]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-tdep.c
76e13a6b52f364b339a20e1138acf2dbb7ed2d5c
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986-2024 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "bfd.h"
25 #include "inferior.h"
26 #include "regcache.h"
27 #include "completer.h"
28 #include "osabi.h"
29 #include "arch-utils.h"
30 /* For argument passing to the inferior. */
31 #include "symtab.h"
32 #include "dis-asm.h"
33 #include "trad-frame.h"
34 #include "frame-unwind.h"
35 #include "frame-base.h"
36
37 #include "gdbcore.h"
38 #include "gdbcmd.h"
39 #include "gdbtypes.h"
40 #include "objfiles.h"
41 #include "hppa-tdep.h"
42 #include <algorithm>
43
44 static bool hppa_debug = false;
45
46 /* Some local constants. */
47 static const int hppa32_num_regs = 128;
48 static const int hppa64_num_regs = 96;
49
50 /* We use the objfile->obj_private pointer for two things:
51 * 1. An unwind table;
52 *
53 * 2. A pointer to any associated shared library object.
54 *
55 * #defines are used to help refer to these objects.
56 */
57
58 /* Info about the unwind table associated with an object file.
59 * This is hung off of the "objfile->obj_private" pointer, and
60 * is allocated in the objfile's psymbol obstack. This allows
61 * us to have unique unwind info for each executable and shared
62 * library that we are debugging.
63 */
64 struct hppa_unwind_info
65 {
66 struct unwind_table_entry *table; /* Pointer to unwind info */
67 struct unwind_table_entry *cache; /* Pointer to last entry we found */
68 int last; /* Index of last entry */
69 };
70
71 struct hppa_objfile_private
72 {
73 struct hppa_unwind_info *unwind_info = nullptr; /* a pointer */
74 shobj *so_info = nullptr; /* a pointer */
75 CORE_ADDR dp = 0;
76
77 int dummy_call_sequence_reg = 0;
78 CORE_ADDR dummy_call_sequence_addr = 0;
79 };
80
81 /* hppa-specific object data -- unwind and solib info.
82 TODO/maybe: think about splitting this into two parts; the unwind data is
83 common to all hppa targets, but is only used in this file; we can register
84 that separately and make this static. The solib data is probably hpux-
85 specific, so we can create a separate extern objfile_data that is registered
86 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
87 static const registry<objfile>::key<hppa_objfile_private>
88 hppa_objfile_priv_data;
89
90 /* Get at various relevant fields of an instruction word. */
91 #define MASK_5 0x1f
92 #define MASK_11 0x7ff
93 #define MASK_14 0x3fff
94 #define MASK_21 0x1fffff
95
96 /* Sizes (in bytes) of the native unwind entries. */
97 #define UNWIND_ENTRY_SIZE 16
98 #define STUB_UNWIND_ENTRY_SIZE 8
99
100 /* Routines to extract various sized constants out of hppa
101 instructions. */
102
103 /* This assumes that no garbage lies outside of the lower bits of
104 value. */
105
106 static int
107 hppa_sign_extend (unsigned val, unsigned bits)
108 {
109 return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val);
110 }
111
112 /* For many immediate values the sign bit is the low bit! */
113
114 static int
115 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
116 {
117 return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1);
118 }
119
120 /* Extract the bits at positions between FROM and TO, using HP's numbering
121 (MSB = 0). */
122
123 int
124 hppa_get_field (unsigned word, int from, int to)
125 {
126 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
127 }
128
129 /* Extract the immediate field from a ld{bhw}s instruction. */
130
131 int
132 hppa_extract_5_load (unsigned word)
133 {
134 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
135 }
136
137 /* Extract the immediate field from a break instruction. */
138
139 unsigned
140 hppa_extract_5r_store (unsigned word)
141 {
142 return (word & MASK_5);
143 }
144
145 /* Extract the immediate field from a {sr}sm instruction. */
146
147 unsigned
148 hppa_extract_5R_store (unsigned word)
149 {
150 return (word >> 16 & MASK_5);
151 }
152
153 /* Extract a 14 bit immediate field. */
154
155 int
156 hppa_extract_14 (unsigned word)
157 {
158 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
159 }
160
161 /* Extract a 21 bit constant. */
162
163 int
164 hppa_extract_21 (unsigned word)
165 {
166 int val;
167
168 word &= MASK_21;
169 word <<= 11;
170 val = hppa_get_field (word, 20, 20);
171 val <<= 11;
172 val |= hppa_get_field (word, 9, 19);
173 val <<= 2;
174 val |= hppa_get_field (word, 5, 6);
175 val <<= 5;
176 val |= hppa_get_field (word, 0, 4);
177 val <<= 2;
178 val |= hppa_get_field (word, 7, 8);
179 return hppa_sign_extend (val, 21) << 11;
180 }
181
182 /* extract a 17 bit constant from branch instructions, returning the
183 19 bit signed value. */
184
185 int
186 hppa_extract_17 (unsigned word)
187 {
188 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
189 hppa_get_field (word, 29, 29) << 10 |
190 hppa_get_field (word, 11, 15) << 11 |
191 (word & 0x1) << 16, 17) << 2;
192 }
193
194 CORE_ADDR
195 hppa_symbol_address(const char *sym)
196 {
197 struct bound_minimal_symbol minsym;
198
199 minsym = lookup_minimal_symbol (sym, NULL, NULL);
200 if (minsym.minsym)
201 return minsym.value_address ();
202 else
203 return (CORE_ADDR)-1;
204 }
205
206 \f
207
208 /* Compare the start address for two unwind entries returning 1 if
209 the first address is larger than the second, -1 if the second is
210 larger than the first, and zero if they are equal. */
211
212 static int
213 compare_unwind_entries (const void *arg1, const void *arg2)
214 {
215 const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1;
216 const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2;
217
218 if (a->region_start > b->region_start)
219 return 1;
220 else if (a->region_start < b->region_start)
221 return -1;
222 else
223 return 0;
224 }
225
226 static void
227 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
228 {
229 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
230 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
231 {
232 bfd_vma value = section->vma - section->filepos;
233 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
234
235 if (value < *low_text_segment_address)
236 *low_text_segment_address = value;
237 }
238 }
239
240 static void
241 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
242 asection *section, unsigned int entries,
243 size_t size, CORE_ADDR text_offset)
244 {
245 /* We will read the unwind entries into temporary memory, then
246 fill in the actual unwind table. */
247
248 if (size > 0)
249 {
250 struct gdbarch *gdbarch = objfile->arch ();
251 hppa_gdbarch_tdep *tdep = gdbarch_tdep<hppa_gdbarch_tdep> (gdbarch);
252 unsigned long tmp;
253 unsigned i;
254 char *buf = (char *) alloca (size);
255 CORE_ADDR low_text_segment_address;
256
257 /* For ELF targets, then unwinds are supposed to
258 be segment relative offsets instead of absolute addresses.
259
260 Note that when loading a shared library (text_offset != 0) the
261 unwinds are already relative to the text_offset that will be
262 passed in. */
263 if (tdep->is_elf && text_offset == 0)
264 {
265 low_text_segment_address = -1;
266
267 bfd_map_over_sections (objfile->obfd.get (),
268 record_text_segment_lowaddr,
269 &low_text_segment_address);
270
271 text_offset = low_text_segment_address;
272 }
273 else if (tdep->solib_get_text_base)
274 {
275 text_offset = tdep->solib_get_text_base (objfile);
276 }
277
278 bfd_get_section_contents (objfile->obfd.get (), section, buf, 0, size);
279
280 /* Now internalize the information being careful to handle host/target
281 endian issues. */
282 for (i = 0; i < entries; i++)
283 {
284 table[i].region_start = bfd_get_32 (objfile->obfd,
285 (bfd_byte *) buf);
286 table[i].region_start += text_offset;
287 buf += 4;
288 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
289 table[i].region_end += text_offset;
290 buf += 4;
291 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
292 buf += 4;
293 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
294 table[i].Millicode = (tmp >> 30) & 0x1;
295 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
296 table[i].Region_description = (tmp >> 27) & 0x3;
297 table[i].reserved = (tmp >> 26) & 0x1;
298 table[i].Entry_SR = (tmp >> 25) & 0x1;
299 table[i].Entry_FR = (tmp >> 21) & 0xf;
300 table[i].Entry_GR = (tmp >> 16) & 0x1f;
301 table[i].Args_stored = (tmp >> 15) & 0x1;
302 table[i].Variable_Frame = (tmp >> 14) & 0x1;
303 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
304 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
305 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
306 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
307 table[i].sr4export = (tmp >> 9) & 0x1;
308 table[i].cxx_info = (tmp >> 8) & 0x1;
309 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
310 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
311 table[i].reserved1 = (tmp >> 5) & 0x1;
312 table[i].Save_SP = (tmp >> 4) & 0x1;
313 table[i].Save_RP = (tmp >> 3) & 0x1;
314 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
315 table[i].save_r19 = (tmp >> 1) & 0x1;
316 table[i].Cleanup_defined = tmp & 0x1;
317 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
318 buf += 4;
319 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
320 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
321 table[i].Large_frame = (tmp >> 29) & 0x1;
322 table[i].alloca_frame = (tmp >> 28) & 0x1;
323 table[i].reserved2 = (tmp >> 27) & 0x1;
324 table[i].Total_frame_size = tmp & 0x7ffffff;
325
326 /* Stub unwinds are handled elsewhere. */
327 table[i].stub_unwind.stub_type = 0;
328 table[i].stub_unwind.padding = 0;
329 }
330 }
331 }
332
333 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
334 the object file. This info is used mainly by find_unwind_entry() to find
335 out the stack frame size and frame pointer used by procedures. We put
336 everything on the psymbol obstack in the objfile so that it automatically
337 gets freed when the objfile is destroyed. */
338
339 static void
340 read_unwind_info (struct objfile *objfile)
341 {
342 asection *unwind_sec, *stub_unwind_sec;
343 size_t unwind_size, stub_unwind_size, total_size;
344 unsigned index, unwind_entries;
345 unsigned stub_entries, total_entries;
346 CORE_ADDR text_offset;
347 struct hppa_unwind_info *ui;
348 struct hppa_objfile_private *obj_private;
349
350 text_offset = objfile->text_section_offset ();
351 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
352 sizeof (struct hppa_unwind_info));
353
354 ui->table = NULL;
355 ui->cache = NULL;
356 ui->last = -1;
357
358 /* For reasons unknown the HP PA64 tools generate multiple unwinder
359 sections in a single executable. So we just iterate over every
360 section in the BFD looking for unwinder sections instead of trying
361 to do a lookup with bfd_get_section_by_name.
362
363 First determine the total size of the unwind tables so that we
364 can allocate memory in a nice big hunk. */
365 total_entries = 0;
366 for (unwind_sec = objfile->obfd->sections;
367 unwind_sec;
368 unwind_sec = unwind_sec->next)
369 {
370 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
371 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
372 {
373 unwind_size = bfd_section_size (unwind_sec);
374 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
375
376 total_entries += unwind_entries;
377 }
378 }
379
380 /* Now compute the size of the stub unwinds. Note the ELF tools do not
381 use stub unwinds at the current time. */
382 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd.get (),
383 "$UNWIND_END$");
384
385 if (stub_unwind_sec)
386 {
387 stub_unwind_size = bfd_section_size (stub_unwind_sec);
388 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
389 }
390 else
391 {
392 stub_unwind_size = 0;
393 stub_entries = 0;
394 }
395
396 /* Compute total number of unwind entries and their total size. */
397 total_entries += stub_entries;
398 total_size = total_entries * sizeof (struct unwind_table_entry);
399
400 /* Allocate memory for the unwind table. */
401 ui->table = (struct unwind_table_entry *)
402 obstack_alloc (&objfile->objfile_obstack, total_size);
403 ui->last = total_entries - 1;
404
405 /* Now read in each unwind section and internalize the standard unwind
406 entries. */
407 index = 0;
408 for (unwind_sec = objfile->obfd->sections;
409 unwind_sec;
410 unwind_sec = unwind_sec->next)
411 {
412 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
413 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
414 {
415 unwind_size = bfd_section_size (unwind_sec);
416 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
417
418 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
419 unwind_entries, unwind_size, text_offset);
420 index += unwind_entries;
421 }
422 }
423
424 /* Now read in and internalize the stub unwind entries. */
425 if (stub_unwind_size > 0)
426 {
427 unsigned int i;
428 char *buf = (char *) alloca (stub_unwind_size);
429
430 /* Read in the stub unwind entries. */
431 bfd_get_section_contents (objfile->obfd.get (), stub_unwind_sec, buf,
432 0, stub_unwind_size);
433
434 /* Now convert them into regular unwind entries. */
435 for (i = 0; i < stub_entries; i++, index++)
436 {
437 /* Clear out the next unwind entry. */
438 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
439
440 /* Convert offset & size into region_start and region_end.
