]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/irix5-nat.c
Initial creation of sourceware repository
[thirdparty/binutils-gdb.git] / gdb / irix5-nat.c
1 /* Native support for the SGI Iris running IRIX version 5, for GDB.
2 Copyright 1988, 89, 90, 91, 92, 93, 94, 95, 96, 98, 1999
3 Free Software Foundation, Inc.
4 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
5 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
6 Implemented for Irix 4.x by Garrett A. Wollman.
7 Modified for Irix 5.x by Ian Lance Taylor.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29
30 #include "gdb_string.h"
31 #include <sys/time.h>
32 #include <sys/procfs.h>
33 #include <setjmp.h> /* For JB_XXX. */
34
35 static void
36 fetch_core_registers PARAMS ((char *, unsigned int, int, CORE_ADDR));
37
38 /* Size of elements in jmpbuf */
39
40 #define JB_ELEMENT_SIZE 4
41
42 /*
43 * See the comment in m68k-tdep.c regarding the utility of these functions.
44 *
45 * These definitions are from the MIPS SVR4 ABI, so they may work for
46 * any MIPS SVR4 target.
47 */
48
49 void
50 supply_gregset (gregsetp)
51 gregset_t *gregsetp;
52 {
53 register int regi;
54 register greg_t *regp = &(*gregsetp)[0];
55 int gregoff = sizeof (greg_t) - MIPS_REGSIZE;
56 static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
57
58 for(regi = 0; regi <= CTX_RA; regi++)
59 supply_register (regi, (char *)(regp + regi) + gregoff);
60
61 supply_register (PC_REGNUM, (char *)(regp + CTX_EPC) + gregoff);
62 supply_register (HI_REGNUM, (char *)(regp + CTX_MDHI) + gregoff);
63 supply_register (LO_REGNUM, (char *)(regp + CTX_MDLO) + gregoff);
64 supply_register (CAUSE_REGNUM, (char *)(regp + CTX_CAUSE) + gregoff);
65
66 /* Fill inaccessible registers with zero. */
67 supply_register (BADVADDR_REGNUM, zerobuf);
68 }
69
70 void
71 fill_gregset (gregsetp, regno)
72 gregset_t *gregsetp;
73 int regno;
74 {
75 int regi;
76 register greg_t *regp = &(*gregsetp)[0];
77
78 /* Under Irix6, if GDB is built with N32 ABI and is debugging an O32
79 executable, we have to sign extend the registers to 64 bits before
80 filling in the gregset structure. */
81
82 for (regi = 0; regi <= CTX_RA; regi++)
83 if ((regno == -1) || (regno == regi))
84 *(regp + regi) =
85 extract_signed_integer (&registers[REGISTER_BYTE (regi)],
86 REGISTER_RAW_SIZE (regi));
87
88 if ((regno == -1) || (regno == PC_REGNUM))
89 *(regp + CTX_EPC) =
90 extract_signed_integer (&registers[REGISTER_BYTE (PC_REGNUM)],
91 REGISTER_RAW_SIZE (PC_REGNUM));
92
93 if ((regno == -1) || (regno == CAUSE_REGNUM))
94 *(regp + CTX_CAUSE) =
95 extract_signed_integer (&registers[REGISTER_BYTE (CAUSE_REGNUM)],
96 REGISTER_RAW_SIZE (CAUSE_REGNUM));
97
98 if ((regno == -1) || (regno == HI_REGNUM))
99 *(regp + CTX_MDHI) =
100 extract_signed_integer (&registers[REGISTER_BYTE (HI_REGNUM)],
101 REGISTER_RAW_SIZE (HI_REGNUM));
102
103 if ((regno == -1) || (regno == LO_REGNUM))
104 *(regp + CTX_MDLO) =
105 extract_signed_integer (&registers[REGISTER_BYTE (LO_REGNUM)],
106 REGISTER_RAW_SIZE (LO_REGNUM));
107 }
108
109 /*
110 * Now we do the same thing for floating-point registers.
111 * We don't bother to condition on FP0_REGNUM since any
112 * reasonable MIPS configuration has an R3010 in it.
113 *
114 * Again, see the comments in m68k-tdep.c.
115 */
116
117 void
118 supply_fpregset (fpregsetp)
119 fpregset_t *fpregsetp;
120 {
121 register int regi;
122 static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
123
124 /* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
125
126 for (regi = 0; regi < 32; regi++)
127 supply_register (FP0_REGNUM + regi,
128 (char *)&fpregsetp->fp_r.fp_regs[regi]);
129
130 supply_register (FCRCS_REGNUM, (char *)&fpregsetp->fp_csr);
131
132 /* FIXME: how can we supply FCRIR_REGNUM? SGI doesn't tell us. */
133 supply_register (FCRIR_REGNUM, zerobuf);
134 }
135
136 void
137 fill_fpregset (fpregsetp, regno)
138 fpregset_t *fpregsetp;
139 int regno;
140 {
141 int regi;
142 char *from, *to;
143
144 /* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
145
146 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
147 {
148 if ((regno == -1) || (regno == regi))
149 {
150 from = (char *) &registers[REGISTER_BYTE (regi)];
151 to = (char *) &(fpregsetp->fp_r.fp_regs[regi - FP0_REGNUM]);
152 memcpy(to, from, REGISTER_RAW_SIZE (regi));
153 }
154 }
155
156 if ((regno == -1) || (regno == FCRCS_REGNUM))
157 fpregsetp->fp_csr = *(unsigned *) &registers[REGISTER_BYTE(FCRCS_REGNUM)];
158 }
159
160
161 /* Figure out where the longjmp will land.
