]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/macroexp.c
Update year range in copyright notice of all files owned by the GDB project.
[thirdparty/binutils-gdb.git] / gdb / macroexp.c
1 /* C preprocessor macro expansion for GDB.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
3 Contributed by Red Hat, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_obstack.h"
22 #include "bcache.h"
23 #include "macrotab.h"
24 #include "macroexp.h"
25 #include "c-lang.h"
26
27
28 \f
29 /* A resizeable, substringable string type. */
30
31
32 /* A string type that we can resize, quickly append to, and use to
33 refer to substrings of other strings. */
34 struct macro_buffer
35 {
36 /* An array of characters. The first LEN bytes are the real text,
37 but there are SIZE bytes allocated to the array. If SIZE is
38 zero, then this doesn't point to a malloc'ed block. If SHARED is
39 non-zero, then this buffer is actually a pointer into some larger
40 string, and we shouldn't append characters to it, etc. Because
41 of sharing, we can't assume in general that the text is
42 null-terminated. */
43 char *text;
44
45 /* The number of characters in the string. */
46 int len;
47
48 /* The number of characters allocated to the string. If SHARED is
49 non-zero, this is meaningless; in this case, we set it to zero so
50 that any "do we have room to append something?" tests will fail,
51 so we don't always have to check SHARED before using this field. */
52 int size;
53
54 /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc
55 block). Non-zero if TEXT is actually pointing into the middle of
56 some other block, and we shouldn't reallocate it. */
57 int shared;
58
59 /* For detecting token splicing.
60
61 This is the index in TEXT of the first character of the token
62 that abuts the end of TEXT. If TEXT contains no tokens, then we
63 set this equal to LEN. If TEXT ends in whitespace, then there is
64 no token abutting the end of TEXT (it's just whitespace), and
65 again, we set this equal to LEN. We set this to -1 if we don't
66 know the nature of TEXT. */
67 int last_token;
68
69 /* If this buffer is holding the result from get_token, then this
70 is non-zero if it is an identifier token, zero otherwise. */
71 int is_identifier;
72 };
73
74
75 /* Set the macro buffer *B to the empty string, guessing that its
76 final contents will fit in N bytes. (It'll get resized if it
77 doesn't, so the guess doesn't have to be right.) Allocate the
78 initial storage with xmalloc. */
79 static void
80 init_buffer (struct macro_buffer *b, int n)
81 {
82 b->size = n;
83 if (n > 0)
84 b->text = (char *) xmalloc (n);
85 else
86 b->text = NULL;
87 b->len = 0;
88 b->shared = 0;
89 b->last_token = -1;
90 }
91
92
93 /* Set the macro buffer *BUF to refer to the LEN bytes at ADDR, as a
94 shared substring. */
95 static void
96 init_shared_buffer (struct macro_buffer *buf, char *addr, int len)
97 {
98 buf->text = addr;
99 buf->len = len;
100 buf->shared = 1;
101 buf->size = 0;
102 buf->last_token = -1;
103 }
104
105
106 /* Free the text of the buffer B. Raise an error if B is shared. */
107 static void
108 free_buffer (struct macro_buffer *b)
109 {
110 gdb_assert (! b->shared);
111 if (b->size)
112 xfree (b->text);
113 }
114
115 /* Like free_buffer, but return the text as an xstrdup()d string.
116 This only exists to try to make the API relatively clean. */
117
118 static char *
119 free_buffer_return_text (struct macro_buffer *b)
120 {
121 gdb_assert (! b->shared);
122 gdb_assert (b->size);
123 /* Nothing to do. */
124 return b->text;
125 }
126
127 /* A cleanup function for macro buffers. */
128 static void
129 cleanup_macro_buffer (void *untyped_buf)
130 {
131 free_buffer ((struct macro_buffer *) untyped_buf);
132 }
133
134
135 /* Resize the buffer B to be at least N bytes long. Raise an error if
136 B shouldn't be resized. */
137 static void
138 resize_buffer (struct macro_buffer *b, int n)
139 {
140 /* We shouldn't be trying to resize shared strings. */
141 gdb_assert (! b->shared);
142
143 if (b->size == 0)
144 b->size = n;
145 else
146 while (b->size <= n)
147 b->size *= 2;
148
149 b->text = xrealloc (b->text, b->size);
150 }
151
152
153 /* Append the character C to the buffer B. */
154 static void
155 appendc (struct macro_buffer *b, int c)
156 {
157 int new_len = b->len + 1;
158
159 if (new_len > b->size)
160 resize_buffer (b, new_len);
161
162 b->text[b->len] = c;
163 b->len = new_len;
164 }
165
166
167 /* Append the LEN bytes at ADDR to the buffer B. */
168 static void
169 appendmem (struct macro_buffer *b, char *addr, int len)
170 {
171 int new_len = b->len + len;
172
173 if (new_len > b->size)
174 resize_buffer (b, new_len);
175
176 memcpy (b->text + b->len, addr, len);
177 b->len = new_len;
178 }
179
180
181 \f
182 /* Recognizing preprocessor tokens. */
183
184
185 int
186 macro_is_whitespace (int c)
187 {
188 return (c == ' '
189 || c == '\t'
190 || c == '\n'
191 || c == '\v'
192 || c == '\f');
193 }
194
195
196 int
197 macro_is_digit (int c)
198 {
199 return ('0' <= c && c <= '9');
