if config.h says that we can. */
86 # undef REL_ALLOC
87
88 # if defined STDC_HEADERS || defined _LIBC
89 # include <stdlib.h>
90 # else
91 char *malloc ();
92 char *realloc ();
93 # endif
94
95 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
96 If nothing else has been done, use the method below. */
97 # ifdef INHIBIT_STRING_HEADER
98 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
99 # if !defined bzero && !defined bcopy
100 # undef INHIBIT_STRING_HEADER
101 # endif
102 # endif
103 # endif
104
105 /* This is the normal way of making sure we have a bcopy and a bzero.
106 This is used in most programs--a few other programs avoid this
107 by defining INHIBIT_STRING_HEADER. */
108 # ifndef INHIBIT_STRING_HEADER
109 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
110 # include <string.h>
111 # ifndef bzero
112 # ifndef _LIBC
113 # define bzero(s, n) (memset (s, '\0', n), (s))
114 # else
115 # define bzero(s, n) __bzero (s, n)
116 # endif
117 # endif
118 # else
119 # include <strings.h>
120 # ifndef memcmp
121 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
122 # endif
123 # ifndef memcpy
124 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
125 # endif
126 # endif
127 # endif
128
129 /* Define the syntax stuff for \<, \>, etc. */
130
131 /* This must be nonzero for the wordchar and notwordchar pattern
132 commands in re_match_2. */
133 # ifndef Sword
134 # define Sword 1
135 # endif
136
137 # ifdef SWITCH_ENUM_BUG
138 # define SWITCH_ENUM_CAST(x) ((int)(x))
139 # else
140 # define SWITCH_ENUM_CAST(x) (x)
141 # endif
142
143 /* How many characters in the character set. */
144 # define CHAR_SET_SIZE 256
145
146 /* GDB LOCAL: define _REGEX_RE_COMP to get BSD style re_comp and re_exec */
147 #ifndef _REGEX_RE_COMP
148 #define _REGEX_RE_COMP
149 #endif
150
151 # ifdef SYNTAX_TABLE
152
153 extern char *re_syntax_table;
154
155 # else /* not SYNTAX_TABLE */
156
157 static char re_syntax_table[CHAR_SET_SIZE];
158
159 static void
160 init_syntax_once ()
161 {
162 register int c;
163 static int done = 0;
164
165 if (done)
166 return;
167
168 bzero (re_syntax_table, sizeof re_syntax_table);
169
170 for (c = 'a'; c <= 'z'; c++)
171 re_syntax_table[c] = Sword;
172
173 for (c = 'A'; c <= 'Z'; c++)
174 re_syntax_table[c] = Sword;
175
176 for (c = '0'; c <= '9'; c++)
177 re_syntax_table[c] = Sword;
178
179 re_syntax_table['_'] = Sword;
180
181 done = 1;
182 }
183
184 # endif /* not SYNTAX_TABLE */
185
186 # define SYNTAX(c) re_syntax_table[c]
187
188 #endif /* not emacs */
189 \f
190 /* Get the interface, including the syntax bits. */
191 /* CYGNUS LOCAL: call it gnu-regex.h, not regex.h, to avoid name conflicts */
192 #include "gnu-regex.h"
193
194 /* isalpha etc. are used for the character classes. */
195 #include <ctype.h>
196
197 /* Jim Meyering writes:
198
199 "... Some ctype macros are valid only for character codes that
200 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
201 using /bin/cc or gcc but without giving an ansi option). So, all
202 ctype uses should be through macros like ISPRINT... If
203 STDC_HEADERS is defined, then autoconf has verified that the ctype
204 macros don't need to be guarded with references to isascii. ...
205 Defining isascii to 1 should let any compiler worth its salt
206 eliminate the && through constant folding."
207 Solaris defines some of these symbols so we must undefine them first. */
208
209 #undef ISASCII
210 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
211 # define ISASCII(c) 1
212 #else
213 # define ISASCII(c) isascii(c)
214 #endif
215
216 #ifdef isblank
217 # define ISBLANK(c) (ISASCII (c) && isblank (c))
218 #else
219 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
220 #endif
221 #ifdef isgraph
222 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
223 #else
224 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
225 #endif
226
227 #undef ISPRINT
228 #define ISPRINT(c) (ISASCII (c) && isprint (c))
229 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
230 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
231 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
232 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
233 #define ISLOWER(c) (ISASCII (c) && islower (c))
234 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
235 #define ISSPACE(c) (ISASCII (c) && isspace (c))
236 #define ISUPPER(c) (ISASCII (c) && isupper (c))
237 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
238
239 #ifndef NULL
240 # define NULL (void *)0
241 #endif
242
243 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
244 since ours (we hope) works properly with all combinations of
245 machines, compilers, `char' and `unsigned char' argument types.
246 (Per Bothner suggested the basic approach.) */
247 #undef SIGN_EXTEND_CHAR
248 #if __STDC__
249 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
250 #else /* not __STDC__ */
251 /* As in Harbison and Steele. */
252 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
253 #endif
254 \f
255 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
256 use `alloca' instead of `malloc'. This is because using malloc in
257 re_search* or re_match* could cause memory leaks when C-g is used in
258 Emacs; also, malloc is slower and causes storage fragmentation. On
259 the other hand, malloc is more portable, and easier to debug.
260
261 Because we sometimes use alloca, some routines have to be macros,
262 not functions -- `alloca'-allocated space disappears at the end of the
263 function it is called in. */
264
265 #ifdef REGEX_MALLOC
266
267 # define REGEX_ALLOCATE malloc
268 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
269 # define REGEX_FREE free
270
271 #else /* not REGEX_MALLOC */
272
273 /* Emacs already defines alloca, sometimes. */
274 # ifndef alloca
275
276 /* Make alloca work the best possible way. */
277 # ifdef __GNUC__
278 # define alloca __builtin_alloca
279 # else /* not __GNUC__ */
280 # if HAVE_ALLOCA_H
281 # include <alloca.h>
282 # endif /* HAVE_ALLOCA_H */
283 # endif /* not __GNUC__ */
284
285 # endif /* not alloca */
286
287 # define REGEX_ALLOCATE alloca
288
289 /* Assumes a `char *destination' variable. */
290 # define REGEX_REALLOCATE(source, osize, nsize) \
291 (destination = (char *) alloca (nsize), \
292 memcpy (destination, source, osize))
293
294 /* No need to do anything to free, after alloca. */
295 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
296
297 #endif /* not REGEX_MALLOC */
298
299 /* Define how to allocate the failure stack. */
300
301 #if defined REL_ALLOC && defined REGEX_MALLOC
302
303 # define REGEX_ALLOCATE_STACK(size) \
304 r_alloc (&failure_stack_ptr, (size))
305 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
306 r_re_alloc (&failure_stack_ptr, (nsize))
307 # define REGEX_FREE_STACK(ptr) \
308 r_alloc_free (&failure_stack_ptr)
309
310 #else /* not using relocating allocator */
311
312 # ifdef REGEX_MALLOC
313
314 # define REGEX_ALLOCATE_STACK malloc
315 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
316 # define REGEX_FREE_STACK free
317
318 # else /* not REGEX_MALLOC */
319
320 # define REGEX_ALLOCATE_STACK alloca
321
322 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
323 REGEX_REALLOCATE (source, osize, nsize)
324 /* No need to explicitly free anything. */
325 # define REGEX_FREE_STACK(arg)
326
327 # endif /* not REGEX_MALLOC */
328 #endif /* not using relocating allocator */
329
330
331 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
332 `string1' or just past its end. This works if PTR is NULL, which is
333 a good thing. */
334 #define FIRST_STRING_P(ptr) \
335 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
336
337 /* (Re)Allocate N items of type T using malloc, or fail. */
338 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
339 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
340 #define RETALLOC_IF(addr, n, t) \
341 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
342 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
343
344 #define BYTEWIDTH 8 /* In bits. */
345
346 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
347
348 #undef MAX
349 #undef MIN
350 #define MAX(a, b) ((a) > (b) ? (a) : (b))
351 #define MIN(a, b) ((a) < (b) ? (a) : (b))
352
353 typedef char boolean;
354 #define false 0
355 #define true 1
356
357 static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
358 const char *string1, int size1,
359 const char *string2, int size2,
360 int pos,
361 struct re_registers *regs,
362 int stop));
363 \f
364 /* These are the command codes that appear in compiled regular
365 expressions. Some opcodes are followed by argument bytes. A
366 command code can specify any interpretation whatsoever for its
367 arguments. Zero bytes may appear in the compiled regular expression. */
368
369 typedef enum
370 {
371 no_op = 0,
372
373 /* Succeed right away--no more backtracking. */
374 succeed,
375
376 /* Followed by one byte giving n, then by n literal bytes. */
377 exactn,
378
379 /* Matches any (more or less) character. */
380 anychar,
381
382 /* Matches any one char belonging to specified set. First
383 following byte is number of bitmap bytes. Then come bytes
384 for a bitmap saying which chars are in. Bits in each byte
385 are ordered low-bit-first. A character is in the set if its
386 bit is 1. A character too large to have a bit in the map is
387 automatically not in the set. */
388 charset,
389
390 /* Same parameters as charset, but match any character that is
391 not one of those specified. */
392 charset_not,
393
394 /* Start remembering the text that is matched, for storing in a
395 register. Followed by one byte with the register number, in
396 the range 0 to one less than the pattern buffer's re_nsub
397 field. Then followed by one byte with the number of groups
398 inner to this one. (This last has to be part of the
399 start_memory only because we need it in the on_failure_jump
400 of re_match_2.) */
401 start_memory,
402
403 /* Stop remembering the text that is matched and store it in a
404 memory register. Followed by one byte with the register
405 number, in the range 0 to one less than `re_nsub' in the
406 pattern buffer, and one byte with the number of inner groups,
407 just like `start_memory'. (We need the number of inner
408 groups here because we don't have any easy way of finding the
409 corresponding start_memory when we're at a stop_memory.) */
410 stop_memory,
411
412 /* Match a duplicate of something remembered. Followed by one
413 byte containing the register number. */
414 duplicate,
415
416 /* Fail unless at beginning of line. */
417 begline,
418
419 /* Fail unless at end of line. */
420 endline,
421
422 /* Succeeds if at beginning of buffer (if emacs) or at beginning
423 of string to be matched (if not). */
424 begbuf,
425
426 /* Analogously, for end of buffer/string. */
427 endbuf,
428
429 /* Followed by two byte relative address to which to jump. */
430 jump,
431
432 /* Same as jump, but marks the end of an alternative. */
433 jump_past_alt,
434
435 /* Followed by two-byte relative address of place to resume at
436 in case of failure. */
437 on_failure_jump,
438
439 /* Like on_failure_jump, but pushes a placeholder instead of the
440 current string position when executed. */
441 on_failure_keep_string_jump,
442
443 /* Throw away latest failure point and then jump to following
444 two-byte relative address. */
445 pop_failure_jump,
446
447 /* Change to pop_failure_jump if know won't have to backtrack to
448 match; otherwise change to jump. This is used to jump
449 back to the beginning of a repeat. If what follows this jump
450 clearly won't match what the repeat does, such that we can be
451 sure that there is no use backtracking out of repetitions
452 already matched, then we change it to a pop_failure_jump.
453 Followed by two-byte address. */
454 maybe_pop_jump,
455
456 /* Jump to following two-byte address, and push a dummy failure
457 point. This failure point will be thrown away if an attempt
458 is made to use it for a failure. A `+' construct makes this
459 before the first repeat. Also used as an intermediary kind
460 of jump when compiling an alternative. */
461 dummy_failure_jump,
462
463 /* Push a dummy failure point and continue. Used at the end of
464 alternatives. */
465 push_dummy_failure,
466
467 /* Followed by two-byte relative address and two-byte number n.
468 After matching N times, jump to the address upon failure. */
469 succeed_n,
470
471 /* Followed by two-byte relative address, and two-byte number n.
472 Jump to the address N times, then fail. */
473 jump_n,
474
475 /* Set the following two-byte relative address to the
476 subsequent two-byte number. The address *includes* the two
477 bytes of number. */
478 set_number_at,
479
480 wordchar, /* Matches any word-constituent character. */
481 notwordchar, /* Matches any char that is not a word-constituent. */
482
483 wordbeg, /* Succeeds if at word beginning. */
484 wordend, /* Succeeds if at word end. */
485
486 wordbound, /* Succeeds if at a word boundary. */
487 notwordbound /* Succeeds if not at a word boundary. */
488
489 #ifdef emacs
490 ,before_dot, /* Succeeds if before point. */
491 at_dot, /* Succeeds if at point. */
492 after_dot, /* Succeeds if after point. */
493
494 /* Matches any character whose syntax is specified. Followed by
495 a byte which contains a syntax code, e.g., Sword. */
496 syntaxspec,
497
498 /* Matches any character whose syntax is not that specified. */
499 notsyntaxspec
500 #endif /* emacs */
501 } re_opcode_t;
502 \f
503 /* Common operations on the compiled pattern. */
504
505 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
506
507 #define STORE_NUMBER(destination, number) \
508 do { \
509 (destination)[0] = (number) & 0377; \
510 (destination)[1] = (number) >> 8; \
511 } while (0)
512
513 /* Same as STORE_NUMBER, except increment DESTINATION to
514 the byte after where the number is stored. Therefore, DESTINATION
515 must be an lvalue. */
516
517 #define STORE_NUMBER_AND_INCR(destination, number) \
518 do { \
519 STORE_NUMBER (destination, number); \
520 (destination) += 2; \
521 } while (0)
522
523 /* Put into DESTINATION a number stored in two contiguous bytes starting
524 at SOURCE. */
525
526 #define EXTRACT_NUMBER(destination, source) \
527 do { \
528 (destination) = *(source) & 0377; \
529 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
530 } while (0)
531
532 #ifdef DEBUG
533 static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
534 static void
535 extract_number (dest, source)
536 int *dest;
537 unsigned char *source;
538 {
539 int temp = SIGN_EXTEND_CHAR (*(source + 1));
540 *dest = *source & 0377;
541 *dest += temp << 8;
542 }
543
544 # ifndef EXTRACT_MACROS /* To debug the macros. */
545 # undef EXTRACT_NUMBER
546 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
547 # endif /* not EXTRACT_MACROS */
548
549 #endif /* DEBUG */
550
551 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
552 SOURCE must be an lvalue. */
553
554 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
555 do { \
556 EXTRACT_NUMBER (destination, source); \
557 (source) += 2; \
558 } while (0)
559
560 #ifdef DEBUG
561 static void extract_number_and_incr _RE_ARGS ((int *destination,
562 unsigned char **source));
563 static void
564 extract_number_and_incr (destination, source)
565 int *destination;
566 unsigned char **source;
567 {
568 extract_number (destination, *source);
569 *source += 2;
570 }
571
572 # ifndef EXTRACT_MACROS
573 # undef EXTRACT_NUMBER_AND_INCR
574 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
575 extract_number_and_incr (&dest, &src)
576 # endif /* not EXTRACT_MACROS */
577
578 #endif /* DEBUG */
579 \f
580 /* If DEBUG is defined, Regex prints many voluminous messages about what
581 it is doing (if the variable `debug' is nonzero). If linked with the
582 main program in `iregex.c', you can enter patterns and strings
583 interactively. And if linked with the main program in `main.c' and
584 the other test files, you can run the already-written tests. */
585
586 #ifdef DEBUG
587
588 /* We use standard I/O for debugging. */
589 # include <stdio.h>
590
591 /* It is useful to test things that ``must'' be true when debugging. */
592 # include <assert.h>
593
594 static int debug = 0;
595
596 # define DEBUG_STATEMENT(e) e
597 # define DEBUG_PRINT1(x) if (debug) printf (x)
598 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
599 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
600 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
601 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
602 if (debug) print_partial_compiled_pattern (s, e)
603 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
604 if (debug) print_double_string (w, s1, sz1, s2, sz2)
605
606
607 /* Print the fastmap in human-readable form. */
608
609 void
610 print_fastmap (fastmap)
611 char *fastmap;
612 {
613 unsigned was_a_range = 0;
614 unsigned i = 0;
615
616 while (i < (1 << BYTEWIDTH))
617 {
618 if (fastmap[i++])
619 {
620 was_a_range = 0;
621 putchar (i - 1);
622 while (i < (1 << BYTEWIDTH) && fastmap[i])
623 {
624 was_a_range = 1;
625 i++;
626 }
627 if (was_a_range)
628 {
629 printf ("-");
630 putchar (i - 1);
631 }
632 }
633 }
634 putchar ('\n');
635 }
636
637
638 /* Print a compiled pattern string in human-readable form, starting at
639 the START pointer into it and ending just before the pointer END. */
640
641 void
642 print_partial_compiled_pattern (start, end)
643 unsigned char *start;
644 unsigned char *end;
645 {
646 int mcnt, mcnt2;
647 unsigned char *p1;
648 unsigned char *p = start;
649 unsigned char *pend = end;
650
651 if (start == NULL)
652 {
653 printf ("(null)\n");
654 return;
655 }
656
657 /* Loop over pattern commands. */
658 while (p < pend)
659 {
660 printf ("%d:\t", p - start);
661
662 switch ((re_opcode_t) *p++)
663 {
664 case no_op:
665 printf ("/no_op");
666 break;
667
668 case exactn:
669 mcnt = *p++;
670 printf ("/exactn/%d", mcnt);
671 do
672 {
673 putchar ('/');
674 putchar (*p++);
675 }
676 while (--mcnt);
677 break;
678
679 case start_memory:
680 mcnt = *p++;
681 printf ("/start_memory/%d/%d", mcnt, *p++);
682 break;
683
684 case stop_memory:
685 mcnt = *p++;
686 printf ("/stop_memory/%d/%d", mcnt, *p++);
687 break;
688
689 case duplicate:
690 printf ("/duplicate/%d", *p++);
691 break;
692
693 case anychar:
694 printf ("/anychar");
695 break;
696
697 case charset:
698 case charset_not:
699 {
700 register int c, last = -100;
701 register int in_range = 0;
702
703 printf ("/charset [%s",
704 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
705
706 assert (p + *p < pend);
707
708 for (c = 0; c < 256; c++)
709 if (c / 8 < *p
710 && (p[1 + (c/8)] & (1 << (c % 8))))
711 {
712 /* Are we starting a range? */
713 if (last + 1 == c && ! in_range)
714 {
715 putchar ('-');
716 in_range = 1;
717 }
718 /* Have we broken a range? */
719 else if (last + 1 != c && in_range)
720 {
721 putchar (last);
722 in_range = 0;
723 }
724
725 if (! in_range)
726 putchar (c);
727
728 last = c;
729 }
730
731 if (in_range)
732 putchar (last);
733
734 putchar (']');
735
736 p += 1 + *p;
737 }
738 break;
739
740 case begline:
741 printf ("/begline");
742 break;
743
744 case endline:
745 printf ("/endline");
746 break;
747
748 case on_failure_jump:
749 extract_number_and_incr (&mcnt, &p);
750 printf ("/on_failure_jump to %d", p + mcnt - start);
751 break;
752
753 case on_failure_keep_string_jump:
754 extract_number_and_incr (&mcnt, &p);
755 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
756 break;
757
758 case dummy_failure_jump:
759 extract_number_and_incr (&mcnt, &p);
760 printf ("/dummy_failure_jump to %d", p + mcnt - start);
761 break;
762
763 case push_dummy_failure:
764 printf ("/push_dummy_failure");
765 break;
766
767 case maybe_pop_jump:
768 extract_number_and_incr (&mcnt, &p);
769 printf ("/maybe_pop_jump to %d", p + mcnt - start);
770 break;
771
772 case pop_failure_jump:
773 extract_number_and_incr (&mcnt, &p);
774 printf ("/pop_failure_jump to %d", p + mcnt - start);
775 break;
776
777 case jump_past_alt:
778 extract_number_and_incr (&mcnt, &p);
779 printf ("/jump_past_alt to %d", p + mcnt - start);
780 break;
781
782 case jump:
783 extract_number_and_incr (&mcnt, &p);
784 printf ("/jump to %d", p + mcnt - start);
785 break;
786
787 case succeed_n:
788 extract_number_and_incr (&mcnt, &p);
789 p1 = p + mcnt;
790 extract_number_and_incr (&mcnt2, &p);
791 printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
792 break;
793
794 case jump_n:
795 extract_number_and_incr (&mcnt, &p);
796 p1 = p + mcnt;
797 extract_number_and_incr (&mcnt2, &p);
798 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
799 break;
800
801 case set_number_at:
802 extract_number_and_incr (&mcnt, &p);
803 p1 = p + mcnt;
804 extract_number_and_incr (&mcnt2, &p);
805 printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
806 break;
807
808 case wordbound:
809 printf ("/wordbound");
810 break;
811
812 case notwordbound:
813 printf ("/notwordbound");
814 break;
815
816 case wordbeg:
817 printf ("/wordbeg");
818 break;
819
820 case wordend:
821 printf ("/wordend");
822
823 # ifdef emacs
824 case before_dot:
825 printf ("/before_dot");
826 break;
827
828 case at_dot:
829 printf ("/at_dot");
830 break;
831
832 case after_dot:
833 printf ("/after_dot");
834 break;
835
836 case syntaxspec:
837 printf ("/syntaxspec");
838 mcnt = *p++;
839 printf ("/%d", mcnt);
840 break;
841
842 case notsyntaxspec:
843 printf ("/notsyntaxspec");
844 mcnt = *p++;
845 printf ("/%d", mcnt);
846 break;
847 # endif /* emacs */
848
849 case wordchar:
850 printf ("/wordchar");
851 break;
852
853 case notwordchar:
854 printf ("/notwordchar");
855 break;
856
857 case begbuf:
858 printf ("/begbuf");
859 break;
860
861 case endbuf:
862 printf ("/endbuf");
863 break;
864
865 default:
866 printf ("?%d", *(p-1));
867 }
868
869 putchar ('\n');
870 }
871
872 printf ("%d:\tend of pattern.\n", p - start);
873 }
874
875
876 void
877 print_compiled_pattern (bufp)
878 struct re_pattern_buffer *bufp;
879 {
880 unsigned char *buffer = bufp->buffer;
881
882 print_partial_compiled_pattern (buffer, buffer + bufp->used);
883 printf ("%ld bytes used/%ld bytes allocated.\n",
884 bufp->used, bufp->allocated);
885
886 if (bufp->fastmap_accurate && bufp->fastmap)
887 {
888 printf ("fastmap: ");
889 print_fastmap (bufp->fastmap);
890 }
891
892 printf ("re_nsub: %d\t", bufp->re_nsub);
893 printf ("regs_alloc: %d\t", bufp->regs_allocated);
894 printf ("can_be_null: %d\t", bufp->can_be_null);
895 printf ("newline_anchor: %d\n", bufp->newline_anchor);
896 printf ("no_sub: %d\t", bufp->no_sub);
897 printf ("not_bol: %d\t", bufp->not_bol);
898 printf ("not_eol: %d\t", bufp->not_eol);
899 printf ("syntax: %lx\n", bufp->syntax);
900 /* Perhaps we should print the translate table? */
901 }
902
903
904 void
905 print_double_string (where, string1, size1, string2, size2)
906 const char *where;
907 const char *string1;
908 const char *string2;
909 int size1;
910 int size2;
911 {
912 int this_char;
913
914 if (where == NULL)
915 printf ("(null)");
916 else
917 {
918 if (FIRST_STRING_P (where))
919 {
920 for (this_char = where - string1; this_char < size1; this_char++)
921 putchar (string1[this_char]);
922
923 where = string2;
924 }
925
926 for (this_char = where - string2; this_char < size2; this_char++)
927 putchar (string2[this_char]);
928 }
929 }
930
931 void
932 printchar (c)
933 int c;
934 {
935 putc (c, stderr);
936 }
937
938 #else /* not DEBUG */
939
940 # undef assert
941 # define assert(e)
942
943 # define DEBUG_STATEMENT(e)
944 # define DEBUG_PRINT1(x)
945 # define DEBUG_PRINT2(x1, x2)
946 # define DEBUG_PRINT3(x1, x2, x3)
947 # define DEBUG_PRINT4(x1, x2, x3, x4)
948 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
949 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
950
951 #endif /* not DEBUG */
952 \f
953 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
954 also be assigned to arbitrarily: each pattern buffer stores its own
955 syntax, so it can be changed between regex compilations. */
956 /* This has no initializer because initialized variables in Emacs
957 become read-only after dumping. */
958 reg_syntax_t re_syntax_options;
959
960
961 /* Specify the precise syntax of regexps for compilation. This provides
962 for compatibility for various utilities which historically have
963 different, incompatible syntaxes.