162 We expect the first arg to be a pointer to the jmp_buf structure from which
163 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
164 This routine returns true on success. */
165
166 int
167 get_longjmp_target (pc)
168 CORE_ADDR *pc;
169 {
170 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
171 CORE_ADDR jb_addr;
172
173 jb_addr = read_register (A0_REGNUM);
174
175 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
176 TARGET_PTR_BIT / TARGET_CHAR_BIT))
177 return 0;
178
179 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
180
181 return 1;
182 }
183
184 static void
185 fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
186 char *core_reg_sect;
187 unsigned core_reg_size;
188 int which; /* Unused */
189 CORE_ADDR reg_addr; /* Unused */
190 {
191 if (core_reg_size == REGISTER_BYTES)
192 {
193 memcpy ((char *)registers, core_reg_sect, core_reg_size);
194 }
195 else if (MIPS_REGSIZE == 4 &&
196 core_reg_size == (2 * MIPS_REGSIZE) * NUM_REGS)
197 {
198 /* This is a core file from a N32 executable, 64 bits are saved
199 for all registers. */
200 char *srcp = core_reg_sect;
201 char *dstp = registers;
202 int regno;
203
204 for (regno = 0; regno < NUM_REGS; regno++)
205 {
206 if (regno >= FP0_REGNUM && regno < (FP0_REGNUM + 32))
207 {
208 /* FIXME, this is wrong, N32 has 64 bit FP regs, but GDB
209 currently assumes that they are 32 bit. */
210 *dstp++ = *srcp++;
211 *dstp++ = *srcp++;
212 *dstp++ = *srcp++;
213 *dstp++ = *srcp++;
214 if (REGISTER_RAW_SIZE(regno) == 4)
215 {
216 /* copying 4 bytes from eight bytes?
217 I don't see how this can be right... */
218 srcp += 4;
219 }
220 else
221 {
222 /* copy all 8 bytes (sizeof(double)) */
223 *dstp++ = *srcp++;
224 *dstp++ = *srcp++;
225 *dstp++ = *srcp++;
226 *dstp++ = *srcp++;
227 }
228 }
229 else
230 {
231 srcp += 4;
232 *dstp++ = *srcp++;
233 *dstp++ = *srcp++;
234 *dstp++ = *srcp++;
235 *dstp++ = *srcp++;
236 }
237 }
238 }
239 else
240 {
241 warning ("wrong size gregset struct in core file");
242 return;
243 }
244
245 registers_fetched ();
246 }
247 \f
248 /* Irix 5 uses what appears to be a unique form of shared library
249 support. This is a copy of solib.c modified for Irix 5. */
250 /* FIXME: Most of this code could be merged with osfsolib.c and solib.c
251 by using next_link_map_member and xfer_link_map_member in solib.c. */
252
253 #include <sys/types.h>
254 #include <signal.h>
255 #include <sys/param.h>
256 #include <fcntl.h>
257
258 /* <obj.h> includes <sym.h> and <symconst.h>, which causes conflicts
259 with our versions of those files included by tm-mips.h. Prevent
260 <obj.h> from including them with some appropriate defines. */
261 #define __SYM_H__
262 #define __SYMCONST_H__
263 #include <obj.h>
264 #ifdef HAVE_OBJLIST_H
265 #include <objlist.h>
266 #endif
267
268 #ifdef NEW_OBJ_INFO_MAGIC
269 #define HANDLE_NEW_OBJ_LIST
270 #endif
271
272 #include "symtab.h"
273 #include "bfd.h"
274 #include "symfile.h"
275 #include "objfiles.h"
276 #include "command.h"
277 #include "frame.h"
278 #include "gnu-regex.h"
279 #include "inferior.h"
280 #include "language.h"
281 #include "gdbcmd.h"
282
283 /* The symbol which starts off the list of shared libraries. */
284 #define DEBUG_BASE "__rld_obj_head"
285
286 /* Irix 6.x introduces a new variant of object lists.
287 To be able to debug O32 executables under Irix 6, we have to handle both
288 variants. */
289
290 typedef enum
291 {
292 OBJ_LIST_OLD, /* Pre Irix 6.x object list. */
293 OBJ_LIST_32, /* 32 Bit Elf32_Obj_Info. */
294 OBJ_LIST_64 /* 64 Bit Elf64_Obj_Info, FIXME not yet implemented. */
295 } obj_list_variant;
296
297 /* Define our own link_map structure.
298 This will help to share code with osfsolib.c and solib.c. */
299
300 struct link_map {
301 obj_list_variant l_variant; /* which variant of object list */
302 CORE_ADDR l_lladdr; /* addr in inferior list was read from */
303 CORE_ADDR l_next; /* address of next object list entry */
304 };
305
306 /* Irix 5 shared objects are pre-linked to particular addresses
307 although the dynamic linker may have to relocate them if the
308 address ranges of the libraries used by the main program clash.
