]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-linux-tdep.c
run copyright.sh for 2011.
[thirdparty/binutils-gdb.git] / gdb / hppa-linux-tdep.c
1 /* Target-dependent code for GNU/Linux running on PA-RISC, for GDB.
2
3 Copyright (C) 2004, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "osabi.h"
24 #include "target.h"
25 #include "objfiles.h"
26 #include "solib-svr4.h"
27 #include "glibc-tdep.h"
28 #include "frame-unwind.h"
29 #include "trad-frame.h"
30 #include "dwarf2-frame.h"
31 #include "value.h"
32 #include "regset.h"
33 #include "regcache.h"
34 #include "hppa-tdep.h"
35 #include "linux-tdep.h"
36 #include "elf/common.h"
37
38 /* Map DWARF DBX register numbers to GDB register numbers. */
39 static int
40 hppa_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
41 {
42 /* The general registers and the sar are the same in both sets. */
43 if (reg <= 32)
44 return reg;
45
46 /* fr4-fr31 (left and right halves) are mapped from 72. */
47 if (reg >= 72 && reg <= 72 + 28 * 2)
48 return HPPA_FP4_REGNUM + (reg - 72);
49
50 warning (_("Unmapped DWARF DBX Register #%d encountered."), reg);
51 return -1;
52 }
53
54 static void
55 hppa_linux_target_write_pc (struct regcache *regcache, CORE_ADDR v)
56 {
57 /* Probably this should be done by the kernel, but it isn't. */
58 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, v | 0x3);
59 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, (v + 4) | 0x3);
60 }
61
62 /* An instruction to match. */
63 struct insn_pattern
64 {
65 unsigned int data; /* See if it matches this.... */
66 unsigned int mask; /* ... with this mask. */
67 };
68
69 static struct insn_pattern hppa_sigtramp[] = {
70 /* ldi 0, %r25 or ldi 1, %r25 */
71 { 0x34190000, 0xfffffffd },
72 /* ldi __NR_rt_sigreturn, %r20 */
73 { 0x3414015a, 0xffffffff },
74 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
75 { 0xe4008200, 0xffffffff },
76 /* nop */
77 { 0x08000240, 0xffffffff },
78 { 0, 0 }
79 };
80
81 #define HPPA_MAX_INSN_PATTERN_LEN (4)
82
83 /* Return non-zero if the instructions at PC match the series
84 described in PATTERN, or zero otherwise. PATTERN is an array of
85 'struct insn_pattern' objects, terminated by an entry whose mask is
86 zero.
87
88 When the match is successful, fill INSN[i] with what PATTERN[i]
89 matched. */
90 static int
91 insns_match_pattern (struct gdbarch *gdbarch, CORE_ADDR pc,
92 struct insn_pattern *pattern,
93 unsigned int *insn)
94 {
95 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96 int i;
97 CORE_ADDR npc = pc;
98
99 for (i = 0; pattern[i].mask; i++)
100 {
101 char buf[4];
102
103 target_read_memory (npc, buf, 4);
104 insn[i] = extract_unsigned_integer (buf, 4, byte_order);
105 if ((insn[i] & pattern[i].mask) == pattern[i].data)
106 npc += 4;
107 else
108 return 0;
109 }
110 return 1;
111 }
112
113 /* Signal frames. */
114
115 /* (This is derived from MD_FALLBACK_FRAME_STATE_FOR in gcc.)
116
117 Unfortunately, because of various bugs and changes to the kernel,
118 we have several cases to deal with.
119
120 In 2.4, the signal trampoline is 4 bytes, and pc should point directly at
121 the beginning of the trampoline and struct rt_sigframe.
122
123 In <= 2.6.5-rc2-pa3, the signal trampoline is 9 bytes, and pc points at
124 the 4th word in the trampoline structure. This is wrong, it should point
125 at the 5th word. This is fixed in 2.6.5-rc2-pa4.
126
127 To detect these cases, we first take pc, align it to 64-bytes
128 to get the beginning of the signal frame, and then check offsets 0, 4
129 and 5 to see if we found the beginning of the trampoline. This will
130 tell us how to locate the sigcontext structure.
