]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/lm32-tdep.c
e1b2582c1ff33c59e2b8b3a196838b02d216b228
[thirdparty/binutils-gdb.git] / gdb / lm32-tdep.c
1 /* Target-dependent code for Lattice Mico32 processor, for GDB.
2 Contributed by Jon Beniston <jon@beniston.com>
3
4 Copyright (C) 2009-2016 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "frame-unwind.h"
24 #include "frame-base.h"
25 #include "inferior.h"
26 #include "dis-asm.h"
27 #include "symfile.h"
28 #include "remote.h"
29 #include "gdbcore.h"
30 #include "gdb/sim-lm32.h"
31 #include "gdb/callback.h"
32 #include "gdb/remote-sim.h"
33 #include "sim-regno.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "trad-frame.h"
37 #include "reggroups.h"
38 #include "opcodes/lm32-desc.h"
39 #include <algorithm>
40
41 /* Macros to extract fields from an instruction. */
42 #define LM32_OPCODE(insn) ((insn >> 26) & 0x3f)
43 #define LM32_REG0(insn) ((insn >> 21) & 0x1f)
44 #define LM32_REG1(insn) ((insn >> 16) & 0x1f)
45 #define LM32_REG2(insn) ((insn >> 11) & 0x1f)
46 #define LM32_IMM16(insn) ((((long)insn & 0xffff) << 16) >> 16)
47
48 struct gdbarch_tdep
49 {
50 /* gdbarch target dependent data here. Currently unused for LM32. */
51 };
52
53 struct lm32_frame_cache
54 {
55 /* The frame's base. Used when constructing a frame ID. */
56 CORE_ADDR base;
57 CORE_ADDR pc;
58 /* Size of frame. */
59 int size;
60 /* Table indicating the location of each and every register. */
61 struct trad_frame_saved_reg *saved_regs;
62 };
63
64 /* Add the available register groups. */
65
66 static void
67 lm32_add_reggroups (struct gdbarch *gdbarch)
68 {
69 reggroup_add (gdbarch, general_reggroup);
70 reggroup_add (gdbarch, all_reggroup);
71 reggroup_add (gdbarch, system_reggroup);
72 }
73
74 /* Return whether a given register is in a given group. */
75
76 static int
77 lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
78 struct reggroup *group)
79 {
80 if (group == general_reggroup)
81 return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
82 || (regnum == SIM_LM32_PC_REGNUM);
83 else if (group == system_reggroup)
84 return ((regnum >= SIM_LM32_EA_REGNUM) && (regnum <= SIM_LM32_BA_REGNUM))
85 || ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
86 return default_register_reggroup_p (gdbarch, regnum, group);
87 }
88
89 /* Return a name that corresponds to the given register number. */
90
91 static const char *
92 lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
93 {
94 static char *register_names[] = {
95 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
96 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
97 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
98 "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
99 "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
100 };
101
102 if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
103 return NULL;
104 else
105 return register_names[reg_nr];
106 }
107
108 /* Return type of register. */
109
110 static struct type *
111 lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
112 {
113 return builtin_type (gdbarch)->builtin_int32;
114 }
115
116 /* Return non-zero if a register can't be written. */
117
118 static int
119 lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
120 {
121 return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
122 }
123
124 /* Analyze a function's prologue. */
125
126 static CORE_ADDR
127 lm32_analyze_prologue (struct gdbarch *gdbarch,
128 CORE_ADDR pc, CORE_ADDR limit,
129 struct lm32_frame_cache *info)
130 {
131 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
132 unsigned long instruction;
133
134 /* Keep reading though instructions, until we come across an instruction
135 that isn't likely to be part of the prologue. */
136 info->size = 0;
137 for (; pc < limit; pc += 4)
138 {
139
140 /* Read an instruction. */
141 instruction = read_memory_integer (pc, 4, byte_order);
142
143 if ((LM32_OPCODE (instruction) == OP_SW)
144 && (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
145 {
146 /* Any stack displaced store is likely part of the prologue.
147 Record that the register is being saved, and the offset
148 into the stack. */
149 info->saved_regs[LM32_REG1 (instruction)].addr =
150 LM32_IMM16 (instruction);
151 }
152 else if ((LM32_OPCODE (instruction) == OP_ADDI)
153 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
154 {
155 /* An add to the SP is likely to be part of the prologue.
