]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/go32-nat.c
Rename "target djgpp" -> "target native"
[thirdparty/binutils-gdb.git] / gdb / go32-nat.c
1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997-2014 Free Software Foundation, Inc.
3 Written by Robert Hoehne.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* To whomever it may concern, here's a general description of how
21 debugging in DJGPP works, and the special quirks GDB does to
22 support that.
23
24 When the DJGPP port of GDB is debugging a DJGPP program natively,
25 there aren't 2 separate processes, the debuggee and GDB itself, as
26 on other systems. (This is DOS, where there can only be one active
27 process at any given time, remember?) Instead, GDB and the
28 debuggee live in the same process. So when GDB calls
29 go32_create_inferior below, and that function calls edi_init from
30 the DJGPP debug support library libdbg.a, we load the debuggee's
31 executable file into GDB's address space, set it up for execution
32 as the stub loader (a short real-mode program prepended to each
33 DJGPP executable) normally would, and do a lot of preparations for
34 swapping between GDB's and debuggee's internal state, primarily wrt
35 the exception handlers. This swapping happens every time we resume
36 the debuggee or switch back to GDB's code, and it includes:
37
38 . swapping all the segment registers
39 . swapping the PSP (the Program Segment Prefix)
40 . swapping the signal handlers
41 . swapping the exception handlers
42 . swapping the FPU status
43 . swapping the 3 standard file handles (more about this below)
44
45 Then running the debuggee simply means longjmp into it where its PC
46 is and let it run until it stops for some reason. When it stops,
47 GDB catches the exception that stopped it and longjmp's back into
48 its own code. All the possible exit points of the debuggee are
49 watched; for example, the normal exit point is recognized because a
50 DOS program issues a special system call to exit. If one of those
51 exit points is hit, we mourn the inferior and clean up after it.
52 Cleaning up is very important, even if the process exits normally,
53 because otherwise we might leave behind traces of previous
54 execution, and in several cases GDB itself might be left hosed,
55 because all the exception handlers were not restored.
56
57 Swapping of the standard handles (in redir_to_child and
58 redir_to_debugger) is needed because, since both GDB and the
59 debuggee live in the same process, as far as the OS is concerned,
60 the share the same file table. This means that the standard
61 handles 0, 1, and 2 point to the same file table entries, and thus
62 are connected to the same devices. Therefore, if the debugger
63 redirects its standard output, the standard output of the debuggee
64 is also automagically redirected to the same file/device!
65 Similarly, if the debuggee redirects its stdout to a file, you
66 won't be able to see debugger's output (it will go to the same file
67 where the debuggee has its output); and if the debuggee closes its
68 standard input, you will lose the ability to talk to debugger!
69
70 For this reason, every time the debuggee is about to be resumed, we
71 call redir_to_child, which redirects the standard handles to where
72 the debuggee expects them to be. When the debuggee stops and GDB
73 regains control, we call redir_to_debugger, which redirects those 3
74 handles back to where GDB expects.
75
76 Note that only the first 3 handles are swapped, so if the debuggee
77 redirects or closes any other handles, GDB will not notice. In
78 particular, the exit code of a DJGPP program forcibly closes all
79 file handles beyond the first 3 ones, so when the debuggee exits,
80 GDB currently loses its stdaux and stdprn streams. Fortunately,
81 GDB does not use those as of this writing, and will never need
82 to. */
83
84 #include "defs.h"
85
86 #include <fcntl.h>
87
88 #include "i386-nat.h"
89 #include "inferior.h"
90 #include "gdbthread.h"
91 #include "gdb_wait.h"
92 #include "gdbcore.h"
93 #include "command.h"
94 #include "gdbcmd.h"
95 #include "floatformat.h"
96 #include "buildsym.h"
97 #include "i387-tdep.h"
98 #include "i386-tdep.h"
99 #include "i386-cpuid.h"
100 #include "value.h"
101 #include "regcache.h"
102 #include <string.h>
103 #include "top.h"
104 #include "cli/cli-utils.h"
105 #include "inf-child.h"
106
107 #include <stdio.h> /* might be required for __DJGPP_MINOR__ */
108 #include <stdlib.h>
109 #include <ctype.h>
110 #include <errno.h>
111 #include <unistd.h>
112 #include <sys/utsname.h>
113 #include <io.h>
114 #include <dos.h>
115 #include <dpmi.h>
116 #include <go32.h>
117 #include <sys/farptr.h>
118 #include <debug/v2load.h>
119 #include <debug/dbgcom.h>
120 #if __DJGPP_MINOR__ > 2
121 #include <debug/redir.h>
122 #endif
123
124 #include <langinfo.h>
125
126 #if __DJGPP_MINOR__ < 3
127 /* This code will be provided from DJGPP 2.03 on. Until then I code it
128 here. */
129 typedef struct
130 {
131 unsigned short sig0;
132 unsigned short sig1;
133 unsigned short sig2;
134 unsigned short sig3;
135 unsigned short exponent:15;
136 unsigned short sign:1;
137 }
138 NPXREG;
139
140 typedef struct
141 {
142 unsigned int control;
143 unsigned int status;
144 unsigned int tag;
145 unsigned int eip;
146 unsigned int cs;
147 unsigned int dataptr;
148 unsigned int datasel;
149 NPXREG reg[8];
150 }
151 NPX;
152
153 static NPX npx;
154
155 static void save_npx (void); /* Save the FPU of the debugged program. */
156 static void load_npx (void); /* Restore the FPU of the debugged program. */
157
158 /* ------------------------------------------------------------------------- */
159 /* Store the contents of the NPX in the global variable `npx'. */
160 /* *INDENT-OFF* */
161
162 static void
163 save_npx (void)
164 {
165 asm ("inb $0xa0, %%al \n\
166 testb $0x20, %%al \n\
167 jz 1f \n\
168 xorb %%al, %%al \n\
169 outb %%al, $0xf0 \n\
170 movb $0x20, %%al \n\
171 outb %%al, $0xa0 \n\
172 outb %%al, $0x20 \n\
173 1: \n\
174 fnsave %0 \n\
175 fwait "
176 : "=m" (npx)
177 : /* No input */
178 : "%eax");
179 }
180
181 /* *INDENT-ON* */
182
183
184 /* ------------------------------------------------------------------------- */
185 /* Reload the contents of the NPX from the global variable `npx'. */
186
187 static void
188 load_npx (void)
189 {
190 asm ("frstor %0":"=m" (npx));
191 }
192 /* ------------------------------------------------------------------------- */
193 /* Stubs for the missing redirection functions. */
194 typedef struct {
195 char *command;
196 int redirected;
197 } cmdline_t;
198
199 void
200 redir_cmdline_delete (cmdline_t *ptr)
201 {
202 ptr->redirected = 0;
203 }
204
205 int
206 redir_cmdline_parse (const char *args, cmdline_t *ptr)
207 {
208 return -1;
209 }
210
211 int
212 redir_to_child (cmdline_t *ptr)
213 {
214 return 1;
215 }
216
217 int
218 redir_to_debugger (cmdline_t *ptr)
219 {
220 return 1;
221 }
222
223 int
224 redir_debug_init (cmdline_t *ptr)
225 {
226 return 0;
227 }
228 #endif /* __DJGPP_MINOR < 3 */
229
230 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
231
232 /* This holds the current reference counts for each debug register. */
233 static int dr_ref_count[4];
234
235 #define SOME_PID 42
236
237 static int prog_has_started = 0;
238 static void go32_mourn_inferior (struct target_ops *ops);
239
240 #define r_ofs(x) (offsetof(TSS,x))
241
242 static struct
243 {
244 size_t tss_ofs;
245 size_t size;
246 }
247 regno_mapping[] =
248 {
249 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
250 {r_ofs (tss_ecx), 4},
251 {r_ofs (tss_edx), 4},
252 {r_ofs (tss_ebx), 4},
253 {r_ofs (tss_esp), 4},
254 {r_ofs (tss_ebp), 4},
255 {r_ofs (tss_esi), 4},
256 {r_ofs (tss_edi), 4},
257 {r_ofs (tss_eip), 4},
258 {r_ofs (tss_eflags), 4},
259 {r_ofs (tss_cs), 2},
260 {r_ofs (tss_ss), 2},
261 {r_ofs (tss_ds), 2},
262 {r_ofs (tss_es), 2},
263 {r_ofs (tss_fs), 2},
264 {r_ofs (tss_gs), 2},
265 {0, 10}, /* 8 FP registers, from npx.reg[] */
266 {1, 10},
267 {2, 10},
268 {3, 10},
269 {4, 10},
270 {5, 10},
271 {6, 10},
272 {7, 10},
273 /* The order of the next 7 registers must be consistent
274 with their numbering in config/i386/tm-i386.h, which see. */
275 {0, 2}, /* control word, from npx */
276 {4, 2}, /* status word, from npx */
277 {8, 2}, /* tag word, from npx */
278 {16, 2}, /* last FP exception CS from npx */
279 {12, 4}, /* last FP exception EIP from npx */
280 {24, 2}, /* last FP exception operand selector from npx */
281 {20, 4}, /* last FP exception operand offset from npx */
282 {18, 2} /* last FP opcode from npx */
283 };
284
285 static struct
286 {
287 int go32_sig;
288 enum gdb_signal gdb_sig;
289 }
290 sig_map[] =
291 {
292 {0, GDB_SIGNAL_FPE},
293 {1, GDB_SIGNAL_TRAP},