200 }
201
202
203 int
204 macro_is_identifier_nondigit (int c)
205 {
206 return (c == '_'
207 || ('a' <= c && c <= 'z')
208 || ('A' <= c && c <= 'Z'));
209 }
210
211
212 static void
213 set_token (struct macro_buffer *tok, char *start, char *end)
214 {
215 init_shared_buffer (tok, start, end - start);
216 tok->last_token = 0;
217
218 /* Presumed; get_identifier may overwrite this. */
219 tok->is_identifier = 0;
220 }
221
222
223 static int
224 get_comment (struct macro_buffer *tok, char *p, char *end)
225 {
226 if (p + 2 > end)
227 return 0;
228 else if (p[0] == '/'
229 && p[1] == '*')
230 {
231 char *tok_start = p;
232
233 p += 2;
234
235 for (; p < end; p++)
236 if (p + 2 <= end
237 && p[0] == '*'
238 && p[1] == '/')
239 {
240 p += 2;
241 set_token (tok, tok_start, p);
242 return 1;
243 }
244
245 error (_("Unterminated comment in macro expansion."));
246 }
247 else if (p[0] == '/'
248 && p[1] == '/')
249 {
250 char *tok_start = p;
251
252 p += 2;
253 for (; p < end; p++)
254 if (*p == '\n')
255 break;
256
257 set_token (tok, tok_start, p);
258 return 1;
259 }
260 else
261 return 0;
262 }
263
264
265 static int
266 get_identifier (struct macro_buffer *tok, char *p, char *end)
267 {
268 if (p < end
269 && macro_is_identifier_nondigit (*p))
270 {
271 char *tok_start = p;
272
273 while (p < end
274 && (macro_is_identifier_nondigit (*p)
275 || macro_is_digit (*p)))
276 p++;
277
278 set_token (tok, tok_start, p);
279 tok->is_identifier = 1;
280 return 1;
281 }
282 else
283 return 0;
284 }
285
286
287 static int
288 get_pp_number (struct macro_buffer *tok, char *p, char *end)
289 {
290 if (p < end
291 && (macro_is_digit (*p)
292 || (*p == '.'
293 && p + 2 <= end
294 && macro_is_digit (p[1]))))
295 {
296 char *tok_start = p;
297
298 while (p < end)
299 {
300 if (p + 2 <= end
301 && strchr ("eEpP", *p)
302 && (p[1] == '+' || p[1] == '-'))
303 p += 2;
304 else if (macro_is_digit (*p)
305 || macro_is_identifier_nondigit (*p)
306 || *p == '.')
307 p++;
308 else
309 break;
310 }
311
312 set_token (tok, tok_start, p);
313 return 1;
314 }
315 else
316 return 0;
317 }
318
319
320
321 /* If the text starting at P going up to (but not including) END
322 starts with a character constant, set *TOK to point to that
323 character constant, and return 1. Otherwise, return zero.
324 Signal an error if it contains a malformed or incomplete character
325 constant. */
326 static int
327 get_character_constant (struct macro_buffer *tok, char *p, char *end)
328 {
329 /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1
330 But of course, what really matters is that we handle it the same
331 way GDB's C/C++ lexer does. So we call parse_escape in utils.c
332 to handle escape sequences. */
333 if ((p + 1 <= end && *p == '\'')
334 || (p + 2 <= end
335 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
336 && p[1] == '\''))
337 {
338 char *tok_start = p;
339 int char_count = 0;
340
341 if (*p == '\'')
342 p++;
343 else if (*p == 'L' || *p == 'u' || *p == 'U')
344 p += 2;
345 else
346 gdb_assert_not_reached ("unexpected character constant");
347
348 for (;;)
349 {
350 if (p >= end)
351 error (_("Unmatched single quote."));
352 else if (*p == '\'')
353 {
354 if (!char_count)
355 error (_("A character constant must contain at least one "
356 "character."));
357 p++;
358 break;
359 }
360 else if (*p == '\\')
361 {
362 const char *s, *o;
363
364 s = o = ++p;
365 char_count += c_parse_escape (&s, NULL);
366 p += s - o;
367 }
368 else
369 {
370 p++;
371 char_count++;
372 }
373 }
374
375 set_token (tok, tok_start, p);
376 return 1;
377 }
378 else
379 return 0;
380 }
381
382
383 /* If the text starting at P going up to (but not including) END
384 starts with a string literal, set *TOK to point to that string
385 literal, and return 1. Otherwise, return zero. Signal an error if
386 it contains a malformed or incomplete string literal. */
387 static int
388 get_string_literal (struct macro_buffer *tok, char *p, char *end)
389 {
390 if ((p + 1 <= end
391 && *p == '"')
392 || (p + 2 <= end
393 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
394 && p[1] == '"'))
395 {
396 char *tok_start = p;
397
398 if (*p == '"')
399 p++;
400 else if (*p == 'L' || *p == 'u' || *p == 'U')
401 p += 2;
402 else
403 gdb_assert_not_reached ("unexpected string literal");
404
405 for (;;)
406 {
407 if (p >= end)
408 error (_("Unterminated string in expression."));
409 else if (*p == '"')
410 {
411 p++;
412 break;
413 }
414 else if (*p == '\n')
415 error (_("Newline characters may not appear in string "
416 "constants."));
417 else if (*p == '\\')
418 {
419 const char *s, *o;
420
421 s = o = ++p;
422 c_parse_escape (&s, NULL);
423 p += s - o;
424 }
425 else
426 p++;
427 }
428
429 set_token (tok, tok_start, p);
430 return 1;
431 }
432 else
433 return 0;
434 }
435
436
437 static int
438 get_punctuator (struct macro_buffer *tok, char *p, char *end)
439 {
440 /* Here, speed is much less important than correctness and clarity. */
441
442 /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1.