309 The offset is the difference between the address where the object
310 is mapped and the binding address of the shared library. */
311 #define LM_OFFSET(so) ((so) -> offset)
312 /* Loaded address of shared library. */
313 #define LM_ADDR(so) ((so) -> lmstart)
314
315 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
316
317 struct so_list {
318 struct so_list *next; /* next structure in linked list */
319 struct link_map lm;
320 CORE_ADDR offset; /* prelink to load address offset */
321 char *so_name; /* shared object lib name */
322 CORE_ADDR lmstart; /* lower addr bound of mapped object */
323 CORE_ADDR lmend; /* upper addr bound of mapped object */
324 char symbols_loaded; /* flag: symbols read in yet? */
325 char from_tty; /* flag: print msgs? */
326 struct objfile *objfile; /* objfile for loaded lib */
327 struct section_table *sections;
328 struct section_table *sections_end;
329 struct section_table *textsection;
330 bfd *abfd;
331 };
332
333 static struct so_list *so_list_head; /* List of known shared objects */
334 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
335 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
336
337 /* Local function prototypes */
338
339 static void
340 sharedlibrary_command PARAMS ((char *, int));
341
342 static int
343 enable_break PARAMS ((void));
344
345 static int
346 disable_break PARAMS ((void));
347
348 static void
349 info_sharedlibrary_command PARAMS ((char *, int));
350
351 static int
352 symbol_add_stub PARAMS ((char *));
353
354 static struct so_list *
355 find_solib PARAMS ((struct so_list *));
356
357 static struct link_map *
358 first_link_map_member PARAMS ((void));
359
360 static struct link_map *
361 next_link_map_member PARAMS ((struct so_list *));
362
363 static void
364 xfer_link_map_member PARAMS ((struct so_list *, struct link_map *));
365
366 static CORE_ADDR
367 locate_base PARAMS ((void));
368
369 static int
370 solib_map_sections PARAMS ((char *));
371
372 /*
373
374 LOCAL FUNCTION
375
376 solib_map_sections -- open bfd and build sections for shared lib
377
378 SYNOPSIS
379
380 static int solib_map_sections (struct so_list *so)
381
382 DESCRIPTION
383
384 Given a pointer to one of the shared objects in our list
385 of mapped objects, use the recorded name to open a bfd
386 descriptor for the object, build a section table, and then
387 relocate all the section addresses by the base address at
388 which the shared object was mapped.
389
390 FIXMES
391
392 In most (all?) cases the shared object file name recorded in the
393 dynamic linkage tables will be a fully qualified pathname. For
394 cases where it isn't, do we really mimic the systems search
395 mechanism correctly in the below code (particularly the tilde
396 expansion stuff?).
397 */
398
399 static int
400 solib_map_sections (arg)
401 char *arg;
402 {
403 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
404 char *filename;
405 char *scratch_pathname;
406 int scratch_chan;
407 struct section_table *p;
408 struct cleanup *old_chain;
409 bfd *abfd;
410
411 filename = tilde_expand (so -> so_name);
412 old_chain = make_cleanup (free, filename);
413
414 scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
415 &scratch_pathname);
416 if (scratch_chan < 0)
417 {
418 scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
419 O_RDONLY, 0, &scratch_pathname);
420 }
421 if (scratch_chan < 0)
422 {
423 perror_with_name (filename);
424 }
425 /* Leave scratch_pathname allocated. abfd->name will point to it. */
426
427 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
428 if (!abfd)
429 {
430 close (scratch_chan);
431 error ("Could not open `%s' as an executable file: %s",
432 scratch_pathname, bfd_errmsg (bfd_get_error ()));
433 }
434 /* Leave bfd open, core_xfer_memory and "info files" need it. */
435 so -> abfd = abfd;
436 abfd -> cacheable = true;
437
438 if (!bfd_check_format (abfd, bfd_object))
439 {
440 error ("\"%s\": not in executable format: %s.",
441 scratch_pathname, bfd_errmsg (bfd_get_error ()));
442 }
443 if (build_section_table (abfd, &so -> sections, &so -> sections_end))
444 {
445 error ("Can't find the file sections in `%s': %s",
446 bfd_get_filename (exec_bfd), bfd_errmsg (bfd_get_error ()));
447 }
448
449 for (p = so -> sections; p < so -> sections_end; p++)
450 {
451 /* Relocate the section binding addresses as recorded in the shared
452 object's file by the offset to get the address to which the
453 object was actually mapped. */
454 p -> addr += LM_OFFSET (so);
455 p -> endaddr += LM_OFFSET (so);
456 so -> lmend = (CORE_ADDR) max (p -> endaddr, so -> lmend);
457 if (STREQ (p -> the_bfd_section -> name, ".text"))
458 {
459 so -> textsection = p;
460 }
461 }
462
463 /* Free the file names, close the file now. */
464 do_cleanups (old_chain);
465
466 return (1);
467 }
468
469 /*
470
471 LOCAL FUNCTION
472
473 locate_base -- locate the base address of dynamic linker structs
474
475 SYNOPSIS
476
477 CORE_ADDR locate_base (void)
478
479 DESCRIPTION
480
481 For both the SunOS and SVR4 shared library implementations, if the
482 inferior executable has been linked dynamically, there is a single
483 address somewhere in the inferior's data space which is the key to
484 locating all of the dynamic linker's runtime structures. This
485 address is the value of the symbol defined by the macro DEBUG_BASE.
