]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-tdep.c
import gdb-1999-11-16 snapshot
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 87, 89, 90, 91, 92, 93, 94, 95, 96, 1999
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "bfd.h"
28 #include "inferior.h"
29 #include "value.h"
30
31 /* For argument passing to the inferior */
32 #include "symtab.h"
33
34 #ifdef USG
35 #include <sys/types.h>
36 #endif
37
38 #include <dl.h>
39 #include <sys/param.h>
40 #include <signal.h>
41
42 #include <sys/ptrace.h>
43 #include <machine/save_state.h>
44
45 #ifdef COFF_ENCAPSULATE
46 #include "a.out.encap.h"
47 #else
48 #endif
49
50 /*#include <sys/user.h> After a.out.h */
51 #include <sys/file.h>
52 #include "gdb_stat.h"
53 #include "wait.h"
54
55 #include "gdbcore.h"
56 #include "gdbcmd.h"
57 #include "target.h"
58 #include "symfile.h"
59 #include "objfiles.h"
60
61 /* To support detection of the pseudo-initial frame
62 that threads have. */
63 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
64 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
65
66 static int extract_5_load PARAMS ((unsigned int));
67
68 static unsigned extract_5R_store PARAMS ((unsigned int));
69
70 static unsigned extract_5r_store PARAMS ((unsigned int));
71
72 static void find_dummy_frame_regs PARAMS ((struct frame_info *,
73 struct frame_saved_regs *));
74
75 static int find_proc_framesize PARAMS ((CORE_ADDR));
76
77 static int find_return_regnum PARAMS ((CORE_ADDR));
78
79 struct unwind_table_entry *find_unwind_entry PARAMS ((CORE_ADDR));
80
81 static int extract_17 PARAMS ((unsigned int));
82
83 static unsigned deposit_21 PARAMS ((unsigned int, unsigned int));
84
85 static int extract_21 PARAMS ((unsigned));
86
87 static unsigned deposit_14 PARAMS ((int, unsigned int));
88
89 static int extract_14 PARAMS ((unsigned));
90
91 static void unwind_command PARAMS ((char *, int));
92
93 static int low_sign_extend PARAMS ((unsigned int, unsigned int));
94
95 static int sign_extend PARAMS ((unsigned int, unsigned int));
96
97 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
98
99 static int hppa_alignof PARAMS ((struct type *));
100
101 /* To support multi-threading and stepping. */
102 int hppa_prepare_to_proceed PARAMS (());
103
104 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
105
106 static int is_branch PARAMS ((unsigned long));
107
108 static int inst_saves_gr PARAMS ((unsigned long));
109
110 static int inst_saves_fr PARAMS ((unsigned long));
111
112 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
113
114 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
115
116 static int compare_unwind_entries PARAMS ((const void *, const void *));
117
118 static void read_unwind_info PARAMS ((struct objfile *));
119
120 static void internalize_unwinds PARAMS ((struct objfile *,
121 struct unwind_table_entry *,
122 asection *, unsigned int,
123 unsigned int, CORE_ADDR));
124 static void pa_print_registers PARAMS ((char *, int, int));
125 static void pa_strcat_registers PARAMS ((char *, int, int, GDB_FILE *));
126 static void pa_register_look_aside PARAMS ((char *, int, long *));
127 static void pa_print_fp_reg PARAMS ((int));
128 static void pa_strcat_fp_reg PARAMS ((int, GDB_FILE *, enum precision_type));
129 static void record_text_segment_lowaddr PARAMS ((bfd *, asection *, void *));
130
131 typedef struct
132 {
133 struct minimal_symbol *msym;
134 CORE_ADDR solib_handle;
135 CORE_ADDR return_val;
136 }
137 args_for_find_stub;
138
139 static int cover_find_stub_with_shl_get (PTR);
140
141 static int is_pa_2 = 0; /* False */
142
143 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
144 extern int hp_som_som_object_present;
145
146 /* In breakpoint.c */
147 extern int exception_catchpoints_are_fragile;
148
149 /* This is defined in valops.c. */
150 extern value_ptr
151 find_function_in_inferior PARAMS ((char *));
152
153 /* Should call_function allocate stack space for a struct return? */
154 int
155 hppa_use_struct_convention (gcc_p, type)
156 int gcc_p;
157 struct type *type;
158 {
159 return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
160 }
161 \f
162
163 /* Routines to extract various sized constants out of hppa
164 instructions. */
165
166 /* This assumes that no garbage lies outside of the lower bits of
167 value. */
168
169 static int
170 sign_extend (val, bits)
171 unsigned val, bits;
172 {
173 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
174 }
175
176 /* For many immediate values the sign bit is the low bit! */
177
178 static int
179 low_sign_extend (val, bits)
180 unsigned val, bits;
181 {
182 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
183 }
184
185 /* extract the immediate field from a ld{bhw}s instruction */
186
187 static int
188 extract_5_load (word)
189 unsigned word;
190 {
191 return low_sign_extend (word >> 16 & MASK_5, 5);
192 }
193
194 /* extract the immediate field from a break instruction */
195
196 static unsigned
197 extract_5r_store (word)
198 unsigned word;
199 {
200 return (word & MASK_5);
201 }
202
203 /* extract the immediate field from a {sr}sm instruction */
204
205 static unsigned
206 extract_5R_store (word)
207 unsigned word;
208 {
209 return (word >> 16 & MASK_5);
210 }
211
212 /* extract a 14 bit immediate field */
213
214 static int
215 extract_14 (word)
216 unsigned word;
217 {
218 return low_sign_extend (word & MASK_14, 14);
219 }
220
221 /* deposit a 14 bit constant in a word */
222
223 static unsigned
224 deposit_14 (opnd, word)
225 int opnd;
226 unsigned word;
227 {
228 unsigned sign = (opnd < 0 ? 1 : 0);
229
230 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
231 }
232
233 /* extract a 21 bit constant */
234
235 static int
236 extract_21 (word)
237 unsigned word;
238 {
239 int val;
240
241 word &= MASK_21;
242 word <<= 11;
243 val = GET_FIELD (word, 20, 20);
244 val <<= 11;
245 val |= GET_FIELD (word, 9, 19);
246 val <<= 2;
247 val |= GET_FIELD (word, 5, 6);
248 val <<= 5;
249 val |= GET_FIELD (word, 0, 4);
250 val <<= 2;
251 val |= GET_FIELD (word, 7, 8);
252 return sign_extend (val, 21) << 11;
253 }
254
255 /* deposit a 21 bit constant in a word. Although 21 bit constants are
256 usually the top 21 bits of a 32 bit constant, we assume that only
257 the low 21 bits of opnd are relevant */
258
259 static unsigned
260 deposit_21 (opnd, word)
261 unsigned opnd, word;
262 {
263 unsigned val = 0;
264
265 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
266 val <<= 2;
267 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
268 val <<= 2;
269 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
270 val <<= 11;
271 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
272 val <<= 1;
273 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
274 return word | val;
275 }
276
277 /* extract a 17 bit constant from branch instructions, returning the
278 19 bit signed value. */
279
280 static int
281 extract_17 (word)
282 unsigned word;
283 {
284 return sign_extend (GET_FIELD (word, 19, 28) |
285 GET_FIELD (word, 29, 29) << 10 |
286 GET_FIELD (word, 11, 15) << 11 |
287 (word & 0x1) << 16, 17) << 2;
288 }
289 \f
290
291 /* Compare the start address for two unwind entries returning 1 if
292 the first address is larger than the second, -1 if the second is
293 larger than the first, and zero if they are equal. */
294
295 static int
296 compare_unwind_entries (arg1, arg2)
297 const void *arg1;
298 const void *arg2;
299 {
300 const struct unwind_table_entry *a = arg1;
301 const struct unwind_table_entry *b = arg2;
302
303 if (a->region_start > b->region_start)
304 return 1;
305 else if (a->region_start < b->region_start)
306 return -1;
307 else
308 return 0;
309 }
310
311 static CORE_ADDR low_text_segment_address;
312
313 static void
314 record_text_segment_lowaddr (abfd, section, ignored)
315 bfd *abfd ATTRIBUTE_UNUSED;
316 asection *section;
317 PTR ignored ATTRIBUTE_UNUSED;
318 {
319 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
320 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
321 && section->vma < low_text_segment_address)
322 low_text_segment_address = section->vma;
323 }
324
325 static void
326 internalize_unwinds (objfile, table, section, entries, size, text_offset)
327 struct objfile *objfile;
328 struct unwind_table_entry *table;
329 asection *section;
330 unsigned int entries, size;
331 CORE_ADDR text_offset;
332 {
333 /* We will read the unwind entries into temporary memory, then
334 fill in the actual unwind table. */
335 if (size > 0)
336 {
337 unsigned long tmp;
338 unsigned i;
339 char *buf = alloca (size);
340
341 low_text_segment_address = -1;
342
343 /* If addresses are 64 bits wide, then unwinds are supposed to
344 be segment relative offsets instead of absolute addresses.
345
346 Note that when loading a shared library (text_offset != 0) the
347 unwinds are already relative to the text_offset that will be
348 passed in. */
349 if (TARGET_PTR_BIT == 64 && text_offset == 0)
350 {
351 bfd_map_over_sections (objfile->obfd,
352 record_text_segment_lowaddr, (PTR) NULL);
353
354 /* ?!? Mask off some low bits. Should this instead subtract
355 out the lowest section's filepos or something like that?
356 This looks very hokey to me. */
357 low_text_segment_address &= ~0xfff;
358 text_offset += low_text_segment_address;
359 }
360
361 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
362
363 /* Now internalize the information being careful to handle host/target
364 endian issues. */
365 for (i = 0; i < entries; i++)
366 {
367 table[i].region_start = bfd_get_32 (objfile->obfd,
368 (bfd_byte *) buf);
369 table[i].region_start += text_offset;
370 buf += 4;
371 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
372 table[i].region_end += text_offset;
373 buf += 4;
374 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
375 buf += 4;
376 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
377 table[i].Millicode = (tmp >> 30) & 0x1;
378 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
379 table[i].Region_description = (tmp >> 27) & 0x3;
380 table[i].reserved1 = (tmp >> 26) & 0x1;
381 table[i].Entry_SR = (tmp >> 25) & 0x1;
382 table[i].Entry_FR = (tmp >> 21) & 0xf;
383 table[i].Entry_GR = (tmp >> 16) & 0x1f;
384 table[i].Args_stored = (tmp >> 15) & 0x1;
385 table[i].Variable_Frame = (tmp >> 14) & 0x1;
386 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
387 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
388 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
389 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
390 table[i].Ada_Region = (tmp >> 9) & 0x1;
391 table[i].cxx_info = (tmp >> 8) & 0x1;
392 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
393 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
394 table[i].reserved2 = (tmp >> 5) & 0x1;
395 table[i].Save_SP = (tmp >> 4) & 0x1;
396 table[i].Save_RP = (tmp >> 3) & 0x1;
397 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
398 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
399 table[i].Cleanup_defined = tmp & 0x1;
400 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
401 buf += 4;
402 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
403 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
404 table[i].Large_frame = (tmp >> 29) & 0x1;
405 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
406 table[i].reserved4 = (tmp >> 27) & 0x1;
407 table[i].Total_frame_size = tmp & 0x7ffffff;
408
409 /* Stub unwinds are handled elsewhere. */
410 table[i].stub_unwind.stub_type = 0;
411 table[i].stub_unwind.padding = 0;
412 }
413 }
414 }
415
416 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
417 the object file. This info is used mainly by find_unwind_entry() to find
418 out the stack frame size and frame pointer used by procedures. We put
419 everything on the psymbol obstack in the objfile so that it automatically
420 gets freed when the objfile is destroyed. */
421
422 static void
423 read_unwind_info (objfile)
424 struct objfile *objfile;
425 {
426 asection *unwind_sec, *stub_unwind_sec;
427 unsigned unwind_size, stub_unwind_size, total_size;
428 unsigned index, unwind_entries;
429 unsigned stub_entries, total_entries;
430 CORE_ADDR text_offset;
431 struct obj_unwind_info *ui;
432 obj_private_data_t *obj_private;
433
434 text_offset = ANOFFSET (objfile->section_offsets, 0);
435 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
436 sizeof (struct obj_unwind_info));
437
438 ui->table = NULL;
439 ui->cache = NULL;
440 ui->last = -1;
441
442 /* For reasons unknown the HP PA64 tools generate multiple unwinder
443 sections in a single executable. So we just iterate over every
444 section in the BFD looking for unwinder sections intead of trying
445 to do a lookup with bfd_get_section_by_name.
446
447 First determine the total size of the unwind tables so that we
448 can allocate memory in a nice big hunk. */
449 total_entries = 0;
450 for (unwind_sec = objfile->obfd->sections;
451 unwind_sec;
452 unwind_sec = unwind_sec->next)
453 {
454 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
455 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
456 {
457 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
458 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
459
460 total_entries += unwind_entries;
461 }
462 }
463
464 /* Now compute the size of the stub unwinds. Note the ELF tools do not
465 use stub unwinds at the curren time. */
466 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
467
468 if (stub_unwind_sec)
469 {
470 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
471 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
472 }
473 else
474 {
475 stub_unwind_size = 0;
476 stub_entries = 0;
477 }
478
479 /* Compute total number of unwind entries and their total size. */
480 total_entries += stub_entries;
481 total_size = total_entries * sizeof (struct unwind_table_entry);
482
483 /* Allocate memory for the unwind table. */
484 ui->table = (struct unwind_table_entry *)
485 obstack_alloc (&objfile->psymbol_obstack, total_size);
486 ui->last = total_entries - 1;
487
488 /* Now read in each unwind section and internalize the standard unwind
489 entries. */
490 index = 0;
491 for (unwind_sec = objfile->obfd->sections;
492 unwind_sec;
493 unwind_sec = unwind_sec->next)
494 {
495 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
496 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
497 {
498 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
499 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
500
501 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
502 unwind_entries, unwind_size, text_offset);
503 index += unwind_entries;
504 }
505 }
506
507 /* Now read in and internalize the stub unwind entries. */
508 if (stub_unwind_size > 0)
509 {
510 unsigned int i;
511 char *buf = alloca (stub_unwind_size);
512
513 /* Read in the stub unwind entries. */
514 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
515 0, stub_unwind_size);
516
517 /* Now convert them into regular unwind entries. */
518 for (i = 0; i < stub_entries; i++, index++)
519 {
520 /* Clear out the next unwind entry. */
521 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
522
523 /* Convert offset & size into region_start and region_end.
524 Stuff away the stub type into "reserved" fields. */
525 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
526 (bfd_byte *) buf);
527 ui->table[index].region_start += text_offset;
528 buf += 4;
529 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
530 (bfd_byte *) buf);
531 buf += 2;
532 ui->table[index].region_end
533 = ui->table[index].region_start + 4 *
534 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
535 buf += 2;
536 }
537
538 }
539
540 /* Unwind table needs to be kept sorted. */
541 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
542 compare_unwind_entries);
543
544 /* Keep a pointer to the unwind information. */
545 if (objfile->obj_private == NULL)
546 {
547 obj_private = (obj_private_data_t *)
548 obstack_alloc (&objfile->psymbol_obstack,
549 sizeof (obj_private_data_t));
550 obj_private->unwind_info = NULL;
551 obj_private->so_info = NULL;
552 obj_private->dp = 0;
553
554 objfile->obj_private = (PTR) obj_private;
555 }
556 obj_private = (obj_private_data_t *) objfile->obj_private;
557 obj_private->unwind_info = ui;
558 }
559
560 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
561 of the objfiles seeking the unwind table entry for this PC. Each objfile
562 contains a sorted list of struct unwind_table_entry. Since we do a binary
563 search of the unwind tables, we depend upon them to be sorted. */
564
565 struct unwind_table_entry *
566 find_unwind_entry (pc)
567 CORE_ADDR pc;
568 {
569 int first, middle, last;
570 struct objfile *objfile;
571
572 /* A function at address 0? Not in HP-UX! */
573 if (pc == (CORE_ADDR) 0)
574 return NULL;
575
576 ALL_OBJFILES (objfile)
577 {
578 struct obj_unwind_info *ui;
579 ui = NULL;
580 if (objfile->obj_private)
581 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
582
583 if (!ui)
584 {
585 read_unwind_info (objfile);
586 if (objfile->obj_private == NULL)
587 error ("Internal error reading unwind information.");
588 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
589 }
590
591 /* First, check the cache */
592
593 if (ui->cache
594 && pc >= ui->cache->region_start
595 && pc <= ui->cache->region_end)
596 return ui->cache;
597
598 /* Not in the cache, do a binary search */
599
600 first = 0;
601 last = ui->last;
602
603 while (first <= last)
604 {
605 middle = (first + last) / 2;
606 if (pc >= ui->table[middle].region_start
607 && pc <= ui->table[middle].region_end)
608 {
609 ui->cache = &ui->table[middle];
610 return &ui->table[middle];
611 }
612
613 if (pc < ui->table[middle].region_start)
614 last = middle - 1;
615 else
616 first = middle + 1;
617 }
618 } /* ALL_OBJFILES() */
619 return NULL;
620 }
621
622 /* Return the adjustment necessary to make for addresses on the stack
623 as presented by hpread.c.
624
625 This is necessary because of the stack direction on the PA and the
626 bizarre way in which someone (?) decided they wanted to handle
627 frame pointerless code in GDB. */
628 int
629 hpread_adjust_stack_address (func_addr)
630 CORE_ADDR func_addr;
631 {
632 struct unwind_table_entry *u;
633
634 u = find_unwind_entry (func_addr);
635 if (!u)
636 return 0;
637 else
638 return u->Total_frame_size << 3;
639 }
640
641 /* Called to determine if PC is in an interrupt handler of some
642 kind. */
643
644 static int
645 pc_in_interrupt_handler (pc)
646 CORE_ADDR pc;
647 {
648 struct unwind_table_entry *u;
649 struct minimal_symbol *msym_us;
650
651 u = find_unwind_entry (pc);
652 if (!u)
653 return 0;
654
655 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
656 its frame isn't a pure interrupt frame. Deal with this. */
657 msym_us = lookup_minimal_symbol_by_pc (pc);
658
659 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
660 }
661
662 /* Called when no unwind descriptor was found for PC. Returns 1 if it
663 appears that PC is in a linker stub.
