]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/go32-nat.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / go32-nat.c
1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997, 1999, 2000, 2001, 2005, 2006, 2007, 2008, 2009, 2010,
3 2011 Free Software Foundation, Inc.
4 Written by Robert Hoehne.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* To whomever it may concern, here's a general description of how
22 debugging in DJGPP works, and the special quirks GDB does to
23 support that.
24
25 When the DJGPP port of GDB is debugging a DJGPP program natively,
26 there aren't 2 separate processes, the debuggee and GDB itself, as
27 on other systems. (This is DOS, where there can only be one active
28 process at any given time, remember?) Instead, GDB and the
29 debuggee live in the same process. So when GDB calls
30 go32_create_inferior below, and that function calls edi_init from
31 the DJGPP debug support library libdbg.a, we load the debuggee's
32 executable file into GDB's address space, set it up for execution
33 as the stub loader (a short real-mode program prepended to each
34 DJGPP executable) normally would, and do a lot of preparations for
35 swapping between GDB's and debuggee's internal state, primarily wrt
36 the exception handlers. This swapping happens every time we resume
37 the debuggee or switch back to GDB's code, and it includes:
38
39 . swapping all the segment registers
40 . swapping the PSP (the Program Segment Prefix)
41 . swapping the signal handlers
42 . swapping the exception handlers
43 . swapping the FPU status
44 . swapping the 3 standard file handles (more about this below)
45
46 Then running the debuggee simply means longjmp into it where its PC
47 is and let it run until it stops for some reason. When it stops,
48 GDB catches the exception that stopped it and longjmp's back into
49 its own code. All the possible exit points of the debuggee are
50 watched; for example, the normal exit point is recognized because a
51 DOS program issues a special system call to exit. If one of those
52 exit points is hit, we mourn the inferior and clean up after it.
53 Cleaning up is very important, even if the process exits normally,
54 because otherwise we might leave behind traces of previous
55 execution, and in several cases GDB itself might be left hosed,
56 because all the exception handlers were not restored.
57
58 Swapping of the standard handles (in redir_to_child and
59 redir_to_debugger) is needed because, since both GDB and the
60 debuggee live in the same process, as far as the OS is concerned,
61 the share the same file table. This means that the standard
62 handles 0, 1, and 2 point to the same file table entries, and thus
63 are connected to the same devices. Therefore, if the debugger
64 redirects its standard output, the standard output of the debuggee
65 is also automagically redirected to the same file/device!
66 Similarly, if the debuggee redirects its stdout to a file, you
67 won't be able to see debugger's output (it will go to the same file
68 where the debuggee has its output); and if the debuggee closes its
69 standard input, you will lose the ability to talk to debugger!
70
71 For this reason, every time the debuggee is about to be resumed, we
72 call redir_to_child, which redirects the standard handles to where
73 the debuggee expects them to be. When the debuggee stops and GDB
74 regains control, we call redir_to_debugger, which redirects those 3
75 handles back to where GDB expects.
76
77 Note that only the first 3 handles are swapped, so if the debuggee
78 redirects or closes any other handles, GDB will not notice. In
79 particular, the exit code of a DJGPP program forcibly closes all
80 file handles beyond the first 3 ones, so when the debuggee exits,
81 GDB currently loses its stdaux and stdprn streams. Fortunately,
82 GDB does not use those as of this writing, and will never need
83 to. */
84
85 #include <fcntl.h>
86
87 #include "defs.h"
88 #include "i386-nat.h"
89 #include "inferior.h"
90 #include "gdbthread.h"
91 #include "gdb_wait.h"
92 #include "gdbcore.h"
93 #include "command.h"
94 #include "gdbcmd.h"
95 #include "floatformat.h"
96 #include "buildsym.h"
97 #include "i387-tdep.h"
98 #include "i386-tdep.h"
99 #include "value.h"
100 #include "regcache.h"
101 #include "gdb_string.h"
102 #include "top.h"
103
104 #include <stdio.h> /* might be required for __DJGPP_MINOR__ */
105 #include <stdlib.h>
106 #include <ctype.h>
107 #include <errno.h>
108 #include <unistd.h>
109 #include <sys/utsname.h>
110 #include <io.h>
111 #include <dos.h>
112 #include <dpmi.h>
113 #include <go32.h>
114 #include <sys/farptr.h>
115 #include <debug/v2load.h>
116 #include <debug/dbgcom.h>
117 #if __DJGPP_MINOR__ > 2
118 #include <debug/redir.h>
119 #endif
120
121 #include <langinfo.h>
122
123 #if __DJGPP_MINOR__ < 3
124 /* This code will be provided from DJGPP 2.03 on. Until then I code it
125 here. */
126 typedef struct
127 {
128 unsigned short sig0;
129 unsigned short sig1;
130 unsigned short sig2;
131 unsigned short sig3;
132 unsigned short exponent:15;
133 unsigned short sign:1;
134 }
135 NPXREG;
136
137 typedef struct
138 {
139 unsigned int control;
140 unsigned int status;
141 unsigned int tag;
142 unsigned int eip;
143 unsigned int cs;
144 unsigned int dataptr;
145 unsigned int datasel;
146 NPXREG reg[8];
147 }
148 NPX;
149
150 static NPX npx;
151
152 static void save_npx (void); /* Save the FPU of the debugged program. */
153 static void load_npx (void); /* Restore the FPU of the debugged program. */
154
155 /* ------------------------------------------------------------------------- */
156 /* Store the contents of the NPX in the global variable `npx'. */
157 /* *INDENT-OFF* */
158
159 static void
160 save_npx (void)
161 {
162 asm ("inb $0xa0, %%al \n\
163 testb $0x20, %%al \n\
164 jz 1f \n\
165 xorb %%al, %%al \n\
166 outb %%al, $0xf0 \n\
167 movb $0x20, %%al \n\
168 outb %%al, $0xa0 \n\
169 outb %%al, $0x20 \n\
170 1: \n\
171 fnsave %0 \n\
172 fwait "
173 : "=m" (npx)
174 : /* No input */
175 : "%eax");
176 }
177
178 /* *INDENT-ON* */
179
180
181 /* ------------------------------------------------------------------------- */
182 /* Reload the contents of the NPX from the global variable `npx'. */
183
184 static void
185 load_npx (void)
186 {
187 asm ("frstor %0":"=m" (npx));
188 }
189 /* ------------------------------------------------------------------------- */
190 /* Stubs for the missing redirection functions. */
191 typedef struct {
192 char *command;
193 int redirected;
194 } cmdline_t;
195
196 void