294 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
295 but I think SIGBUS is better, since the NMI is usually activated
296 as a result of a memory parity check failure. */
297 {2, GDB_SIGNAL_BUS},
298 {3, GDB_SIGNAL_TRAP},
299 {4, GDB_SIGNAL_FPE},
300 {5, GDB_SIGNAL_SEGV},
301 {6, GDB_SIGNAL_ILL},
302 {7, GDB_SIGNAL_EMT}, /* no-coprocessor exception */
303 {8, GDB_SIGNAL_SEGV},
304 {9, GDB_SIGNAL_SEGV},
305 {10, GDB_SIGNAL_BUS},
306 {11, GDB_SIGNAL_SEGV},
307 {12, GDB_SIGNAL_SEGV},
308 {13, GDB_SIGNAL_SEGV},
309 {14, GDB_SIGNAL_SEGV},
310 {16, GDB_SIGNAL_FPE},
311 {17, GDB_SIGNAL_BUS},
312 {31, GDB_SIGNAL_ILL},
313 {0x1b, GDB_SIGNAL_INT},
314 {0x75, GDB_SIGNAL_FPE},
315 {0x78, GDB_SIGNAL_ALRM},
316 {0x79, GDB_SIGNAL_INT},
317 {0x7a, GDB_SIGNAL_QUIT},
318 {-1, GDB_SIGNAL_LAST}
319 };
320
321 static struct {
322 enum gdb_signal gdb_sig;
323 int djgpp_excepno;
324 } excepn_map[] = {
325 {GDB_SIGNAL_0, -1},
326 {GDB_SIGNAL_ILL, 6}, /* Invalid Opcode */
327 {GDB_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
328 {GDB_SIGNAL_SEGV, 13}, /* GPF */
329 {GDB_SIGNAL_BUS, 17}, /* Alignment Check */
330 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
331 details. */
332 {GDB_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
333 {GDB_SIGNAL_FPE, 0x75},
334 {GDB_SIGNAL_INT, 0x79},
335 {GDB_SIGNAL_QUIT, 0x7a},
336 {GDB_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
337 {GDB_SIGNAL_PROF, 0x78},
338 {GDB_SIGNAL_LAST, -1}
339 };
340
341 static void
342 go32_open (char *name, int from_tty)
343 {
344 printf_unfiltered ("Done. Use the \"run\" command to run the program.\n");
345 }
346
347 static void
348 go32_attach (struct target_ops *ops, char *args, int from_tty)
349 {
350 error (_("\
351 You cannot attach to a running program on this platform.\n\
352 Use the `run' command to run DJGPP programs."));
353 }
354
355 static int resume_is_step;
356 static int resume_signal = -1;
357
358 static void
359 go32_resume (struct target_ops *ops,
360 ptid_t ptid, int step, enum gdb_signal siggnal)
361 {
362 int i;
363
364 resume_is_step = step;
365
366 if (siggnal != GDB_SIGNAL_0 && siggnal != GDB_SIGNAL_TRAP)
367 {
368 for (i = 0, resume_signal = -1;
369 excepn_map[i].gdb_sig != GDB_SIGNAL_LAST; i++)
370 if (excepn_map[i].gdb_sig == siggnal)
371 {
372 resume_signal = excepn_map[i].djgpp_excepno;
373 break;
374 }
375 if (resume_signal == -1)
376 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
377 gdb_signal_to_name (siggnal));
378 }
379 }
380
381 static char child_cwd[FILENAME_MAX];
382
383 static ptid_t
384 go32_wait (struct target_ops *ops,
385 ptid_t ptid, struct target_waitstatus *status, int options)
386 {
387 int i;
388 unsigned char saved_opcode;
389 unsigned long INT3_addr = 0;
390 int stepping_over_INT = 0;
391
392 a_tss.tss_eflags &= 0xfeff; /* Reset the single-step flag (TF). */
393 if (resume_is_step)
394 {
395 /* If the next instruction is INT xx or INTO, we need to handle
396 them specially. Intel manuals say that these instructions
397 reset the single-step flag (a.k.a. TF). However, it seems
398 that, at least in the DPMI environment, and at least when
399 stepping over the DPMI interrupt 31h, the problem is having
400 TF set at all when INT 31h is executed: the debuggee either
401 crashes (and takes the system with it) or is killed by a
402 SIGTRAP.
403
404 So we need to emulate single-step mode: we put an INT3 opcode
405 right after the INT xx instruction, let the debuggee run
406 until it hits INT3 and stops, then restore the original
407 instruction which we overwrote with the INT3 opcode, and back
408 up the debuggee's EIP to that instruction. */
409 read_child (a_tss.tss_eip, &saved_opcode, 1);
410 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
411 {
412 unsigned char INT3_opcode = 0xCC;
413
414 INT3_addr
415 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
416 stepping_over_INT = 1;
417 read_child (INT3_addr, &saved_opcode, 1);
418 write_child (INT3_addr, &INT3_opcode, 1);
419 }
420 else
421 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
422 }
423
424 /* The special value FFFFh in tss_trap indicates to run_child that
425 tss_irqn holds a signal to be delivered to the debuggee. */
426 if (resume_signal <= -1)
427 {
428 a_tss.tss_trap = 0;
429 a_tss.tss_irqn = 0xff;
430 }
431 else
432 {
433 a_tss.tss_trap = 0xffff; /* run_child looks for this. */
434 a_tss.tss_irqn = resume_signal;
435 }
436
437 /* The child might change working directory behind our back. The
438 GDB users won't like the side effects of that when they work with
439 relative file names, and GDB might be confused by its current
440 directory not being in sync with the truth. So we always make a
441 point of changing back to where GDB thinks is its cwd, when we
442 return control to the debugger, but restore child's cwd before we
443 run it. */
444 /* Initialize child_cwd, before the first call to run_child and not
445 in the initialization, so the child get also the changed directory
446 set with the gdb-command "cd ..." */
447 if (!*child_cwd)
448 /* Initialize child's cwd with the current one. */
449 getcwd (child_cwd, sizeof (child_cwd));
450
451 chdir (child_cwd);
452
453 #if __DJGPP_MINOR__ < 3
454 load_npx ();
455 #endif
456 run_child ();
457 #if __DJGPP_MINOR__ < 3
458 save_npx ();
459 #endif
460
461 /* Did we step over an INT xx instruction? */
462 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
463 {
464 /* Restore the original opcode. */
465 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction. */
466 write_child (a_tss.tss_eip, &saved_opcode, 1);
467 /* Simulate a TRAP exception. */
468 a_tss.tss_irqn = 1;
469 a_tss.tss_eflags |= 0x0100;
470 }
471
472 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
473 chdir (current_directory);
474
475 if (a_tss.tss_irqn == 0x21)
476 {
477 status->kind = TARGET_WAITKIND_EXITED;
478 status->value.integer = a_tss.tss_eax & 0xff;
479 }
480 else
481 {
482 status->value.sig = GDB_SIGNAL_UNKNOWN;
483 status->kind = TARGET_WAITKIND_STOPPED;
484 for (i = 0; sig_map[i].go32_sig != -1; i++)
485 {
486 if (a_tss.tss_irqn == sig_map[i].go32_sig)
487 {
488 #if __DJGPP_MINOR__ < 3
489 if ((status->value.sig = sig_map[i].gdb_sig) !=
490 GDB_SIGNAL_TRAP)
491 status->kind = TARGET_WAITKIND_SIGNALLED;
492 #else
493 status->value.sig = sig_map[i].gdb_sig;
494 #endif
495 break;
496 }
497 }
498 }
499 return pid_to_ptid (SOME_PID);
500 }
501
502 static void
503 fetch_register (struct regcache *regcache, int regno)
504 {
505 struct gdbarch *gdbarch = get_regcache_arch (regcache);
506 if (regno < gdbarch_fp0_regnum (gdbarch))
507 regcache_raw_supply (regcache, regno,
508 (char *) &a_tss + regno_mapping[regno].tss_ofs);
509 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
510 regno))
511 i387_supply_fsave (regcache, regno, &npx);
512 else
513 internal_error (__FILE__, __LINE__,
514 _("Invalid register no. %d in fetch_register."), regno);
515 }
516
517 static void
518 go32_fetch_registers (struct target_ops *ops,
519 struct regcache *regcache, int regno)
520 {
521 if (regno >= 0)
522 fetch_register (regcache, regno);
523 else
524 {
525 for (regno = 0;
526 regno < gdbarch_fp0_regnum (get_regcache_arch (regcache));
527 regno++)
528 fetch_register (regcache, regno);
529 i387_supply_fsave (regcache, -1, &npx);
530 }
531 }
532
533 static void
534 store_register (const struct regcache *regcache, int regno)
535 {
536 struct gdbarch *gdbarch = get_regcache_arch (regcache);
537 if (regno < gdbarch_fp0_regnum (gdbarch))
538 regcache_raw_collect (regcache, regno,
539 (char *) &a_tss + regno_mapping[regno].tss_ofs);
540 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
541 regno))
542 i387_collect_fsave (regcache, regno, &npx);
543 else
544 internal_error (__FILE__, __LINE__,
545 _("Invalid register no. %d in store_register."), regno);
546 }
547
548 static void
549 go32_store_registers (struct target_ops *ops,
550 struct regcache *regcache, int regno)
551 {
552 unsigned r;
553
554 if (regno >= 0)
555 store_register (regcache, regno);
556 else
557 {
558 for (r = 0; r < gdbarch_fp0_regnum (get_regcache_arch (regcache)); r++)
559 store_register (regcache, r);
560 i387_collect_fsave (regcache, -1, &npx);
561 }
562 }
563
564 /* Const-correct version of DJGPP's write_child, which unfortunately
565 takes a non-const buffer pointer. */
566
567 static int
568 my_write_child (unsigned child_addr, const void *buf, unsigned len)
569 {
570 static void *buffer = NULL;
571 static unsigned buffer_len = 0;
572 int res;
573
574 if (buffer_len < len)
575 {
576 buffer = xrealloc (buffer, len);
577 buffer_len = len;
578 }
579
580 memcpy (buffer, buf, len);
581 res = write_child (child_addr, buffer, len);
582 return res;
583 }
584
585 /* Helper for go32_xfer_partial that handles memory transfers.