156 Adjust stack size by whatever the instruction adds to the sp. */
157 info->size -= LM32_IMM16 (instruction);
158 }
159 else if ( /* add fp,fp,sp */
160 ((LM32_OPCODE (instruction) == OP_ADD)
161 && (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
162 && (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
163 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
164 /* mv fp,imm */
165 || ((LM32_OPCODE (instruction) == OP_ADDI)
166 && (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
167 && (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
168 {
169 /* Likely to be in the prologue for functions that require
170 a frame pointer. */
171 }
172 else
173 {
174 /* Any other instruction is likely not to be part of the
175 prologue. */
176 break;
177 }
178 }
179
180 return pc;
181 }
182
183 /* Return PC of first non prologue instruction, for the function at the
184 specified address. */
185
186 static CORE_ADDR
187 lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
188 {
189 CORE_ADDR func_addr, limit_pc;
190 struct lm32_frame_cache frame_info;
191 struct trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
192
193 /* See if we can determine the end of the prologue via the symbol table.
194 If so, then return either PC, or the PC after the prologue, whichever
195 is greater. */
196 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
197 {
198 CORE_ADDR post_prologue_pc
199 = skip_prologue_using_sal (gdbarch, func_addr);
200 if (post_prologue_pc != 0)
201 return std::max (pc, post_prologue_pc);
202 }
203
204 /* Can't determine prologue from the symbol table, need to examine
205 instructions. */
206
207 /* Find an upper limit on the function prologue using the debug
208 information. If the debug information could not be used to provide
209 that bound, then use an arbitrary large number as the upper bound. */
210 limit_pc = skip_prologue_using_sal (gdbarch, pc);
211 if (limit_pc == 0)
212 limit_pc = pc + 100; /* Magic. */
213
214 frame_info.saved_regs = saved_regs;
215 return lm32_analyze_prologue (gdbarch, pc, limit_pc, &frame_info);
216 }
217
218 /* Create a breakpoint instruction. */
219 constexpr gdb_byte lm32_break_insn[4] = { OP_RAISE << 2, 0, 0, 2 };
220
221 typedef BP_MANIPULATION (lm32_break_insn) lm32_breakpoint;
222
223
224 /* Setup registers and stack for faking a call to a function in the
225 inferior. */
226
227 static CORE_ADDR
228 lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
229 struct regcache *regcache, CORE_ADDR bp_addr,
230 int nargs, struct value **args, CORE_ADDR sp,
231 int struct_return, CORE_ADDR struct_addr)
232 {
233 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
234 int first_arg_reg = SIM_LM32_R1_REGNUM;
235 int num_arg_regs = 8;
236 int i;
237
238 /* Set the return address. */
239 regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
240
241 /* If we're returning a large struct, a pointer to the address to
242 store it at is passed as a first hidden parameter. */
243 if (struct_return)
244 {
245 regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
246 first_arg_reg++;
247 num_arg_regs--;
248 sp -= 4;
249 }
250
251 /* Setup parameters. */
252 for (i = 0; i < nargs; i++)
253 {
254 struct value *arg = args[i];
255 struct type *arg_type = check_typedef (value_type (arg));
256 gdb_byte *contents;
257 ULONGEST val;
258
259 /* Promote small integer types to int. */
260 switch (TYPE_CODE (arg_type))
261 {
262 case TYPE_CODE_INT:
263 case TYPE_CODE_BOOL:
264 case TYPE_CODE_CHAR:
265 case TYPE_CODE_RANGE:
266 case TYPE_CODE_ENUM:
267 if (TYPE_LENGTH (arg_type) < 4)
268 {
269 arg_type = builtin_type (gdbarch)->builtin_int32;
270 arg = value_cast (arg_type, arg);
271 }
272 break;
273 }
274
275 /* FIXME: Handle structures. */
276
277 contents = (gdb_byte *) value_contents (arg);
278 val = extract_unsigned_integer (contents, TYPE_LENGTH (arg_type),
279 byte_order);
280
281 /* First num_arg_regs parameters are passed by registers,
282 and the rest are passed on the stack. */
283 if (i < num_arg_regs)
284 regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
285 else
286 {
287 write_memory_unsigned_integer (sp, TYPE_LENGTH (arg_type), byte_order,
288 val);
289 sp -= 4;
290 }
291 }
292
293 /* Update stack pointer. */
294 regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
295
296 /* Return adjusted stack pointer. */
297 return sp;
298 }
299
300 /* Extract return value after calling a function in the inferior. */
301
302 static void
303 lm32_extract_return_value (struct type *type, struct regcache *regcache,
304 gdb_byte *valbuf)
305 {
306 struct gdbarch *gdbarch = get_regcache_arch (regcache);
307 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
308 ULONGEST l;
309 CORE_ADDR return_buffer;
310