197 redir_cmdline_delete (cmdline_t *ptr)
198 {
199 ptr->redirected = 0;
200 }
201
202 int
203 redir_cmdline_parse (const char *args, cmdline_t *ptr)
204 {
205 return -1;
206 }
207
208 int
209 redir_to_child (cmdline_t *ptr)
210 {
211 return 1;
212 }
213
214 int
215 redir_to_debugger (cmdline_t *ptr)
216 {
217 return 1;
218 }
219
220 int
221 redir_debug_init (cmdline_t *ptr)
222 {
223 return 0;
224 }
225 #endif /* __DJGPP_MINOR < 3 */
226
227 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
228
229 /* This holds the current reference counts for each debug register. */
230 static int dr_ref_count[4];
231
232 #define SOME_PID 42
233
234 static int prog_has_started = 0;
235 static void go32_open (char *name, int from_tty);
236 static void go32_close (int quitting);
237 static void go32_attach (struct target_ops *ops, char *args, int from_tty);
238 static void go32_detach (struct target_ops *ops, char *args, int from_tty);
239 static void go32_resume (struct target_ops *ops,
240 ptid_t ptid, int step,
241 enum target_signal siggnal);
242 static void go32_fetch_registers (struct target_ops *ops,
243 struct regcache *, int regno);
244 static void store_register (const struct regcache *, int regno);
245 static void go32_store_registers (struct target_ops *ops,
246 struct regcache *, int regno);
247 static void go32_prepare_to_store (struct regcache *);
248 static int go32_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
249 int write,
250 struct mem_attrib *attrib,
251 struct target_ops *target);
252 static void go32_files_info (struct target_ops *target);
253 static void go32_kill_inferior (struct target_ops *ops);
254 static void go32_create_inferior (struct target_ops *ops, char *exec_file,
255 char *args, char **env, int from_tty);
256 static void go32_mourn_inferior (struct target_ops *ops);
257 static int go32_can_run (void);
258
259 static struct target_ops go32_ops;
260 static void go32_terminal_init (void);
261 static void go32_terminal_inferior (void);
262 static void go32_terminal_ours (void);
263
264 #define r_ofs(x) (offsetof(TSS,x))
265
266 static struct
267 {
268 size_t tss_ofs;
269 size_t size;
270 }
271 regno_mapping[] =
272 {
273 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
274 {r_ofs (tss_ecx), 4},
275 {r_ofs (tss_edx), 4},
276 {r_ofs (tss_ebx), 4},
277 {r_ofs (tss_esp), 4},
278 {r_ofs (tss_ebp), 4},
279 {r_ofs (tss_esi), 4},
280 {r_ofs (tss_edi), 4},
281 {r_ofs (tss_eip), 4},
282 {r_ofs (tss_eflags), 4},
283 {r_ofs (tss_cs), 2},
284 {r_ofs (tss_ss), 2},
285 {r_ofs (tss_ds), 2},
286 {r_ofs (tss_es), 2},
287 {r_ofs (tss_fs), 2},
288 {r_ofs (tss_gs), 2},
289 {0, 10}, /* 8 FP registers, from npx.reg[] */
290 {1, 10},
291 {2, 10},
292 {3, 10},
293 {4, 10},
294 {5, 10},
295 {6, 10},
296 {7, 10},
297 /* The order of the next 7 registers must be consistent
298 with their numbering in config/i386/tm-i386.h, which see. */
299 {0, 2}, /* control word, from npx */
300 {4, 2}, /* status word, from npx */
301 {8, 2}, /* tag word, from npx */
302 {16, 2}, /* last FP exception CS from npx */
303 {12, 4}, /* last FP exception EIP from npx */
304 {24, 2}, /* last FP exception operand selector from npx */
305 {20, 4}, /* last FP exception operand offset from npx */
306 {18, 2} /* last FP opcode from npx */
307 };
308
309 static struct
310 {
311 int go32_sig;
312 enum target_signal gdb_sig;
313 }
314 sig_map[] =
315 {
316 {0, TARGET_SIGNAL_FPE},
317 {1, TARGET_SIGNAL_TRAP},
318 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
319 but I think SIGBUS is better, since the NMI is usually activated
320 as a result of a memory parity check failure. */
321 {2, TARGET_SIGNAL_BUS},
322 {3, TARGET_SIGNAL_TRAP},
323 {4, TARGET_SIGNAL_FPE},
324 {5, TARGET_SIGNAL_SEGV},
325 {6, TARGET_SIGNAL_ILL},
326 {7, TARGET_SIGNAL_EMT}, /* no-coprocessor exception */
327 {8, TARGET_SIGNAL_SEGV},
328 {9, TARGET_SIGNAL_SEGV},
329 {10, TARGET_SIGNAL_BUS},
330 {11, TARGET_SIGNAL_SEGV},
331 {12, TARGET_SIGNAL_SEGV},
332 {13, TARGET_SIGNAL_SEGV},
333 {14, TARGET_SIGNAL_SEGV},
334 {16, TARGET_SIGNAL_FPE},
335 {17, TARGET_SIGNAL_BUS},
336 {31, TARGET_SIGNAL_ILL},
337 {0x1b, TARGET_SIGNAL_INT},
338 {0x75, TARGET_SIGNAL_FPE},
339 {0x78, TARGET_SIGNAL_ALRM},
340 {0x79, TARGET_SIGNAL_INT},
341 {0x7a, TARGET_SIGNAL_QUIT},
342 {-1, TARGET_SIGNAL_LAST}
343 };
344
345 static struct {
346 enum target_signal gdb_sig;
347 int djgpp_excepno;
348 } excepn_map[] = {
349 {TARGET_SIGNAL_0, -1},
350 {TARGET_SIGNAL_ILL, 6}, /* Invalid Opcode */
351 {TARGET_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
352 {TARGET_SIGNAL_SEGV, 13}, /* GPF */
353 {TARGET_SIGNAL_BUS, 17}, /* Alignment Check */
354 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
355 details. */
356 {TARGET_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
357 {TARGET_SIGNAL_FPE, 0x75},
358 {TARGET_SIGNAL_INT, 0x79},
359 {TARGET_SIGNAL_QUIT, 0x7a},
360 {TARGET_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
361 {TARGET_SIGNAL_PROF, 0x78},
362 {TARGET_SIGNAL_LAST, -1}
363 };
364
365 static void
366 go32_open (char *name, int from_tty)
367 {
368 printf_unfiltered ("Done. Use the \"run\" command to run the program.\n");
369 }
370
371 static void
372 go32_close (int quitting)
373 {
374 }
375
376 static void
377 go32_attach (struct target_ops *ops, char *args, int from_tty)
378 {
379 error (_("\
380 You cannot attach to a running program on this platform.\n\
381 Use the `run' command to run DJGPP programs."));
382 }
383
384 static void
385 go32_detach (struct target_ops *ops, char *args, int from_tty)
386 {
387 }
388
389 static int resume_is_step;
390 static int resume_signal = -1;
391
392 static void
393 go32_resume (struct target_ops *ops,
394 ptid_t ptid, int step, enum target_signal siggnal)
395 {
396 int i;
397
398 resume_is_step = step;
399
400 if (siggnal != TARGET_SIGNAL_0 && siggnal != TARGET_SIGNAL_TRAP)
401 {
402 for (i = 0, resume_signal = -1;
403 excepn_map[i].gdb_sig != TARGET_SIGNAL_LAST; i++)
404 if (excepn_map[i].gdb_sig == siggnal)
405 {
406 resume_signal = excepn_map[i].djgpp_excepno;
407 break;
408 }
409 if (resume_signal == -1)
410 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
411 target_signal_to_name (siggnal));
412 }
413 }
414
415 static char child_cwd[FILENAME_MAX];
416
417 static ptid_t
418 go32_wait (struct target_ops *ops,
419 ptid_t ptid, struct target_waitstatus *status, int options)
420 {
421 int i;
422 unsigned char saved_opcode;
423 unsigned long INT3_addr = 0;
424 int stepping_over_INT = 0;
425
426 a_tss.tss_eflags &= 0xfeff; /* Reset the single-step flag (TF). */
427 if (resume_is_step)