486 The job of this function is to find and return that address, or to
487 return 0 if there is no such address (the executable is statically
488 linked for example).
489
490 For SunOS, the job is almost trivial, since the dynamic linker and
491 all of it's structures are statically linked to the executable at
492 link time. Thus the symbol for the address we are looking for has
493 already been added to the minimal symbol table for the executable's
494 objfile at the time the symbol file's symbols were read, and all we
495 have to do is look it up there. Note that we explicitly do NOT want
496 to find the copies in the shared library.
497
498 The SVR4 version is much more complicated because the dynamic linker
499 and it's structures are located in the shared C library, which gets
500 run as the executable's "interpreter" by the kernel. We have to go
501 to a lot more work to discover the address of DEBUG_BASE. Because
502 of this complexity, we cache the value we find and return that value
503 on subsequent invocations. Note there is no copy in the executable
504 symbol tables.
505
506 Irix 5 is basically like SunOS.
507
508 Note that we can assume nothing about the process state at the time
509 we need to find this address. We may be stopped on the first instruc-
510 tion of the interpreter (C shared library), the first instruction of
511 the executable itself, or somewhere else entirely (if we attached
512 to the process for example).
513
514 */
515
516 static CORE_ADDR
517 locate_base ()
518 {
519 struct minimal_symbol *msymbol;
520 CORE_ADDR address = 0;
521
522 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
523 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
524 {
525 address = SYMBOL_VALUE_ADDRESS (msymbol);
526 }
527 return (address);
528 }
529
530 /*
531
532 LOCAL FUNCTION
533
534 first_link_map_member -- locate first member in dynamic linker's map
535
536 SYNOPSIS
537
538 static struct link_map *first_link_map_member (void)
539
540 DESCRIPTION
541
542 Read in a copy of the first member in the inferior's dynamic
543 link map from the inferior's dynamic linker structures, and return
544 a pointer to the link map descriptor.
545 */
546
547 static struct link_map *
548 first_link_map_member ()
549 {
550 struct obj_list *listp;
551 struct obj_list list_old;
552 struct link_map *lm;
553 static struct link_map first_lm;
554 CORE_ADDR lladdr;
555 CORE_ADDR next_lladdr;
556
557 /* We have not already read in the dynamic linking structures
558 from the inferior, lookup the address of the base structure. */
559 debug_base = locate_base ();
560 if (debug_base == 0)
561 return NULL;
562
563 /* Get address of first list entry. */
564 read_memory (debug_base, (char *) &listp, sizeof (struct obj_list *));
565
566 if (listp == NULL)
567 return NULL;
568
569 /* Get first list entry. */
570 lladdr = (CORE_ADDR) listp;
571 read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
572
573 /* The first entry in the list is the object file we are debugging,
574 so skip it. */
575 next_lladdr = (CORE_ADDR) list_old.next;
576
577 #ifdef HANDLE_NEW_OBJ_LIST
578 if (list_old.data == NEW_OBJ_INFO_MAGIC)
579 {
580 Elf32_Obj_Info list_32;
581
582 read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
583 if (list_32.oi_size != sizeof (Elf32_Obj_Info))
584 return NULL;
585 next_lladdr = (CORE_ADDR) list_32.oi_next;
586 }
587 #endif
588
589 if (next_lladdr == 0)
590 return NULL;
591
592 first_lm.l_lladdr = next_lladdr;
593 lm = &first_lm;
594 return lm;
595 }
596
597 /*
598
599 LOCAL FUNCTION
600
601 next_link_map_member -- locate next member in dynamic linker's map
602
603 SYNOPSIS
604
605 static struct link_map *next_link_map_member (so_list_ptr)
606
607 DESCRIPTION
608
609 Read in a copy of the next member in the inferior's dynamic
610 link map from the inferior's dynamic linker structures, and return
611 a pointer to the link map descriptor.
612 */
613
614 static struct link_map *
615 next_link_map_member (so_list_ptr)
616 struct so_list *so_list_ptr;
617 {
618 struct link_map *lm = &so_list_ptr -> lm;
619 CORE_ADDR next_lladdr = lm -> l_next;
620 static struct link_map next_lm;
621
622 if (next_lladdr == 0)
623 {
624 /* We have hit the end of the list, so check to see if any were
625 added, but be quiet if we can't read from the target any more. */
626 int status = 0;
627
628 if (lm -> l_variant == OBJ_LIST_OLD)
629 {
630 struct obj_list list_old;
631
632 status = target_read_memory (lm -> l_lladdr,
633 (char *) &list_old,
634 sizeof (struct obj_list));
635 next_lladdr = (CORE_ADDR) list_old.next;
636 }
637 #ifdef HANDLE_NEW_OBJ_LIST
638 else if (lm -> l_variant == OBJ_LIST_32)
639 {
640 Elf32_Obj_Info list_32;
641 status = target_read_memory (lm -> l_lladdr,
642 (char *) &list_32,
643 sizeof (Elf32_Obj_Info));
644 next_lladdr = (CORE_ADDR) list_32.oi_next;
645 }
646 #endif
647
648 if (status != 0 || next_lladdr == 0)
649 return NULL;
650 }
651
652 next_lm.l_lladdr = next_lladdr;
653 lm = &next_lm;
654 return lm;
655 }
656
657 /*
658
659 LOCAL FUNCTION
660
661 xfer_link_map_member -- set local variables from dynamic linker's map
662
663 SYNOPSIS
664
665 static void xfer_link_map_member (so_list_ptr, lm)
666
667 DESCRIPTION
668
669 Read in a copy of the requested member in the inferior's dynamic
670 link map from the inferior's dynamic linker structures, and fill
671 in the necessary so_list_ptr elements.