586 Arguments are like target_xfer_partial. */
587
588 static enum target_xfer_status
589 go32_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf,
590 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
591 {
592 int res;
593
594 if (writebuf != NULL)
595 res = my_write_child (memaddr, writebuf, len);
596 else
597 res = read_child (memaddr, readbuf, len);
598
599 if (res <= 0)
600 return TARGET_XFER_E_IO;
601
602 *xfered_len = res;
603 return TARGET_XFER_OK;
604 }
605
606 /* Target to_xfer_partial implementation. */
607
608 static enum target_xfer_status
609 go32_xfer_partial (struct target_ops *ops, enum target_object object,
610 const char *annex, gdb_byte *readbuf,
611 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
612 ULONGEST *xfered_len)
613 {
614 switch (object)
615 {
616 case TARGET_OBJECT_MEMORY:
617 return go32_xfer_memory (readbuf, writebuf, offset, len, xfered_len);
618
619 default:
620 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
621 readbuf, writebuf, offset, len,
622 xfered_len);
623 }
624 }
625
626 static cmdline_t child_cmd; /* Parsed child's command line kept here. */
627
628 static void
629 go32_files_info (struct target_ops *target)
630 {
631 printf_unfiltered ("You are running a DJGPP V2 program.\n");
632 }
633
634 static void
635 go32_kill_inferior (struct target_ops *ops)
636 {
637 go32_mourn_inferior (ops);
638 }
639
640 static void
641 go32_create_inferior (struct target_ops *ops, char *exec_file,
642 char *args, char **env, int from_tty)
643 {
644 extern char **environ;
645 jmp_buf start_state;
646 char *cmdline;
647 char **env_save = environ;
648 size_t cmdlen;
649 struct inferior *inf;
650
651 /* If no exec file handed to us, get it from the exec-file command -- with
652 a good, common error message if none is specified. */
653 if (exec_file == 0)
654 exec_file = get_exec_file (1);
655
656 resume_signal = -1;
657 resume_is_step = 0;
658
659 /* Initialize child's cwd as empty to be initialized when starting
660 the child. */
661 *child_cwd = 0;
662
663 /* Init command line storage. */
664 if (redir_debug_init (&child_cmd) == -1)
665 internal_error (__FILE__, __LINE__,
666 _("Cannot allocate redirection storage: "
667 "not enough memory.\n"));
668
669 /* Parse the command line and create redirections. */
670 if (strpbrk (args, "<>"))
671 {
672 if (redir_cmdline_parse (args, &child_cmd) == 0)
673 args = child_cmd.command;
674 else
675 error (_("Syntax error in command line."));
676 }
677 else
678 child_cmd.command = xstrdup (args);
679
680 cmdlen = strlen (args);
681 /* v2loadimage passes command lines via DOS memory, so it cannot
682 possibly handle commands longer than 1MB. */
683 if (cmdlen > 1024*1024)
684 error (_("Command line too long."));
685
686 cmdline = xmalloc (cmdlen + 4);
687 strcpy (cmdline + 1, args);
688 /* If the command-line length fits into DOS 126-char limits, use the
689 DOS command tail format; otherwise, tell v2loadimage to pass it
690 through a buffer in conventional memory. */
691 if (cmdlen < 127)
692 {
693 cmdline[0] = strlen (args);
694 cmdline[cmdlen + 1] = 13;
695 }
696 else
697 cmdline[0] = 0xff; /* Signal v2loadimage it's a long command. */
698
699 environ = env;
700
701 if (v2loadimage (exec_file, cmdline, start_state))
702 {
703 environ = env_save;
704 printf_unfiltered ("Load failed for image %s\n", exec_file);
705 exit (1);
706 }
707 environ = env_save;
708 xfree (cmdline);
709
710 edi_init (start_state);
711 #if __DJGPP_MINOR__ < 3
712 save_npx ();
713 #endif
714
715 inferior_ptid = pid_to_ptid (SOME_PID);
716 inf = current_inferior ();
717 inferior_appeared (inf, SOME_PID);
718
719 push_target (ops);
720
721 add_thread_silent (inferior_ptid);
722
723 clear_proceed_status ();
724 insert_breakpoints ();
725 prog_has_started = 1;
726 }
727
728 static void
729 go32_mourn_inferior (struct target_ops *ops)
730 {
731 ptid_t ptid;
732
733 redir_cmdline_delete (&child_cmd);
734 resume_signal = -1;
735 resume_is_step = 0;
736
737 cleanup_client ();
738
739 /* We need to make sure all the breakpoint enable bits in the DR7
740 register are reset when the inferior exits. Otherwise, if they
741 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
742 failure to set more watchpoints, and other calamities. It would
743 be nice if GDB itself would take care to remove all breakpoints
744 at all times, but it doesn't, probably under an assumption that
745 the OS cleans up when the debuggee exits. */
746 i386_cleanup_dregs ();
747
748 ptid = inferior_ptid;
749 inferior_ptid = null_ptid;
750 delete_thread_silent (ptid);
751 prog_has_started = 0;
752
753 unpush_target (ops);
754 generic_mourn_inferior ();
755 }
756
757 /* Hardware watchpoint support. */
758
759 #define D_REGS edi.dr
760 #define CONTROL D_REGS[7]
761 #define STATUS D_REGS[6]
762
763 /* Pass the address ADDR to the inferior in the I'th debug register.
764 Here we just store the address in D_REGS, the watchpoint will be
765 actually set up when go32_wait runs the debuggee. */
766 static void
767 go32_set_dr (int i, CORE_ADDR addr)
768 {
769 if (i < 0 || i > 3)
770 internal_error (__FILE__, __LINE__,
771 _("Invalid register %d in go32_set_dr.\n"), i);
772 D_REGS[i] = addr;
773 }
774
775 /* Pass the value VAL to the inferior in the DR7 debug control
776 register. Here we just store the address in D_REGS, the watchpoint
777 will be actually set up when go32_wait runs the debuggee. */
778 static void
779 go32_set_dr7 (unsigned long val)
780 {
781 CONTROL = val;
782 }
783
784 /* Get the value of the DR6 debug status register from the inferior.
785 Here we just return the value stored in D_REGS, as we've got it
786 from the last go32_wait call. */
787 static unsigned long
788 go32_get_dr6 (void)
789 {
790 return STATUS;
791 }
792
793 /* Get the value of the DR7 debug status register from the inferior.