441 Stuff away the stub type into "reserved" fields. */
442 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
443 (bfd_byte *) buf);
444 ui->table[index].region_start += text_offset;
445 buf += 4;
446 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
447 (bfd_byte *) buf);
448 buf += 2;
449 ui->table[index].region_end
450 = ui->table[index].region_start + 4 *
451 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
452 buf += 2;
453 }
454
455 }
456
457 /* Unwind table needs to be kept sorted. */
458 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
459 compare_unwind_entries);
460
461 /* Keep a pointer to the unwind information. */
462 obj_private = hppa_objfile_priv_data.get (objfile);
463 if (obj_private == NULL)
464 obj_private = hppa_objfile_priv_data.emplace (objfile);
465
466 obj_private->unwind_info = ui;
467 }
468
469 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
470 of the objfiles seeking the unwind table entry for this PC. Each objfile
471 contains a sorted list of struct unwind_table_entry. Since we do a binary
472 search of the unwind tables, we depend upon them to be sorted. */
473
474 struct unwind_table_entry *
475 find_unwind_entry (CORE_ADDR pc)
476 {
477 int first, middle, last;
478
479 if (hppa_debug)
480 gdb_printf (gdb_stdlog, "{ find_unwind_entry %s -> ",
481 hex_string (pc));
482
483 /* A function at address 0? Not in HP-UX! */
484 if (pc == (CORE_ADDR) 0)
485 {
486 if (hppa_debug)
487 gdb_printf (gdb_stdlog, "NULL }\n");
488 return NULL;
489 }
490
491 for (objfile *objfile : current_program_space->objfiles ())
492 {
493 struct hppa_unwind_info *ui;
494 ui = NULL;
495 struct hppa_objfile_private *priv = hppa_objfile_priv_data.get (objfile);
496 if (priv)
497 ui = priv->unwind_info;
498
499 if (!ui)
500 {
501 read_unwind_info (objfile);
502 priv = hppa_objfile_priv_data.get (objfile);
503 if (priv == NULL)
504 error (_("Internal error reading unwind information."));
505 ui = priv->unwind_info;
506 }
507
508 /* First, check the cache. */
509
510 if (ui->cache
511 && pc >= ui->cache->region_start
512 && pc <= ui->cache->region_end)
513 {
514 if (hppa_debug)
515 gdb_printf (gdb_stdlog, "%s (cached) }\n",
516 hex_string ((uintptr_t) ui->cache));
517 return ui->cache;
518 }
519
520 /* Not in the cache, do a binary search. */
521
522 first = 0;
523 last = ui->last;
524
525 while (first <= last)
526 {
527 middle = (first + last) / 2;
528 if (pc >= ui->table[middle].region_start
529 && pc <= ui->table[middle].region_end)
530 {
531 ui->cache = &ui->table[middle];
532 if (hppa_debug)
533 gdb_printf (gdb_stdlog, "%s }\n",
534 hex_string ((uintptr_t) ui->cache));
535 return &ui->table[middle];
536 }
537
538 if (pc < ui->table[middle].region_start)
539 last = middle - 1;
540 else
541 first = middle + 1;
542 }
543 }
544
545 if (hppa_debug)
546 gdb_printf (gdb_stdlog, "NULL (not found) }\n");
547
548 return NULL;
549 }
550
551 /* Implement the stack_frame_destroyed_p gdbarch method.
552
553 The epilogue is defined here as the area either on the `bv' instruction
554 itself or an instruction which destroys the function's stack frame.
555
556 We do not assume that the epilogue is at the end of a function as we can
557 also have return sequences in the middle of a function. */
558
559 static int
560 hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
561 {
562 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
563 unsigned long status;
564 unsigned int inst;
565 gdb_byte buf[4];
566
567 status = target_read_memory (pc, buf, 4);
568 if (status != 0)
569 return 0;
570
571 inst = extract_unsigned_integer (buf, 4, byte_order);
572
573 /* The most common way to perform a stack adjustment ldo X(sp),sp
574 We are destroying a stack frame if the offset is negative. */
575 if ((inst & 0xffffc000) == 0x37de0000
576 && hppa_extract_14 (inst) < 0)
577 return 1;
578
579 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
580 if (((inst & 0x0fc010e0) == 0x0fc010e0
581 || (inst & 0x0fc010e0) == 0x0fc010e0)
582 && hppa_extract_14 (inst) < 0)
583 return 1;
584
585 /* bv %r0(%rp) or bv,n %r0(%rp) */
586 if (inst == 0xe840c000 || inst == 0xe840c002)
587 return 1;
588
589 return 0;
590 }
591
592 constexpr gdb_byte hppa_break_insn[] = {0x00, 0x01, 0x00, 0x04};
593
594 typedef BP_MANIPULATION (hppa_break_insn) hppa_breakpoint;
595
596 /* Return the name of a register. */
597
598 static const char *
599 hppa32_register_name (struct gdbarch *gdbarch, int i)
600 {
601 static const char *names[] = {
602 "flags", "r1", "rp", "r3",
603 "r4", "r5", "r6", "r7",
604 "r8", "r9", "r10", "r11",
605 "r12", "r13", "r14", "r15",
606 "r16", "r17", "r18", "r19",
607 "r20", "r21", "r22", "r23",
608 "r24", "r25", "r26", "dp",
609 "ret0", "ret1", "sp", "r31",
610 "sar", "pcoqh", "pcsqh", "pcoqt",
611 "pcsqt", "eiem", "iir", "isr",
612 "ior", "ipsw", "goto", "sr4",
613 "sr0", "sr1", "sr2", "sr3",
614 "sr5", "sr6", "sr7", "cr0",
615 "cr8", "cr9", "ccr", "cr12",
616 "cr13", "cr24", "cr25", "cr26",
617 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
618 "fpsr", "fpe1", "fpe2", "fpe3",
619 "fpe4", "fpe5", "fpe6", "fpe7",
620 "fr4", "fr4R", "fr5", "fr5R",
621 "fr6", "fr6R", "fr7", "fr7R",
622 "fr8", "fr8R", "fr9", "fr9R",
623 "fr10", "fr10R", "fr11", "fr11R",
624 "fr12", "fr12R", "fr13", "fr13R",
625 "fr14", "fr14R", "fr15", "fr15R",
626 "fr16", "fr16R", "fr17", "fr17R",
627 "fr18", "fr18R", "fr19", "fr19R",
628 "fr20", "fr20R", "fr21", "fr21R",
629 "fr22", "fr22R", "fr23", "fr23R",
630 "fr24", "fr24R", "fr25", "fr25R",
631 "fr26", "fr26R", "fr27", "fr27R",
632 "fr28", "fr28R", "fr29", "fr29R",
633 "fr30", "fr30R", "fr31", "fr31R"
634 };
635 static_assert (ARRAY_SIZE (names) == hppa32_num_regs);
636 return names[i];
637 }
638
639 static const char *
640 hppa64_register_name (struct gdbarch *gdbarch, int i)
641 {
642 static const char *names[] = {
643 "flags", "r1", "rp", "r3",
644 "r4", "r5", "r6", "r7",
645 "r8", "r9", "r10", "r11",
646 "r12", "r13", "r14", "r15",
647 "r16", "r17", "r18", "r19",
648 "r20", "r21", "r22", "r23",
649 "r24", "r25", "r26", "dp",
650 "ret0", "ret1", "sp", "r31",
651 "sar", "pcoqh", "pcsqh", "pcoqt",
652 "pcsqt", "eiem", "iir", "isr",
653 "ior", "ipsw", "goto", "sr4",
654 "sr0", "sr1", "sr2", "sr3",
655 "sr5", "sr6", "sr7", "cr0",
656 "cr8", "cr9", "ccr", "cr12",
657 "cr13", "cr24", "cr25", "cr26",
658 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
659 "fpsr", "fpe1", "fpe2", "fpe3",
660 "fr4", "fr5", "fr6", "fr7",
661 "fr8", "fr9", "fr10", "fr11",
662 "fr12", "fr13", "fr14", "fr15",
663 "fr16", "fr17", "fr18", "fr19",
664 "fr20", "fr21", "fr22", "fr23",
665 "fr24", "fr25", "fr26", "fr27",
666 "fr28", "fr29", "fr30", "fr31"
667 };
668 static_assert (ARRAY_SIZE (names) == hppa64_num_regs);
669 return names[i];
670 }
671
672 /* Map dwarf DBX register numbers to GDB register numbers. */
673 static int
674 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
675 {
676 /* The general registers and the sar are the same in both sets. */
677 if (reg >= 0 && reg <= 32)
678 return reg;
679
680 /* fr4-fr31 are mapped from 72 in steps of 2. */
681 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
682 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
683
684 return -1;
685 }
686
687 /* This function pushes a stack frame with arguments as part of the
688 inferior function calling mechanism.
689
690 This is the version of the function for the 32-bit PA machines, in
691 which later arguments appear at lower addresses. (The stack always
692 grows towards higher addresses.)
693
694 We simply allocate the appropriate amount of stack space and put
695 arguments into their proper slots. */
696
697 static CORE_ADDR
698 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
699 struct regcache *regcache, CORE_ADDR bp_addr,
700 int nargs, struct value **args, CORE_ADDR sp,
701 function_call_return_method return_method,
702 CORE_ADDR struct_addr)
703 {
704 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
705
706 /* Stack base address at which any pass-by-reference parameters are
707 stored. */
708 CORE_ADDR struct_end = 0;
709 /* Stack base address at which the first parameter is stored. */
710 CORE_ADDR param_end = 0;
711
712 /* Two passes. First pass computes the location of everything,
713 second pass writes the bytes out. */
714 int write_pass;
715
716 /* Global pointer (r19) of the function we are trying to call. */
717 CORE_ADDR gp;
718
719 hppa_gdbarch_tdep *tdep = gdbarch_tdep<hppa_gdbarch_tdep> (gdbarch);
720
721 for (write_pass = 0; write_pass < 2; write_pass++)
722 {
723 CORE_ADDR struct_ptr = 0;
724 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
725 struct_ptr is adjusted for each argument below, so the first
726 argument will end up at sp-36. */
727 CORE_ADDR param_ptr = 32;
728 int i;
729 int small_struct = 0;
730
731 for (i = 0; i < nargs; i++)
732 {
733 struct value *arg = args[i];
734 struct type *type = check_typedef (arg->type ());
735 /* The corresponding parameter that is pushed onto the
736 stack, and [possibly] passed in a register. */
737 gdb_byte param_val[8];
738 int param_len;
739 memset (param_val, 0, sizeof param_val);
740 if (type->length () > 8)
741 {
742 /* Large parameter, pass by reference. Store the value
743 in "struct" area and then pass its address. */
744 param_len = 4;
745 struct_ptr += align_up (type->length (), 8);
746 if (write_pass)
747 write_memory (struct_end - struct_ptr,
748 arg->contents ().data (), type->length ());
749 store_unsigned_integer (param_val, 4, byte_order,
750 struct_end - struct_ptr);
751 }
752 else if (type->code () == TYPE_CODE_INT
753 || type->code () == TYPE_CODE_ENUM)
754 {
755 /* Integer value store, right aligned. "unpack_long"
756 takes care of any sign-extension problems. */
757 param_len = align_up (type->length (), 4);
758 store_unsigned_integer
759 (param_val, param_len, byte_order,
760 unpack_long (type, arg->contents ().data ()));
761 }
762 else if (type->code () == TYPE_CODE_FLT)
763 {
764 /* Floating point value store, right aligned. */
765 param_len = align_up (type->length (), 4);
766 memcpy (param_val, arg->contents ().data (), param_len);
767 }
768 else
769 {
770 param_len = align_up (type->length (), 4);
771
772 /* Small struct value are stored right-aligned. */
773 memcpy (param_val + param_len - type->length (),
774 arg->contents ().data (), type->length ());
775
776 /* Structures of size 5, 6 and 7 bytes are special in that
777 the higher-ordered word is stored in the lower-ordered
778 argument, and even though it is a 8-byte quantity the
779 registers need not be 8-byte aligned. */
780 if (param_len > 4 && param_len < 8)
781 small_struct = 1;
782 }
783
784 param_ptr += param_len;
785 if (param_len == 8 && !small_struct)
786 param_ptr = align_up (param_ptr, 8);
787
788 /* First 4 non-FP arguments are passed in gr26-gr23.