964
965 The argument SYNTAX is a bit mask comprised of the various bits
966 defined in gnu-regex.h. We return the old syntax. */
967
968 reg_syntax_t
969 re_set_syntax (syntax)
970 reg_syntax_t syntax;
971 {
972 reg_syntax_t ret = re_syntax_options;
973
974 re_syntax_options = syntax;
975 #ifdef DEBUG
976 if (syntax & RE_DEBUG)
977 debug = 1;
978 else if (debug) /* was on but now is not */
979 debug = 0;
980 #endif /* DEBUG */
981 return ret;
982 }
983 #ifdef _LIBC
984 weak_alias (__re_set_syntax, re_set_syntax)
985 #endif
986 \f
987 /* This table gives an error message for each of the error codes listed
988 in gnu-regex.h. Obviously the order here has to be same as there.
989 POSIX doesn't require that we do anything for REG_NOERROR,
990 but why not be nice? */
991
992 static const char *re_error_msgid[] =
993 {
994 gettext_noop ("Success"), /* REG_NOERROR */
995 gettext_noop ("No match"), /* REG_NOMATCH */
996 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
997 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
998 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
999 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1000 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1001 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1002 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1003 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1004 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1005 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1006 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1007 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1008 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1009 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1010 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1011 };
1012 \f
1013 /* Avoiding alloca during matching, to placate r_alloc. */
1014
1015 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1016 searching and matching functions should not call alloca. On some
1017 systems, alloca is implemented in terms of malloc, and if we're
1018 using the relocating allocator routines, then malloc could cause a
1019 relocation, which might (if the strings being searched are in the
1020 ralloc heap) shift the data out from underneath the regexp
1021 routines.
1022
1023 Here's another reason to avoid allocation: Emacs
1024 processes input from X in a signal handler; processing X input may
1025 call malloc; if input arrives while a matching routine is calling
1026 malloc, then we're scrod. But Emacs can't just block input while
1027 calling matching routines; then we don't notice interrupts when
1028 they come in. So, Emacs blocks input around all regexp calls
1029 except the matching calls, which it leaves unprotected, in the
1030 faith that they will not malloc. */
1031
1032 /* Normally, this is fine. */
1033 #define MATCH_MAY_ALLOCATE
1034
1035 /* When using GNU C, we are not REALLY using the C alloca, no matter
1036 what config.h may say. So don't take precautions for it. */
1037 #ifdef __GNUC__
1038 # undef C_ALLOCA
1039 #endif
1040
1041 /* The match routines may not allocate if (1) they would do it with malloc
1042 and (2) it's not safe for them to use malloc.
1043 Note that if REL_ALLOC is defined, matching would not use malloc for the
1044 failure stack, but we would still use it for the register vectors;
1045 so REL_ALLOC should not affect this. */
1046 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1047 # undef MATCH_MAY_ALLOCATE
1048 #endif
1049
1050 \f
1051 /* Failure stack declarations and macros; both re_compile_fastmap and
1052 re_match_2 use a failure stack. These have to be macros because of
1053 REGEX_ALLOCATE_STACK. */
1054
1055
1056 /* Number of failure points for which to initially allocate space
1057 when matching. If this number is exceeded, we allocate more
1058 space, so it is not a hard limit. */
1059 #ifndef INIT_FAILURE_ALLOC
1060 # define INIT_FAILURE_ALLOC 5
1061 #endif
1062
1063 /* Roughly the maximum number of failure points on the stack. Would be
1064 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1065 This is a variable only so users of regex can assign to it; we never
1066 change it ourselves. */
1067
1068 #ifdef INT_IS_16BIT
1069
1070 # if defined MATCH_MAY_ALLOCATE
1071 /* 4400 was enough to cause a crash on Alpha OSF/1,
1072 whose default stack limit is 2mb. */
1073 long int re_max_failures = 4000;
1074 # else
1075 long int re_max_failures = 2000;
1076 # endif
1077
1078 union fail_stack_elt
1079 {
1080 unsigned char *pointer;
1081 long int integer;
1082 };
1083
1084 typedef union fail_stack_elt fail_stack_elt_t;
1085
1086 typedef struct
1087 {
1088 fail_stack_elt_t *stack;
1089 unsigned long int size;
1090 unsigned long int avail; /* Offset of next open position. */
1091 } fail_stack_type;
1092
1093 #else /* not INT_IS_16BIT */
1094
1095 # if defined MATCH_MAY_ALLOCATE
1096 /* 4400 was enough to cause a crash on Alpha OSF/1,
1097 whose default stack limit is 2mb. */
1098 int re_max_failures = 20000;
1099 # else
1100 int re_max_failures = 2000;
1101 # endif
1102
1103 union fail_stack_elt
1104 {
1105 unsigned char *pointer;
1106 int integer;
1107 };
1108
1109 typedef union fail_stack_elt fail_stack_elt_t;
1110
1111 typedef struct
1112 {
1113 fail_stack_elt_t *stack;
1114 unsigned size;
1115 unsigned avail; /* Offset of next open position. */
1116 } fail_stack_type;
1117
1118 #endif /* INT_IS_16BIT */
1119
1120 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1121 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1122 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1123
1124
1125 /* Define macros to initialize and free the failure stack.
1126 Do `return -2' if the alloc fails. */
1127
1128 #ifdef MATCH_MAY_ALLOCATE
1129 # define INIT_FAIL_STACK() \
1130 do { \
1131 fail_stack.stack = (fail_stack_elt_t *) \
1132 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1133 \
1134 if (fail_stack.stack == NULL) \
1135 return -2; \
1136 \
1137 fail_stack.size = INIT_FAILURE_ALLOC; \
1138 fail_stack.avail = 0; \
1139 } while (0)
1140
1141 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1142 #else
1143 # define INIT_FAIL_STACK() \
1144 do { \
1145 fail_stack.avail = 0; \
1146 } while (0)
1147
1148 # define RESET_FAIL_STACK()
1149 #endif
1150
1151
1152 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1153
1154 Return 1 if succeeds, and 0 if either ran out of memory
1155 allocating space for it or it was already too large.
1156
1157 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1158
1159 #define DOUBLE_FAIL_STACK(fail_stack) \
1160 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1161 ? 0 \
1162 : ((fail_stack).stack = (fail_stack_elt_t *) \
1163 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1164 (fail_stack).size * sizeof (fail_stack_elt_t), \
1165 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1166 \
1167 (fail_stack).stack == NULL \
1168 ? 0 \
1169 : ((fail_stack).size <<= 1, \
1170 1)))
1171
1172
1173 /* Push pointer POINTER on FAIL_STACK.
1174 Return 1 if was able to do so and 0 if ran out of memory allocating
1175 space to do so. */
1176 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1177 ((FAIL_STACK_FULL () \
1178 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1179 ? 0 \
1180 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1181 1))
1182
1183 /* Push a pointer value onto the failure stack.
1184 Assumes the variable `fail_stack'. Probably should only
1185 be called from within `PUSH_FAILURE_POINT'. */
1186 #define PUSH_FAILURE_POINTER(item) \
1187 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1188
1189 /* This pushes an integer-valued item onto the failure stack.
1190 Assumes the variable `fail_stack'. Probably should only
1191 be called from within `PUSH_FAILURE_POINT'. */
1192 #define PUSH_FAILURE_INT(item) \
1193 fail_stack.stack[fail_stack.avail++].integer = (item)
1194
1195 /* Push a fail_stack_elt_t value onto the failure stack.
1196 Assumes the variable `fail_stack'. Probably should only
1197 be called from within `PUSH_FAILURE_POINT'. */
1198 #define PUSH_FAILURE_ELT(item) \
1199 fail_stack.stack[fail_stack.avail++] = (item)
1200
1201 /* These three POP... operations complement the three PUSH... operations.
1202 All assume that `fail_stack' is nonempty. */
1203 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1204 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1205 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1206
1207 /* Used to omit pushing failure point id's when we're not debugging. */
1208 #ifdef DEBUG
1209 # define DEBUG_PUSH PUSH_FAILURE_INT
1210 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1211 #else
1212 # define DEBUG_PUSH(item)
1213 # define DEBUG_POP(item_addr)
1214 #endif
1215
1216
1217 /* Push the information about the state we will need
1218 if we ever fail back to it.
1219
1220 Requires variables fail_stack, regstart, regend, reg_info, and
1221 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1222 be declared.
1223
1224 Does `return FAILURE_CODE' if runs out of memory. */
1225
1226 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1227 do { \
1228 char *destination; \
1229 /* Must be int, so when we don't save any registers, the arithmetic \
1230 of 0 + -1 isn't done as unsigned. */ \
1231 /* Can't be int, since there is not a shred of a guarantee that int \
1232 is wide enough to hold a value of something to which pointer can \
1233 be assigned */ \
1234 active_reg_t this_reg; \
1235 \
1236 DEBUG_STATEMENT (failure_id++); \
1237 DEBUG_STATEMENT (nfailure_points_pushed++); \
1238 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1239 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1240 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1241 \
1242 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1243 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1244 \
1245 /* Ensure we have enough space allocated for what we will push. */ \
1246 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1247 { \
1248 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1249 return failure_code; \
1250 \
1251 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1252 (fail_stack).size); \
1253 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1254 } \
1255 \
1256 /* Push the info, starting with the registers. */ \
1257 DEBUG_PRINT1 ("\n"); \
1258 \
1259 if (1) \
1260 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1261 this_reg++) \
1262 { \
1263 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1264 DEBUG_STATEMENT (num_regs_pushed++); \
1265 \
1266 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1267 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1268 \
1269 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1270 PUSH_FAILURE_POINTER (regend[this_reg]); \
1271 \
1272 DEBUG_PRINT2 (" info: %p\n ", \
1273 reg_info[this_reg].word.pointer); \
1274 DEBUG_PRINT2 (" match_null=%d", \
1275 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1276 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1277 DEBUG_PRINT2 (" matched_something=%d", \
1278 MATCHED_SOMETHING (reg_info[this_reg])); \
1279 DEBUG_PRINT2 (" ever_matched=%d", \
1280 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1281 DEBUG_PRINT1 ("\n"); \
1282 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1283 } \
1284 \
1285 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1286 PUSH_FAILURE_INT (lowest_active_reg); \
1287 \
1288 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1289 PUSH_FAILURE_INT (highest_active_reg); \
1290 \
1291 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1292 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1293 PUSH_FAILURE_POINTER (pattern_place); \
1294 \
1295 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1296 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1297 size2); \
1298 DEBUG_PRINT1 ("'\n"); \
1299 PUSH_FAILURE_POINTER (string_place); \
1300 \
1301 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1302 DEBUG_PUSH (failure_id); \
1303 } while (0)
1304
1305 /* This is the number of items that are pushed and popped on the stack
1306 for each register. */
1307 #define NUM_REG_ITEMS 3
1308
1309 /* Individual items aside from the registers. */
1310 #ifdef DEBUG
1311 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1312 #else
1313 # define NUM_NONREG_ITEMS 4
1314 #endif
1315
1316 /* We push at most this many items on the stack. */
1317 /* We used to use (num_regs - 1), which is the number of registers
1318 this regexp will save; but that was changed to 5
1319 to avoid stack overflow for a regexp with lots of parens. */
1320 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1321
1322 /* We actually push this many items. */
1323 #define NUM_FAILURE_ITEMS \
1324 (((0 \
1325 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1326 * NUM_REG_ITEMS) \
1327 + NUM_NONREG_ITEMS)
1328
1329 /* How many items can still be added to the stack without overflowing it. */
1330 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1331
1332
1333 /* Pops what PUSH_FAIL_STACK pushes.
1334
1335 We restore into the parameters, all of which should be lvalues:
1336 STR -- the saved data position.
1337 PAT -- the saved pattern position.
1338 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1339 REGSTART, REGEND -- arrays of string positions.
1340 REG_INFO -- array of information about each subexpression.
1341
1342 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1343 `pend', `string1', `size1', `string2', and `size2'. */
1344
1345 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1346 { \
1347 DEBUG_STATEMENT (unsigned failure_id;) \
1348 active_reg_t this_reg; \
1349 const unsigned char *string_temp; \
1350 \
1351 assert (!FAIL_STACK_EMPTY ()); \
1352 \
1353 /* Remove failure points and point to how many regs pushed. */ \
1354 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1355 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1356 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1357 \
1358 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1359 \
1360 DEBUG_POP (&failure_id); \
1361 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1362 \
1363 /* If the saved string location is NULL, it came from an \
1364 on_failure_keep_string_jump opcode, and we want to throw away the \
1365 saved NULL, thus retaining our current position in the string. */ \
1366 string_temp = POP_FAILURE_POINTER (); \
1367 if (string_temp != NULL) \
1368 str = (const char *) string_temp; \
1369 \
1370 DEBUG_PRINT2 (" Popping string %p: `", str); \
1371 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1372 DEBUG_PRINT1 ("'\n"); \
1373 \
1374 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1375 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1376 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1377 \
1378 /* Restore register info. */ \
1379 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1380 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1381 \
1382 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1383 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1384 \
1385 if (1) \
1386 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1387 { \
1388 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1389 \
1390 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1391 DEBUG_PRINT2 (" info: %p\n", \
1392 reg_info[this_reg].word.pointer); \
1393 \
1394 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1395 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1396 \
1397 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1398 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1399 } \
1400 else \
1401 { \
1402 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1403 { \
1404 reg_info[this_reg].word.integer = 0; \
1405 regend[this_reg] = 0; \
1406 regstart[this_reg] = 0; \
1407 } \
1408 highest_active_reg = high_reg; \
1409 } \
1410 \
1411 set_regs_matched_done = 0; \
1412 DEBUG_STATEMENT (nfailure_points_popped++); \
1413 } /* POP_FAILURE_POINT */
1414
1415
1416 \f
1417 /* Structure for per-register (a.k.a. per-group) information.
1418 Other register information, such as the
1419 starting and ending positions (which are addresses), and the list of
1420 inner groups (which is a bits list) are maintained in separate
1421 variables.
1422
1423 We are making a (strictly speaking) nonportable assumption here: that
1424 the compiler will pack our bit fields into something that fits into
1425 the type of `word', i.e., is something that fits into one item on the
1426 failure stack. */
1427
1428
1429 /* Declarations and macros for re_match_2. */
1430
1431 typedef union
1432 {
1433 fail_stack_elt_t word;
1434 struct
1435 {
1436 /* This field is one if this group can match the empty string,
1437 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1438 #define MATCH_NULL_UNSET_VALUE 3
1439 unsigned match_null_string_p : 2;
1440 unsigned is_active : 1;
1441 unsigned matched_something : 1;
1442 unsigned ever_matched_something : 1;
1443 } bits;
1444 } register_info_type;
1445
1446 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1447 #define IS_ACTIVE(R) ((R).bits.is_active)
1448 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1449 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1450
1451
1452 /* Call this when have matched a real character; it sets `matched' flags
1453 for the subexpressions which we are currently inside. Also records
1454 that those subexprs have matched. */
1455 #define SET_REGS_MATCHED() \
1456 do \
1457 { \
1458 if (!set_regs_matched_done) \
1459 { \
1460 active_reg_t r; \
1461 set_regs_matched_done = 1; \
1462 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1463 { \
1464 MATCHED_SOMETHING (reg_info[r]) \
1465 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1466 = 1; \
1467 } \
1468 } \
1469 } \
1470 while (0)
1471
1472 /* Registers are set to a sentinel when they haven't yet matched. */
1473 static char reg_unset_dummy;
1474 #define REG_UNSET_VALUE (&reg_unset_dummy)
1475 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1476 \f
1477 /* Subroutine declarations and macros for regex_compile. */
1478
1479 static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1480 reg_syntax_t syntax,
1481 struct re_pattern_buffer *bufp));
1482 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1483 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1484 int arg1, int arg2));
1485 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1486 int arg, unsigned char *end));
1487 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1488 int arg1, int arg2, unsigned char *end));
1489 static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1490 reg_syntax_t syntax));
1491 static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1492 reg_syntax_t syntax));
1493 static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1494 const char *pend,
1495 char *translate,
1496 reg_syntax_t syntax,
1497 unsigned char *b));
1498
1499 /* Fetch the next character in the uncompiled pattern---translating it
1500 if necessary. Also cast from a signed character in the constant
1501 string passed to us by the user to an unsigned char that we can use
1502 as an array index (in, e.g., `translate'). */
1503 #ifndef PATFETCH
1504 # define PATFETCH(c) \
1505 do {if (p == pend) return REG_EEND; \
1506 c = (unsigned char) *p++; \
1507 if (translate) c = (unsigned char) translate[c]; \
1508 } while (0)
1509 #endif
1510
1511 /* Fetch the next character in the uncompiled pattern, with no
1512 translation. */
1513 #define PATFETCH_RAW(c) \
1514 do {if (p == pend) return REG_EEND; \
1515 c = (unsigned char) *p++; \
1516 } while (0)
1517
1518 /* Go backwards one character in the pattern. */
1519 #define PATUNFETCH p--
1520
1521
1522 /* If `translate' is non-null, return translate[D], else just D. We
1523 cast the subscript to translate because some data is declared as
1524 `char *', to avoid warnings when a string constant is passed. But
1525 when we use a character as a subscript we must make it unsigned. */
1526 #ifndef TRANSLATE
1527 # define TRANSLATE(d) \
1528 (translate ? (char) translate[(unsigned char) (d)] : (d))
1529 #endif
1530
1531
1532 /* Macros for outputting the compiled pattern into `buffer'. */
1533
1534 /* If the buffer isn't allocated when it comes in, use this. */
1535 #define INIT_BUF_SIZE 32
1536
1537 /* Make sure we have at least N more bytes of space in buffer. */
1538 #define GET_BUFFER_SPACE(n) \
1539 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1540 EXTEND_BUFFER ()
1541
1542 /* Make sure we have one more byte of buffer space and then add C to it. */
1543 #define BUF_PUSH(c) \
1544 do { \
1545 GET_BUFFER_SPACE (1); \
1546 *b++ = (unsigned char) (c); \
1547 } while (0)
1548
1549
1550 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1551 #define BUF_PUSH_2(c1, c2) \
1552 do { \
1553 GET_BUFFER_SPACE (2); \
1554 *b++ = (unsigned char) (c1); \
1555 *b++ = (unsigned char) (c2); \
1556 } while (0)
1557
1558
1559 /* As with BUF_PUSH_2, except for three bytes. */
1560 #define BUF_PUSH_3(c1, c2, c3) \
1561 do { \
1562 GET_BUFFER_SPACE (3); \
1563 *b++ = (unsigned char) (c1); \
1564 *b++ = (unsigned char) (c2); \
1565 *b++ = (unsigned char) (c3); \
1566 } while (0)
1567
1568
1569 /* Store a jump with opcode OP at LOC to location TO. We store a
1570 relative address offset by the three bytes the jump itself occupies. */
1571 #define STORE_JUMP(op, loc, to) \
1572 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1573
1574 /* Likewise, for a two-argument jump. */
1575 #define STORE_JUMP2(op, loc, to, arg) \
1576 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1577
1578 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1579 #define INSERT_JUMP(op, loc, to) \
1580 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1581
1582 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1583 #define INSERT_JUMP2(op, loc, to, arg) \
1584 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1585
1586
1587 /* This is not an arbitrary limit: the arguments which represent offsets
1588 into the pattern are two bytes long. So if 2^16 bytes turns out to
1589 be too small, many things would have to change. */
1590 /* Any other compiler which, like MSC, has allocation limit below 2^16
1591 bytes will have to use approach similar to what was done below for
1592 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1593 reallocating to 0 bytes. Such thing is not going to work too well.