794 Here we just return the value stored in D_REGS, as we've got it
795 from the last go32_wait call. */
796
797 static unsigned long
798 go32_get_dr7 (void)
799 {
800 return CONTROL;
801 }
802
803 /* Get the value of the DR debug register I from the inferior. Here
804 we just return the value stored in D_REGS, as we've got it from the
805 last go32_wait call. */
806
807 static CORE_ADDR
808 go32_get_dr (int i)
809 {
810 if (i < 0 || i > 3)
811 internal_error (__FILE__, __LINE__,
812 _("Invalid register %d in go32_get_dr.\n"), i);
813 return D_REGS[i];
814 }
815
816 /* Put the device open on handle FD into either raw or cooked
817 mode, return 1 if it was in raw mode, zero otherwise. */
818
819 static int
820 device_mode (int fd, int raw_p)
821 {
822 int oldmode, newmode;
823 __dpmi_regs regs;
824
825 regs.x.ax = 0x4400;
826 regs.x.bx = fd;
827 __dpmi_int (0x21, &regs);
828 if (regs.x.flags & 1)
829 return -1;
830 newmode = oldmode = regs.x.dx;
831
832 if (raw_p)
833 newmode |= 0x20;
834 else
835 newmode &= ~0x20;
836
837 if (oldmode & 0x80) /* Only for character dev. */
838 {
839 regs.x.ax = 0x4401;
840 regs.x.bx = fd;
841 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails. */
842 __dpmi_int (0x21, &regs);
843 if (regs.x.flags & 1)
844 return -1;
845 }
846 return (oldmode & 0x20) == 0x20;
847 }
848
849
850 static int inf_mode_valid = 0;
851 static int inf_terminal_mode;
852
853 /* This semaphore is needed because, amazingly enough, GDB calls
854 target.to_terminal_ours more than once after the inferior stops.
855 But we need the information from the first call only, since the
856 second call will always see GDB's own cooked terminal. */
857 static int terminal_is_ours = 1;
858
859 static void
860 go32_terminal_init (struct target_ops *self)
861 {
862 inf_mode_valid = 0; /* Reinitialize, in case they are restarting child. */
863 terminal_is_ours = 1;
864 }
865
866 static void
867 go32_terminal_info (struct target_ops *self, const char *args, int from_tty)
868 {
869 printf_unfiltered ("Inferior's terminal is in %s mode.\n",
870 !inf_mode_valid
871 ? "default" : inf_terminal_mode ? "raw" : "cooked");
872
873 #if __DJGPP_MINOR__ > 2
874 if (child_cmd.redirection)
875 {
876 int i;
877
878 for (i = 0; i < DBG_HANDLES; i++)
879 {
880 if (child_cmd.redirection[i]->file_name)
881 printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
882 i, child_cmd.redirection[i]->file_name);
883 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
884 printf_unfiltered
885 ("\tFile handle %d appears to be closed by inferior.\n", i);
886 /* Mask off the raw/cooked bit when comparing device info words. */
887 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
888 != (_get_dev_info (i) & 0xdf))
889 printf_unfiltered
890 ("\tFile handle %d appears to be redirected by inferior.\n", i);
891 }
892 }
893 #endif
894 }
895
896 static void
897 go32_terminal_inferior (struct target_ops *self)
898 {
899 /* Redirect standard handles as child wants them. */
900 errno = 0;
901 if (redir_to_child (&child_cmd) == -1)
902 {
903 redir_to_debugger (&child_cmd);
904 error (_("Cannot redirect standard handles for program: %s."),
905 safe_strerror (errno));
906 }
907 /* Set the console device of the inferior to whatever mode
908 (raw or cooked) we found it last time. */
909 if (terminal_is_ours)
910 {
911 if (inf_mode_valid)
912 device_mode (0, inf_terminal_mode);
913 terminal_is_ours = 0;
914 }
915 }
916
917 static void
918 go32_terminal_ours (struct target_ops *self)
919 {
920 /* Switch to cooked mode on the gdb terminal and save the inferior
921 terminal mode to be restored when it is resumed. */
922 if (!terminal_is_ours)
923 {
924 inf_terminal_mode = device_mode (0, 0);
925 if (inf_terminal_mode != -1)
926 inf_mode_valid = 1;
927 else
928 /* If device_mode returned -1, we don't know what happens with
929 handle 0 anymore, so make the info invalid. */
930 inf_mode_valid = 0;
931 terminal_is_ours = 1;
932
933 /* Restore debugger's standard handles. */
934 errno = 0;
935 if (redir_to_debugger (&child_cmd) == -1)
936 {
937 redir_to_child (&child_cmd);
938 error (_("Cannot redirect standard handles for debugger: %s."),
939 safe_strerror (errno));
940 }
941 }
942 }
943
944 static int
945 go32_thread_alive (struct target_ops *ops, ptid_t ptid)
946 {
947 return !ptid_equal (inferior_ptid, null_ptid);
948 }
949
950 static char *
951 go32_pid_to_str (struct target_ops *ops, ptid_t ptid)
952 {
953 return normal_pid_to_str (ptid);
954 }
955
956 /* Create a go32 target. */
957
958 static struct target_ops *
959 go32_target (void)
960 {
961 struct target_ops *t = inf_child_target ();
962
963 t->to_open = go32_open;
964 t->to_attach = go32_attach;
965 t->to_resume = go32_resume;
966 t->to_wait = go32_wait;
967 t->to_fetch_registers = go32_fetch_registers;
968 t->to_store_registers = go32_store_registers;
969 t->to_xfer_partial = go32_xfer_partial;
970 t->to_files_info = go32_files_info;
971 t->to_terminal_init = go32_terminal_init;
972 t->to_terminal_inferior = go32_terminal_inferior;
973 t->to_terminal_ours_for_output = go32_terminal_ours;
974 t->to_terminal_ours = go32_terminal_ours;
975 t->to_terminal_info = go32_terminal_info;
976 t->to_kill = go32_kill_inferior;
977 t->to_create_inferior = go32_create_inferior;
978 t->to_mourn_inferior = go32_mourn_inferior;
979 t->to_thread_alive = go32_thread_alive;
980 t->to_pid_to_str = go32_pid_to_str;
981
982 return t;
983 }
984
985 /* Return the current DOS codepage number. */
986 static int
987 dos_codepage (void)
988 {
989 __dpmi_regs regs;
990
991 regs.x.ax = 0x6601;
992 __dpmi_int (0x21, &regs);
993 if (!(regs.x.flags & 1))
994 return regs.x.bx & 0xffff;
995 else
996 return 437; /* default */
997 }
998
999 /* Limited emulation of `nl_langinfo', for charset.c. */
1000 char *
1001 nl_langinfo (nl_item item)
1002 {
1003 char *retval;
1004
1005 switch (item)
1006 {
1007 case CODESET:
1008 {
1009 /* 8 is enough for SHORT_MAX + "CP" + null. */
1010 char buf[8];
1011 int blen = sizeof (buf);
1012 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1013
1014 if (needed > blen) /* Should never happen. */
1015 buf[0] = 0;
1016 retval = xstrdup (buf);
1017 }
1018 break;
1019 default:
1020 retval = xstrdup ("");
1021 break;
1022 }
1023 return retval;
1024 }
1025
1026 unsigned short windows_major, windows_minor;
1027
1028 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1029 static void
1030 go32_get_windows_version(void)
1031 {
1032 __dpmi_regs r;
1033
1034 r.x.ax = 0x1600;
1035 __dpmi_int(0x2f, &r);
1036 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1037 && (r.h.al > 3 || r.h.ah > 0))
1038 {
1039 windows_major = r.h.al;
1040 windows_minor = r.h.ah;
1041 }
1042 else
1043 windows_major = 0xff; /* meaning no Windows */
1044 }
1045
1046 /* A subroutine of go32_sysinfo to display memory info. */
1047 static void
1048 print_mem (unsigned long datum, const char *header, int in_pages_p)
1049 {
1050 if (datum != 0xffffffffUL)
1051 {
1052 if (in_pages_p)
1053 datum <<= 12;
1054 puts_filtered (header);
1055 if (datum > 1024)
1056 {
1057 printf_filtered ("%lu KB", datum >> 10);
1058 if (datum > 1024 * 1024)
1059 printf_filtered (" (%lu MB)", datum >> 20);
1060 }
1061 else
1062 printf_filtered ("%lu Bytes", datum);
1063 puts_filtered ("\n");
1064 }
1065 }
1066
1067 /* Display assorted information about the underlying OS. */
1068 static void
1069 go32_sysinfo (char *arg, int from_tty)
1070 {
1071 static const char test_pattern[] =
1072 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1073 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1074 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1075 struct utsname u;
1076 char cpuid_vendor[13];
1077 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1078 unsigned true_dos_version = _get_dos_version (1);
1079 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1080 int dpmi_flags;
1081 char dpmi_vendor_info[129];
1082 int dpmi_vendor_available;
1083 __dpmi_version_ret dpmi_version_data;
1084 long eflags;
1085 __dpmi_free_mem_info mem_info;
1086 __dpmi_regs regs;
1087
1088 cpuid_vendor[0] = '\0';
1089 if (uname (&u))
1090 strcpy (u.machine, "Unknown x86");
1091 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1092 {
1093 /* CPUID with EAX = 0 returns the Vendor ID. */
1094 #if 0
1095 /* Ideally we would use i386_cpuid(), but it needs someone to run
1096 native tests first to make sure things actually work. They should.