672 */
673
674 static void
675 xfer_link_map_member (so_list_ptr, lm)
676 struct so_list *so_list_ptr;
677 struct link_map *lm;
678 {
679 struct obj_list list_old;
680 CORE_ADDR lladdr = lm -> l_lladdr;
681 struct link_map *new_lm = &so_list_ptr -> lm;
682 int errcode;
683
684 read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
685
686 new_lm -> l_variant = OBJ_LIST_OLD;
687 new_lm -> l_lladdr = lladdr;
688 new_lm -> l_next = (CORE_ADDR) list_old.next;
689
690 #ifdef HANDLE_NEW_OBJ_LIST
691 if (list_old.data == NEW_OBJ_INFO_MAGIC)
692 {
693 Elf32_Obj_Info list_32;
694
695 read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
696 if (list_32.oi_size != sizeof (Elf32_Obj_Info))
697 return;
698 new_lm -> l_variant = OBJ_LIST_32;
699 new_lm -> l_next = (CORE_ADDR) list_32.oi_next;
700
701 target_read_string ((CORE_ADDR) list_32.oi_pathname,
702 &so_list_ptr -> so_name,
703 list_32.oi_pathname_len + 1, &errcode);
704 if (errcode != 0)
705 memory_error (errcode, (CORE_ADDR) list_32.oi_pathname);
706
707 LM_ADDR (so_list_ptr) = (CORE_ADDR) list_32.oi_ehdr;
708 LM_OFFSET (so_list_ptr) =
709 (CORE_ADDR) list_32.oi_ehdr - (CORE_ADDR) list_32.oi_orig_ehdr;
710 }
711 else
712 #endif
713 {
714 #if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32
715 /* If we are compiling GDB under N32 ABI, the alignments in
716 the obj struct are different from the O32 ABI and we will get
717 wrong values when accessing the struct.
718 As a workaround we use fixed values which are good for
719 Irix 6.2. */
720 char buf[432];
721
722 read_memory ((CORE_ADDR) list_old.data, buf, sizeof (buf));
723
724 target_read_string (extract_address (&buf[236], 4),
725 &so_list_ptr -> so_name,
726 INT_MAX, &errcode);
727 if (errcode != 0)
728 memory_error (errcode, extract_address (&buf[236], 4));
729
730 LM_ADDR (so_list_ptr) = extract_address (&buf[196], 4);
731 LM_OFFSET (so_list_ptr) =
732 extract_address (&buf[196], 4) - extract_address (&buf[248], 4);
733 #else
734 struct obj obj_old;
735
736 read_memory ((CORE_ADDR) list_old.data, (char *) &obj_old,
737 sizeof (struct obj));
738
739 target_read_string ((CORE_ADDR) obj_old.o_path,
740 &so_list_ptr -> so_name,
741 INT_MAX, &errcode);
742 if (errcode != 0)
743 memory_error (errcode, (CORE_ADDR) obj_old.o_path);
744
745 LM_ADDR (so_list_ptr) = (CORE_ADDR) obj_old.o_praw;
746 LM_OFFSET (so_list_ptr) =
747 (CORE_ADDR) obj_old.o_praw - obj_old.o_base_address;
748 #endif
749 }
750
751 catch_errors (solib_map_sections, (char *) so_list_ptr,
752 "Error while mapping shared library sections:\n",
753 RETURN_MASK_ALL);
754 }
755
756
757 /*
758
759 LOCAL FUNCTION
760
761 find_solib -- step through list of shared objects
762
763 SYNOPSIS
764
765 struct so_list *find_solib (struct so_list *so_list_ptr)
766
767 DESCRIPTION
768
769 This module contains the routine which finds the names of any
770 loaded "images" in the current process. The argument in must be
771 NULL on the first call, and then the returned value must be passed
772 in on subsequent calls. This provides the capability to "step" down
773 the list of loaded objects. On the last object, a NULL value is
774 returned.