1594 You have been warned!! */
1595 #if defined _MSC_VER && !defined WIN32
1596 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1597 The REALLOC define eliminates a flurry of conversion warnings,
1598 but is not required. */
1599 # define MAX_BUF_SIZE 65500L
1600 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1601 #else
1602 # define MAX_BUF_SIZE (1L << 16)
1603 # define REALLOC(p,s) realloc ((p), (s))
1604 #endif
1605
1606 /* Extend the buffer by twice its current size via realloc and
1607 reset the pointers that pointed into the old block to point to the
1608 correct places in the new one. If extending the buffer results in it
1609 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1610 #define EXTEND_BUFFER() \
1611 do { \
1612 unsigned char *old_buffer = bufp->buffer; \
1613 if (bufp->allocated == MAX_BUF_SIZE) \
1614 return REG_ESIZE; \
1615 bufp->allocated <<= 1; \
1616 if (bufp->allocated > MAX_BUF_SIZE) \
1617 bufp->allocated = MAX_BUF_SIZE; \
1618 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1619 if (bufp->buffer == NULL) \
1620 return REG_ESPACE; \
1621 /* If the buffer moved, move all the pointers into it. */ \
1622 if (old_buffer != bufp->buffer) \
1623 { \
1624 b = (b - old_buffer) + bufp->buffer; \
1625 begalt = (begalt - old_buffer) + bufp->buffer; \
1626 if (fixup_alt_jump) \
1627 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1628 if (laststart) \
1629 laststart = (laststart - old_buffer) + bufp->buffer; \
1630 if (pending_exact) \
1631 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1632 } \
1633 } while (0)
1634
1635
1636 /* Since we have one byte reserved for the register number argument to
1637 {start,stop}_memory, the maximum number of groups we can report
1638 things about is what fits in that byte. */
1639 #define MAX_REGNUM 255
1640
1641 /* But patterns can have more than `MAX_REGNUM' registers. We just
1642 ignore the excess. */
1643 typedef unsigned regnum_t;
1644
1645
1646 /* Macros for the compile stack. */
1647
1648 /* Since offsets can go either forwards or backwards, this type needs to
1649 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1650 /* int may be not enough when sizeof(int) == 2. */
1651 typedef long pattern_offset_t;
1652
1653 typedef struct
1654 {
1655 pattern_offset_t begalt_offset;
1656 pattern_offset_t fixup_alt_jump;
1657 pattern_offset_t inner_group_offset;
1658 pattern_offset_t laststart_offset;
1659 regnum_t regnum;
1660 } compile_stack_elt_t;
1661
1662
1663 typedef struct
1664 {
1665 compile_stack_elt_t *stack;
1666 unsigned size;
1667 unsigned avail; /* Offset of next open position. */
1668 } compile_stack_type;
1669
1670
1671 #define INIT_COMPILE_STACK_SIZE 32
1672
1673 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1674 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1675
1676 /* The next available element. */
1677 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1678
1679
1680 /* Set the bit for character C in a list. */
1681 #define SET_LIST_BIT(c) \
1682 (b[((unsigned char) (c)) / BYTEWIDTH] \
1683 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1684
1685
1686 /* Get the next unsigned number in the uncompiled pattern. */
1687 #define GET_UNSIGNED_NUMBER(num) \
1688 { if (p != pend) \
1689 { \
1690 PATFETCH (c); \
1691 while (ISDIGIT (c)) \
1692 { \
1693 if (num < 0) \
1694 num = 0; \
1695 num = num * 10 + c - '0'; \
1696 if (p == pend) \
1697 break; \
1698 PATFETCH (c); \
1699 } \
1700 } \
1701 }
1702
1703 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
1704 /* The GNU C library provides support for user-defined character classes
1705 and the functions from ISO C amendement 1. */
1706 # ifdef CHARCLASS_NAME_MAX
1707 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1708 # else
1709 /* This shouldn't happen but some implementation might still have this
1710 problem. Use a reasonable default value. */
1711 # define CHAR_CLASS_MAX_LENGTH 256
1712 # endif
1713
1714 # ifdef _LIBC
1715 # define IS_CHAR_CLASS(string) __wctype (string)
1716 # else
1717 # define IS_CHAR_CLASS(string) wctype (string)
1718 # endif
1719 #else
1720 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1721
1722 # define IS_CHAR_CLASS(string) \
1723 (STREQ (string, "alpha") || STREQ (string, "upper") \
1724 || STREQ (string, "lower") || STREQ (string, "digit") \
1725 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1726 || STREQ (string, "space") || STREQ (string, "print") \
1727 || STREQ (string, "punct") || STREQ (string, "graph") \
1728 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1729 #endif
1730 \f
1731 #ifndef MATCH_MAY_ALLOCATE
1732
1733 /* If we cannot allocate large objects within re_match_2_internal,
1734 we make the fail stack and register vectors global.
1735 The fail stack, we grow to the maximum size when a regexp
1736 is compiled.
1737 The register vectors, we adjust in size each time we
1738 compile a regexp, according to the number of registers it needs. */
1739
1740 static fail_stack_type fail_stack;
1741
1742 /* Size with which the following vectors are currently allocated.
1743 That is so we can make them bigger as needed,
1744 but never make them smaller. */
1745 static int regs_allocated_size;
1746
1747 static const char ** regstart, ** regend;
1748 static const char ** old_regstart, ** old_regend;
1749 static const char **best_regstart, **best_regend;
1750 static register_info_type *reg_info;
1751 static const char **reg_dummy;
1752 static register_info_type *reg_info_dummy;
1753
1754 /* Make the register vectors big enough for NUM_REGS registers,
1755 but don't make them smaller. */
1756
1757 static
1758 regex_grow_registers (num_regs)
1759 int num_regs;
1760 {
1761 if (num_regs > regs_allocated_size)
1762 {
1763 RETALLOC_IF (regstart, num_regs, const char *);
1764 RETALLOC_IF (regend, num_regs, const char *);
1765 RETALLOC_IF (old_regstart, num_regs, const char *);
1766 RETALLOC_IF (old_regend, num_regs, const char *);
1767 RETALLOC_IF (best_regstart, num_regs, const char *);
1768 RETALLOC_IF (best_regend, num_regs, const char *);
1769 RETALLOC_IF (reg_info, num_regs, register_info_type);
1770 RETALLOC_IF (reg_dummy, num_regs, const char *);
1771 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1772
1773 regs_allocated_size = num_regs;
1774 }
1775 }
1776
1777 #endif /* not MATCH_MAY_ALLOCATE */
1778 \f
1779 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1780 compile_stack,
1781 regnum_t regnum));
1782
1783 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1784 Returns one of error codes defined in `gnu-regex.h', or zero for success.
1785
1786 Assumes the `allocated' (and perhaps `buffer') and `translate'
1787 fields are set in BUFP on entry.
1788
1789 If it succeeds, results are put in BUFP (if it returns an error, the
1790 contents of BUFP are undefined):
1791 `buffer' is the compiled pattern;
1792 `syntax' is set to SYNTAX;
1793 `used' is set to the length of the compiled pattern;
1794 `fastmap_accurate' is zero;
1795 `re_nsub' is the number of subexpressions in PATTERN;
1796 `not_bol' and `not_eol' are zero;
1797
1798 The `fastmap' and `newline_anchor' fields are neither
1799 examined nor set. */
1800
1801 /* Return, freeing storage we allocated. */
1802 #define FREE_STACK_RETURN(value) \
1803 return (free (compile_stack.stack), value)
1804
1805 static reg_errcode_t
1806 regex_compile (pattern, size, syntax, bufp)
1807 const char *pattern;
1808 size_t size;
1809 reg_syntax_t syntax;
1810 struct re_pattern_buffer *bufp;
1811 {
1812 /* We fetch characters from PATTERN here. Even though PATTERN is
1813 `char *' (i.e., signed), we declare these variables as unsigned, so
1814 they can be reliably used as array indices. */
1815 register unsigned char c, c1;
1816
1817 /* A random temporary spot in PATTERN. */
1818 const char *p1;
1819
1820 /* Points to the end of the buffer, where we should append. */
1821 register unsigned char *b;
1822
1823 /* Keeps track of unclosed groups. */
1824 compile_stack_type compile_stack;
1825
1826 /* Points to the current (ending) position in the pattern. */
1827 const char *p = pattern;
1828 const char *pend = pattern + size;
1829
1830 /* How to translate the characters in the pattern. */
1831 RE_TRANSLATE_TYPE translate = bufp->translate;
1832
1833 /* Address of the count-byte of the most recently inserted `exactn'
1834 command. This makes it possible to tell if a new exact-match
1835 character can be added to that command or if the character requires
1836 a new `exactn' command. */
1837 unsigned char *pending_exact = 0;
1838
1839 /* Address of start of the most recently finished expression.
1840 This tells, e.g., postfix * where to find the start of its
1841 operand. Reset at the beginning of groups and alternatives. */
1842 unsigned char *laststart = 0;
1843
1844 /* Address of beginning of regexp, or inside of last group. */
1845 unsigned char *begalt;
1846
1847 /* Place in the uncompiled pattern (i.e., the {) to
1848 which to go back if the interval is invalid. */
1849 const char *beg_interval;
1850
1851 /* Address of the place where a forward jump should go to the end of
1852 the containing expression. Each alternative of an `or' -- except the
1853 last -- ends with a forward jump of this sort. */
1854 unsigned char *fixup_alt_jump = 0;
1855
1856 /* Counts open-groups as they are encountered. Remembered for the
1857 matching close-group on the compile stack, so the same register
1858 number is put in the stop_memory as the start_memory. */
1859 regnum_t regnum = 0;
1860
1861 #ifdef DEBUG
1862 DEBUG_PRINT1 ("\nCompiling pattern: ");
1863 if (debug)
1864 {
1865 unsigned debug_count;
1866
1867 for (debug_count = 0; debug_count < size; debug_count++)
1868 putchar (pattern[debug_count]);
1869 putchar ('\n');
1870 }
1871 #endif /* DEBUG */
1872
1873 /* Initialize the compile stack. */
1874 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1875 if (compile_stack.stack == NULL)
1876 return REG_ESPACE;
1877
1878 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1879 compile_stack.avail = 0;
1880
1881 /* Initialize the pattern buffer. */
1882 bufp->syntax = syntax;
1883 bufp->fastmap_accurate = 0;
1884 bufp->not_bol = bufp->not_eol = 0;
1885
1886 /* Set `used' to zero, so that if we return an error, the pattern
1887 printer (for debugging) will think there's no pattern. We reset it
1888 at the end. */
1889 bufp->used = 0;
1890
1891 /* Always count groups, whether or not bufp->no_sub is set. */
1892 bufp->re_nsub = 0;
1893
1894 #if !defined emacs && !defined SYNTAX_TABLE
1895 /* Initialize the syntax table. */
1896 init_syntax_once ();
1897 #endif
1898
1899 if (bufp->allocated == 0)
1900 {
1901 if (bufp->buffer)
1902 { /* If zero allocated, but buffer is non-null, try to realloc
1903 enough space. This loses if buffer's address is bogus, but
1904 that is the user's responsibility. */
1905 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1906 }
1907 else
1908 { /* Caller did not allocate a buffer. Do it for them. */
1909 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1910 }
1911 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1912
1913 bufp->allocated = INIT_BUF_SIZE;
1914 }
1915
1916 begalt = b = bufp->buffer;
1917
1918 /* Loop through the uncompiled pattern until we're at the end. */
1919 while (p != pend)
1920 {
1921 PATFETCH (c);
1922
1923 switch (c)
1924 {
1925 case '^':
1926 {
1927 if ( /* If at start of pattern, it's an operator. */
1928 p == pattern + 1
1929 /* If context independent, it's an operator. */
1930 || syntax & RE_CONTEXT_INDEP_ANCHORS
1931 /* Otherwise, depends on what's come before. */
1932 || at_begline_loc_p (pattern, p, syntax))
1933 BUF_PUSH (begline);
1934 else
1935 goto normal_char;
1936 }
1937 break;
1938
1939
1940 case '$':
1941 {
1942 if ( /* If at end of pattern, it's an operator. */
1943 p == pend
1944 /* If context independent, it's an operator. */
1945 || syntax & RE_CONTEXT_INDEP_ANCHORS
1946 /* Otherwise, depends on what's next. */
1947 || at_endline_loc_p (p, pend, syntax))
1948 BUF_PUSH (endline);
1949 else
1950 goto normal_char;
1951 }
1952 break;
1953
1954
1955 case '+':
1956 case '?':
1957 if ((syntax & RE_BK_PLUS_QM)
1958 || (syntax & RE_LIMITED_OPS))
1959 goto normal_char;
1960 handle_plus:
1961 case '*':
1962 /* If there is no previous pattern... */
1963 if (!laststart)
1964 {
1965 if (syntax & RE_CONTEXT_INVALID_OPS)
1966 FREE_STACK_RETURN (REG_BADRPT);
1967 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1968 goto normal_char;
1969 }
1970
1971 {
1972 /* Are we optimizing this jump? */
1973 boolean keep_string_p = false;
1974
1975 /* 1 means zero (many) matches is allowed. */
1976 char zero_times_ok = 0, many_times_ok = 0;
1977
1978 /* If there is a sequence of repetition chars, collapse it
1979 down to just one (the right one). We can't combine
1980 interval operators with these because of, e.g., `a{2}*',
1981 which should only match an even number of `a's. */
1982
1983 for (;;)
1984 {
1985 zero_times_ok |= c != '+';
1986 many_times_ok |= c != '?';
1987
1988 if (p == pend)
1989 break;
1990
1991 PATFETCH (c);
1992
1993 if (c == '*'
1994 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1995 ;
1996
1997 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1998 {
1999 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2000
2001 PATFETCH (c1);
2002 if (!(c1 == '+' || c1 == '?'))
2003 {
2004 PATUNFETCH;
2005 PATUNFETCH;
2006 break;
2007 }
2008
2009 c = c1;
2010 }
2011 else
2012 {
2013 PATUNFETCH;
2014 break;
2015 }
2016
2017 /* If we get here, we found another repeat character. */
2018 }
2019
2020 /* Star, etc. applied to an empty pattern is equivalent
2021 to an empty pattern. */
2022 if (!laststart)
2023 break;
2024
2025 /* Now we know whether or not zero matches is allowed
2026 and also whether or not two or more matches is allowed. */
2027 if (many_times_ok)
2028 { /* More than one repetition is allowed, so put in at the
2029 end a backward relative jump from `b' to before the next
2030 jump we're going to put in below (which jumps from
2031 laststart to after this jump).