443 Note that this table is ordered in a special way. A punctuator
444 which is a prefix of another punctuator must appear after its
445 "extension". Otherwise, the wrong token will be returned. */
446 static const char * const punctuators[] = {
447 "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
448 "...", ".",
449 "->", "--", "-=", "-",
450 "++", "+=", "+",
451 "*=", "*",
452 "!=", "!",
453 "&&", "&=", "&",
454 "/=", "/",
455 "%>", "%:%:", "%:", "%=", "%",
456 "^=", "^",
457 "##", "#",
458 ":>", ":",
459 "||", "|=", "|",
460 "<<=", "<<", "<=", "<:", "<%", "<",
461 ">>=", ">>", ">=", ">",
462 "==", "=",
463 0
464 };
465
466 int i;
467
468 if (p + 1 <= end)
469 {
470 for (i = 0; punctuators[i]; i++)
471 {
472 const char *punctuator = punctuators[i];
473
474 if (p[0] == punctuator[0])
475 {
476 int len = strlen (punctuator);
477
478 if (p + len <= end
479 && ! memcmp (p, punctuator, len))
480 {
481 set_token (tok, p, p + len);
482 return 1;
483 }
484 }
485 }
486 }
487
488 return 0;
489 }
490
491
492 /* Peel the next preprocessor token off of SRC, and put it in TOK.
493 Mutate TOK to refer to the first token in SRC, and mutate SRC to
494 refer to the text after that token. SRC must be a shared buffer;
495 the resulting TOK will be shared, pointing into the same string SRC
496 does. Initialize TOK's last_token field. Return non-zero if we
497 succeed, or 0 if we didn't find any more tokens in SRC. */
498 static int
499 get_token (struct macro_buffer *tok,
500 struct macro_buffer *src)
501 {
502 char *p = src->text;
503 char *end = p + src->len;
504
505 gdb_assert (src->shared);
506
507 /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
508
509 preprocessing-token:
510 header-name
511 identifier
512 pp-number
513 character-constant
514 string-literal
515 punctuator
516 each non-white-space character that cannot be one of the above
517
518 We don't have to deal with header-name tokens, since those can
519 only occur after a #include, which we will never see. */
520
521 while (p < end)
522 if (macro_is_whitespace (*p))
523 p++;
524 else if (get_comment (tok, p, end))
525 p += tok->len;
526 else if (get_pp_number (tok, p, end)
527 || get_character_constant (tok, p, end)
528 || get_string_literal (tok, p, end)
529 /* Note: the grammar in the standard seems to be
530 ambiguous: L'x' can be either a wide character
531 constant, or an identifier followed by a normal
532 character constant. By trying `get_identifier' after
533 we try get_character_constant and get_string_literal,
534 we give the wide character syntax precedence. Now,
535 since GDB doesn't handle wide character constants
536 anyway, is this the right thing to do? */
537 || get_identifier (tok, p, end)
538 || get_punctuator (tok, p, end))
539 {
540 /* How many characters did we consume, including whitespace? */
541 int consumed = p - src->text + tok->len;
542
543 src->text += consumed;
544 src->len -= consumed;
545 return 1;
546 }
547 else
548 {
549 /* We have found a "non-whitespace character that cannot be
550 one of the above." Make a token out of it. */
551 int consumed;
552
553 set_token (tok, p, p + 1);
554 consumed = p - src->text + tok->len;
555 src->text += consumed;
556 src->len -= consumed;
557 return 1;
558 }
559
560 return 0;
561 }
562
563
564 \f
565 /* Appending token strings, with and without splicing */
566
567
568 /* Append the macro buffer SRC to the end of DEST, and ensure that
569 doing so doesn't splice the token at the end of SRC with the token
570 at the beginning of DEST. SRC and DEST must have their last_token
571 fields set. Upon return, DEST's last_token field is set correctly.