1097 http://sourceware.org/ml/gdb-patches/2013-05/msg00164.html */
1098 unsigned int eax, ebx, ecx, edx;
1099
1100 if (i386_cpuid (0, &eax, &ebx, &ecx, &edx))
1101 {
1102 cpuid_max = eax;
1103 memcpy (&vendor[0], &ebx, 4);
1104 memcpy (&vendor[4], &ecx, 4);
1105 memcpy (&vendor[8], &edx, 4);
1106 cpuid_vendor[12] = '\0';
1107 }
1108 #else
1109 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1110 "xorl %%ecx, %%ecx;"
1111 "xorl %%edx, %%edx;"
1112 "movl $0, %%eax;"
1113 "cpuid;"
1114 "movl %%ebx, %0;"
1115 "movl %%edx, %1;"
1116 "movl %%ecx, %2;"
1117 "movl %%eax, %3;"
1118 : "=m" (cpuid_vendor[0]),
1119 "=m" (cpuid_vendor[4]),
1120 "=m" (cpuid_vendor[8]),
1121 "=m" (cpuid_max)
1122 :
1123 : "%eax", "%ebx", "%ecx", "%edx");
1124 cpuid_vendor[12] = '\0';
1125 #endif
1126 }
1127
1128 printf_filtered ("CPU Type.......................%s", u.machine);
1129 if (cpuid_vendor[0])
1130 printf_filtered (" (%s)", cpuid_vendor);
1131 puts_filtered ("\n");
1132
1133 /* CPUID with EAX = 1 returns processor signature and features. */
1134 if (cpuid_max >= 1)
1135 {
1136 static char *brand_name[] = {
1137 "",
1138 " Celeron",
1139 " III",
1140 " III Xeon",
1141 "", "", "", "",
1142 " 4"
1143 };
1144 char cpu_string[80];
1145 char cpu_brand[20];
1146 unsigned brand_idx;
1147 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1148 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1149 unsigned cpu_family, cpu_model;
1150
1151 #if 0
1152 /* See comment above about cpuid usage. */
1153 i386_cpuid (1, &cpuid_eax, &cpuid_ebx, NULL, &cpuid_edx);
1154 #else
1155 __asm__ __volatile__ ("movl $1, %%eax;"
1156 "cpuid;"
1157 : "=a" (cpuid_eax),
1158 "=b" (cpuid_ebx),
1159 "=d" (cpuid_edx)
1160 :
1161 : "%ecx");
1162 #endif
1163 brand_idx = cpuid_ebx & 0xff;
1164 cpu_family = (cpuid_eax >> 8) & 0xf;
1165 cpu_model = (cpuid_eax >> 4) & 0xf;
1166 cpu_brand[0] = '\0';
1167 if (intel_p)
1168 {
1169 if (brand_idx > 0
1170 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1171 && *brand_name[brand_idx])
1172 strcpy (cpu_brand, brand_name[brand_idx]);
1173 else if (cpu_family == 5)
1174 {
1175 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1176 strcpy (cpu_brand, " MMX");
1177 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1178 strcpy (cpu_brand, " OverDrive");
1179 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1180 strcpy (cpu_brand, " Dual");
1181 }
1182 else if (cpu_family == 6 && cpu_model < 8)
1183 {
1184 switch (cpu_model)
1185 {
1186 case 1:
1187 strcpy (cpu_brand, " Pro");
1188 break;
1189 case 3:
1190 strcpy (cpu_brand, " II");
1191 break;
1192 case 5:
1193 strcpy (cpu_brand, " II Xeon");
1194 break;
1195 case 6:
1196 strcpy (cpu_brand, " Celeron");
1197 break;
1198 case 7:
1199 strcpy (cpu_brand, " III");
1200 break;
1201 }
1202 }
1203 }
1204 else if (amd_p)
1205 {
1206 switch (cpu_family)
1207 {
1208 case 4:
1209 strcpy (cpu_brand, "486/5x86");
1210 break;
1211 case 5:
1212 switch (cpu_model)
1213 {
1214 case 0:
1215 case 1:
1216 case 2:
1217 case 3:
1218 strcpy (cpu_brand, "-K5");
1219 break;
1220 case 6:
1221 case 7:
1222 strcpy (cpu_brand, "-K6");
1223 break;
1224 case 8:
1225 strcpy (cpu_brand, "-K6-2");
1226 break;
1227 case 9:
1228 strcpy (cpu_brand, "-K6-III");
1229 break;
1230 }
1231 break;
1232 case 6:
1233 switch (cpu_model)
1234 {
1235 case 1:
1236 case 2:
1237 case 4:
1238 strcpy (cpu_brand, " Athlon");
1239 break;
1240 case 3:
1241 strcpy (cpu_brand, " Duron");
1242 break;
1243 }
1244 break;
1245 }
1246 }
1247 xsnprintf (cpu_string, sizeof (cpu_string), "%s%s Model %d Stepping %d",
1248 intel_p ? "Pentium" : (amd_p ? "AMD" : "ix86"),
1249 cpu_brand, cpu_model, cpuid_eax & 0xf);
1250 printfi_filtered (31, "%s\n", cpu_string);
1251 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1252 || ((cpuid_edx & 1) == 0)
1253 || (amd_p && (cpuid_edx & (3 << 30)) != 0))
1254 {
1255 puts_filtered ("CPU Features...................");
1256 /* We only list features which might be useful in the DPMI
1257 environment. */
1258 if ((cpuid_edx & 1) == 0)
1259 puts_filtered ("No FPU "); /* It's unusual to not have an FPU. */
1260 if ((cpuid_edx & (1 << 1)) != 0)
1261 puts_filtered ("VME ");
1262 if ((cpuid_edx & (1 << 2)) != 0)
1263 puts_filtered ("DE ");
1264 if ((cpuid_edx & (1 << 4)) != 0)
1265 puts_filtered ("TSC ");
1266 if ((cpuid_edx & (1 << 23)) != 0)
1267 puts_filtered ("MMX ");
1268 if ((cpuid_edx & (1 << 25)) != 0)
1269 puts_filtered ("SSE ");
1270 if ((cpuid_edx & (1 << 26)) != 0)
1271 puts_filtered ("SSE2 ");
1272 if (amd_p)
1273 {
1274 if ((cpuid_edx & (1 << 31)) != 0)
1275 puts_filtered ("3DNow! ");
1276 if ((cpuid_edx & (1 << 30)) != 0)
1277 puts_filtered ("3DNow!Ext");
1278 }
1279 puts_filtered ("\n");
1280 }
1281 }
1282 puts_filtered ("\n");
1283 printf_filtered ("DOS Version....................%s %s.%s",
1284 _os_flavor, u.release, u.version);
1285 if (true_dos_version != advertized_dos_version)
1286 printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1287 puts_filtered ("\n");
1288 if (!windows_major)
1289 go32_get_windows_version ();
1290 if (windows_major != 0xff)
1291 {
1292 const char *windows_flavor;
1293
1294 printf_filtered ("Windows Version................%d.%02d (Windows ",
1295 windows_major, windows_minor);
1296 switch (windows_major)
1297 {
1298 case 3:
1299 windows_flavor = "3.X";
1300 break;
1301 case 4:
1302 switch (windows_minor)
1303 {
1304 case 0:
1305 windows_flavor = "95, 95A, or 95B";
1306 break;
1307 case 3:
1308 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1309 break;
1310 case 10:
1311 windows_flavor = "98 or 98 SE";
1312 break;
1313 case 90:
1314 windows_flavor = "ME";
1315 break;
1316 default:
1317 windows_flavor = "9X";
1318 break;
1319 }
1320 break;
1321 default:
1322 windows_flavor = "??";
1323 break;
1324 }
1325 printf_filtered ("%s)\n", windows_flavor);
1326 }
1327 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1328 printf_filtered ("Windows Version................"
1329 "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1330 puts_filtered ("\n");
1331 /* On some versions of Windows, __dpmi_get_capabilities returns
1332 zero, but the buffer is not filled with info, so we fill the
1333 buffer with a known pattern and test for it afterwards. */
1334 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1335 dpmi_vendor_available =
1336 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1337 if (dpmi_vendor_available == 0
1338 && memcmp (dpmi_vendor_info, test_pattern,
1339 sizeof(dpmi_vendor_info)) != 0)
1340 {
1341 /* The DPMI spec says the vendor string should be ASCIIZ, but
1342 I don't trust the vendors to follow that... */
1343 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1344 dpmi_vendor_info[128] = '\0';
1345 printf_filtered ("DPMI Host......................"
