]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i960-tdep.c
Initial creation of sourceware repository
[thirdparty/binutils-gdb.git] / gdb / i960-tdep.c
1 /* Target-machine dependent code for the Intel 960
2 Copyright 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Intel Corporation.
4 examine_prologue and other parts contributed by Wind River Systems.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "floatformat.h"
27 #include "target.h"
28 #include "gdbcore.h"
29
30 static CORE_ADDR next_insn PARAMS ((CORE_ADDR memaddr,
31 unsigned int *pword1,
32 unsigned int *pword2));
33
34 /* Does the specified function use the "struct returning" convention
35 or the "value returning" convention? The "value returning" convention
36 almost invariably returns the entire value in registers. The
37 "struct returning" convention often returns the entire value in
38 memory, and passes a pointer (out of or into the function) saying
39 where the value (is or should go).
40
41 Since this sometimes depends on whether it was compiled with GCC,
42 this is also an argument. This is used in call_function to build a
43 stack, and in value_being_returned to print return values.
44
45 On i960, a structure is returned in registers g0-g3, if it will fit.
46 If it's more than 16 bytes long, g13 pointed to it on entry. */
47
48 int
49 i960_use_struct_convention (gcc_p, type)
50 int gcc_p;
51 struct type *type;
52 {
53 return (TYPE_LENGTH (type) > 16);
54 }
55
56 /* gdb960 is always running on a non-960 host. Check its characteristics.
57 This routine must be called as part of gdb initialization. */
58
59 static void
60 check_host()
61 {
62 int i;
63
64 static struct typestruct {
65 int hostsize; /* Size of type on host */
66 int i960size; /* Size of type on i960 */
67 char *typename; /* Name of type, for error msg */
68 } types[] = {
69 { sizeof(short), 2, "short" },
70 { sizeof(int), 4, "int" },
71 { sizeof(long), 4, "long" },
72 { sizeof(float), 4, "float" },
73 { sizeof(double), 8, "double" },
74 { sizeof(char *), 4, "pointer" },
75 };
76 #define TYPELEN (sizeof(types) / sizeof(struct typestruct))
77
78 /* Make sure that host type sizes are same as i960
79 */
80 for ( i = 0; i < TYPELEN; i++ ){
81 if ( types[i].hostsize != types[i].i960size ){
82 printf_unfiltered("sizeof(%s) != %d: PROCEED AT YOUR OWN RISK!\n",
83 types[i].typename, types[i].i960size );
84 }
85
86 }
87 }
88 \f
89 /* Examine an i960 function prologue, recording the addresses at which
90 registers are saved explicitly by the prologue code, and returning
91 the address of the first instruction after the prologue (but not
92 after the instruction at address LIMIT, as explained below).
93
94 LIMIT places an upper bound on addresses of the instructions to be
95 examined. If the prologue code scan reaches LIMIT, the scan is
96 aborted and LIMIT is returned. This is used, when examining the
97 prologue for the current frame, to keep examine_prologue () from
98 claiming that a given register has been saved when in fact the
99 instruction that saves it has not yet been executed. LIMIT is used
100 at other times to stop the scan when we hit code after the true
101 function prologue (e.g. for the first source line) which might
102 otherwise be mistaken for function prologue.
103
104 The format of the function prologue matched by this routine is
105 derived from examination of the source to gcc960 1.21, particularly
106 the routine i960_function_prologue (). A "regular expression" for
107 the function prologue is given below:
108
109 (lda LRn, g14
110 mov g14, g[0-7]
111 (mov 0, g14) | (lda 0, g14))?
112
113 (mov[qtl]? g[0-15], r[4-15])*
114 ((addo [1-31], sp, sp) | (lda n(sp), sp))?
115 (st[qtl]? g[0-15], n(fp))*
116
117 (cmpobne 0, g14, LFn
118 mov sp, g14
119 lda 0x30(sp), sp
120 LFn: stq g0, (g14)
121 stq g4, 0x10(g14)
122 stq g8, 0x20(g14))?
123
124 (st g14, n(fp))?
125 (mov g13,r[4-15])?