572
573 For example:
574
575 If DEST is "(" and SRC is "y", then we can return with
576 DEST set to "(y" --- we've simply appended the two buffers.
577
578 However, if DEST is "x" and SRC is "y", then we must not return
579 with DEST set to "xy" --- that would splice the two tokens "x" and
580 "y" together to make a single token "xy". However, it would be
581 fine to return with DEST set to "x y". Similarly, "<" and "<" must
582 yield "< <", not "<<", etc. */
583 static void
584 append_tokens_without_splicing (struct macro_buffer *dest,
585 struct macro_buffer *src)
586 {
587 int original_dest_len = dest->len;
588 struct macro_buffer dest_tail, new_token;
589
590 gdb_assert (src->last_token != -1);
591 gdb_assert (dest->last_token != -1);
592
593 /* First, just try appending the two, and call get_token to see if
594 we got a splice. */
595 appendmem (dest, src->text, src->len);
596
597 /* If DEST originally had no token abutting its end, then we can't
598 have spliced anything, so we're done. */
599 if (dest->last_token == original_dest_len)
600 {
601 dest->last_token = original_dest_len + src->last_token;
602 return;
603 }
604
605 /* Set DEST_TAIL to point to the last token in DEST, followed by
606 all the stuff we just appended. */
607 init_shared_buffer (&dest_tail,
608 dest->text + dest->last_token,
609 dest->len - dest->last_token);
610
611 /* Re-parse DEST's last token. We know that DEST used to contain
612 at least one token, so if it doesn't contain any after the
613 append, then we must have spliced "/" and "*" or "/" and "/" to
614 make a comment start. (Just for the record, I got this right
615 the first time. This is not a bug fix.) */
616 if (get_token (&new_token, &dest_tail)
617 && (new_token.text + new_token.len
618 == dest->text + original_dest_len))
619 {
620 /* No splice, so we're done. */
621 dest->last_token = original_dest_len + src->last_token;
622 return;
623 }
624
625 /* Okay, a simple append caused a splice. Let's chop dest back to
626 its original length and try again, but separate the texts with a
627 space. */
628 dest->len = original_dest_len;
629 appendc (dest, ' ');
630 appendmem (dest, src->text, src->len);
631
632 init_shared_buffer (&dest_tail,
633 dest->text + dest->last_token,
634 dest->len - dest->last_token);
635
636 /* Try to re-parse DEST's last token, as above. */
637 if (get_token (&new_token, &dest_tail)
638 && (new_token.text + new_token.len
639 == dest->text + original_dest_len))
640 {
641 /* No splice, so we're done. */
642 dest->last_token = original_dest_len + 1 + src->last_token;
643 return;
644 }
645
646 /* As far as I know, there's no case where inserting a space isn't
647 enough to prevent a splice. */
648 internal_error (__FILE__, __LINE__,
649 _("unable to avoid splicing tokens during macro expansion"));
650 }
651
652 /* Stringify an argument, and insert it into DEST. ARG is the text to
653 stringify; it is LEN bytes long. */
654
655 static void
656 stringify (struct macro_buffer *dest, const char *arg, int len)
657 {
658 /* Trim initial whitespace from ARG. */
659 while (len > 0 && macro_is_whitespace (*arg))
660 {
661 ++arg;
662 --len;
663 }
664
665 /* Trim trailing whitespace from ARG. */
666 while (len > 0 && macro_is_whitespace (arg[len - 1]))
667 --len;
668
669 /* Insert the string. */
670 appendc (dest, '"');
671 while (len > 0)
672 {
673 /* We could try to handle strange cases here, like control
674 characters, but there doesn't seem to be much point. */
675 if (macro_is_whitespace (*arg))
676 {
677 /* Replace a sequence of whitespace with a single space. */
678 appendc (dest, ' ');
679 while (len > 1 && macro_is_whitespace (arg[1]))
680 {
681 ++arg;
682 --len;
683 }
684 }
685 else if (*arg == '\\' || *arg == '"')
686 {
687 appendc (dest, '\\');
688 appendc (dest, *arg);
689 }
690 else
691 appendc (dest, *arg);
692 ++arg;
693 --len;
694 }
695 appendc (dest, '"');
696 dest->last_token = dest->len;
697 }
698
699 /* See macroexp.h. */
700
701 char *
702 macro_stringify (const char *str)
703 {
704 struct macro_buffer buffer;
705 int len = strlen (str);
706
707 init_buffer (&buffer, len);
708 stringify (&buffer, str, len);
709 appendc (&buffer, '\0');
710
711 return free_buffer_return_text (&buffer);
712 }
713
714 \f
715 /* Expanding macros! */
716
717
718 /* A singly-linked list of the names of the macros we are currently
719 expanding --- for detecting expansion loops. */
720 struct macro_name_list {
721 const char *name;
722 struct macro_name_list *next;
723 };
724
725
726 /* Return non-zero if we are currently expanding the macro named NAME,
727 according to LIST; otherwise, return zero.
