]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/go32-nat.c
Update copyright year in most headers.
[thirdparty/binutils-gdb.git] / gdb / go32-nat.c
1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997, 1999, 2000, 2001, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Written by Robert Hoehne.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* To whomever it may concern, here's a general description of how
22 debugging in DJGPP works, and the special quirks GDB does to
23 support that.
24
25 When the DJGPP port of GDB is debugging a DJGPP program natively,
26 there aren't 2 separate processes, the debuggee and GDB itself, as
27 on other systems. (This is DOS, where there can only be one active
28 process at any given time, remember?) Instead, GDB and the
29 debuggee live in the same process. So when GDB calls
30 go32_create_inferior below, and that function calls edi_init from
31 the DJGPP debug support library libdbg.a, we load the debuggee's
32 executable file into GDB's address space, set it up for execution
33 as the stub loader (a short real-mode program prepended to each
34 DJGPP executable) normally would, and do a lot of preparations for
35 swapping between GDB's and debuggee's internal state, primarily wrt
36 the exception handlers. This swapping happens every time we resume
37 the debuggee or switch back to GDB's code, and it includes:
38
39 . swapping all the segment registers
40 . swapping the PSP (the Program Segment Prefix)
41 . swapping the signal handlers
42 . swapping the exception handlers
43 . swapping the FPU status
44 . swapping the 3 standard file handles (more about this below)
45
46 Then running the debuggee simply means longjmp into it where its PC
47 is and let it run until it stops for some reason. When it stops,
48 GDB catches the exception that stopped it and longjmp's back into
49 its own code. All the possible exit points of the debuggee are
50 watched; for example, the normal exit point is recognized because a
51 DOS program issues a special system call to exit. If one of those
52 exit points is hit, we mourn the inferior and clean up after it.
53 Cleaning up is very important, even if the process exits normally,
54 because otherwise we might leave behind traces of previous
55 execution, and in several cases GDB itself might be left hosed,
56 because all the exception handlers were not restored.
57
58 Swapping of the standard handles (in redir_to_child and
59 redir_to_debugger) is needed because, since both GDB and the
60 debuggee live in the same process, as far as the OS is concerned,
61 the share the same file table. This means that the standard
62 handles 0, 1, and 2 point to the same file table entries, and thus
63 are connected to the same devices. Therefore, if the debugger
64 redirects its standard output, the standard output of the debuggee
65 is also automagically redirected to the same file/device!
66 Similarly, if the debuggee redirects its stdout to a file, you
67 won't be able to see debugger's output (it will go to the same file
68 where the debuggee has its output); and if the debuggee closes its
69 standard input, you will lose the ability to talk to debugger!
70
71 For this reason, every time the debuggee is about to be resumed, we
72 call redir_to_child, which redirects the standard handles to where
73 the debuggee expects them to be. When the debuggee stops and GDB
74 regains control, we call redir_to_debugger, which redirects those 3
75 handles back to where GDB expects.
76
77 Note that only the first 3 handles are swapped, so if the debuggee
78 redirects or closes any other handles, GDB will not notice. In
79 particular, the exit code of a DJGPP program forcibly closes all
80 file handles beyond the first 3 ones, so when the debuggee exits,
81 GDB currently loses its stdaux and stdprn streams. Fortunately,
82 GDB does not use those as of this writing, and will never need
83 to. */
84
85 #include <fcntl.h>
86
87 #include "defs.h"
88 #include "i386-nat.h"
89 #include "inferior.h"
90 #include "gdbthread.h"
91 #include "gdb_wait.h"
92 #include "gdbcore.h"
93 #include "command.h"
94 #include "gdbcmd.h"
95 #include "floatformat.h"
96 #include "buildsym.h"
97 #include "i387-tdep.h"
98 #include "i386-tdep.h"
99 #include "value.h"
100 #include "regcache.h"
101 #include "gdb_string.h"
102 #include "top.h"
103
104 #include <stdio.h> /* might be required for __DJGPP_MINOR__ */
105 #include <stdlib.h>
106 #include <ctype.h>
107 #include <errno.h>
108 #include <unistd.h>
109 #include <sys/utsname.h>
110 #include <io.h>
111 #include <dos.h>
112 #include <dpmi.h>
113 #include <go32.h>
114 #include <sys/farptr.h>
115 #include <debug/v2load.h>
116 #include <debug/dbgcom.h>
117 #if __DJGPP_MINOR__ > 2
118 #include <debug/redir.h>
119 #endif
120
121 #include <langinfo.h>
122
123 #if __DJGPP_MINOR__ < 3
124 /* This code will be provided from DJGPP 2.03 on. Until then I code it
125 here */
126 typedef struct
127 {
128 unsigned short sig0;
129 unsigned short sig1;
130 unsigned short sig2;
131 unsigned short sig3;
132 unsigned short exponent:15;
133 unsigned short sign:1;
134 }
135 NPXREG;
136
137 typedef struct
138 {
139 unsigned int control;
140 unsigned int status;
141 unsigned int tag;
142 unsigned int eip;
143 unsigned int cs;
144 unsigned int dataptr;
145 unsigned int datasel;
146 NPXREG reg[8];
147 }
148 NPX;
149
150 static NPX npx;
151
152 static void save_npx (void); /* Save the FPU of the debugged program */
153 static void load_npx (void); /* Restore the FPU of the debugged program */
154
155 /* ------------------------------------------------------------------------- */
156 /* Store the contents of the NPX in the global variable `npx'. */
157 /* *INDENT-OFF* */
158
159 static void
160 save_npx (void)
161 {
162 asm ("inb $0xa0, %%al \n\
163 testb $0x20, %%al \n\
164 jz 1f \n\
165 xorb %%al, %%al \n\
166 outb %%al, $0xf0 \n\
167 movb $0x20, %%al \n\
168 outb %%al, $0xa0 \n\
169 outb %%al, $0x20 \n\
170 1: \n\
171 fnsave %0 \n\
172 fwait "
173 : "=m" (npx)
174 : /* No input */
175 : "%eax");
176 }
177
178 /* *INDENT-ON* */
179
180
181 /* ------------------------------------------------------------------------- */
182 /* Reload the contents of the NPX from the global variable `npx'. */
183
184 static void
185 load_npx (void)
186 {
187 asm ("frstor %0":"=m" (npx));
188 }
189 /* ------------------------------------------------------------------------- */
190 /* Stubs for the missing redirection functions. */
191 typedef struct {
192 char *command;
193 int redirected;
194 } cmdline_t;
195
196 void