131
132 Note that with a 2.4 64-bit kernel, the signal context is not properly
133 passed back to userspace so the unwind will not work correctly. */
134 static CORE_ADDR
135 hppa_linux_sigtramp_find_sigcontext (struct gdbarch *gdbarch, CORE_ADDR pc)
136 {
137 unsigned int dummy[HPPA_MAX_INSN_PATTERN_LEN];
138 int offs = 0;
139 int try;
140 /* offsets to try to find the trampoline */
141 static int pcoffs[] = { 0, 4*4, 5*4 };
142 /* offsets to the rt_sigframe structure */
143 static int sfoffs[] = { 4*4, 10*4, 10*4 };
144 CORE_ADDR sp;
145
146 /* Most of the time, this will be correct. The one case when this will
147 fail is if the user defined an alternate stack, in which case the
148 beginning of the stack will not be align_down (pc, 64). */
149 sp = align_down (pc, 64);
150
151 /* rt_sigreturn trampoline:
152 3419000x ldi 0, %r25 or ldi 1, %r25 (x = 0 or 2)
153 3414015a ldi __NR_rt_sigreturn, %r20
154 e4008200 be,l 0x100(%sr2, %r0), %sr0, %r31
155 08000240 nop */
156
157 for (try = 0; try < ARRAY_SIZE (pcoffs); try++)
158 {
159 if (insns_match_pattern (gdbarch, sp + pcoffs[try],
160 hppa_sigtramp, dummy))
161 {
162 offs = sfoffs[try];
163 break;
164 }
165 }
166
167 if (offs == 0)
168 {
169 if (insns_match_pattern (gdbarch, pc, hppa_sigtramp, dummy))
170 {
171 /* sigaltstack case: we have no way of knowing which offset to
172 use in this case; default to new kernel handling. If this is
173 wrong the unwinding will fail. */
174 try = 2;
175 sp = pc - pcoffs[try];
176 }
177 else
178 {
179 return 0;
180 }
181 }
182
183 /* sp + sfoffs[try] points to a struct rt_sigframe, which contains
184 a struct siginfo and a struct ucontext. struct ucontext contains
185 a struct sigcontext. Return an offset to this sigcontext here. Too
186 bad we cannot include system specific headers :-(.
187 sizeof(struct siginfo) == 128
188 offsetof(struct ucontext, uc_mcontext) == 24. */
189 return sp + sfoffs[try] + 128 + 24;
190 }
191
192 struct hppa_linux_sigtramp_unwind_cache
193 {
194 CORE_ADDR base;
195 struct trad_frame_saved_reg *saved_regs;
196 };
197
198 static struct hppa_linux_sigtramp_unwind_cache *
199 hppa_linux_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
200 void **this_cache)
201 {
202 struct gdbarch *gdbarch = get_frame_arch (this_frame);
203 struct hppa_linux_sigtramp_unwind_cache *info;
204 CORE_ADDR pc, scptr;
205 int i;
206
207 if (*this_cache)
208 return *this_cache;
209
210 info = FRAME_OBSTACK_ZALLOC (struct hppa_linux_sigtramp_unwind_cache);
211 *this_cache = info;
212 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
213
214 pc = get_frame_pc (this_frame);
215 scptr = hppa_linux_sigtramp_find_sigcontext (gdbarch, pc);
216
217 /* structure of struct sigcontext:
218
219 struct sigcontext {
220 unsigned long sc_flags;
221 unsigned long sc_gr[32];
222 unsigned long long sc_fr[32];
223 unsigned long sc_iasq[2];
224 unsigned long sc_iaoq[2];
225 unsigned long sc_sar; */
226