728
729 You know, it would be possible to get rid of all the NO_LOOP
730 arguments to these functions by simply generating a new lookup
731 function and baton which refuses to find the definition for a
732 particular macro, and otherwise delegates the decision to another
733 function/baton pair. But that makes the linked list of excluded
734 macros chained through untyped baton pointers, which will make it
735 harder to debug. :( */
736 static int
737 currently_rescanning (struct macro_name_list *list, const char *name)
738 {
739 for (; list; list = list->next)
740 if (strcmp (name, list->name) == 0)
741 return 1;
742
743 return 0;
744 }
745
746
747 /* Gather the arguments to a macro expansion.
748
749 NAME is the name of the macro being invoked. (It's only used for
750 printing error messages.)
751
752 Assume that SRC is the text of the macro invocation immediately
753 following the macro name. For example, if we're processing the
754 text foo(bar, baz), then NAME would be foo and SRC will be (bar,
755 baz).
756
757 If SRC doesn't start with an open paren ( token at all, return
758 zero, leave SRC unchanged, and don't set *ARGC_P to anything.
759
760 If SRC doesn't contain a properly terminated argument list, then
761 raise an error.
762
763 For a variadic macro, NARGS holds the number of formal arguments to
764 the macro. For a GNU-style variadic macro, this should be the
765 number of named arguments. For a non-variadic macro, NARGS should
766 be -1.
767
768 Otherwise, return a pointer to the first element of an array of
769 macro buffers referring to the argument texts, and set *ARGC_P to
770 the number of arguments we found --- the number of elements in the
771 array. The macro buffers share their text with SRC, and their
772 last_token fields are initialized. The array is allocated with
773 xmalloc, and the caller is responsible for freeing it.
774
775 NOTE WELL: if SRC starts with a open paren ( token followed
776 immediately by a close paren ) token (e.g., the invocation looks
777 like "foo()"), we treat that as one argument, which happens to be
778 the empty list of tokens. The caller should keep in mind that such
779 a sequence of tokens is a valid way to invoke one-parameter
780 function-like macros, but also a valid way to invoke zero-parameter
781 function-like macros. Eeew.
782
783 Consume the tokens from SRC; after this call, SRC contains the text
784 following the invocation. */
785
786 static struct macro_buffer *
787 gather_arguments (const char *name, struct macro_buffer *src,
788 int nargs, int *argc_p)
789 {
790 struct macro_buffer tok;
791 int args_len, args_size;
792 struct macro_buffer *args = NULL;
793 struct cleanup *back_to = make_cleanup (free_current_contents, &args);
794
795 /* Does SRC start with an opening paren token? Read from a copy of
796 SRC, so SRC itself is unaffected if we don't find an opening
797 paren. */
798 {
799 struct macro_buffer temp;
800
801 init_shared_buffer (&temp, src->text, src->len);
802
803 if (! get_token (&tok, &temp)
804 || tok.len != 1
805 || tok.text[0] != '(')
806 {
807 discard_cleanups (back_to);
808 return 0;
809 }
810 }
811
812 /* Consume SRC's opening paren. */
813 get_token (&tok, src);
814
815 args_len = 0;
816 args_size = 6;
817 args = (struct macro_buffer *) xmalloc (sizeof (*args) * args_size);
818
819 for (;;)
820 {
821 struct macro_buffer *arg;
822 int depth;
823
824 /* Make sure we have room for the next argument. */
825 if (args_len >= args_size)
826 {
827 args_size *= 2;
828 args = xrealloc (args, sizeof (*args) * args_size);
829 }
830
831 /* Initialize the next argument. */
832 arg = &args[args_len++];
833 set_token (arg, src->text, src->text);
834
835 /* Gather the argument's tokens. */
836 depth = 0;
837 for (;;)
838 {
839 if (! get_token (&tok, src))
840 error (_("Malformed argument list for macro `%s'."), name);
841
842 /* Is tok an opening paren? */
843 if (tok.len == 1 && tok.text[0] == '(')
844 depth++;
845
846 /* Is tok is a closing paren? */
847 else if (tok.len == 1 && tok.text[0] == ')')
848 {
849 /* If it's a closing paren at the top level, then that's
850 the end of the argument list. */
851 if (depth == 0)
852 {
853 /* In the varargs case, the last argument may be
854 missing. Add an empty argument in this case. */
855 if (nargs != -1 && args_len == nargs - 1)
856 {
857 /* Make sure we have room for the argument. */
858 if (args_len >= args_size)
859 {
860 args_size++;
861 args = xrealloc (args, sizeof (*args) * args_size);
862 }
863 arg = &args[args_len++];
864 set_token (arg, src->text, src->text);
865 }
866
867 discard_cleanups (back_to);
868 *argc_p = args_len;
869 return args;
870 }
871
872 depth--;
873 }
874
875 /* If tok is a comma at top level, then that's the end of
876 the current argument. However, if we are handling a
877 variadic macro and we are computing the last argument, we
878 want to include the comma and remaining tokens. */
879 else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
880 && (nargs == -1 || args_len < nargs))
881 break;
882
883 /* Extend the current argument to enclose this token. If
884 this is the current argument's first token, leave out any
885 leading whitespace, just for aesthetics. */
886 if (arg->len == 0)
887 {
888 arg->text = tok.text;
889 arg->len = tok.len;
890 arg->last_token = 0;
891 }
892 else
893 {
894 arg->len = (tok.text + tok.len) - arg->text;
895 arg->last_token = tok.text - arg->text;
896 }
897 }
898 }
899 }
900
901
902 /* The `expand' and `substitute_args' functions both invoke `scan'
903 recursively, so we need a forward declaration somewhere. */
904 static void scan (struct macro_buffer *dest,
905 struct macro_buffer *src,
906 struct macro_name_list *no_loop,
907 macro_lookup_ftype *lookup_func,
908 void *lookup_baton);
909
910
911 /* A helper function for substitute_args.