664
665 ?!? Need to handle stubs which appear in PA64 code. */
666
667 static int
668 pc_in_linker_stub (pc)
669 CORE_ADDR pc;
670 {
671 int found_magic_instruction = 0;
672 int i;
673 char buf[4];
674
675 /* If unable to read memory, assume pc is not in a linker stub. */
676 if (target_read_memory (pc, buf, 4) != 0)
677 return 0;
678
679 /* We are looking for something like
680
681 ; $$dyncall jams RP into this special spot in the frame (RP')
682 ; before calling the "call stub"
683 ldw -18(sp),rp
684
685 ldsid (rp),r1 ; Get space associated with RP into r1
686 mtsp r1,sp ; Move it into space register 0
687 be,n 0(sr0),rp) ; back to your regularly scheduled program */
688
689 /* Maximum known linker stub size is 4 instructions. Search forward
690 from the given PC, then backward. */
691 for (i = 0; i < 4; i++)
692 {
693 /* If we hit something with an unwind, stop searching this direction. */
694
695 if (find_unwind_entry (pc + i * 4) != 0)
696 break;
697
698 /* Check for ldsid (rp),r1 which is the magic instruction for a
699 return from a cross-space function call. */
700 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
701 {
702 found_magic_instruction = 1;
703 break;
704 }
705 /* Add code to handle long call/branch and argument relocation stubs
706 here. */
707 }
708
709 if (found_magic_instruction != 0)
710 return 1;
711
712 /* Now look backward. */
713 for (i = 0; i < 4; i++)
714 {
715 /* If we hit something with an unwind, stop searching this direction. */
716
717 if (find_unwind_entry (pc - i * 4) != 0)
718 break;
719
720 /* Check for ldsid (rp),r1 which is the magic instruction for a
721 return from a cross-space function call. */
722 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
723 {
724 found_magic_instruction = 1;
725 break;
726 }
727 /* Add code to handle long call/branch and argument relocation stubs
728 here. */
729 }
730 return found_magic_instruction;
731 }
732
733 static int
734 find_return_regnum (pc)
735 CORE_ADDR pc;
736 {
737 struct unwind_table_entry *u;
738
739 u = find_unwind_entry (pc);
740
741 if (!u)
742 return RP_REGNUM;
743
744 if (u->Millicode)
745 return 31;
746
747 return RP_REGNUM;
748 }
749
750 /* Return size of frame, or -1 if we should use a frame pointer. */
751 static int
752 find_proc_framesize (pc)
753 CORE_ADDR pc;
754 {
755 struct unwind_table_entry *u;
756 struct minimal_symbol *msym_us;
757
758 /* This may indicate a bug in our callers... */
759 if (pc == (CORE_ADDR) 0)
760 return -1;
761
762 u = find_unwind_entry (pc);
763
764 if (!u)
765 {
766 if (pc_in_linker_stub (pc))
767 /* Linker stubs have a zero size frame. */
768 return 0;
769 else
770 return -1;
771 }
772
773 msym_us = lookup_minimal_symbol_by_pc (pc);
774
775 /* If Save_SP is set, and we're not in an interrupt or signal caller,
776 then we have a frame pointer. Use it. */
777 if (u->Save_SP && !pc_in_interrupt_handler (pc)
778 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
779 return -1;
780
781 return u->Total_frame_size << 3;
782 }
783
784 /* Return offset from sp at which rp is saved, or 0 if not saved. */
785 static int rp_saved PARAMS ((CORE_ADDR));
786
787 static int
788 rp_saved (pc)
789 CORE_ADDR pc;
790 {
791 struct unwind_table_entry *u;
792
793 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
794 if (pc == (CORE_ADDR) 0)
795 return 0;
796
797 u = find_unwind_entry (pc);
798
799 if (!u)
800 {
801 if (pc_in_linker_stub (pc))
802 /* This is the so-called RP'. */
803 return -24;
804 else
805 return 0;
806 }
807
808 if (u->Save_RP)
809 return (TARGET_PTR_BIT == 64 ? -16 : -20);
810 else if (u->stub_unwind.stub_type != 0)
811 {
812 switch (u->stub_unwind.stub_type)
813 {
814 case EXPORT:
815 case IMPORT:
816 return -24;
817 case PARAMETER_RELOCATION:
818 return -8;
819 default:
820 return 0;
821 }
822 }
823 else
824 return 0;
825 }
826 \f
827 int
828 frameless_function_invocation (frame)
829 struct frame_info *frame;
830 {
831 struct unwind_table_entry *u;
832
833 u = find_unwind_entry (frame->pc);
834
835 if (u == 0)
836 return 0;
837
838 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
839 }
840
841 CORE_ADDR
842 saved_pc_after_call (frame)
843 struct frame_info *frame;
844 {
845 int ret_regnum;
846 CORE_ADDR pc;
847 struct unwind_table_entry *u;
848
849 ret_regnum = find_return_regnum (get_frame_pc (frame));
850 pc = read_register (ret_regnum) & ~0x3;
851
852 /* If PC is in a linker stub, then we need to dig the address
853 the stub will return to out of the stack. */
854 u = find_unwind_entry (pc);
855 if (u && u->stub_unwind.stub_type != 0)
856 return FRAME_SAVED_PC (frame);
857 else
858 return pc;
859 }
860 \f
861 CORE_ADDR
862 hppa_frame_saved_pc (frame)
863 struct frame_info *frame;
864 {
865 CORE_ADDR pc = get_frame_pc (frame);
866 struct unwind_table_entry *u;
867 CORE_ADDR old_pc;
868 int spun_around_loop = 0;
869 int rp_offset = 0;
870
871 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
872 at the base of the frame in an interrupt handler. Registers within
873 are saved in the exact same order as GDB numbers registers. How
874 convienent. */
875 if (pc_in_interrupt_handler (pc))
876 return read_memory_integer (frame->frame + PC_REGNUM * 4,
877 TARGET_PTR_BIT / 8) & ~0x3;
878
879 if ((frame->pc >= frame->frame
880 && frame->pc <= (frame->frame
881 /* A call dummy is sized in words, but it is
882 actually a series of instructions. Account
883 for that scaling factor. */
884 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
885 * CALL_DUMMY_LENGTH)
886 /* Similarly we have to account for 64bit
887 wide register saves. */
888 + (32 * REGISTER_SIZE)
889 /* We always consider FP regs 8 bytes long. */
890 + (NUM_REGS - FP0_REGNUM) * 8
891 /* Similarly we have to account for 64bit
892 wide register saves. */
893 + (6 * REGISTER_SIZE))))
894 {
895 return read_memory_integer ((frame->frame
896 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
897 TARGET_PTR_BIT / 8) & ~0x3;
898 }
899
900 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
901 /* Deal with signal handler caller frames too. */
902 if (frame->signal_handler_caller)
903 {
904 CORE_ADDR rp;
905 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
906 return rp & ~0x3;
907 }
908 #endif
909
910 if (frameless_function_invocation (frame))
911 {
912 int ret_regnum;
913
914 ret_regnum = find_return_regnum (pc);
915
916 /* If the next frame is an interrupt frame or a signal
917 handler caller, then we need to look in the saved
918 register area to get the return pointer (the values
919 in the registers may not correspond to anything useful). */
920 if (frame->next
921 && (frame->next->signal_handler_caller
922 || pc_in_interrupt_handler (frame->next->pc)))
923 {
924 struct frame_saved_regs saved_regs;
925
926 get_frame_saved_regs (frame->next, &saved_regs);
927 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
928 TARGET_PTR_BIT / 8) & 0x2)
929 {
930 pc = read_memory_integer (saved_regs.regs[31],
931 TARGET_PTR_BIT / 8) & ~0x3;
932
933 /* Syscalls are really two frames. The syscall stub itself
934 with a return pointer in %rp and the kernel call with
935 a return pointer in %r31. We return the %rp variant
936 if %r31 is the same as frame->pc. */
937 if (pc == frame->pc)
938 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
939 TARGET_PTR_BIT / 8) & ~0x3;
940 }
941 else
942 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
943 TARGET_PTR_BIT / 8) & ~0x3;
944 }
945 else
946 pc = read_register (ret_regnum) & ~0x3;
947 }
948 else
949 {
950 spun_around_loop = 0;
951 old_pc = pc;
952
953 restart:
954 rp_offset = rp_saved (pc);
955
956 /* Similar to code in frameless function case. If the next
957 frame is a signal or interrupt handler, then dig the right
958 information out of the saved register info. */
959 if (rp_offset == 0
960 && frame->next
961 && (frame->next->signal_handler_caller
962 || pc_in_interrupt_handler (frame->next->pc)))
963 {
964 struct frame_saved_regs saved_regs;
965
966 get_frame_saved_regs (frame->next, &saved_regs);
967 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
968 TARGET_PTR_BIT / 8) & 0x2)
969 {
970 pc = read_memory_integer (saved_regs.regs[31],
971 TARGET_PTR_BIT / 8) & ~0x3;
972
973 /* Syscalls are really two frames. The syscall stub itself
974 with a return pointer in %rp and the kernel call with
975 a return pointer in %r31. We return the %rp variant
976 if %r31 is the same as frame->pc. */
977 if (pc == frame->pc)
978 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
979 TARGET_PTR_BIT / 8) & ~0x3;
980 }
981 else
982 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
983 TARGET_PTR_BIT / 8) & ~0x3;
984 }
985 else if (rp_offset == 0)
986 {
987 old_pc = pc;
988 pc = read_register (RP_REGNUM) & ~0x3;
989 }
990 else
991 {
992 old_pc = pc;
993 pc = read_memory_integer (frame->frame + rp_offset,
994 TARGET_PTR_BIT / 8) & ~0x3;
995 }
996 }
997
998 /* If PC is inside a linker stub, then dig out the address the stub
999 will return to.
1000
1001 Don't do this for long branch stubs. Why? For some unknown reason
1002 _start is marked as a long branch stub in hpux10. */
1003 u = find_unwind_entry (pc);
1004 if (u && u->stub_unwind.stub_type != 0
1005 && u->stub_unwind.stub_type != LONG_BRANCH)
1006 {
1007 unsigned int insn;
1008
1009 /* If this is a dynamic executable, and we're in a signal handler,
1010 then the call chain will eventually point us into the stub for
1011 _sigreturn. Unlike most cases, we'll be pointed to the branch
1012 to the real sigreturn rather than the code after the real branch!.
1013
1014 Else, try to dig the address the stub will return to in the normal
1015 fashion. */
1016 insn = read_memory_integer (pc, 4);
1017 if ((insn & 0xfc00e000) == 0xe8000000)
1018 return (pc + extract_17 (insn) + 8) & ~0x3;
1019 else
1020 {
1021 if (old_pc == pc)
1022 spun_around_loop++;
1023
1024 if (spun_around_loop > 1)
1025 {
1026 /* We're just about to go around the loop again with
1027 no more hope of success. Die. */
1028 error ("Unable to find return pc for this frame");
1029 }
1030 else
1031 goto restart;
1032 }
1033 }
1034
1035 return pc;
1036 }
1037 \f
1038 /* We need to correct the PC and the FP for the outermost frame when we are
1039 in a system call. */
1040
1041 void
1042 init_extra_frame_info (fromleaf, frame)
1043 int fromleaf;
1044 struct frame_info *frame;
1045 {
1046 int flags;
1047 int framesize;
1048
1049 if (frame->next && !fromleaf)
1050 return;
1051
1052 /* If the next frame represents a frameless function invocation
1053 then we have to do some adjustments that are normally done by
1054 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
1055 if (fromleaf)
1056 {
1057 /* Find the framesize of *this* frame without peeking at the PC
1058 in the current frame structure (it isn't set yet). */
1059 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
1060
1061 /* Now adjust our base frame accordingly. If we have a frame pointer
1062 use it, else subtract the size of this frame from the current
1063 frame. (we always want frame->frame to point at the lowest address
1064 in the frame). */
1065 if (framesize == -1)
1066 frame->frame = TARGET_READ_FP ();
1067 else
1068 frame->frame -= framesize;
1069 return;
1070 }
1071
1072 flags = read_register (FLAGS_REGNUM);
1073 if (flags & 2) /* In system call? */
1074 frame->pc = read_register (31) & ~0x3;
1075
1076 /* The outermost frame is always derived from PC-framesize
1077
1078 One might think frameless innermost frames should have
1079 a frame->frame that is the same as the parent's frame->frame.
1080 That is wrong; frame->frame in that case should be the *high*
1081 address of the parent's frame. It's complicated as hell to
1082 explain, but the parent *always* creates some stack space for
1083 the child. So the child actually does have a frame of some
1084 sorts, and its base is the high address in its parent's frame. */
1085 framesize = find_proc_framesize (frame->pc);
1086 if (framesize == -1)
1087 frame->frame = TARGET_READ_FP ();
1088 else
1089 frame->frame = read_register (SP_REGNUM) - framesize;
1090 }
1091 \f
1092 /* Given a GDB frame, determine the address of the calling function's frame.
1093 This will be used to create a new GDB frame struct, and then
1094 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1095
1096 This may involve searching through prologues for several functions
1097 at boundaries where GCC calls HP C code, or where code which has
1098 a frame pointer calls code without a frame pointer. */
1099
1100 CORE_ADDR
1101 frame_chain (frame)
1102 struct frame_info *frame;
1103 {
1104 int my_framesize, caller_framesize;
1105 struct unwind_table_entry *u;
1106 CORE_ADDR frame_base;
1107 struct frame_info *tmp_frame;
1108
1109 /* A frame in the current frame list, or zero. */
1110 struct frame_info *saved_regs_frame = 0;
1111 /* Where the registers were saved in saved_regs_frame.
1112 If saved_regs_frame is zero, this is garbage. */
1113 struct frame_saved_regs saved_regs;
1114
1115 CORE_ADDR caller_pc;
1116
1117 struct minimal_symbol *min_frame_symbol;
1118 struct symbol *frame_symbol;
1119 char *frame_symbol_name;
1120
1121 /* If this is a threaded application, and we see the
1122 routine "__pthread_exit", treat it as the stack root
1123 for this thread. */
1124 min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
1125 frame_symbol = find_pc_function (frame->pc);
1126
1127 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1128 {
1129 /* The test above for "no user function name" would defend
1130 against the slim likelihood that a user might define a
1131 routine named "__pthread_exit" and then try to debug it.
1132
1133 If it weren't commented out, and you tried to debug the
1134 pthread library itself, you'd get errors.
1135
1136 So for today, we don't make that check. */
1137 frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
1138 if (frame_symbol_name != 0)
1139 {
1140 if (0 == strncmp (frame_symbol_name,
1141 THREAD_INITIAL_FRAME_SYMBOL,
1142 THREAD_INITIAL_FRAME_SYM_LEN))
1143 {
1144 /* Pretend we've reached the bottom of the stack. */
1145 return (CORE_ADDR) 0;
1146 }
1147 }
1148 } /* End of hacky code for threads. */
1149
1150 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1151 are easy; at *sp we have a full save state strucutre which we can
1152 pull the old stack pointer from. Also see frame_saved_pc for
1153 code to dig a saved PC out of the save state structure. */
1154 if (pc_in_interrupt_handler (frame->pc))
1155 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
1156 TARGET_PTR_BIT / 8);
1157 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1158 else if (frame->signal_handler_caller)
1159 {
1160 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1161 }
1162 #endif
1163 else
1164 frame_base = frame->frame;
1165
1166 /* Get frame sizes for the current frame and the frame of the
1167 caller. */
1168 my_framesize = find_proc_framesize (frame->pc);
1169 caller_pc = FRAME_SAVED_PC (frame);
1170
1171 /* If we can't determine the caller's PC, then it's not likely we can
1172 really determine anything meaningful about its frame. We'll consider
1173 this to be stack bottom. */
1174 if (caller_pc == (CORE_ADDR) 0)
1175 return (CORE_ADDR) 0;
1176
1177 caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
1178
1179 /* If caller does not have a frame pointer, then its frame
1180 can be found at current_frame - caller_framesize. */
1181 if (caller_framesize != -1)
1182 {
1183 return frame_base - caller_framesize;
1184 }
1185 /* Both caller and callee have frame pointers and are GCC compiled
1186 (SAVE_SP bit in unwind descriptor is on for both functions.
1187 The previous frame pointer is found at the top of the current frame. */
1188 if (caller_framesize == -1 && my_framesize == -1)
1189 {
1190 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1191 }
1192 /* Caller has a frame pointer, but callee does not. This is a little
1193 more difficult as GCC and HP C lay out locals and callee register save
1194 areas very differently.
1195
1196 The previous frame pointer could be in a register, or in one of
1197 several areas on the stack.
1198
1199 Walk from the current frame to the innermost frame examining
1200 unwind descriptors to determine if %r3 ever gets saved into the
1201 stack. If so return whatever value got saved into the stack.
1202 If it was never saved in the stack, then the value in %r3 is still
1203 valid, so use it.
1204
1205 We use information from unwind descriptors to determine if %r3
1206 is saved into the stack (Entry_GR field has this information). */
1207
1208 for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next)
1209 {
1210 u = find_unwind_entry (tmp_frame->pc);
1211
1212 if (!u)
1213 {
1214 /* We could find this information by examining prologues. I don't
1215 think anyone has actually written any tools (not even "strip")
1216 which leave them out of an executable, so maybe this is a moot
1217 point. */
1218 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1219 code that doesn't have unwind entries. For example, stepping into
1220 the dynamic linker will give you a PC that has none. Thus, I've
1221 disabled this warning. */
1222 #if 0
1223 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1224 #endif
1225 return (CORE_ADDR) 0;
1226 }
1227
1228 if (u->Save_SP
1229 || tmp_frame->signal_handler_caller
1230 || pc_in_interrupt_handler (tmp_frame->pc))
1231 break;
1232
1233 /* Entry_GR specifies the number of callee-saved general registers
1234 saved in the stack. It starts at %r3, so %r3 would be 1. */
1235 if (u->Entry_GR >= 1)
1236 {
1237 /* The unwind entry claims that r3 is saved here. However,
1238 in optimized code, GCC often doesn't actually save r3.
1239 We'll discover this if we look at the prologue. */
1240 get_frame_saved_regs (tmp_frame, &saved_regs);
1241 saved_regs_frame = tmp_frame;
1242
1243 /* If we have an address for r3, that's good. */
1244 if (saved_regs.regs[FP_REGNUM])
1245 break;
1246 }
1247 }
1248
1249 if (tmp_frame)
1250 {
1251 /* We may have walked down the chain into a function with a frame
1252 pointer. */
1253 if (u->Save_SP
1254 && !tmp_frame->signal_handler_caller
1255 && !pc_in_interrupt_handler (tmp_frame->pc))
1256 {
1257 return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
1258 }
1259 /* %r3 was saved somewhere in the stack. Dig it out. */
1260 else
1261 {
1262 /* Sick.
1263
1264 For optimization purposes many kernels don't have the
1265 callee saved registers into the save_state structure upon
1266 entry into the kernel for a syscall; the optimization
1267 is usually turned off if the process is being traced so
1268 that the debugger can get full register state for the
1269 process.
1270
1271 This scheme works well except for two cases:
1272
1273 * Attaching to a process when the process is in the
1274 kernel performing a system call (debugger can't get
1275 full register state for the inferior process since
1276 the process wasn't being traced when it entered the
1277 system call).