428 {
429 /* If the next instruction is INT xx or INTO, we need to handle
430 them specially. Intel manuals say that these instructions
431 reset the single-step flag (a.k.a. TF). However, it seems
432 that, at least in the DPMI environment, and at least when
433 stepping over the DPMI interrupt 31h, the problem is having
434 TF set at all when INT 31h is executed: the debuggee either
435 crashes (and takes the system with it) or is killed by a
436 SIGTRAP.
437
438 So we need to emulate single-step mode: we put an INT3 opcode
439 right after the INT xx instruction, let the debuggee run
440 until it hits INT3 and stops, then restore the original
441 instruction which we overwrote with the INT3 opcode, and back
442 up the debuggee's EIP to that instruction. */
443 read_child (a_tss.tss_eip, &saved_opcode, 1);
444 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
445 {
446 unsigned char INT3_opcode = 0xCC;
447
448 INT3_addr
449 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
450 stepping_over_INT = 1;
451 read_child (INT3_addr, &saved_opcode, 1);
452 write_child (INT3_addr, &INT3_opcode, 1);
453 }
454 else
455 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
456 }
457
458 /* The special value FFFFh in tss_trap indicates to run_child that
459 tss_irqn holds a signal to be delivered to the debuggee. */
460 if (resume_signal <= -1)
461 {
462 a_tss.tss_trap = 0;
463 a_tss.tss_irqn = 0xff;
464 }
465 else
466 {
467 a_tss.tss_trap = 0xffff; /* run_child looks for this. */
468 a_tss.tss_irqn = resume_signal;
469 }
470
471 /* The child might change working directory behind our back. The
472 GDB users won't like the side effects of that when they work with
473 relative file names, and GDB might be confused by its current
474 directory not being in sync with the truth. So we always make a
475 point of changing back to where GDB thinks is its cwd, when we
476 return control to the debugger, but restore child's cwd before we
477 run it. */
478 /* Initialize child_cwd, before the first call to run_child and not
479 in the initialization, so the child get also the changed directory
480 set with the gdb-command "cd ..." */
481 if (!*child_cwd)
482 /* Initialize child's cwd with the current one. */
483 getcwd (child_cwd, sizeof (child_cwd));
484
485 chdir (child_cwd);
486
487 #if __DJGPP_MINOR__ < 3
488 load_npx ();
489 #endif
490 run_child ();
491 #if __DJGPP_MINOR__ < 3
492 save_npx ();
493 #endif
494
495 /* Did we step over an INT xx instruction? */
496 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
497 {
498 /* Restore the original opcode. */
499 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction. */
500 write_child (a_tss.tss_eip, &saved_opcode, 1);
501 /* Simulate a TRAP exception. */
502 a_tss.tss_irqn = 1;
503 a_tss.tss_eflags |= 0x0100;
504 }
505
506 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
507 chdir (current_directory);
508
509 if (a_tss.tss_irqn == 0x21)
510 {
511 status->kind = TARGET_WAITKIND_EXITED;
512 status->value.integer = a_tss.tss_eax & 0xff;
513 }
514 else
515 {
516 status->value.sig = TARGET_SIGNAL_UNKNOWN;
517 status->kind = TARGET_WAITKIND_STOPPED;
518 for (i = 0; sig_map[i].go32_sig != -1; i++)
519 {
520 if (a_tss.tss_irqn == sig_map[i].go32_sig)
521 {
522 #if __DJGPP_MINOR__ < 3
523 if ((status->value.sig = sig_map[i].gdb_sig) !=
524 TARGET_SIGNAL_TRAP)
525 status->kind = TARGET_WAITKIND_SIGNALLED;
526 #else
527 status->value.sig = sig_map[i].gdb_sig;
528 #endif
529 break;
530 }
531 }
532 }
533 return pid_to_ptid (SOME_PID);
534 }
535
536 static void
537 fetch_register (struct regcache *regcache, int regno)
538 {
539 struct gdbarch *gdbarch = get_regcache_arch (regcache);
540 if (regno < gdbarch_fp0_regnum (gdbarch))
541 regcache_raw_supply (regcache, regno,
542 (char *) &a_tss + regno_mapping[regno].tss_ofs);
543 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
544 regno))
545 i387_supply_fsave (regcache, regno, &npx);
546 else
547 internal_error (__FILE__, __LINE__,
548 _("Invalid register no. %d in fetch_register."), regno);
549 }
550
551 static void
552 go32_fetch_registers (struct target_ops *ops,
553 struct regcache *regcache, int regno)
554 {
555 if (regno >= 0)
556 fetch_register (regcache, regno);
557 else
558 {
559 for (regno = 0;
560 regno < gdbarch_fp0_regnum (get_regcache_arch (regcache));
561 regno++)
562 fetch_register (regcache, regno);
563 i387_supply_fsave (regcache, -1, &npx);
564 }
565 }
566
567 static void
568 store_register (const struct regcache *regcache, int regno)
569 {
570 struct gdbarch *gdbarch = get_regcache_arch (regcache);
571 if (regno < gdbarch_fp0_regnum (gdbarch))
572 regcache_raw_collect (regcache, regno,
573 (char *) &a_tss + regno_mapping[regno].tss_ofs);
574 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
575 regno))
576 i387_collect_fsave (regcache, regno, &npx);
577 else
578 internal_error (__FILE__, __LINE__,
579 _("Invalid register no. %d in store_register."), regno);
580 }
581
582 static void
583 go32_store_registers (struct target_ops *ops,
584 struct regcache *regcache, int regno)
585 {
586 unsigned r;
587
588 if (regno >= 0)
589 store_register (regcache, regno);
590 else
591 {
592 for (r = 0; r < gdbarch_fp0_regnum (get_regcache_arch (regcache)); r++)
593 store_register (regcache, r);
594 i387_collect_fsave (regcache, -1, &npx);
595 }
596 }
597
598 static void
599 go32_prepare_to_store (struct regcache *regcache)
600 {
601 }
602
603 static int
604 go32_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
605 struct mem_attrib *attrib, struct target_ops *target)
606 {
607 if (write)
608 {
609 if (write_child (memaddr, myaddr, len))
610 {
611 return 0;
612 }
613 else
614 {
615 return len;
616 }
617 }
618 else
619 {
620 if (read_child (memaddr, myaddr, len))
621 {
622 return 0;
623 }
624 else
625 {
626 return len;
627 }
628 }
629 }
630
631 static cmdline_t child_cmd; /* Parsed child's command line kept here. */
632
633 static void
634 go32_files_info (struct target_ops *target)
635 {
636 printf_unfiltered ("You are running a DJGPP V2 program.\n");
637 }
638
639 static void
640 go32_kill_inferior (struct target_ops *ops)
641 {
642 go32_mourn_inferior (ops);
643 }
644
645 static void
646 go32_create_inferior (struct target_ops *ops, char *exec_file,
647 char *args, char **env, int from_tty)
648 {
649 extern char **environ;
650 jmp_buf start_state;
651 char *cmdline;
652 char **env_save = environ;
653 size_t cmdlen;
654 struct inferior *inf;
655
656 /* If no exec file handed to us, get it from the exec-file command -- with
657 a good, common error message if none is specified. */
658 if (exec_file == 0)
659 exec_file = get_exec_file (1);
660
661 resume_signal = -1;
662 resume_is_step = 0;
663
664 /* Initialize child's cwd as empty to be initialized when starting
665 the child. */
666 *child_cwd = 0;
667
668 /* Init command line storage. */
669 if (redir_debug_init (&child_cmd) == -1)
670 internal_error (__FILE__, __LINE__,
671 _("Cannot allocate redirection storage: "
672 "not enough memory.\n"));
673
674 /* Parse the command line and create redirections. */
675 if (strpbrk (args, "<>"))
676 {
677 if (redir_cmdline_parse (args, &child_cmd) == 0)
678 args = child_cmd.command;
679 else
680 error (_("Syntax error in command line."));
681 }
682 else
683 child_cmd.command = xstrdup (args);
684
685 cmdlen = strlen (args);
686 /* v2loadimage passes command lines via DOS memory, so it cannot
687 possibly handle commands longer than 1MB. */
688 if (cmdlen > 1024*1024)
689 error (_("Command line too long."));
690
691 cmdline = xmalloc (cmdlen + 4);
692 strcpy (cmdline + 1, args);
693 /* If the command-line length fits into DOS 126-char limits, use the
694 DOS command tail format; otherwise, tell v2loadimage to pass it
695 through a buffer in conventional memory. */
696 if (cmdlen < 127)
697 {
698 cmdline[0] = strlen (args);
699 cmdline[cmdlen + 1] = 13;
700 }
701 else
702 cmdline[0] = 0xff; /* Signal v2loadimage it's a long command. */
703
704 environ = env;
705
706 if (v2loadimage (exec_file, cmdline, start_state))
707 {
708 environ = env_save;
709 printf_unfiltered ("Load failed for image %s\n", exec_file);
710 exit (1);
711 }
712 environ = env_save;
713 xfree (cmdline);
714
715 edi_init (start_state);
716 #if __DJGPP_MINOR__ < 3
717 save_npx ();
718 #endif
719
720 inferior_ptid = pid_to_ptid (SOME_PID);
721 inf = current_inferior ();
722 inferior_appeared (inf, SOME_PID);
723
724 push_target (&go32_ops);
725
726 add_thread_silent (inferior_ptid);
727
728 clear_proceed_status ();
729 insert_breakpoints ();
730 prog_has_started = 1;
731 }
732
733 static void
734 go32_mourn_inferior (struct target_ops *ops)
735 {
736 ptid_t ptid;
737
738 redir_cmdline_delete (&child_cmd);
739 resume_signal = -1;
740 resume_is_step = 0;
741
742 cleanup_client ();
743
744 /* We need to make sure all the breakpoint enable bits in the DR7
745 register are reset when the inferior exits. Otherwise, if they
746 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
747 failure to set more watchpoints, and other calamities. It would
748 be nice if GDB itself would take care to remove all breakpoints
749 at all times, but it doesn't, probably under an assumption that
750 the OS cleans up when the debuggee exits. */
751 i386_cleanup_dregs ();
752
753 ptid = inferior_ptid;
754 inferior_ptid = null_ptid;
755 delete_thread_silent (ptid);
756 prog_has_started = 0;
757
758 unpush_target (ops);
759 generic_mourn_inferior ();
760 }
761
762 static int
763 go32_can_run (void)
764 {
765 return 1;
766 }
767
768 /* Hardware watchpoint support. */
769
770 #define D_REGS edi.dr
771 #define CONTROL D_REGS[7]
772 #define STATUS D_REGS[6]
773
774 /* Pass the address ADDR to the inferior in the I'th debug register.
775 Here we just store the address in D_REGS, the watchpoint will be
776 actually set up when go32_wait runs the debuggee. */
777 static void
778 go32_set_dr (int i, CORE_ADDR addr)
779 {
780 if (i < 0 || i > 3)
781 internal_error (__FILE__, __LINE__,
782 _("Invalid register %d in go32_set_dr.\n"), i);
783 D_REGS[i] = addr;
784 }
785
786 /* Pass the value VAL to the inferior in the DR7 debug control
787 register. Here we just store the address in D_REGS, the watchpoint
788 will be actually set up when go32_wait runs the debuggee. */
789 static void
790 go32_set_dr7 (unsigned long val)
791 {
792 CONTROL = val;
793 }
794
795 /* Get the value of the DR6 debug status register from the inferior.
796 Here we just return the value stored in D_REGS, as we've got it
797 from the last go32_wait call. */
798 static unsigned long
799 go32_get_dr6 (void)
800 {
801 return STATUS;
802 }
803
804 /* Get the value of the DR7 debug status register from the inferior.