227 /* Skip sc_flags. */
228 scptr += 4;
229
230 /* GR[0] is the psw. */
231 info->saved_regs[HPPA_IPSW_REGNUM].addr = scptr;
232 scptr += 4;
233
234 /* General registers. */
235 for (i = 1; i < 32; i++)
236 {
237 info->saved_regs[HPPA_R0_REGNUM + i].addr = scptr;
238 scptr += 4;
239 }
240
241 /* Pad to long long boundary. */
242 scptr += 4;
243
244 /* FP regs; FP0-3 are not restored. */
245 scptr += (8 * 4);
246
247 for (i = 4; i < 32; i++)
248 {
249 info->saved_regs[HPPA_FP0_REGNUM + (i * 2)].addr = scptr;
250 scptr += 4;
251 info->saved_regs[HPPA_FP0_REGNUM + (i * 2) + 1].addr = scptr;
252 scptr += 4;
253 }
254
255 /* IASQ/IAOQ. */
256 info->saved_regs[HPPA_PCSQ_HEAD_REGNUM].addr = scptr;
257 scptr += 4;
258 info->saved_regs[HPPA_PCSQ_TAIL_REGNUM].addr = scptr;
259 scptr += 4;
260
261 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = scptr;
262 scptr += 4;
263 info->saved_regs[HPPA_PCOQ_TAIL_REGNUM].addr = scptr;
264 scptr += 4;
265
266 info->saved_regs[HPPA_SAR_REGNUM].addr = scptr;
267
268 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
269
270 return info;
271 }
272
273 static void
274 hppa_linux_sigtramp_frame_this_id (struct frame_info *this_frame,
275 void **this_prologue_cache,
276 struct frame_id *this_id)
277 {
278 struct hppa_linux_sigtramp_unwind_cache *info
279 = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
280 *this_id = frame_id_build (info->base, get_frame_pc (this_frame));
281 }
282
283 static struct value *
284 hppa_linux_sigtramp_frame_prev_register (struct frame_info *this_frame,
285 void **this_prologue_cache,
286 int regnum)
287 {
288 struct hppa_linux_sigtramp_unwind_cache *info
289 = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
290 return hppa_frame_prev_register_helper (this_frame,
291 info->saved_regs, regnum);
292 }
293
294 /* hppa-linux always uses "new-style" rt-signals. The signal handler's return
295 address should point to a signal trampoline on the stack. The signal
296 trampoline is embedded in a rt_sigframe structure that is aligned on
297 the stack. We take advantage of the fact that sp must be 64-byte aligned,
298 and the trampoline is small, so by rounding down the trampoline address
299 we can find the beginning of the struct rt_sigframe. */
300 static int
301 hppa_linux_sigtramp_frame_sniffer (const struct frame_unwind *self,
302 struct frame_info *this_frame,
303 void **this_prologue_cache)
304 {
305 struct gdbarch *gdbarch = get_frame_arch (this_frame);
306 CORE_ADDR pc = get_frame_pc (this_frame);
307
308 if (hppa_linux_sigtramp_find_sigcontext (gdbarch, pc))
309 return 1;
310
311 return 0;
312 }
313
314 static const struct frame_unwind hppa_linux_sigtramp_frame_unwind = {
315 SIGTRAMP_FRAME,
316 hppa_linux_sigtramp_frame_this_id,
317 hppa_linux_sigtramp_frame_prev_register,
318 NULL,
319 hppa_linux_sigtramp_frame_sniffer
320 };
321
322 /* Attempt to find (and return) the global pointer for the given
323 function.