1278
1279 * Register state is not complete if the system call
1280 causes the process to core dump.
1281
1282
1283 The following heinous code is an attempt to deal with
1284 the lack of register state in a core dump. It will
1285 fail miserably if the function which performs the
1286 system call has a variable sized stack frame. */
1287
1288 if (tmp_frame != saved_regs_frame)
1289 get_frame_saved_regs (tmp_frame, &saved_regs);
1290
1291 /* Abominable hack. */
1292 if (current_target.to_has_execution == 0
1293 && ((saved_regs.regs[FLAGS_REGNUM]
1294 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1295 TARGET_PTR_BIT / 8)
1296 & 0x2))
1297 || (saved_regs.regs[FLAGS_REGNUM] == 0
1298 && read_register (FLAGS_REGNUM) & 0x2)))
1299 {
1300 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1301 if (!u)
1302 {
1303 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1304 TARGET_PTR_BIT / 8);
1305 }
1306 else
1307 {
1308 return frame_base - (u->Total_frame_size << 3);
1309 }
1310 }
1311
1312 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1313 TARGET_PTR_BIT / 8);
1314 }
1315 }
1316 else
1317 {
1318 /* Get the innermost frame. */
1319 tmp_frame = frame;
1320 while (tmp_frame->next != NULL)
1321 tmp_frame = tmp_frame->next;
1322
1323 if (tmp_frame != saved_regs_frame)
1324 get_frame_saved_regs (tmp_frame, &saved_regs);
1325
1326 /* Abominable hack. See above. */
1327 if (current_target.to_has_execution == 0
1328 && ((saved_regs.regs[FLAGS_REGNUM]
1329 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1330 TARGET_PTR_BIT / 8)
1331 & 0x2))
1332 || (saved_regs.regs[FLAGS_REGNUM] == 0
1333 && read_register (FLAGS_REGNUM) & 0x2)))
1334 {
1335 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1336 if (!u)
1337 {
1338 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1339 TARGET_PTR_BIT / 8);
1340 }
1341 else
1342 {
1343 return frame_base - (u->Total_frame_size << 3);
1344 }
1345 }
1346
1347 /* The value in %r3 was never saved into the stack (thus %r3 still
1348 holds the value of the previous frame pointer). */
1349 return TARGET_READ_FP ();
1350 }
1351 }
1352 \f
1353
1354 /* To see if a frame chain is valid, see if the caller looks like it
1355 was compiled with gcc. */
1356
1357 int
1358 hppa_frame_chain_valid (chain, thisframe)
1359 CORE_ADDR chain;
1360 struct frame_info *thisframe;
1361 {
1362 struct minimal_symbol *msym_us;
1363 struct minimal_symbol *msym_start;
1364 struct unwind_table_entry *u, *next_u = NULL;
1365 struct frame_info *next;
1366
1367 if (!chain)
1368 return 0;
1369
1370 u = find_unwind_entry (thisframe->pc);
1371
1372 if (u == NULL)
1373 return 1;
1374
1375 /* We can't just check that the same of msym_us is "_start", because
1376 someone idiotically decided that they were going to make a Ltext_end
1377 symbol with the same address. This Ltext_end symbol is totally
1378 indistinguishable (as nearly as I can tell) from the symbol for a function
1379 which is (legitimately, since it is in the user's namespace)
1380 named Ltext_end, so we can't just ignore it. */
1381 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1382 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1383 if (msym_us
1384 && msym_start
1385 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1386 return 0;
1387
1388 /* Grrrr. Some new idiot decided that they don't want _start for the
1389 PRO configurations; $START$ calls main directly.... Deal with it. */
1390 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1391 if (msym_us
1392 && msym_start
1393 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1394 return 0;
1395
1396 next = get_next_frame (thisframe);
1397 if (next)
1398 next_u = find_unwind_entry (next->pc);
1399
1400 /* If this frame does not save SP, has no stack, isn't a stub,
1401 and doesn't "call" an interrupt routine or signal handler caller,
1402 then its not valid. */
1403 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1404 || (thisframe->next && thisframe->next->signal_handler_caller)
1405 || (next_u && next_u->HP_UX_interrupt_marker))
1406 return 1;
1407
1408 if (pc_in_linker_stub (thisframe->pc))
1409 return 1;
1410
1411 return 0;
1412 }
1413
1414 /*
1415 These functions deal with saving and restoring register state
1416 around a function call in the inferior. They keep the stack
1417 double-word aligned; eventually, on an hp700, the stack will have
1418 to be aligned to a 64-byte boundary. */
1419
1420 void
1421 push_dummy_frame (inf_status)
1422 struct inferior_status *inf_status;
1423 {
1424 CORE_ADDR sp, pc, pcspace;
1425 register int regnum;
1426 CORE_ADDR int_buffer;
1427 double freg_buffer;
1428
1429 /* Oh, what a hack. If we're trying to perform an inferior call
1430 while the inferior is asleep, we have to make sure to clear
1431 the "in system call" bit in the flag register (the call will
1432 start after the syscall returns, so we're no longer in the system
1433 call!) This state is kept in "inf_status", change it there.
1434
1435 We also need a number of horrid hacks to deal with lossage in the
1436 PC queue registers (apparently they're not valid when the in syscall
1437 bit is set). */
1438 pc = target_read_pc (inferior_pid);
1439 int_buffer = read_register (FLAGS_REGNUM);
1440 if (int_buffer & 0x2)
1441 {
1442 unsigned int sid;
1443 int_buffer &= ~0x2;
1444 write_inferior_status_register (inf_status, 0, int_buffer);
1445 write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
1446 write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
1447 sid = (pc >> 30) & 0x3;
1448 if (sid == 0)
1449 pcspace = read_register (SR4_REGNUM);
1450 else
1451 pcspace = read_register (SR4_REGNUM + 4 + sid);
1452 write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
1453 write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
1454 }
1455 else
1456 pcspace = read_register (PCSQ_HEAD_REGNUM);
1457
1458 /* Space for "arguments"; the RP goes in here. */
1459 sp = read_register (SP_REGNUM) + 48;
1460 int_buffer = read_register (RP_REGNUM) | 0x3;
1461
1462 /* The 32bit and 64bit ABIs save the return pointer into different
1463 stack slots. */
1464 if (REGISTER_SIZE == 8)
1465 write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
1466 else
1467 write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
1468
1469 int_buffer = TARGET_READ_FP ();
1470 write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
1471
1472 write_register (FP_REGNUM, sp);
1473
1474 sp += 2 * REGISTER_SIZE;
1475
1476 for (regnum = 1; regnum < 32; regnum++)
1477 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1478 sp = push_word (sp, read_register (regnum));
1479
1480 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1481 if (REGISTER_SIZE != 8)
1482 sp += 4;
1483
1484 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1485 {
1486 read_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1487 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1488 }
1489 sp = push_word (sp, read_register (IPSW_REGNUM));
1490 sp = push_word (sp, read_register (SAR_REGNUM));
1491 sp = push_word (sp, pc);
1492 sp = push_word (sp, pcspace);
1493 sp = push_word (sp, pc + 4);
1494 sp = push_word (sp, pcspace);
1495 write_register (SP_REGNUM, sp);
1496 }
1497
1498 static void
1499 find_dummy_frame_regs (frame, frame_saved_regs)
1500 struct frame_info *frame;
1501 struct frame_saved_regs *frame_saved_regs;
1502 {
1503 CORE_ADDR fp = frame->frame;
1504 int i;
1505
1506 /* The 32bit and 64bit ABIs save RP into different locations. */
1507 if (REGISTER_SIZE == 8)
1508 frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
1509 else
1510 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1511
1512 frame_saved_regs->regs[FP_REGNUM] = fp;
1513
1514 frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);
1515
1516 for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
1517 {
1518 if (i != FP_REGNUM)
1519 {
1520 frame_saved_regs->regs[i] = fp;
1521 fp += REGISTER_SIZE;
1522 }
1523 }
1524
1525 /* This is not necessary or desirable for the 64bit ABI. */
1526 if (REGISTER_SIZE != 8)
1527 fp += 4;
1528
1529 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1530 frame_saved_regs->regs[i] = fp;
1531
1532 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1533 frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
1534 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
1535 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
1536 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
1537 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
1538 }
1539
1540 void
1541 hppa_pop_frame ()
1542 {
1543 register struct frame_info *frame = get_current_frame ();
1544 register CORE_ADDR fp, npc, target_pc;
1545 register int regnum;
1546 struct frame_saved_regs fsr;
1547 double freg_buffer;
1548
1549 fp = FRAME_FP (frame);
1550 get_frame_saved_regs (frame, &fsr);
1551
1552 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1553 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1554 restore_pc_queue (&fsr);
1555 #endif
1556
1557 for (regnum = 31; regnum > 0; regnum--)
1558 if (fsr.regs[regnum])
1559 write_register (regnum, read_memory_integer (fsr.regs[regnum],
1560 REGISTER_SIZE));
1561
1562 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1563 if (fsr.regs[regnum])
1564 {
1565 read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
1566 write_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1567 }
1568
1569 if (fsr.regs[IPSW_REGNUM])
1570 write_register (IPSW_REGNUM,
1571 read_memory_integer (fsr.regs[IPSW_REGNUM],
1572 REGISTER_SIZE));
1573
1574 if (fsr.regs[SAR_REGNUM])
1575 write_register (SAR_REGNUM,
1576 read_memory_integer (fsr.regs[SAR_REGNUM],
1577 REGISTER_SIZE));
1578
1579 /* If the PC was explicitly saved, then just restore it. */
1580 if (fsr.regs[PCOQ_TAIL_REGNUM])
1581 {
1582 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
1583 REGISTER_SIZE);
1584 write_register (PCOQ_TAIL_REGNUM, npc);
1585 }
1586 /* Else use the value in %rp to set the new PC. */
1587 else
1588 {
1589 npc = read_register (RP_REGNUM);
1590 write_pc (npc);
1591 }
1592
1593 write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
1594
1595 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1596 write_register (SP_REGNUM, fp - 48);
1597 else
1598 write_register (SP_REGNUM, fp);
1599
1600 /* The PC we just restored may be inside a return trampoline. If so
1601 we want to restart the inferior and run it through the trampoline.
1602
1603 Do this by setting a momentary breakpoint at the location the
1604 trampoline returns to.
1605
1606 Don't skip through the trampoline if we're popping a dummy frame. */
1607 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1608 if (target_pc && !fsr.regs[IPSW_REGNUM])
1609 {
1610 struct symtab_and_line sal;
1611 struct breakpoint *breakpoint;
1612 struct cleanup *old_chain;
1613
1614 /* Set up our breakpoint. Set it to be silent as the MI code
1615 for "return_command" will print the frame we returned to. */
1616 sal = find_pc_line (target_pc, 0);
1617 sal.pc = target_pc;
1618 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1619 breakpoint->silent = 1;
1620
1621 /* So we can clean things up. */
1622 old_chain = make_cleanup ((make_cleanup_func) delete_breakpoint, breakpoint);
1623
1624 /* Start up the inferior. */
1625 clear_proceed_status ();
1626 proceed_to_finish = 1;
1627 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1628
1629 /* Perform our cleanups. */
1630 do_cleanups (old_chain);
1631 }
1632 flush_cached_frames ();
1633 }
1634
1635 /* After returning to a dummy on the stack, restore the instruction
1636 queue space registers. */
1637
1638 static int
1639 restore_pc_queue (fsr)
1640 struct frame_saved_regs *fsr;
1641 {
1642 CORE_ADDR pc = read_pc ();
1643 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
1644 TARGET_PTR_BIT / 8);
1645 struct target_waitstatus w;
1646 int insn_count;
1647
1648 /* Advance past break instruction in the call dummy. */
1649 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1650 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1651
1652 /* HPUX doesn't let us set the space registers or the space
1653 registers of the PC queue through ptrace. Boo, hiss.
1654 Conveniently, the call dummy has this sequence of instructions
1655 after the break:
1656 mtsp r21, sr0
1657 ble,n 0(sr0, r22)
1658
1659 So, load up the registers and single step until we are in the
1660 right place. */
1661
1662 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
1663 REGISTER_SIZE));
1664 write_register (22, new_pc);
1665
1666 for (insn_count = 0; insn_count < 3; insn_count++)
1667 {
1668 /* FIXME: What if the inferior gets a signal right now? Want to
1669 merge this into wait_for_inferior (as a special kind of
1670 watchpoint? By setting a breakpoint at the end? Is there
1671 any other choice? Is there *any* way to do this stuff with
1672 ptrace() or some equivalent?). */
1673 resume (1, 0);
1674 target_wait (inferior_pid, &w);
1675
1676 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1677 {
1678 stop_signal = w.value.sig;
1679 terminal_ours_for_output ();
1680 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1681 target_signal_to_name (stop_signal),
1682 target_signal_to_string (stop_signal));
1683 gdb_flush (gdb_stdout);
1684 return 0;
1685 }
1686 }
1687 target_terminal_ours ();
1688 target_fetch_registers (-1);
1689 return 1;
1690 }
1691
1692
1693 #ifdef PA20W_CALLING_CONVENTIONS
1694
1695 /* This function pushes a stack frame with arguments as part of the
1696 inferior function calling mechanism.
1697
1698 This is the version for the PA64, in which later arguments appear
1699 at higher addresses. (The stack always grows towards higher
1700 addresses.)
1701
1702 We simply allocate the appropriate amount of stack space and put
1703 arguments into their proper slots. The call dummy code will copy
1704 arguments into registers as needed by the ABI.
1705
1706 This ABI also requires that the caller provide an argument pointer
1707 to the callee, so we do that too. */
1708
1709 CORE_ADDR
1710 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1711 int nargs;
1712 value_ptr *args;
1713 CORE_ADDR sp;
1714 int struct_return;
1715 CORE_ADDR struct_addr;
1716 {
1717 /* array of arguments' offsets */
1718 int *offset = (int *) alloca (nargs * sizeof (int));
1719
1720 /* array of arguments' lengths: real lengths in bytes, not aligned to
1721 word size */
1722 int *lengths = (int *) alloca (nargs * sizeof (int));
1723
1724 /* The value of SP as it was passed into this function after
1725 aligning. */
1726 CORE_ADDR orig_sp = STACK_ALIGN (sp);
1727
1728 /* The number of stack bytes occupied by the current argument. */
1729 int bytes_reserved;
1730
1731 /* The total number of bytes reserved for the arguments. */
1732 int cum_bytes_reserved = 0;
1733
1734 /* Similarly, but aligned. */
1735 int cum_bytes_aligned = 0;
1736 int i;
1737
1738 /* Iterate over each argument provided by the user. */
1739 for (i = 0; i < nargs; i++)
1740 {
1741 struct type *arg_type = VALUE_TYPE (args[i]);
1742
1743 /* Integral scalar values smaller than a register are padded on
1744 the left. We do this by promoting them to full-width,
1745 although the ABI says to pad them with garbage. */
1746 if (is_integral_type (arg_type)
1747 && TYPE_LENGTH (arg_type) < REGISTER_SIZE)
1748 {
1749 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1750 ? builtin_type_unsigned_long
1751 : builtin_type_long),
1752 args[i]);
1753 arg_type = VALUE_TYPE (args[i]);
1754 }
1755
1756 lengths[i] = TYPE_LENGTH (arg_type);
1757
1758 /* Align the size of the argument to the word size for this
1759 target. */
1760 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1761
1762 offset[i] = cum_bytes_reserved;
1763
1764 /* Aggregates larger than eight bytes (the only types larger
1765 than eight bytes we have) are aligned on a 16-byte boundary,
1766 possibly padded on the right with garbage. This may leave an
1767 empty word on the stack, and thus an unused register, as per
1768 the ABI. */
1769 if (bytes_reserved > 8)
1770 {
1771 /* Round up the offset to a multiple of two slots. */
1772 int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
1773 & -(2*REGISTER_SIZE));
1774
1775 /* Note the space we've wasted, if any. */
1776 bytes_reserved += new_offset - offset[i];
1777 offset[i] = new_offset;
1778 }
1779
1780 cum_bytes_reserved += bytes_reserved;
1781 }
1782
1783 /* CUM_BYTES_RESERVED already accounts for all the arguments
1784 passed by the user. However, the ABIs mandate minimum stack space
1785 allocations for outgoing arguments.
1786
1787 The ABIs also mandate minimum stack alignments which we must
1788 preserve. */
1789 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1790 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1791
1792 /* Now write each of the args at the proper offset down the stack. */
1793 for (i = 0; i < nargs; i++)
1794 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1795
1796 /* If a structure has to be returned, set up register 28 to hold its
1797 address */
1798 if (struct_return)
1799 write_register (28, struct_addr);
1800
1801 /* For the PA64 we must pass a pointer to the outgoing argument list.
1802 The ABI mandates that the pointer should point to the first byte of
1803 storage beyond the register flushback area.
1804
1805 However, the call dummy expects the outgoing argument pointer to
1806 be passed in register %r4. */
1807 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1808
1809 /* ?!? This needs further work. We need to set up the global data
1810 pointer for this procedure. This assumes the same global pointer
1811 for every procedure. The call dummy expects the dp value to
1812 be passed in register %r6. */
1813 write_register (6, read_register (27));
1814
1815 /* The stack will have 64 bytes of additional space for a frame marker. */
1816 return sp + 64;
1817 }
1818
1819 #else
1820
1821 /* This function pushes a stack frame with arguments as part of the
1822 inferior function calling mechanism.
1823
1824 This is the version of the function for the 32-bit PA machines, in
1825 which later arguments appear at lower addresses. (The stack always
1826 grows towards higher addresses.)
1827
1828 We simply allocate the appropriate amount of stack space and put
1829 arguments into their proper slots. The call dummy code will copy
1830 arguments into registers as needed by the ABI. */
1831
1832 CORE_ADDR
1833 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1834 int nargs;
1835 value_ptr *args;
1836 CORE_ADDR sp;
1837 int struct_return;
1838 CORE_ADDR struct_addr;
1839 {
1840 /* array of arguments' offsets */
1841 int *offset = (int *) alloca (nargs * sizeof (int));
1842
1843 /* array of arguments' lengths: real lengths in bytes, not aligned to
1844 word size */
1845 int *lengths = (int *) alloca (nargs * sizeof (int));
1846
1847 /* The number of stack bytes occupied by the current argument. */
1848 int bytes_reserved;
1849
1850 /* The total number of bytes reserved for the arguments. */
1851 int cum_bytes_reserved = 0;
1852
1853 /* Similarly, but aligned. */
1854 int cum_bytes_aligned = 0;
1855 int i;
1856
1857 /* Iterate over each argument provided by the user. */
1858 for (i = 0; i < nargs; i++)
1859 {
1860 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1861
1862 /* Align the size of the argument to the word size for this
1863 target. */
1864 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1865
1866 offset[i] = cum_bytes_reserved + lengths[i];
1867
1868 /* If the argument is a double word argument, then it needs to be
1869 double word aligned. */
1870 if ((bytes_reserved == 2 * REGISTER_SIZE)
1871 && (offset[i] % 2 * REGISTER_SIZE))
1872 {
1873 int new_offset = 0;
1874 /* BYTES_RESERVED is already aligned to the word, so we put
1875 the argument at one word more down the stack.