805 Here we just return the value stored in D_REGS, as we've got it
806 from the last go32_wait call. */
807
808 static unsigned long
809 go32_get_dr7 (void)
810 {
811 return CONTROL;
812 }
813
814 /* Get the value of the DR debug register I from the inferior. Here
815 we just return the value stored in D_REGS, as we've got it from the
816 last go32_wait call. */
817
818 static CORE_ADDR
819 go32_get_dr (int i)
820 {
821 if (i < 0 || i > 3)
822 internal_error (__FILE__, __LINE__,
823 _("Invalid register %d in go32_get_dr.\n"), i);
824 return D_REGS[i];
825 }
826
827 /* Put the device open on handle FD into either raw or cooked
828 mode, return 1 if it was in raw mode, zero otherwise. */
829
830 static int
831 device_mode (int fd, int raw_p)
832 {
833 int oldmode, newmode;
834 __dpmi_regs regs;
835
836 regs.x.ax = 0x4400;
837 regs.x.bx = fd;
838 __dpmi_int (0x21, &regs);
839 if (regs.x.flags & 1)
840 return -1;
841 newmode = oldmode = regs.x.dx;
842
843 if (raw_p)
844 newmode |= 0x20;
845 else
846 newmode &= ~0x20;
847
848 if (oldmode & 0x80) /* Only for character dev. */
849 {
850 regs.x.ax = 0x4401;
851 regs.x.bx = fd;
852 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails. */
853 __dpmi_int (0x21, &regs);
854 if (regs.x.flags & 1)
855 return -1;
856 }
857 return (oldmode & 0x20) == 0x20;
858 }
859
860
861 static int inf_mode_valid = 0;
862 static int inf_terminal_mode;
863
864 /* This semaphore is needed because, amazingly enough, GDB calls
865 target.to_terminal_ours more than once after the inferior stops.
866 But we need the information from the first call only, since the
867 second call will always see GDB's own cooked terminal. */
868 static int terminal_is_ours = 1;
869
870 static void
871 go32_terminal_init (void)
872 {
873 inf_mode_valid = 0; /* Reinitialize, in case they are restarting child. */
874 terminal_is_ours = 1;
875 }
876
877 static void
878 go32_terminal_info (char *args, int from_tty)
879 {
880 printf_unfiltered ("Inferior's terminal is in %s mode.\n",
881 !inf_mode_valid
882 ? "default" : inf_terminal_mode ? "raw" : "cooked");
883
884 #if __DJGPP_MINOR__ > 2
885 if (child_cmd.redirection)
886 {
887 int i;
888
889 for (i = 0; i < DBG_HANDLES; i++)
890 {
891 if (child_cmd.redirection[i]->file_name)
892 printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
893 i, child_cmd.redirection[i]->file_name);
894 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
895 printf_unfiltered
896 ("\tFile handle %d appears to be closed by inferior.\n", i);
897 /* Mask off the raw/cooked bit when comparing device info words. */
898 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
899 != (_get_dev_info (i) & 0xdf))
900 printf_unfiltered
901 ("\tFile handle %d appears to be redirected by inferior.\n", i);
902 }
903 }
904 #endif
905 }
906
907 static void
908 go32_terminal_inferior (void)
909 {
910 /* Redirect standard handles as child wants them. */
911 errno = 0;
912 if (redir_to_child (&child_cmd) == -1)
913 {
914 redir_to_debugger (&child_cmd);
915 error (_("Cannot redirect standard handles for program: %s."),
916 safe_strerror (errno));
917 }
918 /* Set the console device of the inferior to whatever mode
919 (raw or cooked) we found it last time. */
920 if (terminal_is_ours)
921 {
922 if (inf_mode_valid)
923 device_mode (0, inf_terminal_mode);
924 terminal_is_ours = 0;
925 }
926 }
927
928 static void
929 go32_terminal_ours (void)
930 {
931 /* Switch to cooked mode on the gdb terminal and save the inferior
932 terminal mode to be restored when it is resumed. */
933 if (!terminal_is_ours)
934 {
935 inf_terminal_mode = device_mode (0, 0);
936 if (inf_terminal_mode != -1)
937 inf_mode_valid = 1;
938 else
939 /* If device_mode returned -1, we don't know what happens with
940 handle 0 anymore, so make the info invalid. */
941 inf_mode_valid = 0;
942 terminal_is_ours = 1;
943
944 /* Restore debugger's standard handles. */
945 errno = 0;
946 if (redir_to_debugger (&child_cmd) == -1)
947 {
948 redir_to_child (&child_cmd);
949 error (_("Cannot redirect standard handles for debugger: %s."),
950 safe_strerror (errno));
951 }
952 }
953 }
954
955 static int
956 go32_thread_alive (struct target_ops *ops, ptid_t ptid)
957 {
958 return !ptid_equal (inferior_ptid, null_ptid);
959 }
960
961 static char *
962 go32_pid_to_str (struct target_ops *ops, ptid_t ptid)
963 {
964 return normal_pid_to_str (ptid);
965 }
966
967 static void
968 init_go32_ops (void)
969 {
970 go32_ops.to_shortname = "djgpp";
971 go32_ops.to_longname = "djgpp target process";
972 go32_ops.to_doc =
973 "Program loaded by djgpp, when gdb is used as an external debugger";
974 go32_ops.to_open = go32_open;
975 go32_ops.to_close = go32_close;
976 go32_ops.to_attach = go32_attach;
977 go32_ops.to_detach = go32_detach;
978 go32_ops.to_resume = go32_resume;
979 go32_ops.to_wait = go32_wait;
980 go32_ops.to_fetch_registers = go32_fetch_registers;
981 go32_ops.to_store_registers = go32_store_registers;
982 go32_ops.to_prepare_to_store = go32_prepare_to_store;
983 go32_ops.deprecated_xfer_memory = go32_xfer_memory;
984 go32_ops.to_files_info = go32_files_info;
985 go32_ops.to_insert_breakpoint = memory_insert_breakpoint;
986 go32_ops.to_remove_breakpoint = memory_remove_breakpoint;
987 go32_ops.to_terminal_init = go32_terminal_init;
988 go32_ops.to_terminal_inferior = go32_terminal_inferior;
989 go32_ops.to_terminal_ours_for_output = go32_terminal_ours;
990 go32_ops.to_terminal_ours = go32_terminal_ours;
991 go32_ops.to_terminal_info = go32_terminal_info;
992 go32_ops.to_kill = go32_kill_inferior;
993 go32_ops.to_create_inferior = go32_create_inferior;
994 go32_ops.to_mourn_inferior = go32_mourn_inferior;
995 go32_ops.to_can_run = go32_can_run;
996 go32_ops.to_thread_alive = go32_thread_alive;
997 go32_ops.to_pid_to_str = go32_pid_to_str;
998 go32_ops.to_stratum = process_stratum;
999 go32_ops.to_has_all_memory = default_child_has_all_memory;
1000 go32_ops.to_has_memory = default_child_has_memory;
1001 go32_ops.to_has_stack = default_child_has_stack;
1002 go32_ops.to_has_registers = default_child_has_registers;
1003 go32_ops.to_has_execution = default_child_has_execution;
1004
1005 i386_use_watchpoints (&go32_ops);
1006
1007
1008 i386_dr_low.set_control = go32_set_dr7;
1009 i386_dr_low.set_addr = go32_set_dr;
1010 i386_dr_low.get_status = go32_get_dr6;
1011 i386_dr_low.get_control = go32_get_dr7;
1012 i386_dr_low.get_addr = go32_get_dr;
1013 i386_set_debug_register_length (4);
1014
1015 go32_ops.to_magic = OPS_MAGIC;
1016
1017 /* Initialize child's cwd as empty to be initialized when starting
1018 the child. */
1019 *child_cwd = 0;
1020
1021 /* Initialize child's command line storage. */
1022 if (redir_debug_init (&child_cmd) == -1)
1023 internal_error (__FILE__, __LINE__,
1024 _("Cannot allocate redirection storage: "
1025 "not enough memory.\n"));
1026
1027 /* We are always processing GCC-compiled programs. */
1028 processing_gcc_compilation = 2;
1029
1030 /* Override the default name of the GDB init file. */
1031 strcpy (gdbinit, "gdb.ini");
1032 }
1033
1034 /* Return the current DOS codepage number. */
1035 static int
1036 dos_codepage (void)
1037 {
1038 __dpmi_regs regs;
1039
1040 regs.x.ax = 0x6601;
1041 __dpmi_int (0x21, &regs);
1042 if (!(regs.x.flags & 1))
1043 return regs.x.bx & 0xffff;
1044 else
1045 return 437; /* default */
1046 }
1047
1048 /* Limited emulation of `nl_langinfo', for charset.c. */
1049 char *
1050 nl_langinfo (nl_item item)
1051 {
1052 char *retval;
1053
1054 switch (item)
1055 {
1056 case CODESET:
1057 {
1058 /* 8 is enough for SHORT_MAX + "CP" + null. */
1059 char buf[8];
1060 int blen = sizeof (buf);
