]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/m32r-tdep.c
gdb: add back declarations for _initialize functions
[thirdparty/binutils-gdb.git] / gdb / m32r-tdep.c
1 /* Target-dependent code for Renesas M32R, for GDB.
2
3 Copyright (C) 1996-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-unwind.h"
23 #include "frame-base.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcmd.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "inferior.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "osabi.h"
33 #include "language.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "trad-frame.h"
37 #include "dis-asm.h"
38 #include "m32r-tdep.h"
39 #include <algorithm>
40
41 /* The size of the argument registers (r0 - r3) in bytes. */
42 #define M32R_ARG_REGISTER_SIZE 4
43
44 /* Local functions */
45
46 static CORE_ADDR
47 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
48 {
49 /* Align to the size of an instruction (so that they can safely be
50 pushed onto the stack. */
51 return sp & ~3;
52 }
53
54
55 /* Breakpoints
56
57 The little endian mode of M32R is unique. In most of architectures,
58 two 16-bit instructions, A and B, are placed as the following:
59
60 Big endian:
61 A0 A1 B0 B1
62
63 Little endian:
64 A1 A0 B1 B0
65
66 In M32R, they are placed like this:
67
68 Big endian:
69 A0 A1 B0 B1
70
71 Little endian:
72 B1 B0 A1 A0
73
74 This is because M32R always fetches instructions in 32-bit.
75
76 The following functions take care of this behavior. */
77
78 static int
79 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
80 struct bp_target_info *bp_tgt)
81 {
82 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
83 int val;
84 gdb_byte buf[4];
85 gdb_byte contents_cache[4];
86 gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */
87
88 /* Save the memory contents. */
89 val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
90 if (val != 0)
91 return val; /* return error */
92
93 memcpy (bp_tgt->shadow_contents, contents_cache, 4);
94 bp_tgt->shadow_len = 4;
95
96 /* Determine appropriate breakpoint contents and size for this address. */
97 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
98 {
99 if ((addr & 3) == 0)
100 {
101 buf[0] = bp_entry[0];
102 buf[1] = bp_entry[1];
103 buf[2] = contents_cache[2] & 0x7f;
104 buf[3] = contents_cache[3];
105 }
106 else
107 {
108 buf[0] = contents_cache[0];
109 buf[1] = contents_cache[1];
110 buf[2] = bp_entry[0];
111 buf[3] = bp_entry[1];
112 }
113 }
114 else /* little-endian */
115 {
116 if ((addr & 3) == 0)
117 {
118 buf[0] = contents_cache[0];
119 buf[1] = contents_cache[1] & 0x7f;
120 buf[2] = bp_entry[1];
121 buf[3] = bp_entry[0];
122 }
123 else
124 {
125 buf[0] = bp_entry[1];
126 buf[1] = bp_entry[0];
127 buf[2] = contents_cache[2];
128 buf[3] = contents_cache[3];
129 }
130 }
131
132 /* Write the breakpoint. */
133 val = target_write_memory (addr & 0xfffffffc, buf, 4);
134 return val;
135 }
136
137 static int
138 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
139 struct bp_target_info *bp_tgt)
140 {
141 CORE_ADDR addr = bp_tgt->placed_address;
142 int val;
143 gdb_byte buf[4];
144 gdb_byte *contents_cache = bp_tgt->shadow_contents;
145
146 buf[0] = contents_cache[0];
147 buf[1] = contents_cache[1];
148 buf[2] = contents_cache[2];
149 buf[3] = contents_cache[3];
150
151 /* Remove parallel bit. */
152 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
153 {
154 if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
155 buf[2] &= 0x7f;
156 }
157 else /* little-endian */
158 {
159 if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
160 buf[1] &= 0x7f;
161 }
162
163 /* Write contents. */
164 val = target_write_raw_memory (addr & 0xfffffffc, buf, 4);
165 return val;
166 }
167
168 /* Implement the breakpoint_kind_from_pc gdbarch method. */
169
170 static int
171 m32r_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
172 {
173 if ((*pcptr & 3) == 0)
174 return 4;
175 else
176 return 2;
177 }
178
179 /* Implement the sw_breakpoint_from_kind gdbarch method. */
180
181 static const gdb_byte *
182 m32r_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
183 {
184 static gdb_byte be_bp_entry[] = {
185 0x10, 0xf1, 0x70, 0x00
186 }; /* dpt -> nop */
187 static gdb_byte le_bp_entry[] = {
188 0x00, 0x70, 0xf1, 0x10
189 }; /* dpt -> nop */
190
191 *size = kind;
192
193 /* Determine appropriate breakpoint. */
194 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
195 return be_bp_entry;
196 else
197 {
198 if (kind == 4)
199 return le_bp_entry;
200 else
201 return le_bp_entry + 2;
202 }
203 }
204
205 static const char *m32r_register_names[] = {
206 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
207 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
208 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
209 "evb"
210 };
211
212 static const char *
213 m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
214 {
215 if (reg_nr < 0)
216 return NULL;
217 if (reg_nr >= M32R_NUM_REGS)
218 return NULL;
219 return m32r_register_names[reg_nr];
220 }
221
222
223 /* Return the GDB type object for the "standard" data type
224 of data in register N. */
225
226 static struct type *
227 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
228 {
229 if (reg_nr == M32R_PC_REGNUM)
230 return builtin_type (gdbarch)->builtin_func_ptr;
231 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
232 return builtin_type (gdbarch)->builtin_data_ptr;
233 else
234 return builtin_type (gdbarch)->builtin_int32;
235 }
236
237
238 /* Write into appropriate registers a function return value
239 of type TYPE, given in virtual format.