197 redir_cmdline_delete (cmdline_t *ptr)
198 {
199 ptr->redirected = 0;
200 }
201
202 int
203 redir_cmdline_parse (const char *args, cmdline_t *ptr)
204 {
205 return -1;
206 }
207
208 int
209 redir_to_child (cmdline_t *ptr)
210 {
211 return 1;
212 }
213
214 int
215 redir_to_debugger (cmdline_t *ptr)
216 {
217 return 1;
218 }
219
220 int
221 redir_debug_init (cmdline_t *ptr)
222 {
223 return 0;
224 }
225 #endif /* __DJGPP_MINOR < 3 */
226
227 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
228
229 /* This holds the current reference counts for each debug register. */
230 static int dr_ref_count[4];
231
232 #define SOME_PID 42
233
234 static int prog_has_started = 0;
235 static void go32_open (char *name, int from_tty);
236 static void go32_close (int quitting);
237 static void go32_attach (struct target_ops *ops, char *args, int from_tty);
238 static void go32_detach (struct target_ops *ops, char *args, int from_tty);
239 static void go32_resume (struct target_ops *ops,
240 ptid_t ptid, int step,
241 enum target_signal siggnal);
242 static void go32_fetch_registers (struct target_ops *ops,
243 struct regcache *, int regno);
244 static void store_register (const struct regcache *, int regno);
245 static void go32_store_registers (struct target_ops *ops,
246 struct regcache *, int regno);
247 static void go32_prepare_to_store (struct regcache *);
248 static int go32_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
249 int write,
250 struct mem_attrib *attrib,
251 struct target_ops *target);
252 static void go32_files_info (struct target_ops *target);
253 static void go32_kill_inferior (struct target_ops *ops);
254 static void go32_create_inferior (struct target_ops *ops, char *exec_file,
255 char *args, char **env, int from_tty);
256 static void go32_mourn_inferior (struct target_ops *ops);
257 static int go32_can_run (void);
258
259 static struct target_ops go32_ops;
260 static void go32_terminal_init (void);
261 static void go32_terminal_inferior (void);
262 static void go32_terminal_ours (void);
263
264 #define r_ofs(x) (offsetof(TSS,x))
265
266 static struct
267 {
268 size_t tss_ofs;
269 size_t size;
270 }
271 regno_mapping[] =
272 {
273 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
274 {r_ofs (tss_ecx), 4},
275 {r_ofs (tss_edx), 4},
276 {r_ofs (tss_ebx), 4},
277 {r_ofs (tss_esp), 4},
278 {r_ofs (tss_ebp), 4},
279 {r_ofs (tss_esi), 4},
280 {r_ofs (tss_edi), 4},
281 {r_ofs (tss_eip), 4},
282 {r_ofs (tss_eflags), 4},
283 {r_ofs (tss_cs), 2},
284 {r_ofs (tss_ss), 2},
285 {r_ofs (tss_ds), 2},
286 {r_ofs (tss_es), 2},
287 {r_ofs (tss_fs), 2},
288 {r_ofs (tss_gs), 2},
289 {0, 10}, /* 8 FP registers, from npx.reg[] */
290 {1, 10},
291 {2, 10},
292 {3, 10},
293 {4, 10},
294 {5, 10},
295 {6, 10},
296 {7, 10},
297 /* The order of the next 7 registers must be consistent
298 with their numbering in config/i386/tm-i386.h, which see. */
299 {0, 2}, /* control word, from npx */
300 {4, 2}, /* status word, from npx */
301 {8, 2}, /* tag word, from npx */
302 {16, 2}, /* last FP exception CS from npx */
303 {12, 4}, /* last FP exception EIP from npx */
304 {24, 2}, /* last FP exception operand selector from npx */
305 {20, 4}, /* last FP exception operand offset from npx */
306 {18, 2} /* last FP opcode from npx */
307 };
308
309 static struct
310 {
311 int go32_sig;
312 enum target_signal gdb_sig;
313 }
314 sig_map[] =
315 {
316 {0, TARGET_SIGNAL_FPE},
317 {1, TARGET_SIGNAL_TRAP},
318 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
319 but I think SIGBUS is better, since the NMI is usually activated
320 as a result of a memory parity check failure. */
321 {2, TARGET_SIGNAL_BUS},
322 {3, TARGET_SIGNAL_TRAP},
323 {4, TARGET_SIGNAL_FPE},
324 {5, TARGET_SIGNAL_SEGV},
325 {6, TARGET_SIGNAL_ILL},
326 {7, TARGET_SIGNAL_EMT}, /* no-coprocessor exception */
327 {8, TARGET_SIGNAL_SEGV},
328 {9, TARGET_SIGNAL_SEGV},
329 {10, TARGET_SIGNAL_BUS},
330 {11, TARGET_SIGNAL_SEGV},
331 {12, TARGET_SIGNAL_SEGV},
332 {13, TARGET_SIGNAL_SEGV},
333 {14, TARGET_SIGNAL_SEGV},
334 {16, TARGET_SIGNAL_FPE},
335 {17, TARGET_SIGNAL_BUS},
336 {31, TARGET_SIGNAL_ILL},
337 {0x1b, TARGET_SIGNAL_INT},
338 {0x75, TARGET_SIGNAL_FPE},
339 {0x78, TARGET_SIGNAL_ALRM},
340 {0x79, TARGET_SIGNAL_INT},
341 {0x7a, TARGET_SIGNAL_QUIT},
342 {-1, TARGET_SIGNAL_LAST}
343 };
344
345 static struct {
346 enum target_signal gdb_sig;
347 int djgpp_excepno;
348 } excepn_map[] = {
349 {TARGET_SIGNAL_0, -1},
350 {TARGET_SIGNAL_ILL, 6}, /* Invalid Opcode */
351 {TARGET_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
352 {TARGET_SIGNAL_SEGV, 13}, /* GPF */
353 {TARGET_SIGNAL_BUS, 17}, /* Alignment Check */
354 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
355 details. */
356 {TARGET_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
357 {TARGET_SIGNAL_FPE, 0x75},
358 {TARGET_SIGNAL_INT, 0x79},
359 {TARGET_SIGNAL_QUIT, 0x7a},
360 {TARGET_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
361 {TARGET_SIGNAL_PROF, 0x78},
362 {TARGET_SIGNAL_LAST, -1}
363 };
364
365 static void
366 go32_open (char *name, int from_tty)
367 {
368 printf_unfiltered ("Done. Use the \"run\" command to run the program.\n");
369 }
370
371 static void
372 go32_close (int quitting)
373 {
374 }
375
376 static void
377 go32_attach (struct target_ops *ops, char *args, int from_tty)
378 {
379 error (_("\
380 You cannot attach to a running program on this platform.\n\
381 Use the `run' command to run DJGPP programs."));
382 }
383
384 static void
385 go32_detach (struct target_ops *ops, char *args, int from_tty)
386 {
387 }
388
389 static int resume_is_step;
390 static int resume_signal = -1;
391
392 static void
393 go32_resume (struct target_ops *ops,
394 ptid_t ptid, int step, enum target_signal siggnal)
395 {
396 int i;
397
398 resume_is_step = step;
399
400 if (siggnal != TARGET_SIGNAL_0 && siggnal != TARGET_SIGNAL_TRAP)
401 {
402 for (i = 0, resume_signal = -1;
403 excepn_map[i].gdb_sig != TARGET_SIGNAL_LAST; i++)
404 if (excepn_map[i].gdb_sig == siggnal)
405 {
406 resume_signal = excepn_map[i].djgpp_excepno;
407 break;
408 }
409 if (resume_signal == -1)
410 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
411 target_signal_to_name (siggnal));
412 }
413 }
414
415 static char child_cwd[FILENAME_MAX];
416
417 static ptid_t
418 go32_wait (struct target_ops *ops,
419 ptid_t ptid, struct target_waitstatus *status, int options)
420 {
421 int i;
422 unsigned char saved_opcode;
423 unsigned long INT3_addr = 0;
424 int stepping_over_INT = 0;
425
426 a_tss.tss_eflags &= 0xfeff; /* reset the single-step flag (TF) */
427 if (resume_is_step)