912
913 ARGV is a vector of all the arguments; ARGC is the number of
914 arguments. IS_VARARGS is true if the macro being substituted is a
915 varargs macro; in this case VA_ARG_NAME is the name of the
916 "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is
917 false.
918
919 If the token TOK is the name of a parameter, return the parameter's
920 index. If TOK is not an argument, return -1. */
921
922 static int
923 find_parameter (const struct macro_buffer *tok,
924 int is_varargs, const struct macro_buffer *va_arg_name,
925 int argc, const char * const *argv)
926 {
927 int i;
928
929 if (! tok->is_identifier)
930 return -1;
931
932 for (i = 0; i < argc; ++i)
933 if (tok->len == strlen (argv[i])
934 && !memcmp (tok->text, argv[i], tok->len))
935 return i;
936
937 if (is_varargs && tok->len == va_arg_name->len
938 && ! memcmp (tok->text, va_arg_name->text, tok->len))
939 return argc - 1;
940
941 return -1;
942 }
943
944 /* Given the macro definition DEF, being invoked with the actual
945 arguments given by ARGC and ARGV, substitute the arguments into the
946 replacement list, and store the result in DEST.
947
948 IS_VARARGS should be true if DEF is a varargs macro. In this case,
949 VA_ARG_NAME should be the name of the "variable" argument -- either
950 __VA_ARGS__ for c99-style varargs, or the final argument name, for
951 GNU-style varargs. If IS_VARARGS is false, this parameter is
952 ignored.
953
954 If it is necessary to expand macro invocations in one of the
955 arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
956 definitions, and don't expand invocations of the macros listed in
957 NO_LOOP. */
958
959 static void
960 substitute_args (struct macro_buffer *dest,
961 struct macro_definition *def,
962 int is_varargs, const struct macro_buffer *va_arg_name,
963 int argc, struct macro_buffer *argv,
964 struct macro_name_list *no_loop,
965 macro_lookup_ftype *lookup_func,
966 void *lookup_baton)
967 {
968 /* A macro buffer for the macro's replacement list. */
969 struct macro_buffer replacement_list;
970 /* The token we are currently considering. */
971 struct macro_buffer tok;
972 /* The replacement list's pointer from just before TOK was lexed. */
973 char *original_rl_start;
974 /* We have a single lookahead token to handle token splicing. */
975 struct macro_buffer lookahead;
976 /* The lookahead token might not be valid. */
977 int lookahead_valid;
978 /* The replacement list's pointer from just before LOOKAHEAD was
979 lexed. */
980 char *lookahead_rl_start;
981
982 init_shared_buffer (&replacement_list, (char *) def->replacement,
983 strlen (def->replacement));
984
985 gdb_assert (dest->len == 0);
986 dest->last_token = 0;
987
988 original_rl_start = replacement_list.text;
989 if (! get_token (&tok, &replacement_list))
990 return;
991 lookahead_rl_start = replacement_list.text;
992 lookahead_valid = get_token (&lookahead, &replacement_list);
993
994 for (;;)
995 {
996 /* Just for aesthetics. If we skipped some whitespace, copy
997 that to DEST. */
998 if (tok.text > original_rl_start)
999 {
1000 appendmem (dest, original_rl_start, tok.text - original_rl_start);
1001 dest->last_token = dest->len;
1002 }
1003
1004 /* Is this token the stringification operator? */
1005 if (tok.len == 1
1006 && tok.text[0] == '#')
1007 {
1008 int arg;
1009
1010 if (!lookahead_valid)
1011 error (_("Stringification operator requires an argument."));
1012
1013 arg = find_parameter (&lookahead, is_varargs, va_arg_name,
1014 def->argc, def->argv);
1015 if (arg == -1)
1016 error (_("Argument to stringification operator must name "
1017 "a macro parameter."));
1018
1019 stringify (dest, argv[arg].text, argv[arg].len);
1020
1021 /* Read one token and let the loop iteration code handle the
1022 rest. */
1023 lookahead_rl_start = replacement_list.text;
1024 lookahead_valid = get_token (&lookahead, &replacement_list);
1025 }
1026 /* Is this token the splicing operator? */