775 */
776
777 static struct so_list *
778 find_solib (so_list_ptr)
779 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
780 {
781 struct so_list *so_list_next = NULL;
782 struct link_map *lm = NULL;
783 struct so_list *new;
784
785 if (so_list_ptr == NULL)
786 {
787 /* We are setting up for a new scan through the loaded images. */
788 if ((so_list_next = so_list_head) == NULL)
789 {
790 /* Find the first link map list member. */
791 lm = first_link_map_member ();
792 }
793 }
794 else
795 {
796 /* We have been called before, and are in the process of walking
797 the shared library list. Advance to the next shared object. */
798 lm = next_link_map_member (so_list_ptr);
799 so_list_next = so_list_ptr -> next;
800 }
801 if ((so_list_next == NULL) && (lm != NULL))
802 {
803 new = (struct so_list *) xmalloc (sizeof (struct so_list));
804 memset ((char *) new, 0, sizeof (struct so_list));
805 /* Add the new node as the next node in the list, or as the root
806 node if this is the first one. */
807 if (so_list_ptr != NULL)
808 {
809 so_list_ptr -> next = new;
810 }
811 else
812 {
813 so_list_head = new;
814 }
815 so_list_next = new;
816 xfer_link_map_member (new, lm);
817 }
818 return (so_list_next);
819 }
820
821 /* A small stub to get us past the arg-passing pinhole of catch_errors. */
822
823 static int
824 symbol_add_stub (arg)
825 char *arg;
826 {
827 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
828 CORE_ADDR text_addr = 0;
829
830 if (so -> textsection)
831 text_addr = so -> textsection -> addr;
832 else if (so -> abfd != NULL)
833 {
834 asection *lowest_sect;
835
836 /* If we didn't find a mapped non zero sized .text section, set up
837 text_addr so that the relocation in symbol_file_add does no harm. */
838
839 lowest_sect = bfd_get_section_by_name (so -> abfd, ".text");
840 if (lowest_sect == NULL)
841 bfd_map_over_sections (so -> abfd, find_lowest_section,
842 (PTR) &lowest_sect);
843 if (lowest_sect)
844 text_addr = bfd_section_vma (so -> abfd, lowest_sect) + LM_OFFSET (so);
845 }
846
847 so -> objfile = symbol_file_add (so -> so_name, so -> from_tty,
848 text_addr,
849 0, 0, 0, 0, 0);
850 return (1);
851 }
852
853 /*
854
855 GLOBAL FUNCTION
856
857 solib_add -- add a shared library file to the symtab and section list
858
859 SYNOPSIS
860
861 void solib_add (char *arg_string, int from_tty,
862 struct target_ops *target)
863
864 DESCRIPTION
865
866 */
867
868 void
869 solib_add (arg_string, from_tty, target)
870 char *arg_string;
871 int from_tty;
872 struct target_ops *target;
873 {
874 register struct so_list *so = NULL; /* link map state variable */
875
876 /* Last shared library that we read. */
877 struct so_list *so_last = NULL;
878
879 char *re_err;
880 int count;
881 int old;
882
883 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
884 {
885 error ("Invalid regexp: %s", re_err);
886 }
887
888 /* Add the shared library sections to the section table of the
889 specified target, if any. */
890 if (target)
891 {
892 /* Count how many new section_table entries there are. */
893 so = NULL;
894 count = 0;
895 while ((so = find_solib (so)) != NULL)
896 {
897 if (so -> so_name[0])
898 {
899 count += so -> sections_end - so -> sections;
900 }
901 }
902
903 if (count)
904 {
905 int update_coreops;
906
907 /* We must update the to_sections field in the core_ops structure
908 here, otherwise we dereference a potential dangling pointer
909 for each call to target_read/write_memory within this routine. */
910 update_coreops = core_ops.to_sections == target->to_sections;
911
912 /* Reallocate the target's section table including the new size. */
913 if (target -> to_sections)
914 {
915 old = target -> to_sections_end - target -> to_sections;
916 target -> to_sections = (struct section_table *)
917 xrealloc ((char *)target -> to_sections,
918 (sizeof (struct section_table)) * (count + old));
919 }
920 else
921 {
922 old = 0;
923 target -> to_sections = (struct section_table *)
924 xmalloc ((sizeof (struct section_table)) * count);
925 }
926 target -> to_sections_end = target -> to_sections + (count + old);
927
928 /* Update the to_sections field in the core_ops structure
929 if needed. */
930 if (update_coreops)
931 {
932 core_ops.to_sections = target->to_sections;
933 core_ops.to_sections_end = target->to_sections_end;
934 }
935
936 /* Add these section table entries to the target's table. */
937 while ((so = find_solib (so)) != NULL)
938 {
939 if (so -> so_name[0])
940 {
941 count = so -> sections_end - so -> sections;
942 memcpy ((char *) (target -> to_sections + old),
943 so -> sections,
944 (sizeof (struct section_table)) * count);
945 old += count;
946 }
947 }
948 }
949 }
950
951 /* Now add the symbol files. */
952 while ((so = find_solib (so)) != NULL)
953 {
954 if (so -> so_name[0] && re_exec (so -> so_name))
955 {
956 so -> from_tty = from_tty;
957 if (so -> symbols_loaded)
958 {
959 if (from_tty)
960 {
961 printf_unfiltered ("Symbols already loaded for %s\n", so -> so_name);
962 }
963 }
964 else if (catch_errors
965 (symbol_add_stub, (char *) so,
966 "Error while reading shared library symbols:\n",
967 RETURN_MASK_ALL))
968 {
969 so_last = so;
970 so -> symbols_loaded = 1;
971 }
972 }
973 }
974
975 /* Getting new symbols may change our opinion about what is
976 frameless. */
977 if (so_last)
978 reinit_frame_cache ();
979 }
980
981 /*
982
983 LOCAL FUNCTION
984
985 info_sharedlibrary_command -- code for "info sharedlibrary"
986
987 SYNOPSIS
988
989 static void info_sharedlibrary_command ()
990
991 DESCRIPTION
992
993 Walk through the shared library list and print information
994 about each attached library.