2032
2033 But if we are at the `*' in the exact sequence `.*\n',
2034 insert an unconditional jump backwards to the .,
2035 instead of the beginning of the loop. This way we only
2036 push a failure point once, instead of every time
2037 through the loop. */
2038 assert (p - 1 > pattern);
2039
2040 /* Allocate the space for the jump. */
2041 GET_BUFFER_SPACE (3);
2042
2043 /* We know we are not at the first character of the pattern,
2044 because laststart was nonzero. And we've already
2045 incremented `p', by the way, to be the character after
2046 the `*'. Do we have to do something analogous here
2047 for null bytes, because of RE_DOT_NOT_NULL? */
2048 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2049 && zero_times_ok
2050 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2051 && !(syntax & RE_DOT_NEWLINE))
2052 { /* We have .*\n. */
2053 STORE_JUMP (jump, b, laststart);
2054 keep_string_p = true;
2055 }
2056 else
2057 /* Anything else. */
2058 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2059
2060 /* We've added more stuff to the buffer. */
2061 b += 3;
2062 }
2063
2064 /* On failure, jump from laststart to b + 3, which will be the
2065 end of the buffer after this jump is inserted. */
2066 GET_BUFFER_SPACE (3);
2067 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2068 : on_failure_jump,
2069 laststart, b + 3);
2070 pending_exact = 0;
2071 b += 3;
2072
2073 if (!zero_times_ok)
2074 {
2075 /* At least one repetition is required, so insert a
2076 `dummy_failure_jump' before the initial
2077 `on_failure_jump' instruction of the loop. This
2078 effects a skip over that instruction the first time
2079 we hit that loop. */
2080 GET_BUFFER_SPACE (3);
2081 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2082 b += 3;
2083 }
2084 }
2085 break;
2086
2087
2088 case '.':
2089 laststart = b;
2090 BUF_PUSH (anychar);
2091 break;
2092
2093
2094 case '[':
2095 {
2096 boolean had_char_class = false;
2097
2098 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2099
2100 /* Ensure that we have enough space to push a charset: the
2101 opcode, the length count, and the bitset; 34 bytes in all. */
2102 GET_BUFFER_SPACE (34);
2103
2104 laststart = b;
2105
2106 /* We test `*p == '^' twice, instead of using an if
2107 statement, so we only need one BUF_PUSH. */
2108 BUF_PUSH (*p == '^' ? charset_not : charset);
2109 if (*p == '^')
2110 p++;
2111
2112 /* Remember the first position in the bracket expression. */
2113 p1 = p;
2114
2115 /* Push the number of bytes in the bitmap. */
2116 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2117
2118 /* Clear the whole map. */
2119 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2120
2121 /* charset_not matches newline according to a syntax bit. */
2122 if ((re_opcode_t) b[-2] == charset_not
2123 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2124 SET_LIST_BIT ('\n');
2125
2126 /* Read in characters and ranges, setting map bits. */
2127 for (;;)
2128 {
2129 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2130
2131 PATFETCH (c);
2132
2133 /* \ might escape characters inside [...] and [^...]. */
2134 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2135 {
2136 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2137
2138 PATFETCH (c1);
2139 SET_LIST_BIT (c1);
2140 continue;
2141 }
2142
2143 /* Could be the end of the bracket expression. If it's
2144 not (i.e., when the bracket expression is `[]' so
2145 far), the ']' character bit gets set way below. */
2146 if (c == ']' && p != p1 + 1)
2147 break;
2148
2149 /* Look ahead to see if it's a range when the last thing
2150 was a character class. */
2151 if (had_char_class && c == '-' && *p != ']')
2152 FREE_STACK_RETURN (REG_ERANGE);
2153
2154 /* Look ahead to see if it's a range when the last thing
2155 was a character: if this is a hyphen not at the
2156 beginning or the end of a list, then it's the range
2157 operator. */
2158 if (c == '-'
2159 && !(p - 2 >= pattern && p[-2] == '[')
2160 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2161 && *p != ']')
2162 {
2163 reg_errcode_t ret
2164 = compile_range (&p, pend, translate, syntax, b);
2165 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2166 }
2167
2168 else if (p[0] == '-' && p[1] != ']')
2169 { /* This handles ranges made up of characters only. */
2170 reg_errcode_t ret;
2171
2172 /* Move past the `-'. */
2173 PATFETCH (c1);
2174
2175 ret = compile_range (&p, pend, translate, syntax, b);
2176 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2177 }
2178
2179 /* See if we're at the beginning of a possible character
2180 class. */
2181
2182 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2183 { /* Leave room for the null. */
2184 char str[CHAR_CLASS_MAX_LENGTH + 1];
2185
2186 PATFETCH (c);
2187 c1 = 0;
2188
2189 /* If pattern is `[[:'. */
2190 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2191
2192 for (;;)
2193 {
2194 PATFETCH (c);
2195 if ((c == ':' && *p == ']') || p == pend
2196 || c1 == CHAR_CLASS_MAX_LENGTH)
2197 break;
2198 str[c1++] = c;
2199 }
2200 str[c1] = '\0';
2201
2202 /* If isn't a word bracketed by `[:' and `:]':
2203 undo the ending character, the letters, and leave
2204 the leading `:' and `[' (but set bits for them). */
2205 if (c == ':' && *p == ']')
2206 {
2207 /* CYGNUS LOCAL: Skip this code if we don't have btowc(). btowc() is */
2208 /* defined in the 1994 Amendment 1 to ISO C and may not be present on */
2209 /* systems where we have wchar.h and wctype.h. */
2210 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
2211 boolean is_lower = STREQ (str, "lower");
2212 boolean is_upper = STREQ (str, "upper");
2213 wctype_t wt;
2214 int ch;
2215
2216 wt = IS_CHAR_CLASS (str);
2217 if (wt == 0)
2218 FREE_STACK_RETURN (REG_ECTYPE);
2219
2220 /* Throw away the ] at the end of the character
2221 class. */
2222 PATFETCH (c);
2223
2224 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2225
2226 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2227 {
2228 # ifdef _LIBC
2229 if (__iswctype (__btowc (ch), wt))
2230 SET_LIST_BIT (ch);
2231 #else
2232 if (iswctype (btowc (ch), wt))
2233 SET_LIST_BIT (ch);
2234 #endif
2235
2236 if (translate && (is_upper || is_lower)
2237 && (ISUPPER (ch) || ISLOWER (ch)))
2238 SET_LIST_BIT (ch);
2239 }
2240
2241 had_char_class = true;
2242 #else
2243 int ch;
2244 boolean is_alnum = STREQ (str, "alnum");
2245 boolean is_alpha = STREQ (str, "alpha");
2246 boolean is_blank = STREQ (str, "blank");
2247 boolean is_cntrl = STREQ (str, "cntrl");
2248 boolean is_digit = STREQ (str, "digit");
2249 boolean is_graph = STREQ (str, "graph");
2250 boolean is_lower = STREQ (str, "lower");
2251 boolean is_print = STREQ (str, "print");
2252 boolean is_punct = STREQ (str, "punct");
2253 boolean is_space = STREQ (str, "space");
2254 boolean is_upper = STREQ (str, "upper");
2255 boolean is_xdigit = STREQ (str, "xdigit");
2256
2257 if (!IS_CHAR_CLASS (str))
2258 FREE_STACK_RETURN (REG_ECTYPE);
2259
2260 /* Throw away the ] at the end of the character
2261 class. */
2262 PATFETCH (c);
2263
2264 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2265
2266 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2267 {
2268 /* This was split into 3 if's to
2269 avoid an arbitrary limit in some compiler. */
2270 if ( (is_alnum && ISALNUM (ch))
2271 || (is_alpha && ISALPHA (ch))
2272 || (is_blank && ISBLANK (ch))
2273 || (is_cntrl && ISCNTRL (ch)))
2274 SET_LIST_BIT (ch);
2275 if ( (is_digit && ISDIGIT (ch))
2276 || (is_graph && ISGRAPH (ch))
2277 || (is_lower && ISLOWER (ch))
2278 || (is_print && ISPRINT (ch)))
2279 SET_LIST_BIT (ch);
2280 if ( (is_punct && ISPUNCT (ch))
2281 || (is_space && ISSPACE (ch))
2282 || (is_upper && ISUPPER (ch))
2283 || (is_xdigit && ISXDIGIT (ch)))
2284 SET_LIST_BIT (ch);
2285 if ( translate && (is_upper || is_lower)
2286 && (ISUPPER (ch) || ISLOWER (ch)))
2287 SET_LIST_BIT (ch);
2288 }
2289 had_char_class = true;
2290 #endif /* libc || wctype.h */
2291 }
2292 else
2293 {
2294 c1++;
2295 while (c1--)
2296 PATUNFETCH;
2297 SET_LIST_BIT ('[');
2298 SET_LIST_BIT (':');
2299 had_char_class = false;
2300 }
2301 }
2302 else
2303 {
2304 had_char_class = false;
2305 SET_LIST_BIT (c);
2306 }
2307 }
2308
2309 /* Discard any (non)matching list bytes that are all 0 at the
2310 end of the map. Decrease the map-length byte too. */
2311 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2312 b[-1]--;
2313 b += b[-1];
2314 }
2315 break;
2316
2317
2318 case '(':
2319 if (syntax & RE_NO_BK_PARENS)
2320 goto handle_open;
2321 else
2322 goto normal_char;
2323
2324
2325 case ')':
2326 if (syntax & RE_NO_BK_PARENS)
2327 goto handle_close;
2328 else
2329 goto normal_char;
2330
2331
2332 case '\n':
2333 if (syntax & RE_NEWLINE_ALT)
2334 goto handle_alt;
2335 else
2336 goto normal_char;
2337
2338
2339 case '|':
2340 if (syntax & RE_NO_BK_VBAR)
2341 goto handle_alt;
2342 else
2343 goto normal_char;
2344
2345
2346 case '{':
2347 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2348 goto handle_interval;
2349 else
2350 goto normal_char;
2351
2352
2353 case '\\':
2354 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2355
2356 /* Do not translate the character after the \, so that we can
2357 distinguish, e.g., \B from \b, even if we normally would
2358 translate, e.g., B to b. */
2359 PATFETCH_RAW (c);
2360
2361 switch (c)
2362 {
2363 case '(':
2364 if (syntax & RE_NO_BK_PARENS)
2365 goto normal_backslash;
2366
2367 handle_open:
2368 bufp->re_nsub++;
2369 regnum++;
2370
2371 if (COMPILE_STACK_FULL)
2372 {
2373 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2374 compile_stack_elt_t);
2375 if (compile_stack.stack == NULL) return REG_ESPACE;
2376
2377 compile_stack.size <<= 1;
2378 }
2379
2380 /* These are the values to restore when we hit end of this
2381 group. They are all relative offsets, so that if the
2382 whole pattern moves because of realloc, they will still
2383 be valid. */
2384 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2385 COMPILE_STACK_TOP.fixup_alt_jump
2386 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2387 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2388 COMPILE_STACK_TOP.regnum = regnum;
2389
2390 /* We will eventually replace the 0 with the number of
2391 groups inner to this one. But do not push a
2392 start_memory for groups beyond the last one we can
2393 represent in the compiled pattern. */
2394 if (regnum <= MAX_REGNUM)
2395 {
2396 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2397 BUF_PUSH_3 (start_memory, regnum, 0);
2398 }
2399
2400 compile_stack.avail++;
2401
2402 fixup_alt_jump = 0;
2403 laststart = 0;
2404 begalt = b;
2405 /* If we've reached MAX_REGNUM groups, then this open
2406 won't actually generate any code, so we'll have to
2407 clear pending_exact explicitly. */
2408 pending_exact = 0;
2409 break;
2410
2411
2412 case ')':
2413 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2414
2415 if (COMPILE_STACK_EMPTY)
2416 {
2417 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2418 goto normal_backslash;
2419 else
2420 FREE_STACK_RETURN (REG_ERPAREN);
2421 }
2422
2423 handle_close:
2424 if (fixup_alt_jump)
2425 { /* Push a dummy failure point at the end of the
2426 alternative for a possible future
2427 `pop_failure_jump' to pop. See comments at
2428 `push_dummy_failure' in `re_match_2'. */
2429 BUF_PUSH (push_dummy_failure);
2430
2431 /* We allocated space for this jump when we assigned
2432 to `fixup_alt_jump', in the `handle_alt' case below. */
2433 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2434 }
2435
2436 /* See similar code for backslashed left paren above. */
2437 if (COMPILE_STACK_EMPTY)
2438 {
2439 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2440 goto normal_char;
2441 else
2442 FREE_STACK_RETURN (REG_ERPAREN);
2443 }
2444
2445 /* Since we just checked for an empty stack above, this
2446 ``can't happen''. */
2447 assert (compile_stack.avail != 0);
2448 {
2449 /* We don't just want to restore into `regnum', because
2450 later groups should continue to be numbered higher,
2451 as in `(ab)c(de)' -- the second group is #2. */
2452 regnum_t this_group_regnum;
2453
2454 compile_stack.avail--;
2455 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2456 fixup_alt_jump
2457 = COMPILE_STACK_TOP.fixup_alt_jump
2458 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2459 : 0;
2460 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2461 this_group_regnum = COMPILE_STACK_TOP.regnum;
2462 /* If we've reached MAX_REGNUM groups, then this open
2463 won't actually generate any code, so we'll have to
2464 clear pending_exact explicitly. */
2465 pending_exact = 0;
2466
2467 /* We're at the end of the group, so now we know how many
2468 groups were inside this one. */
2469 if (this_group_regnum <= MAX_REGNUM)
2470 {
2471 unsigned char *inner_group_loc
2472 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2473
2474 *inner_group_loc = regnum - this_group_regnum;
2475 BUF_PUSH_3 (stop_memory, this_group_regnum,
2476 regnum - this_group_regnum);
2477 }
2478 }
2479 break;
2480
2481
2482 case '|': /* `\|'. */
2483 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2484 goto normal_backslash;
2485 handle_alt:
2486 if (syntax & RE_LIMITED_OPS)
2487 goto normal_char;
2488
2489 /* Insert before the previous alternative a jump which
2490 jumps to this alternative if the former fails. */
2491 GET_BUFFER_SPACE (3);
2492 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2493 pending_exact = 0;
2494 b += 3;
2495
2496 /* The alternative before this one has a jump after it
2497 which gets executed if it gets matched. Adjust that
2498 jump so it will jump to this alternative's analogous
2499 jump (put in below, which in turn will jump to the next
2500 (if any) alternative's such jump, etc.). The last such
2501 jump jumps to the correct final destination. A picture:
2502 _____ _____
2503 | | | |
2504 | v | v
2505 a | b | c
2506
2507 If we are at `b', then fixup_alt_jump right now points to a
2508 three-byte space after `a'. We'll put in the jump, set
2509 fixup_alt_jump to right after `b', and leave behind three
2510 bytes which we'll fill in when we get to after `c'. */
2511
2512 if (fixup_alt_jump)
2513 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2514
2515 /* Mark and leave space for a jump after this alternative,
2516 to be filled in later either by next alternative or
2517 when know we're at the end of a series of alternatives. */
2518 fixup_alt_jump = b;
2519 GET_BUFFER_SPACE (3);
2520 b += 3;
2521
2522 laststart = 0;
2523 begalt = b;
2524 break;
2525
2526
2527 case '{':
2528 /* If \{ is a literal. */
2529 if (!(syntax & RE_INTERVALS)
2530 /* If we're at `\{' and it's not the open-interval
2531 operator. */
2532 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2533 || (p - 2 == pattern && p == pend))
2534 goto normal_backslash;
2535
2536 handle_interval:
2537 {
2538 /* If got here, then the syntax allows intervals. */
2539
2540 /* At least (most) this many matches must be made. */
2541 int lower_bound = -1, upper_bound = -1;
2542
2543 beg_interval = p - 1;
2544
2545 if (p == pend)
2546 {
2547 if (syntax & RE_NO_BK_BRACES)
2548 goto unfetch_interval;
2549 else
2550 FREE_STACK_RETURN (REG_EBRACE);
2551 }
2552
2553 GET_UNSIGNED_NUMBER (lower_bound);
2554
2555 if (c == ',')
2556 {
2557 GET_UNSIGNED_NUMBER (upper_bound);
2558 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2559 }
2560 else
2561 /* Interval such as `{1}' => match exactly once. */
2562 upper_bound = lower_bound;
2563
2564 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2565 || lower_bound > upper_bound)
2566 {
2567 if (syntax & RE_NO_BK_BRACES)
2568 goto unfetch_interval;
2569 else
2570 FREE_STACK_RETURN (REG_BADBR);
2571 }
2572
2573 if (!(syntax & RE_NO_BK_BRACES))
2574 {
2575 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2576
2577 PATFETCH (c);
2578 }
2579
2580 if (c != '}')
2581 {
2582 if (syntax & RE_NO_BK_BRACES)
2583 goto unfetch_interval;
2584 else
2585 FREE_STACK_RETURN (REG_BADBR);
2586 }
2587
2588 /* We just parsed a valid interval. */
2589
2590 /* If it's invalid to have no preceding re. */
2591 if (!laststart)
2592 {
2593 if (syntax & RE_CONTEXT_INVALID_OPS)
2594 FREE_STACK_RETURN (REG_BADRPT);
2595 else if (syntax & RE_CONTEXT_INDEP_OPS)
2596 laststart = b;
2597 else
2598 goto unfetch_interval;
2599 }
2600
2601 /* If the upper bound is zero, don't want to succeed at
2602 all; jump from `laststart' to `b + 3', which will be
2603 the end of the buffer after we insert the jump. */
2604 if (upper_bound == 0)
2605 {
2606 GET_BUFFER_SPACE (3);
2607 INSERT_JUMP (jump, laststart, b + 3);
2608 b += 3;
2609 }
2610
2611 /* Otherwise, we have a nontrivial interval. When
2612 we're all done, the pattern will look like:
2613 set_number_at <jump count> <upper bound>
2614 set_number_at <succeed_n count> <lower bound>
2615 succeed_n <after jump addr> <succeed_n count>
2616 <body of loop>
2617 jump_n <succeed_n addr> <jump count>
2618 (The upper bound and `jump_n' are omitted if
2619 `upper_bound' is 1, though.) */
2620 else
2621 { /* If the upper bound is > 1, we need to insert
2622 more at the end of the loop. */
2623 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2624
2625 GET_BUFFER_SPACE (nbytes);
2626
2627 /* Initialize lower bound of the `succeed_n', even
2628 though it will be set during matching by its
2629 attendant `set_number_at' (inserted next),
2630 because `re_compile_fastmap' needs to know.
2631 Jump to the `jump_n' we might insert below. */
2632 INSERT_JUMP2 (succeed_n, laststart,
2633 b + 5 + (upper_bound > 1) * 5,
2634 lower_bound);
2635 b += 5;
2636
2637 /* Code to initialize the lower bound. Insert
2638 before the `succeed_n'. The `5' is the last two
2639 bytes of this `set_number_at', plus 3 bytes of
2640 the following `succeed_n'. */
2641 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2642 b += 5;
2643
2644 if (upper_bound > 1)
2645 { /* More than one repetition is allowed, so
2646 append a backward jump to the `succeed_n'
2647 that starts this interval.
2648
2649 When we've reached this during matching,
2650 we'll have matched the interval once, so
2651 jump back only `upper_bound - 1' times. */
2652 STORE_JUMP2 (jump_n, b, laststart + 5,
2653 upper_bound - 1);
2654 b += 5;
2655
2656 /* The location we want to set is the second
2657 parameter of the `jump_n'; that is `b-2' as
2658 an absolute address. `laststart' will be
2659 the `set_number_at' we're about to insert;
2660 `laststart+3' the number to set, the source
2661 for the relative address. But we are
2662 inserting into the middle of the pattern --
2663 so everything is getting moved up by 5.
2664 Conclusion: (b - 2) - (laststart + 3) + 5,
2665 i.e., b - laststart.
2666
2667 We insert this at the beginning of the loop
2668 so that if we fail during matching, we'll
2669 reinitialize the bounds. */
2670 insert_op2 (set_number_at, laststart, b - laststart,
2671 upper_bound - 1, b);
2672 b += 5;
2673 }
2674 }
2675 pending_exact = 0;
2676 beg_interval = NULL;
2677 }
2678 break;
2679
2680 unfetch_interval:
2681 /* If an invalid interval, match the characters as literals. */
2682 assert (beg_interval);
2683 p = beg_interval;
2684 beg_interval = NULL;
2685
2686 /* normal_char and normal_backslash need `c'. */
2687 PATFETCH (c);
2688
2689 if (!(syntax & RE_NO_BK_BRACES))
2690 {
2691 if (p > pattern && p[-1] == '\\')
2692 goto normal_backslash;
2693 }
2694 goto normal_char;
2695
2696 #ifdef emacs
2697 /* There is no way to specify the before_dot and after_dot
2698 operators. rms says this is ok. --karl */
2699 case '=':
2700 BUF_PUSH (at_dot);
2701 break;
2702
2703 case 's':
2704 laststart = b;
2705 PATFETCH (c);
2706 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2707 break;
2708
2709 case 'S':
2710 laststart = b;
2711 PATFETCH (c);
2712 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2713 break;
2714 #endif /* emacs */
2715
2716
2717 case 'w':
2718 if (syntax & RE_NO_GNU_OPS)
2719 goto normal_char;
2720 laststart = b;
2721 BUF_PUSH (wordchar);
2722 break;
2723
2724
2725 case 'W':
2726 if (syntax & RE_NO_GNU_OPS)
2727 goto normal_char;
2728 laststart = b;
2729 BUF_PUSH (notwordchar);
2730 break;
2731
2732
2733 case '<':
2734 if (syntax & RE_NO_GNU_OPS)
2735 goto normal_char;
2736 BUF_PUSH (wordbeg);
2737 break;
2738
2739 case '>':
2740 if (syntax & RE_NO_GNU_OPS)
2741 goto normal_char;
2742 BUF_PUSH (wordend);
2743 break;
2744
2745 case 'b':
2746 if (syntax & RE_NO_GNU_OPS)
2747 goto normal_char;
2748 BUF_PUSH (wordbound);
2749 break;
2750
2751 case 'B':
2752 if (syntax & RE_NO_GNU_OPS)
2753 goto normal_char;
2754 BUF_PUSH (notwordbound);
2755 break;
2756
2757 case '`':
2758 if (syntax & RE_NO_GNU_OPS)
2759 goto normal_char;
2760 BUF_PUSH (begbuf);
2761 break;
2762
2763 case '\'':
2764 if (syntax & RE_NO_GNU_OPS)
2765 goto normal_char;
2766 BUF_PUSH (endbuf);
2767 break;
2768
2769 case '1': case '2': case '3': case '4': case '5':
2770 case '6': case '7': case '8': case '9':
2771 if (syntax & RE_NO_BK_REFS)
2772 goto normal_char;
2773
2774 c1 = c - '0';
2775
2776 if (c1 > regnum)
2777 FREE_STACK_RETURN (REG_ESUBREG);
2778
2779 /* Can't back reference to a subexpression if inside of it. */
2780 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2781 goto normal_char;
2782
2783 laststart = b;
2784 BUF_PUSH_2 (duplicate, c1);
2785 break;
2786
2787
2788 case '+':
2789 case '?':
2790 if (syntax & RE_BK_PLUS_QM)
2791 goto handle_plus;
2792 else
2793 goto normal_backslash;
2794
2795 default:
2796 normal_backslash:
2797 /* You might think it would be useful for \ to mean
2798 not to translate; but if we don't translate it
2799 it will never match anything. */
2800 c = TRANSLATE (c);
2801 goto normal_char;
2802 }
2803 break;
2804
2805
2806 default:
2807 /* Expects the character in `c'. */
2808 normal_char:
2809 /* If no exactn currently being built. */
2810 if (!pending_exact
2811
2812 /* If last exactn not at current position. */
2813 || pending_exact + *pending_exact + 1 != b
2814
2815 /* We have only one byte following the exactn for the count. */
2816 || *pending_exact == (1 << BYTEWIDTH) - 1
2817
2818 /* If followed by a repetition operator. */
2819 || *p == '*' || *p == '^'
2820 || ((syntax & RE_BK_PLUS_QM)
2821 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2822 : (*p == '+' || *p == '?'))