126 */
127
128 /* Macros for extracting fields from i960 instructions. */
129
130 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
131 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
132
133 #define REG_SRC1(insn) EXTRACT_FIELD (insn, 0, 5)
134 #define REG_SRC2(insn) EXTRACT_FIELD (insn, 14, 5)
135 #define REG_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
136 #define MEM_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
137 #define MEMA_OFFSET(insn) EXTRACT_FIELD (insn, 0, 12)
138
139 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
140 is not the address of a valid instruction, the address of the next
141 instruction beyond ADDR otherwise. *PWORD1 receives the first word
142 of the instruction, and (for two-word instructions), *PWORD2 receives
143 the second. */
144
145 #define NEXT_PROLOGUE_INSN(addr, lim, pword1, pword2) \
146 (((addr) < (lim)) ? next_insn (addr, pword1, pword2) : 0)
147
148 static CORE_ADDR
149 examine_prologue (ip, limit, frame_addr, fsr)
150 register CORE_ADDR ip;
151 register CORE_ADDR limit;
152 CORE_ADDR frame_addr;
153 struct frame_saved_regs *fsr;
154 {
155 register CORE_ADDR next_ip;
156 register int src, dst;
157 register unsigned int *pcode;
158 unsigned int insn1, insn2;
159 int size;
160 int within_leaf_prologue;
161 CORE_ADDR save_addr;
162 static unsigned int varargs_prologue_code [] =
163 {
164 0x3507a00c, /* cmpobne 0x0, g14, LFn */
165 0x5cf01601, /* mov sp, g14 */
166 0x8c086030, /* lda 0x30(sp), sp */
167 0xb2879000, /* LFn: stq g0, (g14) */
168 0xb2a7a010, /* stq g4, 0x10(g14) */
169 0xb2c7a020 /* stq g8, 0x20(g14) */
170 };
171
172 /* Accept a leaf procedure prologue code fragment if present.
173 Note that ip might point to either the leaf or non-leaf
174 entry point; we look for the non-leaf entry point first: */
175
176 within_leaf_prologue = 0;
177 if ((next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2))
178 && ((insn1 & 0xfffff000) == 0x8cf00000 /* lda LRx, g14 (MEMA) */
179 || (insn1 & 0xfffffc60) == 0x8cf03000)) /* lda LRx, g14 (MEMB) */
180 {
181 within_leaf_prologue = 1;
182 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2);
183 }
184
185 /* Now look for the prologue code at a leaf entry point: */
186
187 if (next_ip
188 && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
189 && REG_SRCDST (insn1) <= G0_REGNUM + 7)
190 {
191 within_leaf_prologue = 1;
192 if ((next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2))
193 && (insn1 == 0x8cf00000 /* lda 0, g14 */
194 || insn1 == 0x5cf01e00)) /* mov 0, g14 */
195 {
196 ip = next_ip;
197 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
198 within_leaf_prologue = 0;
199 }
200 }
201
202 /* If something that looks like the beginning of a leaf prologue
203 has been seen, but the remainder of the prologue is missing, bail.
204 We don't know what we've got. */
205
206 if (within_leaf_prologue)
207 return (ip);
208
209 /* Accept zero or more instances of "mov[qtl]? gx, ry", where y >= 4.
210 This may cause us to mistake the moving of a register
211 parameter to a local register for the saving of a callee-saved
212 register, but that can't be helped, since with the
213 "-fcall-saved" flag, any register can be made callee-saved. */
214
215 while (next_ip
216 && (insn1 & 0xfc802fb0) == 0x5c000610
217 && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
218 {
219 src = REG_SRC1 (insn1);
220 size = EXTRACT_FIELD (insn1, 24, 2) + 1;
221 save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
222 while (size--)
223 {
224 fsr->regs[src++] = save_addr;
225 save_addr += 4;
226 }
227 ip = next_ip;
228 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
229 }
230
231 /* Accept an optional "addo n, sp, sp" or "lda n(sp), sp". */
232
233 if (next_ip &&
234 ((insn1 & 0xffffffe0) == 0x59084800 /* addo n, sp, sp */
235 || (insn1 & 0xfffff000) == 0x8c086000 /* lda n(sp), sp (MEMA) */
236 || (insn1 & 0xfffffc60) == 0x8c087400)) /* lda n(sp), sp (MEMB) */
237 {
238 ip = next_ip;
239 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
240 }
241
242 /* Accept zero or more instances of "st[qtl]? gx, n(fp)".
243 This may cause us to mistake the copying of a register
244 parameter to the frame for the saving of a callee-saved
245 register, but that can't be helped, since with the
246 "-fcall-saved" flag, any register can be made callee-saved.