1876
1877 This will leave one empty word on the stack, and one unused
1878 register as mandated by the ABI. */
1879 new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
1880 & -(2 * REGISTER_SIZE));
1881
1882 if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
1883 {
1884 bytes_reserved += REGISTER_SIZE;
1885 offset[i] += REGISTER_SIZE;
1886 }
1887 }
1888
1889 cum_bytes_reserved += bytes_reserved;
1890
1891 }
1892
1893 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1894 by the user. However, the ABI mandates minimum stack space
1895 allocations for outgoing arguments.
1896
1897 The ABI also mandates minimum stack alignments which we must
1898 preserve. */
1899 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1900 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1901
1902 /* Now write each of the args at the proper offset down the stack.
1903 ?!? We need to promote values to a full register instead of skipping
1904 words in the stack. */
1905 for (i = 0; i < nargs; i++)
1906 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1907
1908 /* If a structure has to be returned, set up register 28 to hold its
1909 address */
1910 if (struct_return)
1911 write_register (28, struct_addr);
1912
1913 /* The stack will have 32 bytes of additional space for a frame marker. */
1914 return sp + 32;
1915 }
1916
1917 #endif
1918
1919 /* elz: this function returns a value which is built looking at the given address.
1920 It is called from call_function_by_hand, in case we need to return a
1921 value which is larger than 64 bits, and it is stored in the stack rather than
1922 in the registers r28 and r29 or fr4.
1923 This function does the same stuff as value_being_returned in values.c, but
1924 gets the value from the stack rather than from the buffer where all the
1925 registers were saved when the function called completed. */
1926 value_ptr
1927 hppa_value_returned_from_stack (valtype, addr)
1928 register struct type *valtype;
1929 CORE_ADDR addr;
1930 {
1931 register value_ptr val;
1932
1933 val = allocate_value (valtype);
1934 CHECK_TYPEDEF (valtype);
1935 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
1936
1937 return val;
1938 }
1939
1940
1941
1942 /* elz: Used to lookup a symbol in the shared libraries.
1943 This function calls shl_findsym, indirectly through a
1944 call to __d_shl_get. __d_shl_get is in end.c, which is always
1945 linked in by the hp compilers/linkers.
1946 The call to shl_findsym cannot be made directly because it needs
1947 to be active in target address space.
1948 inputs: - minimal symbol pointer for the function we want to look up
1949 - address in target space of the descriptor for the library
1950 where we want to look the symbol up.
1951 This address is retrieved using the
1952 som_solib_get_solib_by_pc function (somsolib.c).
1953 output: - real address in the library of the function.
1954 note: the handle can be null, in which case shl_findsym will look for
1955 the symbol in all the loaded shared libraries.
1956 files to look at if you need reference on this stuff:
1957 dld.c, dld_shl_findsym.c
1958 end.c
1959 man entry for shl_findsym */
1960
1961 CORE_ADDR
1962 find_stub_with_shl_get (function, handle)
1963 struct minimal_symbol *function;
1964 CORE_ADDR handle;
1965 {
1966 struct symbol *get_sym, *symbol2;
1967 struct minimal_symbol *buff_minsym, *msymbol;
1968 struct type *ftype;
1969 value_ptr *args;
1970 value_ptr funcval, val;
1971
1972 int x, namelen, err_value, tmp = -1;
1973 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1974 CORE_ADDR stub_addr;
1975
1976
1977 args = (value_ptr *) alloca (sizeof (value_ptr) * 8); /* 6 for the arguments and one null one??? */
1978 funcval = find_function_in_inferior ("__d_shl_get");
1979 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1980 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1981 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1982 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1983 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1984 namelen = strlen (SYMBOL_NAME (function));
1985 value_return_addr = endo_buff_addr + namelen;
1986 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1987
1988 /* do alignment */
1989 if ((x = value_return_addr % 64) != 0)
1990 value_return_addr = value_return_addr + 64 - x;
1991
1992 errno_return_addr = value_return_addr + 64;
1993
1994
1995 /* set up stuff needed by __d_shl_get in buffer in end.o */
1996
1997 target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
1998
1999 target_write_memory (value_return_addr, (char *) &tmp, 4);
2000
2001 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2002
2003 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2004 (char *) &handle, 4);
2005
2006 /* now prepare the arguments for the call */
2007
2008 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
2009 args[1] = value_from_longest (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2010 args[2] = value_from_longest (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
2011 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
2012 args[4] = value_from_longest (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2013 args[5] = value_from_longest (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
2014
2015 /* now call the function */
2016
2017 val = call_function_by_hand (funcval, 6, args);
2018
2019 /* now get the results */
2020
2021 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2022
2023 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2024 if (stub_addr <= 0)
2025 error ("call to __d_shl_get failed, error code is %d", err_value);
2026
2027 return (stub_addr);
2028 }
2029
2030 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2031 static int
2032 cover_find_stub_with_shl_get (PTR args_untyped)
2033 {
2034 args_for_find_stub *args = args_untyped;
2035 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2036 return 0;
2037 }
2038
2039 /* Insert the specified number of args and function address
2040 into a call sequence of the above form stored at DUMMYNAME.
2041
2042 On the hppa we need to call the stack dummy through $$dyncall.
2043 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
2044 real_pc, which is the location where gdb should start up the
2045 inferior to do the function call.
2046
2047 This has to work across several versions of hpux, bsd, osf1. It has to
2048 work regardless of what compiler was used to build the inferior program.
2049 It should work regardless of whether or not end.o is available. It has
2050 to work even if gdb can not call into the dynamic loader in the inferior
2051 to query it for symbol names and addresses.
2052
2053 Yes, all those cases should work. Luckily code exists to handle most
2054 of them. The complexity is in selecting exactly what scheme should
2055 be used to perform the inferior call.
2056
2057 At the current time this routine is known not to handle cases where
2058 the program was linked with HP's compiler without including end.o.
2059
2060 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2061
2062 CORE_ADDR
2063 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
2064 char *dummy;
2065 CORE_ADDR pc;
2066 CORE_ADDR fun;
2067 int nargs;
2068 value_ptr *args;
2069 struct type *type;
2070 int gcc_p;
2071 {
2072 CORE_ADDR dyncall_addr;
2073 struct minimal_symbol *msymbol;
2074 struct minimal_symbol *trampoline;
2075 int flags = read_register (FLAGS_REGNUM);
2076 struct unwind_table_entry *u = NULL;
2077 CORE_ADDR new_stub = 0;
2078 CORE_ADDR solib_handle = 0;
2079
2080 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2081 passed an import stub, not a PLABEL. It is also necessary to set %r19
2082 (the PIC register) before performing the call.
2083
2084 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2085 are calling the target directly. When using __d_plt_call we want to
2086 use a PLABEL instead of an import stub. */
2087 int using_gcc_plt_call = 1;
2088
2089 #ifdef GDB_TARGET_IS_HPPA_20W
2090 /* We currently use completely different code for the PA2.0W inferior
2091 function call sequences. This needs to be cleaned up. */
2092 {
2093 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2094 struct target_waitstatus w;
2095 int inst1, inst2;
2096 char buf[4];
2097 int status;
2098 struct objfile *objfile;
2099
2100 /* We can not modify the PC space queues directly, so we start
2101 up the inferior and execute a couple instructions to set the
2102 space queues so that they point to the call dummy in the stack. */
2103 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2104 sr5 = read_register (SR5_REGNUM);
2105 if (1)
2106 {
2107 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2108 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2109 if (target_read_memory (pcoqh, buf, 4) != 0)
2110 error ("Couldn't modify space queue\n");
2111 inst1 = extract_unsigned_integer (buf, 4);
2112
2113 if (target_read_memory (pcoqt, buf, 4) != 0)
2114 error ("Couldn't modify space queue\n");
2115 inst2 = extract_unsigned_integer (buf, 4);
2116
2117 /* BVE (r1) */
2118 *((int *) buf) = 0xe820d000;
2119 if (target_write_memory (pcoqh, buf, 4) != 0)
2120 error ("Couldn't modify space queue\n");
2121
2122 /* NOP */
2123 *((int *) buf) = 0x08000240;
2124 if (target_write_memory (pcoqt, buf, 4) != 0)
2125 {
2126 *((int *) buf) = inst1;
2127 target_write_memory (pcoqh, buf, 4);
2128 error ("Couldn't modify space queue\n");
2129 }
2130
2131 write_register (1, pc);
2132
2133 /* Single step twice, the BVE instruction will set the space queue
2134 such that it points to the PC value written immediately above
2135 (ie the call dummy). */
2136 resume (1, 0);
2137 target_wait (inferior_pid, &w);
2138 resume (1, 0);
2139 target_wait (inferior_pid, &w);
2140
2141 /* Restore the two instructions at the old PC locations. */
2142 *((int *) buf) = inst1;
2143 target_write_memory (pcoqh, buf, 4);
2144 *((int *) buf) = inst2;
2145 target_write_memory (pcoqt, buf, 4);
2146 }
2147
2148 /* The call dummy wants the ultimate destination address initially
2149 in register %r5. */
2150 write_register (5, fun);
2151
2152 /* We need to see if this objfile has a different DP value than our
2153 own (it could be a shared library for example). */
2154 ALL_OBJFILES (objfile)
2155 {
2156 struct obj_section *s;
2157 obj_private_data_t *obj_private;
2158
2159 /* See if FUN is in any section within this shared library. */
2160 for (s = objfile->sections; s < objfile->sections_end; s++)
2161 if (s->addr <= fun && fun < s->endaddr)
2162 break;
2163
2164 if (s >= objfile->sections_end)
2165 continue;
2166
2167 obj_private = (obj_private_data_t *) objfile->obj_private;
2168
2169 /* The DP value may be different for each objfile. But within an
2170 objfile each function uses the same dp value. Thus we do not need
2171 to grope around the opd section looking for dp values.
2172
2173 ?!? This is not strictly correct since we may be in a shared library
2174 and want to call back into the main program. To make that case
2175 work correctly we need to set obj_private->dp for the main program's
2176 objfile, then remove this conditional. */
2177 if (obj_private->dp)
2178 write_register (27, obj_private->dp);
2179 break;
2180 }
2181 return pc;
2182 }
2183 #endif
2184
2185 #ifndef GDB_TARGET_IS_HPPA_20W
2186 /* Prefer __gcc_plt_call over the HP supplied routine because
2187 __gcc_plt_call works for any number of arguments. */
2188 trampoline = NULL;
2189 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2190 using_gcc_plt_call = 0;
2191
2192 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2193 if (msymbol == NULL)
2194 error ("Can't find an address for $$dyncall trampoline");
2195
2196 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2197
2198 /* FUN could be a procedure label, in which case we have to get
2199 its real address and the value of its GOT/DP if we plan to
2200 call the routine via gcc_plt_call. */
2201 if ((fun & 0x2) && using_gcc_plt_call)
2202 {
2203 /* Get the GOT/DP value for the target function. It's
2204 at *(fun+4). Note the call dummy is *NOT* allowed to
2205 trash %r19 before calling the target function. */
2206 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2207 REGISTER_SIZE));
2208
2209 /* Now get the real address for the function we are calling, it's
2210 at *fun. */
2211 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2212 TARGET_PTR_BIT / 8);
2213 }
2214 else
2215 {
2216
2217 #ifndef GDB_TARGET_IS_PA_ELF
2218 /* FUN could be an export stub, the real address of a function, or
2219 a PLABEL. When using gcc's PLT call routine we must call an import
2220 stub rather than the export stub or real function for lazy binding
2221 to work correctly
2222
2223 /* If we are using the gcc PLT call routine, then we need to
2224 get the import stub for the target function. */
2225 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2226 {
2227 struct objfile *objfile;
2228 struct minimal_symbol *funsymbol, *stub_symbol;
2229 CORE_ADDR newfun = 0;
2230
2231 funsymbol = lookup_minimal_symbol_by_pc (fun);
2232 if (!funsymbol)
2233 error ("Unable to find minimal symbol for target function.\n");
2234
2235 /* Search all the object files for an import symbol with the
2236 right name. */
2237 ALL_OBJFILES (objfile)
2238 {
2239 stub_symbol
2240 = lookup_minimal_symbol_solib_trampoline
2241 (SYMBOL_NAME (funsymbol), NULL, objfile);
2242
2243 if (!stub_symbol)
2244 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2245 NULL, objfile);
2246
2247 /* Found a symbol with the right name. */
2248 if (stub_symbol)
2249 {
2250 struct unwind_table_entry *u;
2251 /* It must be a shared library trampoline. */
2252 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2253 continue;
2254
2255 /* It must also be an import stub. */
2256 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2257 if (u == NULL
2258 || (u->stub_unwind.stub_type != IMPORT
2259 #ifdef GDB_NATIVE_HPUX_11
2260 /* Sigh. The hpux 10.20 dynamic linker will blow
2261 chunks if we perform a call to an unbound function
2262 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2263 linker will blow chunks if we do not call the
2264 unbound function via the IMPORT_SHLIB stub.
2265
2266 We currently have no way to select bevahior on just
2267 the target. However, we only support HPUX/SOM in
2268 native mode. So we conditinalize on a native
2269 #ifdef. Ugly. Ugly. Ugly */
2270 && u->stub_unwind.stub_type != IMPORT_SHLIB
2271 #endif
2272 ))
2273 continue;
2274
2275 /* OK. Looks like the correct import stub. */
2276 newfun = SYMBOL_VALUE (stub_symbol);
2277 fun = newfun;
2278
2279 /* If we found an IMPORT stub, then we want to stop
2280 searching now. If we found an IMPORT_SHLIB, we want
2281 to continue the search in the hopes that we will find
2282 an IMPORT stub. */
2283 if (u->stub_unwind.stub_type == IMPORT)
2284 break;
2285 }
2286 }
2287
2288 /* Ouch. We did not find an import stub. Make an attempt to
2289 do the right thing instead of just croaking. Most of the
2290 time this will actually work. */
2291 if (newfun == 0)
2292 write_register (19, som_solib_get_got_by_pc (fun));
2293
2294 u = find_unwind_entry (fun);
2295 if (u
2296 && (u->stub_unwind.stub_type == IMPORT
2297 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2298 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2299
2300 /* If we found the import stub in the shared library, then we have
2301 to set %r19 before we call the stub. */
2302 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2303 write_register (19, som_solib_get_got_by_pc (fun));
2304 }
2305 #endif
2306 }
2307
2308 /* If we are calling into another load module then have sr4export call the
2309 magic __d_plt_call routine which is linked in from end.o.
2310
2311 You can't use _sr4export to make the call as the value in sp-24 will get
2312 fried and you end up returning to the wrong location. You can't call the
2313 target as the code to bind the PLT entry to a function can't return to a
2314 stack address.
2315
2316 Also, query the dynamic linker in the inferior to provide a suitable
2317 PLABEL for the target function. */
2318 if (!using_gcc_plt_call)
2319 {
2320 CORE_ADDR new_fun;
2321
2322 /* Get a handle for the shared library containing FUN. Given the
2323 handle we can query the shared library for a PLABEL. */
2324 solib_handle = som_solib_get_solib_by_pc (fun);
2325
2326 if (solib_handle)
2327 {
2328 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2329
2330 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2331
2332 if (trampoline == NULL)
2333 {
2334 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2335 }
2336
2337 /* This is where sr4export will jump to. */
2338 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2339
2340 /* If the function is in a shared library, then call __d_shl_get to
2341 get a PLABEL for the target function. */
2342 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2343
2344 if (new_stub == 0)
2345 error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
2346
2347 /* We have to store the address of the stub in __shlib_funcptr. */
2348 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2349 (struct objfile *) NULL);
2350
2351 if (msymbol == NULL)
2352 error ("Can't find an address for __shlib_funcptr");
2353 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2354 (char *) &new_stub, 4);
2355
2356 /* We want sr4export to call __d_plt_call, so we claim it is
2357 the final target. Clear trampoline. */
2358 fun = new_fun;
2359 trampoline = NULL;
2360 }
2361 }
2362
2363 /* Store upper 21 bits of function address into ldil. fun will either be
2364 the final target (most cases) or __d_plt_call when calling into a shared
2365 library and __gcc_plt_call is not available. */
2366 store_unsigned_integer
2367 (&dummy[FUNC_LDIL_OFFSET],
2368 INSTRUCTION_SIZE,
2369 deposit_21 (fun >> 11,
2370 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2371 INSTRUCTION_SIZE)));
2372
2373 /* Store lower 11 bits of function address into ldo */
2374 store_unsigned_integer
2375 (&dummy[FUNC_LDO_OFFSET],
2376 INSTRUCTION_SIZE,
2377 deposit_14 (fun & MASK_11,
2378 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2379 INSTRUCTION_SIZE)));
2380 #ifdef SR4EXPORT_LDIL_OFFSET
2381
2382 {
2383 CORE_ADDR trampoline_addr;
2384
2385 /* We may still need sr4export's address too. */
2386
2387 if (trampoline == NULL)
2388 {
2389 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2390 if (msymbol == NULL)
2391 error ("Can't find an address for _sr4export trampoline");
2392
2393 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2394 }
2395 else
2396 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2397
2398
2399 /* Store upper 21 bits of trampoline's address into ldil */
2400 store_unsigned_integer
2401 (&dummy[SR4EXPORT_LDIL_OFFSET],
2402 INSTRUCTION_SIZE,
2403 deposit_21 (trampoline_addr >> 11,
2404 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2405 INSTRUCTION_SIZE)));
2406
2407 /* Store lower 11 bits of trampoline's address into ldo */
2408 store_unsigned_integer
2409 (&dummy[SR4EXPORT_LDO_OFFSET],
2410 INSTRUCTION_SIZE,
2411 deposit_14 (trampoline_addr & MASK_11,
2412 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2413 INSTRUCTION_SIZE)));
2414 }
2415 #endif
2416
2417 write_register (22, pc);
2418
2419 /* If we are in a syscall, then we should call the stack dummy
2420 directly. $$dyncall is not needed as the kernel sets up the
2421 space id registers properly based on the value in %r31. In
2422 fact calling $$dyncall will not work because the value in %r22
2423 will be clobbered on the syscall exit path.