2823 || ((syntax & RE_INTERVALS)
2824 && ((syntax & RE_NO_BK_BRACES)
2825 ? *p == '{'
2826 : (p[0] == '\\' && p[1] == '{'))))
2827 {
2828 /* Start building a new exactn. */
2829
2830 laststart = b;
2831
2832 BUF_PUSH_2 (exactn, 0);
2833 pending_exact = b - 1;
2834 }
2835
2836 BUF_PUSH (c);
2837 (*pending_exact)++;
2838 break;
2839 } /* switch (c) */
2840 } /* while p != pend */
2841
2842
2843 /* Through the pattern now. */
2844
2845 if (fixup_alt_jump)
2846 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2847
2848 if (!COMPILE_STACK_EMPTY)
2849 FREE_STACK_RETURN (REG_EPAREN);
2850
2851 /* If we don't want backtracking, force success
2852 the first time we reach the end of the compiled pattern. */
2853 if (syntax & RE_NO_POSIX_BACKTRACKING)
2854 BUF_PUSH (succeed);
2855
2856 free (compile_stack.stack);
2857
2858 /* We have succeeded; set the length of the buffer. */
2859 bufp->used = b - bufp->buffer;
2860
2861 #ifdef DEBUG
2862 if (debug)
2863 {
2864 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2865 print_compiled_pattern (bufp);
2866 }
2867 #endif /* DEBUG */
2868
2869 #ifndef MATCH_MAY_ALLOCATE
2870 /* Initialize the failure stack to the largest possible stack. This
2871 isn't necessary unless we're trying to avoid calling alloca in
2872 the search and match routines. */
2873 {
2874 int num_regs = bufp->re_nsub + 1;
2875
2876 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2877 is strictly greater than re_max_failures, the largest possible stack
2878 is 2 * re_max_failures failure points. */
2879 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2880 {
2881 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2882
2883 # ifdef emacs
2884 if (! fail_stack.stack)
2885 fail_stack.stack
2886 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2887 * sizeof (fail_stack_elt_t));
2888 else
2889 fail_stack.stack
2890 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2891 (fail_stack.size
2892 * sizeof (fail_stack_elt_t)));
2893 # else /* not emacs */
2894 if (! fail_stack.stack)
2895 fail_stack.stack
2896 = (fail_stack_elt_t *) malloc (fail_stack.size
2897 * sizeof (fail_stack_elt_t));
2898 else
2899 fail_stack.stack
2900 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2901 (fail_stack.size
2902 * sizeof (fail_stack_elt_t)));
2903 # endif /* not emacs */
2904 }
2905
2906 regex_grow_registers (num_regs);
2907 }
2908 #endif /* not MATCH_MAY_ALLOCATE */
2909
2910 return REG_NOERROR;
2911 } /* regex_compile */
2912 \f
2913 /* Subroutines for `regex_compile'. */
2914
2915 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2916
2917 static void
2918 store_op1 (op, loc, arg)
2919 re_opcode_t op;
2920 unsigned char *loc;
2921 int arg;
2922 {
2923 *loc = (unsigned char) op;
2924 STORE_NUMBER (loc + 1, arg);
2925 }
2926
2927
2928 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2929
2930 static void
2931 store_op2 (op, loc, arg1, arg2)
2932 re_opcode_t op;
2933 unsigned char *loc;
2934 int arg1, arg2;
2935 {
2936 *loc = (unsigned char) op;
2937 STORE_NUMBER (loc + 1, arg1);
2938 STORE_NUMBER (loc + 3, arg2);
2939 }
2940
2941
2942 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2943 for OP followed by two-byte integer parameter ARG. */
2944
2945 static void
2946 insert_op1 (op, loc, arg, end)
2947 re_opcode_t op;
2948 unsigned char *loc;
2949 int arg;
2950 unsigned char *end;
2951 {
2952 register unsigned char *pfrom = end;
2953 register unsigned char *pto = end + 3;
2954
2955 while (pfrom != loc)
2956 *--pto = *--pfrom;
2957
2958 store_op1 (op, loc, arg);
2959 }
2960
2961
2962 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2963
2964 static void
2965 insert_op2 (op, loc, arg1, arg2, end)
2966 re_opcode_t op;
2967 unsigned char *loc;
2968 int arg1, arg2;
2969 unsigned char *end;
2970 {
2971 register unsigned char *pfrom = end;
2972 register unsigned char *pto = end + 5;
2973
2974 while (pfrom != loc)
2975 *--pto = *--pfrom;
2976
2977 store_op2 (op, loc, arg1, arg2);
2978 }
2979
2980
2981 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2982 after an alternative or a begin-subexpression. We assume there is at
2983 least one character before the ^. */
2984
2985 static boolean
2986 at_begline_loc_p (pattern, p, syntax)
2987 const char *pattern, *p;
2988 reg_syntax_t syntax;
2989 {
2990 const char *prev = p - 2;
2991 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2992
2993 return
2994 /* After a subexpression? */
2995 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2996 /* After an alternative? */
2997 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2998 }
2999
3000
3001 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3002 at least one character after the $, i.e., `P < PEND'. */
3003
3004 static boolean
3005 at_endline_loc_p (p, pend, syntax)
3006 const char *p, *pend;
3007 reg_syntax_t syntax;
3008 {
3009 const char *next = p;
3010 boolean next_backslash = *next == '\\';
3011 const char *next_next = p + 1 < pend ? p + 1 : 0;
3012
3013 return
3014 /* Before a subexpression? */
3015 (syntax & RE_NO_BK_PARENS ? *next == ')'
3016 : next_backslash && next_next && *next_next == ')')
3017 /* Before an alternative? */
3018 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3019 : next_backslash && next_next && *next_next == '|');
3020 }
3021
3022
3023 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3024 false if it's not. */
3025
3026 static boolean
3027 group_in_compile_stack (compile_stack, regnum)
3028 compile_stack_type compile_stack;
3029 regnum_t regnum;
3030 {
3031 int this_element;
3032
3033 for (this_element = compile_stack.avail - 1;
3034 this_element >= 0;
3035 this_element--)
3036 if (compile_stack.stack[this_element].regnum == regnum)
3037 return true;
3038
3039 return false;
3040 }
3041
3042
3043 /* Read the ending character of a range (in a bracket expression) from the
3044 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3045 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3046 Then we set the translation of all bits between the starting and
3047 ending characters (inclusive) in the compiled pattern B.
3048
3049 Return an error code.
3050
3051 We use these short variable names so we can use the same macros as
3052 `regex_compile' itself. */
3053
3054 static reg_errcode_t
3055 compile_range (p_ptr, pend, translate, syntax, b)
3056 const char **p_ptr, *pend;
3057 RE_TRANSLATE_TYPE translate;
3058 reg_syntax_t syntax;
3059 unsigned char *b;
3060 {
3061 unsigned this_char;
3062
3063 const char *p = *p_ptr;
3064 unsigned int range_start, range_end;
3065
3066 if (p == pend)
3067 return REG_ERANGE;
3068
3069 /* Even though the pattern is a signed `char *', we need to fetch
3070 with unsigned char *'s; if the high bit of the pattern character
3071 is set, the range endpoints will be negative if we fetch using a
3072 signed char *.
3073
3074 We also want to fetch the endpoints without translating them; the
3075 appropriate translation is done in the bit-setting loop below. */
3076 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3077 range_start = ((const unsigned char *) p)[-2];
3078 range_end = ((const unsigned char *) p)[0];
3079
3080 /* Have to increment the pointer into the pattern string, so the
3081 caller isn't still at the ending character. */
3082 (*p_ptr)++;
3083
3084 /* If the start is after the end, the range is empty. */
3085 if (range_start > range_end)
3086 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3087
3088 /* Here we see why `this_char' has to be larger than an `unsigned
3089 char' -- the range is inclusive, so if `range_end' == 0xff
3090 (assuming 8-bit characters), we would otherwise go into an infinite
3091 loop, since all characters <= 0xff. */
3092 for (this_char = range_start; this_char <= range_end; this_char++)
3093 {
3094 SET_LIST_BIT (TRANSLATE (this_char));
3095 }
3096
3097 return REG_NOERROR;
3098 }
3099 \f
3100 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3101 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3102 characters can start a string that matches the pattern. This fastmap
3103 is used by re_search to skip quickly over impossible starting points.
3104
3105 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3106 area as BUFP->fastmap.
3107
3108 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3109 the pattern buffer.
3110
3111 Returns 0 if we succeed, -2 if an internal error. */
3112
3113 int
3114 re_compile_fastmap (bufp)
3115 struct re_pattern_buffer *bufp;
3116 {
3117 int j, k;
3118 #ifdef MATCH_MAY_ALLOCATE
3119 fail_stack_type fail_stack;
3120 #endif
3121 #ifndef REGEX_MALLOC
3122 char *destination;
3123 #endif
3124
3125 register char *fastmap = bufp->fastmap;
3126 unsigned char *pattern = bufp->buffer;
3127 unsigned char *p = pattern;
3128 register unsigned char *pend = pattern + bufp->used;
3129
3130 #ifdef REL_ALLOC
3131 /* This holds the pointer to the failure stack, when
3132 it is allocated relocatably. */
3133 fail_stack_elt_t *failure_stack_ptr;
3134 #endif
3135
3136 /* Assume that each path through the pattern can be null until
3137 proven otherwise. We set this false at the bottom of switch
3138 statement, to which we get only if a particular path doesn't
3139 match the empty string. */
3140 boolean path_can_be_null = true;
3141
3142 /* We aren't doing a `succeed_n' to begin with. */
3143 boolean succeed_n_p = false;
3144
3145 assert (fastmap != NULL && p != NULL);
3146
3147 INIT_FAIL_STACK ();
3148 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3149 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3150 bufp->can_be_null = 0;
3151
3152 while (1)
3153 {
3154 if (p == pend || *p == succeed)
3155 {
3156 /* We have reached the (effective) end of pattern. */
3157 if (!FAIL_STACK_EMPTY ())
3158 {
3159 bufp->can_be_null |= path_can_be_null;
3160
3161 /* Reset for next path. */
3162 path_can_be_null = true;
3163
3164 p = fail_stack.stack[--fail_stack.avail].pointer;
3165
3166 continue;
3167 }
3168 else
3169 break;
3170 }
3171
3172 /* We should never be about to go beyond the end of the pattern. */
3173 assert (p < pend);
3174
3175 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3176 {
3177
3178 /* I guess the idea here is to simply not bother with a fastmap
3179 if a backreference is used, since it's too hard to figure out
3180 the fastmap for the corresponding group. Setting
3181 `can_be_null' stops `re_search_2' from using the fastmap, so
3182 that is all we do. */
3183 case duplicate:
3184 bufp->can_be_null = 1;
3185 goto done;
3186
3187
3188 /* Following are the cases which match a character. These end
3189 with `break'. */
3190
3191 case exactn:
3192 fastmap[p[1]] = 1;
3193 break;
3194
3195
3196 case charset:
3197 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3198 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3199 fastmap[j] = 1;
3200 break;
3201
3202
3203 case charset_not:
3204 /* Chars beyond end of map must be allowed. */
3205 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3206 fastmap[j] = 1;
3207
3208 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3209 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3210 fastmap[j] = 1;
3211 break;
3212
3213
3214 case wordchar:
3215 for (j = 0; j < (1 << BYTEWIDTH); j++)
3216 if (SYNTAX (j) == Sword)
3217 fastmap[j] = 1;
3218 break;
3219
3220
3221 case notwordchar:
3222 for (j = 0; j < (1 << BYTEWIDTH); j++)
3223 if (SYNTAX (j) != Sword)
3224 fastmap[j] = 1;
3225 break;
3226
3227
3228 case anychar:
3229 {
3230 int fastmap_newline = fastmap['\n'];
3231
3232 /* `.' matches anything ... */
3233 for (j = 0; j < (1 << BYTEWIDTH); j++)
3234 fastmap[j] = 1;
3235
3236 /* ... except perhaps newline. */
3237 if (!(bufp->syntax & RE_DOT_NEWLINE))
3238 fastmap['\n'] = fastmap_newline;
3239
3240 /* Return if we have already set `can_be_null'; if we have,
3241 then the fastmap is irrelevant. Something's wrong here. */
3242 else if (bufp->can_be_null)
3243 goto done;
3244
3245 /* Otherwise, have to check alternative paths. */
3246 break;
3247 }
3248
3249 #ifdef emacs
3250 case syntaxspec:
3251 k = *p++;
3252 for (j = 0; j < (1 << BYTEWIDTH); j++)
3253 if (SYNTAX (j) == (enum syntaxcode) k)
3254 fastmap[j] = 1;
3255 break;
3256
3257
3258 case notsyntaxspec:
3259 k = *p++;
3260 for (j = 0; j < (1 << BYTEWIDTH); j++)
3261 if (SYNTAX (j) != (enum syntaxcode) k)
3262 fastmap[j] = 1;
3263 break;
3264
3265
3266 /* All cases after this match the empty string. These end with
3267 `continue'. */
3268
3269
3270 case before_dot:
3271 case at_dot:
3272 case after_dot:
3273 continue;
3274 #endif /* emacs */
3275
3276
3277 case no_op:
3278 case begline:
3279 case endline:
3280 case begbuf:
3281 case endbuf:
3282 case wordbound:
3283 case notwordbound:
3284 case wordbeg:
3285 case wordend:
3286 case push_dummy_failure:
3287 continue;
3288
3289
3290 case jump_n:
3291 case pop_failure_jump:
3292 case maybe_pop_jump:
3293 case jump:
3294 case jump_past_alt:
3295 case dummy_failure_jump:
3296 EXTRACT_NUMBER_AND_INCR (j, p);
3297 p += j;
3298 if (j > 0)
3299 continue;
3300
3301 /* Jump backward implies we just went through the body of a
3302 loop and matched nothing. Opcode jumped to should be
3303 `on_failure_jump' or `succeed_n'. Just treat it like an
3304 ordinary jump. For a * loop, it has pushed its failure
3305 point already; if so, discard that as redundant. */
3306 if ((re_opcode_t) *p != on_failure_jump
3307 && (re_opcode_t) *p != succeed_n)
3308 continue;
3309
3310 p++;
3311 EXTRACT_NUMBER_AND_INCR (j, p);
3312 p += j;
3313
3314 /* If what's on the stack is where we are now, pop it. */
3315 if (!FAIL_STACK_EMPTY ()
3316 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3317 fail_stack.avail--;
3318
3319 continue;
3320
3321
3322 case on_failure_jump:
3323 case on_failure_keep_string_jump:
3324 handle_on_failure_jump:
3325 EXTRACT_NUMBER_AND_INCR (j, p);
3326
3327 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3328 end of the pattern. We don't want to push such a point,
3329 since when we restore it above, entering the switch will
3330 increment `p' past the end of the pattern. We don't need
3331 to push such a point since we obviously won't find any more
3332 fastmap entries beyond `pend'. Such a pattern can match
3333 the null string, though. */
3334 if (p + j < pend)
3335 {
3336 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3337 {
3338 RESET_FAIL_STACK ();
3339 return -2;
3340 }
3341 }
3342 else
3343 bufp->can_be_null = 1;
3344
3345 if (succeed_n_p)
3346 {
3347 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3348 succeed_n_p = false;
3349 }
3350
3351 continue;
3352
3353
3354 case succeed_n:
3355 /* Get to the number of times to succeed. */
3356 p += 2;
3357
3358 /* Increment p past the n for when k != 0. */
3359 EXTRACT_NUMBER_AND_INCR (k, p);
3360 if (k == 0)
3361 {
3362 p -= 4;
3363 succeed_n_p = true; /* Spaghetti code alert. */
3364 goto handle_on_failure_jump;
3365 }
3366 continue;
3367
3368
3369 case set_number_at:
3370 p += 4;
3371 continue;
3372
3373
3374 case start_memory:
3375 case stop_memory:
3376 p += 2;
3377 continue;
3378
3379
3380 default:
3381 abort (); /* We have listed all the cases. */
3382 } /* switch *p++ */
3383
3384 /* Getting here means we have found the possible starting
3385 characters for one path of the pattern -- and that the empty
3386 string does not match. We need not follow this path further.
3387 Instead, look at the next alternative (remembered on the
3388 stack), or quit if no more. The test at the top of the loop
3389 does these things. */
3390 path_can_be_null = false;
3391 p = pend;
3392 } /* while p */
3393
3394 /* Set `can_be_null' for the last path (also the first path, if the
3395 pattern is empty). */
3396 bufp->can_be_null |= path_can_be_null;
3397
3398 done:
3399 RESET_FAIL_STACK ();
3400 return 0;
3401 } /* re_compile_fastmap */
3402 #ifdef _LIBC
3403 weak_alias (__re_compile_fastmap, re_compile_fastmap)
3404 #endif
3405 \f
3406 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3407 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3408 this memory for recording register information. STARTS and ENDS
3409 must be allocated using the malloc library routine, and must each
3410 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3411
3412 If NUM_REGS == 0, then subsequent matches should allocate their own
3413 register data.
3414
3415 Unless this function is called, the first search or match using
3416 PATTERN_BUFFER will allocate its own register data, without
3417 freeing the old data. */
3418
3419 void
3420 re_set_registers (bufp, regs, num_regs, starts, ends)
3421 struct re_pattern_buffer *bufp;
3422 struct re_registers *regs;
3423 unsigned num_regs;
3424 regoff_t *starts, *ends;
3425 {
3426 if (num_regs)
3427 {
3428 bufp->regs_allocated = REGS_REALLOCATE;
3429 regs->num_regs = num_regs;
3430 regs->start = starts;
3431 regs->end = ends;
3432 }
3433 else
3434 {
3435 bufp->regs_allocated = REGS_UNALLOCATED;
3436 regs->num_regs = 0;
3437 regs->start = regs->end = (regoff_t *) 0;
3438 }
3439 }
3440 #ifdef _LIBC
3441 weak_alias (__re_set_registers, re_set_registers)
3442 #endif
3443 \f
3444 /* Searching routines. */
3445
3446 /* Like re_search_2, below, but only one string is specified, and
3447 doesn't let you say where to stop matching. */
3448
3449 int
3450 re_search (bufp, string, size, startpos, range, regs)
3451 struct re_pattern_buffer *bufp;
3452 const char *string;
3453 int size, startpos, range;
3454 struct re_registers *regs;
3455 {
3456 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3457 regs, size);
3458 }
3459 #ifdef _LIBC
3460 weak_alias (__re_search, re_search)
3461 #endif
3462
3463
3464 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3465 virtual concatenation of STRING1 and STRING2, starting first at index
3466 STARTPOS, then at STARTPOS + 1, and so on.
3467
3468 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3469
3470 RANGE is how far to scan while trying to match. RANGE = 0 means try
3471 only at STARTPOS; in general, the last start tried is STARTPOS +
3472 RANGE.
3473
3474 In REGS, return the indices of the virtual concatenation of STRING1
3475 and STRING2 that matched the entire BUFP->buffer and its contained
3476 subexpressions.
3477
3478 Do not consider matching one past the index STOP in the virtual
3479 concatenation of STRING1 and STRING2.
3480
3481 We return either the position in the strings at which the match was
3482 found, -1 if no match, or -2 if error (such as failure
3483 stack overflow). */
3484
3485 int
3486 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3487 struct re_pattern_buffer *bufp;
3488 const char *string1, *string2;
3489 int size1, size2;
3490 int startpos;
3491 int range;
3492 struct re_registers *regs;
3493 int stop;
3494 {
3495 int val;
3496 register char *fastmap = bufp->fastmap;
3497 register RE_TRANSLATE_TYPE translate = bufp->translate;
3498 int total_size = size1 + size2;
3499 int endpos = startpos + range;
3500
3501 /* Check for out-of-range STARTPOS. */
3502 if (startpos < 0 || startpos > total_size)
3503 return -1;
3504
3505 /* Fix up RANGE if it might eventually take us outside
3506 the virtual concatenation of STRING1 and STRING2.
3507 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3508 if (endpos < 0)
3509 range = 0 - startpos;
3510 else if (endpos > total_size)
3511 range = total_size - startpos;
3512
3513 /* If the search isn't to be a backwards one, don't waste time in a
3514 search for a pattern that must be anchored. */
3515 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3516 {
3517 if (startpos > 0)
3518 return -1;
3519 else
3520 range = 1;
3521 }
3522
3523 #ifdef emacs
3524 /* In a forward search for something that starts with \=.
3525 don't keep searching past point. */
3526 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3527 {
3528 range = PT - startpos;
3529 if (range <= 0)
3530 return -1;
3531 }
3532 #endif /* emacs */
3533
3534 /* Update the fastmap now if not correct already. */
3535 if (fastmap && !bufp->fastmap_accurate)
3536 if (re_compile_fastmap (bufp) == -2)
3537 return -2;
3538
3539 /* Loop through the string, looking for a place to start matching. */
3540 for (;;)
3541 {
3542 /* If a fastmap is supplied, skip quickly over characters that
3543 cannot be the start of a match. If the pattern can match the
3544 null string, however, we don't need to skip characters; we want
3545 the first null string. */
3546 if (fastmap && startpos < total_size && !bufp->can_be_null)
3547 {
3548 if (range > 0) /* Searching forwards. */
3549 {
3550 register const char *d;
3551 register int lim = 0;
3552 int irange = range;
3553
3554 if (startpos < size1 && startpos + range >= size1)
3555 lim = range - (size1 - startpos);
3556
3557 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3558
3559 /* Written out as an if-else to avoid testing `translate'
3560 inside the loop. */
3561 if (translate)
3562 while (range > lim
3563 && !fastmap[(unsigned char)
3564 translate[(unsigned char) *d++]])
3565 range--;
3566 else
3567 while (range > lim && !fastmap[(unsigned char) *d++])
3568 range--;
3569
3570 startpos += irange - range;
3571 }
3572 else /* Searching backwards. */
3573 {
3574 register char c = (size1 == 0 || startpos >= size1
3575 ? string2[startpos - size1]
3576 : string1[startpos]);
3577
3578 if (!fastmap[(unsigned char) TRANSLATE (c)])
3579 goto advance;
3580 }
3581 }
3582
3583 /* If can't match the null string, and that's all we have left, fail. */
3584 if (range >= 0 && startpos == total_size && fastmap
3585 && !bufp->can_be_null)
3586 return -1;
3587
3588 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3589 startpos, regs, stop);
3590 #ifndef REGEX_MALLOC
3591 # ifdef C_ALLOCA
3592 alloca (0);
3593 # endif
3594 #endif
3595
3596 if (val >= 0)
3597 return startpos;
3598
3599 if (val == -2)
3600 return -2;
3601
3602 advance:
3603 if (!range)
3604 break;
3605 else if (range > 0)
3606 {
3607 range--;
3608 startpos++;
3609 }
3610 else
3611 {
3612 range++;
3613 startpos--;
3614 }
3615 }
3616 return -1;
3617 } /* re_search_2 */
3618 #ifdef _LIBC
3619 weak_alias (__re_search_2, re_search_2)
3620 #endif
3621 \f
3622 /* This converts PTR, a pointer into one of the search strings `string1'
3623 and `string2' into an offset from the beginning of that string. */
3624 #define POINTER_TO_OFFSET(ptr) \
3625 (FIRST_STRING_P (ptr) \
3626 ? ((regoff_t) ((ptr) - string1)) \
3627 : ((regoff_t) ((ptr) - string2 + size1)))
3628
3629 /* Macros for dealing with the split strings in re_match_2. */
3630
3631 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3632
3633 /* Call before fetching a character with *d. This switches over to
3634 string2 if necessary. */
3635 #define PREFETCH() \
3636 while (d == dend) \
3637 { \
3638 /* End of string2 => fail. */ \
3639 if (dend == end_match_2) \
3640 goto fail; \
3641 /* End of string1 => advance to string2. */ \
3642 d = string2; \
3643 dend = end_match_2; \
3644 }
3645
3646
3647 /* Test if at very beginning or at very end of the virtual concatenation
3648 of `string1' and `string2'. If only one string, it's `string2'. */
3649 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3650 #define AT_STRINGS_END(d) ((d) == end2)
3651
3652
3653 /* Test if D points to a character which is word-constituent. We have
3654 two special cases to check for: if past the end of string1, look at
3655 the first character in string2; and if before the beginning of
3656 string2, look at the last character in string1. */
3657 #define WORDCHAR_P(d) \
3658 (SYNTAX ((d) == end1 ? *string2 \
3659 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3660 == Sword)
3661
3662 /* Disabled due to a compiler bug -- see comment at case wordbound */
3663 #if 0
3664 /* Test if the character before D and the one at D differ with respect
3665 to being word-constituent. */
3666 #define AT_WORD_BOUNDARY(d) \
3667 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3668 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3669 #endif
3670
3671 /* Free everything we malloc. */
3672 #ifdef MATCH_MAY_ALLOCATE
3673 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3674 # define FREE_VARIABLES() \
3675 do { \
3676 REGEX_FREE_STACK (fail_stack.stack); \
3677 FREE_VAR (regstart); \
3678 FREE_VAR (regend); \
3679 FREE_VAR (old_regstart); \
3680 FREE_VAR (old_regend); \
3681 FREE_VAR (best_regstart); \
3682 FREE_VAR (best_regend); \
3683 FREE_VAR (reg_info); \
3684 FREE_VAR (reg_dummy); \
3685 FREE_VAR (reg_info_dummy); \
3686 } while (0)
3687 #else
3688 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3689 #endif /* not MATCH_MAY_ALLOCATE */
3690
3691 /* These values must meet several constraints. They must not be valid
3692 register values; since we have a limit of 255 registers (because
3693 we use only one byte in the pattern for the register number), we can
3694 use numbers larger than 255. They must differ by 1, because of
3695 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3696 be larger than the value for the highest register, so we do not try
3697 to actually save any registers when none are active. */
3698 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3699 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3700 \f
3701 /* Matching routines. */
3702
3703 #ifndef emacs /* Emacs never uses this. */
3704 /* re_match is like re_match_2 except it takes only a single string. */
3705
3706 int
3707 re_match (bufp, string, size, pos, regs)
3708 struct re_pattern_buffer *bufp;
3709 const char *string;
3710 int size, pos;
3711 struct re_registers *regs;
3712 {
3713 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3714 pos, regs, size);
3715 # ifndef REGEX_MALLOC
3716 # ifdef C_ALLOCA
3717 alloca (0);
3718 # endif
3719 # endif
3720 return result;
3721 }
3722 # ifdef _LIBC
3723 weak_alias (__re_match, re_match)
3724 # endif
3725 #endif /* not emacs */
3726
3727 static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3728 unsigned char *end,
3729 register_info_type *reg_info));
3730 static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3731 unsigned char *end,
3732 register_info_type *reg_info));
3733 static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3734 unsigned char *end,
3735 register_info_type *reg_info));
3736 static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3737 int len, char *translate));
3738
3739 /* re_match_2 matches the compiled pattern in BUFP against the
3740 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3741 and SIZE2, respectively). We start matching at POS, and stop
3742 matching at STOP.