1346 "%s v%d.%d (capabilities: %#x)\n",
1347 &dpmi_vendor_info[2],
1348 (unsigned)dpmi_vendor_info[0],
1349 (unsigned)dpmi_vendor_info[1],
1350 ((unsigned)dpmi_flags & 0x7f));
1351 }
1352 else
1353 printf_filtered ("DPMI Host......................(Info not available)\n");
1354 __dpmi_get_version (&dpmi_version_data);
1355 printf_filtered ("DPMI Version...................%d.%02d\n",
1356 dpmi_version_data.major, dpmi_version_data.minor);
1357 printf_filtered ("DPMI Info......................"
1358 "%s-bit DPMI, with%s Virtual Memory support\n",
1359 (dpmi_version_data.flags & 1) ? "32" : "16",
1360 (dpmi_version_data.flags & 4) ? "" : "out");
1361 printfi_filtered (31, "Interrupts reflected to %s mode\n",
1362 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1363 printfi_filtered (31, "Processor type: i%d86\n",
1364 dpmi_version_data.cpu);
1365 printfi_filtered (31, "PIC base interrupt: Master: %#x Slave: %#x\n",
1366 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1367
1368 /* a_tss is only initialized when the debuggee is first run. */
1369 if (prog_has_started)
1370 {
1371 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1372 printf_filtered ("Protection....................."
1373 "Ring %d (in %s), with%s I/O protection\n",
1374 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1375 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1376 }
1377 puts_filtered ("\n");
1378 __dpmi_get_free_memory_information (&mem_info);
1379 print_mem (mem_info.total_number_of_physical_pages,
1380 "DPMI Total Physical Memory.....", 1);
1381 print_mem (mem_info.total_number_of_free_pages,
1382 "DPMI Free Physical Memory......", 1);
1383 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1384 "DPMI Swap Space................", 1);
1385 print_mem (mem_info.linear_address_space_size_in_pages,
1386 "DPMI Total Linear Address Size.", 1);
1387 print_mem (mem_info.free_linear_address_space_in_pages,
1388 "DPMI Free Linear Address Size..", 1);
1389 print_mem (mem_info.largest_available_free_block_in_bytes,
1390 "DPMI Largest Free Memory Block.", 0);
1391
1392 regs.h.ah = 0x48;
1393 regs.x.bx = 0xffff;
1394 __dpmi_int (0x21, &regs);
1395 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1396 regs.x.ax = 0x5800;
1397 __dpmi_int (0x21, &regs);
1398 if ((regs.x.flags & 1) == 0)
1399 {
1400 static const char *dos_hilo[] = {
1401 "Low", "", "", "", "High", "", "", "", "High, then Low"
1402 };
1403 static const char *dos_fit[] = {
1404 "First", "Best", "Last"
1405 };
1406 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1407 int fit_idx = regs.x.ax & 0x0f;
1408
1409 if (hilo_idx > 8)
1410 hilo_idx = 0;
1411 if (fit_idx > 2)
1412 fit_idx = 0;
1413 printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1414 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1415 regs.x.ax = 0x5802;
1416 __dpmi_int (0x21, &regs);
1417 if ((regs.x.flags & 1) != 0)
1418 regs.h.al = 0;
1419 printfi_filtered (31, "UMBs %sin DOS memory chain\n",
1420 regs.h.al == 0 ? "not " : "");
1421 }
1422 }
1423
1424 struct seg_descr {
1425 unsigned short limit0;
1426 unsigned short base0;
1427 unsigned char base1;
1428 unsigned stype:5;
1429 unsigned dpl:2;
1430 unsigned present:1;
1431 unsigned limit1:4;
1432 unsigned available:1;
1433 unsigned dummy:1;
1434 unsigned bit32:1;
1435 unsigned page_granular:1;
1436 unsigned char base2;
1437 } __attribute__ ((packed));
1438
1439 struct gate_descr {
1440 unsigned short offset0;
1441 unsigned short selector;
1442 unsigned param_count:5;
1443 unsigned dummy:3;
1444 unsigned stype:5;
1445 unsigned dpl:2;
1446 unsigned present:1;
1447 unsigned short offset1;
1448 } __attribute__ ((packed));
1449
1450 /* Read LEN bytes starting at logical address ADDR, and put the result
1451 into DEST. Return 1 if success, zero if not. */
1452 static int
1453 read_memory_region (unsigned long addr, void *dest, size_t len)
1454 {
1455 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1456 int retval = 1;
1457
1458 /* For the low memory, we can simply use _dos_ds. */
1459 if (addr <= dos_ds_limit - len)
1460 dosmemget (addr, len, dest);
1461 else
1462 {
1463 /* For memory above 1MB we need to set up a special segment to
1464 be able to access that memory. */
1465 int sel = __dpmi_allocate_ldt_descriptors (1);
1466
1467 if (sel <= 0)
1468 retval = 0;
1469 else
1470 {
1471 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1472 size_t segment_limit = len - 1;
1473
1474 /* Make sure the crucial bits in the descriptor access
1475 rights are set correctly. Some DPMI providers might barf
1476 if we set the segment limit to something that is not an
1477 integral multiple of 4KB pages if the granularity bit is
1478 not set to byte-granular, even though the DPMI spec says
1479 it's the host's responsibility to set that bit correctly. */
1480 if (len > 1024 * 1024)
1481 {
1482 access_rights |= 0x8000;
1483 /* Page-granular segments should have the low 12 bits of
1484 the limit set. */
1485 segment_limit |= 0xfff;
1486 }
1487 else
1488 access_rights &= ~0x8000;
1489
1490 if (__dpmi_set_segment_base_address (sel, addr) != -1
1491 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1492 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1493 /* W2K silently fails to set the segment limit, leaving
1494 it at zero; this test avoids the resulting crash. */
1495 && __dpmi_get_segment_limit (sel) >= segment_limit)
1496 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1497 else
1498 retval = 0;
1499
1500 __dpmi_free_ldt_descriptor (sel);
1501 }
1502 }
1503 return retval;
1504 }
1505
1506 /* Get a segment descriptor stored at index IDX in the descriptor
1507 table whose base address is TABLE_BASE. Return the descriptor
1508 type, or -1 if failure. */
1509 static int
1510 get_descriptor (unsigned long table_base, int idx, void *descr)
1511 {
1512 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1513
1514 if (read_memory_region (addr, descr, 8))
1515 return (int)((struct seg_descr *)descr)->stype;
1516 return -1;
1517 }
1518
1519 struct dtr_reg {
1520 unsigned short limit __attribute__((packed));
1521 unsigned long base __attribute__((packed));
1522 };
1523
1524 /* Display a segment descriptor stored at index IDX in a descriptor
1525 table whose type is TYPE and whose base address is BASE_ADDR. If
1526 FORCE is non-zero, display even invalid descriptors. */
1527 static void
1528 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1529 {
1530 struct seg_descr descr;
1531 struct gate_descr gate;
1532
1533 /* Get the descriptor from the table. */
1534 if (idx == 0 && type == 0)
1535 puts_filtered ("0x000: null descriptor\n");
1536 else if (get_descriptor (base_addr, idx, &descr) != -1)
1537 {
1538 /* For each type of descriptor table, this has a bit set if the
1539 corresponding type of selectors is valid in that table. */
1540 static unsigned allowed_descriptors[] = {
1541 0xffffdafeL, /* GDT */
1542 0x0000c0e0L, /* IDT */
1543 0xffffdafaL /* LDT */
1544 };
1545
1546 /* If the program hasn't started yet, assume the debuggee will
1547 have the same CPL as the debugger. */
1548 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1549 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1550
1551 if (descr.present
1552 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1553 {
1554 printf_filtered ("0x%03x: ",
1555 type == 1
1556 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1557 if (descr.page_granular)
1558 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1559 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1560 || descr.stype == 9 || descr.stype == 11
1561 || (descr.stype >= 16 && descr.stype < 32))
1562 printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1563 descr.base2, descr.base1, descr.base0, limit);
1564
1565 switch (descr.stype)
1566 {
1567 case 1:
1568 case 3:
1569 printf_filtered (" 16-bit TSS (task %sactive)",
1570 descr.stype == 3 ? "" : "in");
1571 break;
1572 case 2:
1573 puts_filtered (" LDT");
1574 break;
1575 case 4:
1576 memcpy (&gate, &descr, sizeof gate);
1577 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1578 gate.selector, gate.offset1, gate.offset0);
1579 printf_filtered (" 16-bit Call Gate (params=%d)",
1580 gate.param_count);
1581 break;
1582 case 5:
1583 printf_filtered ("TSS selector=0x%04x", descr.base0);