240
241 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
242
243 static void
244 m32r_store_return_value (struct type *type, struct regcache *regcache,
245 const gdb_byte *valbuf)
246 {
247 struct gdbarch *gdbarch = regcache->arch ();
248 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
249 CORE_ADDR regval;
250 int len = TYPE_LENGTH (type);
251
252 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
253 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
254
255 if (len > 4)
256 {
257 regval = extract_unsigned_integer (valbuf + 4,
258 len - 4, byte_order);
259 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
260 }
261 }
262
263 /* This is required by skip_prologue. The results of decoding a prologue
264 should be cached because this thrashing is getting nuts. */
265
266 static int
267 decode_prologue (struct gdbarch *gdbarch,
268 CORE_ADDR start_pc, CORE_ADDR scan_limit,
269 CORE_ADDR *pl_endptr, unsigned long *framelength)
270 {
271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
272 unsigned long framesize;
273 int insn;
274 int op1;
275 CORE_ADDR after_prologue = 0;
276 CORE_ADDR after_push = 0;
277 CORE_ADDR after_stack_adjust = 0;
278 CORE_ADDR current_pc;
279 LONGEST return_value;
280
281 framesize = 0;
282 after_prologue = 0;
283
284 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
285 {
286 /* Check if current pc's location is readable. */
287 if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value))
288 return -1;
289
290 insn = read_memory_unsigned_integer (current_pc, 2, byte_order);
291
292 if (insn == 0x0000)
293 break;
294
295 /* If this is a 32 bit instruction, we dont want to examine its
296 immediate data as though it were an instruction. */
297 if (current_pc & 0x02)
298 {
299 /* Decode this instruction further. */
300 insn &= 0x7fff;
301 }
302 else
303 {
304 if (insn & 0x8000)
305 {
306 if (current_pc == scan_limit)
307 scan_limit += 2; /* extend the search */
308
309 current_pc += 2; /* skip the immediate data */
310
311 /* Check if current pc's location is readable. */
312 if (!safe_read_memory_integer (current_pc, 2, byte_order,
313 &return_value))
314 return -1;
315
316 if (insn == 0x8faf) /* add3 sp, sp, xxxx */
317 /* add 16 bit sign-extended offset */
318 {
319 framesize +=
320 -((short) read_memory_unsigned_integer (current_pc,
321 2, byte_order));
322 }
323 else
324 {
325 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
326 && safe_read_memory_integer (current_pc + 2,
327 2, byte_order,
328 &return_value)
329 && read_memory_unsigned_integer (current_pc + 2,
330 2, byte_order)
331 == 0x0f24)
332 {
333 /* Subtract 24 bit sign-extended negative-offset. */
334 insn = read_memory_unsigned_integer (current_pc - 2,
335 4, byte_order);
336 if (insn & 0x00800000) /* sign extend */
337 insn |= 0xff000000; /* negative */
338 else
339 insn &= 0x00ffffff; /* positive */
340 framesize += insn;
341 }
342 }
343 after_push = current_pc + 2;
344 continue;
345 }
346 }
347 op1 = insn & 0xf000; /* Isolate just the first nibble. */
348
349 if ((insn & 0xf0ff) == 0x207f)
350 { /* st reg, @-sp */
351 framesize += 4;
352 after_prologue = 0;
353 continue;
354 }
355 if ((insn >> 8) == 0x4f) /* addi sp, xx */
356 /* Add 8 bit sign-extended offset. */
357 {
358 int stack_adjust = (signed char) (insn & 0xff);
359
360 /* there are probably two of these stack adjustments:
361 1) A negative one in the prologue, and
362 2) A positive one in the epilogue.