1027 else if (tok.len == 2
1028 && tok.text[0] == '#'
1029 && tok.text[1] == '#')
1030 error (_("Stray splicing operator"));
1031 /* Is the next token the splicing operator? */
1032 else if (lookahead_valid
1033 && lookahead.len == 2
1034 && lookahead.text[0] == '#'
1035 && lookahead.text[1] == '#')
1036 {
1037 int finished = 0;
1038 int prev_was_comma = 0;
1039
1040 /* Note that GCC warns if the result of splicing is not a
1041 token. In the debugger there doesn't seem to be much
1042 benefit from doing this. */
1043
1044 /* Insert the first token. */
1045 if (tok.len == 1 && tok.text[0] == ',')
1046 prev_was_comma = 1;
1047 else
1048 {
1049 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1050 def->argc, def->argv);
1051
1052 if (arg != -1)
1053 appendmem (dest, argv[arg].text, argv[arg].len);
1054 else
1055 appendmem (dest, tok.text, tok.len);
1056 }
1057
1058 /* Apply a possible sequence of ## operators. */
1059 for (;;)
1060 {
1061 if (! get_token (&tok, &replacement_list))
1062 error (_("Splicing operator at end of macro"));
1063
1064 /* Handle a comma before a ##. If we are handling
1065 varargs, and the token on the right hand side is the
1066 varargs marker, and the final argument is empty or
1067 missing, then drop the comma. This is a GNU
1068 extension. There is one ambiguous case here,
1069 involving pedantic behavior with an empty argument,
1070 but we settle that in favor of GNU-style (GCC uses an
1071 option). If we aren't dealing with varargs, we
1072 simply insert the comma. */
1073 if (prev_was_comma)
1074 {
1075 if (! (is_varargs
1076 && tok.len == va_arg_name->len
1077 && !memcmp (tok.text, va_arg_name->text, tok.len)
1078 && argv[argc - 1].len == 0))
1079 appendmem (dest, ",", 1);
1080 prev_was_comma = 0;
1081 }
1082
1083 /* Insert the token. If it is a parameter, insert the
1084 argument. If it is a comma, treat it specially. */
1085 if (tok.len == 1 && tok.text[0] == ',')
1086 prev_was_comma = 1;
1087 else
1088 {
1089 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1090 def->argc, def->argv);
1091
1092 if (arg != -1)
1093 appendmem (dest, argv[arg].text, argv[arg].len);
1094 else
1095 appendmem (dest, tok.text, tok.len);
1096 }
1097
1098 /* Now read another token. If it is another splice, we
1099 loop. */
1100 original_rl_start = replacement_list.text;
1101 if (! get_token (&tok, &replacement_list))
1102 {
1103 finished = 1;
1104 break;
1105 }
1106
1107 if (! (tok.len == 2
1108 && tok.text[0] == '#'
1109 && tok.text[1] == '#'))
1110 break;
1111 }
1112
1113 if (prev_was_comma)
1114 {
1115 /* We saw a comma. Insert it now. */
1116 appendmem (dest, ",", 1);
1117 }
1118
1119 dest->last_token = dest->len;
1120 if (finished)
1121 lookahead_valid = 0;
1122 else
1123 {
1124 /* Set up for the loop iterator. */
1125 lookahead = tok;
1126 lookahead_rl_start = original_rl_start;
1127 lookahead_valid = 1;
1128 }
1129 }
1130 else
1131 {
1132 /* Is this token an identifier? */
1133 int substituted = 0;
1134 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1135 def->argc, def->argv);
1136
1137 if (arg != -1)
1138 {
1139 struct macro_buffer arg_src;
1140
1141 /* Expand any macro invocations in the argument text,
1142 and append the result to dest. Remember that scan
1143 mutates its source, so we need to scan a new buffer
1144 referring to the argument's text, not the argument
1145 itself. */
1146 init_shared_buffer (&arg_src, argv[arg].text, argv[arg].len);
1147 scan (dest, &arg_src, no_loop, lookup_func, lookup_baton);
1148 substituted = 1;
1149 }
1150
1151 /* If it wasn't a parameter, then just copy it across. */
1152 if (! substituted)
1153 append_tokens_without_splicing (dest, &tok);
1154 }
1155
1156 if (! lookahead_valid)
1157 break;
1158
1159 tok = lookahead;
1160 original_rl_start = lookahead_rl_start;
1161
1162 lookahead_rl_start = replacement_list.text;
1163 lookahead_valid = get_token (&lookahead, &replacement_list);