2424
2425 Similarly if the current PC is in a shared library. Note however,
2426 this scheme won't work if the shared library isn't mapped into
2427 the same space as the stack. */
2428 if (flags & 2)
2429 return pc;
2430 #ifndef GDB_TARGET_IS_PA_ELF
2431 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
2432 return pc;
2433 #endif
2434 else
2435 return dyncall_addr;
2436 #endif
2437 }
2438
2439
2440
2441
2442 /* If the pid is in a syscall, then the FP register is not readable.
2443 We'll return zero in that case, rather than attempting to read it
2444 and cause a warning. */
2445 CORE_ADDR
2446 target_read_fp (pid)
2447 int pid;
2448 {
2449 int flags = read_register (FLAGS_REGNUM);
2450
2451 if (flags & 2)
2452 {
2453 return (CORE_ADDR) 0;
2454 }
2455
2456 /* This is the only site that may directly read_register () the FP
2457 register. All others must use TARGET_READ_FP (). */
2458 return read_register (FP_REGNUM);
2459 }
2460
2461
2462 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2463 bits. */
2464
2465 CORE_ADDR
2466 target_read_pc (pid)
2467 int pid;
2468 {
2469 int flags = read_register_pid (FLAGS_REGNUM, pid);
2470
2471 /* The following test does not belong here. It is OS-specific, and belongs
2472 in native code. */
2473 /* Test SS_INSYSCALL */
2474 if (flags & 2)
2475 return read_register_pid (31, pid) & ~0x3;
2476
2477 return read_register_pid (PC_REGNUM, pid) & ~0x3;
2478 }
2479
2480 /* Write out the PC. If currently in a syscall, then also write the new
2481 PC value into %r31. */
2482
2483 void
2484 target_write_pc (v, pid)
2485 CORE_ADDR v;
2486 int pid;
2487 {
2488 int flags = read_register_pid (FLAGS_REGNUM, pid);
2489
2490 /* The following test does not belong here. It is OS-specific, and belongs
2491 in native code. */
2492 /* If in a syscall, then set %r31. Also make sure to get the
2493 privilege bits set correctly. */
2494 /* Test SS_INSYSCALL */
2495 if (flags & 2)
2496 write_register_pid (31, v | 0x3, pid);
2497
2498 write_register_pid (PC_REGNUM, v, pid);
2499 write_register_pid (NPC_REGNUM, v + 4, pid);
2500 }
2501
2502 /* return the alignment of a type in bytes. Structures have the maximum
2503 alignment required by their fields. */
2504
2505 static int
2506 hppa_alignof (type)
2507 struct type *type;
2508 {
2509 int max_align, align, i;
2510 CHECK_TYPEDEF (type);
2511 switch (TYPE_CODE (type))
2512 {
2513 case TYPE_CODE_PTR:
2514 case TYPE_CODE_INT:
2515 case TYPE_CODE_FLT:
2516 return TYPE_LENGTH (type);
2517 case TYPE_CODE_ARRAY:
2518 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2519 case TYPE_CODE_STRUCT:
2520 case TYPE_CODE_UNION:
2521 max_align = 1;
2522 for (i = 0; i < TYPE_NFIELDS (type); i++)
2523 {
2524 /* Bit fields have no real alignment. */
2525 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2526 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2527 {
2528 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2529 max_align = max (max_align, align);
2530 }
2531 }
2532 return max_align;
2533 default:
2534 return 4;
2535 }
2536 }
2537
2538 /* Print the register regnum, or all registers if regnum is -1 */
2539
2540 void
2541 pa_do_registers_info (regnum, fpregs)
2542 int regnum;
2543 int fpregs;
2544 {
2545 char raw_regs[REGISTER_BYTES];
2546 int i;
2547
2548 /* Make a copy of gdb's save area (may cause actual
2549 reads from the target). */
2550 for (i = 0; i < NUM_REGS; i++)
2551 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2552
2553 if (regnum == -1)
2554 pa_print_registers (raw_regs, regnum, fpregs);
2555 else if (regnum < FP4_REGNUM)
2556 {
2557 long reg_val[2];
2558
2559 /* Why is the value not passed through "extract_signed_integer"
2560 as in "pa_print_registers" below? */
2561 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2562
2563 if (!is_pa_2)
2564 {
2565 printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
2566 }
2567 else
2568 {
2569 /* Fancy % formats to prevent leading zeros. */
2570 if (reg_val[0] == 0)
2571 printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
2572 else
2573 printf_unfiltered ("%s %x%8.8x\n", REGISTER_NAME (regnum),
2574 reg_val[0], reg_val[1]);
2575 }
2576 }
2577 else
2578 /* Note that real floating point values only start at
2579 FP4_REGNUM. FP0 and up are just status and error
2580 registers, which have integral (bit) values. */
2581 pa_print_fp_reg (regnum);
2582 }
2583
2584 /********** new function ********************/
2585 void
2586 pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
2587 int regnum;
2588 int fpregs;
2589 GDB_FILE *stream;
2590 enum precision_type precision;
2591 {
2592 char raw_regs[REGISTER_BYTES];
2593 int i;
2594
2595 /* Make a copy of gdb's save area (may cause actual
2596 reads from the target). */
2597 for (i = 0; i < NUM_REGS; i++)
2598 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2599
2600 if (regnum == -1)
2601 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2602
2603 else if (regnum < FP4_REGNUM)
2604 {
2605 long reg_val[2];
2606
2607 /* Why is the value not passed through "extract_signed_integer"
2608 as in "pa_print_registers" below? */
2609 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2610
2611 if (!is_pa_2)
2612 {
2613 fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum), reg_val[1]);
2614 }
2615 else
2616 {
2617 /* Fancy % formats to prevent leading zeros. */
2618 if (reg_val[0] == 0)
2619 fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum),
2620 reg_val[1]);
2621 else
2622 fprintf_unfiltered (stream, "%s %x%8.8x", REGISTER_NAME (regnum),
2623 reg_val[0], reg_val[1]);
2624 }
2625 }
2626 else
2627 /* Note that real floating point values only start at
2628 FP4_REGNUM. FP0 and up are just status and error
2629 registers, which have integral (bit) values. */
2630 pa_strcat_fp_reg (regnum, stream, precision);
2631 }
2632
2633 /* If this is a PA2.0 machine, fetch the real 64-bit register
2634 value. Otherwise use the info from gdb's saved register area.
2635
2636 Note that reg_val is really expected to be an array of longs,
2637 with two elements. */
2638 static void
2639 pa_register_look_aside (raw_regs, regnum, raw_val)
2640 char *raw_regs;
2641 int regnum;
2642 long *raw_val;
2643 {
2644 static int know_which = 0; /* False */
2645
2646 int regaddr;
2647 unsigned int offset;
2648 register int i;
2649 int start;
2650
2651
2652 char buf[MAX_REGISTER_RAW_SIZE];
2653 long long reg_val;
2654
2655 if (!know_which)
2656 {
2657 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2658 {
2659 is_pa_2 = (1 == 1);
2660 }
2661
2662 know_which = 1; /* True */
2663 }
2664
2665 raw_val[0] = 0;
2666 raw_val[1] = 0;
2667
2668 if (!is_pa_2)
2669 {
2670 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
2671 return;
2672 }
2673
2674 /* Code below copied from hppah-nat.c, with fixes for wide
2675 registers, using different area of save_state, etc. */
2676 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2677 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2678 {
2679 /* Use narrow regs area of save_state and default macro. */
2680 offset = U_REGS_OFFSET;
2681 regaddr = register_addr (regnum, offset);
2682 start = 1;
2683 }
2684 else
2685 {
2686 /* Use wide regs area, and calculate registers as 8 bytes wide.
2687
2688 We'd like to do this, but current version of "C" doesn't
2689 permit "offsetof":
2690
2691 offset = offsetof(save_state_t, ss_wide);
2692
2693 Note that to avoid "C" doing typed pointer arithmetic, we
2694 have to cast away the type in our offset calculation:
2695 otherwise we get an offset of 1! */
2696
2697 /* NB: save_state_t is not available before HPUX 9.
2698 The ss_wide field is not available previous to HPUX 10.20,
2699 so to avoid compile-time warnings, we only compile this for
2700 PA 2.0 processors. This control path should only be followed
2701 if we're debugging a PA 2.0 processor, so this should not cause
2702 problems. */
2703
2704 /* #if the following code out so that this file can still be
2705 compiled on older HPUX boxes (< 10.20) which don't have
2706 this structure/structure member. */
2707 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2708 save_state_t temp;
2709
2710 offset = ((int) &temp.ss_wide) - ((int) &temp);
2711 regaddr = offset + regnum * 8;
2712 start = 0;
2713 #endif
2714 }
2715
2716 for (i = start; i < 2; i++)
2717 {
2718 errno = 0;
2719 raw_val[i] = call_ptrace (PT_RUREGS, inferior_pid,
2720 (PTRACE_ARG3_TYPE) regaddr, 0);
2721 if (errno != 0)
2722 {
2723 /* Warning, not error, in case we are attached; sometimes the
2724 kernel doesn't let us at the registers. */
2725 char *err = safe_strerror (errno);
2726 char *msg = alloca (strlen (err) + 128);
2727 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2728 warning (msg);
2729 goto error_exit;
2730 }
2731
2732 regaddr += sizeof (long);
2733 }
2734
2735 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2736 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2737
2738 error_exit:
2739 ;
2740 }
2741
2742 /* "Info all-reg" command */
2743
2744 static void
2745 pa_print_registers (raw_regs, regnum, fpregs)
2746 char *raw_regs;
2747 int regnum;
2748 int fpregs;
2749 {
2750 int i, j;
2751 /* Alas, we are compiled so that "long long" is 32 bits */
2752 long raw_val[2];
2753 long long_val;
2754 int rows = 48, columns = 2;
2755
2756 for (i = 0; i < rows; i++)
2757 {
2758 for (j = 0; j < columns; j++)
2759 {
2760 /* We display registers in column-major order. */
2761 int regnum = i + j * rows;
2762
2763 /* Q: Why is the value passed through "extract_signed_integer",
2764 while above, in "pa_do_registers_info" it isn't?
2765 A: ? */
2766 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2767
2768 /* Even fancier % formats to prevent leading zeros
2769 and still maintain the output in columns. */
2770 if (!is_pa_2)
2771 {
2772 /* Being big-endian, on this machine the low bits
2773 (the ones we want to look at) are in the second longword. */
2774 long_val = extract_signed_integer (&raw_val[1], 4);
2775 printf_filtered ("%10.10s: %8x ",
2776 REGISTER_NAME (regnum), long_val);
2777 }
2778 else
2779 {
2780 /* raw_val = extract_signed_integer(&raw_val, 8); */
2781 if (raw_val[0] == 0)
2782 printf_filtered ("%10.10s: %8x ",
2783 REGISTER_NAME (regnum), raw_val[1]);
2784 else
2785 printf_filtered ("%10.10s: %8x%8.8x ",
2786 REGISTER_NAME (regnum),
2787 raw_val[0], raw_val[1]);
2788 }
2789 }
2790 printf_unfiltered ("\n");
2791 }
2792
2793 if (fpregs)
2794 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2795 pa_print_fp_reg (i);
2796 }
2797
2798 /************* new function ******************/
2799 static void
2800 pa_strcat_registers (raw_regs, regnum, fpregs, stream)
2801 char *raw_regs;
2802 int regnum;
2803 int fpregs;
2804 GDB_FILE *stream;
2805 {
2806 int i, j;
2807 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2808 long long_val;
2809 enum precision_type precision;
2810
2811 precision = unspecified_precision;
2812
2813 for (i = 0; i < 18; i++)
2814 {
2815 for (j = 0; j < 4; j++)
2816 {
2817 /* Q: Why is the value passed through "extract_signed_integer",
2818 while above, in "pa_do_registers_info" it isn't?
2819 A: ? */
2820 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2821
2822 /* Even fancier % formats to prevent leading zeros
2823 and still maintain the output in columns. */
2824 if (!is_pa_2)
2825 {
2826 /* Being big-endian, on this machine the low bits
2827 (the ones we want to look at) are in the second longword. */
2828 long_val = extract_signed_integer (&raw_val[1], 4);
2829 fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i + (j * 18)), long_val);
2830 }
2831 else
2832 {
2833 /* raw_val = extract_signed_integer(&raw_val, 8); */
2834 if (raw_val[0] == 0)
2835 fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i + (j * 18)),
2836 raw_val[1]);
2837 else
2838 fprintf_filtered (stream, "%8.8s: %8x%8.8x ", REGISTER_NAME (i + (j * 18)),
2839 raw_val[0], raw_val[1]);
2840 }
2841 }
2842 fprintf_unfiltered (stream, "\n");
2843 }
2844
2845 if (fpregs)
2846 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2847 pa_strcat_fp_reg (i, stream, precision);
2848 }
2849
2850 static void
2851 pa_print_fp_reg (i)
2852 int i;
2853 {
2854 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2855 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2856
2857 /* Get 32bits of data. */
2858 read_relative_register_raw_bytes (i, raw_buffer);
2859
2860 /* Put it in the buffer. No conversions are ever necessary. */
2861 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2862
2863 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2864 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2865 fputs_filtered ("(single precision) ", gdb_stdout);
2866
2867 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2868 1, 0, Val_pretty_default);
2869 printf_filtered ("\n");
2870
2871 /* If "i" is even, then this register can also be a double-precision
2872 FP register. Dump it out as such. */
2873 if ((i % 2) == 0)
2874 {
2875 /* Get the data in raw format for the 2nd half. */
2876 read_relative_register_raw_bytes (i + 1, raw_buffer);
2877
2878 /* Copy it into the appropriate part of the virtual buffer. */
2879 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2880 REGISTER_RAW_SIZE (i));
2881
2882 /* Dump it as a double. */
2883 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2884 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2885 fputs_filtered ("(double precision) ", gdb_stdout);
2886
2887 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2888 1, 0, Val_pretty_default);
2889 printf_filtered ("\n");
2890 }
2891 }
2892
2893 /*************** new function ***********************/
2894 static void
2895 pa_strcat_fp_reg (i, stream, precision)
2896 int i;
2897 GDB_FILE *stream;
2898 enum precision_type precision;
2899 {
2900 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2901 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2902
2903 fputs_filtered (REGISTER_NAME (i), stream);
2904 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2905
2906 /* Get 32bits of data. */
2907 read_relative_register_raw_bytes (i, raw_buffer);
2908
2909 /* Put it in the buffer. No conversions are ever necessary. */
2910 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2911
2912 if (precision == double_precision && (i % 2) == 0)
2913 {
2914
2915 char raw_buf[MAX_REGISTER_RAW_SIZE];
2916
2917 /* Get the data in raw format for the 2nd half. */
2918 read_relative_register_raw_bytes (i + 1, raw_buf);
2919
2920 /* Copy it into the appropriate part of the virtual buffer. */
2921 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
2922
2923 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2924 1, 0, Val_pretty_default);
2925
2926 }
2927 else
2928 {
2929 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2930 1, 0, Val_pretty_default);
2931 }
2932
2933 }
2934
2935 /* Return one if PC is in the call path of a trampoline, else return zero.
2936
2937 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2938 just shared library trampolines (import, export). */
2939
2940 int
2941 in_solib_call_trampoline (pc, name)
2942 CORE_ADDR pc;
2943 char *name;
2944 {
2945 struct minimal_symbol *minsym;
2946 struct unwind_table_entry *u;
2947 static CORE_ADDR dyncall = 0;
2948 static CORE_ADDR sr4export = 0;
2949
2950 #ifdef GDB_TARGET_IS_HPPA_20W
2951 /* PA64 has a completely different stub/trampoline scheme. Is it
2952 better? Maybe. It's certainly harder to determine with any
2953 certainty that we are in a stub because we can not refer to the
2954 unwinders to help.
2955
2956 The heuristic is simple. Try to lookup the current PC value in th
2957 minimal symbol table. If that fails, then assume we are not in a
2958 stub and return.
2959
2960 Then see if the PC value falls within the section bounds for the
2961 section containing the minimal symbol we found in the first
2962 step. If it does, then assume we are not in a stub and return.
2963
2964 Finally peek at the instructions to see if they look like a stub. */
2965 {
2966 struct minimal_symbol *minsym;
2967 asection *sec;
2968 CORE_ADDR addr;
2969 int insn, i;
2970
2971 minsym = lookup_minimal_symbol_by_pc (pc);
2972 if (! minsym)
2973 return 0;
2974
2975 sec = SYMBOL_BFD_SECTION (minsym);
2976
2977 if (sec->vma <= pc
2978 && sec->vma + sec->_cooked_size < pc)
2979 return 0;
2980
2981 /* We might be in a stub. Peek at the instructions. Stubs are 3
2982 instructions long. */
2983 insn = read_memory_integer (pc, 4);
2984
2985 /* Find out where we we think we are within the stub. */
2986 if ((insn & 0xffffc00e) == 0x53610000)
2987 addr = pc;
2988 else if ((insn & 0xffffffff) == 0xe820d000)
2989 addr = pc - 4;
2990 else if ((insn & 0xffffc00e) == 0x537b0000)
2991 addr = pc - 8;
2992 else
2993 return 0;
2994
2995 /* Now verify each insn in the range looks like a stub instruction. */
2996 insn = read_memory_integer (addr, 4);
2997 if ((insn & 0xffffc00e) != 0x53610000)
2998 return 0;
2999
3000 /* Now verify each insn in the range looks like a stub instruction. */
3001 insn = read_memory_integer (addr + 4, 4);
3002 if ((insn & 0xffffffff) != 0xe820d000)
3003 return 0;
3004
3005 /* Now verify each insn in the range looks like a stub instruction. */
3006 insn = read_memory_integer (addr + 8, 4);
3007 if ((insn & 0xffffc00e) != 0x537b0000)
3008 return 0;
3009
3010 /* Looks like a stub. */
3011 return 1;
3012 }
3013 #endif
3014
3015 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3016 new exec file */
3017
3018 /* First see if PC is in one of the two C-library trampolines. */
3019 if (!dyncall)
3020 {
3021 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3022 if (minsym)
3023 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3024 else
3025 dyncall = -1;
3026 }
3027
3028 if (!sr4export)
3029 {
3030 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3031 if (minsym)
3032 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3033 else
3034 sr4export = -1;
3035 }
3036
3037 if (pc == dyncall || pc == sr4export)
3038 return 1;
3039
3040 minsym = lookup_minimal_symbol_by_pc (pc);
3041 if (minsym && strcmp (SYMBOL_NAME (minsym), ".stub") == 0)
3042 return 1;
3043
3044 /* Get the unwind descriptor corresponding to PC, return zero
3045 if no unwind was found. */
3046 u = find_unwind_entry (pc);
3047 if (!u)
3048 return 0;
3049
3050 /* If this isn't a linker stub, then return now. */
3051 if (u->stub_unwind.stub_type == 0)
3052 return 0;
3053
3054 /* By definition a long-branch stub is a call stub. */
3055 if (u->stub_unwind.stub_type == LONG_BRANCH)
3056 return 1;
3057
3058 /* The call and return path execute the same instructions within
3059 an IMPORT stub! So an IMPORT stub is both a call and return
3060 trampoline. */
3061 if (u->stub_unwind.stub_type == IMPORT)
3062 return 1;
3063
3064 /* Parameter relocation stubs always have a call path and may have a
3065 return path. */
3066 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3067 || u->stub_unwind.stub_type == EXPORT)
3068 {
3069 CORE_ADDR addr;
3070
3071 /* Search forward from the current PC until we hit a branch
3072 or the end of the stub. */
3073 for (addr = pc; addr <= u->region_end; addr += 4)
3074 {
3075 unsigned long insn;
3076
3077 insn = read_memory_integer (addr, 4);
3078
3079 /* Does it look like a bl? If so then it's the call path, if
3080 we find a bv or be first, then we're on the return path. */
3081 if ((insn & 0xfc00e000) == 0xe8000000)
3082 return 1;
3083 else if ((insn & 0xfc00e001) == 0xe800c000
3084 || (insn & 0xfc000000) == 0xe0000000)
3085 return 0;
3086 }
3087
3088 /* Should never happen. */
3089 warning ("Unable to find branch in parameter relocation stub.\n");
3090 return 0;
3091 }
3092
3093 /* Unknown stub type. For now, just return zero. */
3094 return 0;
3095 }
3096
3097 /* Return one if PC is in the return path of a trampoline, else return zero.