363 We are only interested in the first one. */
364
365 if (stack_adjust < 0)
366 {
367 framesize -= stack_adjust;
368 after_prologue = 0;
369 /* A frameless function may have no "mv fp, sp".
370 In that case, this is the end of the prologue. */
371 after_stack_adjust = current_pc + 2;
372 }
373 continue;
374 }
375 if (insn == 0x1d8f)
376 { /* mv fp, sp */
377 after_prologue = current_pc + 2;
378 break; /* end of stack adjustments */
379 }
380
381 /* Nop looks like a branch, continue explicitly. */
382 if (insn == 0x7000)
383 {
384 after_prologue = current_pc + 2;
385 continue; /* nop occurs between pushes. */
386 }
387 /* End of prolog if any of these are trap instructions. */
388 if ((insn & 0xfff0) == 0x10f0)
389 {
390 after_prologue = current_pc;
391 break;
392 }
393 /* End of prolog if any of these are branch instructions. */
394 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
395 {
396 after_prologue = current_pc;
397 continue;
398 }
399 /* Some of the branch instructions are mixed with other types. */
400 if (op1 == 0x1000)
401 {
402 int subop = insn & 0x0ff0;
403 if ((subop == 0x0ec0) || (subop == 0x0fc0))
404 {
405 after_prologue = current_pc;
406 continue; /* jmp , jl */
407 }
408 }
409 }
410
411 if (framelength)
412 *framelength = framesize;
413
414 if (current_pc >= scan_limit)
415 {
416 if (pl_endptr)
417 {
418 if (after_stack_adjust != 0)
419 /* We did not find a "mv fp,sp", but we DID find
420 a stack_adjust. Is it safe to use that as the
421 end of the prologue? I just don't know. */
422 {
423 *pl_endptr = after_stack_adjust;
424 }
425 else if (after_push != 0)
426 /* We did not find a "mv fp,sp", but we DID find
427 a push. Is it safe to use that as the
428 end of the prologue? I just don't know. */
429 {
430 *pl_endptr = after_push;
431 }
432 else
433 /* We reached the end of the loop without finding the end
434 of the prologue. No way to win -- we should report
435 failure. The way we do that is to return the original
436 start_pc. GDB will set a breakpoint at the start of
437 the function (etc.) */
438 *pl_endptr = start_pc;
439 }
440 return 0;
441 }
442
443 if (after_prologue == 0)
444 after_prologue = current_pc;
445
446 if (pl_endptr)
447 *pl_endptr = after_prologue;
448
449 return 0;
450 } /* decode_prologue */
451
452 /* Function: skip_prologue
453 Find end of function prologue. */
454
455 #define DEFAULT_SEARCH_LIMIT 128
456
457 static CORE_ADDR
458 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
459 {
460 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
461 CORE_ADDR func_addr, func_end;
462 struct symtab_and_line sal;
463 LONGEST return_value;
464
465 /* See what the symbol table says. */
466
467 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
468 {
469 sal = find_pc_line (func_addr, 0);
470
471 if (sal.line != 0 && sal.end <= func_end)
472 {
473 func_end = sal.end;
474 }
475 else
476 /* Either there's no line info, or the line after the prologue is after
477 the end of the function. In this case, there probably isn't a
478 prologue. */
479 {
480 func_end = std::min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
481 }
482 }
483 else
484 func_end = pc + DEFAULT_SEARCH_LIMIT;
485
486 /* If pc's location is not readable, just quit. */
487 if (!safe_read_memory_integer (pc, 4, byte_order, &return_value))
488 return pc;
489
490 /* Find the end of prologue. */
491 if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0)
492 return pc;
493
494 return sal.end;
495 }
496
497 struct m32r_unwind_cache
498 {
499 /* The previous frame's inner most stack address. Used as this
500 frame ID's stack_addr. */
501 CORE_ADDR prev_sp;
502 /* The frame's base, optionally used by the high-level debug info. */
503 CORE_ADDR base;
504 int size;
505 /* How far the SP and r13 (FP) have been offset from the start of
506 the stack frame (as defined by the previous frame's stack
507 pointer). */
508 LONGEST sp_offset;
509 LONGEST r13_offset;