428 {
429 /* If the next instruction is INT xx or INTO, we need to handle
430 them specially. Intel manuals say that these instructions
431 reset the single-step flag (a.k.a. TF). However, it seems
432 that, at least in the DPMI environment, and at least when
433 stepping over the DPMI interrupt 31h, the problem is having
434 TF set at all when INT 31h is executed: the debuggee either
435 crashes (and takes the system with it) or is killed by a
436 SIGTRAP.
437
438 So we need to emulate single-step mode: we put an INT3 opcode
439 right after the INT xx instruction, let the debuggee run
440 until it hits INT3 and stops, then restore the original
441 instruction which we overwrote with the INT3 opcode, and back
442 up the debuggee's EIP to that instruction. */
443 read_child (a_tss.tss_eip, &saved_opcode, 1);
444 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
445 {
446 unsigned char INT3_opcode = 0xCC;
447
448 INT3_addr
449 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
450 stepping_over_INT = 1;
451 read_child (INT3_addr, &saved_opcode, 1);
452 write_child (INT3_addr, &INT3_opcode, 1);
453 }
454 else
455 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
456 }
457
458 /* The special value FFFFh in tss_trap indicates to run_child that
459 tss_irqn holds a signal to be delivered to the debuggee. */
460 if (resume_signal <= -1)
461 {
462 a_tss.tss_trap = 0;
463 a_tss.tss_irqn = 0xff;
464 }
465 else
466 {
467 a_tss.tss_trap = 0xffff; /* run_child looks for this */
468 a_tss.tss_irqn = resume_signal;
469 }
470
471 /* The child might change working directory behind our back. The
472 GDB users won't like the side effects of that when they work with
473 relative file names, and GDB might be confused by its current
474 directory not being in sync with the truth. So we always make a
475 point of changing back to where GDB thinks is its cwd, when we
476 return control to the debugger, but restore child's cwd before we
477 run it. */
478 /* Initialize child_cwd, before the first call to run_child and not
479 in the initialization, so the child get also the changed directory
480 set with the gdb-command "cd ..." */
481 if (!*child_cwd)
482 /* Initialize child's cwd with the current one. */
483 getcwd (child_cwd, sizeof (child_cwd));
484
485 chdir (child_cwd);
486
487 #if __DJGPP_MINOR__ < 3
488 load_npx ();
489 #endif
490 run_child ();
491 #if __DJGPP_MINOR__ < 3
492 save_npx ();
493 #endif
494
495 /* Did we step over an INT xx instruction? */
496 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
497 {
498 /* Restore the original opcode. */
499 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction */
500 write_child (a_tss.tss_eip, &saved_opcode, 1);
501 /* Simulate a TRAP exception. */
502 a_tss.tss_irqn = 1;
503 a_tss.tss_eflags |= 0x0100;
504 }
505
506 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
507 chdir (current_directory);
508
509 if (a_tss.tss_irqn == 0x21)
510 {
511 status->kind = TARGET_WAITKIND_EXITED;
512 status->value.integer = a_tss.tss_eax & 0xff;
513 }
514 else
515 {
516 status->value.sig = TARGET_SIGNAL_UNKNOWN;
517 status->kind = TARGET_WAITKIND_STOPPED;
518 for (i = 0; sig_map[i].go32_sig != -1; i++)
519 {
520 if (a_tss.tss_irqn == sig_map[i].go32_sig)
521 {
522 #if __DJGPP_MINOR__ < 3
523 if ((status->value.sig = sig_map[i].gdb_sig) !=
524 TARGET_SIGNAL_TRAP)
525 status->kind = TARGET_WAITKIND_SIGNALLED;
526 #else
527 status->value.sig = sig_map[i].gdb_sig;
528 #endif
529 break;
530 }
531 }
532 }
533 return pid_to_ptid (SOME_PID);
534 }
535
536 static void
537 fetch_register (struct regcache *regcache, int regno)
538 {
539 struct gdbarch *gdbarch = get_regcache_arch (regcache);
540 if (regno < gdbarch_fp0_regnum (gdbarch))
541 regcache_raw_supply (regcache, regno,
542 (char *) &a_tss + regno_mapping[regno].tss_ofs);
543 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch, regno))
544 i387_supply_fsave (regcache, regno, &npx);
545 else
546 internal_error (__FILE__, __LINE__,
547 _("Invalid register no. %d in fetch_register."), regno);
548 }
549
550 static void
551 go32_fetch_registers (struct target_ops *ops,
552 struct regcache *regcache, int regno)
553 {
554 if (regno >= 0)
555 fetch_register (regcache, regno);
556 else
557 {
558 for (regno = 0;
559 regno < gdbarch_fp0_regnum (get_regcache_arch (regcache));
560 regno++)
561 fetch_register (regcache, regno);
562 i387_supply_fsave (regcache, -1, &npx);
563 }
564 }
565
566 static void
567 store_register (const struct regcache *regcache, int regno)
568 {
569 struct gdbarch *gdbarch = get_regcache_arch (regcache);
570 if (regno < gdbarch_fp0_regnum (gdbarch))
571 regcache_raw_collect (regcache, regno,
572 (char *) &a_tss + regno_mapping[regno].tss_ofs);
573 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch, regno))
574 i387_collect_fsave (regcache, regno, &npx);
575 else
576 internal_error (__FILE__, __LINE__,
577 _("Invalid register no. %d in store_register."), regno);
578 }
579
580 static void
581 go32_store_registers (struct target_ops *ops,
582 struct regcache *regcache, int regno)
583 {
584 unsigned r;
585
586 if (regno >= 0)
587 store_register (regcache, regno);
588 else
589 {
590 for (r = 0; r < gdbarch_fp0_regnum (get_regcache_arch (regcache)); r++)
591 store_register (regcache, r);
592 i387_collect_fsave (regcache, -1, &npx);
593 }
594 }
595
596 static void
597 go32_prepare_to_store (struct regcache *regcache)
598 {
599 }
600
601 static int
602 go32_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
603 struct mem_attrib *attrib, struct target_ops *target)
604 {
605 if (write)
606 {
607 if (write_child (memaddr, myaddr, len))
608 {
609 return 0;
610 }
611 else
612 {
613 return len;
614 }
615 }
616 else
617 {
618 if (read_child (memaddr, myaddr, len))
619 {
620 return 0;
621 }
622 else
623 {
624 return len;
625 }
626 }
627 }
628
629 static cmdline_t child_cmd; /* parsed child's command line kept here */
630
631 static void
632 go32_files_info (struct target_ops *target)
633 {
634 printf_unfiltered ("You are running a DJGPP V2 program.\n");
635 }
636
637 static void
638 go32_kill_inferior (struct target_ops *ops)
639 {
640 go32_mourn_inferior (ops);
641 }
642
643 static void
644 go32_create_inferior (struct target_ops *ops, char *exec_file,
645 char *args, char **env, int from_tty)
646 {
647 extern char **environ;
648 jmp_buf start_state;
649 char *cmdline;
650 char **env_save = environ;
651 size_t cmdlen;
652 struct inferior *inf;
653
654 /* If no exec file handed to us, get it from the exec-file command -- with
655 a good, common error message if none is specified. */
656 if (exec_file == 0)
657 exec_file = get_exec_file (1);
658
659 resume_signal = -1;
660 resume_is_step = 0;
661
662 /* Initialize child's cwd as empty to be initialized when starting
663 the child. */
664 *child_cwd = 0;
665
666 /* Init command line storage. */
667 if (redir_debug_init (&child_cmd) == -1)
668 internal_error (__FILE__, __LINE__,
669 _("Cannot allocate redirection storage: not enough memory.\n"));
670
671 /* Parse the command line and create redirections. */
672 if (strpbrk (args, "<>"))
673 {
674 if (redir_cmdline_parse (args, &child_cmd) == 0)
675 args = child_cmd.command;
676 else
677 error (_("Syntax error in command line."));
678 }
679 else
680 child_cmd.command = xstrdup (args);
681
682 cmdlen = strlen (args);
683 /* v2loadimage passes command lines via DOS memory, so it cannot
684 possibly handle commands longer than 1MB. */
685 if (cmdlen > 1024*1024)
686 error (_("Command line too long."));
687
688 cmdline = xmalloc (cmdlen + 4);
689 strcpy (cmdline + 1, args);
690 /* If the command-line length fits into DOS 126-char limits, use the
691 DOS command tail format; otherwise, tell v2loadimage to pass it
692 through a buffer in conventional memory. */
693 if (cmdlen < 127)
694 {
695 cmdline[0] = strlen (args);
696 cmdline[cmdlen + 1] = 13;
697 }
698 else
699 cmdline[0] = 0xff; /* signal v2loadimage it's a long command */
700
701 environ = env;
702
703 if (v2loadimage (exec_file, cmdline, start_state))
704 {
705 environ = env_save;
706 printf_unfiltered ("Load failed for image %s\n", exec_file);
707 exit (1);
708 }
709 environ = env_save;
710 xfree (cmdline);
711
712 edi_init (start_state);
713 #if __DJGPP_MINOR__ < 3
714 save_npx ();
715 #endif
716
717 inferior_ptid = pid_to_ptid (SOME_PID);
718 inf = current_inferior ();
719 inferior_appeared (inf, SOME_PID);
720
721 push_target (&go32_ops);
722
723 add_thread_silent (inferior_ptid);
724
725 clear_proceed_status ();
726 insert_breakpoints ();
727 prog_has_started = 1;
728 }
729
730 static void
731 go32_mourn_inferior (struct target_ops *ops)
732 {
733 ptid_t ptid;
734
735 redir_cmdline_delete (&child_cmd);
736 resume_signal = -1;
737 resume_is_step = 0;
738
739 cleanup_client ();
740
741 /* We need to make sure all the breakpoint enable bits in the DR7
742 register are reset when the inferior exits. Otherwise, if they
743 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
744 failure to set more watchpoints, and other calamities. It would
745 be nice if GDB itself would take care to remove all breakpoints
746 at all times, but it doesn't, probably under an assumption that
747 the OS cleans up when the debuggee exits. */
748 i386_cleanup_dregs ();
749
750 ptid = inferior_ptid;
751 inferior_ptid = null_ptid;
752 delete_thread_silent (ptid);
753 prog_has_started = 0;
754
755 unpush_target (ops);
756 generic_mourn_inferior ();
757 }
758
759 static int
760 go32_can_run (void)
761 {
762 return 1;
763 }
764
765 /* Hardware watchpoint support. */
766
767 #define D_REGS edi.dr
768 #define CONTROL D_REGS[7]
769 #define STATUS D_REGS[6]
770
771 /* Pass the address ADDR to the inferior in the I'th debug register.
772 Here we just store the address in D_REGS, the watchpoint will be
773 actually set up when go32_wait runs the debuggee. */
774 static void
775 go32_set_dr (int i, CORE_ADDR addr)
776 {
777 if (i < 0 || i > 3)
778 internal_error (__FILE__, __LINE__,
779 _("Invalid register %d in go32_set_dr.\n"), i);
780 D_REGS[i] = addr;
781 }
782
783 /* Pass the value VAL to the inferior in the DR7 debug control
784 register. Here we just store the address in D_REGS, the watchpoint
785 will be actually set up when go32_wait runs the debuggee. */
786 static void
787 go32_set_dr7 (unsigned long val)
788 {
789 CONTROL = val;
790 }
791
792 /* Get the value of the DR6 debug status register from the inferior.