995 */
996
997 static void
998 info_sharedlibrary_command (ignore, from_tty)
999 char *ignore;
1000 int from_tty;
1001 {
1002 register struct so_list *so = NULL; /* link map state variable */
1003 int header_done = 0;
1004
1005 if (exec_bfd == NULL)
1006 {
1007 printf_unfiltered ("No exec file.\n");
1008 return;
1009 }
1010 while ((so = find_solib (so)) != NULL)
1011 {
1012 if (so -> so_name[0])
1013 {
1014 if (!header_done)
1015 {
1016 printf_unfiltered("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
1017 "Shared Object Library");
1018 header_done++;
1019 }
1020 printf_unfiltered ("%-12s",
1021 local_hex_string_custom ((unsigned long) LM_ADDR (so),
1022 "08l"));
1023 printf_unfiltered ("%-12s",
1024 local_hex_string_custom ((unsigned long) so -> lmend,
1025 "08l"));
1026 printf_unfiltered ("%-12s", so -> symbols_loaded ? "Yes" : "No");
1027 printf_unfiltered ("%s\n", so -> so_name);
1028 }
1029 }
1030 if (so_list_head == NULL)
1031 {
1032 printf_unfiltered ("No shared libraries loaded at this time.\n");
1033 }
1034 }
1035
1036 /*
1037
1038 GLOBAL FUNCTION
1039
1040 solib_address -- check to see if an address is in a shared lib
1041
1042 SYNOPSIS
1043
1044 char *solib_address (CORE_ADDR address)
1045
1046 DESCRIPTION
1047
1048 Provides a hook for other gdb routines to discover whether or
1049 not a particular address is within the mapped address space of
1050 a shared library. Any address between the base mapping address
1051 and the first address beyond the end of the last mapping, is
1052 considered to be within the shared library address space, for
1053 our purposes.
1054
1055 For example, this routine is called at one point to disable
1056 breakpoints which are in shared libraries that are not currently
1057 mapped in.
1058 */
1059
1060 char *
1061 solib_address (address)
1062 CORE_ADDR address;
1063 {
1064 register struct so_list *so = 0; /* link map state variable */
1065
1066 while ((so = find_solib (so)) != NULL)
1067 {
1068 if (so -> so_name[0])
1069 {
1070 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
1071 (address < (CORE_ADDR) so -> lmend))
1072 return (so->so_name);
1073 }
1074 }
1075 return (0);
1076 }
1077
1078 /* Called by free_all_symtabs */
1079
1080 void
1081 clear_solib()
1082 {
1083 struct so_list *next;
1084 char *bfd_filename;
1085
1086 disable_breakpoints_in_shlibs (1);
1087
1088 while (so_list_head)
1089 {
1090 if (so_list_head -> sections)
1091 {
1092 free ((PTR)so_list_head -> sections);
1093 }
1094 if (so_list_head -> abfd)
1095 {
1096 bfd_filename = bfd_get_filename (so_list_head -> abfd);
1097 if (!bfd_close (so_list_head -> abfd))
1098 warning ("cannot close \"%s\": %s",
1099 bfd_filename, bfd_errmsg (bfd_get_error ()));
1100 }
1101 else
1102 /* This happens for the executable on SVR4. */
1103 bfd_filename = NULL;
1104
1105 next = so_list_head -> next;
1106 if (bfd_filename)
1107 free ((PTR)bfd_filename);
1108 free (so_list_head->so_name);
1109 free ((PTR)so_list_head);
1110 so_list_head = next;
1111 }
1112 debug_base = 0;
1113 }
1114
1115 /*
1116
1117 LOCAL FUNCTION
1118
1119 disable_break -- remove the "mapping changed" breakpoint
1120
1121 SYNOPSIS
1122
1123 static int disable_break ()
1124
1125 DESCRIPTION
1126
1127 Removes the breakpoint that gets hit when the dynamic linker
1128 completes a mapping change.
1129
1130 */
1131
1132 static int
1133 disable_break ()
1134 {
1135 int status = 1;
1136
1137
1138 /* Note that breakpoint address and original contents are in our address
1139 space, so we just need to write the original contents back. */
1140
1141 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1142 {
1143 status = 0;
1144 }
1145
1146 /* For the SVR4 version, we always know the breakpoint address. For the
1147 SunOS version we don't know it until the above code is executed.
1148 Grumble if we are stopped anywhere besides the breakpoint address. */
1149
1150 if (stop_pc != breakpoint_addr)
1151 {
1152 warning ("stopped at unknown breakpoint while handling shared libraries");
1153 }
1154
1155 return (status);
1156 }
1157
1158 /*
1159
1160 LOCAL FUNCTION
1161
1162 enable_break -- arrange for dynamic linker to hit breakpoint
1163
1164 SYNOPSIS
1165
1166 int enable_break (void)
1167
1168 DESCRIPTION
1169
1170 This functions inserts a breakpoint at the entry point of the
1171 main executable, where all shared libraries are mapped in.
1172 */
1173
1174 static int
1175 enable_break ()
1176 {
1177 if (symfile_objfile != NULL
1178 && target_insert_breakpoint (symfile_objfile->ei.entry_point,
1179 shadow_contents) == 0)
1180 {
1181 breakpoint_addr = symfile_objfile->ei.entry_point;
1182 return 1;
1183 }
1184
1185 return 0;
1186 }
1187
1188 /*
1189
1190 GLOBAL FUNCTION
1191
1192 solib_create_inferior_hook -- shared library startup support
1193
1194 SYNOPSIS
1195
1196 void solib_create_inferior_hook()
1197
1198 DESCRIPTION
1199
1200 When gdb starts up the inferior, it nurses it along (through the
1201 shell) until it is ready to execute it's first instruction. At this
1202 point, this function gets called via expansion of the macro
1203 SOLIB_CREATE_INFERIOR_HOOK.
1204
1205 For SunOS executables, this first instruction is typically the
1206 one at "_start", or a similar text label, regardless of whether
1207 the executable is statically or dynamically linked. The runtime
1208 startup code takes care of dynamically linking in any shared
1209 libraries, once gdb allows the inferior to continue.