789 First 4 32-bit FP arguments are passed in fr4L-fr7L.
790 First 2 64-bit FP arguments are passed in fr5 and fr7.
791
792 The rest go on the stack, starting at sp-36, towards lower
793 addresses. 8-byte arguments must be aligned to a 8-byte
794 stack boundary. */
795 if (write_pass)
796 {
797 write_memory (param_end - param_ptr, param_val, param_len);
798
799 /* There are some cases when we don't know the type
800 expected by the callee (e.g. for variadic functions), so
801 pass the parameters in both general and fp regs. */
802 if (param_ptr <= 48)
803 {
804 int grreg = 26 - (param_ptr - 36) / 4;
805 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
806 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
807
808 regcache->cooked_write (grreg, param_val);
809 regcache->cooked_write (fpLreg, param_val);
810
811 if (param_len > 4)
812 {
813 regcache->cooked_write (grreg + 1, param_val + 4);
814
815 regcache->cooked_write (fpreg, param_val);
816 regcache->cooked_write (fpreg + 1, param_val + 4);
817 }
818 }
819 }
820 }
821
822 /* Update the various stack pointers. */
823 if (!write_pass)
824 {
825 struct_end = sp + align_up (struct_ptr, 64);
826 /* PARAM_PTR already accounts for all the arguments passed
827 by the user. However, the ABI mandates minimum stack
828 space allocations for outgoing arguments. The ABI also
829 mandates minimum stack alignments which we must
830 preserve. */
831 param_end = struct_end + align_up (param_ptr, 64);
832 }
833 }
834
835 /* If a structure has to be returned, set up register 28 to hold its
836 address. */
837 if (return_method == return_method_struct)
838 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
839
840 gp = tdep->find_global_pointer (gdbarch, function);
841
842 if (gp != 0)
843 regcache_cooked_write_unsigned (regcache, 19, gp);
844
845 /* Set the return address. */
846 if (!gdbarch_push_dummy_code_p (gdbarch))
847 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
848
849 /* Update the Stack Pointer. */
850 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
851
852 return param_end;
853 }
854
855 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
856 Runtime Architecture for PA-RISC 2.0", which is distributed as part
857 as of the HP-UX Software Transition Kit (STK). This implementation
858 is based on version 3.3, dated October 6, 1997. */
859
860 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
861
862 static int
863 hppa64_integral_or_pointer_p (const struct type *type)
864 {
865 switch (type->code ())
866 {
867 case TYPE_CODE_INT:
868 case TYPE_CODE_BOOL:
869 case TYPE_CODE_CHAR:
870 case TYPE_CODE_ENUM:
871 case TYPE_CODE_RANGE:
872 {
873 int len = type->length ();
874 return (len == 1 || len == 2 || len == 4 || len == 8);
875 }
876 case TYPE_CODE_PTR:
877 case TYPE_CODE_REF:
878 case TYPE_CODE_RVALUE_REF:
879 return (type->length () == 8);
880 default:
881 break;
882 }
883
884 return 0;
885 }
886
887 /* Check whether TYPE is a "Floating Scalar Type". */
888
889 static int
890 hppa64_floating_p (const struct type *type)
891 {
892 switch (type->code ())
893 {
894 case TYPE_CODE_FLT:
895 {
896 int len = type->length ();
897 return (len == 4 || len == 8 || len == 16);
898 }
899 default:
900 break;
901 }
902
903 return 0;
904 }
905
906 /* If CODE points to a function entry address, try to look up the corresponding
907 function descriptor and return its address instead. If CODE is not a
908 function entry address, then just return it unchanged. */
909 static CORE_ADDR
910 hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
911 {
912 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
913 struct obj_section *sec;
914
915 sec = find_pc_section (code);
916
917 if (!sec)
918 return code;
919
920 /* If CODE is in a data section, assume it's already a fptr. */
921 if (!(sec->the_bfd_section->flags & SEC_CODE))
922 return code;
923
924 for (obj_section *opd : sec->objfile->sections ())
925 {
926 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
927 {
928 for (CORE_ADDR addr = opd->addr ();
929 addr < opd->endaddr ();
930 addr += 2 * 8)
931 {
932 ULONGEST opdaddr;
933 gdb_byte tmp[8];
934
935 if (target_read_memory (addr, tmp, sizeof (tmp)))
936 break;
937 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
938
939 if (opdaddr == code)
940 return addr - 16;
941 }
942 }
943 }
944
945 return code;
946 }
947
948 static CORE_ADDR
949 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
950 struct regcache *regcache, CORE_ADDR bp_addr,
951 int nargs, struct value **args, CORE_ADDR sp,
952 function_call_return_method return_method,
953 CORE_ADDR struct_addr)
954 {
955 hppa_gdbarch_tdep *tdep = gdbarch_tdep<hppa_gdbarch_tdep> (gdbarch);
956 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
957 int i, offset = 0;
958 CORE_ADDR gp;
959
960 /* "The outgoing parameter area [...] must be aligned at a 16-byte
961 boundary." */
962 sp = align_up (sp, 16);
963
964 for (i = 0; i < nargs; i++)
965 {
966 struct value *arg = args[i];
967 struct type *type = arg->type ();
968 int len = type->length ();
969 const bfd_byte *valbuf;
970 bfd_byte fptrbuf[8];
971 int regnum;
972
973 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
974 offset = align_up (offset, 8);
975
976 if (hppa64_integral_or_pointer_p (type))
977 {
978 /* "Integral scalar parameters smaller than 64 bits are
979 padded on the left (i.e., the value is in the
980 least-significant bits of the 64-bit storage unit, and
981 the high-order bits are undefined)." Therefore we can
982 safely sign-extend them. */
983 if (len < 8)
984 {
985 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
986 len = 8;
987 }
988 }
989 else if (hppa64_floating_p (type))
990 {
991 if (len > 8)
992 {
993 /* "Quad-precision (128-bit) floating-point scalar
994 parameters are aligned on a 16-byte boundary." */
995 offset = align_up (offset, 16);
996
997 /* "Double-extended- and quad-precision floating-point
998 parameters within the first 64 bytes of the parameter
999 list are always passed in general registers." */
1000 }
1001 else
1002 {
1003 if (len == 4)
1004 {
1005 /* "Single-precision (32-bit) floating-point scalar
1006 parameters are padded on the left with 32 bits of
1007 garbage (i.e., the floating-point value is in the
1008 least-significant 32 bits of a 64-bit storage
1009 unit)." */
1010 offset += 4;
1011 }
1012
1013 /* "Single- and double-precision floating-point
1014 parameters in this area are passed according to the
1015 available formal parameter information in a function
1016 prototype. [...] If no prototype is in scope,
1017 floating-point parameters must be passed both in the
1018 corresponding general registers and in the
1019 corresponding floating-point registers." */
1020 regnum = HPPA64_FP4_REGNUM + offset / 8;
1021
1022 if (regnum < HPPA64_FP4_REGNUM + 8)
1023 {
1024 /* "Single-precision floating-point parameters, when
1025 passed in floating-point registers, are passed in
1026 the right halves of the floating point registers;
1027 the left halves are unused." */
1028 regcache->cooked_write_part (regnum, offset % 8, len,
1029 arg->contents ().data ());
1030 }
1031 }
1032 }
1033 else
1034 {
1035 if (len > 8)
1036 {
1037 /* "Aggregates larger than 8 bytes are aligned on a
1038 16-byte boundary, possibly leaving an unused argument
1039 slot, which is filled with garbage. If necessary,
1040 they are padded on the right (with garbage), to a
1041 multiple of 8 bytes." */
1042 offset = align_up (offset, 16);
1043 }
1044 }
1045
1046 /* If we are passing a function pointer, make sure we pass a function
1047 descriptor instead of the function entry address. */
1048 if (type->code () == TYPE_CODE_PTR
1049 && type->target_type ()->code () == TYPE_CODE_FUNC)
1050 {
1051 ULONGEST codeptr, fptr;
1052
1053 codeptr = unpack_long (type, arg->contents ().data ());
1054 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1055 store_unsigned_integer (fptrbuf, type->length (), byte_order,
1056 fptr);
1057 valbuf = fptrbuf;
1058 }
1059 else
1060 {
1061 valbuf = arg->contents ().data ();
1062 }
1063
1064 /* Always store the argument in memory. */
1065 write_memory (sp + offset, valbuf, len);
1066
1067 regnum = HPPA_ARG0_REGNUM - offset / 8;
1068 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1069 {
1070 regcache->cooked_write_part (regnum, offset % 8, std::min (len, 8),
1071 valbuf);
1072 offset += std::min (len, 8);
1073 valbuf += std::min (len, 8);
1074 len -= std::min (len, 8);
1075 regnum--;
1076 }
1077
1078 offset += len;
1079 }
1080
1081 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1082 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1083
1084 /* Allocate the outgoing parameter area. Make sure the outgoing
1085 parameter area is multiple of 16 bytes in length. */
1086 sp += std::max (align_up (offset, 16), (ULONGEST) 64);
1087
1088 /* Allocate 32-bytes of scratch space. The documentation doesn't
1089 mention this, but it seems to be needed. */
1090 sp += 32;
1091
1092 /* Allocate the frame marker area. */
1093 sp += 16;
1094
1095 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1096 its address. */
1097 if (return_method == return_method_struct)
1098 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1099
1100 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1101 gp = tdep->find_global_pointer (gdbarch, function);
1102 if (gp != 0)
1103 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1104
1105 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1106 if (!gdbarch_push_dummy_code_p (gdbarch))
1107 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1108
1109 /* Set up GR30 to hold the stack pointer (sp). */
1110 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1111
1112 return sp;
1113 }
1114 \f
1115
1116 /* Handle 32/64-bit struct return conventions. */
1117
1118 static enum return_value_convention
1119 hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
1120 struct type *type, struct regcache *regcache,
1121 gdb_byte *readbuf, const gdb_byte *writebuf)
1122 {
1123 if (type->length () <= 2 * 4)
1124 {
1125 /* The value always lives in the right hand end of the register
1126 (or register pair)? */
1127 int b;
1128 int reg = type->code () == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1129 int part = type->length () % 4;
1130 /* The left hand register contains only part of the value,
1131 transfer that first so that the rest can be xfered as entire
1132 4-byte registers. */
1133 if (part > 0)
1134 {
1135 if (readbuf != NULL)
1136 regcache->cooked_read_part (reg, 4 - part, part, readbuf);
1137 if (writebuf != NULL)
1138 regcache->cooked_write_part (reg, 4 - part, part, writebuf);
1139 reg++;
1140 }
1141 /* Now transfer the remaining register values. */
1142 for (b = part; b < type->length (); b += 4)
1143 {
1144 if (readbuf != NULL)
1145 regcache->cooked_read (reg, readbuf + b);
1146 if (writebuf != NULL)
1147 regcache->cooked_write (reg, writebuf + b);
1148 reg++;
1149 }
1150 return RETURN_VALUE_REGISTER_CONVENTION;
1151 }
1152 else
1153 return RETURN_VALUE_STRUCT_CONVENTION;
1154 }
1155
1156 static enum return_value_convention
1157 hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
1158 struct type *type, struct regcache *regcache,
1159 gdb_byte *readbuf, const gdb_byte *writebuf)
1160 {
1161 int len = type->length ();
1162 int regnum, offset;
1163
1164 if (len > 16)
1165 {
1166 /* All return values larger than 128 bits must be aggregate
1167 return values. */
1168 gdb_assert (!hppa64_integral_or_pointer_p (type));
1169 gdb_assert (!hppa64_floating_p (type));
1170
1171 /* "Aggregate return values larger than 128 bits are returned in
1172 a buffer allocated by the caller. The address of the buffer
1173 must be passed in GR 28." */
1174 return RETURN_VALUE_STRUCT_CONVENTION;
1175 }
1176
1177 if (hppa64_integral_or_pointer_p (type))
1178 {
1179 /* "Integral return values are returned in GR 28. Values
1180 smaller than 64 bits are padded on the left (with garbage)." */
1181 regnum = HPPA_RET0_REGNUM;
1182 offset = 8 - len;
1183 }
1184 else if (hppa64_floating_p (type))
1185 {
1186 if (len > 8)
1187 {
1188 /* "Double-extended- and quad-precision floating-point
1189 values are returned in GRs 28 and 29. The sign,
1190 exponent, and most-significant bits of the mantissa are
1191 returned in GR 28; the least-significant bits of the
1192 mantissa are passed in GR 29. For double-extended
1193 precision values, GR 29 is padded on the right with 48
1194 bits of garbage." */
1195 regnum = HPPA_RET0_REGNUM;
1196 offset = 0;
1197 }
1198 else
1199 {
1200 /* "Single-precision and double-precision floating-point
1201 return values are returned in FR 4R (single precision) or
1202 FR 4 (double-precision)." */
1203 regnum = HPPA64_FP4_REGNUM;
1204 offset = 8 - len;
1205 }
1206 }
1207 else
1208 {
1209 /* "Aggregate return values up to 64 bits in size are returned
1210 in GR 28. Aggregates smaller than 64 bits are left aligned
1211 in the register; the pad bits on the right are undefined."