1061 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1062
1063 if (needed > blen) /* Should never happen. */
1064 buf[0] = 0;
1065 retval = xstrdup (buf);
1066 }
1067 break;
1068 default:
1069 retval = xstrdup ("");
1070 break;
1071 }
1072 return retval;
1073 }
1074
1075 unsigned short windows_major, windows_minor;
1076
1077 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1078 static void
1079 go32_get_windows_version(void)
1080 {
1081 __dpmi_regs r;
1082
1083 r.x.ax = 0x1600;
1084 __dpmi_int(0x2f, &r);
1085 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1086 && (r.h.al > 3 || r.h.ah > 0))
1087 {
1088 windows_major = r.h.al;
1089 windows_minor = r.h.ah;
1090 }
1091 else
1092 windows_major = 0xff; /* meaning no Windows */
1093 }
1094
1095 /* A subroutine of go32_sysinfo to display memory info. */
1096 static void
1097 print_mem (unsigned long datum, const char *header, int in_pages_p)
1098 {
1099 if (datum != 0xffffffffUL)
1100 {
1101 if (in_pages_p)
1102 datum <<= 12;
1103 puts_filtered (header);
1104 if (datum > 1024)
1105 {
1106 printf_filtered ("%lu KB", datum >> 10);
1107 if (datum > 1024 * 1024)
1108 printf_filtered (" (%lu MB)", datum >> 20);
1109 }
1110 else
1111 printf_filtered ("%lu Bytes", datum);
1112 puts_filtered ("\n");
1113 }
1114 }
1115
1116 /* Display assorted information about the underlying OS. */
1117 static void
1118 go32_sysinfo (char *arg, int from_tty)
1119 {
1120 static const char test_pattern[] =
1121 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1122 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1123 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1124 struct utsname u;
1125 char cpuid_vendor[13];
1126 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1127 unsigned true_dos_version = _get_dos_version (1);
1128 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1129 int dpmi_flags;
1130 char dpmi_vendor_info[129];
1131 int dpmi_vendor_available;
1132 __dpmi_version_ret dpmi_version_data;
1133 long eflags;
1134 __dpmi_free_mem_info mem_info;
1135 __dpmi_regs regs;
1136
1137 cpuid_vendor[0] = '\0';
1138 if (uname (&u))
1139 strcpy (u.machine, "Unknown x86");
1140 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1141 {
1142 /* CPUID with EAX = 0 returns the Vendor ID. */
1143 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1144 "xorl %%ecx, %%ecx;"
1145 "xorl %%edx, %%edx;"
1146 "movl $0, %%eax;"
1147 "cpuid;"
1148 "movl %%ebx, %0;"
1149 "movl %%edx, %1;"
1150 "movl %%ecx, %2;"
1151 "movl %%eax, %3;"
1152 : "=m" (cpuid_vendor[0]),
1153 "=m" (cpuid_vendor[4]),
1154 "=m" (cpuid_vendor[8]),
1155 "=m" (cpuid_max)
1156 :
1157 : "%eax", "%ebx", "%ecx", "%edx");
1158 cpuid_vendor[12] = '\0';
1159 }
1160
1161 printf_filtered ("CPU Type.......................%s", u.machine);
1162 if (cpuid_vendor[0])
1163 printf_filtered (" (%s)", cpuid_vendor);
1164 puts_filtered ("\n");
1165
1166 /* CPUID with EAX = 1 returns processor signature and features. */
1167 if (cpuid_max >= 1)
1168 {
1169 static char *brand_name[] = {
1170 "",
1171 " Celeron",
1172 " III",
1173 " III Xeon",
1174 "", "", "", "",
1175 " 4"
1176 };
1177 char cpu_string[80];
1178 char cpu_brand[20];
1179 unsigned brand_idx;
1180 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1181 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1182 unsigned cpu_family, cpu_model;
1183
1184 __asm__ __volatile__ ("movl $1, %%eax;"
1185 "cpuid;"
1186 : "=a" (cpuid_eax),
1187 "=b" (cpuid_ebx),
1188 "=d" (cpuid_edx)
1189 :
1190 : "%ecx");
1191 brand_idx = cpuid_ebx & 0xff;
1192 cpu_family = (cpuid_eax >> 8) & 0xf;
1193 cpu_model = (cpuid_eax >> 4) & 0xf;
1194 cpu_brand[0] = '\0';
1195 if (intel_p)
1196 {
1197 if (brand_idx > 0
1198 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1199 && *brand_name[brand_idx])
1200 strcpy (cpu_brand, brand_name[brand_idx]);
1201 else if (cpu_family == 5)
1202 {
1203 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1204 strcpy (cpu_brand, " MMX");
1205 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1206 strcpy (cpu_brand, " OverDrive");
1207 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1208 strcpy (cpu_brand, " Dual");
1209 }
1210 else if (cpu_family == 6 && cpu_model < 8)
1211 {
1212 switch (cpu_model)
1213 {
1214 case 1:
1215 strcpy (cpu_brand, " Pro");
1216 break;
1217 case 3:
1218 strcpy (cpu_brand, " II");
1219 break;
1220 case 5:
1221 strcpy (cpu_brand, " II Xeon");
1222 break;
1223 case 6:
1224 strcpy (cpu_brand, " Celeron");
1225 break;
1226 case 7:
1227 strcpy (cpu_brand, " III");
1228 break;
1229 }
1230 }
1231 }
1232 else if (amd_p)
1233 {
1234 switch (cpu_family)
1235 {
1236 case 4:
1237 strcpy (cpu_brand, "486/5x86");
1238 break;
1239 case 5:
1240 switch (cpu_model)
1241 {
1242 case 0:
1243 case 1:
1244 case 2:
1245 case 3:
1246 strcpy (cpu_brand, "-K5");
1247 break;
1248 case 6:
1249 case 7:
1250 strcpy (cpu_brand, "-K6");
1251 break;
1252 case 8:
1253 strcpy (cpu_brand, "-K6-2");
1254 break;
1255 case 9:
1256 strcpy (cpu_brand, "-K6-III");
1257 break;
1258 }
1259 break;
1260 case 6:
1261 switch (cpu_model)
1262 {
1263 case 1:
1264 case 2:
1265 case 4:
1266 strcpy (cpu_brand, " Athlon");
1267 break;
1268 case 3:
1269 strcpy (cpu_brand, " Duron");
1270 break;
1271 }
1272 break;
1273 }
1274 }
1275 sprintf (cpu_string, "%s%s Model %d Stepping %d",
1276 intel_p ? "Pentium" : (amd_p ? "AMD" : "ix86"),
1277 cpu_brand, cpu_model, cpuid_eax & 0xf);
1278 printfi_filtered (31, "%s\n", cpu_string);
1279 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1280 || ((cpuid_edx & 1) == 0)
1281 || (amd_p && (cpuid_edx & (3 << 30)) != 0))
1282 {
1283 puts_filtered ("CPU Features...................");
1284 /* We only list features which might be useful in the DPMI
1285 environment. */
1286 if ((cpuid_edx & 1) == 0)
1287 puts_filtered ("No FPU "); /* It's unusual to not have an FPU. */
1288 if ((cpuid_edx & (1 << 1)) != 0)
1289 puts_filtered ("VME ");
1290 if ((cpuid_edx & (1 << 2)) != 0)
1291 puts_filtered ("DE ");
1292 if ((cpuid_edx & (1 << 4)) != 0)
1293 puts_filtered ("TSC ");
1294 if ((cpuid_edx & (1 << 23)) != 0)
1295 puts_filtered ("MMX ");
1296 if ((cpuid_edx & (1 << 25)) != 0)
1297 puts_filtered ("SSE ");
1298 if ((cpuid_edx & (1 << 26)) != 0)
1299 puts_filtered ("SSE2 ");
1300 if (amd_p)
1301 {
1302 if ((cpuid_edx & (1 << 31)) != 0)
1303 puts_filtered ("3DNow! ");
1304 if ((cpuid_edx & (1 << 30)) != 0)
1305 puts_filtered ("3DNow!Ext");
1306 }
1307 puts_filtered ("\n");
1308 }
1309 }
1310 puts_filtered ("\n");
1311 printf_filtered ("DOS Version....................%s %s.%s",
1312 _os_flavor, u.release, u.version);
1313 if (true_dos_version != advertized_dos_version)
1314 printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1315 puts_filtered ("\n");
1316 if (!windows_major)
1317 go32_get_windows_version ();
1318 if (windows_major != 0xff)
1319 {
1320 const char *windows_flavor;
1321
1322 printf_filtered ("Windows Version................%d.%02d (Windows ",
1323 windows_major, windows_minor);
1324 switch (windows_major)
1325 {
1326 case 3:
1327 windows_flavor = "3.X";
1328 break;
1329 case 4:
1330 switch (windows_minor)
1331 {
1332 case 0:
1333 windows_flavor = "95, 95A, or 95B";
1334 break;
1335 case 3:
1336 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1337 break;
1338 case 10:
1339 windows_flavor = "98 or 98 SE";
1340 break;
1341 case 90:
1342 windows_flavor = "ME";
1343 break;
1344 default:
1345 windows_flavor = "9X";
1346 break;
1347 }
1348 break;
1349 default:
1350 windows_flavor = "??";
1351 break;
1352 }
1353 printf_filtered ("%s)\n", windows_flavor);
1354 }
1355 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1356 printf_filtered ("Windows Version................"