3098
3099 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3100 just shared library trampolines (import, export). */
3101
3102 int
3103 in_solib_return_trampoline (pc, name)
3104 CORE_ADDR pc;
3105 char *name;
3106 {
3107 struct unwind_table_entry *u;
3108
3109 /* Get the unwind descriptor corresponding to PC, return zero
3110 if no unwind was found. */
3111 u = find_unwind_entry (pc);
3112 if (!u)
3113 return 0;
3114
3115 /* If this isn't a linker stub or it's just a long branch stub, then
3116 return zero. */
3117 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3118 return 0;
3119
3120 /* The call and return path execute the same instructions within
3121 an IMPORT stub! So an IMPORT stub is both a call and return
3122 trampoline. */
3123 if (u->stub_unwind.stub_type == IMPORT)
3124 return 1;
3125
3126 /* Parameter relocation stubs always have a call path and may have a
3127 return path. */
3128 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3129 || u->stub_unwind.stub_type == EXPORT)
3130 {
3131 CORE_ADDR addr;
3132
3133 /* Search forward from the current PC until we hit a branch
3134 or the end of the stub. */
3135 for (addr = pc; addr <= u->region_end; addr += 4)
3136 {
3137 unsigned long insn;
3138
3139 insn = read_memory_integer (addr, 4);
3140
3141 /* Does it look like a bl? If so then it's the call path, if
3142 we find a bv or be first, then we're on the return path. */
3143 if ((insn & 0xfc00e000) == 0xe8000000)
3144 return 0;
3145 else if ((insn & 0xfc00e001) == 0xe800c000
3146 || (insn & 0xfc000000) == 0xe0000000)
3147 return 1;
3148 }
3149
3150 /* Should never happen. */
3151 warning ("Unable to find branch in parameter relocation stub.\n");
3152 return 0;
3153 }
3154
3155 /* Unknown stub type. For now, just return zero. */
3156 return 0;
3157
3158 }
3159
3160 /* Figure out if PC is in a trampoline, and if so find out where
3161 the trampoline will jump to. If not in a trampoline, return zero.
3162
3163 Simple code examination probably is not a good idea since the code
3164 sequences in trampolines can also appear in user code.
3165
3166 We use unwinds and information from the minimal symbol table to
3167 determine when we're in a trampoline. This won't work for ELF
3168 (yet) since it doesn't create stub unwind entries. Whether or
3169 not ELF will create stub unwinds or normal unwinds for linker
3170 stubs is still being debated.
3171
3172 This should handle simple calls through dyncall or sr4export,
3173 long calls, argument relocation stubs, and dyncall/sr4export
3174 calling an argument relocation stub. It even handles some stubs
3175 used in dynamic executables. */
3176
3177 CORE_ADDR
3178 skip_trampoline_code (pc, name)
3179 CORE_ADDR pc;
3180 char *name;
3181 {
3182 long orig_pc = pc;
3183 long prev_inst, curr_inst, loc;
3184 static CORE_ADDR dyncall = 0;
3185 static CORE_ADDR dyncall_external = 0;
3186 static CORE_ADDR sr4export = 0;
3187 struct minimal_symbol *msym;
3188 struct unwind_table_entry *u;
3189
3190 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3191 new exec file */
3192
3193 if (!dyncall)
3194 {
3195 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3196 if (msym)
3197 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3198 else
3199 dyncall = -1;
3200 }
3201
3202 if (!dyncall_external)
3203 {
3204 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3205 if (msym)
3206 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3207 else
3208 dyncall_external = -1;
3209 }
3210
3211 if (!sr4export)
3212 {
3213 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3214 if (msym)
3215 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3216 else
3217 sr4export = -1;
3218 }
3219
3220 /* Addresses passed to dyncall may *NOT* be the actual address
3221 of the function. So we may have to do something special. */
3222 if (pc == dyncall)
3223 {
3224 pc = (CORE_ADDR) read_register (22);
3225
3226 /* If bit 30 (counting from the left) is on, then pc is the address of
3227 the PLT entry for this function, not the address of the function
3228 itself. Bit 31 has meaning too, but only for MPE. */
3229 if (pc & 0x2)
3230 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3231 }
3232 if (pc == dyncall_external)
3233 {
3234 pc = (CORE_ADDR) read_register (22);
3235 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3236 }
3237 else if (pc == sr4export)
3238 pc = (CORE_ADDR) (read_register (22));
3239
3240 /* Get the unwind descriptor corresponding to PC, return zero
3241 if no unwind was found. */
3242 u = find_unwind_entry (pc);
3243 if (!u)
3244 return 0;
3245
3246 /* If this isn't a linker stub, then return now. */
3247 /* elz: attention here! (FIXME) because of a compiler/linker
3248 error, some stubs which should have a non zero stub_unwind.stub_type
3249 have unfortunately a value of zero. So this function would return here
3250 as if we were not in a trampoline. To fix this, we go look at the partial
3251 symbol information, which reports this guy as a stub.
3252 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3253 partial symbol information is also wrong sometimes. This is because
3254 when it is entered (somread.c::som_symtab_read()) it can happen that
3255 if the type of the symbol (from the som) is Entry, and the symbol is
3256 in a shared library, then it can also be a trampoline. This would
3257 be OK, except that I believe the way they decide if we are ina shared library
3258 does not work. SOOOO..., even if we have a regular function w/o trampolines
3259 its minimal symbol can be assigned type mst_solib_trampoline.
3260 Also, if we find that the symbol is a real stub, then we fix the unwind
3261 descriptor, and define the stub type to be EXPORT.
3262 Hopefully this is correct most of the times. */
3263 if (u->stub_unwind.stub_type == 0)
3264 {
3265
3266 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3267 we can delete all the code which appears between the lines */
3268 /*--------------------------------------------------------------------------*/
3269 msym = lookup_minimal_symbol_by_pc (pc);
3270
3271 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3272 return orig_pc == pc ? 0 : pc & ~0x3;
3273
3274 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3275 {
3276 struct objfile *objfile;
3277 struct minimal_symbol *msymbol;
3278 int function_found = 0;
3279
3280 /* go look if there is another minimal symbol with the same name as
3281 this one, but with type mst_text. This would happen if the msym
3282 is an actual trampoline, in which case there would be another
3283 symbol with the same name corresponding to the real function */
3284
3285 ALL_MSYMBOLS (objfile, msymbol)
3286 {
3287 if (MSYMBOL_TYPE (msymbol) == mst_text
3288 && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
3289 {
3290 function_found = 1;
3291 break;
3292 }
3293 }
3294
3295 if (function_found)
3296 /* the type of msym is correct (mst_solib_trampoline), but
3297 the unwind info is wrong, so set it to the correct value */
3298 u->stub_unwind.stub_type = EXPORT;
3299 else
3300 /* the stub type info in the unwind is correct (this is not a
3301 trampoline), but the msym type information is wrong, it
3302 should be mst_text. So we need to fix the msym, and also
3303 get out of this function */
3304 {
3305 MSYMBOL_TYPE (msym) = mst_text;
3306 return orig_pc == pc ? 0 : pc & ~0x3;
3307 }
3308 }
3309
3310 /*--------------------------------------------------------------------------*/
3311 }
3312
3313 /* It's a stub. Search for a branch and figure out where it goes.
3314 Note we have to handle multi insn branch sequences like ldil;ble.
3315 Most (all?) other branches can be determined by examining the contents
3316 of certain registers and the stack. */
3317
3318 loc = pc;
3319 curr_inst = 0;
3320 prev_inst = 0;
3321 while (1)
3322 {
3323 /* Make sure we haven't walked outside the range of this stub. */
3324 if (u != find_unwind_entry (loc))
3325 {
3326 warning ("Unable to find branch in linker stub");
3327 return orig_pc == pc ? 0 : pc & ~0x3;
3328 }
3329
3330 prev_inst = curr_inst;
3331 curr_inst = read_memory_integer (loc, 4);
3332
3333 /* Does it look like a branch external using %r1? Then it's the
3334 branch from the stub to the actual function. */
3335 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3336 {
3337 /* Yup. See if the previous instruction loaded
3338 a value into %r1. If so compute and return the jump address. */
3339 if ((prev_inst & 0xffe00000) == 0x20200000)
3340 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3341 else
3342 {
3343 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3344 return orig_pc == pc ? 0 : pc & ~0x3;
3345 }
3346 }
3347
3348 /* Does it look like a be 0(sr0,%r21)? OR
3349 Does it look like a be, n 0(sr0,%r21)? OR
3350 Does it look like a bve (r21)? (this is on PA2.0)
3351 Does it look like a bve, n(r21)? (this is also on PA2.0)
3352 That's the branch from an
3353 import stub to an export stub.
3354
3355 It is impossible to determine the target of the branch via
3356 simple examination of instructions and/or data (consider
3357 that the address in the plabel may be the address of the
3358 bind-on-reference routine in the dynamic loader).
3359
3360 So we have try an alternative approach.
3361
3362 Get the name of the symbol at our current location; it should
3363 be a stub symbol with the same name as the symbol in the
3364 shared library.
3365
3366 Then lookup a minimal symbol with the same name; we should
3367 get the minimal symbol for the target routine in the shared
3368 library as those take precedence of import/export stubs. */
3369 if ((curr_inst == 0xe2a00000) ||
3370 (curr_inst == 0xe2a00002) ||
3371 (curr_inst == 0xeaa0d000) ||
3372 (curr_inst == 0xeaa0d002))
3373 {
3374 struct minimal_symbol *stubsym, *libsym;
3375
3376 stubsym = lookup_minimal_symbol_by_pc (loc);
3377 if (stubsym == NULL)
3378 {
3379 warning ("Unable to find symbol for 0x%x", loc);
3380 return orig_pc == pc ? 0 : pc & ~0x3;
3381 }
3382
3383 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
3384 if (libsym == NULL)
3385 {
3386 warning ("Unable to find library symbol for %s\n",
3387 SYMBOL_NAME (stubsym));
3388 return orig_pc == pc ? 0 : pc & ~0x3;
3389 }
3390
3391 return SYMBOL_VALUE (libsym);
3392 }
3393
3394 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3395 branch from the stub to the actual function. */
3396 /*elz */
3397 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3398 || (curr_inst & 0xffe0e000) == 0xe8000000
3399 || (curr_inst & 0xffe0e000) == 0xe800A000)
3400 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3401
3402 /* Does it look like bv (rp)? Note this depends on the
3403 current stack pointer being the same as the stack
3404 pointer in the stub itself! This is a branch on from the
3405 stub back to the original caller. */
3406 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3407 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3408 {
3409 /* Yup. See if the previous instruction loaded
3410 rp from sp - 8. */
3411 if (prev_inst == 0x4bc23ff1)
3412 return (read_memory_integer
3413 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3414 else
3415 {
3416 warning ("Unable to find restore of %%rp before bv (%%rp).");
3417 return orig_pc == pc ? 0 : pc & ~0x3;
3418 }
3419 }
3420
3421 /* elz: added this case to capture the new instruction
3422 at the end of the return part of an export stub used by
3423 the PA2.0: BVE, n (rp) */
3424 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3425 {
3426 return (read_memory_integer
3427 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3428 }
3429
3430 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3431 the original caller from the stub. Used in dynamic executables. */
3432 else if (curr_inst == 0xe0400002)
3433 {
3434 /* The value we jump to is sitting in sp - 24. But that's
3435 loaded several instructions before the be instruction.
3436 I guess we could check for the previous instruction being
3437 mtsp %r1,%sr0 if we want to do sanity checking. */
3438 return (read_memory_integer
3439 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3440 }
3441
3442 /* Haven't found the branch yet, but we're still in the stub.
3443 Keep looking. */
3444 loc += 4;
3445 }
3446 }
3447
3448
3449 /* For the given instruction (INST), return any adjustment it makes
3450 to the stack pointer or zero for no adjustment.
3451
3452 This only handles instructions commonly found in prologues. */
3453
3454 static int
3455 prologue_inst_adjust_sp (inst)
3456 unsigned long inst;
3457 {
3458 /* This must persist across calls. */
3459 static int save_high21;
3460
3461 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3462 if ((inst & 0xffffc000) == 0x37de0000)
3463 return extract_14 (inst);
3464
3465 /* stwm X,D(sp) */
3466 if ((inst & 0xffe00000) == 0x6fc00000)
3467 return extract_14 (inst);
3468
3469 /* std,ma X,D(sp) */
3470 if ((inst & 0xffe00008) == 0x73c00008)
3471 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3472
3473 /* addil high21,%r1; ldo low11,(%r1),%r30)
3474 save high bits in save_high21 for later use. */
3475 if ((inst & 0xffe00000) == 0x28200000)
3476 {
3477 save_high21 = extract_21 (inst);
3478 return 0;
3479 }
3480
3481 if ((inst & 0xffff0000) == 0x343e0000)
3482 return save_high21 + extract_14 (inst);
3483
3484 /* fstws as used by the HP compilers. */
3485 if ((inst & 0xffffffe0) == 0x2fd01220)
3486 return extract_5_load (inst);
3487
3488 /* No adjustment. */
3489 return 0;
3490 }
3491
3492 /* Return nonzero if INST is a branch of some kind, else return zero. */
3493
3494 static int
3495 is_branch (inst)
3496 unsigned long inst;
3497 {
3498 switch (inst >> 26)
3499 {
3500 case 0x20:
3501 case 0x21:
3502 case 0x22:
3503 case 0x23:
3504 case 0x27:
3505 case 0x28:
3506 case 0x29:
3507 case 0x2a:
3508 case 0x2b:
3509 case 0x2f:
3510 case 0x30:
3511 case 0x31:
3512 case 0x32:
3513 case 0x33:
3514 case 0x38:
3515 case 0x39:
3516 case 0x3a:
3517 case 0x3b:
3518 return 1;
3519
3520 default:
3521 return 0;
3522 }
3523 }
3524
3525 /* Return the register number for a GR which is saved by INST or
3526 zero it INST does not save a GR. */
3527
3528 static int
3529 inst_saves_gr (inst)
3530 unsigned long inst;
3531 {
3532 /* Does it look like a stw? */
3533 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3534 || (inst >> 26) == 0x1f
3535 || ((inst >> 26) == 0x1f
3536 && ((inst >> 6) == 0xa)))
3537 return extract_5R_store (inst);
3538
3539 /* Does it look like a std? */
3540 if ((inst >> 26) == 0x1c
3541 || ((inst >> 26) == 0x03
3542 && ((inst >> 6) & 0xf) == 0xb))
3543 return extract_5R_store (inst);
3544
3545 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3546 if ((inst >> 26) == 0x1b)
3547 return extract_5R_store (inst);
3548
3549 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3550 too. */
3551 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3552 || ((inst >> 26) == 0x3
3553 && (((inst >> 6) & 0xf) == 0x8
3554 || (inst >> 6) & 0xf) == 0x9))
3555 return extract_5R_store (inst);
3556
3557 return 0;
3558 }
3559
3560 /* Return the register number for a FR which is saved by INST or
3561 zero it INST does not save a FR.
3562
3563 Note we only care about full 64bit register stores (that's the only
3564 kind of stores the prologue will use).
3565
3566 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3567
3568 static int
3569 inst_saves_fr (inst)
3570 unsigned long inst;
3571 {
3572 /* is this an FSTD ? */
3573 if ((inst & 0xfc00dfc0) == 0x2c001200)
3574 return extract_5r_store (inst);
3575 if ((inst & 0xfc000002) == 0x70000002)
3576 return extract_5R_store (inst);
3577 /* is this an FSTW ? */
3578 if ((inst & 0xfc00df80) == 0x24001200)
3579 return extract_5r_store (inst);
3580 if ((inst & 0xfc000002) == 0x7c000000)
3581 return extract_5R_store (inst);
3582 return 0;
3583 }
3584
3585 /* Advance PC across any function entry prologue instructions
3586 to reach some "real" code.
3587
3588 Use information in the unwind table to determine what exactly should
3589 be in the prologue. */
3590
3591
3592 CORE_ADDR
3593 skip_prologue_hard_way (pc)
3594 CORE_ADDR pc;
3595 {
3596 char buf[4];
3597 CORE_ADDR orig_pc = pc;
3598 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3599 unsigned long args_stored, status, i, restart_gr, restart_fr;
3600 struct unwind_table_entry *u;
3601
3602 restart_gr = 0;
3603 restart_fr = 0;
3604
3605 restart:
3606 u = find_unwind_entry (pc);
3607 if (!u)
3608 return pc;
3609
3610 /* If we are not at the beginning of a function, then return now. */
3611 if ((pc & ~0x3) != u->region_start)
3612 return pc;
3613
3614 /* This is how much of a frame adjustment we need to account for. */
3615 stack_remaining = u->Total_frame_size << 3;
3616
3617 /* Magic register saves we want to know about. */
3618 save_rp = u->Save_RP;
3619 save_sp = u->Save_SP;
3620
3621 /* An indication that args may be stored into the stack. Unfortunately
3622 the HPUX compilers tend to set this in cases where no args were
3623 stored too!. */
3624 args_stored = 1;
3625
3626 /* Turn the Entry_GR field into a bitmask. */
3627 save_gr = 0;
3628 for (i = 3; i < u->Entry_GR + 3; i++)
3629 {
3630 /* Frame pointer gets saved into a special location. */
3631 if (u->Save_SP && i == FP_REGNUM)
3632 continue;
3633
3634 save_gr |= (1 << i);
3635 }
3636 save_gr &= ~restart_gr;
3637
3638 /* Turn the Entry_FR field into a bitmask too. */
3639 save_fr = 0;
3640 for (i = 12; i < u->Entry_FR + 12; i++)
3641 save_fr |= (1 << i);
3642 save_fr &= ~restart_fr;
3643
3644 /* Loop until we find everything of interest or hit a branch.