1212
1213 "Aggregate return values between 65 and 128 bits are returned
1214 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1215 the remaining bits are placed, left aligned, in GR 29. The
1216 pad bits on the right of GR 29 (if any) are undefined." */
1217 regnum = HPPA_RET0_REGNUM;
1218 offset = 0;
1219 }
1220
1221 if (readbuf)
1222 {
1223 while (len > 0)
1224 {
1225 regcache->cooked_read_part (regnum, offset, std::min (len, 8),
1226 readbuf);
1227 readbuf += std::min (len, 8);
1228 len -= std::min (len, 8);
1229 regnum++;
1230 }
1231 }
1232
1233 if (writebuf)
1234 {
1235 while (len > 0)
1236 {
1237 regcache->cooked_write_part (regnum, offset, std::min (len, 8),
1238 writebuf);
1239 writebuf += std::min (len, 8);
1240 len -= std::min (len, 8);
1241 regnum++;
1242 }
1243 }
1244
1245 return RETURN_VALUE_REGISTER_CONVENTION;
1246 }
1247 \f
1248
1249 static CORE_ADDR
1250 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1251 struct target_ops *targ)
1252 {
1253 if (addr & 2)
1254 {
1255 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
1256 CORE_ADDR plabel = addr & ~3;
1257 return read_memory_typed_address (plabel, func_ptr_type);
1258 }
1259
1260 return addr;
1261 }
1262
1263 static CORE_ADDR
1264 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1265 {
1266 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1267 and not _bit_)! */
1268 return align_up (addr, 64);
1269 }
1270
1271 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1272
1273 static CORE_ADDR
1274 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1275 {
1276 /* Just always 16-byte align. */
1277 return align_up (addr, 16);
1278 }
1279
1280 static CORE_ADDR
1281 hppa_read_pc (readable_regcache *regcache)
1282 {
1283 ULONGEST ipsw;
1284 ULONGEST pc;
1285
1286 regcache->cooked_read (HPPA_IPSW_REGNUM, &ipsw);
1287 regcache->cooked_read (HPPA_PCOQ_HEAD_REGNUM, &pc);
1288
1289 /* If the current instruction is nullified, then we are effectively
1290 still executing the previous instruction. Pretend we are still
1291 there. This is needed when single stepping; if the nullified
1292 instruction is on a different line, we don't want GDB to think
1293 we've stepped onto that line. */
1294 if (ipsw & 0x00200000)
1295 pc -= 4;
1296
1297 return pc & ~0x3;
1298 }
1299
1300 void
1301 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1302 {
1303 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1304 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1305 }
1306
1307 /* For the given instruction (INST), return any adjustment it makes
1308 to the stack pointer or zero for no adjustment.
1309
1310 This only handles instructions commonly found in prologues. */
1311
1312 static int
1313 prologue_inst_adjust_sp (unsigned long inst)
1314 {
1315 /* This must persist across calls. */
1316 static int save_high21;
1317
1318 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1319 if ((inst & 0xffffc000) == 0x37de0000)
1320 return hppa_extract_14 (inst);
1321
1322 /* stwm X,D(sp) */
1323 if ((inst & 0xffe00000) == 0x6fc00000)
1324 return hppa_extract_14 (inst);
1325
1326 /* std,ma X,D(sp) */
1327 if ((inst & 0xffe00008) == 0x73c00008)
1328 return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3);
1329
1330 /* addil high21,%r30; ldo low11,(%r1),%r30)
1331 save high bits in save_high21 for later use. */
1332 if ((inst & 0xffe00000) == 0x2bc00000)
1333 {
1334 save_high21 = hppa_extract_21 (inst);
1335 return 0;
1336 }
1337
1338 if ((inst & 0xffff0000) == 0x343e0000)
1339 return save_high21 + hppa_extract_14 (inst);
1340
1341 /* fstws as used by the HP compilers. */
1342 if ((inst & 0xffffffe0) == 0x2fd01220)
1343 return hppa_extract_5_load (inst);
1344
1345 /* No adjustment. */
1346 return 0;
1347 }
1348
1349 /* Return nonzero if INST is a branch of some kind, else return zero. */
1350
1351 static int
1352 is_branch (unsigned long inst)
1353 {
1354 switch (inst >> 26)
1355 {
1356 case 0x20:
1357 case 0x21:
1358 case 0x22:
1359 case 0x23:
1360 case 0x27:
1361 case 0x28:
1362 case 0x29:
1363 case 0x2a:
1364 case 0x2b:
1365 case 0x2f:
1366 case 0x30:
1367 case 0x31:
1368 case 0x32:
1369 case 0x33:
1370 case 0x38:
1371 case 0x39:
1372 case 0x3a:
1373 case 0x3b:
1374 return 1;
1375
1376 default:
1377 return 0;
1378 }
1379 }
1380
1381 /* Return the register number for a GR which is saved by INST or
1382 zero if INST does not save a GR.
1383
1384 Referenced from:
1385
1386 parisc 1.1:
1387 https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
1388
1389 parisc 2.0:
1390 https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf
1391
1392 According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
1393 on page 106 in parisc 2.0, all instructions for storing values from
1394 the general registers are:
1395
1396 Store: stb, sth, stw, std (according to Chapter 7, they
1397 are only in both "inst >> 26" and "inst >> 6".
1398 Store Absolute: stwa, stda (according to Chapter 7, they are only
1399 in "inst >> 6".
1400 Store Bytes: stby, stdby (according to Chapter 7, they are
1401 only in "inst >> 6").
1402
1403 For (inst >> 26), according to Chapter 7:
1404
1405 The effective memory reference address is formed by the addition
1406 of an immediate displacement to a base value.
1407
1408 - stb: 0x18, store a byte from a general register.
1409
1410 - sth: 0x19, store a halfword from a general register.
1411
1412 - stw: 0x1a, store a word from a general register.
1413
1414 - stwm: 0x1b, store a word from a general register and perform base
1415 register modification (2.0 will still treat it as stw).
1416
1417 - std: 0x1c, store a doubleword from a general register (2.0 only).
1418
1419 - stw: 0x1f, store a word from a general register (2.0 only).
1420
1421 For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:
1422
1423 The effective memory reference address is formed by the addition
1424 of an index value to a base value specified in the instruction.
1425
1426 - stb: 0x08, store a byte from a general register (1.1 calls stbs).
1427
1428 - sth: 0x09, store a halfword from a general register (1.1 calls
1429 sths).
1430
1431 - stw: 0x0a, store a word from a general register (1.1 calls stws).
1432
1433 - std: 0x0b: store a doubleword from a general register (2.0 only)
1434
1435 Implement fast byte moves (stores) to unaligned word or doubleword
1436 destination.
1437
1438 - stby: 0x0c, for unaligned word (1.1 calls stbys).
1439
1440 - stdby: 0x0d for unaligned doubleword (2.0 only).
1441
1442 Store a word or doubleword using an absolute memory address formed
1443 using short or long displacement or indexed
1444
1445 - stwa: 0x0e, store a word from a general register to an absolute
1446 address (1.0 calls stwas).
1447
1448 - stda: 0x0f, store a doubleword from a general register to an
1449 absolute address (2.0 only). */
1450
1451 static int
1452 inst_saves_gr (unsigned long inst)
1453 {
1454 switch ((inst >> 26) & 0x0f)
1455 {
1456 case 0x03:
1457 switch ((inst >> 6) & 0x0f)
1458 {
1459 case 0x08:
1460 case 0x09:
1461 case 0x0a:
1462 case 0x0b:
1463 case 0x0c:
1464 case 0x0d:
1465 case 0x0e:
1466 case 0x0f:
1467 return hppa_extract_5R_store (inst);
1468 default:
1469 return 0;
1470 }
1471 case 0x18:
1472 case 0x19:
1473 case 0x1a:
1474 case 0x1b:
1475 case 0x1c:
1476 /* no 0x1d or 0x1e -- according to parisc 2.0 document */
1477 case 0x1f:
1478 return hppa_extract_5R_store (inst);
1479 default:
1480 return 0;
1481 }
1482 }
1483
1484 /* Return the register number for a FR which is saved by INST or
1485 zero it INST does not save a FR.
1486
1487 Note we only care about full 64bit register stores (that's the only
1488 kind of stores the prologue will use).
1489
1490 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1491
1492 static int
1493 inst_saves_fr (unsigned long inst)
1494 {
1495 /* Is this an FSTD? */
1496 if ((inst & 0xfc00dfc0) == 0x2c001200)
1497 return hppa_extract_5r_store (inst);
1498 if ((inst & 0xfc000002) == 0x70000002)
1499 return hppa_extract_5R_store (inst);
1500 /* Is this an FSTW? */
1501 if ((inst & 0xfc00df80) == 0x24001200)
1502 return hppa_extract_5r_store (inst);
1503 if ((inst & 0xfc000002) == 0x7c000000)
1504 return hppa_extract_5R_store (inst);
1505 return 0;
1506 }
1507
1508 /* Advance PC across any function entry prologue instructions
1509 to reach some "real" code.
1510
1511 Use information in the unwind table to determine what exactly should
1512 be in the prologue. */
1513
1514
1515 static CORE_ADDR
1516 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1517 int stop_before_branch)
1518 {
1519 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1520 gdb_byte buf[4];
1521 CORE_ADDR orig_pc = pc;
1522 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1523 unsigned long args_stored, status, i, restart_gr, restart_fr;
1524 struct unwind_table_entry *u;
1525 int final_iteration;
1526
1527 restart_gr = 0;
1528 restart_fr = 0;
1529
1530 restart:
1531 u = find_unwind_entry (pc);
1532 if (!u)
1533 return pc;
1534
1535 /* If we are not at the beginning of a function, then return now. */
1536 if ((pc & ~0x3) != u->region_start)
1537 return pc;
1538
1539 /* This is how much of a frame adjustment we need to account for. */
1540 stack_remaining = u->Total_frame_size << 3;
1541
1542 /* Magic register saves we want to know about. */
1543 save_rp = u->Save_RP;
1544 save_sp = u->Save_SP;
1545
1546 /* An indication that args may be stored into the stack. Unfortunately
1547 the HPUX compilers tend to set this in cases where no args were
1548 stored too!. */
1549 args_stored = 1;
1550
1551 /* Turn the Entry_GR field into a bitmask. */
1552 save_gr = 0;
1553 for (i = 3; i < u->Entry_GR + 3; i++)
1554 {
1555 /* Frame pointer gets saved into a special location. */
1556 if (u->Save_SP && i == HPPA_FP_REGNUM)
1557 continue;
1558
1559 save_gr |= (1 << i);
1560 }
1561 save_gr &= ~restart_gr;
1562
1563 /* Turn the Entry_FR field into a bitmask too. */
1564 save_fr = 0;
1565 for (i = 12; i < u->Entry_FR + 12; i++)
1566 save_fr |= (1 << i);
1567 save_fr &= ~restart_fr;
1568
1569 final_iteration = 0;
1570
1571 /* Loop until we find everything of interest or hit a branch.
1572
1573 For unoptimized GCC code and for any HP CC code this will never ever
1574 examine any user instructions.
1575
1576 For optimized GCC code we're faced with problems. GCC will schedule
1577 its prologue and make prologue instructions available for delay slot
1578 filling. The end result is user code gets mixed in with the prologue
1579 and a prologue instruction may be in the delay slot of the first branch
1580 or call.