793 Here we just return the value stored in D_REGS, as we've got it
794 from the last go32_wait call. */
795 static unsigned long
796 go32_get_dr6 (void)
797 {
798 return STATUS;
799 }
800
801 /* Put the device open on handle FD into either raw or cooked
802 mode, return 1 if it was in raw mode, zero otherwise. */
803
804 static int
805 device_mode (int fd, int raw_p)
806 {
807 int oldmode, newmode;
808 __dpmi_regs regs;
809
810 regs.x.ax = 0x4400;
811 regs.x.bx = fd;
812 __dpmi_int (0x21, &regs);
813 if (regs.x.flags & 1)
814 return -1;
815 newmode = oldmode = regs.x.dx;
816
817 if (raw_p)
818 newmode |= 0x20;
819 else
820 newmode &= ~0x20;
821
822 if (oldmode & 0x80) /* Only for character dev */
823 {
824 regs.x.ax = 0x4401;
825 regs.x.bx = fd;
826 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails */
827 __dpmi_int (0x21, &regs);
828 if (regs.x.flags & 1)
829 return -1;
830 }
831 return (oldmode & 0x20) == 0x20;
832 }
833
834
835 static int inf_mode_valid = 0;
836 static int inf_terminal_mode;
837
838 /* This semaphore is needed because, amazingly enough, GDB calls
839 target.to_terminal_ours more than once after the inferior stops.
840 But we need the information from the first call only, since the
841 second call will always see GDB's own cooked terminal. */
842 static int terminal_is_ours = 1;
843
844 static void
845 go32_terminal_init (void)
846 {
847 inf_mode_valid = 0; /* reinitialize, in case they are restarting child */
848 terminal_is_ours = 1;
849 }
850
851 static void
852 go32_terminal_info (char *args, int from_tty)
853 {
854 printf_unfiltered ("Inferior's terminal is in %s mode.\n",
855 !inf_mode_valid
856 ? "default" : inf_terminal_mode ? "raw" : "cooked");
857
858 #if __DJGPP_MINOR__ > 2
859 if (child_cmd.redirection)
860 {
861 int i;
862
863 for (i = 0; i < DBG_HANDLES; i++)
864 {
865 if (child_cmd.redirection[i]->file_name)
866 printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
867 i, child_cmd.redirection[i]->file_name);
868 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
869 printf_unfiltered
870 ("\tFile handle %d appears to be closed by inferior.\n", i);
871 /* Mask off the raw/cooked bit when comparing device info words. */
872 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
873 != (_get_dev_info (i) & 0xdf))
874 printf_unfiltered
875 ("\tFile handle %d appears to be redirected by inferior.\n", i);
876 }
877 }
878 #endif
879 }
880
881 static void
882 go32_terminal_inferior (void)
883 {
884 /* Redirect standard handles as child wants them. */
885 errno = 0;
886 if (redir_to_child (&child_cmd) == -1)
887 {
888 redir_to_debugger (&child_cmd);
889 error (_("Cannot redirect standard handles for program: %s."),
890 safe_strerror (errno));
891 }
892 /* set the console device of the inferior to whatever mode
893 (raw or cooked) we found it last time */
894 if (terminal_is_ours)
895 {
896 if (inf_mode_valid)
897 device_mode (0, inf_terminal_mode);
898 terminal_is_ours = 0;
899 }
900 }
901
902 static void
903 go32_terminal_ours (void)
904 {
905 /* Switch to cooked mode on the gdb terminal and save the inferior
906 terminal mode to be restored when it is resumed */
907 if (!terminal_is_ours)
908 {
909 inf_terminal_mode = device_mode (0, 0);
910 if (inf_terminal_mode != -1)
911 inf_mode_valid = 1;
912 else
913 /* If device_mode returned -1, we don't know what happens with
914 handle 0 anymore, so make the info invalid. */
915 inf_mode_valid = 0;
916 terminal_is_ours = 1;
917
918 /* Restore debugger's standard handles. */
919 errno = 0;
920 if (redir_to_debugger (&child_cmd) == -1)
921 {
922 redir_to_child (&child_cmd);
923 error (_("Cannot redirect standard handles for debugger: %s."),
924 safe_strerror (errno));
925 }
926 }
927 }
928
929 static int
930 go32_thread_alive (struct target_ops *ops, ptid_t ptid)
931 {
932 return !ptid_equal (inferior_ptid, null_ptid);
933 }
934
935 static char *
936 go32_pid_to_str (struct target_ops *ops, ptid_t ptid)
937 {
938 return normal_pid_to_str (ptid);
939 }
940
941 static void
942 init_go32_ops (void)
943 {
944 go32_ops.to_shortname = "djgpp";
945 go32_ops.to_longname = "djgpp target process";
946 go32_ops.to_doc =
947 "Program loaded by djgpp, when gdb is used as an external debugger";
948 go32_ops.to_open = go32_open;
949 go32_ops.to_close = go32_close;
950 go32_ops.to_attach = go32_attach;
951 go32_ops.to_detach = go32_detach;
952 go32_ops.to_resume = go32_resume;
953 go32_ops.to_wait = go32_wait;
954 go32_ops.to_fetch_registers = go32_fetch_registers;
955 go32_ops.to_store_registers = go32_store_registers;
956 go32_ops.to_prepare_to_store = go32_prepare_to_store;
957 go32_ops.deprecated_xfer_memory = go32_xfer_memory;
958 go32_ops.to_files_info = go32_files_info;
959 go32_ops.to_insert_breakpoint = memory_insert_breakpoint;
960 go32_ops.to_remove_breakpoint = memory_remove_breakpoint;
961 go32_ops.to_terminal_init = go32_terminal_init;
962 go32_ops.to_terminal_inferior = go32_terminal_inferior;
963 go32_ops.to_terminal_ours_for_output = go32_terminal_ours;
964 go32_ops.to_terminal_ours = go32_terminal_ours;
965 go32_ops.to_terminal_info = go32_terminal_info;
966 go32_ops.to_kill = go32_kill_inferior;
967 go32_ops.to_create_inferior = go32_create_inferior;
968 go32_ops.to_mourn_inferior = go32_mourn_inferior;
969 go32_ops.to_can_run = go32_can_run;
970 go32_ops.to_thread_alive = go32_thread_alive;
971 go32_ops.to_pid_to_str = go32_pid_to_str;
972 go32_ops.to_stratum = process_stratum;
973 go32_ops.to_has_all_memory = default_child_has_all_memory;
974 go32_ops.to_has_memory = default_child_has_memory;
975 go32_ops.to_has_stack = default_child_has_stack;
976 go32_ops.to_has_registers = default_child_has_registers;
977 go32_ops.to_has_execution = default_child_has_execution;
978
979 i386_use_watchpoints (&go32_ops);
980
981
982 i386_dr_low.set_control = go32_set_dr7;
983 i386_dr_low.set_addr = go32_set_dr;
984 i386_dr_low.reset_addr = NULL;
985 i386_dr_low.get_status = go32_get_dr6;
986 i386_set_debug_register_length (4);
987
988 go32_ops.to_magic = OPS_MAGIC;
989
990 /* Initialize child's cwd as empty to be initialized when starting
991 the child. */
992 *child_cwd = 0;
993
994 /* Initialize child's command line storage. */
995 if (redir_debug_init (&child_cmd) == -1)
996 internal_error (__FILE__, __LINE__,
997 _("Cannot allocate redirection storage: not enough memory.\n"));
998
999 /* We are always processing GCC-compiled programs. */
1000 processing_gcc_compilation = 2;
1001
1002 /* Override the default name of the GDB init file. */
1003 strcpy (gdbinit, "gdb.ini");
1004 }
1005
1006 /* Return the current DOS codepage number. */
1007 static int
1008 dos_codepage (void)
1009 {
1010 __dpmi_regs regs;
1011
1012 regs.x.ax = 0x6601;
1013 __dpmi_int (0x21, &regs);
1014 if (!(regs.x.flags & 1))
1015 return regs.x.bx & 0xffff;
1016 else
1017 return 437; /* default */
1018 }
1019
1020 /* Limited emulation of `nl_langinfo', for charset.c. */
1021 char *
1022 nl_langinfo (nl_item item)
1023 {
1024 char *retval;
1025
1026 switch (item)
1027 {
1028 case CODESET:
1029 {
1030 /* 8 is enough for SHORT_MAX + "CP" + null. */
1031 char buf[8];
1032 int blen = sizeof (buf);
1033 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1034
1035 if (needed > blen) /* should never happen */
1036 buf[0] = 0;
1037 retval = xstrdup (buf);
1038 }
1039 break;
1040 default:
1041 retval = xstrdup ("");
1042 break;
1043 }
1044 return retval;
1045 }
1046
1047 unsigned short windows_major, windows_minor;
1048
1049 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1050 static void
1051 go32_get_windows_version(void)
1052 {
1053 __dpmi_regs r;
1054
1055 r.x.ax = 0x1600;
1056 __dpmi_int(0x2f, &r);
1057 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1058 && (r.h.al > 3 || r.h.ah > 0))
1059 {
1060 windows_major = r.h.al;
1061 windows_minor = r.h.ah;
1062 }
1063 else
1064 windows_major = 0xff; /* meaning no Windows */
1065 }
1066