510 int uses_frame;
511 /* Table indicating the location of each and every register. */
512 struct trad_frame_saved_reg *saved_regs;
513 };
514
515 /* Put here the code to store, into fi->saved_regs, the addresses of
516 the saved registers of frame described by FRAME_INFO. This
517 includes special registers such as pc and fp saved in special ways
518 in the stack frame. sp is even more special: the address we return
519 for it IS the sp for the next frame. */
520
521 static struct m32r_unwind_cache *
522 m32r_frame_unwind_cache (struct frame_info *this_frame,
523 void **this_prologue_cache)
524 {
525 CORE_ADDR pc, scan_limit;
526 ULONGEST prev_sp;
527 ULONGEST this_base;
528 unsigned long op;
529 int i;
530 struct m32r_unwind_cache *info;
531
532
533 if ((*this_prologue_cache))
534 return (struct m32r_unwind_cache *) (*this_prologue_cache);
535
536 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
537 (*this_prologue_cache) = info;
538 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
539
540 info->size = 0;
541 info->sp_offset = 0;
542 info->uses_frame = 0;
543
544 scan_limit = get_frame_pc (this_frame);
545 for (pc = get_frame_func (this_frame);
546 pc > 0 && pc < scan_limit; pc += 2)
547 {
548 if ((pc & 2) == 0)
549 {
550 op = get_frame_memory_unsigned (this_frame, pc, 4);
551 if ((op & 0x80000000) == 0x80000000)
552 {
553 /* 32-bit instruction */
554 if ((op & 0xffff0000) == 0x8faf0000)
555 {
556 /* add3 sp,sp,xxxx */
557 short n = op & 0xffff;
558 info->sp_offset += n;
559 }
560 else if (((op >> 8) == 0xe4)
561 && get_frame_memory_unsigned (this_frame, pc + 2,
562 2) == 0x0f24)
563 {
564 /* ld24 r4, xxxxxx; sub sp, r4 */
565 unsigned long n = op & 0xffffff;
566 info->sp_offset += n;
567 pc += 2; /* skip sub instruction */
568 }
569
570 if (pc == scan_limit)
571 scan_limit += 2; /* extend the search */
572 pc += 2; /* skip the immediate data */
573 continue;
574 }
575 }
576
577 /* 16-bit instructions */
578 op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff;
579 if ((op & 0xf0ff) == 0x207f)
580 {
581 /* st rn, @-sp */
582 int regno = ((op >> 8) & 0xf);
583 info->sp_offset -= 4;
584 info->saved_regs[regno].addr = info->sp_offset;
585 }
586 else if ((op & 0xff00) == 0x4f00)
587 {
588 /* addi sp, xx */
589 int n = (signed char) (op & 0xff);
590 info->sp_offset += n;
591 }
592 else if (op == 0x1d8f)
593 {
594 /* mv fp, sp */
595 info->uses_frame = 1;
596 info->r13_offset = info->sp_offset;
597 break; /* end of stack adjustments */
598 }
599 else if ((op & 0xfff0) == 0x10f0)
600 {
601 /* End of prologue if this is a trap instruction. */
602 break; /* End of stack adjustments. */
603 }
604 }
605
606 info->size = -info->sp_offset;
607
608 /* Compute the previous frame's stack pointer (which is also the
609 frame's ID's stack address), and this frame's base pointer. */
610 if (info->uses_frame)
611 {
612 /* The SP was moved to the FP. This indicates that a new frame
613 was created. Get THIS frame's FP value by unwinding it from
614 the next frame. */
615 this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM);
616 /* The FP points at the last saved register. Adjust the FP back
617 to before the first saved register giving the SP. */
618 prev_sp = this_base + info->size;
619 }
620 else
621 {
622 /* Assume that the FP is this frame's SP but with that pushed
623 stack space added back. */
624 this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
625 prev_sp = this_base + info->size;
626 }
627
628 /* Convert that SP/BASE into real addresses. */
629 info->prev_sp = prev_sp;
630 info->base = this_base;
631
632 /* Adjust all the saved registers so that they contain addresses and
633 not offsets. */
634 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
635 if (trad_frame_addr_p (info->saved_regs, i))
636 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
637
638 /* The call instruction moves the caller's PC in the callee's LR.