1357 "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1358 puts_filtered ("\n");
1359 /* On some versions of Windows, __dpmi_get_capabilities returns
1360 zero, but the buffer is not filled with info, so we fill the
1361 buffer with a known pattern and test for it afterwards. */
1362 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1363 dpmi_vendor_available =
1364 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1365 if (dpmi_vendor_available == 0
1366 && memcmp (dpmi_vendor_info, test_pattern,
1367 sizeof(dpmi_vendor_info)) != 0)
1368 {
1369 /* The DPMI spec says the vendor string should be ASCIIZ, but
1370 I don't trust the vendors to follow that... */
1371 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1372 dpmi_vendor_info[128] = '\0';
1373 printf_filtered ("DPMI Host......................"
1374 "%s v%d.%d (capabilities: %#x)\n",
1375 &dpmi_vendor_info[2],
1376 (unsigned)dpmi_vendor_info[0],
1377 (unsigned)dpmi_vendor_info[1],
1378 ((unsigned)dpmi_flags & 0x7f));
1379 }
1380 else
1381 printf_filtered ("DPMI Host......................(Info not available)\n");
1382 __dpmi_get_version (&dpmi_version_data);
1383 printf_filtered ("DPMI Version...................%d.%02d\n",
1384 dpmi_version_data.major, dpmi_version_data.minor);
1385 printf_filtered ("DPMI Info......................"
1386 "%s-bit DPMI, with%s Virtual Memory support\n",
1387 (dpmi_version_data.flags & 1) ? "32" : "16",
1388 (dpmi_version_data.flags & 4) ? "" : "out");
1389 printfi_filtered (31, "Interrupts reflected to %s mode\n",
1390 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1391 printfi_filtered (31, "Processor type: i%d86\n",
1392 dpmi_version_data.cpu);
1393 printfi_filtered (31, "PIC base interrupt: Master: %#x Slave: %#x\n",
1394 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1395
1396 /* a_tss is only initialized when the debuggee is first run. */
1397 if (prog_has_started)
1398 {
1399 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1400 printf_filtered ("Protection....................."
1401 "Ring %d (in %s), with%s I/O protection\n",
1402 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1403 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1404 }
1405 puts_filtered ("\n");
1406 __dpmi_get_free_memory_information (&mem_info);
1407 print_mem (mem_info.total_number_of_physical_pages,
1408 "DPMI Total Physical Memory.....", 1);
1409 print_mem (mem_info.total_number_of_free_pages,
1410 "DPMI Free Physical Memory......", 1);
1411 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1412 "DPMI Swap Space................", 1);
1413 print_mem (mem_info.linear_address_space_size_in_pages,
1414 "DPMI Total Linear Address Size.", 1);
1415 print_mem (mem_info.free_linear_address_space_in_pages,
1416 "DPMI Free Linear Address Size..", 1);
1417 print_mem (mem_info.largest_available_free_block_in_bytes,
1418 "DPMI Largest Free Memory Block.", 0);
1419
1420 regs.h.ah = 0x48;
1421 regs.x.bx = 0xffff;
1422 __dpmi_int (0x21, &regs);
1423 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1424 regs.x.ax = 0x5800;
1425 __dpmi_int (0x21, &regs);
1426 if ((regs.x.flags & 1) == 0)
1427 {
1428 static const char *dos_hilo[] = {
1429 "Low", "", "", "", "High", "", "", "", "High, then Low"
1430 };
1431 static const char *dos_fit[] = {
1432 "First", "Best", "Last"
1433 };
1434 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1435 int fit_idx = regs.x.ax & 0x0f;
1436
1437 if (hilo_idx > 8)
1438 hilo_idx = 0;
1439 if (fit_idx > 2)
1440 fit_idx = 0;
1441 printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1442 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1443 regs.x.ax = 0x5802;
1444 __dpmi_int (0x21, &regs);
1445 if ((regs.x.flags & 1) != 0)
1446 regs.h.al = 0;
1447 printfi_filtered (31, "UMBs %sin DOS memory chain\n",
1448 regs.h.al == 0 ? "not " : "");
1449 }
1450 }
1451
1452 struct seg_descr {
1453 unsigned short limit0;
1454 unsigned short base0;
1455 unsigned char base1;
1456 unsigned stype:5;
1457 unsigned dpl:2;
1458 unsigned present:1;
1459 unsigned limit1:4;
1460 unsigned available:1;
1461 unsigned dummy:1;
1462 unsigned bit32:1;
1463 unsigned page_granular:1;
1464 unsigned char base2;
1465 } __attribute__ ((packed));
1466
1467 struct gate_descr {
1468 unsigned short offset0;
1469 unsigned short selector;
1470 unsigned param_count:5;
1471 unsigned dummy:3;
1472 unsigned stype:5;
1473 unsigned dpl:2;
1474 unsigned present:1;
1475 unsigned short offset1;
1476 } __attribute__ ((packed));
1477
1478 /* Read LEN bytes starting at logical address ADDR, and put the result
1479 into DEST. Return 1 if success, zero if not. */
1480 static int
1481 read_memory_region (unsigned long addr, void *dest, size_t len)
1482 {
1483 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1484 int retval = 1;
1485
1486 /* For the low memory, we can simply use _dos_ds. */
1487 if (addr <= dos_ds_limit - len)
1488 dosmemget (addr, len, dest);
1489 else
1490 {
1491 /* For memory above 1MB we need to set up a special segment to
1492 be able to access that memory. */
1493 int sel = __dpmi_allocate_ldt_descriptors (1);
1494
1495 if (sel <= 0)
1496 retval = 0;
1497 else
1498 {
1499 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1500 size_t segment_limit = len - 1;
1501
1502 /* Make sure the crucial bits in the descriptor access
1503 rights are set correctly. Some DPMI providers might barf
1504 if we set the segment limit to something that is not an
1505 integral multiple of 4KB pages if the granularity bit is
1506 not set to byte-granular, even though the DPMI spec says
1507 it's the host's responsibility to set that bit correctly. */
1508 if (len > 1024 * 1024)
1509 {
1510 access_rights |= 0x8000;
1511 /* Page-granular segments should have the low 12 bits of
1512 the limit set. */
1513 segment_limit |= 0xfff;
1514 }
1515 else
1516 access_rights &= ~0x8000;
1517
1518 if (__dpmi_set_segment_base_address (sel, addr) != -1
1519 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1520 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1521 /* W2K silently fails to set the segment limit, leaving
1522 it at zero; this test avoids the resulting crash. */
1523 && __dpmi_get_segment_limit (sel) >= segment_limit)
1524 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1525 else
1526 retval = 0;
1527
1528 __dpmi_free_ldt_descriptor (sel);
1529 }
1530 }
1531 return retval;
1532 }
1533
1534 /* Get a segment descriptor stored at index IDX in the descriptor
1535 table whose base address is TABLE_BASE. Return the descriptor
1536 type, or -1 if failure. */
1537 static int
1538 get_descriptor (unsigned long table_base, int idx, void *descr)
1539 {
1540 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1541
1542 if (read_memory_region (addr, descr, 8))
1543 return (int)((struct seg_descr *)descr)->stype;
1544 return -1;
1545 }
1546
1547 struct dtr_reg {
1548 unsigned short limit __attribute__((packed));
1549 unsigned long base __attribute__((packed));
1550 };
1551
1552 /* Display a segment descriptor stored at index IDX in a descriptor
1553 table whose type is TYPE and whose base address is BASE_ADDR. If
1554 FORCE is non-zero, display even invalid descriptors. */
1555 static void
1556 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1557 {
1558 struct seg_descr descr;
1559 struct gate_descr gate;
1560
1561 /* Get the descriptor from the table. */
1562 if (idx == 0 && type == 0)
1563 puts_filtered ("0x000: null descriptor\n");
1564 else if (get_descriptor (base_addr, idx, &descr) != -1)
1565 {
1566 /* For each type of descriptor table, this has a bit set if the
1567 corresponding type of selectors is valid in that table. */
1568 static unsigned allowed_descriptors[] = {
1569 0xffffdafeL, /* GDT */
1570 0x0000c0e0L, /* IDT */
1571 0xffffdafaL /* LDT */
1572 };
1573
1574 /* If the program hasn't started yet, assume the debuggee will
1575 have the same CPL as the debugger. */
1576 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1577 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1578
1579 if (descr.present
1580 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1581 {
1582 printf_filtered ("0x%03x: ",
1583 type == 1
1584 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1585 if (descr.page_granular)