1067 /* A subroutine of go32_sysinfo to display memory info. */
1068 static void
1069 print_mem (unsigned long datum, const char *header, int in_pages_p)
1070 {
1071 if (datum != 0xffffffffUL)
1072 {
1073 if (in_pages_p)
1074 datum <<= 12;
1075 puts_filtered (header);
1076 if (datum > 1024)
1077 {
1078 printf_filtered ("%lu KB", datum >> 10);
1079 if (datum > 1024 * 1024)
1080 printf_filtered (" (%lu MB)", datum >> 20);
1081 }
1082 else
1083 printf_filtered ("%lu Bytes", datum);
1084 puts_filtered ("\n");
1085 }
1086 }
1087
1088 /* Display assorted information about the underlying OS. */
1089 static void
1090 go32_sysinfo (char *arg, int from_tty)
1091 {
1092 static const char test_pattern[] =
1093 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1094 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1095 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1096 struct utsname u;
1097 char cpuid_vendor[13];
1098 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1099 unsigned true_dos_version = _get_dos_version (1);
1100 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1101 int dpmi_flags;
1102 char dpmi_vendor_info[129];
1103 int dpmi_vendor_available;
1104 __dpmi_version_ret dpmi_version_data;
1105 long eflags;
1106 __dpmi_free_mem_info mem_info;
1107 __dpmi_regs regs;
1108
1109 cpuid_vendor[0] = '\0';
1110 if (uname (&u))
1111 strcpy (u.machine, "Unknown x86");
1112 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1113 {
1114 /* CPUID with EAX = 0 returns the Vendor ID. */
1115 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1116 "xorl %%ecx, %%ecx;"
1117 "xorl %%edx, %%edx;"
1118 "movl $0, %%eax;"
1119 "cpuid;"
1120 "movl %%ebx, %0;"
1121 "movl %%edx, %1;"
1122 "movl %%ecx, %2;"
1123 "movl %%eax, %3;"
1124 : "=m" (cpuid_vendor[0]),
1125 "=m" (cpuid_vendor[4]),
1126 "=m" (cpuid_vendor[8]),
1127 "=m" (cpuid_max)
1128 :
1129 : "%eax", "%ebx", "%ecx", "%edx");
1130 cpuid_vendor[12] = '\0';
1131 }
1132
1133 printf_filtered ("CPU Type.......................%s", u.machine);
1134 if (cpuid_vendor[0])
1135 printf_filtered (" (%s)", cpuid_vendor);
1136 puts_filtered ("\n");
1137
1138 /* CPUID with EAX = 1 returns processor signature and features. */
1139 if (cpuid_max >= 1)
1140 {
1141 static char *brand_name[] = {
1142 "",
1143 " Celeron",
1144 " III",
1145 " III Xeon",
1146 "", "", "", "",
1147 " 4"
1148 };
1149 char cpu_string[80];
1150 char cpu_brand[20];
1151 unsigned brand_idx;
1152 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1153 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1154 unsigned cpu_family, cpu_model;
1155
1156 __asm__ __volatile__ ("movl $1, %%eax;"
1157 "cpuid;"
1158 : "=a" (cpuid_eax),
1159 "=b" (cpuid_ebx),
1160 "=d" (cpuid_edx)
1161 :
1162 : "%ecx");
1163 brand_idx = cpuid_ebx & 0xff;
1164 cpu_family = (cpuid_eax >> 8) & 0xf;
1165 cpu_model = (cpuid_eax >> 4) & 0xf;
1166 cpu_brand[0] = '\0';
1167 if (intel_p)
1168 {
1169 if (brand_idx > 0
1170 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1171 && *brand_name[brand_idx])
1172 strcpy (cpu_brand, brand_name[brand_idx]);
1173 else if (cpu_family == 5)
1174 {
1175 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1176 strcpy (cpu_brand, " MMX");
1177 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1178 strcpy (cpu_brand, " OverDrive");
1179 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1180 strcpy (cpu_brand, " Dual");
1181 }
1182 else if (cpu_family == 6 && cpu_model < 8)
1183 {
1184 switch (cpu_model)
1185 {
1186 case 1:
1187 strcpy (cpu_brand, " Pro");
1188 break;
1189 case 3:
1190 strcpy (cpu_brand, " II");
1191 break;
1192 case 5:
1193 strcpy (cpu_brand, " II Xeon");
1194 break;
1195 case 6:
1196 strcpy (cpu_brand, " Celeron");
1197 break;
1198 case 7:
1199 strcpy (cpu_brand, " III");
1200 break;
1201 }
1202 }
1203 }
1204 else if (amd_p)
1205 {
1206 switch (cpu_family)
1207 {
1208 case 4:
1209 strcpy (cpu_brand, "486/5x86");
1210 break;
1211 case 5:
1212 switch (cpu_model)
1213 {
1214 case 0:
1215 case 1:
1216 case 2:
1217 case 3:
1218 strcpy (cpu_brand, "-K5");
1219 break;
1220 case 6:
1221 case 7:
1222 strcpy (cpu_brand, "-K6");
1223 break;
1224 case 8:
1225 strcpy (cpu_brand, "-K6-2");
1226 break;
1227 case 9:
1228 strcpy (cpu_brand, "-K6-III");
1229 break;
1230 }
1231 break;
1232 case 6:
1233 switch (cpu_model)
1234 {
1235 case 1:
1236 case 2:
1237 case 4:
1238 strcpy (cpu_brand, " Athlon");
1239 break;
1240 case 3:
1241 strcpy (cpu_brand, " Duron");
1242 break;
1243 }
1244 break;
1245 }
1246 }
1247 sprintf (cpu_string, "%s%s Model %d Stepping %d",
1248 intel_p ? "Pentium" : (amd_p ? "AMD" : "ix86"),
1249 cpu_brand, cpu_model, cpuid_eax & 0xf);
1250 printfi_filtered (31, "%s\n", cpu_string);
1251 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1252 || ((cpuid_edx & 1) == 0)
1253 || (amd_p && (cpuid_edx & (3 << 30)) != 0))
1254 {
1255 puts_filtered ("CPU Features...................");
1256 /* We only list features which might be useful in the DPMI
1257 environment. */
1258 if ((cpuid_edx & 1) == 0)
1259 puts_filtered ("No FPU "); /* it's unusual to not have an FPU */
1260 if ((cpuid_edx & (1 << 1)) != 0)
1261 puts_filtered ("VME ");
1262 if ((cpuid_edx & (1 << 2)) != 0)
1263 puts_filtered ("DE ");
1264 if ((cpuid_edx & (1 << 4)) != 0)
1265 puts_filtered ("TSC ");
1266 if ((cpuid_edx & (1 << 23)) != 0)
1267 puts_filtered ("MMX ");
1268 if ((cpuid_edx & (1 << 25)) != 0)
1269 puts_filtered ("SSE ");
1270 if ((cpuid_edx & (1 << 26)) != 0)
1271 puts_filtered ("SSE2 ");
1272 if (amd_p)
1273 {
1274 if ((cpuid_edx & (1 << 31)) != 0)
1275 puts_filtered ("3DNow! ");
1276 if ((cpuid_edx & (1 << 30)) != 0)
1277 puts_filtered ("3DNow!Ext");
1278 }
1279 puts_filtered ("\n");
1280 }
1281 }
1282 puts_filtered ("\n");
1283 printf_filtered ("DOS Version....................%s %s.%s",
1284 _os_flavor, u.release, u.version);
1285 if (true_dos_version != advertized_dos_version)
1286 printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1287 puts_filtered ("\n");
1288 if (!windows_major)
1289 go32_get_windows_version ();
1290 if (windows_major != 0xff)
1291 {
1292 const char *windows_flavor;
1293
1294 printf_filtered ("Windows Version................%d.%02d (Windows ",
1295 windows_major, windows_minor);
1296 switch (windows_major)
1297 {
1298 case 3:
1299 windows_flavor = "3.X";
1300 break;
1301 case 4:
1302 switch (windows_minor)
1303 {
1304 case 0:
1305 windows_flavor = "95, 95A, or 95B";
1306 break;
1307 case 3:
1308 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1309 break;
1310 case 10:
1311 windows_flavor = "98 or 98 SE";
1312 break;
1313 case 90:
1314 windows_flavor = "ME";
1315 break;
1316 default:
1317 windows_flavor = "9X";
1318 break;
1319 }
1320 break;
1321 default:
1322 windows_flavor = "??";
1323 break;
1324 }
1325 printf_filtered ("%s)\n", windows_flavor);
1326 }
1327 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1328 printf_filtered ("Windows Version................Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1329 puts_filtered ("\n");
1330 /* On some versions of Windows, __dpmi_get_capabilities returns
1331 zero, but the buffer is not filled with info, so we fill the
1332 buffer with a known pattern and test for it afterwards. */
1333 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1334 dpmi_vendor_available =
1335 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1336 if (dpmi_vendor_available == 0
1337 && memcmp (dpmi_vendor_info, test_pattern,
1338 sizeof(dpmi_vendor_info)) != 0)
1339 {
1340 /* The DPMI spec says the vendor string should be ASCIIZ, but
1341 I don't trust the vendors to follow that... */
1342 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1343 dpmi_vendor_info[128] = '\0';
1344 printf_filtered ("DPMI Host......................%s v%d.%d (capabilities: %#x)\n",
1345 &dpmi_vendor_info[2],
1346 (unsigned)dpmi_vendor_info[0],
1347 (unsigned)dpmi_vendor_info[1],
1348 ((unsigned)dpmi_flags & 0x7f));
1349 }
1350 else