3645
3646 For unoptimized GCC code and for any HP CC code this will never ever
3647 examine any user instructions.
3648
3649 For optimzied GCC code we're faced with problems. GCC will schedule
3650 its prologue and make prologue instructions available for delay slot
3651 filling. The end result is user code gets mixed in with the prologue
3652 and a prologue instruction may be in the delay slot of the first branch
3653 or call.
3654
3655 Some unexpected things are expected with debugging optimized code, so
3656 we allow this routine to walk past user instructions in optimized
3657 GCC code. */
3658 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3659 || args_stored)
3660 {
3661 unsigned int reg_num;
3662 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3663 unsigned long old_save_rp, old_save_sp, next_inst;
3664
3665 /* Save copies of all the triggers so we can compare them later
3666 (only for HPC). */
3667 old_save_gr = save_gr;
3668 old_save_fr = save_fr;
3669 old_save_rp = save_rp;
3670 old_save_sp = save_sp;
3671 old_stack_remaining = stack_remaining;
3672
3673 status = target_read_memory (pc, buf, 4);
3674 inst = extract_unsigned_integer (buf, 4);
3675
3676 /* Yow! */
3677 if (status != 0)
3678 return pc;
3679
3680 /* Note the interesting effects of this instruction. */
3681 stack_remaining -= prologue_inst_adjust_sp (inst);
3682
3683 /* There are limited ways to store the return pointer into the
3684 stack. */
3685 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3686 save_rp = 0;
3687
3688 /* These are the only ways we save SP into the stack. At this time
3689 the HP compilers never bother to save SP into the stack. */
3690 if ((inst & 0xffffc000) == 0x6fc10000
3691 || (inst & 0xffffc00c) == 0x73c10008)
3692 save_sp = 0;
3693
3694 /* Are we loading some register with an offset from the argument
3695 pointer? */
3696 if ((inst & 0xffe00000) == 0x37a00000
3697 || (inst & 0xffffffe0) == 0x081d0240)
3698 {
3699 pc += 4;
3700 continue;
3701 }
3702
3703 /* Account for general and floating-point register saves. */
3704 reg_num = inst_saves_gr (inst);
3705 save_gr &= ~(1 << reg_num);
3706
3707 /* Ugh. Also account for argument stores into the stack.
3708 Unfortunately args_stored only tells us that some arguments
3709 where stored into the stack. Not how many or what kind!
3710
3711 This is a kludge as on the HP compiler sets this bit and it
3712 never does prologue scheduling. So once we see one, skip past
3713 all of them. We have similar code for the fp arg stores below.
3714
3715 FIXME. Can still die if we have a mix of GR and FR argument
3716 stores! */
3717 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3718 {
3719 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3720 {
3721 pc += 4;
3722 status = target_read_memory (pc, buf, 4);
3723 inst = extract_unsigned_integer (buf, 4);
3724 if (status != 0)
3725 return pc;
3726 reg_num = inst_saves_gr (inst);
3727 }
3728 args_stored = 0;
3729 continue;
3730 }
3731
3732 reg_num = inst_saves_fr (inst);
3733 save_fr &= ~(1 << reg_num);
3734
3735 status = target_read_memory (pc + 4, buf, 4);
3736 next_inst = extract_unsigned_integer (buf, 4);
3737
3738 /* Yow! */
3739 if (status != 0)
3740 return pc;
3741
3742 /* We've got to be read to handle the ldo before the fp register
3743 save. */
3744 if ((inst & 0xfc000000) == 0x34000000
3745 && inst_saves_fr (next_inst) >= 4
3746 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3747 {
3748 /* So we drop into the code below in a reasonable state. */
3749 reg_num = inst_saves_fr (next_inst);
3750 pc -= 4;
3751 }
3752
3753 /* Ugh. Also account for argument stores into the stack.
3754 This is a kludge as on the HP compiler sets this bit and it
3755 never does prologue scheduling. So once we see one, skip past
3756 all of them. */
3757 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3758 {
3759 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3760 {
3761 pc += 8;
3762 status = target_read_memory (pc, buf, 4);
3763 inst = extract_unsigned_integer (buf, 4);
3764 if (status != 0)
3765 return pc;
3766 if ((inst & 0xfc000000) != 0x34000000)
3767 break;
3768 status = target_read_memory (pc + 4, buf, 4);
3769 next_inst = extract_unsigned_integer (buf, 4);
3770 if (status != 0)
3771 return pc;
3772 reg_num = inst_saves_fr (next_inst);
3773 }
3774 args_stored = 0;
3775 continue;
3776 }
3777
3778 /* Quit if we hit any kind of branch. This can happen if a prologue
3779 instruction is in the delay slot of the first call/branch. */
3780 if (is_branch (inst))
3781 break;
3782
3783 /* What a crock. The HP compilers set args_stored even if no
3784 arguments were stored into the stack (boo hiss). This could
3785 cause this code to then skip a bunch of user insns (up to the
3786 first branch).
3787
3788 To combat this we try to identify when args_stored was bogusly
3789 set and clear it. We only do this when args_stored is nonzero,
3790 all other resources are accounted for, and nothing changed on
3791 this pass. */
3792 if (args_stored
3793 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3794 && old_save_gr == save_gr && old_save_fr == save_fr
3795 && old_save_rp == save_rp && old_save_sp == save_sp
3796 && old_stack_remaining == stack_remaining)
3797 break;
3798
3799 /* Bump the PC. */
3800 pc += 4;
3801 }
3802
3803 /* We've got a tenative location for the end of the prologue. However
3804 because of limitations in the unwind descriptor mechanism we may
3805 have went too far into user code looking for the save of a register
3806 that does not exist. So, if there registers we expected to be saved
3807 but never were, mask them out and restart.
3808
3809 This should only happen in optimized code, and should be very rare. */
3810 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3811 {
3812 pc = orig_pc;
3813 restart_gr = save_gr;
3814 restart_fr = save_fr;
3815 goto restart;
3816 }
3817
3818 return pc;
3819 }
3820
3821
3822 /* Return the address of the PC after the last prologue instruction if
3823 we can determine it from the debug symbols. Else return zero. */
3824
3825 static CORE_ADDR
3826 after_prologue (pc)
3827 CORE_ADDR pc;
3828 {
3829 struct symtab_and_line sal;
3830 CORE_ADDR func_addr, func_end;
3831 struct symbol *f;
3832
3833 /* If we can not find the symbol in the partial symbol table, then
3834 there is no hope we can determine the function's start address
3835 with this code. */
3836 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3837 return 0;
3838
3839 /* Get the line associated with FUNC_ADDR. */
3840 sal = find_pc_line (func_addr, 0);
3841
3842 /* There are only two cases to consider. First, the end of the source line
3843 is within the function bounds. In that case we return the end of the
3844 source line. Second is the end of the source line extends beyond the
3845 bounds of the current function. We need to use the slow code to
3846 examine instructions in that case.
3847
3848 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3849 the wrong thing to do. In fact, it should be entirely possible for this
3850 function to always return zero since the slow instruction scanning code
3851 is supposed to *always* work. If it does not, then it is a bug. */
3852 if (sal.end < func_end)
3853 return sal.end;
3854 else
3855 return 0;
3856 }
3857
3858 /* To skip prologues, I use this predicate. Returns either PC itself
3859 if the code at PC does not look like a function prologue; otherwise
3860 returns an address that (if we're lucky) follows the prologue. If
3861 LENIENT, then we must skip everything which is involved in setting
3862 up the frame (it's OK to skip more, just so long as we don't skip
3863 anything which might clobber the registers which are being saved.
3864 Currently we must not skip more on the alpha, but we might the lenient
3865 stuff some day. */
3866
3867 CORE_ADDR
3868 hppa_skip_prologue (pc)
3869 CORE_ADDR pc;
3870 {
3871 unsigned long inst;
3872 int offset;
3873 CORE_ADDR post_prologue_pc;
3874 char buf[4];
3875
3876 /* See if we can determine the end of the prologue via the symbol table.
3877 If so, then return either PC, or the PC after the prologue, whichever
3878 is greater. */
3879
3880 post_prologue_pc = after_prologue (pc);
3881
3882 /* If after_prologue returned a useful address, then use it. Else
3883 fall back on the instruction skipping code.
3884
3885 Some folks have claimed this causes problems because the breakpoint
3886 may be the first instruction of the prologue. If that happens, then
3887 the instruction skipping code has a bug that needs to be fixed. */
3888 if (post_prologue_pc != 0)
3889 return max (pc, post_prologue_pc);
3890 else
3891 return (skip_prologue_hard_way (pc));
3892 }
3893
3894 /* Put here the code to store, into a struct frame_saved_regs,
3895 the addresses of the saved registers of frame described by FRAME_INFO.
3896 This includes special registers such as pc and fp saved in special
3897 ways in the stack frame. sp is even more special:
3898 the address we return for it IS the sp for the next frame. */
3899
3900 void
3901 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
3902 struct frame_info *frame_info;
3903 struct frame_saved_regs *frame_saved_regs;
3904 {
3905 CORE_ADDR pc;
3906 struct unwind_table_entry *u;
3907 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3908 int status, i, reg;
3909 char buf[4];
3910 int fp_loc = -1;
3911 int final_iteration;
3912
3913 /* Zero out everything. */
3914 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
3915
3916 /* Call dummy frames always look the same, so there's no need to
3917 examine the dummy code to determine locations of saved registers;
3918 instead, let find_dummy_frame_regs fill in the correct offsets
3919 for the saved registers. */
3920 if ((frame_info->pc >= frame_info->frame
3921 && frame_info->pc <= (frame_info->frame
3922 /* A call dummy is sized in words, but it is
3923 actually a series of instructions. Account
3924 for that scaling factor. */
3925 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
3926 * CALL_DUMMY_LENGTH)
3927 /* Similarly we have to account for 64bit
3928 wide register saves. */
3929 + (32 * REGISTER_SIZE)
3930 /* We always consider FP regs 8 bytes long. */
3931 + (NUM_REGS - FP0_REGNUM) * 8
3932 /* Similarly we have to account for 64bit
3933 wide register saves. */
3934 + (6 * REGISTER_SIZE))))
3935 find_dummy_frame_regs (frame_info, frame_saved_regs);
3936
3937 /* Interrupt handlers are special too. They lay out the register
3938 state in the exact same order as the register numbers in GDB. */
3939 if (pc_in_interrupt_handler (frame_info->pc))
3940 {
3941 for (i = 0; i < NUM_REGS; i++)
3942 {
3943 /* SP is a little special. */
3944 if (i == SP_REGNUM)
3945 frame_saved_regs->regs[SP_REGNUM]
3946 = read_memory_integer (frame_info->frame + SP_REGNUM * 4,
3947 TARGET_PTR_BIT / 8);
3948 else
3949 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
3950 }
3951 return;
3952 }
3953
3954 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3955 /* Handle signal handler callers. */
3956 if (frame_info->signal_handler_caller)
3957 {
3958 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3959 return;
3960 }
3961 #endif
3962
3963 /* Get the starting address of the function referred to by the PC
3964 saved in frame. */
3965 pc = get_pc_function_start (frame_info->pc);
3966
3967 /* Yow! */
3968 u = find_unwind_entry (pc);
3969 if (!u)
3970 return;
3971
3972 /* This is how much of a frame adjustment we need to account for. */
3973 stack_remaining = u->Total_frame_size << 3;
3974
3975 /* Magic register saves we want to know about. */
3976 save_rp = u->Save_RP;
3977 save_sp = u->Save_SP;
3978
3979 /* Turn the Entry_GR field into a bitmask. */
3980 save_gr = 0;
3981 for (i = 3; i < u->Entry_GR + 3; i++)
3982 {
3983 /* Frame pointer gets saved into a special location. */
3984 if (u->Save_SP && i == FP_REGNUM)
3985 continue;
3986
3987 save_gr |= (1 << i);
3988 }
3989
3990 /* Turn the Entry_FR field into a bitmask too. */
3991 save_fr = 0;
3992 for (i = 12; i < u->Entry_FR + 12; i++)
3993 save_fr |= (1 << i);
3994
3995 /* The frame always represents the value of %sp at entry to the
3996 current function (and is thus equivalent to the "saved" stack
3997 pointer. */
3998 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
3999
4000 /* Loop until we find everything of interest or hit a branch.
4001
4002 For unoptimized GCC code and for any HP CC code this will never ever
4003 examine any user instructions.
4004
4005 For optimized GCC code we're faced with problems. GCC will schedule
4006 its prologue and make prologue instructions available for delay slot
4007 filling. The end result is user code gets mixed in with the prologue
4008 and a prologue instruction may be in the delay slot of the first branch
4009 or call.
4010
4011 Some unexpected things are expected with debugging optimized code, so
4012 we allow this routine to walk past user instructions in optimized
4013 GCC code. */
4014 final_iteration = 0;
4015 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
4016 && pc <= frame_info->pc)
4017 {
4018 status = target_read_memory (pc, buf, 4);
4019 inst = extract_unsigned_integer (buf, 4);
4020
4021 /* Yow! */
4022 if (status != 0)
4023 return;
4024
4025 /* Note the interesting effects of this instruction. */
4026 stack_remaining -= prologue_inst_adjust_sp (inst);
4027
4028 /* There are limited ways to store the return pointer into the
4029 stack. */
4030 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4031 {
4032 save_rp = 0;
4033 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
4034 }
4035 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4036 {
4037 save_rp = 0;
4038 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16;
4039 }
4040
4041 /* Note if we saved SP into the stack. This also happens to indicate
4042 the location of the saved frame pointer. */
4043 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4044 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4045 {
4046 frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
4047 save_sp = 0;
4048 }
4049
4050 /* Account for general and floating-point register saves. */
4051 reg = inst_saves_gr (inst);
4052 if (reg >= 3 && reg <= 18
4053 && (!u->Save_SP || reg != FP_REGNUM))
4054 {
4055 save_gr &= ~(1 << reg);
4056
4057 /* stwm with a positive displacement is a *post modify*. */
4058 if ((inst >> 26) == 0x1b
4059 && extract_14 (inst) >= 0)
4060 frame_saved_regs->regs[reg] = frame_info->frame;
4061 /* A std has explicit post_modify forms. */
4062 else if ((inst & 0xfc00000c0) == 0x70000008)
4063 frame_saved_regs->regs[reg] = frame_info->frame;
4064 else
4065 {
4066 CORE_ADDR offset;
4067
4068 if ((inst >> 26) == 0x1c)
4069 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4070 else if ((inst >> 26) == 0x03)
4071 offset = low_sign_extend (inst & 0x1f, 5);
4072 else
4073 offset = extract_14 (inst);
4074
4075 /* Handle code with and without frame pointers. */
4076 if (u->Save_SP)
4077 frame_saved_regs->regs[reg]
4078 = frame_info->frame + offset;
4079 else
4080 frame_saved_regs->regs[reg]
4081 = (frame_info->frame + (u->Total_frame_size << 3)
4082 + offset);
4083 }
4084 }
4085
4086
4087 /* GCC handles callee saved FP regs a little differently.
4088
4089 It emits an instruction to put the value of the start of
4090 the FP store area into %r1. It then uses fstds,ma with
4091 a basereg of %r1 for the stores.
4092
4093 HP CC emits them at the current stack pointer modifying
4094 the stack pointer as it stores each register. */
4095
4096 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4097 if ((inst & 0xffffc000) == 0x34610000
4098 || (inst & 0xffffc000) == 0x37c10000)
4099 fp_loc = extract_14 (inst);
4100
4101 reg = inst_saves_fr (inst);
4102 if (reg >= 12 && reg <= 21)
4103 {
4104 /* Note +4 braindamage below is necessary because the FP status
4105 registers are internally 8 registers rather than the expected
4106 4 registers. */
4107 save_fr &= ~(1 << reg);
4108 if (fp_loc == -1)
4109 {
4110 /* 1st HP CC FP register store. After this instruction
4111 we've set enough state that the GCC and HPCC code are
4112 both handled in the same manner. */
4113 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
4114 fp_loc = 8;
4115 }
4116 else
4117 {
4118 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
4119 = frame_info->frame + fp_loc;
4120 fp_loc += 8;
4121 }
4122 }
4123
4124 /* Quit if we hit any kind of branch the previous iteration.
4125 if (final_iteration)
4126 break;
4127
4128 /* We want to look precisely one instruction beyond the branch
4129 if we have not found everything yet. */
4130 if (is_branch (inst))
4131 final_iteration = 1;
4132
4133 /* Bump the PC. */
4134 pc += 4;
4135 }
4136 }
4137
4138
4139 /* Exception handling support for the HP-UX ANSI C++ compiler.
4140 The compiler (aCC) provides a callback for exception events;
4141 GDB can set a breakpoint on this callback and find out what
4142 exception event has occurred. */
4143
4144 /* The name of the hook to be set to point to the callback function */
4145 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4146 /* The name of the function to be used to set the hook value */
4147 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4148 /* The name of the callback function in end.o */
4149 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4150 /* Name of function in end.o on which a break is set (called by above) */
4151 static char HP_ACC_EH_break[] = "__d_eh_break";
4152 /* Name of flag (in end.o) that enables catching throws */
4153 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4154 /* Name of flag (in end.o) that enables catching catching */
4155 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4156 /* The enum used by aCC */
4157 typedef enum
4158 {
4159 __EH_NOTIFY_THROW,
4160 __EH_NOTIFY_CATCH
4161 }
4162 __eh_notification;
4163
4164 /* Is exception-handling support available with this executable? */
4165 static int hp_cxx_exception_support = 0;
4166 /* Has the initialize function been run? */
4167 int hp_cxx_exception_support_initialized = 0;
4168 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4169 extern int exception_support_initialized;
4170 /* Address of __eh_notify_hook */
4171 static CORE_ADDR eh_notify_hook_addr = 0;
4172 /* Address of __d_eh_notify_callback */
4173 static CORE_ADDR eh_notify_callback_addr = 0;
4174 /* Address of __d_eh_break */
4175 static CORE_ADDR eh_break_addr = 0;
4176 /* Address of __d_eh_catch_catch */
4177 static CORE_ADDR eh_catch_catch_addr = 0;
4178 /* Address of __d_eh_catch_throw */
4179 static CORE_ADDR eh_catch_throw_addr = 0;
4180 /* Sal for __d_eh_break */
4181 static struct symtab_and_line *break_callback_sal = 0;
4182
4183 /* Code in end.c expects __d_pid to be set in the inferior,
4184 otherwise __d_eh_notify_callback doesn't bother to call
4185 __d_eh_break! So we poke the pid into this symbol
4186 ourselves.