1581
1582 Some unexpected things are expected with debugging optimized code, so
1583 we allow this routine to walk past user instructions in optimized
1584 GCC code. */
1585 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1586 || args_stored)
1587 {
1588 unsigned int reg_num;
1589 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1590 unsigned long old_save_rp, old_save_sp, next_inst;
1591
1592 /* Save copies of all the triggers so we can compare them later
1593 (only for HPC). */
1594 old_save_gr = save_gr;
1595 old_save_fr = save_fr;
1596 old_save_rp = save_rp;
1597 old_save_sp = save_sp;
1598 old_stack_remaining = stack_remaining;
1599
1600 status = target_read_memory (pc, buf, 4);
1601 inst = extract_unsigned_integer (buf, 4, byte_order);
1602
1603 /* Yow! */
1604 if (status != 0)
1605 return pc;
1606
1607 /* Note the interesting effects of this instruction. */
1608 stack_remaining -= prologue_inst_adjust_sp (inst);
1609
1610 /* There are limited ways to store the return pointer into the
1611 stack. */
1612 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1613 save_rp = 0;
1614
1615 /* These are the only ways we save SP into the stack. At this time
1616 the HP compilers never bother to save SP into the stack. */
1617 if ((inst & 0xffffc000) == 0x6fc10000
1618 || (inst & 0xffffc00c) == 0x73c10008)
1619 save_sp = 0;
1620
1621 /* Are we loading some register with an offset from the argument
1622 pointer? */
1623 if ((inst & 0xffe00000) == 0x37a00000
1624 || (inst & 0xffffffe0) == 0x081d0240)
1625 {
1626 pc += 4;
1627 continue;
1628 }
1629
1630 /* Account for general and floating-point register saves. */
1631 reg_num = inst_saves_gr (inst);
1632 save_gr &= ~(1 << reg_num);
1633
1634 /* Ugh. Also account for argument stores into the stack.
1635 Unfortunately args_stored only tells us that some arguments
1636 where stored into the stack. Not how many or what kind!
1637
1638 This is a kludge as on the HP compiler sets this bit and it
1639 never does prologue scheduling. So once we see one, skip past
1640 all of them. We have similar code for the fp arg stores below.
1641
1642 FIXME. Can still die if we have a mix of GR and FR argument
1643 stores! */
1644 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1645 && reg_num <= 26)
1646 {
1647 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1648 && reg_num <= 26)
1649 {
1650 pc += 4;
1651 status = target_read_memory (pc, buf, 4);
1652 inst = extract_unsigned_integer (buf, 4, byte_order);
1653 if (status != 0)
1654 return pc;
1655 reg_num = inst_saves_gr (inst);
1656 }
1657 args_stored = 0;
1658 continue;
1659 }
1660
1661 reg_num = inst_saves_fr (inst);
1662 save_fr &= ~(1 << reg_num);
1663
1664 status = target_read_memory (pc + 4, buf, 4);
1665 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1666
1667 /* Yow! */
1668 if (status != 0)
1669 return pc;
1670
1671 /* We've got to be read to handle the ldo before the fp register
1672 save. */
1673 if ((inst & 0xfc000000) == 0x34000000
1674 && inst_saves_fr (next_inst) >= 4
1675 && inst_saves_fr (next_inst)
1676 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1677 {
1678 /* So we drop into the code below in a reasonable state. */
1679 reg_num = inst_saves_fr (next_inst);
1680 pc -= 4;
1681 }
1682
1683 /* Ugh. Also account for argument stores into the stack.
1684 This is a kludge as on the HP compiler sets this bit and it
1685 never does prologue scheduling. So once we see one, skip past
1686 all of them. */
1687 if (reg_num >= 4
1688 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1689 {
1690 while (reg_num >= 4
1691 && reg_num
1692 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1693 {
1694 pc += 8;
1695 status = target_read_memory (pc, buf, 4);
1696 inst = extract_unsigned_integer (buf, 4, byte_order);
1697 if (status != 0)
1698 return pc;
1699 if ((inst & 0xfc000000) != 0x34000000)
1700 break;
1701 status = target_read_memory (pc + 4, buf, 4);
1702 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1703 if (status != 0)
1704 return pc;
1705 reg_num = inst_saves_fr (next_inst);
1706 }
1707 args_stored = 0;
1708 continue;
1709 }
1710
1711 /* Quit if we hit any kind of branch. This can happen if a prologue
1712 instruction is in the delay slot of the first call/branch. */
1713 if (is_branch (inst) && stop_before_branch)
1714 break;
1715
1716 /* What a crock. The HP compilers set args_stored even if no
1717 arguments were stored into the stack (boo hiss). This could
1718 cause this code to then skip a bunch of user insns (up to the
1719 first branch).
1720
1721 To combat this we try to identify when args_stored was bogusly
1722 set and clear it. We only do this when args_stored is nonzero,
1723 all other resources are accounted for, and nothing changed on
1724 this pass. */
1725 if (args_stored
1726 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1727 && old_save_gr == save_gr && old_save_fr == save_fr
1728 && old_save_rp == save_rp && old_save_sp == save_sp
1729 && old_stack_remaining == stack_remaining)
1730 break;
1731
1732 /* Bump the PC. */
1733 pc += 4;
1734
1735 /* !stop_before_branch, so also look at the insn in the delay slot
1736 of the branch. */
1737 if (final_iteration)
1738 break;
1739 if (is_branch (inst))
1740 final_iteration = 1;
1741 }
1742
1743 /* We've got a tentative location for the end of the prologue. However
1744 because of limitations in the unwind descriptor mechanism we may
1745 have went too far into user code looking for the save of a register
1746 that does not exist. So, if there registers we expected to be saved
1747 but never were, mask them out and restart.
1748
1749 This should only happen in optimized code, and should be very rare. */
1750 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1751 {
1752 pc = orig_pc;
1753 restart_gr = save_gr;
1754 restart_fr = save_fr;
1755 goto restart;
1756 }
1757
1758 return pc;
1759 }
1760
1761
1762 /* Return the address of the PC after the last prologue instruction if
1763 we can determine it from the debug symbols. Else return zero. */
1764
1765 static CORE_ADDR
1766 after_prologue (CORE_ADDR pc)
1767 {
1768 struct symtab_and_line sal;
1769 CORE_ADDR func_addr, func_end;
1770
1771 /* If we can not find the symbol in the partial symbol table, then
1772 there is no hope we can determine the function's start address
1773 with this code. */
1774 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1775 return 0;
1776
1777 /* Get the line associated with FUNC_ADDR. */
1778 sal = find_pc_line (func_addr, 0);
1779
1780 /* There are only two cases to consider. First, the end of the source line
1781 is within the function bounds. In that case we return the end of the
1782 source line. Second is the end of the source line extends beyond the
1783 bounds of the current function. We need to use the slow code to
1784 examine instructions in that case.
1785
1786 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1787 the wrong thing to do. In fact, it should be entirely possible for this
1788 function to always return zero since the slow instruction scanning code
1789 is supposed to *always* work. If it does not, then it is a bug. */
1790 if (sal.end < func_end)
1791 return sal.end;
1792 else
1793 return 0;
1794 }
1795
1796 /* To skip prologues, I use this predicate. Returns either PC itself
1797 if the code at PC does not look like a function prologue; otherwise
1798 returns an address that (if we're lucky) follows the prologue.
1799
1800 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1801 It doesn't necessarily skips all the insns in the prologue. In fact
1802 we might not want to skip all the insns because a prologue insn may
1803 appear in the delay slot of the first branch, and we don't want to
1804 skip over the branch in that case. */
1805
1806 static CORE_ADDR
1807 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1808 {
1809 CORE_ADDR post_prologue_pc;
1810
1811 /* See if we can determine the end of the prologue via the symbol table.
1812 If so, then return either PC, or the PC after the prologue, whichever
1813 is greater. */
1814
1815 post_prologue_pc = after_prologue (pc);
1816
1817 /* If after_prologue returned a useful address, then use it. Else
1818 fall back on the instruction skipping code.
1819
1820 Some folks have claimed this causes problems because the breakpoint
1821 may be the first instruction of the prologue. If that happens, then
1822 the instruction skipping code has a bug that needs to be fixed. */
1823 if (post_prologue_pc != 0)
1824 return std::max (pc, post_prologue_pc);
1825 else
1826 return (skip_prologue_hard_way (gdbarch, pc, 1));
1827 }
1828
1829 /* Return an unwind entry that falls within the frame's code block. */
1830
1831 static struct unwind_table_entry *
1832 hppa_find_unwind_entry_in_block (frame_info_ptr this_frame)
1833 {
1834 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1835
1836 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1837 result of get_frame_address_in_block implies a problem.
1838 The bits should have been removed earlier, before the return
1839 value of gdbarch_unwind_pc. That might be happening already;
1840 if it isn't, it should be fixed. Then this call can be
1841 removed. */
1842 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1843 return find_unwind_entry (pc);
1844 }
1845
1846 struct hppa_frame_cache
1847 {
1848 CORE_ADDR base;
1849 trad_frame_saved_reg *saved_regs;
1850 };
1851
1852 static struct hppa_frame_cache *
1853 hppa_frame_cache (frame_info_ptr this_frame, void **this_cache)
1854 {
1855 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1856 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1857 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1858 struct hppa_frame_cache *cache;
1859 long saved_gr_mask;
1860 long saved_fr_mask;
1861 long frame_size;
1862 struct unwind_table_entry *u;
1863 CORE_ADDR prologue_end;
1864 int fp_in_r1 = 0;
1865 int i;
1866
1867 if (hppa_debug)
1868 gdb_printf (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1869 frame_relative_level(this_frame));
1870
1871 if ((*this_cache) != NULL)
1872 {
1873 if (hppa_debug)
1874 gdb_printf (gdb_stdlog, "base=%s (cached) }",
1875 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
1876 return (struct hppa_frame_cache *) (*this_cache);
1877 }
1878 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1879 (*this_cache) = cache;
1880 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1881
1882 /* Yow! */
1883 u = hppa_find_unwind_entry_in_block (this_frame);
1884 if (!u)
1885 {
1886 if (hppa_debug)
1887 gdb_printf (gdb_stdlog, "base=NULL (no unwind entry) }");
1888 return (struct hppa_frame_cache *) (*this_cache);
1889 }
1890
1891 /* Turn the Entry_GR field into a bitmask. */
1892 saved_gr_mask = 0;
1893 for (i = 3; i < u->Entry_GR + 3; i++)
1894 {
1895 /* Frame pointer gets saved into a special location. */
1896 if (u->Save_SP && i == HPPA_FP_REGNUM)
1897 continue;
1898
1899 saved_gr_mask |= (1 << i);
1900 }
1901
1902 /* Turn the Entry_FR field into a bitmask too. */
1903 saved_fr_mask = 0;
1904 for (i = 12; i < u->Entry_FR + 12; i++)
1905 saved_fr_mask |= (1 << i);
1906
1907 /* Loop until we find everything of interest or hit a branch.
1908
1909 For unoptimized GCC code and for any HP CC code this will never ever
1910 examine any user instructions.
1911
1912 For optimized GCC code we're faced with problems. GCC will schedule
1913 its prologue and make prologue instructions available for delay slot
1914 filling. The end result is user code gets mixed in with the prologue
1915 and a prologue instruction may be in the delay slot of the first branch
1916 or call.
1917
1918 Some unexpected things are expected with debugging optimized code, so
1919 we allow this routine to walk past user instructions in optimized
1920 GCC code. */
1921 {
1922 int final_iteration = 0;
1923 CORE_ADDR pc, start_pc, end_pc;
1924 int looking_for_sp = u->Save_SP;
1925 int looking_for_rp = u->Save_RP;
1926 int fp_loc = -1;
1927
1928 /* We have to use skip_prologue_hard_way instead of just
1929 skip_prologue_using_sal, in case we stepped into a function without
1930 symbol information. hppa_skip_prologue also bounds the returned
1931 pc by the passed in pc, so it will not return a pc in the next
1932 function.
1933
1934 We used to call hppa_skip_prologue to find the end of the prologue,
1935 but if some non-prologue instructions get scheduled into the prologue,
1936 and the program is compiled with debug information, the "easy" way
1937 in hppa_skip_prologue will return a prologue end that is too early
1938 for us to notice any potential frame adjustments. */
1939
1940 /* We used to use get_frame_func to locate the beginning of the
1941 function to pass to skip_prologue. However, when objects are
1942 compiled without debug symbols, get_frame_func can return the wrong
1943 function (or 0). We can do better than that by using unwind records.
1944 This only works if the Region_description of the unwind record
1945 indicates that it includes the entry point of the function.