1584 printfi_filtered (16, "Task Gate");
1585 break;
1586 case 6:
1587 case 7:
1588 memcpy (&gate, &descr, sizeof gate);
1589 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1590 gate.selector, gate.offset1, gate.offset0);
1591 printf_filtered (" 16-bit %s Gate",
1592 descr.stype == 6 ? "Interrupt" : "Trap");
1593 break;
1594 case 9:
1595 case 11:
1596 printf_filtered (" 32-bit TSS (task %sactive)",
1597 descr.stype == 3 ? "" : "in");
1598 break;
1599 case 12:
1600 memcpy (&gate, &descr, sizeof gate);
1601 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1602 gate.selector, gate.offset1, gate.offset0);
1603 printf_filtered (" 32-bit Call Gate (params=%d)",
1604 gate.param_count);
1605 break;
1606 case 14:
1607 case 15:
1608 memcpy (&gate, &descr, sizeof gate);
1609 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1610 gate.selector, gate.offset1, gate.offset0);
1611 printf_filtered (" 32-bit %s Gate",
1612 descr.stype == 14 ? "Interrupt" : "Trap");
1613 break;
1614 case 16: /* data segments */
1615 case 17:
1616 case 18:
1617 case 19:
1618 case 20:
1619 case 21:
1620 case 22:
1621 case 23:
1622 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1623 descr.bit32 ? "32" : "16",
1624 descr.stype & 2
1625 ? "Read/Write," : "Read-Only, ",
1626 descr.stype & 4 ? "down" : "up",
1627 descr.stype & 1 ? "" : ", N.Acc");
1628 break;
1629 case 24: /* code segments */
1630 case 25:
1631 case 26:
1632 case 27:
1633 case 28:
1634 case 29:
1635 case 30:
1636 case 31:
1637 printf_filtered (" %s-bit Code (%s, %sConf%s)",
1638 descr.bit32 ? "32" : "16",
1639 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1640 descr.stype & 4 ? "" : "N.",
1641 descr.stype & 1 ? "" : ", N.Acc");
1642 break;
1643 default:
1644 printf_filtered ("Unknown type 0x%02x", descr.stype);
1645 break;
1646 }
1647 puts_filtered ("\n");
1648 }
1649 else if (force)
1650 {
1651 printf_filtered ("0x%03x: ",
1652 type == 1
1653 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1654 if (!descr.present)
1655 puts_filtered ("Segment not present\n");
1656 else
1657 printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1658 descr.stype);
1659 }
1660 }
1661 else if (force)
1662 printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1663 }
1664
1665 static void
1666 go32_sldt (char *arg, int from_tty)
1667 {
1668 struct dtr_reg gdtr;
1669 unsigned short ldtr = 0;
1670 int ldt_idx;
1671 struct seg_descr ldt_descr;
1672 long ldt_entry = -1L;
1673 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1674
1675 if (arg && *arg)
1676 {
1677 arg = skip_spaces (arg);
1678
1679 if (*arg)
1680 {
1681 ldt_entry = parse_and_eval_long (arg);
1682 if (ldt_entry < 0
1683 || (ldt_entry & 4) == 0
1684 || (ldt_entry & 3) != (cpl & 3))
1685 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1686 }
1687 }
1688
1689 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1690 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1691 ldt_idx = ldtr / 8;
1692 if (ldt_idx == 0)
1693 puts_filtered ("There is no LDT.\n");
1694 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1695 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1696 printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1697 ldt_descr.base0
1698 | (ldt_descr.base1 << 16)
1699 | (ldt_descr.base2 << 24));
1700 else
1701 {
1702 unsigned base =
1703 ldt_descr.base0
1704 | (ldt_descr.base1 << 16)
1705 | (ldt_descr.base2 << 24);
1706 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1707 int max_entry;
1708
1709 if (ldt_descr.page_granular)
1710 /* Page-granular segments must have the low 12 bits of their
1711 limit set. */
1712 limit = (limit << 12) | 0xfff;
1713 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1714 64KB. */
1715 if (limit > 0xffff)
1716 limit = 0xffff;
1717
1718 max_entry = (limit + 1) / 8;
1719
1720 if (ldt_entry >= 0)
1721 {
1722 if (ldt_entry > limit)
1723 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1724 (unsigned long)ldt_entry, limit);
1725
1726 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1727 }
1728 else
1729 {
1730 int i;
1731
1732 for (i = 0; i < max_entry; i++)
1733 display_descriptor (ldt_descr.stype, base, i, 0);
1734 }
1735 }
1736 }
1737
1738 static void
1739 go32_sgdt (char *arg, int from_tty)
1740 {
1741 struct dtr_reg gdtr;
1742 long gdt_entry = -1L;
1743 int max_entry;
1744
1745 if (arg && *arg)
1746 {
1747 arg = skip_spaces (arg);
1748
1749 if (*arg)
1750 {
1751 gdt_entry = parse_and_eval_long (arg);
1752 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1753 error (_("Invalid GDT entry 0x%03lx: "
1754 "not an integral multiple of 8."),
1755 (unsigned long)gdt_entry);
1756 }
1757 }
1758
1759 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1760 max_entry = (gdtr.limit + 1) / 8;
1761
1762 if (gdt_entry >= 0)
1763 {
1764 if (gdt_entry > gdtr.limit)
1765 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1766 (unsigned long)gdt_entry, gdtr.limit);
1767
1768 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1769 }
1770 else
1771 {
1772 int i;
1773
1774 for (i = 0; i < max_entry; i++)
1775 display_descriptor (0, gdtr.base, i, 0);
1776 }
1777 }
1778
1779 static void
1780 go32_sidt (char *arg, int from_tty)
1781 {
1782 struct dtr_reg idtr;
1783 long idt_entry = -1L;
1784 int max_entry;
1785
1786 if (arg && *arg)
1787 {
1788 arg = skip_spaces (arg);
1789
1790 if (*arg)
1791 {
1792 idt_entry = parse_and_eval_long (arg);
1793 if (idt_entry < 0)
1794 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1795 }
1796 }
1797
1798 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1799 max_entry = (idtr.limit + 1) / 8;
1800 if (max_entry > 0x100) /* No more than 256 entries. */
1801 max_entry = 0x100;
1802
1803 if (idt_entry >= 0)
1804 {
1805 if (idt_entry > idtr.limit)
1806 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1807 (unsigned long)idt_entry, idtr.limit);
1808
1809 display_descriptor (1, idtr.base, idt_entry, 1);
1810 }
1811 else
1812 {
1813 int i;
1814
1815 for (i = 0; i < max_entry; i++)
1816 display_descriptor (1, idtr.base, i, 0);
1817 }
1818 }
1819
1820 /* Cached linear address of the base of the page directory. For
1821 now, available only under CWSDPMI. Code based on ideas and
1822 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1823 static unsigned long pdbr;
1824
1825 static unsigned long
1826 get_cr3 (void)
1827 {
1828 unsigned offset;
1829 unsigned taskreg;
1830 unsigned long taskbase, cr3;
1831 struct dtr_reg gdtr;
1832
1833 if (pdbr > 0 && pdbr <= 0xfffff)
1834 return pdbr;
1835
1836 /* Get the linear address of GDT and the Task Register. */
1837 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1838 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1839
1840 /* Task Register is a segment selector for the TSS of the current
1841 task. Therefore, it can be used as an index into the GDT to get
1842 at the segment descriptor for the TSS. To get the index, reset
1843 the low 3 bits of the selector (which give the CPL). Add 2 to the
1844 offset to point to the 3 low bytes of the base address. */
1845 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1846
1847
1848 /* CWSDPMI's task base is always under the 1MB mark. */
1849 if (offset > 0xfffff)
1850 return 0;
1851
1852 _farsetsel (_dos_ds);
1853 taskbase = _farnspeekl (offset) & 0xffffffU;
1854 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1855 if (taskbase > 0xfffff)
1856 return 0;
1857
1858 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1859 offset 1Ch in the TSS. */
1860 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1861 if (cr3 > 0xfffff)
1862 {
1863 #if 0 /* Not fullly supported yet. */
1864 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1865 the first Page Table right below the Page Directory. Thus,
1866 the first Page Table's entry for its own address and the Page
1867 Directory entry for that Page Table will hold the same
1868 physical address. The loop below searches the entire UMB
1869 range of addresses for such an occurence. */
1870 unsigned long addr, pte_idx;
1871
1872 for (addr = 0xb0000, pte_idx = 0xb0;
1873 pte_idx < 0xff;
1874 addr += 0x1000, pte_idx++)
1875 {
1876 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1877 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1878 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1879 {