247 We can, however, refuse to accept a save of register g14,
248 since that is matched explicitly below. */
249
250 while (next_ip &&
251 ((insn1 & 0xf787f000) == 0x9287e000 /* stl? gx, n(fp) (MEMA) */
252 || (insn1 & 0xf787fc60) == 0x9287f400 /* stl? gx, n(fp) (MEMB) */
253 || (insn1 & 0xef87f000) == 0xa287e000 /* st[tq] gx, n(fp) (MEMA) */
254 || (insn1 & 0xef87fc60) == 0xa287f400) /* st[tq] gx, n(fp) (MEMB) */
255 && ((src = MEM_SRCDST (insn1)) != G14_REGNUM))
256 {
257 save_addr = frame_addr + ((insn1 & BITMASK (12, 1))
258 ? insn2 : MEMA_OFFSET (insn1));
259 size = (insn1 & BITMASK (29, 1)) ? ((insn1 & BITMASK (28, 1)) ? 4 : 3)
260 : ((insn1 & BITMASK (27, 1)) ? 2 : 1);
261 while (size--)
262 {
263 fsr->regs[src++] = save_addr;
264 save_addr += 4;
265 }
266 ip = next_ip;
267 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
268 }
269
270 /* Accept the varargs prologue code if present. */
271
272 size = sizeof (varargs_prologue_code) / sizeof (int);
273 pcode = varargs_prologue_code;
274 while (size-- && next_ip && *pcode++ == insn1)
275 {
276 ip = next_ip;
277 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
278 }
279
280 /* Accept an optional "st g14, n(fp)". */
281
282 if (next_ip &&
283 ((insn1 & 0xfffff000) == 0x92f7e000 /* st g14, n(fp) (MEMA) */
284 || (insn1 & 0xfffffc60) == 0x92f7f400)) /* st g14, n(fp) (MEMB) */
285 {
286 fsr->regs[G14_REGNUM] = frame_addr + ((insn1 & BITMASK (12, 1))
287 ? insn2 : MEMA_OFFSET (insn1));
288 ip = next_ip;
289 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
290 }
291
292 /* Accept zero or one instance of "mov g13, ry", where y >= 4.
293 This is saving the address where a struct should be returned. */
294
295 if (next_ip
296 && (insn1 & 0xff802fbf) == 0x5c00061d
297 && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
298 {
299 save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
300 fsr->regs[G0_REGNUM+13] = save_addr;
301 ip = next_ip;
302 #if 0 /* We'll need this once there is a subsequent instruction examined. */
303 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
304 #endif
305 }
306
307 return (ip);
308 }
309
310 /* Given an ip value corresponding to the start of a function,
311 return the ip of the first instruction after the function
312 prologue. */
313
314 CORE_ADDR
315 skip_prologue (ip)
316 CORE_ADDR (ip);
317 {
318 struct frame_saved_regs saved_regs_dummy;
319 struct symtab_and_line sal;
320 CORE_ADDR limit;
321
322 sal = find_pc_line (ip, 0);
323 limit = (sal.end) ? sal.end : 0xffffffff;
324
325 return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy));
326 }
327
328 /* Put here the code to store, into a struct frame_saved_regs,
329 the addresses of the saved registers of frame described by FRAME_INFO.
330 This includes special registers such as pc and fp saved in special
331 ways in the stack frame. sp is even more special:
332 the address we return for it IS the sp for the next frame.
333
334 We cache the result of doing this in the frame_obstack, since it is
335 fairly expensive. */
336
337 void
338 frame_find_saved_regs (fi, fsr)
339 struct frame_info *fi;
340 struct frame_saved_regs *fsr;
341 {
342 register CORE_ADDR next_addr;
343 register CORE_ADDR *saved_regs;
344 register int regnum;
345 register struct frame_saved_regs *cache_fsr;
346 CORE_ADDR ip;
347 struct symtab_and_line sal;
348 CORE_ADDR limit;
349
350 if (!fi->fsr)
351 {
352 cache_fsr = (struct frame_saved_regs *)
353 frame_obstack_alloc (sizeof (struct frame_saved_regs));
354 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
355 fi->fsr = cache_fsr;
356
357 /* Find the start and end of the function prologue. If the PC
358 is in the function prologue, we only consider the part that
359 has executed already. */
360
361 ip = get_pc_function_start (fi->pc);
362 sal = find_pc_line (ip, 0);
363 limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
364
365 examine_prologue (ip, limit, fi->frame, cache_fsr);
366
367 /* Record the addresses at which the local registers are saved.