1946 HP compilers sometimes generate unwind records for regions that
1947 do not include the entry or exit point of a function. GNU tools
1948 do not do this. */
1949
1950 if ((u->Region_description & 0x2) == 0)
1951 start_pc = u->region_start;
1952 else
1953 start_pc = get_frame_func (this_frame);
1954
1955 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1956 end_pc = get_frame_pc (this_frame);
1957
1958 if (prologue_end != 0 && end_pc > prologue_end)
1959 end_pc = prologue_end;
1960
1961 frame_size = 0;
1962
1963 for (pc = start_pc;
1964 ((saved_gr_mask || saved_fr_mask
1965 || looking_for_sp || looking_for_rp
1966 || frame_size < (u->Total_frame_size << 3))
1967 && pc < end_pc);
1968 pc += 4)
1969 {
1970 int reg;
1971 gdb_byte buf4[4];
1972 long inst;
1973
1974 if (!safe_frame_unwind_memory (this_frame, pc, buf4))
1975 {
1976 error (_("Cannot read instruction at %s."),
1977 paddress (gdbarch, pc));
1978 return (struct hppa_frame_cache *) (*this_cache);
1979 }
1980
1981 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
1982
1983 /* Note the interesting effects of this instruction. */
1984 frame_size += prologue_inst_adjust_sp (inst);
1985
1986 /* There are limited ways to store the return pointer into the
1987 stack. */
1988 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1989 {
1990 looking_for_rp = 0;
1991 cache->saved_regs[HPPA_RP_REGNUM].set_addr (-20);
1992 }
1993 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1994 {
1995 looking_for_rp = 0;
1996 cache->saved_regs[HPPA_RP_REGNUM].set_addr (-24);
1997 }
1998 else if (inst == 0x0fc212c1
1999 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2000 {
2001 looking_for_rp = 0;
2002 cache->saved_regs[HPPA_RP_REGNUM].set_addr (-16);
2003 }
2004
2005 /* Check to see if we saved SP into the stack. This also
2006 happens to indicate the location of the saved frame
2007 pointer. */
2008 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
2009 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2010 {
2011 looking_for_sp = 0;
2012 cache->saved_regs[HPPA_FP_REGNUM].set_addr (0);
2013 }
2014 else if (inst == 0x08030241) /* copy %r3, %r1 */
2015 {
2016 fp_in_r1 = 1;
2017 }
2018
2019 /* Account for general and floating-point register saves. */
2020 reg = inst_saves_gr (inst);
2021 if (reg >= 3 && reg <= 18
2022 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
2023 {
2024 saved_gr_mask &= ~(1 << reg);
2025 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
2026 /* stwm with a positive displacement is a _post_
2027 _modify_. */
2028 cache->saved_regs[reg].set_addr (0);
2029 else if ((inst & 0xfc00000c) == 0x70000008)
2030 /* A std has explicit post_modify forms. */
2031 cache->saved_regs[reg].set_addr (0);
2032 else
2033 {
2034 CORE_ADDR offset;
2035
2036 if ((inst >> 26) == 0x1c)
2037 offset = (inst & 0x1 ? -(1 << 13) : 0)
2038 | (((inst >> 4) & 0x3ff) << 3);
2039 else if ((inst >> 26) == 0x03)
2040 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
2041 else
2042 offset = hppa_extract_14 (inst);
2043
2044 /* Handle code with and without frame pointers. */
2045 if (u->Save_SP)
2046 cache->saved_regs[reg].set_addr (offset);
2047 else
2048 cache->saved_regs[reg].set_addr ((u->Total_frame_size << 3)
2049 + offset);
2050 }
2051 }
2052
2053 /* GCC handles callee saved FP regs a little differently.
2054
2055 It emits an instruction to put the value of the start of
2056 the FP store area into %r1. It then uses fstds,ma with a
2057 basereg of %r1 for the stores.
2058
2059 HP CC emits them at the current stack pointer modifying the
2060 stack pointer as it stores each register. */
2061
2062 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2063 if ((inst & 0xffffc000) == 0x34610000
2064 || (inst & 0xffffc000) == 0x37c10000)
2065 fp_loc = hppa_extract_14 (inst);
2066
2067 reg = inst_saves_fr (inst);
2068 if (reg >= 12 && reg <= 21)
2069 {
2070 /* Note +4 braindamage below is necessary because the FP
2071 status registers are internally 8 registers rather than
2072 the expected 4 registers. */
2073 saved_fr_mask &= ~(1 << reg);
2074 if (fp_loc == -1)
2075 {
2076 /* 1st HP CC FP register store. After this
2077 instruction we've set enough state that the GCC and
2078 HPCC code are both handled in the same manner. */
2079 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].set_addr (0);
2080 fp_loc = 8;
2081 }
2082 else
2083 {
2084 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].set_addr (fp_loc);
2085 fp_loc += 8;
2086 }
2087 }
2088
2089 /* Quit if we hit any kind of branch the previous iteration. */
2090 if (final_iteration)
2091 break;
2092 /* We want to look precisely one instruction beyond the branch
2093 if we have not found everything yet. */
2094 if (is_branch (inst))
2095 final_iteration = 1;
2096 }
2097 }
2098
2099 {
2100 /* The frame base always represents the value of %sp at entry to
2101 the current function (and is thus equivalent to the "saved"
2102 stack pointer. */
2103 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2104 HPPA_SP_REGNUM);
2105 CORE_ADDR fp;
2106
2107 if (hppa_debug)
2108 gdb_printf (gdb_stdlog, " (this_sp=%s, pc=%s, "
2109 "prologue_end=%s) ",
2110 paddress (gdbarch, this_sp),
2111 paddress (gdbarch, get_frame_pc (this_frame)),
2112 paddress (gdbarch, prologue_end));
2113
2114 /* Check to see if a frame pointer is available, and use it for
2115 frame unwinding if it is.
2116
2117 There are some situations where we need to rely on the frame
2118 pointer to do stack unwinding. For example, if a function calls
2119 alloca (), the stack pointer can get adjusted inside the body of
2120 the function. In this case, the ABI requires that the compiler
2121 maintain a frame pointer for the function.
2122
2123 The unwind record has a flag (alloca_frame) that indicates that
2124 a function has a variable frame; unfortunately, gcc/binutils
2125 does not set this flag. Instead, whenever a frame pointer is used
2126 and saved on the stack, the Save_SP flag is set. We use this to
2127 decide whether to use the frame pointer for unwinding.
2128
2129 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2130 instead of Save_SP. */
2131
2132 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2133
2134 if (u->alloca_frame)
2135 fp -= u->Total_frame_size << 3;
2136
2137 if (get_frame_pc (this_frame) >= prologue_end
2138 && (u->Save_SP || u->alloca_frame) && fp != 0)
2139 {
2140 cache->base = fp;
2141
2142 if (hppa_debug)
2143 gdb_printf (gdb_stdlog, " (base=%s) [frame pointer]",
2144 paddress (gdbarch, cache->base));
2145 }
2146 else if (u->Save_SP
2147 && cache->saved_regs[HPPA_SP_REGNUM].is_addr ())
2148 {
2149 /* Both we're expecting the SP to be saved and the SP has been
2150 saved. The entry SP value is saved at this frame's SP
2151 address. */
2152 cache->base = read_memory_integer (this_sp, word_size, byte_order);
2153
2154 if (hppa_debug)
2155 gdb_printf (gdb_stdlog, " (base=%s) [saved]",
2156 paddress (gdbarch, cache->base));
2157 }
2158 else
2159 {
2160 /* The prologue has been slowly allocating stack space. Adjust
2161 the SP back. */
2162 cache->base = this_sp - frame_size;
2163 if (hppa_debug)
2164 gdb_printf (gdb_stdlog, " (base=%s) [unwind adjust]",
2165 paddress (gdbarch, cache->base));
2166
2167 }
2168 cache->saved_regs[HPPA_SP_REGNUM].set_value (cache->base);
2169 }
2170
2171 /* The PC is found in the "return register", "Millicode" uses "r31"
2172 as the return register while normal code uses "rp". */
2173 if (u->Millicode)
2174 {
2175 if (cache->saved_regs[31].is_addr ())
2176 {
2177 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2178 if (hppa_debug)
2179 gdb_printf (gdb_stdlog, " (pc=r31) [stack] } ");
2180 }
2181 else
2182 {
2183 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2184 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_value (r31);
2185 if (hppa_debug)
2186 gdb_printf (gdb_stdlog, " (pc=r31) [frame] } ");
2187 }
2188 }
2189 else
2190 {
2191 if (cache->saved_regs[HPPA_RP_REGNUM].is_addr ())
2192 {
2193 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2194 cache->saved_regs[HPPA_RP_REGNUM];
2195 if (hppa_debug)
2196 gdb_printf (gdb_stdlog, " (pc=rp) [stack] } ");
2197 }
2198 else
2199 {
2200 ULONGEST rp = get_frame_register_unsigned (this_frame,
2201 HPPA_RP_REGNUM);
2202 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_value (rp);
2203 if (hppa_debug)
2204 gdb_printf (gdb_stdlog, " (pc=rp) [frame] } ");
2205 }
2206 }
2207
2208 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2209 frame. However, there is a one-insn window where we haven't saved it
2210 yet, but we've already clobbered it. Detect this case and fix it up.