1351 printf_filtered ("DPMI Host......................(Info not available)\n");
1352 __dpmi_get_version (&dpmi_version_data);
1353 printf_filtered ("DPMI Version...................%d.%02d\n",
1354 dpmi_version_data.major, dpmi_version_data.minor);
1355 printf_filtered ("DPMI Info......................%s-bit DPMI, with%s Virtual Memory support\n",
1356 (dpmi_version_data.flags & 1) ? "32" : "16",
1357 (dpmi_version_data.flags & 4) ? "" : "out");
1358 printfi_filtered (31, "Interrupts reflected to %s mode\n",
1359 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1360 printfi_filtered (31, "Processor type: i%d86\n",
1361 dpmi_version_data.cpu);
1362 printfi_filtered (31, "PIC base interrupt: Master: %#x Slave: %#x\n",
1363 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1364
1365 /* a_tss is only initialized when the debuggee is first run. */
1366 if (prog_has_started)
1367 {
1368 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1369 printf_filtered ("Protection.....................Ring %d (in %s), with%s I/O protection\n",
1370 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1371 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1372 }
1373 puts_filtered ("\n");
1374 __dpmi_get_free_memory_information (&mem_info);
1375 print_mem (mem_info.total_number_of_physical_pages,
1376 "DPMI Total Physical Memory.....", 1);
1377 print_mem (mem_info.total_number_of_free_pages,
1378 "DPMI Free Physical Memory......", 1);
1379 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1380 "DPMI Swap Space................", 1);
1381 print_mem (mem_info.linear_address_space_size_in_pages,
1382 "DPMI Total Linear Address Size.", 1);
1383 print_mem (mem_info.free_linear_address_space_in_pages,
1384 "DPMI Free Linear Address Size..", 1);
1385 print_mem (mem_info.largest_available_free_block_in_bytes,
1386 "DPMI Largest Free Memory Block.", 0);
1387
1388 regs.h.ah = 0x48;
1389 regs.x.bx = 0xffff;
1390 __dpmi_int (0x21, &regs);
1391 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1392 regs.x.ax = 0x5800;
1393 __dpmi_int (0x21, &regs);
1394 if ((regs.x.flags & 1) == 0)
1395 {
1396 static const char *dos_hilo[] = {
1397 "Low", "", "", "", "High", "", "", "", "High, then Low"
1398 };
1399 static const char *dos_fit[] = {
1400 "First", "Best", "Last"
1401 };
1402 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1403 int fit_idx = regs.x.ax & 0x0f;
1404
1405 if (hilo_idx > 8)
1406 hilo_idx = 0;
1407 if (fit_idx > 2)
1408 fit_idx = 0;
1409 printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1410 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1411 regs.x.ax = 0x5802;
1412 __dpmi_int (0x21, &regs);
1413 if ((regs.x.flags & 1) != 0)
1414 regs.h.al = 0;
1415 printfi_filtered (31, "UMBs %sin DOS memory chain\n",
1416 regs.h.al == 0 ? "not " : "");
1417 }
1418 }
1419
1420 struct seg_descr {
1421 unsigned short limit0;
1422 unsigned short base0;
1423 unsigned char base1;
1424 unsigned stype:5;
1425 unsigned dpl:2;
1426 unsigned present:1;
1427 unsigned limit1:4;
1428 unsigned available:1;
1429 unsigned dummy:1;
1430 unsigned bit32:1;
1431 unsigned page_granular:1;
1432 unsigned char base2;
1433 } __attribute__ ((packed));
1434
1435 struct gate_descr {
1436 unsigned short offset0;
1437 unsigned short selector;
1438 unsigned param_count:5;
1439 unsigned dummy:3;
1440 unsigned stype:5;
1441 unsigned dpl:2;
1442 unsigned present:1;
1443 unsigned short offset1;
1444 } __attribute__ ((packed));
1445
1446 /* Read LEN bytes starting at logical address ADDR, and put the result
1447 into DEST. Return 1 if success, zero if not. */
1448 static int
1449 read_memory_region (unsigned long addr, void *dest, size_t len)
1450 {
1451 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1452 int retval = 1;
1453
1454 /* For the low memory, we can simply use _dos_ds. */
1455 if (addr <= dos_ds_limit - len)
1456 dosmemget (addr, len, dest);
1457 else
1458 {
1459 /* For memory above 1MB we need to set up a special segment to
1460 be able to access that memory. */
1461 int sel = __dpmi_allocate_ldt_descriptors (1);
1462
1463 if (sel <= 0)
1464 retval = 0;
1465 else
1466 {
1467 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1468 size_t segment_limit = len - 1;
1469
1470 /* Make sure the crucial bits in the descriptor access
1471 rights are set correctly. Some DPMI providers might barf
1472 if we set the segment limit to something that is not an
1473 integral multiple of 4KB pages if the granularity bit is
1474 not set to byte-granular, even though the DPMI spec says
1475 it's the host's responsibility to set that bit correctly. */
1476 if (len > 1024 * 1024)
1477 {
1478 access_rights |= 0x8000;
1479 /* Page-granular segments should have the low 12 bits of
1480 the limit set. */
1481 segment_limit |= 0xfff;
1482 }
1483 else
1484 access_rights &= ~0x8000;
1485
1486 if (__dpmi_set_segment_base_address (sel, addr) != -1
1487 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1488 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1489 /* W2K silently fails to set the segment limit, leaving
1490 it at zero; this test avoids the resulting crash. */
1491 && __dpmi_get_segment_limit (sel) >= segment_limit)
1492 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1493 else
1494 retval = 0;
1495
1496 __dpmi_free_ldt_descriptor (sel);
1497 }
1498 }
1499 return retval;
1500 }
1501
1502 /* Get a segment descriptor stored at index IDX in the descriptor
1503 table whose base address is TABLE_BASE. Return the descriptor
1504 type, or -1 if failure. */
1505 static int
1506 get_descriptor (unsigned long table_base, int idx, void *descr)
1507 {
1508 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1509
1510 if (read_memory_region (addr, descr, 8))
1511 return (int)((struct seg_descr *)descr)->stype;
1512 return -1;
1513 }
1514
1515 struct dtr_reg {
1516 unsigned short limit __attribute__((packed));
1517 unsigned long base __attribute__((packed));
1518 };
1519
1520 /* Display a segment descriptor stored at index IDX in a descriptor
1521 table whose type is TYPE and whose base address is BASE_ADDR. If
1522 FORCE is non-zero, display even invalid descriptors. */
1523 static void
1524 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1525 {
1526 struct seg_descr descr;
1527 struct gate_descr gate;
1528
1529 /* Get the descriptor from the table. */
1530 if (idx == 0 && type == 0)
1531 puts_filtered ("0x000: null descriptor\n");
1532 else if (get_descriptor (base_addr, idx, &descr) != -1)
1533 {
1534 /* For each type of descriptor table, this has a bit set if the
1535 corresponding type of selectors is valid in that table. */
1536 static unsigned allowed_descriptors[] = {
1537 0xffffdafeL, /* GDT */
1538 0x0000c0e0L, /* IDT */
1539 0xffffdafaL /* LDT */
1540 };
1541
1542 /* If the program hasn't started yet, assume the debuggee will
1543 have the same CPL as the debugger. */
1544 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1545 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1546
1547 if (descr.present
1548 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1549 {
1550 printf_filtered ("0x%03x: ",
1551 type == 1
1552 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1553 if (descr.page_granular)
1554 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1555 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1556 || descr.stype == 9 || descr.stype == 11
1557 || (descr.stype >= 16 && descr.stype < 32))
1558 printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1559 descr.base2, descr.base1, descr.base0, limit);
1560
1561 switch (descr.stype)
1562 {
1563 case 1:
1564 case 3:
1565 printf_filtered (" 16-bit TSS (task %sactive)",
1566 descr.stype == 3 ? "" : "in");
1567 break;
1568 case 2:
1569 puts_filtered (" LDT");
1570 break;
1571 case 4:
1572 memcpy (&gate, &descr, sizeof gate);
1573 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1574 gate.selector, gate.offset1, gate.offset0);
1575 printf_filtered (" 16-bit Call Gate (params=%d)",