4187 0 => success
4188 1 => failure */
4189 int
4190 setup_d_pid_in_inferior ()
4191 {
4192 CORE_ADDR anaddr;
4193 struct minimal_symbol *msymbol;
4194 char buf[4]; /* FIXME 32x64? */
4195
4196 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4197 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4198 if (msymbol == NULL)
4199 {
4200 warning ("Unable to find __d_pid symbol in object file.");
4201 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4202 return 1;
4203 }
4204
4205 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4206 store_unsigned_integer (buf, 4, inferior_pid); /* FIXME 32x64? */
4207 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4208 {
4209 warning ("Unable to write __d_pid");
4210 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4211 return 1;
4212 }
4213 return 0;
4214 }
4215
4216 /* Initialize exception catchpoint support by looking for the
4217 necessary hooks/callbacks in end.o, etc., and set the hook value to
4218 point to the required debug function
4219
4220 Return 0 => failure
4221 1 => success */
4222
4223 static int
4224 initialize_hp_cxx_exception_support ()
4225 {
4226 struct symtabs_and_lines sals;
4227 struct cleanup *old_chain;
4228 struct cleanup *canonical_strings_chain = NULL;
4229 int i;
4230 char *addr_start;
4231 char *addr_end = NULL;
4232 char **canonical = (char **) NULL;
4233 int thread = -1;
4234 struct symbol *sym = NULL;
4235 struct minimal_symbol *msym = NULL;
4236 struct objfile *objfile;
4237 asection *shlib_info;
4238
4239 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4240 recursion is a possibility because finding the hook for exception
4241 callbacks involves making a call in the inferior, which means
4242 re-inserting breakpoints which can re-invoke this code */
4243
4244 static int recurse = 0;
4245 if (recurse > 0)
4246 {
4247 hp_cxx_exception_support_initialized = 0;
4248 exception_support_initialized = 0;
4249 return 0;
4250 }
4251
4252 hp_cxx_exception_support = 0;
4253
4254 /* First check if we have seen any HP compiled objects; if not,
4255 it is very unlikely that HP's idiosyncratic callback mechanism
4256 for exception handling debug support will be available!
4257 This will percolate back up to breakpoint.c, where our callers
4258 will decide to try the g++ exception-handling support instead. */
4259 if (!hp_som_som_object_present)
4260 return 0;
4261
4262 /* We have a SOM executable with SOM debug info; find the hooks */
4263
4264 /* First look for the notify hook provided by aCC runtime libs */
4265 /* If we find this symbol, we conclude that the executable must
4266 have HP aCC exception support built in. If this symbol is not
4267 found, even though we're a HP SOM-SOM file, we may have been
4268 built with some other compiler (not aCC). This results percolates
4269 back up to our callers in breakpoint.c which can decide to
4270 try the g++ style of exception support instead.
4271 If this symbol is found but the other symbols we require are
4272 not found, there is something weird going on, and g++ support
4273 should *not* be tried as an alternative.
4274
4275 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4276 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4277
4278 /* libCsup has this hook; it'll usually be non-debuggable */
4279 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4280 if (msym)
4281 {
4282 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4283 hp_cxx_exception_support = 1;
4284 }
4285 else
4286 {
4287 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4288 warning ("Executable may not have been compiled debuggable with HP aCC.");
4289 warning ("GDB will be unable to intercept exception events.");
4290 eh_notify_hook_addr = 0;
4291 hp_cxx_exception_support = 0;
4292 return 0;
4293 }
4294
4295 /* Next look for the notify callback routine in end.o */
4296 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4297 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4298 if (msym)
4299 {
4300 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4301 hp_cxx_exception_support = 1;
4302 }
4303 else
4304 {
4305 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4306 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4307 warning ("GDB will be unable to intercept exception events.");
4308 eh_notify_callback_addr = 0;
4309 return 0;
4310 }
4311
4312 #ifndef GDB_TARGET_IS_HPPA_20W
4313 /* Check whether the executable is dynamically linked or archive bound */
4314 /* With an archive-bound executable we can use the raw addresses we find
4315 for the callback function, etc. without modification. For an executable
4316 with shared libraries, we have to do more work to find the plabel, which
4317 can be the target of a call through $$dyncall from the aCC runtime support
4318 library (libCsup) which is linked shared by default by aCC. */
4319 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4320 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4321 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4322 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4323 {
4324 /* The minsym we have has the local code address, but that's not the
4325 plabel that can be used by an inter-load-module call. */
4326 /* Find solib handle for main image (which has end.o), and use that
4327 and the min sym as arguments to __d_shl_get() (which does the equivalent
4328 of shl_findsym()) to find the plabel. */
4329
4330 args_for_find_stub args;
4331 static char message[] = "Error while finding exception callback hook:\n";
4332
4333 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4334 args.msym = msym;
4335 args.return_val = 0;
4336
4337 recurse++;
4338 catch_errors (cover_find_stub_with_shl_get, (PTR) &args, message,
4339 RETURN_MASK_ALL);
4340 eh_notify_callback_addr = args.return_val;
4341 recurse--;
4342
4343 exception_catchpoints_are_fragile = 1;
4344
4345 if (!eh_notify_callback_addr)
4346 {
4347 /* We can get here either if there is no plabel in the export list
4348 for the main image, or if something strange happened (??) */
4349 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4350 warning ("GDB will not be able to intercept exception events.");
4351 return 0;
4352 }
4353 }
4354 else
4355 exception_catchpoints_are_fragile = 0;
4356 #endif
4357
4358 /* Now, look for the breakpointable routine in end.o */
4359 /* This should also be available in the SOM symbol dict. if end.o linked in */
4360 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4361 if (msym)
4362 {
4363 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4364 hp_cxx_exception_support = 1;
4365 }
4366 else
4367 {
4368 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4369 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4370 warning ("GDB will be unable to intercept exception events.");
4371 eh_break_addr = 0;
4372 return 0;
4373 }
4374
4375 /* Next look for the catch enable flag provided in end.o */
4376 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4377 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4378 if (sym) /* sometimes present in debug info */
4379 {
4380 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4381 hp_cxx_exception_support = 1;
4382 }
4383 else
4384 /* otherwise look in SOM symbol dict. */
4385 {
4386 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4387 if (msym)
4388 {
4389 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4390 hp_cxx_exception_support = 1;
4391 }
4392 else
4393 {
4394 warning ("Unable to enable interception of exception catches.");
4395 warning ("Executable may not have been compiled debuggable with HP aCC.");
4396 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4397 return 0;
4398 }
4399 }
4400
4401 /* Next look for the catch enable flag provided end.o */
4402 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4403 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4404 if (sym) /* sometimes present in debug info */
4405 {
4406 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4407 hp_cxx_exception_support = 1;
4408 }
4409 else
4410 /* otherwise look in SOM symbol dict. */
4411 {
4412 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4413 if (msym)
4414 {
4415 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4416 hp_cxx_exception_support = 1;
4417 }
4418 else
4419 {
4420 warning ("Unable to enable interception of exception throws.");
4421 warning ("Executable may not have been compiled debuggable with HP aCC.");
4422 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4423 return 0;
4424 }
4425 }
4426
4427 /* Set the flags */
4428 hp_cxx_exception_support = 2; /* everything worked so far */
4429 hp_cxx_exception_support_initialized = 1;
4430 exception_support_initialized = 1;
4431
4432 return 1;
4433 }
4434
4435 /* Target operation for enabling or disabling interception of
4436 exception events.
4437 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4438 ENABLE is either 0 (disable) or 1 (enable).
4439 Return value is NULL if no support found;
4440 -1 if something went wrong,
4441 or a pointer to a symtab/line struct if the breakpointable
4442 address was found. */
4443
4444 struct symtab_and_line *
4445 child_enable_exception_callback (kind, enable)
4446 enum exception_event_kind kind;
4447 int enable;
4448 {
4449 char buf[4];
4450
4451 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4452 if (!initialize_hp_cxx_exception_support ())
4453 return NULL;
4454
4455 switch (hp_cxx_exception_support)
4456 {
4457 case 0:
4458 /* Assuming no HP support at all */
4459 return NULL;
4460 case 1:
4461 /* HP support should be present, but something went wrong */
4462 return (struct symtab_and_line *) -1; /* yuck! */
4463 /* there may be other cases in the future */
4464 }
4465
4466 /* Set the EH hook to point to the callback routine */
4467 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4468 /* pai: (temp) FIXME should there be a pack operation first? */
4469 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4470 {
4471 warning ("Could not write to target memory for exception event callback.");
4472 warning ("Interception of exception events may not work.");
4473 return (struct symtab_and_line *) -1;
4474 }
4475 if (enable)
4476 {
4477 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4478 if (inferior_pid > 0)
4479 {
4480 if (setup_d_pid_in_inferior ())
4481 return (struct symtab_and_line *) -1;
4482 }
4483 else
4484 {
4485 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4486 return (struct symtab_and_line *) -1;
4487 }
4488 }
4489
4490 switch (kind)
4491 {
4492 case EX_EVENT_THROW:
4493 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4494 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4495 {
4496 warning ("Couldn't enable exception throw interception.");
4497 return (struct symtab_and_line *) -1;
4498 }
4499 break;
4500 case EX_EVENT_CATCH:
4501 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4502 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4503 {
4504 warning ("Couldn't enable exception catch interception.");
4505 return (struct symtab_and_line *) -1;
4506 }
4507 break;
4508 default:
4509 error ("Request to enable unknown or unsupported exception event.");
4510 }
4511
4512 /* Copy break address into new sal struct, malloc'ing if needed. */
4513 if (!break_callback_sal)
4514 {
4515 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4516 }
4517 INIT_SAL (break_callback_sal);
4518 break_callback_sal->symtab = NULL;
4519 break_callback_sal->pc = eh_break_addr;
4520 break_callback_sal->line = 0;
4521 break_callback_sal->end = eh_break_addr;
4522
4523 return break_callback_sal;
4524 }
4525
4526 /* Record some information about the current exception event */
4527 static struct exception_event_record current_ex_event;
4528 /* Convenience struct */
4529 static struct symtab_and_line null_symtab_and_line =
4530 {NULL, 0, 0, 0};
4531
4532 /* Report current exception event. Returns a pointer to a record
4533 that describes the kind of the event, where it was thrown from,
4534 and where it will be caught. More information may be reported
4535 in the future */
4536 struct exception_event_record *
4537 child_get_current_exception_event ()
4538 {
4539 CORE_ADDR event_kind;
4540 CORE_ADDR throw_addr;
4541 CORE_ADDR catch_addr;
4542 struct frame_info *fi, *curr_frame;
4543 int level = 1;
4544
4545 curr_frame = get_current_frame ();
4546 if (!curr_frame)
4547 return (struct exception_event_record *) NULL;
4548
4549 /* Go up one frame to __d_eh_notify_callback, because at the
4550 point when this code is executed, there's garbage in the
4551 arguments of __d_eh_break. */
4552 fi = find_relative_frame (curr_frame, &level);
4553 if (level != 0)
4554 return (struct exception_event_record *) NULL;
4555
4556 select_frame (fi, -1);
4557
4558 /* Read in the arguments */
4559 /* __d_eh_notify_callback() is called with 3 arguments:
4560 1. event kind catch or throw
4561 2. the target address if known
4562 3. a flag -- not sure what this is. pai/1997-07-17 */
4563 event_kind = read_register (ARG0_REGNUM);
4564 catch_addr = read_register (ARG1_REGNUM);
4565
4566 /* Now go down to a user frame */
4567 /* For a throw, __d_eh_break is called by
4568 __d_eh_notify_callback which is called by
4569 __notify_throw which is called
4570 from user code.
4571 For a catch, __d_eh_break is called by
4572 __d_eh_notify_callback which is called by
4573 <stackwalking stuff> which is called by
4574 __throw__<stuff> or __rethrow_<stuff> which is called
4575 from user code. */
4576 /* FIXME: Don't use such magic numbers; search for the frames */
4577 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4578 fi = find_relative_frame (curr_frame, &level);
4579 if (level != 0)
4580 return (struct exception_event_record *) NULL;
4581
4582 select_frame (fi, -1);
4583 throw_addr = fi->pc;
4584
4585 /* Go back to original (top) frame */
4586 select_frame (curr_frame, -1);
4587
4588 current_ex_event.kind = (enum exception_event_kind) event_kind;
4589 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4590 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4591
4592 return &current_ex_event;
4593 }
4594
4595 static void
4596 unwind_command (exp, from_tty)
4597 char *exp;
4598 int from_tty;
4599 {
4600 CORE_ADDR address;
4601 struct unwind_table_entry *u;
4602
4603 /* If we have an expression, evaluate it and use it as the address. */
4604
4605 if (exp != 0 && *exp != 0)
4606 address = parse_and_eval_address (exp);
4607 else
4608 return;
4609
4610 u = find_unwind_entry (address);
4611
4612 if (!u)
4613 {
4614 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4615 return;
4616 }
4617
4618 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
4619
4620 printf_unfiltered ("\tregion_start = ");
4621 print_address (u->region_start, gdb_stdout);
4622
4623 printf_unfiltered ("\n\tregion_end = ");
4624 print_address (u->region_end, gdb_stdout);
4625
4626 #ifdef __STDC__
4627 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4628 #else
4629 #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
4630 #endif
4631
4632 printf_unfiltered ("\n\tflags =");
4633 pif (Cannot_unwind);
4634 pif (Millicode);
4635 pif (Millicode_save_sr0);
4636 pif (Entry_SR);
4637 pif (Args_stored);
4638 pif (Variable_Frame);
4639 pif (Separate_Package_Body);
4640 pif (Frame_Extension_Millicode);
4641 pif (Stack_Overflow_Check);
4642 pif (Two_Instruction_SP_Increment);
4643 pif (Ada_Region);
4644 pif (Save_SP);
4645 pif (Save_RP);
4646 pif (Save_MRP_in_frame);
4647 pif (extn_ptr_defined);
4648 pif (Cleanup_defined);
4649 pif (MPE_XL_interrupt_marker);
4650 pif (HP_UX_interrupt_marker);
4651 pif (Large_frame);
4652
4653 putchar_unfiltered ('\n');
4654
4655 #ifdef __STDC__
4656 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4657 #else
4658 #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
4659 #endif
4660
4661 pin (Region_description);
4662 pin (Entry_FR);
4663 pin (Entry_GR);
4664 pin (Total_frame_size);
4665 }
4666
4667 #ifdef PREPARE_TO_PROCEED
4668
4669 /* If the user has switched threads, and there is a breakpoint
4670 at the old thread's pc location, then switch to that thread
4671 and return TRUE, else return FALSE and don't do a thread
4672 switch (or rather, don't seem to have done a thread switch).
4673
4674 Ptrace-based gdb will always return FALSE to the thread-switch
4675 query, and thus also to PREPARE_TO_PROCEED.
4676
4677 The important thing is whether there is a BPT instruction,
4678 not how many user breakpoints there are. So we have to worry
4679 about things like these:
4680
4681 o Non-bp stop -- NO
4682
4683 o User hits bp, no switch -- NO
4684
4685 o User hits bp, switches threads -- YES
4686
4687 o User hits bp, deletes bp, switches threads -- NO
4688
4689 o User hits bp, deletes one of two or more bps
4690 at that PC, user switches threads -- YES
4691
4692 o Plus, since we're buffering events, the user may have hit a
4693 breakpoint, deleted the breakpoint and then gotten another
4694 hit on that same breakpoint on another thread which
4695 actually hit before the delete. (FIXME in breakpoint.c
4696 so that "dead" breakpoints are ignored?) -- NO
4697
4698 For these reasons, we have to violate information hiding and
4699 call "breakpoint_here_p". If core gdb thinks there is a bpt
4700 here, that's what counts, as core gdb is the one which is
4701 putting the BPT instruction in and taking it out. */
4702 int
4703 hppa_prepare_to_proceed ()
4704 {
4705 pid_t old_thread;
4706 pid_t current_thread;
4707
4708 old_thread = hppa_switched_threads (inferior_pid);
4709 if (old_thread != 0)
4710 {
4711 /* Switched over from "old_thread". Try to do
4712 as little work as possible, 'cause mostly
4713 we're going to switch back. */
4714 CORE_ADDR new_pc;
4715 CORE_ADDR old_pc = read_pc ();
4716
4717 /* Yuk, shouldn't use global to specify current
4718 thread. But that's how gdb does it. */
4719 current_thread = inferior_pid;
4720 inferior_pid = old_thread;
4721
4722 new_pc = read_pc ();
4723 if (new_pc != old_pc /* If at same pc, no need */
4724 && breakpoint_here_p (new_pc))
4725 {
4726 /* User hasn't deleted the BP.
4727 Return TRUE, finishing switch to "old_thread". */
4728 flush_cached_frames ();
4729 registers_changed ();
4730 #if 0
4731 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
4732 current_thread, inferior_pid);
4733 #endif
4734
4735 return 1;
4736 }
4737
4738 /* Otherwise switch back to the user-chosen thread. */
4739 inferior_pid = current_thread;
4740 new_pc = read_pc (); /* Re-prime register cache */
4741 }
4742
4743 return 0;
4744 }
4745 #endif /* PREPARE_TO_PROCEED */
4746
4747 void
4748 hppa_skip_permanent_breakpoint ()
4749 {
4750 /* To step over a breakpoint instruction on the PA takes some
4751 fiddling with the instruction address queue.
4752
4753 When we stop at a breakpoint, the IA queue front (the instruction
4754 we're executing now) points at the breakpoint instruction, and
4755 the IA queue back (the next instruction to execute) points to
4756 whatever instruction we would execute after the breakpoint, if it
4757 were an ordinary instruction. This is the case even if the
4758 breakpoint is in the delay slot of a branch instruction.
4759
4760 Clearly, to step past the breakpoint, we need to set the queue
4761 front to the back. But what do we put in the back? What
4762 instruction comes after that one? Because of the branch delay
4763 slot, the next insn is always at the back + 4. */
4764 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4765 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4766
4767 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4768 /* We can leave the tail's space the same, since there's no jump. */
4769 }
4770
4771 void
4772 _initialize_hppa_tdep ()
4773 {
4774 tm_print_insn = print_insn_hppa;
4775
4776 add_cmd ("unwind", class_maintenance, unwind_command,
4777 "Print unwind table entry at given address.",
4778 &maintenanceprintlist);
4779 }