368 Strictly speaking, we should only do this for non-leaf procedures,
369 but no one will ever look at these values if it is a leaf procedure,
370 since local registers are always caller-saved. */
371
372 next_addr = (CORE_ADDR) fi->frame;
373 saved_regs = cache_fsr->regs;
374 for (regnum = R0_REGNUM; regnum <= R15_REGNUM; regnum++)
375 {
376 *saved_regs++ = next_addr;
377 next_addr += 4;
378 }
379
380 cache_fsr->regs[FP_REGNUM] = cache_fsr->regs[PFP_REGNUM];
381 }
382
383 *fsr = *fi->fsr;
384
385 /* Fetch the value of the sp from memory every time, since it
386 is conceivable that it has changed since the cache was flushed.
387 This unfortunately undoes much of the savings from caching the
388 saved register values. I suggest adding an argument to
389 get_frame_saved_regs () specifying the register number we're
390 interested in (or -1 for all registers). This would be passed
391 through to FRAME_FIND_SAVED_REGS (), permitting more efficient
392 computation of saved register addresses (e.g., on the i960,
393 we don't have to examine the prologue to find local registers).
394 -- markf@wrs.com
395 FIXME, we don't need to refetch this, since the cache is cleared
396 every time the child process is restarted. If GDB itself
397 modifies SP, it has to clear the cache by hand (does it?). -gnu */
398
399 fsr->regs[SP_REGNUM] = read_memory_integer (fsr->regs[SP_REGNUM], 4);
400 }
401
402 /* Return the address of the argument block for the frame
403 described by FI. Returns 0 if the address is unknown. */
404
405 CORE_ADDR
406 frame_args_address (fi, must_be_correct)
407 struct frame_info *fi;
408 {
409 struct frame_saved_regs fsr;
410 CORE_ADDR ap;
411
412 /* If g14 was saved in the frame by the function prologue code, return
413 the saved value. If the frame is current and we are being sloppy,
414 return the value of g14. Otherwise, return zero. */
415
416 get_frame_saved_regs (fi, &fsr);
417 if (fsr.regs[G14_REGNUM])
418 ap = read_memory_integer (fsr.regs[G14_REGNUM],4);
419 else
420 {
421 if (must_be_correct)
422 return 0; /* Don't cache this result */
423 if (get_next_frame (fi))
424 ap = 0;
425 else
426 ap = read_register (G14_REGNUM);
427 if (ap == 0)
428 ap = fi->frame;
429 }
430 fi->arg_pointer = ap; /* Cache it for next time */
431 return ap;
432 }
433
434 /* Return the address of the return struct for the frame
435 described by FI. Returns 0 if the address is unknown. */
436
437 CORE_ADDR
438 frame_struct_result_address (fi)
439 struct frame_info *fi;
440 {
441 struct frame_saved_regs fsr;
442 CORE_ADDR ap;
443
444 /* If the frame is non-current, check to see if g14 was saved in the
445 frame by the function prologue code; return the saved value if so,
446 zero otherwise. If the frame is current, return the value of g14.
447
448 FIXME, shouldn't this use the saved value as long as we are past
449 the function prologue, and only use the current value if we have
450 no saved value and are at TOS? -- gnu@cygnus.com */
451
452 if (get_next_frame (fi))
453 {
454 get_frame_saved_regs (fi, &fsr);
455 if (fsr.regs[G13_REGNUM])
456 ap = read_memory_integer (fsr.regs[G13_REGNUM],4);
457 else
458 ap = 0;
459 }
460 else
461 ap = read_register (G13_REGNUM);
462
463 return ap;
464 }
465
466 /* Return address to which the currently executing leafproc will return,
467 or 0 if ip is not in a leafproc (or if we can't tell if it is).