311 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
312 && TYPE_CODE (type) != TYPE_CODE_UNION
313 && TYPE_CODE (type) != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
314 {
315 /* Return value is returned in a single register. */
316 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
317 store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, l);
318 }
319 else if ((TYPE_CODE (type) == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
320 {
321 /* 64-bit values are returned in a register pair. */
322 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
323 memcpy (valbuf, &l, 4);
324 regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
325 memcpy (valbuf + 4, &l, 4);
326 }
327 else
328 {
329 /* Aggregate types greater than a single register are returned
330 in memory. FIXME: Unless they are only 2 regs?. */
331 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
332 return_buffer = l;
333 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
334 }
335 }
336
337 /* Write into appropriate registers a function return value of type
338 TYPE, given in virtual format. */
339 static void
340 lm32_store_return_value (struct type *type, struct regcache *regcache,
341 const gdb_byte *valbuf)
342 {
343 struct gdbarch *gdbarch = get_regcache_arch (regcache);
344 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
345 ULONGEST val;
346 int len = TYPE_LENGTH (type);
347
348 if (len <= 4)
349 {
350 val = extract_unsigned_integer (valbuf, len, byte_order);
351 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
352 }
353 else if (len <= 8)
354 {
355 val = extract_unsigned_integer (valbuf, 4, byte_order);
356 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
357 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
358 regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
359 }
360 else
361 error (_("lm32_store_return_value: type length too large."));
362 }
363
364 /* Determine whether a functions return value is in a register or memory. */
365 static enum return_value_convention
366 lm32_return_value (struct gdbarch *gdbarch, struct value *function,
367 struct type *valtype, struct regcache *regcache,
368 gdb_byte *readbuf, const gdb_byte *writebuf)
369 {
370 enum type_code code = TYPE_CODE (valtype);
371
372 if (code == TYPE_CODE_STRUCT
373 || code == TYPE_CODE_UNION
374 || code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
375 return RETURN_VALUE_STRUCT_CONVENTION;
376
377 if (readbuf)
378 lm32_extract_return_value (valtype, regcache, readbuf);
379 if (writebuf)
380 lm32_store_return_value (valtype, regcache, writebuf);
381
382 return RETURN_VALUE_REGISTER_CONVENTION;
383 }
384
385 static CORE_ADDR
386 lm32_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
387 {
388 return frame_unwind_register_unsigned (next_frame, SIM_LM32_PC_REGNUM);
389 }
390
391 static CORE_ADDR
392 lm32_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
393 {
394 return frame_unwind_register_unsigned (next_frame, SIM_LM32_SP_REGNUM);
395 }
396
397 static struct frame_id
398 lm32_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
399 {
400 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
401
402 return frame_id_build (sp, get_frame_pc (this_frame));
403 }
404
405 /* Put here the code to store, into fi->saved_regs, the addresses of
406 the saved registers of frame described by FRAME_INFO. This
407 includes special registers such as pc and fp saved in special ways
408 in the stack frame. sp is even more special: the address we return
409 for it IS the sp for the next frame. */
410
411 static struct lm32_frame_cache *
412 lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
413 {
414 CORE_ADDR current_pc;
415 ULONGEST prev_sp;
416 ULONGEST this_base;
417 struct lm32_frame_cache *info;
418 int i;
419
420 if ((*this_prologue_cache))
421 return (struct lm32_frame_cache *) (*this_prologue_cache);
422
423 info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
424 (*this_prologue_cache) = info;
425 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
426
427 info->pc = get_frame_func (this_frame);
428 current_pc = get_frame_pc (this_frame);
429 lm32_analyze_prologue (get_frame_arch (this_frame),
430 info->pc, current_pc, info);
431
432 /* Compute the frame's base, and the previous frame's SP. */
433 this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
434 prev_sp = this_base + info->size;
435 info->base = this_base;
436
437 /* Convert callee save offsets into addresses. */
438 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
439 {
440 if (trad_frame_addr_p (info->saved_regs, i))
441 info->saved_regs[i].addr = this_base + info->saved_regs[i].addr;
442 }
443
444 /* The call instruction moves the caller's PC in the callee's RA register.