1576 gate.param_count);
1577 break;
1578 case 5:
1579 printf_filtered ("TSS selector=0x%04x", descr.base0);
1580 printfi_filtered (16, "Task Gate");
1581 break;
1582 case 6:
1583 case 7:
1584 memcpy (&gate, &descr, sizeof gate);
1585 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1586 gate.selector, gate.offset1, gate.offset0);
1587 printf_filtered (" 16-bit %s Gate",
1588 descr.stype == 6 ? "Interrupt" : "Trap");
1589 break;
1590 case 9:
1591 case 11:
1592 printf_filtered (" 32-bit TSS (task %sactive)",
1593 descr.stype == 3 ? "" : "in");
1594 break;
1595 case 12:
1596 memcpy (&gate, &descr, sizeof gate);
1597 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1598 gate.selector, gate.offset1, gate.offset0);
1599 printf_filtered (" 32-bit Call Gate (params=%d)",
1600 gate.param_count);
1601 break;
1602 case 14:
1603 case 15:
1604 memcpy (&gate, &descr, sizeof gate);
1605 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1606 gate.selector, gate.offset1, gate.offset0);
1607 printf_filtered (" 32-bit %s Gate",
1608 descr.stype == 14 ? "Interrupt" : "Trap");
1609 break;
1610 case 16: /* data segments */
1611 case 17:
1612 case 18:
1613 case 19:
1614 case 20:
1615 case 21:
1616 case 22:
1617 case 23:
1618 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1619 descr.bit32 ? "32" : "16",
1620 descr.stype & 2 ? "Read/Write," : "Read-Only, ",
1621 descr.stype & 4 ? "down" : "up",
1622 descr.stype & 1 ? "" : ", N.Acc");
1623 break;
1624 case 24: /* code segments */
1625 case 25:
1626 case 26:
1627 case 27:
1628 case 28:
1629 case 29:
1630 case 30:
1631 case 31:
1632 printf_filtered (" %s-bit Code (%s, %sConf%s)",
1633 descr.bit32 ? "32" : "16",
1634 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1635 descr.stype & 4 ? "" : "N.",
1636 descr.stype & 1 ? "" : ", N.Acc");
1637 break;
1638 default:
1639 printf_filtered ("Unknown type 0x%02x", descr.stype);
1640 break;
1641 }
1642 puts_filtered ("\n");
1643 }
1644 else if (force)
1645 {
1646 printf_filtered ("0x%03x: ",
1647 type == 1
1648 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1649 if (!descr.present)
1650 puts_filtered ("Segment not present\n");
1651 else
1652 printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1653 descr.stype);
1654 }
1655 }
1656 else if (force)
1657 printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1658 }
1659
1660 static void
1661 go32_sldt (char *arg, int from_tty)
1662 {
1663 struct dtr_reg gdtr;
1664 unsigned short ldtr = 0;
1665 int ldt_idx;
1666 struct seg_descr ldt_descr;
1667 long ldt_entry = -1L;
1668 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1669
1670 if (arg && *arg)
1671 {
1672 while (*arg && isspace(*arg))
1673 arg++;
1674
1675 if (*arg)
1676 {
1677 ldt_entry = parse_and_eval_long (arg);
1678 if (ldt_entry < 0
1679 || (ldt_entry & 4) == 0
1680 || (ldt_entry & 3) != (cpl & 3))
1681 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1682 }
1683 }
1684
1685 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1686 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1687 ldt_idx = ldtr / 8;
1688 if (ldt_idx == 0)
1689 puts_filtered ("There is no LDT.\n");
1690 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1691 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1692 printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1693 ldt_descr.base0
1694 | (ldt_descr.base1 << 16)
1695 | (ldt_descr.base2 << 24));
1696 else
1697 {
1698 unsigned base =
1699 ldt_descr.base0
1700 | (ldt_descr.base1 << 16)
1701 | (ldt_descr.base2 << 24);
1702 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1703 int max_entry;
1704
1705 if (ldt_descr.page_granular)
1706 /* Page-granular segments must have the low 12 bits of their
1707 limit set. */
1708 limit = (limit << 12) | 0xfff;
1709 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1710 64KB. */
1711 if (limit > 0xffff)
1712 limit = 0xffff;
1713
1714 max_entry = (limit + 1) / 8;
1715
1716 if (ldt_entry >= 0)
1717 {
1718 if (ldt_entry > limit)
1719 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1720 (unsigned long)ldt_entry, limit);
1721
1722 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1723 }
1724 else
1725 {
1726 int i;
1727
1728 for (i = 0; i < max_entry; i++)
1729 display_descriptor (ldt_descr.stype, base, i, 0);
1730 }
1731 }
1732 }
1733
1734 static void
1735 go32_sgdt (char *arg, int from_tty)
1736 {
1737 struct dtr_reg gdtr;
1738 long gdt_entry = -1L;
1739 int max_entry;
1740
1741 if (arg && *arg)
1742 {
1743 while (*arg && isspace(*arg))
1744 arg++;
1745
1746 if (*arg)
1747 {
1748 gdt_entry = parse_and_eval_long (arg);
1749 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1750 error (_("Invalid GDT entry 0x%03lx: not an integral multiple of 8."),
1751 (unsigned long)gdt_entry);
1752 }
1753 }
1754
1755 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1756 max_entry = (gdtr.limit + 1) / 8;
1757
1758 if (gdt_entry >= 0)
1759 {
1760 if (gdt_entry > gdtr.limit)
1761 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1762 (unsigned long)gdt_entry, gdtr.limit);
1763
1764 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1765 }
1766 else
1767 {
1768 int i;
1769
1770 for (i = 0; i < max_entry; i++)
1771 display_descriptor (0, gdtr.base, i, 0);
1772 }
1773 }
1774
1775 static void
1776 go32_sidt (char *arg, int from_tty)
1777 {
1778 struct dtr_reg idtr;
1779 long idt_entry = -1L;
1780 int max_entry;
1781
1782 if (arg && *arg)
1783 {
1784 while (*arg && isspace(*arg))
1785 arg++;
1786
1787 if (*arg)
1788 {
1789 idt_entry = parse_and_eval_long (arg);
1790 if (idt_entry < 0)
1791 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1792 }
1793 }
1794
1795 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1796 max_entry = (idtr.limit + 1) / 8;
1797 if (max_entry > 0x100) /* no more than 256 entries */
1798 max_entry = 0x100;
1799
1800 if (idt_entry >= 0)
1801 {
1802 if (idt_entry > idtr.limit)
1803 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1804 (unsigned long)idt_entry, idtr.limit);
1805
1806 display_descriptor (1, idtr.base, idt_entry, 1);
1807 }
1808 else
1809 {
1810 int i;
1811
1812 for (i = 0; i < max_entry; i++)
1813 display_descriptor (1, idtr.base, i, 0);
1814 }
1815 }
1816
1817 /* Cached linear address of the base of the page directory. For
1818 now, available only under CWSDPMI. Code based on ideas and
1819 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1820 static unsigned long pdbr;
1821
1822 static unsigned long
1823 get_cr3 (void)
1824 {
1825 unsigned offset;
1826 unsigned taskreg;
1827 unsigned long taskbase, cr3;
1828 struct dtr_reg gdtr;
1829
1830 if (pdbr > 0 && pdbr <= 0xfffff)
1831 return pdbr;
1832
1833 /* Get the linear address of GDT and the Task Register. */
1834 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1835 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1836
1837 /* Task Register is a segment selector for the TSS of the current
1838 task. Therefore, it can be used as an index into the GDT to get
1839 at the segment descriptor for the TSS. To get the index, reset
1840 the low 3 bits of the selector (which give the CPL). Add 2 to the
1841 offset to point to the 3 low bytes of the base address. */
1842 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1843
1844
1845 /* CWSDPMI's task base is always under the 1MB mark. */
1846 if (offset > 0xfffff)
1847 return 0;
1848
1849 _farsetsel (_dos_ds);
1850 taskbase = _farnspeekl (offset) & 0xffffffU;
1851 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1852 if (taskbase > 0xfffff)
1853 return 0;
1854
1855 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1856 offset 1Ch in the TSS. */
1857 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1858 if (cr3 > 0xfffff)
1859 {
1860 #if 0 /* not fullly supported yet */
1861 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1862 the first Page Table right below the Page Directory. Thus,
1863 the first Page Table's entry for its own address and the Page