468
469 Do this by finding the starting address of the routine in which ip lies.
470 If the instruction there is "mov g14, gx" (where x is in [0,7]), this
471 is a leafproc and the return address is in register gx. Well, this is
472 true unless the return address points at a RET instruction in the current
473 procedure, which indicates that we have a 'dual entry' routine that
474 has been entered through the CALL entry point. */
475
476 CORE_ADDR
477 leafproc_return (ip)
478 CORE_ADDR ip; /* ip from currently executing function */
479 {
480 register struct minimal_symbol *msymbol;
481 char *p;
482 int dst;
483 unsigned int insn1, insn2;
484 CORE_ADDR return_addr;
485
486 if ((msymbol = lookup_minimal_symbol_by_pc (ip)) != NULL)
487 {
488 if ((p = strchr(SYMBOL_NAME (msymbol), '.')) && STREQ (p, ".lf"))
489 {
490 if (next_insn (SYMBOL_VALUE_ADDRESS (msymbol), &insn1, &insn2)
491 && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
492 && (dst = REG_SRCDST (insn1)) <= G0_REGNUM + 7)
493 {
494 /* Get the return address. If the "mov g14, gx"
495 instruction hasn't been executed yet, read
496 the return address from g14; otherwise, read it
497 from the register into which g14 was moved. */
498
499 return_addr =
500 read_register ((ip == SYMBOL_VALUE_ADDRESS (msymbol))
501 ? G14_REGNUM : dst);
502
503 /* We know we are in a leaf procedure, but we don't know
504 whether the caller actually did a "bal" to the ".lf"
505 entry point, or a normal "call" to the non-leaf entry
506 point one instruction before. In the latter case, the
507 return address will be the address of a "ret"
508 instruction within the procedure itself. We test for
509 this below. */
510
511 if (!next_insn (return_addr, &insn1, &insn2)
512 || (insn1 & 0xff000000) != 0xa000000 /* ret */
513 || lookup_minimal_symbol_by_pc (return_addr) != msymbol)
514 return (return_addr);
515 }
516 }
517 }
518
519 return (0);
520 }
521
522 /* Immediately after a function call, return the saved pc.
523 Can't go through the frames for this because on some machines
524 the new frame is not set up until the new function executes
525 some instructions.
526 On the i960, the frame *is* set up immediately after the call,
527 unless the function is a leaf procedure. */
528
529 CORE_ADDR
530 saved_pc_after_call (frame)
531 struct frame_info *frame;
532 {
533 CORE_ADDR saved_pc;
534
535 saved_pc = leafproc_return (get_frame_pc (frame));
536 if (!saved_pc)
537 saved_pc = FRAME_SAVED_PC (frame);
538
539 return saved_pc;
540 }
541
542 /* Discard from the stack the innermost frame,
543 restoring all saved registers. */
544
545 void
546 pop_frame ()
547 {
548 register struct frame_info *current_fi, *prev_fi;
549 register int i;
550 CORE_ADDR save_addr;
551 CORE_ADDR leaf_return_addr;
552 struct frame_saved_regs fsr;
553 char local_regs_buf[16 * 4];
554
555 current_fi = get_current_frame ();
556
557 /* First, undo what the hardware does when we return.
558 If this is a non-leaf procedure, restore local registers from
559 the save area in the calling frame. Otherwise, load the return
560 address obtained from leafproc_return () into the rip. */
561
562 leaf_return_addr = leafproc_return (current_fi->pc);
563 if (!leaf_return_addr)
564 {
565 /* Non-leaf procedure. Restore local registers, incl IP. */
566 prev_fi = get_prev_frame (current_fi);
567 read_memory (prev_fi->frame, local_regs_buf, sizeof (local_regs_buf));
568 write_register_bytes (REGISTER_BYTE (R0_REGNUM), local_regs_buf,
569 sizeof (local_regs_buf));
570
571 /* Restore frame pointer. */
572 write_register (FP_REGNUM, prev_fi->frame);
573 }
574 else
575 {
576 /* Leaf procedure. Just restore the return address into the IP. */
577 write_register (RIP_REGNUM, leaf_return_addr);
578 }
579
580 /* Now restore any global regs that the current function had saved. */