3743
3744 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3745 store offsets for the substring each group matched in REGS. See the
3746 documentation for exactly how many groups we fill.
3747
3748 We return -1 if no match, -2 if an internal error (such as the
3749 failure stack overflowing). Otherwise, we return the length of the
3750 matched substring. */
3751
3752 int
3753 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3754 struct re_pattern_buffer *bufp;
3755 const char *string1, *string2;
3756 int size1, size2;
3757 int pos;
3758 struct re_registers *regs;
3759 int stop;
3760 {
3761 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3762 pos, regs, stop);
3763 #ifndef REGEX_MALLOC
3764 # ifdef C_ALLOCA
3765 alloca (0);
3766 # endif
3767 #endif
3768 return result;
3769 }
3770 #ifdef _LIBC
3771 weak_alias (__re_match_2, re_match_2)
3772 #endif
3773
3774 /* This is a separate function so that we can force an alloca cleanup
3775 afterwards. */
3776 static int
3777 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3778 struct re_pattern_buffer *bufp;
3779 const char *string1, *string2;
3780 int size1, size2;
3781 int pos;
3782 struct re_registers *regs;
3783 int stop;
3784 {
3785 /* General temporaries. */
3786 int mcnt;
3787 unsigned char *p1;
3788
3789 /* Just past the end of the corresponding string. */
3790 const char *end1, *end2;
3791
3792 /* Pointers into string1 and string2, just past the last characters in
3793 each to consider matching. */
3794 const char *end_match_1, *end_match_2;
3795
3796 /* Where we are in the data, and the end of the current string. */
3797 const char *d, *dend;
3798
3799 /* Where we are in the pattern, and the end of the pattern. */
3800 unsigned char *p = bufp->buffer;
3801 register unsigned char *pend = p + bufp->used;
3802
3803 /* Mark the opcode just after a start_memory, so we can test for an
3804 empty subpattern when we get to the stop_memory. */
3805 unsigned char *just_past_start_mem = 0;
3806
3807 /* We use this to map every character in the string. */
3808 RE_TRANSLATE_TYPE translate = bufp->translate;
3809
3810 /* Failure point stack. Each place that can handle a failure further
3811 down the line pushes a failure point on this stack. It consists of
3812 restart, regend, and reg_info for all registers corresponding to
3813 the subexpressions we're currently inside, plus the number of such
3814 registers, and, finally, two char *'s. The first char * is where
3815 to resume scanning the pattern; the second one is where to resume
3816 scanning the strings. If the latter is zero, the failure point is
3817 a ``dummy''; if a failure happens and the failure point is a dummy,
3818 it gets discarded and the next next one is tried. */
3819 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3820 fail_stack_type fail_stack;
3821 #endif
3822 #ifdef DEBUG
3823 static unsigned failure_id = 0;
3824 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3825 #endif
3826
3827 #ifdef REL_ALLOC
3828 /* This holds the pointer to the failure stack, when
3829 it is allocated relocatably. */
3830 fail_stack_elt_t *failure_stack_ptr;
3831 #endif
3832
3833 /* We fill all the registers internally, independent of what we
3834 return, for use in backreferences. The number here includes
3835 an element for register zero. */
3836 size_t num_regs = bufp->re_nsub + 1;
3837
3838 /* The currently active registers. */
3839 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3840 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3841
3842 /* Information on the contents of registers. These are pointers into
3843 the input strings; they record just what was matched (on this
3844 attempt) by a subexpression part of the pattern, that is, the
3845 regnum-th regstart pointer points to where in the pattern we began
3846 matching and the regnum-th regend points to right after where we
3847 stopped matching the regnum-th subexpression. (The zeroth register
3848 keeps track of what the whole pattern matches.) */
3849 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3850 const char **regstart, **regend;
3851 #endif
3852
3853 /* If a group that's operated upon by a repetition operator fails to
3854 match anything, then the register for its start will need to be
3855 restored because it will have been set to wherever in the string we
3856 are when we last see its open-group operator. Similarly for a
3857 register's end. */
3858 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3859 const char **old_regstart, **old_regend;
3860 #endif
3861
3862 /* The is_active field of reg_info helps us keep track of which (possibly
3863 nested) subexpressions we are currently in. The matched_something
3864 field of reg_info[reg_num] helps us tell whether or not we have
3865 matched any of the pattern so far this time through the reg_num-th
3866 subexpression. These two fields get reset each time through any
3867 loop their register is in. */
3868 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3869 register_info_type *reg_info;
3870 #endif
3871
3872 /* The following record the register info as found in the above
3873 variables when we find a match better than any we've seen before.
3874 This happens as we backtrack through the failure points, which in
3875 turn happens only if we have not yet matched the entire string. */
3876 unsigned best_regs_set = false;
3877 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3878 const char **best_regstart, **best_regend;
3879 #endif
3880
3881 /* Logically, this is `best_regend[0]'. But we don't want to have to
3882 allocate space for that if we're not allocating space for anything
3883 else (see below). Also, we never need info about register 0 for
3884 any of the other register vectors, and it seems rather a kludge to
3885 treat `best_regend' differently than the rest. So we keep track of
3886 the end of the best match so far in a separate variable. We
3887 initialize this to NULL so that when we backtrack the first time
3888 and need to test it, it's not garbage. */
3889 const char *match_end = NULL;
3890
3891 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3892 int set_regs_matched_done = 0;
3893
3894 /* Used when we pop values we don't care about. */
3895 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3896 const char **reg_dummy;
3897 register_info_type *reg_info_dummy;
3898 #endif
3899
3900 #ifdef DEBUG
3901 /* Counts the total number of registers pushed. */
3902 unsigned num_regs_pushed = 0;
3903 #endif
3904
3905 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3906
3907 INIT_FAIL_STACK ();
3908
3909 #ifdef MATCH_MAY_ALLOCATE
3910 /* Do not bother to initialize all the register variables if there are
3911 no groups in the pattern, as it takes a fair amount of time. If
3912 there are groups, we include space for register 0 (the whole
3913 pattern), even though we never use it, since it simplifies the
3914 array indexing. We should fix this. */
3915 if (bufp->re_nsub)
3916 {
3917 regstart = REGEX_TALLOC (num_regs, const char *);
3918 regend = REGEX_TALLOC (num_regs, const char *);
3919 old_regstart = REGEX_TALLOC (num_regs, const char *);
3920 old_regend = REGEX_TALLOC (num_regs, const char *);
3921 best_regstart = REGEX_TALLOC (num_regs, const char *);
3922 best_regend = REGEX_TALLOC (num_regs, const char *);
3923 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3924 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3925 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3926
3927 if (!(regstart && regend && old_regstart && old_regend && reg_info
3928 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3929 {
3930 FREE_VARIABLES ();
3931 return -2;
3932 }
3933 }
3934 else
3935 {
3936 /* We must initialize all our variables to NULL, so that
3937 `FREE_VARIABLES' doesn't try to free them. */
3938 regstart = regend = old_regstart = old_regend = best_regstart
3939 = best_regend = reg_dummy = NULL;
3940 reg_info = reg_info_dummy = (register_info_type *) NULL;
3941 }
3942 #endif /* MATCH_MAY_ALLOCATE */
3943
3944 /* The starting position is bogus. */
3945 if (pos < 0 || pos > size1 + size2)
3946 {
3947 FREE_VARIABLES ();
3948 return -1;
3949 }
3950
3951 /* Initialize subexpression text positions to -1 to mark ones that no
3952 start_memory/stop_memory has been seen for. Also initialize the
3953 register information struct. */
3954 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
3955 {
3956 regstart[mcnt] = regend[mcnt]
3957 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3958
3959 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3960 IS_ACTIVE (reg_info[mcnt]) = 0;
3961 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3962 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3963 }
3964
3965 /* We move `string1' into `string2' if the latter's empty -- but not if
3966 `string1' is null. */
3967 if (size2 == 0 && string1 != NULL)
3968 {
3969 string2 = string1;
3970 size2 = size1;
3971 string1 = 0;
3972 size1 = 0;
3973 }
3974 end1 = string1 + size1;
3975 end2 = string2 + size2;
3976
3977 /* Compute where to stop matching, within the two strings. */
3978 if (stop <= size1)
3979 {
3980 end_match_1 = string1 + stop;
3981 end_match_2 = string2;
3982 }
3983 else
3984 {
3985 end_match_1 = end1;
3986 end_match_2 = string2 + stop - size1;
3987 }
3988
3989 /* `p' scans through the pattern as `d' scans through the data.
3990 `dend' is the end of the input string that `d' points within. `d'
3991 is advanced into the following input string whenever necessary, but
3992 this happens before fetching; therefore, at the beginning of the
3993 loop, `d' can be pointing at the end of a string, but it cannot
3994 equal `string2'. */
3995 if (size1 > 0 && pos <= size1)
3996 {
3997 d = string1 + pos;
3998 dend = end_match_1;
3999 }
4000 else
4001 {
4002 d = string2 + pos - size1;
4003 dend = end_match_2;
4004 }
4005
4006 DEBUG_PRINT1 ("The compiled pattern is:\n");
4007 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4008 DEBUG_PRINT1 ("The string to match is: `");
4009 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4010 DEBUG_PRINT1 ("'\n");
4011
4012 /* This loops over pattern commands. It exits by returning from the
4013 function if the match is complete, or it drops through if the match
4014 fails at this starting point in the input data. */
4015 for (;;)
4016 {
4017 #ifdef _LIBC
4018 DEBUG_PRINT2 ("\n%p: ", p);
4019 #else
4020 DEBUG_PRINT2 ("\n0x%x: ", p);
4021 #endif
4022
4023 if (p == pend)
4024 { /* End of pattern means we might have succeeded. */
4025 DEBUG_PRINT1 ("end of pattern ... ");
4026
4027 /* If we haven't matched the entire string, and we want the
4028 longest match, try backtracking. */
4029 if (d != end_match_2)
4030 {
4031 /* 1 if this match ends in the same string (string1 or string2)
4032 as the best previous match. */
4033 boolean same_str_p = (FIRST_STRING_P (match_end)
4034 == MATCHING_IN_FIRST_STRING);
4035 /* 1 if this match is the best seen so far. */
4036 boolean best_match_p;
4037
4038 /* AIX compiler got confused when this was combined
4039 with the previous declaration. */
4040 if (same_str_p)
4041 best_match_p = d > match_end;
4042 else
4043 best_match_p = !MATCHING_IN_FIRST_STRING;
4044
4045 DEBUG_PRINT1 ("backtracking.\n");
4046
4047 if (!FAIL_STACK_EMPTY ())
4048 { /* More failure points to try. */
4049
4050 /* If exceeds best match so far, save it. */
4051 if (!best_regs_set || best_match_p)
4052 {
4053 best_regs_set = true;
4054 match_end = d;
4055
4056 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4057
4058 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4059 {
4060 best_regstart[mcnt] = regstart[mcnt];
4061 best_regend[mcnt] = regend[mcnt];
4062 }
4063 }
4064 goto fail;
4065 }
4066
4067 /* If no failure points, don't restore garbage. And if
4068 last match is real best match, don't restore second
4069 best one. */
4070 else if (best_regs_set && !best_match_p)
4071 {
4072 restore_best_regs:
4073 /* Restore best match. It may happen that `dend ==
4074 end_match_1' while the restored d is in string2.
4075 For example, the pattern `x.*y.*z' against the
4076 strings `x-' and `y-z-', if the two strings are
4077 not consecutive in memory. */
4078 DEBUG_PRINT1 ("Restoring best registers.\n");
4079
4080 d = match_end;
4081 dend = ((d >= string1 && d <= end1)
4082 ? end_match_1 : end_match_2);
4083
4084 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4085 {
4086 regstart[mcnt] = best_regstart[mcnt];
4087 regend[mcnt] = best_regend[mcnt];
4088 }
4089 }
4090 } /* d != end_match_2 */
4091
4092 succeed_label:
4093 DEBUG_PRINT1 ("Accepting match.\n");
4094
4095 /* If caller wants register contents data back, do it. */
4096 if (regs && !bufp->no_sub)
4097 {
4098 /* Have the register data arrays been allocated? */
4099 if (bufp->regs_allocated == REGS_UNALLOCATED)
4100 { /* No. So allocate them with malloc. We need one
4101 extra element beyond `num_regs' for the `-1' marker
4102 GNU code uses. */
4103 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4104 regs->start = TALLOC (regs->num_regs, regoff_t);
4105 regs->end = TALLOC (regs->num_regs, regoff_t);
4106 if (regs->start == NULL || regs->end == NULL)
4107 {
4108 FREE_VARIABLES ();
4109 return -2;
4110 }
4111 bufp->regs_allocated = REGS_REALLOCATE;
4112 }
4113 else if (bufp->regs_allocated == REGS_REALLOCATE)
4114 { /* Yes. If we need more elements than were already
4115 allocated, reallocate them. If we need fewer, just
4116 leave it alone. */
4117 if (regs->num_regs < num_regs + 1)
4118 {
4119 regs->num_regs = num_regs + 1;
4120 RETALLOC (regs->start, regs->num_regs, regoff_t);
4121 RETALLOC (regs->end, regs->num_regs, regoff_t);
4122 if (regs->start == NULL || regs->end == NULL)
4123 {
4124 FREE_VARIABLES ();
4125 return -2;
4126 }
4127 }
4128 }
4129 else
4130 {
4131 /* These braces fend off a "empty body in an else-statement"
4132 warning under GCC when assert expands to nothing. */
4133 assert (bufp->regs_allocated == REGS_FIXED);
4134 }
4135
4136 /* Convert the pointer data in `regstart' and `regend' to
4137 indices. Register zero has to be set differently,
4138 since we haven't kept track of any info for it. */
4139 if (regs->num_regs > 0)
4140 {
4141 regs->start[0] = pos;
4142 regs->end[0] = (MATCHING_IN_FIRST_STRING
4143 ? ((regoff_t) (d - string1))
4144 : ((regoff_t) (d - string2 + size1)));
4145 }
4146
4147 /* Go through the first `min (num_regs, regs->num_regs)'
4148 registers, since that is all we initialized. */
4149 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4150 mcnt++)
4151 {
4152 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4153 regs->start[mcnt] = regs->end[mcnt] = -1;
4154 else
4155 {
4156 regs->start[mcnt]
4157 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4158 regs->end[mcnt]
4159 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4160 }
4161 }
4162
4163 /* If the regs structure we return has more elements than
4164 were in the pattern, set the extra elements to -1. If
4165 we (re)allocated the registers, this is the case,
4166 because we always allocate enough to have at least one
4167 -1 at the end. */
4168 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4169 regs->start[mcnt] = regs->end[mcnt] = -1;
4170 } /* regs && !bufp->no_sub */
4171
4172 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4173 nfailure_points_pushed, nfailure_points_popped,
4174 nfailure_points_pushed - nfailure_points_popped);
4175 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4176
4177 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4178 ? string1
4179 : string2 - size1);
4180
4181 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4182
4183 FREE_VARIABLES ();
4184 return mcnt;
4185 }
4186
4187 /* Otherwise match next pattern command. */
4188 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4189 {
4190 /* Ignore these. Used to ignore the n of succeed_n's which
4191 currently have n == 0. */
4192 case no_op:
4193 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4194 break;
4195
4196 case succeed:
4197 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4198 goto succeed_label;
4199
4200 /* Match the next n pattern characters exactly. The following
4201 byte in the pattern defines n, and the n bytes after that
4202 are the characters to match. */
4203 case exactn:
4204 mcnt = *p++;
4205 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4206
4207 /* This is written out as an if-else so we don't waste time
4208 testing `translate' inside the loop. */
4209 if (translate)
4210 {
4211 do
4212 {
4213 PREFETCH ();
4214 if ((unsigned char) translate[(unsigned char) *d++]
4215 != (unsigned char) *p++)
4216 goto fail;
4217 }
4218 while (--mcnt);
4219 }
4220 else
4221 {
4222 do
4223 {
4224 PREFETCH ();
4225 if (*d++ != (char) *p++) goto fail;
4226 }
4227 while (--mcnt);
4228 }
4229 SET_REGS_MATCHED ();
4230 break;
4231
4232
4233 /* Match any character except possibly a newline or a null. */
4234 case anychar:
4235 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4236
4237 PREFETCH ();
4238
4239 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4240 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4241 goto fail;
4242
4243 SET_REGS_MATCHED ();
4244 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4245 d++;
4246 break;
4247
4248
4249 case charset:
4250 case charset_not:
4251 {
4252 register unsigned char c;
4253 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4254
4255 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4256
4257 PREFETCH ();
4258 c = TRANSLATE (*d); /* The character to match. */
4259
4260 /* Cast to `unsigned' instead of `unsigned char' in case the
4261 bit list is a full 32 bytes long. */
4262 if (c < (unsigned) (*p * BYTEWIDTH)
4263 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4264 not = !not;
4265
4266 p += 1 + *p;
4267
4268 if (!not) goto fail;
4269
4270 SET_REGS_MATCHED ();
4271 d++;
4272 break;
4273 }
4274
4275
4276 /* The beginning of a group is represented by start_memory.