1210
1211 For SVR4 executables, this first instruction is either the first
1212 instruction in the dynamic linker (for dynamically linked
1213 executables) or the instruction at "start" for statically linked
1214 executables. For dynamically linked executables, the system
1215 first exec's /lib/libc.so.N, which contains the dynamic linker,
1216 and starts it running. The dynamic linker maps in any needed
1217 shared libraries, maps in the actual user executable, and then
1218 jumps to "start" in the user executable.
1219
1220 For both SunOS shared libraries, and SVR4 shared libraries, we
1221 can arrange to cooperate with the dynamic linker to discover the
1222 names of shared libraries that are dynamically linked, and the
1223 base addresses to which they are linked.
1224
1225 This function is responsible for discovering those names and
1226 addresses, and saving sufficient information about them to allow
1227 their symbols to be read at a later time.
1228
1229 FIXME
1230
1231 Between enable_break() and disable_break(), this code does not
1232 properly handle hitting breakpoints which the user might have
1233 set in the startup code or in the dynamic linker itself. Proper
1234 handling will probably have to wait until the implementation is
1235 changed to use the "breakpoint handler function" method.
1236
1237 Also, what if child has exit()ed? Must exit loop somehow.
1238 */
1239
1240 void
1241 solib_create_inferior_hook()
1242 {
1243 if (!enable_break ())
1244 {
1245 warning ("shared library handler failed to enable breakpoint");
1246 return;
1247 }
1248
1249 /* Now run the target. It will eventually hit the breakpoint, at
1250 which point all of the libraries will have been mapped in and we
1251 can go groveling around in the dynamic linker structures to find
1252 out what we need to know about them. */
1253
1254 clear_proceed_status ();
1255 stop_soon_quietly = 1;
1256 stop_signal = TARGET_SIGNAL_0;
1257 do
1258 {
1259 target_resume (-1, 0, stop_signal);
1260 wait_for_inferior ();
1261 }
1262 while (stop_signal != TARGET_SIGNAL_TRAP);
1263
1264 /* We are now either at the "mapping complete" breakpoint (or somewhere
1265 else, a condition we aren't prepared to deal with anyway), so adjust
1266 the PC as necessary after a breakpoint, disable the breakpoint, and
1267 add any shared libraries that were mapped in. */
1268
1269 if (DECR_PC_AFTER_BREAK)
1270 {
1271 stop_pc -= DECR_PC_AFTER_BREAK;
1272 write_register (PC_REGNUM, stop_pc);
1273 }
1274
1275 if (!disable_break ())
1276 {
1277 warning ("shared library handler failed to disable breakpoint");
1278 }
1279
1280 /* solib_add will call reinit_frame_cache.
1281 But we are stopped in the startup code and we might not have symbols
1282 for the startup code, so heuristic_proc_start could be called
1283 and will put out an annoying warning.
1284 Delaying the resetting of stop_soon_quietly until after symbol loading
1285 suppresses the warning. */
1286 if (auto_solib_add)
1287 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1288 stop_soon_quietly = 0;
1289 }
1290
1291 /*
1292
1293 LOCAL FUNCTION
1294
1295 sharedlibrary_command -- handle command to explicitly add library
1296
1297 SYNOPSIS
1298
1299 static void sharedlibrary_command (char *args, int from_tty)
1300
1301 DESCRIPTION
1302
1303 */
1304
1305 static void
1306 sharedlibrary_command (args, from_tty)
1307 char *args;
1308 int from_tty;
1309 {
1310 dont_repeat ();
1311 solib_add (args, from_tty, (struct target_ops *) 0);
1312 }
1313
1314 void
1315 _initialize_solib()
1316 {
1317 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1318 "Load shared object library symbols for files matching REGEXP.");
1319 add_info ("sharedlibrary", info_sharedlibrary_command,
1320 "Status of loaded shared object libraries.");
1321
1322 add_show_from_set
1323 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
1324 (char *) &auto_solib_add,
1325 "Set autoloading of shared library symbols.\n\
1326 If nonzero, symbols from all shared object libraries will be loaded\n\
1327 automatically when the inferior begins execution or when the dynamic linker\n\
1328 informs gdb that a new library has been loaded. Otherwise, symbols\n\
1329 must be loaded manually, using `sharedlibrary'.",
1330 &setlist),
1331 &showlist);
1332 }
1333
1334 \f
1335 /* Register that we are able to handle irix5 core file formats.
1336 This really is bfd_target_unknown_flavour */
1337
1338 static struct core_fns irix5_core_fns =
1339 {
1340 bfd_target_unknown_flavour,
1341 fetch_core_registers,
1342 NULL
1343 };
1344
1345 void
1346 _initialize_core_irix5 ()
1347 {
1348 add_core_fns (&irix5_core_fns);
1349 }