324
325 This is a rather nasty bit of code searchs for the .dynamic section
326 in the objfile corresponding to the pc of the function we're trying
327 to call. Once it finds the addresses at which the .dynamic section
328 lives in the child process, it scans the Elf32_Dyn entries for a
329 DT_PLTGOT tag. If it finds one of these, the corresponding
330 d_un.d_ptr value is the global pointer. */
331
332 static CORE_ADDR
333 hppa_linux_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
334 {
335 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
336 struct obj_section *faddr_sect;
337 CORE_ADDR faddr;
338
339 faddr = value_as_address (function);
340
341 /* Is this a plabel? If so, dereference it to get the gp value. */
342 if (faddr & 2)
343 {
344 int status;
345 char buf[4];
346
347 faddr &= ~3;
348
349 status = target_read_memory (faddr + 4, buf, sizeof (buf));
350 if (status == 0)
351 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
352 }
353
354 /* If the address is in the plt section, then the real function hasn't
355 yet been fixed up by the linker so we cannot determine the gp of
356 that function. */
357 if (in_plt_section (faddr, NULL))
358 return 0;
359
360 faddr_sect = find_pc_section (faddr);
361 if (faddr_sect != NULL)
362 {
363 struct obj_section *osect;
364
365 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
366 {
367 if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
368 break;
369 }
370
371 if (osect < faddr_sect->objfile->sections_end)
372 {
373 CORE_ADDR addr, endaddr;
374
375 addr = obj_section_addr (osect);
376 endaddr = obj_section_endaddr (osect);
377
378 while (addr < endaddr)
379 {
380 int status;
381 LONGEST tag;
382 char buf[4];
383
384 status = target_read_memory (addr, buf, sizeof (buf));
385 if (status != 0)
386 break;
387 tag = extract_signed_integer (buf, sizeof (buf), byte_order);
388
389 if (tag == DT_PLTGOT)
390 {
391 CORE_ADDR global_pointer;
392
393 status = target_read_memory (addr + 4, buf, sizeof (buf));
394 if (status != 0)
395 break;
396 global_pointer = extract_unsigned_integer (buf, sizeof (buf),
397 byte_order);
398 /* The payoff... */
399 return global_pointer;
400 }
401
402 if (tag == DT_NULL)
403 break;
404
405 addr += 8;
406 }
407 }
408 }
409 return 0;
410 }
411 \f
412 /*
413 * Registers saved in a coredump:
414 * gr0..gr31
415 * sr0..sr7
416 * iaoq0..iaoq1
417 * iasq0..iasq1
418 * sar, iir, isr, ior, ipsw
419 * cr0, cr24..cr31
420 * cr8,9,12,13
421 * cr10, cr15
422 */
423
424 #define GR_REGNUM(_n) (HPPA_R0_REGNUM+_n)
425 #define TR_REGNUM(_n) (HPPA_TR0_REGNUM+_n)
426 static const int greg_map[] =
427 {
428 GR_REGNUM(0), GR_REGNUM(1), GR_REGNUM(2), GR_REGNUM(3),
429 GR_REGNUM(4), GR_REGNUM(5), GR_REGNUM(6), GR_REGNUM(7),
430 GR_REGNUM(8), GR_REGNUM(9), GR_REGNUM(10), GR_REGNUM(11),
431 GR_REGNUM(12), GR_REGNUM(13), GR_REGNUM(14), GR_REGNUM(15),
432 GR_REGNUM(16), GR_REGNUM(17), GR_REGNUM(18), GR_REGNUM(19),
433 GR_REGNUM(20), GR_REGNUM(21), GR_REGNUM(22), GR_REGNUM(23),
434 GR_REGNUM(24), GR_REGNUM(25), GR_REGNUM(26), GR_REGNUM(27),
435 GR_REGNUM(28), GR_REGNUM(29), GR_REGNUM(30), GR_REGNUM(31),
436
437 HPPA_SR4_REGNUM+1, HPPA_SR4_REGNUM+2, HPPA_SR4_REGNUM+3, HPPA_SR4_REGNUM+4,
438 HPPA_SR4_REGNUM, HPPA_SR4_REGNUM+5, HPPA_SR4_REGNUM+6, HPPA_SR4_REGNUM+7,
439
440 HPPA_PCOQ_HEAD_REGNUM, HPPA_PCOQ_TAIL_REGNUM,
441 HPPA_PCSQ_HEAD_REGNUM, HPPA_PCSQ_TAIL_REGNUM,
442
443 HPPA_SAR_REGNUM, HPPA_IIR_REGNUM, HPPA_ISR_REGNUM, HPPA_IOR_REGNUM,
444 HPPA_IPSW_REGNUM, HPPA_RCR_REGNUM,
445
446 TR_REGNUM(0), TR_REGNUM(1), TR_REGNUM(2), TR_REGNUM(3),