639 Since this is an unwind, do the reverse. Copy the location of LR
640 into PC (the address / regnum) so that a request for PC will be
641 converted into a request for the LR. */
642 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
643
644 /* The previous frame's SP needed to be computed. Save the computed
645 value. */
646 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
647
648 return info;
649 }
650
651 static CORE_ADDR
652 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
653 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
654 struct value **args, CORE_ADDR sp,
655 function_call_return_method return_method,
656 CORE_ADDR struct_addr)
657 {
658 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
659 int stack_offset, stack_alloc;
660 int argreg = ARG1_REGNUM;
661 int argnum;
662 struct type *type;
663 enum type_code typecode;
664 CORE_ADDR regval;
665 gdb_byte *val;
666 gdb_byte valbuf[M32R_ARG_REGISTER_SIZE];
667 int len;
668
669 /* First force sp to a 4-byte alignment. */
670 sp = sp & ~3;
671
672 /* Set the return address. For the m32r, the return breakpoint is
673 always at BP_ADDR. */
674 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
675
676 /* If STRUCT_RETURN is true, then the struct return address (in
677 STRUCT_ADDR) will consume the first argument-passing register.
678 Both adjust the register count and store that value. */
679 if (return_method == return_method_struct)
680 {
681 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
682 argreg++;
683 }
684
685 /* Now make sure there's space on the stack. */
686 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
687 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
688 sp -= stack_alloc; /* Make room on stack for args. */
689
690 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
691 {
692 type = value_type (args[argnum]);
693 typecode = TYPE_CODE (type);
694 len = TYPE_LENGTH (type);
695
696 memset (valbuf, 0, sizeof (valbuf));
697
698 /* Passes structures that do not fit in 2 registers by reference. */
699 if (len > 8
700 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
701 {
702 store_unsigned_integer (valbuf, 4, byte_order,
703 value_address (args[argnum]));
704 typecode = TYPE_CODE_PTR;
705 len = 4;
706 val = valbuf;
707 }
708 else if (len < 4)
709 {
710 /* Value gets right-justified in the register or stack word. */
711 memcpy (valbuf + (register_size (gdbarch, argreg) - len),
712 (gdb_byte *) value_contents (args[argnum]), len);
713 val = valbuf;
714 }
715 else
716 val = (gdb_byte *) value_contents (args[argnum]);
717
718 while (len > 0)
719 {
720 if (argreg > ARGN_REGNUM)
721 {
722 /* Must go on the stack. */
723 write_memory (sp + stack_offset, val, 4);
724 stack_offset += 4;
725 }
726 else if (argreg <= ARGN_REGNUM)
727 {
728 /* There's room in a register. */
729 regval =
730 extract_unsigned_integer (val,
731 register_size (gdbarch, argreg),
732 byte_order);
733 regcache_cooked_write_unsigned (regcache, argreg++, regval);
734 }
735
736 /* Store the value 4 bytes at a time. This means that things
737 larger than 4 bytes may go partly in registers and partly
738 on the stack. */
739 len -= register_size (gdbarch, argreg);
740 val += register_size (gdbarch, argreg);
741 }
742 }
743
744 /* Finally, update the SP register. */
745 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
746
747 return sp;
748 }
749
750
751 /* Given a return value in `regbuf' with a type `valtype',
752 extract and copy its value into `valbuf'. */
753
754 static void
755 m32r_extract_return_value (struct type *type, struct regcache *regcache,
756 gdb_byte *dst)
757 {
758 struct gdbarch *gdbarch = regcache->arch ();
759 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
760 int len = TYPE_LENGTH (type);
761 ULONGEST tmp;
762
763 /* By using store_unsigned_integer we avoid having to do
764 anything special for small big-endian values. */
765 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
766 store_unsigned_integer (dst, (len > 4 ? len - 4 : len), byte_order, tmp);
767
768 /* Ignore return values more than 8 bytes in size because the m32r
769 returns anything more than 8 bytes in the stack. */
770 if (len > 4)
771 {
772 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
773 store_unsigned_integer (dst + len - 4, 4, byte_order, tmp);
774 }
775 }
776
777 static enum return_value_convention
778 m32r_return_value (struct gdbarch *gdbarch, struct value *function,
779 struct type *valtype, struct regcache *regcache,