2211
2212 The prologue sequence for frame-pointer functions is:
2213 0: stw %rp, -20(%sp)
2214 4: copy %r3, %r1
2215 8: copy %sp, %r3
2216 c: stw,ma %r1, XX(%sp)
2217
2218 So if we are at offset c, the r3 value that we want is not yet saved
2219 on the stack, but it's been overwritten. The prologue analyzer will
2220 set fp_in_r1 when it sees the copy insn so we know to get the value
2221 from r1 instead. */
2222 if (u->Save_SP && !cache->saved_regs[HPPA_FP_REGNUM].is_addr ()
2223 && fp_in_r1)
2224 {
2225 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2226 cache->saved_regs[HPPA_FP_REGNUM].set_value (r1);
2227 }
2228
2229 {
2230 /* Convert all the offsets into addresses. */
2231 int reg;
2232 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2233 {
2234 if (cache->saved_regs[reg].is_addr ())
2235 cache->saved_regs[reg].set_addr (cache->saved_regs[reg].addr ()
2236 + cache->base);
2237 }
2238 }
2239
2240 {
2241 hppa_gdbarch_tdep *tdep = gdbarch_tdep<hppa_gdbarch_tdep> (gdbarch);
2242
2243 if (tdep->unwind_adjust_stub)
2244 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2245 }
2246
2247 if (hppa_debug)
2248 gdb_printf (gdb_stdlog, "base=%s }",
2249 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
2250 return (struct hppa_frame_cache *) (*this_cache);
2251 }
2252
2253 static void
2254 hppa_frame_this_id (frame_info_ptr this_frame, void **this_cache,
2255 struct frame_id *this_id)
2256 {
2257 struct hppa_frame_cache *info;
2258 struct unwind_table_entry *u;
2259
2260 info = hppa_frame_cache (this_frame, this_cache);
2261 u = hppa_find_unwind_entry_in_block (this_frame);
2262
2263 (*this_id) = frame_id_build (info->base, u->region_start);
2264 }
2265
2266 static struct value *
2267 hppa_frame_prev_register (frame_info_ptr this_frame,
2268 void **this_cache, int regnum)
2269 {
2270 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2271
2272 return hppa_frame_prev_register_helper (this_frame,
2273 info->saved_regs, regnum);
2274 }
2275
2276 static int
2277 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2278 frame_info_ptr this_frame, void **this_cache)
2279 {
2280 if (hppa_find_unwind_entry_in_block (this_frame))
2281 return 1;
2282
2283 return 0;
2284 }
2285
2286 static const struct frame_unwind hppa_frame_unwind =
2287 {
2288 "hppa unwind table",
2289 NORMAL_FRAME,
2290 default_frame_unwind_stop_reason,
2291 hppa_frame_this_id,
2292 hppa_frame_prev_register,
2293 NULL,
2294 hppa_frame_unwind_sniffer
2295 };
2296
2297 /* This is a generic fallback frame unwinder that kicks in if we fail all
2298 the other ones. Normally we would expect the stub and regular unwinder
2299 to work, but in some cases we might hit a function that just doesn't
2300 have any unwind information available. In this case we try to do
2301 unwinding solely based on code reading. This is obviously going to be
2302 slow, so only use this as a last resort. Currently this will only
2303 identify the stack and pc for the frame. */
2304
2305 static struct hppa_frame_cache *
2306 hppa_fallback_frame_cache (frame_info_ptr this_frame, void **this_cache)
2307 {
2308 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2309 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2310 struct hppa_frame_cache *cache;
2311 unsigned int frame_size = 0;
2312 int found_rp = 0;
2313 CORE_ADDR start_pc;
2314
2315 if (hppa_debug)
2316 gdb_printf (gdb_stdlog,
2317 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2318 frame_relative_level (this_frame));
2319
2320 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2321 (*this_cache) = cache;
2322 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2323
2324 start_pc = get_frame_func (this_frame);
2325 if (start_pc)
2326 {
2327 CORE_ADDR cur_pc = get_frame_pc (this_frame);
2328 CORE_ADDR pc;
2329
2330 for (pc = start_pc; pc < cur_pc; pc += 4)
2331 {
2332 unsigned int insn;
2333
2334 insn = read_memory_unsigned_integer (pc, 4, byte_order);
2335 frame_size += prologue_inst_adjust_sp (insn);
2336
2337 /* There are limited ways to store the return pointer into the
2338 stack. */
2339 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2340 {
2341 cache->saved_regs[HPPA_RP_REGNUM].set_addr (-20);
2342 found_rp = 1;
2343 }
2344 else if (insn == 0x0fc212c1
2345 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2346 {
2347 cache->saved_regs[HPPA_RP_REGNUM].set_addr (-16);
2348 found_rp = 1;
2349 }
2350 }
2351 }
2352
2353 if (hppa_debug)
2354 gdb_printf (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2355 frame_size, found_rp);
2356
2357 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2358 cache->base -= frame_size;
2359 cache->saved_regs[HPPA_SP_REGNUM].set_value (cache->base);
2360
2361 if (cache->saved_regs[HPPA_RP_REGNUM].is_addr ())
2362 {
2363 cache->saved_regs[HPPA_RP_REGNUM].set_addr (cache->saved_regs[HPPA_RP_REGNUM].addr ()
2364 + cache->base);
2365 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2366 cache->saved_regs[HPPA_RP_REGNUM];
2367 }
2368 else
2369 {
2370 ULONGEST rp;
2371 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2372 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_value (rp);
2373 }
2374
2375 return cache;
2376 }
2377
2378 static void
2379 hppa_fallback_frame_this_id (frame_info_ptr this_frame, void **this_cache,
2380 struct frame_id *this_id)
2381 {
2382 struct hppa_frame_cache *info =
2383 hppa_fallback_frame_cache (this_frame, this_cache);
2384
2385 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2386 }
2387
2388 static struct value *
2389 hppa_fallback_frame_prev_register (frame_info_ptr this_frame,
2390 void **this_cache, int regnum)
2391 {
2392 struct hppa_frame_cache *info
2393 = hppa_fallback_frame_cache (this_frame, this_cache);
2394
2395 return hppa_frame_prev_register_helper (this_frame,
2396 info->saved_regs, regnum);
2397 }
2398
2399 static const struct frame_unwind hppa_fallback_frame_unwind =
2400 {
2401 "hppa prologue",
2402 NORMAL_FRAME,
2403 default_frame_unwind_stop_reason,
2404 hppa_fallback_frame_this_id,
2405 hppa_fallback_frame_prev_register,
2406 NULL,
2407 default_frame_sniffer
2408 };
2409
2410 /* Stub frames, used for all kinds of call stubs. */
2411 struct hppa_stub_unwind_cache
2412 {
2413 CORE_ADDR base;
2414 trad_frame_saved_reg *saved_regs;
2415 };
2416
2417 static struct hppa_stub_unwind_cache *
2418 hppa_stub_frame_unwind_cache (frame_info_ptr this_frame,
2419 void **this_cache)
2420 {
2421 struct hppa_stub_unwind_cache *info;
2422
2423 if (*this_cache)
2424 return (struct hppa_stub_unwind_cache *) *this_cache;
2425
2426 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2427 *this_cache = info;
2428 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2429
2430 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2431
2432 /* By default we assume that stubs do not change the rp. */
2433 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_realreg (HPPA_RP_REGNUM);
2434
2435 return info;
2436 }
2437
2438 static void
2439 hppa_stub_frame_this_id (frame_info_ptr this_frame,
2440 void **this_prologue_cache,
2441 struct frame_id *this_id)
2442 {
2443 struct hppa_stub_unwind_cache *info
2444 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2445
2446 if (info)
2447 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2448 }
2449
2450 static struct value *
2451 hppa_stub_frame_prev_register (frame_info_ptr this_frame,
2452 void **this_prologue_cache, int regnum)
2453 {
2454 struct hppa_stub_unwind_cache *info
2455 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2456
2457 if (info == NULL)
2458 error (_("Requesting registers from null frame."));
2459
2460 return hppa_frame_prev_register_helper (this_frame,
2461 info->saved_regs, regnum);
2462 }
2463
2464 static int
2465 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2466 frame_info_ptr this_frame,
2467 void **this_cache)
2468 {
2469 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2470 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2471 hppa_gdbarch_tdep *tdep = gdbarch_tdep<hppa_gdbarch_tdep> (gdbarch);
2472
2473 if (pc == 0
2474 || (tdep->in_solib_call_trampoline != NULL
2475 && tdep->in_solib_call_trampoline (gdbarch, pc))
2476 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2477 return 1;
2478 return 0;
2479 }
2480
2481 static const struct frame_unwind hppa_stub_frame_unwind = {
2482 "hppa stub",
2483 NORMAL_FRAME,
2484 default_frame_unwind_stop_reason,
2485 hppa_stub_frame_this_id,
2486 hppa_stub_frame_prev_register,
2487 NULL,
2488 hppa_stub_unwind_sniffer
2489 };
2490
2491 CORE_ADDR
2492 hppa_unwind_pc (struct gdbarch *gdbarch, frame_info_ptr next_frame)
2493 {
2494 ULONGEST ipsw;
2495 CORE_ADDR pc;
2496
2497 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2498 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2499
2500 /* If the current instruction is nullified, then we are effectively
2501 still executing the previous instruction. Pretend we are still
2502 there. This is needed when single stepping; if the nullified
2503 instruction is on a different line, we don't want GDB to think
2504 we've stepped onto that line. */
2505 if (ipsw & 0x00200000)
2506 pc -= 4;
2507
2508 return pc & ~0x3;
2509 }
2510
2511 static void
2512 unwind_command (const char *exp, int from_tty)
2513 {
2514 CORE_ADDR address;
2515 struct unwind_table_entry *u;
2516
2517 /* If we have an expression, evaluate it and use it as the address. */
2518
2519 if (exp != 0 && *exp != 0)
2520 address = parse_and_eval_address (exp);
2521 else
2522 return;
2523
2524 u = find_unwind_entry (address);
2525
2526 if (!u)
2527 {
2528 gdb_printf ("Can't find unwind table entry for %s\n", exp);
2529 return;
2530 }
2531
2532 gdb_printf ("unwind_table_entry (%s):\n", host_address_to_string (u));
2533
2534 gdb_printf ("\tregion_start = %s\n", hex_string (u->region_start));
2535
2536 gdb_printf ("\tregion_end = %s\n", hex_string (u->region_end));
2537
2538 #define pif(FLD) if (u->FLD) gdb_printf (" "#FLD);
2539
2540 gdb_printf ("\n\tflags =");
2541 pif (Cannot_unwind);
2542 pif (Millicode);
2543 pif (Millicode_save_sr0);
2544 pif (Entry_SR);
2545 pif (Args_stored);
2546 pif (Variable_Frame);
2547 pif (Separate_Package_Body);
2548 pif (Frame_Extension_Millicode);
2549 pif (Stack_Overflow_Check);
2550 pif (Two_Instruction_SP_Increment);
2551 pif (sr4export);
2552 pif (cxx_info);
2553 pif (cxx_try_catch);
2554 pif (sched_entry_seq);
2555 pif (Save_SP);
2556 pif (Save_RP);
2557 pif (Save_MRP_in_frame);
2558 pif (save_r19);
2559 pif (Cleanup_defined);
2560 pif (MPE_XL_interrupt_marker);
2561 pif (HP_UX_interrupt_marker);
2562 pif (Large_frame);
2563 pif (alloca_frame);
2564
2565 gdb_putc ('\n');
2566
2567 #define pin(FLD) gdb_printf ("\t"#FLD" = 0x%x\n", u->FLD);
2568
2569 pin (Region_description);
2570 pin (Entry_FR);
2571 pin (Entry_GR);
2572 pin (Total_frame_size);
2573
2574 if (u->stub_unwind.stub_type)
2575 {
2576 gdb_printf ("\tstub type = ");
2577 switch (u->stub_unwind.stub_type)
2578 {
2579 case LONG_BRANCH:
2580 gdb_printf ("long branch\n");
2581 break;
2582 case PARAMETER_RELOCATION:
2583 gdb_printf ("parameter relocation\n");
2584 break;
2585 case EXPORT:
2586 gdb_printf ("export\n");
2587 break;
2588 case IMPORT:
2589 gdb_printf ("import\n");
2590 break;
2591 case IMPORT_SHLIB:
2592 gdb_printf ("import shlib\n");
2593 break;
2594 default:
2595 gdb_printf ("unknown (%d)\n", u->stub_unwind.stub_type);
2596 }
2597 }
2598 }
2599
2600 /* Return the GDB type object for the "standard" data type of data in
2601 register REGNUM. */
2602
2603 static struct type *
2604 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2605 {
2606 if (regnum < HPPA_FP4_REGNUM)
2607 return builtin_type (gdbarch)->builtin_uint32;
2608 else
2609 return builtin_type (gdbarch)->builtin_float;
2610 }
2611
2612 static struct type *
2613 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2614 {
2615 if (regnum < HPPA64_FP4_REGNUM)
2616 return builtin_type (gdbarch)->builtin_uint64;
2617 else
2618 return builtin_type (gdbarch)->builtin_double;
2619 }
2620
2621 /* Return non-zero if REGNUM is not a register available to the user
2622 through ptrace/ttrace. */
2623
2624 static int
2625 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2626 {
2627 return (regnum == 0
2628 || regnum == HPPA_PCSQ_HEAD_REGNUM
2629 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2630 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2631 }
2632
2633 static int
2634 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2635 {
2636 /* cr26 and cr27 are readable (but not writable) from userspace. */
2637 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2638 return 0;
2639 else
2640 return hppa32_cannot_store_register (gdbarch, regnum);
2641 }
2642
2643 static int
2644 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2645 {
2646 return (regnum == 0
2647 || regnum == HPPA_PCSQ_HEAD_REGNUM
2648 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2649 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2650 }
2651
2652 static int
2653 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2654 {
2655 /* cr26 and cr27 are readable (but not writable) from userspace. */
2656 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2657 return 0;
2658 else
2659 return hppa64_cannot_store_register (gdbarch, regnum);
2660 }
2661
2662 static CORE_ADDR
2663 hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2664 {
2665 /* The low two bits of the PC on the PA contain the privilege level.
2666 Some genius implementing a (non-GCC) compiler apparently decided
2667 this means that "addresses" in a text section therefore include a
2668 privilege level, and thus symbol tables should contain these bits.