4277 The arguments are the register number in the next byte, and the
4278 number of groups inner to this one in the next. The text
4279 matched within the group is recorded (in the internal
4280 registers data structure) under the register number. */
4281 case start_memory:
4282 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4283
4284 /* Find out if this group can match the empty string. */
4285 p1 = p; /* To send to group_match_null_string_p. */
4286
4287 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4288 REG_MATCH_NULL_STRING_P (reg_info[*p])
4289 = group_match_null_string_p (&p1, pend, reg_info);
4290
4291 /* Save the position in the string where we were the last time
4292 we were at this open-group operator in case the group is
4293 operated upon by a repetition operator, e.g., with `(a*)*b'
4294 against `ab'; then we want to ignore where we are now in
4295 the string in case this attempt to match fails. */
4296 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4297 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4298 : regstart[*p];
4299 DEBUG_PRINT2 (" old_regstart: %d\n",
4300 POINTER_TO_OFFSET (old_regstart[*p]));
4301
4302 regstart[*p] = d;
4303 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4304
4305 IS_ACTIVE (reg_info[*p]) = 1;
4306 MATCHED_SOMETHING (reg_info[*p]) = 0;
4307
4308 /* Clear this whenever we change the register activity status. */
4309 set_regs_matched_done = 0;
4310
4311 /* This is the new highest active register. */
4312 highest_active_reg = *p;
4313
4314 /* If nothing was active before, this is the new lowest active
4315 register. */
4316 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4317 lowest_active_reg = *p;
4318
4319 /* Move past the register number and inner group count. */
4320 p += 2;
4321 just_past_start_mem = p;
4322
4323 break;
4324
4325
4326 /* The stop_memory opcode represents the end of a group. Its
4327 arguments are the same as start_memory's: the register
4328 number, and the number of inner groups. */
4329 case stop_memory:
4330 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4331
4332 /* We need to save the string position the last time we were at
4333 this close-group operator in case the group is operated
4334 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4335 against `aba'; then we want to ignore where we are now in
4336 the string in case this attempt to match fails. */
4337 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4338 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4339 : regend[*p];
4340 DEBUG_PRINT2 (" old_regend: %d\n",
4341 POINTER_TO_OFFSET (old_regend[*p]));
4342
4343 regend[*p] = d;
4344 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4345
4346 /* This register isn't active anymore. */
4347 IS_ACTIVE (reg_info[*p]) = 0;
4348
4349 /* Clear this whenever we change the register activity status. */
4350 set_regs_matched_done = 0;
4351
4352 /* If this was the only register active, nothing is active
4353 anymore. */
4354 if (lowest_active_reg == highest_active_reg)
4355 {
4356 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4357 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4358 }
4359 else
4360 { /* We must scan for the new highest active register, since
4361 it isn't necessarily one less than now: consider
4362 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4363 new highest active register is 1. */
4364 unsigned char r = *p - 1;
4365 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4366 r--;
4367
4368 /* If we end up at register zero, that means that we saved
4369 the registers as the result of an `on_failure_jump', not
4370 a `start_memory', and we jumped to past the innermost
4371 `stop_memory'. For example, in ((.)*) we save
4372 registers 1 and 2 as a result of the *, but when we pop
4373 back to the second ), we are at the stop_memory 1.
4374 Thus, nothing is active. */
4375 if (r == 0)
4376 {
4377 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4378 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4379 }
4380 else
4381 highest_active_reg = r;
4382 }
4383
4384 /* If just failed to match something this time around with a
4385 group that's operated on by a repetition operator, try to
4386 force exit from the ``loop'', and restore the register
4387 information for this group that we had before trying this
4388 last match. */
4389 if ((!MATCHED_SOMETHING (reg_info[*p])
4390 || just_past_start_mem == p - 1)
4391 && (p + 2) < pend)
4392 {
4393 boolean is_a_jump_n = false;
4394
4395 p1 = p + 2;
4396 mcnt = 0;
4397 switch ((re_opcode_t) *p1++)
4398 {
4399 case jump_n:
4400 is_a_jump_n = true;
4401 case pop_failure_jump:
4402 case maybe_pop_jump:
4403 case jump:
4404 case dummy_failure_jump:
4405 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4406 if (is_a_jump_n)
4407 p1 += 2;
4408 break;
4409
4410 default:
4411 /* do nothing */ ;
4412 }
4413 p1 += mcnt;
4414
4415 /* If the next operation is a jump backwards in the pattern
4416 to an on_failure_jump right before the start_memory
4417 corresponding to this stop_memory, exit from the loop
4418 by forcing a failure after pushing on the stack the
4419 on_failure_jump's jump in the pattern, and d. */
4420 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4421 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4422 {
4423 /* If this group ever matched anything, then restore
4424 what its registers were before trying this last
4425 failed match, e.g., with `(a*)*b' against `ab' for
4426 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4427 against `aba' for regend[3].
4428
4429 Also restore the registers for inner groups for,
4430 e.g., `((a*)(b*))*' against `aba' (register 3 would
4431 otherwise get trashed). */
4432
4433 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4434 {
4435 unsigned r;
4436
4437 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4438
4439 /* Restore this and inner groups' (if any) registers. */
4440 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4441 r++)
4442 {
4443 regstart[r] = old_regstart[r];
4444
4445 /* xx why this test? */
4446 if (old_regend[r] >= regstart[r])
4447 regend[r] = old_regend[r];
4448 }
4449 }
4450 p1++;
4451 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4452 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4453
4454 goto fail;
4455 }
4456 }
4457
4458 /* Move past the register number and the inner group count. */
4459 p += 2;
4460 break;
4461
4462
4463 /* \<digit> has been turned into a `duplicate' command which is
4464 followed by the numeric value of <digit> as the register number. */
4465 case duplicate:
4466 {
4467 register const char *d2, *dend2;
4468 int regno = *p++; /* Get which register to match against. */
4469 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4470
4471 /* Can't back reference a group which we've never matched. */
4472 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4473 goto fail;
4474
4475 /* Where in input to try to start matching. */
4476 d2 = regstart[regno];
4477
4478 /* Where to stop matching; if both the place to start and
4479 the place to stop matching are in the same string, then
4480 set to the place to stop, otherwise, for now have to use
4481 the end of the first string. */
4482
4483 dend2 = ((FIRST_STRING_P (regstart[regno])
4484 == FIRST_STRING_P (regend[regno]))
4485 ? regend[regno] : end_match_1);
4486 for (;;)
4487 {
4488 /* If necessary, advance to next segment in register
4489 contents. */
4490 while (d2 == dend2)
4491 {
4492 if (dend2 == end_match_2) break;
4493 if (dend2 == regend[regno]) break;
4494
4495 /* End of string1 => advance to string2. */
4496 d2 = string2;
4497 dend2 = regend[regno];
4498 }
4499 /* At end of register contents => success */
4500 if (d2 == dend2) break;
4501
4502 /* If necessary, advance to next segment in data. */
4503 PREFETCH ();
4504
4505 /* How many characters left in this segment to match. */
4506 mcnt = dend - d;
4507
4508 /* Want how many consecutive characters we can match in
4509 one shot, so, if necessary, adjust the count. */
4510 if (mcnt > dend2 - d2)
4511 mcnt = dend2 - d2;
4512
4513 /* Compare that many; failure if mismatch, else move
4514 past them. */
4515 if (translate
4516 ? bcmp_translate (d, d2, mcnt, translate)
4517 : memcmp (d, d2, mcnt))
4518 goto fail;
4519 d += mcnt, d2 += mcnt;
4520
4521 /* Do this because we've match some characters. */
4522 SET_REGS_MATCHED ();
4523 }
4524 }
4525 break;
4526
4527
4528 /* begline matches the empty string at the beginning of the string
4529 (unless `not_bol' is set in `bufp'), and, if
4530 `newline_anchor' is set, after newlines. */
4531 case begline:
4532 DEBUG_PRINT1 ("EXECUTING begline.\n");
4533
4534 if (AT_STRINGS_BEG (d))
4535 {
4536 if (!bufp->not_bol) break;
4537 }
4538 else if (d[-1] == '\n' && bufp->newline_anchor)
4539 {
4540 break;
4541 }
4542 /* In all other cases, we fail. */
4543 goto fail;
4544
4545
4546 /* endline is the dual of begline. */
4547 case endline:
4548 DEBUG_PRINT1 ("EXECUTING endline.\n");
4549
4550 if (AT_STRINGS_END (d))
4551 {
4552 if (!bufp->not_eol) break;
4553 }
4554
4555 /* We have to ``prefetch'' the next character. */
4556 else if ((d == end1 ? *string2 : *d) == '\n'
4557 && bufp->newline_anchor)
4558 {
4559 break;
4560 }
4561 goto fail;
4562
4563
4564 /* Match at the very beginning of the data. */
4565 case begbuf:
4566 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4567 if (AT_STRINGS_BEG (d))
4568 break;
4569 goto fail;
4570
4571
4572 /* Match at the very end of the data. */
4573 case endbuf:
4574 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4575 if (AT_STRINGS_END (d))
4576 break;
4577 goto fail;
4578
4579
4580 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4581 pushes NULL as the value for the string on the stack. Then
4582 `pop_failure_point' will keep the current value for the
4583 string, instead of restoring it. To see why, consider
4584 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4585 then the . fails against the \n. But the next thing we want
4586 to do is match the \n against the \n; if we restored the
4587 string value, we would be back at the foo.
4588
4589 Because this is used only in specific cases, we don't need to
4590 check all the things that `on_failure_jump' does, to make
4591 sure the right things get saved on the stack. Hence we don't
4592 share its code. The only reason to push anything on the
4593 stack at all is that otherwise we would have to change
4594 `anychar's code to do something besides goto fail in this
4595 case; that seems worse than this. */
4596 case on_failure_keep_string_jump:
4597 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4598
4599 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4600 #ifdef _LIBC
4601 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4602 #else
4603 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4604 #endif
4605
4606 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4607 break;
4608
4609
4610 /* Uses of on_failure_jump:
4611
4612 Each alternative starts with an on_failure_jump that points
4613 to the beginning of the next alternative. Each alternative
4614 except the last ends with a jump that in effect jumps past
4615 the rest of the alternatives. (They really jump to the
4616 ending jump of the following alternative, because tensioning
4617 these jumps is a hassle.)
4618
4619 Repeats start with an on_failure_jump that points past both
4620 the repetition text and either the following jump or
4621 pop_failure_jump back to this on_failure_jump. */
4622 case on_failure_jump:
4623 on_failure:
4624 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4625
4626 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4627 #ifdef _LIBC
4628 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4629 #else
4630 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4631 #endif
4632
4633 /* If this on_failure_jump comes right before a group (i.e.,
4634 the original * applied to a group), save the information
4635 for that group and all inner ones, so that if we fail back
4636 to this point, the group's information will be correct.
4637 For example, in \(a*\)*\1, we need the preceding group,
4638 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4639
4640 /* We can't use `p' to check ahead because we push
4641 a failure point to `p + mcnt' after we do this. */
4642 p1 = p;
4643
4644 /* We need to skip no_op's before we look for the
4645 start_memory in case this on_failure_jump is happening as
4646 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4647 against aba. */
4648 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4649 p1++;
4650
4651 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4652 {
4653 /* We have a new highest active register now. This will
4654 get reset at the start_memory we are about to get to,
4655 but we will have saved all the registers relevant to
4656 this repetition op, as described above. */
4657 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4658 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4659 lowest_active_reg = *(p1 + 1);
4660 }
4661
4662 DEBUG_PRINT1 (":\n");
4663 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4664 break;
4665
4666
4667 /* A smart repeat ends with `maybe_pop_jump'.
4668 We change it to either `pop_failure_jump' or `jump'. */
4669 case maybe_pop_jump:
4670 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4671 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4672 {
4673 register unsigned char *p2 = p;
4674
4675 /* Compare the beginning of the repeat with what in the
4676 pattern follows its end. If we can establish that there
4677 is nothing that they would both match, i.e., that we
4678 would have to backtrack because of (as in, e.g., `a*a')
4679 then we can change to pop_failure_jump, because we'll
4680 never have to backtrack.
4681
4682 This is not true in the case of alternatives: in
4683 `(a|ab)*' we do need to backtrack to the `ab' alternative
4684 (e.g., if the string was `ab'). But instead of trying to
4685 detect that here, the alternative has put on a dummy
4686 failure point which is what we will end up popping. */
4687
4688 /* Skip over open/close-group commands.
4689 If what follows this loop is a ...+ construct,
4690 look at what begins its body, since we will have to
4691 match at least one of that. */
4692 while (1)
4693 {
4694 if (p2 + 2 < pend
4695 && ((re_opcode_t) *p2 == stop_memory
4696 || (re_opcode_t) *p2 == start_memory))
4697 p2 += 3;
4698 else if (p2 + 6 < pend
4699 && (re_opcode_t) *p2 == dummy_failure_jump)
4700 p2 += 6;
4701 else
4702 break;
4703 }
4704
4705 p1 = p + mcnt;
4706 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4707 to the `maybe_finalize_jump' of this case. Examine what
4708 follows. */
4709
4710 /* If we're at the end of the pattern, we can change. */
4711 if (p2 == pend)
4712 {
4713 /* Consider what happens when matching ":\(.*\)"
4714 against ":/". I don't really understand this code
4715 yet. */
4716 p[-3] = (unsigned char) pop_failure_jump;
4717 DEBUG_PRINT1
4718 (" End of pattern: change to `pop_failure_jump'.\n");
4719 }
4720
4721 else if ((re_opcode_t) *p2 == exactn
4722 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4723 {
4724 register unsigned char c
4725 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4726
4727 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4728 {
4729 p[-3] = (unsigned char) pop_failure_jump;
4730 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4731 c, p1[5]);
4732 }
4733
4734 else if ((re_opcode_t) p1[3] == charset
4735 || (re_opcode_t) p1[3] == charset_not)
4736 {
4737 int not = (re_opcode_t) p1[3] == charset_not;
4738
4739 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4740 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4741 not = !not;
4742
4743 /* `not' is equal to 1 if c would match, which means
4744 that we can't change to pop_failure_jump. */
4745 if (!not)
4746 {
4747 p[-3] = (unsigned char) pop_failure_jump;
4748 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4749 }
4750 }
4751 }
4752 else if ((re_opcode_t) *p2 == charset)
4753 {
4754 #ifdef DEBUG
4755 register unsigned char c
4756 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4757 #endif
4758
4759 #if 0
4760 if ((re_opcode_t) p1[3] == exactn
4761 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4762 && (p2[2 + p1[5] / BYTEWIDTH]
4763 & (1 << (p1[5] % BYTEWIDTH)))))
4764 #else
4765 if ((re_opcode_t) p1[3] == exactn
4766 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4767 && (p2[2 + p1[4] / BYTEWIDTH]
4768 & (1 << (p1[4] % BYTEWIDTH)))))
4769 #endif
4770 {
4771 p[-3] = (unsigned char) pop_failure_jump;
4772 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4773 c, p1[5]);
4774 }
4775
4776 else if ((re_opcode_t) p1[3] == charset_not)
4777 {
4778 int idx;
4779 /* We win if the charset_not inside the loop
4780 lists every character listed in the charset after. */
4781 for (idx = 0; idx < (int) p2[1]; idx++)
4782 if (! (p2[2 + idx] == 0
4783 || (idx < (int) p1[4]
4784 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4785 break;
4786
4787 if (idx == p2[1])
4788 {
4789 p[-3] = (unsigned char) pop_failure_jump;
4790 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4791 }
4792 }
4793 else if ((re_opcode_t) p1[3] == charset)
4794 {
4795 int idx;
4796 /* We win if the charset inside the loop
4797 has no overlap with the one after the loop. */
4798 for (idx = 0;
4799 idx < (int) p2[1] && idx < (int) p1[4];
4800 idx++)
4801 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4802 break;
4803
4804 if (idx == p2[1] || idx == p1[4])
4805 {
4806 p[-3] = (unsigned char) pop_failure_jump;
4807 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4808 }
4809 }
4810 }
4811 }
4812 p -= 2; /* Point at relative address again. */
4813 if ((re_opcode_t) p[-1] != pop_failure_jump)
4814 {
4815 p[-1] = (unsigned char) jump;
4816 DEBUG_PRINT1 (" Match => jump.\n");
4817 goto unconditional_jump;
4818 }
4819 /* Note fall through. */
4820
4821
4822 /* The end of a simple repeat has a pop_failure_jump back to
4823 its matching on_failure_jump, where the latter will push a
4824 failure point. The pop_failure_jump takes off failure
4825 points put on by this pop_failure_jump's matching
4826 on_failure_jump; we got through the pattern to here from the
4827 matching on_failure_jump, so didn't fail. */
4828 case pop_failure_jump:
4829 {
4830 /* We need to pass separate storage for the lowest and
4831 highest registers, even though we don't care about the
4832 actual values. Otherwise, we will restore only one
4833 register from the stack, since lowest will == highest in
4834 `pop_failure_point'. */
4835 active_reg_t dummy_low_reg, dummy_high_reg;
4836 unsigned char *pdummy;
4837 const char *sdummy;
4838
4839 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4840 POP_FAILURE_POINT (sdummy, pdummy,
4841 dummy_low_reg, dummy_high_reg,
4842 reg_dummy, reg_dummy, reg_info_dummy);
4843 }
4844 /* Note fall through. */
4845
4846 unconditional_jump:
4847 #ifdef _LIBC
4848 DEBUG_PRINT2 ("\n%p: ", p);
4849 #else
4850 DEBUG_PRINT2 ("\n0x%x: ", p);
4851 #endif
4852 /* Note fall through. */
4853
4854 /* Unconditionally jump (without popping any failure points). */
4855 case jump:
4856 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4857 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4858 p += mcnt; /* Do the jump. */
4859 #ifdef _LIBC
4860 DEBUG_PRINT2 ("(to %p).\n", p);
4861 #else
4862 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4863 #endif
4864 break;
4865
4866
4867 /* We need this opcode so we can detect where alternatives end
4868 in `group_match_null_string_p' et al. */
4869 case jump_past_alt:
4870 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4871 goto unconditional_jump;
4872
4873
4874 /* Normally, the on_failure_jump pushes a failure point, which
4875 then gets popped at pop_failure_jump. We will end up at
4876 pop_failure_jump, also, and with a pattern of, say, `a+', we
4877 are skipping over the on_failure_jump, so we have to push
4878 something meaningless for pop_failure_jump to pop. */
4879 case dummy_failure_jump:
4880 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4881 /* It doesn't matter what we push for the string here. What
4882 the code at `fail' tests is the value for the pattern. */
4883 PUSH_FAILURE_POINT (NULL, NULL, -2);
4884 goto unconditional_jump;
4885
4886
4887 /* At the end of an alternative, we need to push a dummy failure
4888 point in case we are followed by a `pop_failure_jump', because
4889 we don't want the failure point for the alternative to be
4890 popped. For example, matching `(a|ab)*' against `aab'
4891 requires that we match the `ab' alternative. */
4892 case push_dummy_failure:
4893 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4894 /* See comments just above at `dummy_failure_jump' about the
4895 two zeroes. */
4896 PUSH_FAILURE_POINT (NULL, NULL, -2);
4897 break;
4898
4899 /* Have to succeed matching what follows at least n times.