445 Since this is an unwind, do the reverse. Copy the location of RA register
446 into PC (the address / regnum) so that a request for PC will be
447 converted into a request for the RA register. */
448 info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
449
450 /* The previous frame's SP needed to be computed. Save the computed
451 value. */
452 trad_frame_set_value (info->saved_regs, SIM_LM32_SP_REGNUM, prev_sp);
453
454 return info;
455 }
456
457 static void
458 lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
459 struct frame_id *this_id)
460 {
461 struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
462
463 /* This marks the outermost frame. */
464 if (cache->base == 0)
465 return;
466
467 (*this_id) = frame_id_build (cache->base, cache->pc);
468 }
469
470 static struct value *
471 lm32_frame_prev_register (struct frame_info *this_frame,
472 void **this_prologue_cache, int regnum)
473 {
474 struct lm32_frame_cache *info;
475
476 info = lm32_frame_cache (this_frame, this_prologue_cache);
477 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
478 }
479
480 static const struct frame_unwind lm32_frame_unwind = {
481 NORMAL_FRAME,
482 default_frame_unwind_stop_reason,
483 lm32_frame_this_id,
484 lm32_frame_prev_register,
485 NULL,
486 default_frame_sniffer
487 };
488
489 static CORE_ADDR
490 lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
491 {
492 struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
493
494 return info->base;
495 }
496
497 static const struct frame_base lm32_frame_base = {
498 &lm32_frame_unwind,
499 lm32_frame_base_address,
500 lm32_frame_base_address,
501 lm32_frame_base_address
502 };
503
504 static CORE_ADDR
505 lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
506 {
507 /* Align to the size of an instruction (so that they can safely be
508 pushed onto the stack. */
509 return sp & ~3;
510 }
511
512 static struct gdbarch *
513 lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
514 {
515 struct gdbarch *gdbarch;
516 struct gdbarch_tdep *tdep;
517
518 /* If there is already a candidate, use it. */
519 arches = gdbarch_list_lookup_by_info (arches, &info);
520 if (arches != NULL)
521 return arches->gdbarch;
522
523 /* None found, create a new architecture from the information provided. */
524 tdep = XNEW (struct gdbarch_tdep);
525 gdbarch = gdbarch_alloc (&info, tdep);
526
527 /* Type sizes. */
528 set_gdbarch_short_bit (gdbarch, 16);
529 set_gdbarch_int_bit (gdbarch, 32);
530 set_gdbarch_long_bit (gdbarch, 32);
531 set_gdbarch_long_long_bit (gdbarch, 64);
532 set_gdbarch_float_bit (gdbarch, 32);
533 set_gdbarch_double_bit (gdbarch, 64);
534 set_gdbarch_long_double_bit (gdbarch, 64);
535 set_gdbarch_ptr_bit (gdbarch, 32);
536
537 /* Register info. */
538 set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
539 set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
540 set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
541 set_gdbarch_register_name (gdbarch, lm32_register_name);
542 set_gdbarch_register_type (gdbarch, lm32_register_type);
543 set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
544
545 /* Frame info. */
546 set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
547 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
548 set_gdbarch_decr_pc_after_break (gdbarch, 0);
549 set_gdbarch_frame_args_skip (gdbarch, 0);
550
551 /* Frame unwinding. */
552 set_gdbarch_frame_align (gdbarch, lm32_frame_align);
553 frame_base_set_default (gdbarch, &lm32_frame_base);
554 set_gdbarch_unwind_pc (gdbarch, lm32_unwind_pc);
555 set_gdbarch_unwind_sp (gdbarch, lm32_unwind_sp);
556 set_gdbarch_dummy_id (gdbarch, lm32_dummy_id);
557 frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
558
559 /* Breakpoints. */
560 set_gdbarch_breakpoint_kind_from_pc (gdbarch, lm32_breakpoint::kind_from_pc);
561 set_gdbarch_sw_breakpoint_from_kind (gdbarch, lm32_breakpoint::bp_from_kind);
562 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
563
564 /* Calling functions in the inferior. */
565 set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
566 set_gdbarch_return_value (gdbarch, lm32_return_value);
567
568 /* Instruction disassembler. */
569 set_gdbarch_print_insn (gdbarch, print_insn_lm32);
570
571 lm32_add_reggroups (gdbarch);
572 set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
573
574 return gdbarch;
575 }
576
577 /* -Wmissing-prototypes */
578 extern initialize_file_ftype _initialize_lm32_tdep;
579
580 void
581 _initialize_lm32_tdep (void)
582 {
583 register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);
584 }