447 TR_REGNUM(4), TR_REGNUM(5), TR_REGNUM(6), TR_REGNUM(7),
448
449 HPPA_PID0_REGNUM, HPPA_PID1_REGNUM, HPPA_PID2_REGNUM, HPPA_PID3_REGNUM,
450 HPPA_CCR_REGNUM, HPPA_EIEM_REGNUM,
451 };
452
453 static void
454 hppa_linux_supply_regset (const struct regset *regset,
455 struct regcache *regcache,
456 int regnum, const void *regs, size_t len)
457 {
458 struct gdbarch *arch = get_regcache_arch (regcache);
459 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
460 const char *buf = regs;
461 int i, offset;
462
463 offset = 0;
464 for (i = 0; i < ARRAY_SIZE (greg_map); i++)
465 {
466 if (regnum == greg_map[i] || regnum == -1)
467 regcache_raw_supply (regcache, greg_map[i], buf + offset);
468
469 offset += tdep->bytes_per_address;
470 }
471 }
472
473 static void
474 hppa_linux_supply_fpregset (const struct regset *regset,
475 struct regcache *regcache,
476 int regnum, const void *regs, size_t len)
477 {
478 const char *buf = regs;
479 int i, offset;
480
481 offset = 0;
482 for (i = 0; i < 64; i++)
483 {
484 if (regnum == HPPA_FP0_REGNUM + i || regnum == -1)
485 regcache_raw_supply (regcache, HPPA_FP0_REGNUM + i,
486 buf + offset);
487 offset += 4;
488 }
489 }
490
491 /* HPPA Linux kernel register set. */
492 static struct regset hppa_linux_regset =
493 {
494 NULL,
495 hppa_linux_supply_regset
496 };
497
498 static struct regset hppa_linux_fpregset =
499 {
500 NULL,
501 hppa_linux_supply_fpregset
502 };
503
504 static const struct regset *
505 hppa_linux_regset_from_core_section (struct gdbarch *gdbarch,
506 const char *sect_name,
507 size_t sect_size)
508 {
509 if (strcmp (sect_name, ".reg") == 0)
510 return &hppa_linux_regset;
511 else if (strcmp (sect_name, ".reg2") == 0)
512 return &hppa_linux_fpregset;
513
514 return NULL;
515 }
516 \f
517
518 /* Forward declarations. */
519 extern initialize_file_ftype _initialize_hppa_linux_tdep;
520
521 static void
522 hppa_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
523 {
524 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
525
526 linux_init_abi (info, gdbarch);
527
528 /* GNU/Linux is always ELF. */
529 tdep->is_elf = 1;
530
531 tdep->find_global_pointer = hppa_linux_find_global_pointer;
532
533 set_gdbarch_write_pc (gdbarch, hppa_linux_target_write_pc);
534
535 frame_unwind_append_unwinder (gdbarch, &hppa_linux_sigtramp_frame_unwind);
536
537 /* GNU/Linux uses SVR4-style shared libraries. */
538 set_solib_svr4_fetch_link_map_offsets
539 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
540
541 tdep->in_solib_call_trampoline = hppa_in_solib_call_trampoline;
542 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
543
544 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
545 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
546
547 /* On hppa-linux, currently, sizeof(long double) == 8. There has been
548 some discussions to support 128-bit long double, but it requires some
549 more work in gcc and glibc first. */
550 set_gdbarch_long_double_bit (gdbarch, 64);
551
552 set_gdbarch_regset_from_core_section
553 (gdbarch, hppa_linux_regset_from_core_section);
554
555 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum);
556
557 /* Enable TLS support. */
558 set_gdbarch_fetch_tls_load_module_address (gdbarch,
559 svr4_fetch_objfile_link_map);
560 }
561
562 void
563 _initialize_hppa_linux_tdep (void)
564 {
565 gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_LINUX, hppa_linux_init_abi);
566 gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, GDB_OSABI_LINUX, hppa_linux_init_abi);
567 }