4900 After that, handle like `on_failure_jump'. */
4901 case succeed_n:
4902 EXTRACT_NUMBER (mcnt, p + 2);
4903 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4904
4905 assert (mcnt >= 0);
4906 /* Originally, this is how many times we HAVE to succeed. */
4907 if (mcnt > 0)
4908 {
4909 mcnt--;
4910 p += 2;
4911 STORE_NUMBER_AND_INCR (p, mcnt);
4912 #ifdef _LIBC
4913 DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt);
4914 #else
4915 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt);
4916 #endif
4917 }
4918 else if (mcnt == 0)
4919 {
4920 #ifdef _LIBC
4921 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
4922 #else
4923 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4924 #endif
4925 p[2] = (unsigned char) no_op;
4926 p[3] = (unsigned char) no_op;
4927 goto on_failure;
4928 }
4929 break;
4930
4931 case jump_n:
4932 EXTRACT_NUMBER (mcnt, p + 2);
4933 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4934
4935 /* Originally, this is how many times we CAN jump. */
4936 if (mcnt)
4937 {
4938 mcnt--;
4939 STORE_NUMBER (p + 2, mcnt);
4940 #ifdef _LIBC
4941 DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt);
4942 #else
4943 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt);
4944 #endif
4945 goto unconditional_jump;
4946 }
4947 /* If don't have to jump any more, skip over the rest of command. */
4948 else
4949 p += 4;
4950 break;
4951
4952 case set_number_at:
4953 {
4954 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4955
4956 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4957 p1 = p + mcnt;
4958 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4959 #ifdef _LIBC
4960 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
4961 #else
4962 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4963 #endif
4964 STORE_NUMBER (p1, mcnt);
4965 break;
4966 }
4967
4968 #if 0
4969 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4970 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4971 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4972 macro and introducing temporary variables works around the bug. */
4973
4974 case wordbound:
4975 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4976 if (AT_WORD_BOUNDARY (d))
4977 break;
4978 goto fail;
4979
4980 case notwordbound:
4981 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4982 if (AT_WORD_BOUNDARY (d))
4983 goto fail;
4984 break;
4985 #else
4986 case wordbound:
4987 {
4988 boolean prevchar, thischar;
4989
4990 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4991 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4992 break;
4993
4994 prevchar = WORDCHAR_P (d - 1);
4995 thischar = WORDCHAR_P (d);
4996 if (prevchar != thischar)
4997 break;
4998 goto fail;
4999 }
5000
5001 case notwordbound:
5002 {
5003 boolean prevchar, thischar;
5004
5005 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5006 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5007 goto fail;
5008
5009 prevchar = WORDCHAR_P (d - 1);
5010 thischar = WORDCHAR_P (d);
5011 if (prevchar != thischar)
5012 goto fail;
5013 break;
5014 }
5015 #endif
5016
5017 case wordbeg:
5018 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5019 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
5020 break;
5021 goto fail;
5022
5023 case wordend:
5024 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5025 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
5026 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
5027 break;
5028 goto fail;
5029
5030 #ifdef emacs
5031 case before_dot:
5032 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5033 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5034 goto fail;
5035 break;
5036
5037 case at_dot:
5038 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5039 if (PTR_CHAR_POS ((unsigned char *) d) != point)
5040 goto fail;
5041 break;
5042
5043 case after_dot:
5044 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5045 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5046 goto fail;
5047 break;
5048
5049 case syntaxspec:
5050 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5051 mcnt = *p++;
5052 goto matchsyntax;
5053
5054 case wordchar:
5055 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5056 mcnt = (int) Sword;
5057 matchsyntax:
5058 PREFETCH ();
5059 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5060 d++;
5061 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5062 goto fail;
5063 SET_REGS_MATCHED ();
5064 break;
5065
5066 case notsyntaxspec:
5067 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5068 mcnt = *p++;
5069 goto matchnotsyntax;
5070
5071 case notwordchar:
5072 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5073 mcnt = (int) Sword;
5074 matchnotsyntax:
5075 PREFETCH ();
5076 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5077 d++;
5078 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5079 goto fail;
5080 SET_REGS_MATCHED ();
5081 break;
5082
5083 #else /* not emacs */
5084 case wordchar:
5085 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5086 PREFETCH ();
5087 if (!WORDCHAR_P (d))
5088 goto fail;
5089 SET_REGS_MATCHED ();
5090 d++;
5091 break;
5092
5093 case notwordchar:
5094 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5095 PREFETCH ();
5096 if (WORDCHAR_P (d))
5097 goto fail;
5098 SET_REGS_MATCHED ();
5099 d++;
5100 break;
5101 #endif /* not emacs */
5102
5103 default:
5104 abort ();
5105 }
5106 continue; /* Successfully executed one pattern command; keep going. */
5107
5108
5109 /* We goto here if a matching operation fails. */
5110 fail:
5111 if (!FAIL_STACK_EMPTY ())
5112 { /* A restart point is known. Restore to that state. */
5113 DEBUG_PRINT1 ("\nFAIL:\n");
5114 POP_FAILURE_POINT (d, p,
5115 lowest_active_reg, highest_active_reg,
5116 regstart, regend, reg_info);
5117
5118 /* If this failure point is a dummy, try the next one. */
5119 if (!p)
5120 goto fail;
5121
5122 /* If we failed to the end of the pattern, don't examine *p. */
5123 assert (p <= pend);
5124 if (p < pend)
5125 {
5126 boolean is_a_jump_n = false;
5127
5128 /* If failed to a backwards jump that's part of a repetition
5129 loop, need to pop this failure point and use the next one. */
5130 switch ((re_opcode_t) *p)
5131 {
5132 case jump_n:
5133 is_a_jump_n = true;
5134 case maybe_pop_jump:
5135 case pop_failure_jump:
5136 case jump:
5137 p1 = p + 1;
5138 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5139 p1 += mcnt;
5140
5141 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5142 || (!is_a_jump_n
5143 && (re_opcode_t) *p1 == on_failure_jump))
5144 goto fail;
5145 break;
5146 default:
5147 /* do nothing */ ;
5148 }
5149 }
5150
5151 if (d >= string1 && d <= end1)
5152 dend = end_match_1;
5153 }
5154 else
5155 break; /* Matching at this starting point really fails. */
5156 } /* for (;;) */
5157
5158 if (best_regs_set)
5159 goto restore_best_regs;
5160
5161 FREE_VARIABLES ();
5162
5163 return -1; /* Failure to match. */
5164 } /* re_match_2 */
5165 \f
5166 /* Subroutine definitions for re_match_2. */
5167
5168
5169 /* We are passed P pointing to a register number after a start_memory.
5170
5171 Return true if the pattern up to the corresponding stop_memory can
5172 match the empty string, and false otherwise.
5173
5174 If we find the matching stop_memory, sets P to point to one past its number.
5175 Otherwise, sets P to an undefined byte less than or equal to END.
5176
5177 We don't handle duplicates properly (yet). */
5178
5179 static boolean
5180 group_match_null_string_p (p, end, reg_info)
5181 unsigned char **p, *end;
5182 register_info_type *reg_info;
5183 {
5184 int mcnt;
5185 /* Point to after the args to the start_memory. */
5186 unsigned char *p1 = *p + 2;
5187
5188 while (p1 < end)
5189 {
5190 /* Skip over opcodes that can match nothing, and return true or
5191 false, as appropriate, when we get to one that can't, or to the
5192 matching stop_memory. */
5193
5194 switch ((re_opcode_t) *p1)
5195 {
5196 /* Could be either a loop or a series of alternatives. */
5197 case on_failure_jump:
5198 p1++;
5199 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5200
5201 /* If the next operation is not a jump backwards in the
5202 pattern. */
5203
5204 if (mcnt >= 0)
5205 {
5206 /* Go through the on_failure_jumps of the alternatives,
5207 seeing if any of the alternatives cannot match nothing.
5208 The last alternative starts with only a jump,
5209 whereas the rest start with on_failure_jump and end
5210 with a jump, e.g., here is the pattern for `a|b|c':
5211
5212 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5213 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5214 /exactn/1/c
5215
5216 So, we have to first go through the first (n-1)
5217 alternatives and then deal with the last one separately. */
5218
5219
5220 /* Deal with the first (n-1) alternatives, which start
5221 with an on_failure_jump (see above) that jumps to right
5222 past a jump_past_alt. */
5223
5224 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5225 {
5226 /* `mcnt' holds how many bytes long the alternative
5227 is, including the ending `jump_past_alt' and
5228 its number. */
5229
5230 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5231 reg_info))
5232 return false;
5233
5234 /* Move to right after this alternative, including the
5235 jump_past_alt. */
5236 p1 += mcnt;
5237
5238 /* Break if it's the beginning of an n-th alternative
5239 that doesn't begin with an on_failure_jump. */
5240 if ((re_opcode_t) *p1 != on_failure_jump)
5241 break;
5242
5243 /* Still have to check that it's not an n-th
5244 alternative that starts with an on_failure_jump. */
5245 p1++;
5246 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5247 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5248 {
5249 /* Get to the beginning of the n-th alternative. */
5250 p1 -= 3;
5251 break;
5252 }
5253 }
5254
5255 /* Deal with the last alternative: go back and get number
5256 of the `jump_past_alt' just before it. `mcnt' contains
5257 the length of the alternative. */
5258 EXTRACT_NUMBER (mcnt, p1 - 2);
5259
5260 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5261 return false;
5262
5263 p1 += mcnt; /* Get past the n-th alternative. */
5264 } /* if mcnt > 0 */
5265 break;
5266
5267
5268 case stop_memory:
5269 assert (p1[1] == **p);
5270 *p = p1 + 2;
5271 return true;
5272
5273
5274 default:
5275 if (!common_op_match_null_string_p (&p1, end, reg_info))
5276 return false;
5277 }
5278 } /* while p1 < end */
5279
5280 return false;
5281 } /* group_match_null_string_p */
5282
5283
5284 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5285 It expects P to be the first byte of a single alternative and END one
5286 byte past the last. The alternative can contain groups. */
5287
5288 static boolean
5289 alt_match_null_string_p (p, end, reg_info)
5290 unsigned char *p, *end;
5291 register_info_type *reg_info;
5292 {
5293 int mcnt;
5294 unsigned char *p1 = p;
5295
5296 while (p1 < end)
5297 {
5298 /* Skip over opcodes that can match nothing, and break when we get
5299 to one that can't. */
5300
5301 switch ((re_opcode_t) *p1)
5302 {
5303 /* It's a loop. */
5304 case on_failure_jump:
5305 p1++;
5306 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5307 p1 += mcnt;
5308 break;
5309
5310 default:
5311 if (!common_op_match_null_string_p (&p1, end, reg_info))
5312 return false;
5313 }
5314 } /* while p1 < end */
5315
5316 return true;
5317 } /* alt_match_null_string_p */
5318
5319
5320 /* Deals with the ops common to group_match_null_string_p and
5321 alt_match_null_string_p.
5322
5323 Sets P to one after the op and its arguments, if any. */
5324
5325 static boolean
5326 common_op_match_null_string_p (p, end, reg_info)
5327 unsigned char **p, *end;
5328 register_info_type *reg_info;
5329 {
5330 int mcnt;
5331 boolean ret;
5332 int reg_no;
5333 unsigned char *p1 = *p;
5334
5335 switch ((re_opcode_t) *p1++)
5336 {
5337 case no_op:
5338 case begline:
5339 case endline:
5340 case begbuf:
5341 case endbuf:
5342 case wordbeg:
5343 case wordend:
5344 case wordbound:
5345 case notwordbound:
5346 #ifdef emacs
5347 case before_dot:
5348 case at_dot:
5349 case after_dot:
5350 #endif
5351 break;
5352
5353 case start_memory:
5354 reg_no = *p1;
5355 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5356 ret = group_match_null_string_p (&p1, end, reg_info);
5357
5358 /* Have to set this here in case we're checking a group which
5359 contains a group and a back reference to it. */
5360
5361 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5362 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5363
5364 if (!ret)
5365 return false;
5366 break;
5367
5368 /* If this is an optimized succeed_n for zero times, make the jump. */
5369 case jump:
5370 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5371 if (mcnt >= 0)
5372 p1 += mcnt;
5373 else
5374 return false;
5375 break;
5376
5377 case succeed_n:
5378 /* Get to the number of times to succeed. */
5379 p1 += 2;
5380 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5381
5382 if (mcnt == 0)
5383 {
5384 p1 -= 4;
5385 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5386 p1 += mcnt;
5387 }
5388 else
5389 return false;
5390 break;
5391
5392 case duplicate:
5393 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5394 return false;
5395 break;
5396
5397 case set_number_at:
5398 p1 += 4;
5399
5400 default:
5401 /* All other opcodes mean we cannot match the empty string. */
5402 return false;
5403 }
5404
5405 *p = p1;
5406 return true;
5407 } /* common_op_match_null_string_p */
5408
5409
5410 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5411 bytes; nonzero otherwise. */
5412
5413 static int
5414 bcmp_translate (s1, s2, len, translate)
5415 const char *s1, *s2;
5416 register int len;
5417 RE_TRANSLATE_TYPE translate;
5418 {
5419 register const unsigned char *p1 = (const unsigned char *) s1;
5420 register const unsigned char *p2 = (const unsigned char *) s2;
5421 while (len)
5422 {
5423 if (translate[*p1++] != translate[*p2++]) return 1;
5424 len--;
5425 }
5426 return 0;
5427 }
5428 \f
5429 /* Entry points for GNU code. */
5430
5431 /* re_compile_pattern is the GNU regular expression compiler: it
5432 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5433 Returns 0 if the pattern was valid, otherwise an error string.
5434
5435 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5436 are set in BUFP on entry.
5437
5438 We call regex_compile to do the actual compilation. */
5439
5440 const char *
5441 re_compile_pattern (pattern, length, bufp)
5442 const char *pattern;
5443 size_t length;
5444 struct re_pattern_buffer *bufp;
5445 {
5446 reg_errcode_t ret;
5447
5448 /* GNU code is written to assume at least RE_NREGS registers will be set
5449 (and at least one extra will be -1). */
5450 bufp->regs_allocated = REGS_UNALLOCATED;
5451
5452 /* And GNU code determines whether or not to get register information
5453 by passing null for the REGS argument to re_match, etc., not by
5454 setting no_sub. */
5455 bufp->no_sub = 0;
5456
5457 /* Match anchors at newline. */
5458 bufp->newline_anchor = 1;
5459
5460 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5461
5462 if (!ret)
5463 return NULL;
5464 return gettext (re_error_msgid[(int) ret]);
5465 }
5466 #ifdef _LIBC
5467 weak_alias (__re_compile_pattern, re_compile_pattern)
5468 #endif
5469 \f
5470 /* Entry points compatible with 4.2 BSD regex library. We don't define
5471 them unless specifically requested. */
5472
5473 #if defined _REGEX_RE_COMP || defined _LIBC
5474
5475 /* BSD has one and only one pattern buffer. */
5476 static struct re_pattern_buffer re_comp_buf;
5477
5478 char *
5479 #ifdef _LIBC
5480 /* Make these definitions weak in libc, so POSIX programs can redefine
5481 these names if they don't use our functions, and still use
5482 regcomp/regexec below without link errors. */
5483 weak_function
5484 #endif
5485 re_comp (s)
5486 const char *s;
5487 {
5488 reg_errcode_t ret;
5489
5490 if (!s)
5491 {
5492 if (!re_comp_buf.buffer)
5493 return gettext ("No previous regular expression");
5494 return 0;
5495 }
5496
5497 if (!re_comp_buf.buffer)
5498 {
5499 re_comp_buf.buffer = (unsigned char *) malloc (200);
5500 if (re_comp_buf.buffer == NULL)
5501 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5502 re_comp_buf.allocated = 200;
5503
5504 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5505 if (re_comp_buf.fastmap == NULL)
5506 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5507 }
5508
5509 /* Since `re_exec' always passes NULL for the `regs' argument, we
5510 don't need to initialize the pattern buffer fields which affect it. */
5511
5512 /* Match anchors at newlines. */
5513 re_comp_buf.newline_anchor = 1;
5514
5515 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5516
5517 if (!ret)
5518 return NULL;
5519
5520 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5521 return (char *) gettext (re_error_msgid[(int) ret]);
5522 }
5523
5524
5525 int
5526 #ifdef _LIBC
5527 weak_function
5528 #endif
5529 re_exec (s)
5530 const char *s;
5531 {
5532 const int len = strlen (s);
5533 return
5534 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5535 }
5536
5537 #endif /* _REGEX_RE_COMP */
5538 \f
5539 /* POSIX.2 functions. Don't define these for Emacs. */
5540
5541 #ifndef emacs
5542
5543 /* regcomp takes a regular expression as a string and compiles it.
5544
5545 PREG is a regex_t *. We do not expect any fields to be initialized,
5546 since POSIX says we shouldn't. Thus, we set
5547
5548 `buffer' to the compiled pattern;
5549 `used' to the length of the compiled pattern;
5550 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5551 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5552 RE_SYNTAX_POSIX_BASIC;
5553 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5554 `fastmap' and `fastmap_accurate' to zero;
5555 `re_nsub' to the number of subexpressions in PATTERN.
5556
5557 PATTERN is the address of the pattern string.
5558
5559 CFLAGS is a series of bits which affect compilation.
5560
5561 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5562 use POSIX basic syntax.
5563
5564 If REG_NEWLINE is set, then . and [^...] don't match newline.
5565 Also, regexec will try a match beginning after every newline.
5566
5567 If REG_ICASE is set, then we considers upper- and lowercase
5568 versions of letters to be equivalent when matching.
5569
5570 If REG_NOSUB is set, then when PREG is passed to regexec, that
5571 routine will report only success or failure, and nothing about the
5572 registers.
5573
5574 It returns 0 if it succeeds, nonzero if it doesn't. (See gnu-regex.h for
5575 the return codes and their meanings.) */
5576
5577 int
5578 regcomp (preg, pattern, cflags)
5579 regex_t *preg;
5580 const char *pattern;
5581 int cflags;
5582 {
5583 reg_errcode_t ret;
5584 reg_syntax_t syntax
5585 = (cflags & REG_EXTENDED) ?
5586 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5587
5588 /* regex_compile will allocate the space for the compiled pattern. */
5589 preg->buffer = 0;
5590 preg->allocated = 0;
5591 preg->used = 0;
5592
5593 /* Don't bother to use a fastmap when searching. This simplifies the
5594 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5595 characters after newlines into the fastmap. This way, we just try
5596 every character. */
5597 preg->fastmap = 0;
5598
5599 if (cflags & REG_ICASE)
5600 {
5601 unsigned i;
5602
5603 preg->translate
5604 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5605 * sizeof (*(RE_TRANSLATE_TYPE)0));
5606 if (preg->translate == NULL)
5607 return (int) REG_ESPACE;
5608
5609 /* Map uppercase characters to corresponding lowercase ones. */
5610 for (i = 0; i < CHAR_SET_SIZE; i++)
5611 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5612 }
5613 else
5614 preg->translate = NULL;
5615
5616 /* If REG_NEWLINE is set, newlines are treated differently. */
5617 if (cflags & REG_NEWLINE)
5618 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5619 syntax &= ~RE_DOT_NEWLINE;
5620 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5621 /* It also changes the matching behavior. */
5622 preg->newline_anchor = 1;
5623 }
5624 else
5625 preg->newline_anchor = 0;
5626
5627 preg->no_sub = !!(cflags & REG_NOSUB);
5628
5629 /* POSIX says a null character in the pattern terminates it, so we
5630 can use strlen here in compiling the pattern. */
5631 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5632
5633 /* POSIX doesn't distinguish between an unmatched open-group and an
5634 unmatched close-group: both are REG_EPAREN. */
5635 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5636
5637 return (int) ret;
5638 }
5639 #ifdef _LIBC
5640 weak_alias (__regcomp, regcomp)
5641 #endif
5642
5643
5644 /* regexec searches for a given pattern, specified by PREG, in the
5645 string STRING.
5646
5647 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5648 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5649 least NMATCH elements, and we set them to the offsets of the
5650 corresponding matched substrings.
5651
5652 EFLAGS specifies `execution flags' which affect matching: if
5653 REG_NOTBOL is set, then ^ does not match at the beginning of the
5654 string; if REG_NOTEOL is set, then $ does not match at the end.
5655
5656 We return 0 if we find a match and REG_NOMATCH if not. */
5657
5658 int
5659 regexec (preg, string, nmatch, pmatch, eflags)
5660 const regex_t *preg;
5661 const char *string;
5662 size_t nmatch;
5663 regmatch_t pmatch[];
5664 int eflags;
5665 {
5666 int ret;
5667 struct re_registers regs;
5668 regex_t private_preg;
5669 int len = strlen (string);
5670 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5671
5672 private_preg = *preg;
5673
5674 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5675 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5676
5677 /* The user has told us exactly how many registers to return
5678 information about, via `nmatch'. We have to pass that on to the
5679 matching routines. */
5680 private_preg.regs_allocated = REGS_FIXED;
5681
5682 if (want_reg_info)
5683 {
5684 regs.num_regs = nmatch;
5685 regs.start = TALLOC (nmatch, regoff_t);
5686 regs.end = TALLOC (nmatch, regoff_t);
5687 if (regs.start == NULL || regs.end == NULL)
5688 return (int) REG_NOMATCH;
5689 }
5690
5691 /* Perform the searching operation. */
5692 ret = re_search (&private_preg, string, len,
5693 /* start: */ 0, /* range: */ len,
5694 want_reg_info ? &regs : (struct re_registers *) 0);
5695
5696 /* Copy the register information to the POSIX structure. */
5697 if (want_reg_info)
5698 {
5699 if (ret >= 0)
5700 {
5701 unsigned r;
5702
5703 for (r = 0; r < nmatch; r++)
5704 {
5705 pmatch[r].rm_so = regs.start[r];
5706 pmatch[r].rm_eo = regs.end[r];
5707 }
5708 }
5709
5710 /* If we needed the temporary register info, free the space now. */
5711 free (regs.start);
5712 free (regs.end);
5713 }
5714
5715 /* We want zero return to mean success, unlike `re_search'. */
5716 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5717 }
5718 #ifdef _LIBC
5719 weak_alias (__regexec, regexec)
5720 #endif
5721
5722
5723 /* Returns a message corresponding to an error code, ERRCODE, returned
5724 from either regcomp or regexec. We don't use PREG here. */
5725
5726 size_t
5727 __regerror (errcode, preg, errbuf, errbuf_size)
5728 int errcode;
5729 const regex_t *preg;
5730 char *errbuf;
5731 size_t errbuf_size;
5732 {
5733 const char *msg;
5734 size_t msg_size;
5735
5736 if (errcode < 0
5737 || errcode >= (int) (sizeof (re_error_msgid)
5738 / sizeof (re_error_msgid[0])))
5739 /* Only error codes returned by the rest of the code should be passed
5740 to this routine. If we are given anything else, or if other regex
5741 code generates an invalid error code, then the program has a bug.
5742 Dump core so we can fix it. */
5743 abort ();
5744
5745 msg = gettext (re_error_msgid[errcode]);
5746
5747 msg_size = strlen (msg) + 1; /* Includes the null. */
5748
5749 if (errbuf_size != 0)
5750 {
5751 if (msg_size > errbuf_size)
5752 {
5753 #if defined HAVE_MEMPCPY || defined _LIBC
5754 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
5755 #else
5756 memcpy (errbuf, msg, errbuf_size - 1);
5757 errbuf[errbuf_size - 1] = 0;
5758 #endif
5759 }
5760 else
5761 memcpy (errbuf, msg, msg_size);
5762 }
5763
5764 return msg_size;
5765 }
5766 #ifdef _LIBC
5767 weak_alias (__regerror, regerror)
5768 #endif
5769
5770
5771 /* Free dynamically allocated space used by PREG. */
5772
5773 void
5774 regfree (preg)
5775 regex_t *preg;
5776 {
5777 if (preg->buffer != NULL)
5778 free (preg->buffer);
5779 preg->buffer = NULL;
5780
5781 preg->allocated = 0;
5782 preg->used = 0;
5783
5784 if (preg->fastmap != NULL)
5785 free (preg->fastmap);
5786 preg->fastmap = NULL;
5787 preg->fastmap_accurate = 0;
5788
5789 if (preg->translate != NULL)
5790 free (preg->translate);
5791 preg->translate = NULL;
5792 }
5793 #ifdef _LIBC
5794 weak_alias (__regfree, regfree)
5795 #endif
5796
5797 #endif /* not emacs */