780 gdb_byte *readbuf, const gdb_byte *writebuf)
781 {
782 if (TYPE_LENGTH (valtype) > 8)
783 return RETURN_VALUE_STRUCT_CONVENTION;
784 else
785 {
786 if (readbuf != NULL)
787 m32r_extract_return_value (valtype, regcache, readbuf);
788 if (writebuf != NULL)
789 m32r_store_return_value (valtype, regcache, writebuf);
790 return RETURN_VALUE_REGISTER_CONVENTION;
791 }
792 }
793
794 /* Given a GDB frame, determine the address of the calling function's
795 frame. This will be used to create a new GDB frame struct. */
796
797 static void
798 m32r_frame_this_id (struct frame_info *this_frame,
799 void **this_prologue_cache, struct frame_id *this_id)
800 {
801 struct m32r_unwind_cache *info
802 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
803 CORE_ADDR base;
804 CORE_ADDR func;
805 struct bound_minimal_symbol msym_stack;
806 struct frame_id id;
807
808 /* The FUNC is easy. */
809 func = get_frame_func (this_frame);
810
811 /* Check if the stack is empty. */
812 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
813 if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack))
814 return;
815
816 /* Hopefully the prologue analysis either correctly determined the
817 frame's base (which is the SP from the previous frame), or set
818 that base to "NULL". */
819 base = info->prev_sp;
820 if (base == 0)
821 return;
822
823 id = frame_id_build (base, func);
824 (*this_id) = id;
825 }
826
827 static struct value *
828 m32r_frame_prev_register (struct frame_info *this_frame,
829 void **this_prologue_cache, int regnum)
830 {
831 struct m32r_unwind_cache *info
832 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
833 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
834 }
835
836 static const struct frame_unwind m32r_frame_unwind = {
837 NORMAL_FRAME,
838 default_frame_unwind_stop_reason,
839 m32r_frame_this_id,
840 m32r_frame_prev_register,
841 NULL,
842 default_frame_sniffer
843 };
844
845 static CORE_ADDR
846 m32r_frame_base_address (struct frame_info *this_frame, void **this_cache)
847 {
848 struct m32r_unwind_cache *info
849 = m32r_frame_unwind_cache (this_frame, this_cache);
850 return info->base;
851 }
852
853 static const struct frame_base m32r_frame_base = {
854 &m32r_frame_unwind,
855 m32r_frame_base_address,
856 m32r_frame_base_address,
857 m32r_frame_base_address
858 };
859
860 static gdbarch_init_ftype m32r_gdbarch_init;
861
862 static struct gdbarch *
863 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
864 {
865 struct gdbarch *gdbarch;
866 struct gdbarch_tdep *tdep;
867
868 /* If there is already a candidate, use it. */
869 arches = gdbarch_list_lookup_by_info (arches, &info);
870 if (arches != NULL)
871 return arches->gdbarch;
872
873 /* Allocate space for the new architecture. */
874 tdep = XCNEW (struct gdbarch_tdep);
875 gdbarch = gdbarch_alloc (&info, tdep);
876
877 set_gdbarch_wchar_bit (gdbarch, 16);
878 set_gdbarch_wchar_signed (gdbarch, 0);
879
880 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
881 set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM);
882 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
883 set_gdbarch_register_name (gdbarch, m32r_register_name);
884 set_gdbarch_register_type (gdbarch, m32r_register_type);
885
886 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
887 set_gdbarch_return_value (gdbarch, m32r_return_value);
888
889 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
890 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
891 set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32r_breakpoint_kind_from_pc);
892 set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32r_sw_breakpoint_from_kind);
893 set_gdbarch_memory_insert_breakpoint (gdbarch,
894 m32r_memory_insert_breakpoint);
895 set_gdbarch_memory_remove_breakpoint (gdbarch,
896 m32r_memory_remove_breakpoint);
897
898 set_gdbarch_frame_align (gdbarch, m32r_frame_align);
899
900 frame_base_set_default (gdbarch, &m32r_frame_base);
901
902 /* Hook in ABI-specific overrides, if they have been registered. */
903 gdbarch_init_osabi (info, gdbarch);
904
905 /* Hook in the default unwinders. */
906 frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind);
907
908 /* Support simple overlay manager. */
909 set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
910
911 return gdbarch;
912 }
913
914 void _initialize_m32r_tdep ();
915 void
916 _initialize_m32r_tdep ()
917 {
918 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
919 }