2669 This seems like a bonehead thing to do--anyway, it seems to work
2670 for our purposes to just ignore those bits. */
2671
2672 return (addr &= ~0x3);
2673 }
2674
2675 /* Get the ARGIth function argument for the current function. */
2676
2677 static CORE_ADDR
2678 hppa_fetch_pointer_argument (frame_info_ptr frame, int argi,
2679 struct type *type)
2680 {
2681 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2682 }
2683
2684 static enum register_status
2685 hppa_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2686 int regnum, gdb_byte *buf)
2687 {
2688 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2689 ULONGEST tmp;
2690 enum register_status status;
2691
2692 status = regcache->raw_read (regnum, &tmp);
2693 if (status == REG_VALID)
2694 {
2695 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2696 tmp &= ~0x3;
2697 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2698 }
2699 return status;
2700 }
2701
2702 static CORE_ADDR
2703 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2704 {
2705 return 0;
2706 }
2707
2708 struct value *
2709 hppa_frame_prev_register_helper (frame_info_ptr this_frame,
2710 trad_frame_saved_reg saved_regs[],
2711 int regnum)
2712 {
2713 struct gdbarch *arch = get_frame_arch (this_frame);
2714 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2715
2716 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2717 {
2718 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2719 CORE_ADDR pc;
2720 struct value *pcoq_val =
2721 trad_frame_get_prev_register (this_frame, saved_regs,
2722 HPPA_PCOQ_HEAD_REGNUM);
2723
2724 pc = extract_unsigned_integer (pcoq_val->contents_all ().data (),
2725 size, byte_order);
2726 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2727 }
2728
2729 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2730 }
2731 \f
2732
2733 /* An instruction to match. */
2734 struct insn_pattern
2735 {
2736 unsigned int data; /* See if it matches this.... */
2737 unsigned int mask; /* ... with this mask. */
2738 };
2739
2740 /* See bfd/elf32-hppa.c */
2741 static struct insn_pattern hppa_long_branch_stub[] = {
2742 /* ldil LR'xxx,%r1 */
2743 { 0x20200000, 0xffe00000 },
2744 /* be,n RR'xxx(%sr4,%r1) */
2745 { 0xe0202002, 0xffe02002 },
2746 { 0, 0 }
2747 };
2748
2749 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2750 /* b,l .+8, %r1 */
2751 { 0xe8200000, 0xffe00000 },
2752 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2753 { 0x28200000, 0xffe00000 },
2754 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2755 { 0xe0202002, 0xffe02002 },
2756 { 0, 0 }
2757 };
2758
2759 static struct insn_pattern hppa_import_stub[] = {
2760 /* addil LR'xxx, %dp */
2761 { 0x2b600000, 0xffe00000 },
2762 /* ldw RR'xxx(%r1), %r21 */
2763 { 0x48350000, 0xffffb000 },
2764 /* bv %r0(%r21) */
2765 { 0xeaa0c000, 0xffffffff },
2766 /* ldw RR'xxx+4(%r1), %r19 */
2767 { 0x48330000, 0xffffb000 },
2768 { 0, 0 }
2769 };
2770
2771 static struct insn_pattern hppa_import_pic_stub[] = {
2772 /* addil LR'xxx,%r19 */
2773 { 0x2a600000, 0xffe00000 },
2774 /* ldw RR'xxx(%r1),%r21 */
2775 { 0x48350000, 0xffffb000 },
2776 /* bv %r0(%r21) */
2777 { 0xeaa0c000, 0xffffffff },
2778 /* ldw RR'xxx+4(%r1),%r19 */
2779 { 0x48330000, 0xffffb000 },
2780 { 0, 0 },
2781 };
2782
2783 static struct insn_pattern hppa_plt_stub[] = {
2784 /* b,l 1b, %r20 - 1b is 3 insns before here */
2785 { 0xea9f1fdd, 0xffffffff },
2786 /* depi 0,31,2,%r20 */
2787 { 0xd6801c1e, 0xffffffff },
2788 { 0, 0 }
2789 };
2790
2791 /* Maximum number of instructions on the patterns above. */
2792 #define HPPA_MAX_INSN_PATTERN_LEN 4
2793
2794 /* Return non-zero if the instructions at PC match the series
2795 described in PATTERN, or zero otherwise. PATTERN is an array of
2796 'struct insn_pattern' objects, terminated by an entry whose mask is
2797 zero.
2798
2799 When the match is successful, fill INSN[i] with what PATTERN[i]
2800 matched. */
2801
2802 static int
2803 hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2804 struct insn_pattern *pattern, unsigned int *insn)
2805 {
2806 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2807 CORE_ADDR npc = pc;
2808 int i;
2809
2810 for (i = 0; pattern[i].mask; i++)
2811 {
2812 gdb_byte buf[HPPA_INSN_SIZE];
2813
2814 target_read_memory (npc, buf, HPPA_INSN_SIZE);
2815 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
2816 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2817 npc += 4;
2818 else
2819 return 0;
2820 }
2821
2822 return 1;
2823 }
2824
2825 /* This relaxed version of the instruction matcher allows us to match
2826 from somewhere inside the pattern, by looking backwards in the
2827 instruction scheme. */
2828
2829 static int
2830 hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2831 struct insn_pattern *pattern, unsigned int *insn)
2832 {
2833 int offset, len = 0;
2834
2835 while (pattern[len].mask)
2836 len++;
2837
2838 for (offset = 0; offset < len; offset++)
2839 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2840 pattern, insn))
2841 return 1;
2842
2843 return 0;
2844 }
2845
2846 static int
2847 hppa_in_dyncall (CORE_ADDR pc)
2848 {
2849 struct unwind_table_entry *u;
2850
2851 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2852 if (!u)
2853 return 0;
2854
2855 return (pc >= u->region_start && pc <= u->region_end);
2856 }
2857
2858 int
2859 hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
2860 {
2861 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2862 struct unwind_table_entry *u;
2863
2864 if (in_plt_section (pc) || hppa_in_dyncall (pc))
2865 return 1;
2866
2867 /* The GNU toolchain produces linker stubs without unwind
2868 information. Since the pattern matching for linker stubs can be
2869 quite slow, so bail out if we do have an unwind entry. */
2870
2871 u = find_unwind_entry (pc);
2872 if (u != NULL)
2873 return 0;
2874
2875 return
2876 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2877 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2878 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2879 || hppa_match_insns_relaxed (gdbarch, pc,
2880 hppa_long_branch_pic_stub, insn));
2881 }
2882
2883 /* This code skips several kind of "trampolines" used on PA-RISC
2884 systems: $$dyncall, import stubs and PLT stubs. */
2885
2886 CORE_ADDR
2887 hppa_skip_trampoline_code (frame_info_ptr frame, CORE_ADDR pc)
2888 {
2889 struct gdbarch *gdbarch = get_frame_arch (frame);
2890 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2891
2892 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2893 int dp_rel;
2894
2895 /* $$dyncall handles both PLABELs and direct addresses. */
2896 if (hppa_in_dyncall (pc))
2897 {
2898 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2899
2900 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2901 if (pc & 0x2)
2902 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
2903
2904 return pc;
2905 }
2906
2907 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2908 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
2909 {
2910 /* Extract the target address from the addil/ldw sequence. */
2911 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2912
2913 if (dp_rel)
2914 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2915 else
2916 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2917
2918 /* fallthrough */
2919 }
2920
2921 if (in_plt_section (pc))
2922 {
2923 pc = read_memory_typed_address (pc, func_ptr_type);
2924
2925 /* If the PLT slot has not yet been resolved, the target will be
2926 the PLT stub. */
2927 if (in_plt_section (pc))
2928 {
2929 /* Sanity check: are we pointing to the PLT stub? */
2930 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
2931 {
2932 warning (_("Cannot resolve PLT stub at %s."),
2933 paddress (gdbarch, pc));
2934 return 0;
2935 }
2936
2937 /* This should point to the fixup routine. */
2938 pc = read_memory_typed_address (pc + 8, func_ptr_type);
2939 }
2940 }
2941
2942 return pc;
2943 }
2944 \f
2945
2946 /* Here is a table of C type sizes on hppa with various compiles
2947 and options. I measured this on PA 9000/800 with HP-UX 11.11
2948 and these compilers:
2949
2950 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2951 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2952 /opt/aCC/bin/aCC B3910B A.03.45
2953 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2954
2955 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2956 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2957 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2958 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2959 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2960 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2961 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2962 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2963
2964 Each line is:
2965
2966 compiler and options
2967 char, short, int, long, long long
2968 float, double, long double
2969 char *, void (*)()
2970
2971 So all these compilers use either ILP32 or LP64 model.
2972 TODO: gcc has more options so it needs more investigation.
2973
2974 For floating point types, see:
2975
2976 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2977 HP-UX floating-point guide, hpux 11.00
2978
2979 -- chastain 2003-12-18 */
2980
2981 static struct gdbarch *
2982 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2983 {
2984 /* find a candidate among the list of pre-declared architectures. */
2985 arches = gdbarch_list_lookup_by_info (arches, &info);
2986 if (arches != NULL)
2987 return (arches->gdbarch);
2988
2989 /* If none found, then allocate and initialize one. */
2990 gdbarch *gdbarch
2991 = gdbarch_alloc (&info, gdbarch_tdep_up (new hppa_gdbarch_tdep));
2992 hppa_gdbarch_tdep *tdep = gdbarch_tdep<hppa_gdbarch_tdep> (gdbarch);
2993
2994 /* Determine from the bfd_arch_info structure if we are dealing with
2995 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2996 then default to a 32bit machine. */
2997 if (info.bfd_arch_info != NULL)
2998 tdep->bytes_per_address =
2999 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3000 else
3001 tdep->bytes_per_address = 4;
3002
3003 tdep->find_global_pointer = hppa_find_global_pointer;
3004
3005 /* Some parts of the gdbarch vector depend on whether we are running
3006 on a 32 bits or 64 bits target. */
3007 switch (tdep->bytes_per_address)
3008 {
3009 case 4:
3010 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3011 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3012 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3013 set_gdbarch_cannot_store_register (gdbarch,
3014 hppa32_cannot_store_register);
3015 set_gdbarch_cannot_fetch_register (gdbarch,
3016 hppa32_cannot_fetch_register);
3017 break;
3018 case 8:
3019 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3020 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3021 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3022 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3023 set_gdbarch_cannot_store_register (gdbarch,
3024 hppa64_cannot_store_register);
3025 set_gdbarch_cannot_fetch_register (gdbarch,
3026 hppa64_cannot_fetch_register);
3027 break;
3028 default:
3029 internal_error (_("Unsupported address size: %d"),
3030 tdep->bytes_per_address);
3031 }
3032
3033 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3034 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3035
3036 /* The following gdbarch vector elements are the same in both ILP32
3037 and LP64, but might show differences some day. */
3038 set_gdbarch_long_long_bit (gdbarch, 64);
3039 set_gdbarch_long_double_bit (gdbarch, 128);
3040 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_quad);
3041
3042 /* The following gdbarch vector elements do not depend on the address
3043 size, or in any other gdbarch element previously set. */
3044 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3045 set_gdbarch_stack_frame_destroyed_p (gdbarch,
3046 hppa_stack_frame_destroyed_p);
3047 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3048 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3049 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3050 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
3051 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3052 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3053 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3054
3055 /* Helper for function argument information. */
3056 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3057
3058 /* When a hardware watchpoint triggers, we'll move the inferior past
3059 it by removing all eventpoints; stepping past the instruction
3060 that caused the trigger; reinserting eventpoints; and checking
3061 whether any watched location changed. */
3062 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3063
3064 /* Inferior function call methods. */
3065 switch (tdep->bytes_per_address)
3066 {
3067 case 4:
3068 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3069 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3070 set_gdbarch_convert_from_func_ptr_addr
3071 (gdbarch, hppa32_convert_from_func_ptr_addr);
3072 break;
3073 case 8:
3074 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3075 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3076 break;
3077 default:
3078 internal_error (_("bad switch"));
3079 }
3080
3081 /* Struct return methods. */
3082 switch (tdep->bytes_per_address)
3083 {
3084 case 4:
3085 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3086 break;
3087 case 8:
3088 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3089 break;
3090 default:
3091 internal_error (_("bad switch"));
3092 }
3093
3094 set_gdbarch_breakpoint_kind_from_pc (gdbarch, hppa_breakpoint::kind_from_pc);
3095 set_gdbarch_sw_breakpoint_from_kind (gdbarch, hppa_breakpoint::bp_from_kind);
3096 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3097
3098 /* Frame unwind methods. */
3099 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3100
3101 /* Hook in ABI-specific overrides, if they have been registered. */
3102 gdbarch_init_osabi (info, gdbarch);
3103
3104 /* Hook in the default unwinders. */
3105 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3106 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3107 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3108
3109 return gdbarch;
3110 }
3111
3112 static void
3113 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3114 {
3115 hppa_gdbarch_tdep *tdep = gdbarch_tdep<hppa_gdbarch_tdep> (gdbarch);
3116
3117 gdb_printf (file, "bytes_per_address = %d\n",
3118 tdep->bytes_per_address);
3119 gdb_printf (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3120 }
3121
3122 void _initialize_hppa_tdep ();
3123 void
3124 _initialize_hppa_tdep ()
3125 {
3126 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3127
3128 add_cmd ("unwind", class_maintenance, unwind_command,
3129 _("Print unwind table entry at given address."),
3130 &maintenanceprintlist);
3131
3132 /* Debug this files internals. */
3133 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3134 Set whether hppa target specific debugging information should be displayed."),
3135 _("\
3136 Show whether hppa target specific debugging information is displayed."), _("\
3137 This flag controls whether hppa target specific debugging information is\n\
3138 displayed. This information is particularly useful for debugging frame\n\
3139 unwinding problems."),
3140 NULL,
3141 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3142 &setdebuglist, &showdebuglist);
3143 }