1586 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1587 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1588 || descr.stype == 9 || descr.stype == 11
1589 || (descr.stype >= 16 && descr.stype < 32))
1590 printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1591 descr.base2, descr.base1, descr.base0, limit);
1592
1593 switch (descr.stype)
1594 {
1595 case 1:
1596 case 3:
1597 printf_filtered (" 16-bit TSS (task %sactive)",
1598 descr.stype == 3 ? "" : "in");
1599 break;
1600 case 2:
1601 puts_filtered (" LDT");
1602 break;
1603 case 4:
1604 memcpy (&gate, &descr, sizeof gate);
1605 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1606 gate.selector, gate.offset1, gate.offset0);
1607 printf_filtered (" 16-bit Call Gate (params=%d)",
1608 gate.param_count);
1609 break;
1610 case 5:
1611 printf_filtered ("TSS selector=0x%04x", descr.base0);
1612 printfi_filtered (16, "Task Gate");
1613 break;
1614 case 6:
1615 case 7:
1616 memcpy (&gate, &descr, sizeof gate);
1617 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1618 gate.selector, gate.offset1, gate.offset0);
1619 printf_filtered (" 16-bit %s Gate",
1620 descr.stype == 6 ? "Interrupt" : "Trap");
1621 break;
1622 case 9:
1623 case 11:
1624 printf_filtered (" 32-bit TSS (task %sactive)",
1625 descr.stype == 3 ? "" : "in");
1626 break;
1627 case 12:
1628 memcpy (&gate, &descr, sizeof gate);
1629 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1630 gate.selector, gate.offset1, gate.offset0);
1631 printf_filtered (" 32-bit Call Gate (params=%d)",
1632 gate.param_count);
1633 break;
1634 case 14:
1635 case 15:
1636 memcpy (&gate, &descr, sizeof gate);
1637 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1638 gate.selector, gate.offset1, gate.offset0);
1639 printf_filtered (" 32-bit %s Gate",
1640 descr.stype == 14 ? "Interrupt" : "Trap");
1641 break;
1642 case 16: /* data segments */
1643 case 17:
1644 case 18:
1645 case 19:
1646 case 20:
1647 case 21:
1648 case 22:
1649 case 23:
1650 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1651 descr.bit32 ? "32" : "16",
1652 descr.stype & 2
1653 ? "Read/Write," : "Read-Only, ",
1654 descr.stype & 4 ? "down" : "up",
1655 descr.stype & 1 ? "" : ", N.Acc");
1656 break;
1657 case 24: /* code segments */
1658 case 25:
1659 case 26:
1660 case 27:
1661 case 28:
1662 case 29:
1663 case 30:
1664 case 31:
1665 printf_filtered (" %s-bit Code (%s, %sConf%s)",
1666 descr.bit32 ? "32" : "16",
1667 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1668 descr.stype & 4 ? "" : "N.",
1669 descr.stype & 1 ? "" : ", N.Acc");
1670 break;
1671 default:
1672 printf_filtered ("Unknown type 0x%02x", descr.stype);
1673 break;
1674 }
1675 puts_filtered ("\n");
1676 }
1677 else if (force)
1678 {
1679 printf_filtered ("0x%03x: ",
1680 type == 1
1681 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1682 if (!descr.present)
1683 puts_filtered ("Segment not present\n");
1684 else
1685 printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1686 descr.stype);
1687 }
1688 }
1689 else if (force)
1690 printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1691 }
1692
1693 static void
1694 go32_sldt (char *arg, int from_tty)
1695 {
1696 struct dtr_reg gdtr;
1697 unsigned short ldtr = 0;
1698 int ldt_idx;
1699 struct seg_descr ldt_descr;
1700 long ldt_entry = -1L;
1701 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1702
1703 if (arg && *arg)
1704 {
1705 while (*arg && isspace(*arg))
1706 arg++;
1707
1708 if (*arg)
1709 {
1710 ldt_entry = parse_and_eval_long (arg);
1711 if (ldt_entry < 0
1712 || (ldt_entry & 4) == 0
1713 || (ldt_entry & 3) != (cpl & 3))
1714 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1715 }
1716 }
1717
1718 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1719 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1720 ldt_idx = ldtr / 8;
1721 if (ldt_idx == 0)
1722 puts_filtered ("There is no LDT.\n");
1723 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1724 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1725 printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1726 ldt_descr.base0
1727 | (ldt_descr.base1 << 16)
1728 | (ldt_descr.base2 << 24));
1729 else
1730 {
1731 unsigned base =
1732 ldt_descr.base0
1733 | (ldt_descr.base1 << 16)
1734 | (ldt_descr.base2 << 24);
1735 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1736 int max_entry;
1737
1738 if (ldt_descr.page_granular)
1739 /* Page-granular segments must have the low 12 bits of their
1740 limit set. */
1741 limit = (limit << 12) | 0xfff;
1742 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1743 64KB. */
1744 if (limit > 0xffff)
1745 limit = 0xffff;
1746
1747 max_entry = (limit + 1) / 8;
1748
1749 if (ldt_entry >= 0)
1750 {
1751 if (ldt_entry > limit)
1752 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1753 (unsigned long)ldt_entry, limit);
1754
1755 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1756 }
1757 else
1758 {
1759 int i;
1760
1761 for (i = 0; i < max_entry; i++)
1762 display_descriptor (ldt_descr.stype, base, i, 0);
1763 }
1764 }
1765 }
1766
1767 static void
1768 go32_sgdt (char *arg, int from_tty)
1769 {
1770 struct dtr_reg gdtr;
1771 long gdt_entry = -1L;
1772 int max_entry;
1773
1774 if (arg && *arg)
1775 {
1776 while (*arg && isspace(*arg))
1777 arg++;
1778
1779 if (*arg)
1780 {
1781 gdt_entry = parse_and_eval_long (arg);
1782 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1783 error (_("Invalid GDT entry 0x%03lx: "
1784 "not an integral multiple of 8."),
1785 (unsigned long)gdt_entry);
1786 }
1787 }
1788
1789 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1790 max_entry = (gdtr.limit + 1) / 8;
1791
1792 if (gdt_entry >= 0)
1793 {
1794 if (gdt_entry > gdtr.limit)
1795 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1796 (unsigned long)gdt_entry, gdtr.limit);
1797
1798 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1799 }
1800 else
1801 {
1802 int i;
1803
1804 for (i = 0; i < max_entry; i++)
1805 display_descriptor (0, gdtr.base, i, 0);
1806 }
1807 }
1808
1809 static void
1810 go32_sidt (char *arg, int from_tty)
1811 {
1812 struct dtr_reg idtr;
1813 long idt_entry = -1L;
1814 int max_entry;
1815
1816 if (arg && *arg)
1817 {
1818 while (*arg && isspace(*arg))
1819 arg++;
1820
1821 if (*arg)
1822 {
1823 idt_entry = parse_and_eval_long (arg);
1824 if (idt_entry < 0)
1825 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1826 }
1827 }
1828
1829 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1830 max_entry = (idtr.limit + 1) / 8;
1831 if (max_entry > 0x100) /* No more than 256 entries. */
1832 max_entry = 0x100;
1833
1834 if (idt_entry >= 0)
1835 {
1836 if (idt_entry > idtr.limit)
1837 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1838 (unsigned long)idt_entry, idtr.limit);
1839
1840 display_descriptor (1, idtr.base, idt_entry, 1);
1841 }
1842 else
1843 {
1844 int i;
1845
1846 for (i = 0; i < max_entry; i++)
1847 display_descriptor (1, idtr.base, i, 0);
1848 }
1849 }
1850
1851 /* Cached linear address of the base of the page directory. For
1852 now, available only under CWSDPMI. Code based on ideas and
1853 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1854 static unsigned long pdbr;
1855
1856 static unsigned long
1857 get_cr3 (void)
1858 {
1859 unsigned offset;
1860 unsigned taskreg;
1861 unsigned long taskbase, cr3;
1862 struct dtr_reg gdtr;
1863
1864 if (pdbr > 0 && pdbr <= 0xfffff)
1865 return pdbr;
1866
1867 /* Get the linear address of GDT and the Task Register. */
1868 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1869 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1870
1871 /* Task Register is a segment selector for the TSS of the current
1872 task. Therefore, it can be used as an index into the GDT to get
1873 at the segment descriptor for the TSS. To get the index, reset
1874 the low 3 bits of the selector (which give the CPL). Add 2 to the
1875 offset to point to the 3 low bytes of the base address. */
1876 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1877
1878
1879 /* CWSDPMI's task base is always under the 1MB mark. */
1880 if (offset > 0xfffff)
1881 return 0;
1882
1883 _farsetsel (_dos_ds);
1884 taskbase = _farnspeekl (offset) & 0xffffffU;
1885 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1886 if (taskbase > 0xfffff)
1887 return 0;
1888