581 get_frame_saved_regs (current_fi, &fsr);
582 for (i = G0_REGNUM; i < G14_REGNUM; i++)
583 {
584 if (save_addr = fsr.regs[i])
585 write_register (i, read_memory_integer (save_addr, 4));
586 }
587
588 /* Flush the frame cache, create a frame for the new innermost frame,
589 and make it the current frame. */
590
591 flush_cached_frames ();
592 }
593
594 /* Given a 960 stop code (fault or trace), return the signal which
595 corresponds. */
596
597 enum target_signal
598 i960_fault_to_signal (fault)
599 int fault;
600 {
601 switch (fault)
602 {
603 case 0: return TARGET_SIGNAL_BUS; /* parallel fault */
604 case 1: return TARGET_SIGNAL_UNKNOWN;
605 case 2: return TARGET_SIGNAL_ILL; /* operation fault */
606 case 3: return TARGET_SIGNAL_FPE; /* arithmetic fault */
607 case 4: return TARGET_SIGNAL_FPE; /* floating point fault */
608
609 /* constraint fault. This appears not to distinguish between
610 a range constraint fault (which should be SIGFPE) and a privileged
611 fault (which should be SIGILL). */
612 case 5: return TARGET_SIGNAL_ILL;
613
614 case 6: return TARGET_SIGNAL_SEGV; /* virtual memory fault */
615
616 /* protection fault. This is for an out-of-range argument to
617 "calls". I guess it also could be SIGILL. */
618 case 7: return TARGET_SIGNAL_SEGV;
619
620 case 8: return TARGET_SIGNAL_BUS; /* machine fault */
621 case 9: return TARGET_SIGNAL_BUS; /* structural fault */
622 case 0xa: return TARGET_SIGNAL_ILL; /* type fault */
623 case 0xb: return TARGET_SIGNAL_UNKNOWN; /* reserved fault */
624 case 0xc: return TARGET_SIGNAL_BUS; /* process fault */
625 case 0xd: return TARGET_SIGNAL_SEGV; /* descriptor fault */
626 case 0xe: return TARGET_SIGNAL_BUS; /* event fault */
627 case 0xf: return TARGET_SIGNAL_UNKNOWN; /* reserved fault */
628 case 0x10: return TARGET_SIGNAL_TRAP; /* single-step trace */
629 case 0x11: return TARGET_SIGNAL_TRAP; /* branch trace */
630 case 0x12: return TARGET_SIGNAL_TRAP; /* call trace */
631 case 0x13: return TARGET_SIGNAL_TRAP; /* return trace */
632 case 0x14: return TARGET_SIGNAL_TRAP; /* pre-return trace */
633 case 0x15: return TARGET_SIGNAL_TRAP; /* supervisor call trace */
634 case 0x16: return TARGET_SIGNAL_TRAP; /* breakpoint trace */
635 default: return TARGET_SIGNAL_UNKNOWN;
636 }
637 }
638
639 /****************************************/
640 /* MEM format */
641 /****************************************/
642
643 struct tabent {
644 char *name;
645 char numops;
646 };
647
648 static int /* returns instruction length: 4 or 8 */
649 mem( memaddr, word1, word2, noprint )
650 unsigned long memaddr;
651 unsigned long word1, word2;
652 int noprint; /* If TRUE, return instruction length, but
653 don't output any text. */
654 {
655 int i, j;
656 int len;
657 int mode;
658 int offset;
659 const char *reg1, *reg2, *reg3;
660
661 /* This lookup table is too sparse to make it worth typing in, but not
662 * so large as to make a sparse array necessary. We allocate the
663 * table at runtime, initialize all entries to empty, and copy the
664 * real ones in from an initialization table.
665 *
666 * NOTE: In this table, the meaning of 'numops' is:
667 * 1: single operand
668 * 2: 2 operands, load instruction
669 * -2: 2 operands, store instruction
670 */
671 static struct tabent *mem_tab = NULL;
672 /* Opcodes of 0x8X, 9X, aX, bX, and cX must be in the table. */
673 #define MEM_MIN 0x80
674 #define MEM_MAX 0xcf
675 #define MEM_SIZ ((MEM_MAX-MEM_MIN+1) * sizeof(struct tabent))
676
677 static struct { int opcode; char *name; char numops; } mem_init[] = {
678 0x80, "ldob", 2,
679 0x82, "stob", -2,
680 0x84, "bx", 1,
681 0x85, "balx", 2,
682 0x86, "callx", 1,
683 0x88, "ldos", 2,
684 0x8a, "stos", -2,
685 0x8c, "lda", 2,
686 0x90, "ld", 2,
687 0x92, "st", -2,
688 0x98, "ldl", 2,
689 0x9a, "stl", -2,