1864 Directory entry for that Page Table will hold the same
1865 physical address. The loop below searches the entire UMB
1866 range of addresses for such an occurence. */
1867 unsigned long addr, pte_idx;
1868
1869 for (addr = 0xb0000, pte_idx = 0xb0;
1870 pte_idx < 0xff;
1871 addr += 0x1000, pte_idx++)
1872 {
1873 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1874 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1875 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1876 {
1877 cr3 = addr + 0x1000;
1878 break;
1879 }
1880 }
1881 #endif
1882
1883 if (cr3 > 0xfffff)
1884 cr3 = 0;
1885 }
1886
1887 return cr3;
1888 }
1889
1890 /* Return the N'th Page Directory entry. */
1891 static unsigned long
1892 get_pde (int n)
1893 {
1894 unsigned long pde = 0;
1895
1896 if (pdbr && n >= 0 && n < 1024)
1897 {
1898 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1899 }
1900 return pde;
1901 }
1902
1903 /* Return the N'th entry of the Page Table whose Page Directory entry
1904 is PDE. */
1905 static unsigned long
1906 get_pte (unsigned long pde, int n)
1907 {
1908 unsigned long pte = 0;
1909
1910 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1911 page tables, for now. */
1912 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1913 {
1914 pde &= ~0xfff; /* clear non-address bits */
1915 pte = _farpeekl (_dos_ds, pde + 4*n);
1916 }
1917 return pte;
1918 }
1919
1920 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1921 says this is a Page Directory entry. If FORCE is non-zero, display
1922 the entry even if its Present flag is off. OFF is the offset of the
1923 address from the page's base address. */
1924 static void
1925 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1926 {
1927 if ((entry & 1) != 0)
1928 {
1929 printf_filtered ("Base=0x%05lx000", entry >> 12);
1930 if ((entry & 0x100) && !is_dir)
1931 puts_filtered (" Global");
1932 if ((entry & 0x40) && !is_dir)
1933 puts_filtered (" Dirty");
1934 printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1935 printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1936 printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1937 printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1938 printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1939 if (off)
1940 printf_filtered (" +0x%x", off);
1941 puts_filtered ("\n");
1942 }
1943 else if (force)
1944 printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1945 is_dir ? " Table" : "", entry >> 1);
1946 }
1947
1948 static void
1949 go32_pde (char *arg, int from_tty)
1950 {
1951 long pde_idx = -1, i;
1952
1953 if (arg && *arg)
1954 {
1955 while (*arg && isspace(*arg))
1956 arg++;
1957
1958 if (*arg)
1959 {
1960 pde_idx = parse_and_eval_long (arg);
1961 if (pde_idx < 0 || pde_idx >= 1024)
1962 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1963 }
1964 }
1965
1966 pdbr = get_cr3 ();
1967 if (!pdbr)
1968 puts_filtered ("Access to Page Directories is not supported on this system.\n");
1969 else if (pde_idx >= 0)
1970 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
1971 else
1972 for (i = 0; i < 1024; i++)
1973 display_ptable_entry (get_pde (i), 1, 0, 0);
1974 }
1975
1976 /* A helper function to display entries in a Page Table pointed to by
1977 the N'th entry in the Page Directory. If FORCE is non-zero, say
1978 something even if the Page Table is not accessible. */
1979 static void
1980 display_page_table (long n, int force)
1981 {
1982 unsigned long pde = get_pde (n);
1983
1984 if ((pde & 1) != 0)
1985 {
1986 int i;
1987
1988 printf_filtered ("Page Table pointed to by Page Directory entry 0x%lx:\n", n);
1989 for (i = 0; i < 1024; i++)
1990 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
1991 puts_filtered ("\n");
1992 }
1993 else if (force)
1994 printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
1995 }
1996
1997 static void
1998 go32_pte (char *arg, int from_tty)
1999 {
2000 long pde_idx = -1L, i;
2001
2002 if (arg && *arg)
2003 {
2004 while (*arg && isspace(*arg))
2005 arg++;
2006
2007 if (*arg)
2008 {
2009 pde_idx = parse_and_eval_long (arg);
2010 if (pde_idx < 0 || pde_idx >= 1024)
2011 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2012 }
2013 }
2014
2015 pdbr = get_cr3 ();
2016 if (!pdbr)
2017 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2018 else if (pde_idx >= 0)
2019 display_page_table (pde_idx, 1);
2020 else
2021 for (i = 0; i < 1024; i++)
2022 display_page_table (i, 0);
2023 }
2024
2025 static void
2026 go32_pte_for_address (char *arg, int from_tty)
2027 {
2028 CORE_ADDR addr = 0, i;
2029
2030 if (arg && *arg)
2031 {
2032 while (*arg && isspace(*arg))
2033 arg++;
2034
2035 if (*arg)
2036 addr = parse_and_eval_address (arg);
2037 }
2038 if (!addr)
2039 error_no_arg (_("linear address"));
2040
2041 pdbr = get_cr3 ();
2042 if (!pdbr)
2043 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2044 else
2045 {
2046 int pde_idx = (addr >> 22) & 0x3ff;
2047 int pte_idx = (addr >> 12) & 0x3ff;
2048 unsigned offs = addr & 0xfff;
2049
2050 printf_filtered ("Page Table entry for address 0x%llx:\n",
2051 (unsigned long long)addr);
2052 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2053 }
2054 }
2055
2056 static struct cmd_list_element *info_dos_cmdlist = NULL;
2057
2058 static void
2059 go32_info_dos_command (char *args, int from_tty)
2060 {
2061 help_list (info_dos_cmdlist, "info dos ", class_info, gdb_stdout);
2062 }
2063
2064 void
2065 _initialize_go32_nat (void)
2066 {
2067 init_go32_ops ();
2068 add_target (&go32_ops);
2069
2070 add_prefix_cmd ("dos", class_info, go32_info_dos_command, _("\
2071 Print information specific to DJGPP (aka MS-DOS) debugging."),
2072 &info_dos_cmdlist, "info dos ", 0, &infolist);
2073
2074 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2075 Display information about the target system, including CPU, OS, DPMI, etc."),
2076 &info_dos_cmdlist);
2077 add_cmd ("ldt", class_info, go32_sldt, _("\
2078 Display entries in the LDT (Local Descriptor Table).\n\
2079 Entry number (an expression) as an argument means display only that entry."),
2080 &info_dos_cmdlist);
2081 add_cmd ("gdt", class_info, go32_sgdt, _("\
2082 Display entries in the GDT (Global Descriptor Table).\n\
2083 Entry number (an expression) as an argument means display only that entry."),
2084 &info_dos_cmdlist);
2085 add_cmd ("idt", class_info, go32_sidt, _("\
2086 Display entries in the IDT (Interrupt Descriptor Table).\n\
2087 Entry number (an expression) as an argument means display only that entry."),
2088 &info_dos_cmdlist);
2089 add_cmd ("pde", class_info, go32_pde, _("\
2090 Display entries in the Page Directory.\n\
2091 Entry number (an expression) as an argument means display only that entry."),
2092 &info_dos_cmdlist);
2093 add_cmd ("pte", class_info, go32_pte, _("\
2094 Display entries in Page Tables.\n\
2095 Entry number (an expression) as an argument means display only entries\n\
2096 from the Page Table pointed to by the specified Page Directory entry."),
2097 &info_dos_cmdlist);
2098 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2099 Display a Page Table entry for a linear address.\n\
2100 The address argument must be a linear address, after adding to\n\
2101 it the base address of the appropriate segment.\n\
2102 The base address of variables and functions in the debuggee's data\n\
2103 or code segment is stored in the variable __djgpp_base_address,\n\
2104 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2105 For other segments, look up their base address in the output of\n\
2106 the `info dos ldt' command."),
2107 &info_dos_cmdlist);
2108 }
2109
2110 pid_t
2111 tcgetpgrp (int fd)
2112 {
2113 if (isatty (fd))
2114 return SOME_PID;
2115 errno = ENOTTY;
2116 return -1;
2117 }
2118
2119 int
2120 tcsetpgrp (int fd, pid_t pgid)
2121 {
2122 if (isatty (fd) && pgid == SOME_PID)
2123 return 0;
2124 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2125 return -1;
2126 }