1889 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1890 offset 1Ch in the TSS. */
1891 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1892 if (cr3 > 0xfffff)
1893 {
1894 #if 0 /* Not fullly supported yet. */
1895 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1896 the first Page Table right below the Page Directory. Thus,
1897 the first Page Table's entry for its own address and the Page
1898 Directory entry for that Page Table will hold the same
1899 physical address. The loop below searches the entire UMB
1900 range of addresses for such an occurence. */
1901 unsigned long addr, pte_idx;
1902
1903 for (addr = 0xb0000, pte_idx = 0xb0;
1904 pte_idx < 0xff;
1905 addr += 0x1000, pte_idx++)
1906 {
1907 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1908 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1909 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1910 {
1911 cr3 = addr + 0x1000;
1912 break;
1913 }
1914 }
1915 #endif
1916
1917 if (cr3 > 0xfffff)
1918 cr3 = 0;
1919 }
1920
1921 return cr3;
1922 }
1923
1924 /* Return the N'th Page Directory entry. */
1925 static unsigned long
1926 get_pde (int n)
1927 {
1928 unsigned long pde = 0;
1929
1930 if (pdbr && n >= 0 && n < 1024)
1931 {
1932 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1933 }
1934 return pde;
1935 }
1936
1937 /* Return the N'th entry of the Page Table whose Page Directory entry
1938 is PDE. */
1939 static unsigned long
1940 get_pte (unsigned long pde, int n)
1941 {
1942 unsigned long pte = 0;
1943
1944 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1945 page tables, for now. */
1946 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1947 {
1948 pde &= ~0xfff; /* Clear non-address bits. */
1949 pte = _farpeekl (_dos_ds, pde + 4*n);
1950 }
1951 return pte;
1952 }
1953
1954 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1955 says this is a Page Directory entry. If FORCE is non-zero, display
1956 the entry even if its Present flag is off. OFF is the offset of the
1957 address from the page's base address. */
1958 static void
1959 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1960 {
1961 if ((entry & 1) != 0)
1962 {
1963 printf_filtered ("Base=0x%05lx000", entry >> 12);
1964 if ((entry & 0x100) && !is_dir)
1965 puts_filtered (" Global");
1966 if ((entry & 0x40) && !is_dir)
1967 puts_filtered (" Dirty");
1968 printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1969 printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1970 printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1971 printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1972 printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1973 if (off)
1974 printf_filtered (" +0x%x", off);
1975 puts_filtered ("\n");
1976 }
1977 else if (force)
1978 printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1979 is_dir ? " Table" : "", entry >> 1);
1980 }
1981
1982 static void
1983 go32_pde (char *arg, int from_tty)
1984 {
1985 long pde_idx = -1, i;
1986
1987 if (arg && *arg)
1988 {
1989 while (*arg && isspace(*arg))
1990 arg++;
1991
1992 if (*arg)
1993 {
1994 pde_idx = parse_and_eval_long (arg);
1995 if (pde_idx < 0 || pde_idx >= 1024)
1996 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1997 }
1998 }
1999
2000 pdbr = get_cr3 ();
2001 if (!pdbr)
2002 puts_filtered ("Access to Page Directories is "
2003 "not supported on this system.\n");
2004 else if (pde_idx >= 0)
2005 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
2006 else
2007 for (i = 0; i < 1024; i++)
2008 display_ptable_entry (get_pde (i), 1, 0, 0);
2009 }
2010
2011 /* A helper function to display entries in a Page Table pointed to by
2012 the N'th entry in the Page Directory. If FORCE is non-zero, say
2013 something even if the Page Table is not accessible. */
2014 static void
2015 display_page_table (long n, int force)
2016 {
2017 unsigned long pde = get_pde (n);
2018
2019 if ((pde & 1) != 0)
2020 {
2021 int i;
2022
2023 printf_filtered ("Page Table pointed to by "
2024 "Page Directory entry 0x%lx:\n", n);
2025 for (i = 0; i < 1024; i++)
2026 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
2027 puts_filtered ("\n");
2028 }
2029 else if (force)
2030 printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
2031 }
2032
2033 static void
2034 go32_pte (char *arg, int from_tty)
2035 {
2036 long pde_idx = -1L, i;
2037
2038 if (arg && *arg)
2039 {
2040 while (*arg && isspace(*arg))
2041 arg++;
2042
2043 if (*arg)
2044 {
2045 pde_idx = parse_and_eval_long (arg);
2046 if (pde_idx < 0 || pde_idx >= 1024)
2047 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2048 }
2049 }
2050
2051 pdbr = get_cr3 ();
2052 if (!pdbr)
2053 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2054 else if (pde_idx >= 0)
2055 display_page_table (pde_idx, 1);
2056 else
2057 for (i = 0; i < 1024; i++)
2058 display_page_table (i, 0);
2059 }
2060
2061 static void
2062 go32_pte_for_address (char *arg, int from_tty)
2063 {
2064 CORE_ADDR addr = 0, i;
2065
2066 if (arg && *arg)
2067 {
2068 while (*arg && isspace(*arg))
2069 arg++;
2070
2071 if (*arg)
2072 addr = parse_and_eval_address (arg);
2073 }
2074 if (!addr)
2075 error_no_arg (_("linear address"));
2076
2077 pdbr = get_cr3 ();
2078 if (!pdbr)
2079 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2080 else
2081 {
2082 int pde_idx = (addr >> 22) & 0x3ff;
2083 int pte_idx = (addr >> 12) & 0x3ff;
2084 unsigned offs = addr & 0xfff;
2085
2086 printf_filtered ("Page Table entry for address %s:\n",
2087 hex_string(addr));
2088 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2089 }
2090 }
2091
2092 static struct cmd_list_element *info_dos_cmdlist = NULL;
2093
2094 static void
2095 go32_info_dos_command (char *args, int from_tty)
2096 {
2097 help_list (info_dos_cmdlist, "info dos ", class_info, gdb_stdout);
2098 }
2099
2100 void
2101 _initialize_go32_nat (void)
2102 {
2103 init_go32_ops ();
2104 add_target (&go32_ops);
2105
2106 add_prefix_cmd ("dos", class_info, go32_info_dos_command, _("\
2107 Print information specific to DJGPP (aka MS-DOS) debugging."),
2108 &info_dos_cmdlist, "info dos ", 0, &infolist);
2109
2110 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2111 Display information about the target system, including CPU, OS, DPMI, etc."),
2112 &info_dos_cmdlist);
2113 add_cmd ("ldt", class_info, go32_sldt, _("\
2114 Display entries in the LDT (Local Descriptor Table).\n\
2115 Entry number (an expression) as an argument means display only that entry."),
2116 &info_dos_cmdlist);
2117 add_cmd ("gdt", class_info, go32_sgdt, _("\
2118 Display entries in the GDT (Global Descriptor Table).\n\
2119 Entry number (an expression) as an argument means display only that entry."),
2120 &info_dos_cmdlist);
2121 add_cmd ("idt", class_info, go32_sidt, _("\
2122 Display entries in the IDT (Interrupt Descriptor Table).\n\
2123 Entry number (an expression) as an argument means display only that entry."),
2124 &info_dos_cmdlist);
2125 add_cmd ("pde", class_info, go32_pde, _("\
2126 Display entries in the Page Directory.\n\
2127 Entry number (an expression) as an argument means display only that entry."),
2128 &info_dos_cmdlist);
2129 add_cmd ("pte", class_info, go32_pte, _("\
2130 Display entries in Page Tables.\n\
2131 Entry number (an expression) as an argument means display only entries\n\
2132 from the Page Table pointed to by the specified Page Directory entry."),
2133 &info_dos_cmdlist);
2134 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2135 Display a Page Table entry for a linear address.\n\
2136 The address argument must be a linear address, after adding to\n\
2137 it the base address of the appropriate segment.\n\
2138 The base address of variables and functions in the debuggee's data\n\
2139 or code segment is stored in the variable __djgpp_base_address,\n\
2140 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2141 For other segments, look up their base address in the output of\n\
2142 the `info dos ldt' command."),
2143 &info_dos_cmdlist);
2144 }
2145
2146 pid_t
2147 tcgetpgrp (int fd)
2148 {
2149 if (isatty (fd))
2150 return SOME_PID;
2151 errno = ENOTTY;
2152 return -1;
2153 }
2154
2155 int
2156 tcsetpgrp (int fd, pid_t pgid)
2157 {
2158 if (isatty (fd) && pgid == SOME_PID)
2159 return 0;
2160 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2161 return -1;
2162 }