690 0xa0, "ldt", 2,
691 0xa2, "stt", -2,
692 0xb0, "ldq", 2,
693 0xb2, "stq", -2,
694 0xc0, "ldib", 2,
695 0xc2, "stib", -2,
696 0xc8, "ldis", 2,
697 0xca, "stis", -2,
698 0, NULL, 0
699 };
700
701 if ( mem_tab == NULL ){
702 mem_tab = (struct tabent *) xmalloc( MEM_SIZ );
703 memset( mem_tab, '\0', MEM_SIZ );
704 for ( i = 0; mem_init[i].opcode != 0; i++ ){
705 j = mem_init[i].opcode - MEM_MIN;
706 mem_tab[j].name = mem_init[i].name;
707 mem_tab[j].numops = mem_init[i].numops;
708 }
709 }
710
711 i = ((word1 >> 24) & 0xff) - MEM_MIN;
712 mode = (word1 >> 10) & 0xf;
713
714 if ( (mem_tab[i].name != NULL) /* Valid instruction */
715 && ((mode == 5) || (mode >=12)) ){ /* With 32-bit displacement */
716 len = 8;
717 } else {
718 len = 4;
719 }
720
721 if ( noprint ){
722 return len;
723 }
724 abort ();
725 }
726
727 /* Read the i960 instruction at 'memaddr' and return the address of
728 the next instruction after that, or 0 if 'memaddr' is not the
729 address of a valid instruction. The first word of the instruction
730 is stored at 'pword1', and the second word, if any, is stored at
731 'pword2'. */
732
733 static CORE_ADDR
734 next_insn (memaddr, pword1, pword2)
735 unsigned int *pword1, *pword2;
736 CORE_ADDR memaddr;
737 {
738 int len;
739 char buf[8];
740
741 /* Read the two (potential) words of the instruction at once,
742 to eliminate the overhead of two calls to read_memory ().
743 FIXME: Loses if the first one is readable but the second is not
744 (e.g. last word of the segment). */
745
746 read_memory (memaddr, buf, 8);
747 *pword1 = extract_unsigned_integer (buf, 4);
748 *pword2 = extract_unsigned_integer (buf + 4, 4);
749
750 /* Divide instruction set into classes based on high 4 bits of opcode*/
751
752 switch ((*pword1 >> 28) & 0xf)
753 {
754 case 0x0:
755 case 0x1: /* ctrl */
756
757 case 0x2:
758 case 0x3: /* cobr */
759
760 case 0x5:
761 case 0x6:
762 case 0x7: /* reg */
763 len = 4;
764 break;
765
766 case 0x8:
767 case 0x9:
768 case 0xa:
769 case 0xb:
770 case 0xc:
771 len = mem (memaddr, *pword1, *pword2, 1);
772 break;
773
774 default: /* invalid instruction */
775 len = 0;
776 break;
777 }
778
779 if (len)
780 return memaddr + len;
781 else
782 return 0;
783 }
784
785 /* 'start_frame' is a variable in the MON960 runtime startup routine
786 that contains the frame pointer of the 'start' routine (the routine
787 that calls 'main'). By reading its contents out of remote memory,
788 we can tell where the frame chain ends: backtraces should halt before
789 they display this frame. */
790
791 int
792 mon960_frame_chain_valid (chain, curframe)
793 CORE_ADDR chain;
794 struct frame_info *curframe;
795 {
796 struct symbol *sym;
797 struct minimal_symbol *msymbol;
798
799 /* crtmon960.o is an assembler module that is assumed to be linked
800 * first in an i80960 executable. It contains the true entry point;
801 * it performs startup up initialization and then calls 'main'.
802 *
803 * 'sf' is the name of a variable in crtmon960.o that is set
804 * during startup to the address of the first frame.
805 *
806 * 'a' is the address of that variable in 80960 memory.
807 */
808 static char sf[] = "start_frame";
809 CORE_ADDR a;
810
811
812 chain &= ~0x3f; /* Zero low 6 bits because previous frame pointers
813 contain return status info in them. */
814 if ( chain == 0 ){
815 return 0;
816 }
817
818 sym = lookup_symbol(sf, 0, VAR_NAMESPACE, (int *)NULL,
819 (struct symtab **)NULL);
820 if ( sym != 0 ){
821 a = SYMBOL_VALUE (sym);
822 } else {
823 msymbol = lookup_minimal_symbol (sf, NULL, NULL);
824 if (msymbol == NULL)
825 return 0;
826 a = SYMBOL_VALUE_ADDRESS (msymbol);
827 }
828
829 return ( chain != read_memory_integer(a,4) );
830 }
831
832 void
833 _initialize_i960_tdep ()
834 {
835 check_host ();
836
837 tm_print_insn = print_insn_i960;
838 }