1880 cr3 = addr + 0x1000;
1881 break;
1882 }
1883 }
1884 #endif
1885
1886 if (cr3 > 0xfffff)
1887 cr3 = 0;
1888 }
1889
1890 return cr3;
1891 }
1892
1893 /* Return the N'th Page Directory entry. */
1894 static unsigned long
1895 get_pde (int n)
1896 {
1897 unsigned long pde = 0;
1898
1899 if (pdbr && n >= 0 && n < 1024)
1900 {
1901 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1902 }
1903 return pde;
1904 }
1905
1906 /* Return the N'th entry of the Page Table whose Page Directory entry
1907 is PDE. */
1908 static unsigned long
1909 get_pte (unsigned long pde, int n)
1910 {
1911 unsigned long pte = 0;
1912
1913 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1914 page tables, for now. */
1915 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1916 {
1917 pde &= ~0xfff; /* Clear non-address bits. */
1918 pte = _farpeekl (_dos_ds, pde + 4*n);
1919 }
1920 return pte;
1921 }
1922
1923 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1924 says this is a Page Directory entry. If FORCE is non-zero, display
1925 the entry even if its Present flag is off. OFF is the offset of the
1926 address from the page's base address. */
1927 static void
1928 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1929 {
1930 if ((entry & 1) != 0)
1931 {
1932 printf_filtered ("Base=0x%05lx000", entry >> 12);
1933 if ((entry & 0x100) && !is_dir)
1934 puts_filtered (" Global");
1935 if ((entry & 0x40) && !is_dir)
1936 puts_filtered (" Dirty");
1937 printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1938 printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1939 printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1940 printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1941 printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1942 if (off)
1943 printf_filtered (" +0x%x", off);
1944 puts_filtered ("\n");
1945 }
1946 else if (force)
1947 printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1948 is_dir ? " Table" : "", entry >> 1);
1949 }
1950
1951 static void
1952 go32_pde (char *arg, int from_tty)
1953 {
1954 long pde_idx = -1, i;
1955
1956 if (arg && *arg)
1957 {
1958 arg = skip_spaces (arg);
1959
1960 if (*arg)
1961 {
1962 pde_idx = parse_and_eval_long (arg);
1963 if (pde_idx < 0 || pde_idx >= 1024)
1964 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1965 }
1966 }
1967
1968 pdbr = get_cr3 ();
1969 if (!pdbr)
1970 puts_filtered ("Access to Page Directories is "
1971 "not supported on this system.\n");
1972 else if (pde_idx >= 0)
1973 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
1974 else
1975 for (i = 0; i < 1024; i++)
1976 display_ptable_entry (get_pde (i), 1, 0, 0);
1977 }
1978
1979 /* A helper function to display entries in a Page Table pointed to by
1980 the N'th entry in the Page Directory. If FORCE is non-zero, say
1981 something even if the Page Table is not accessible. */
1982 static void
1983 display_page_table (long n, int force)
1984 {
1985 unsigned long pde = get_pde (n);
1986
1987 if ((pde & 1) != 0)
1988 {
1989 int i;
1990
1991 printf_filtered ("Page Table pointed to by "
1992 "Page Directory entry 0x%lx:\n", n);
1993 for (i = 0; i < 1024; i++)
1994 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
1995 puts_filtered ("\n");
1996 }
1997 else if (force)
1998 printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
1999 }
2000
2001 static void
2002 go32_pte (char *arg, int from_tty)
2003 {
2004 long pde_idx = -1L, i;
2005
2006 if (arg && *arg)
2007 {
2008 arg = skip_spaces (arg);
2009
2010 if (*arg)
2011 {
2012 pde_idx = parse_and_eval_long (arg);
2013 if (pde_idx < 0 || pde_idx >= 1024)
2014 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2015 }
2016 }
2017
2018 pdbr = get_cr3 ();
2019 if (!pdbr)
2020 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2021 else if (pde_idx >= 0)
2022 display_page_table (pde_idx, 1);
2023 else
2024 for (i = 0; i < 1024; i++)
2025 display_page_table (i, 0);
2026 }
2027
2028 static void
2029 go32_pte_for_address (char *arg, int from_tty)
2030 {
2031 CORE_ADDR addr = 0, i;
2032
2033 if (arg && *arg)
2034 {
2035 arg = skip_spaces (arg);
2036
2037 if (*arg)
2038 addr = parse_and_eval_address (arg);
2039 }
2040 if (!addr)
2041 error_no_arg (_("linear address"));
2042
2043 pdbr = get_cr3 ();
2044 if (!pdbr)
2045 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2046 else
2047 {
2048 int pde_idx = (addr >> 22) & 0x3ff;
2049 int pte_idx = (addr >> 12) & 0x3ff;
2050 unsigned offs = addr & 0xfff;
2051
2052 printf_filtered ("Page Table entry for address %s:\n",
2053 hex_string(addr));
2054 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2055 }
2056 }
2057
2058 static struct cmd_list_element *info_dos_cmdlist = NULL;
2059
2060 static void
2061 go32_info_dos_command (char *args, int from_tty)
2062 {
2063 help_list (info_dos_cmdlist, "info dos ", class_info, gdb_stdout);
2064 }
2065
2066 /* -Wmissing-prototypes */
2067 extern initialize_file_ftype _initialize_go32_nat;
2068
2069 void
2070 _initialize_go32_nat (void)
2071 {
2072 struct target_ops *t = go32_target ();
2073
2074 i386_dr_low.set_control = go32_set_dr7;
2075 i386_dr_low.set_addr = go32_set_dr;
2076 i386_dr_low.get_status = go32_get_dr6;
2077 i386_dr_low.get_control = go32_get_dr7;
2078 i386_dr_low.get_addr = go32_get_dr;
2079 i386_set_debug_register_length (4);
2080
2081 i386_use_watchpoints (t);
2082 add_target (t);
2083
2084 /* Initialize child's cwd as empty to be initialized when starting
2085 the child. */
2086 *child_cwd = 0;
2087
2088 /* Initialize child's command line storage. */
2089 if (redir_debug_init (&child_cmd) == -1)
2090 internal_error (__FILE__, __LINE__,
2091 _("Cannot allocate redirection storage: "
2092 "not enough memory.\n"));
2093
2094 /* We are always processing GCC-compiled programs. */
2095 processing_gcc_compilation = 2;
2096
2097 add_prefix_cmd ("dos", class_info, go32_info_dos_command, _("\
2098 Print information specific to DJGPP (aka MS-DOS) debugging."),
2099 &info_dos_cmdlist, "info dos ", 0, &infolist);
2100
2101 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2102 Display information about the target system, including CPU, OS, DPMI, etc."),
2103 &info_dos_cmdlist);
2104 add_cmd ("ldt", class_info, go32_sldt, _("\
2105 Display entries in the LDT (Local Descriptor Table).\n\
2106 Entry number (an expression) as an argument means display only that entry."),
2107 &info_dos_cmdlist);
2108 add_cmd ("gdt", class_info, go32_sgdt, _("\
2109 Display entries in the GDT (Global Descriptor Table).\n\
2110 Entry number (an expression) as an argument means display only that entry."),
2111 &info_dos_cmdlist);
2112 add_cmd ("idt", class_info, go32_sidt, _("\
2113 Display entries in the IDT (Interrupt Descriptor Table).\n\
2114 Entry number (an expression) as an argument means display only that entry."),
2115 &info_dos_cmdlist);
2116 add_cmd ("pde", class_info, go32_pde, _("\
2117 Display entries in the Page Directory.\n\
2118 Entry number (an expression) as an argument means display only that entry."),
2119 &info_dos_cmdlist);
2120 add_cmd ("pte", class_info, go32_pte, _("\
2121 Display entries in Page Tables.\n\
2122 Entry number (an expression) as an argument means display only entries\n\
2123 from the Page Table pointed to by the specified Page Directory entry."),
2124 &info_dos_cmdlist);
2125 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2126 Display a Page Table entry for a linear address.\n\
2127 The address argument must be a linear address, after adding to\n\
2128 it the base address of the appropriate segment.\n\
2129 The base address of variables and functions in the debuggee's data\n\
2130 or code segment is stored in the variable __djgpp_base_address,\n\
2131 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2132 For other segments, look up their base address in the output of\n\
2133 the `info dos ldt' command."),
2134 &info_dos_cmdlist);
2135 }
2136
2137 pid_t
2138 tcgetpgrp (int fd)
2139 {
2140 if (isatty (fd))
2141 return SOME_PID;
2142 errno = ENOTTY;
2143 return -1;
2144 }
2145
2146 int
2147 tcsetpgrp (int fd, pid_t pgid)
2148 {
2149 if (isatty (fd) && pgid == SOME_PID)
2150 return 0;
2151 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2152 return -1;
2153 }