1164 }
1165 }
1166
1167
1168 /* Expand a call to a macro named ID, whose definition is DEF. Append
1169 its expansion to DEST. SRC is the input text following the ID
1170 token. We are currently rescanning the expansions of the macros
1171 named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and
1172 LOOKUP_BATON to find definitions for any nested macro references.
1173
1174 Return 1 if we decided to expand it, zero otherwise. (If it's a
1175 function-like macro name that isn't followed by an argument list,
1176 we don't expand it.) If we return zero, leave SRC unchanged. */
1177 static int
1178 expand (const char *id,
1179 struct macro_definition *def,
1180 struct macro_buffer *dest,
1181 struct macro_buffer *src,
1182 struct macro_name_list *no_loop,
1183 macro_lookup_ftype *lookup_func,
1184 void *lookup_baton)
1185 {
1186 struct macro_name_list new_no_loop;
1187
1188 /* Create a new node to be added to the front of the no-expand list.
1189 This list is appropriate for re-scanning replacement lists, but
1190 it is *not* appropriate for scanning macro arguments; invocations
1191 of the macro whose arguments we are gathering *do* get expanded
1192 there. */
1193 new_no_loop.name = id;
1194 new_no_loop.next = no_loop;
1195
1196 /* What kind of macro are we expanding? */
1197 if (def->kind == macro_object_like)
1198 {
1199 struct macro_buffer replacement_list;
1200
1201 init_shared_buffer (&replacement_list, (char *) def->replacement,
1202 strlen (def->replacement));
1203
1204 scan (dest, &replacement_list, &new_no_loop, lookup_func, lookup_baton);
1205 return 1;
1206 }
1207 else if (def->kind == macro_function_like)
1208 {
1209 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1210 int argc = 0;
1211 struct macro_buffer *argv = NULL;
1212 struct macro_buffer substituted;
1213 struct macro_buffer substituted_src;
1214 struct macro_buffer va_arg_name = {0};
1215 int is_varargs = 0;
1216
1217 if (def->argc >= 1)
1218 {
1219 if (strcmp (def->argv[def->argc - 1], "...") == 0)
1220 {
1221 /* In C99-style varargs, substitution is done using
1222 __VA_ARGS__. */
1223 init_shared_buffer (&va_arg_name, "__VA_ARGS__",
1224 strlen ("__VA_ARGS__"));
1225 is_varargs = 1;
1226 }
1227 else
1228 {
1229 int len = strlen (def->argv[def->argc - 1]);
1230
1231 if (len > 3
1232 && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1233 {
1234 /* In GNU-style varargs, the name of the
1235 substitution parameter is the name of the formal
1236 argument without the "...". */
1237 init_shared_buffer (&va_arg_name,
1238 (char *) def->argv[def->argc - 1],
1239 len - 3);
1240 is_varargs = 1;
1241 }
1242 }
1243 }
1244
1245 make_cleanup (free_current_contents, &argv);
1246 argv = gather_arguments (id, src, is_varargs ? def->argc : -1,
1247 &argc);
1248
1249 /* If we couldn't find any argument list, then we don't expand
1250 this macro. */
1251 if (! argv)
1252 {
1253 do_cleanups (back_to);
1254 return 0;
1255 }
1256
1257 /* Check that we're passing an acceptable number of arguments for
1258 this macro. */
1259 if (argc != def->argc)
1260 {
1261 if (is_varargs && argc >= def->argc - 1)
1262 {
1263 /* Ok. */
1264 }
1265 /* Remember that a sequence of tokens like "foo()" is a
1266 valid invocation of a macro expecting either zero or one
1267 arguments. */
1268 else if (! (argc == 1
1269 && argv[0].len == 0
1270 && def->argc == 0))
1271 error (_("Wrong number of arguments to macro `%s' "
1272 "(expected %d, got %d)."),
1273 id, def->argc, argc);
1274 }
1275
1276 /* Note that we don't expand macro invocations in the arguments
1277 yet --- we let subst_args take care of that. Parameters that
1278 appear as operands of the stringifying operator "#" or the
1279 splicing operator "##" don't get macro references expanded,
1280 so we can't really tell whether it's appropriate to macro-
1281 expand an argument until we see how it's being used. */
1282 init_buffer (&substituted, 0);
1283 make_cleanup (cleanup_macro_buffer, &substituted);
1284 substitute_args (&substituted, def, is_varargs, &va_arg_name,
1285 argc, argv, no_loop, lookup_func, lookup_baton);
1286
1287 /* Now `substituted' is the macro's replacement list, with all
1288 argument values substituted into it properly. Re-scan it for
1289 macro references, but don't expand invocations of this macro.
1290
1291 We create a new buffer, `substituted_src', which points into
1292 `substituted', and scan that. We can't scan `substituted'
1293 itself, since the tokenization process moves the buffer's
1294 text pointer around, and we still need to be able to find
1295 `substituted's original text buffer after scanning it so we
1296 can free it. */
1297 init_shared_buffer (&substituted_src, substituted.text, substituted.len);
1298 scan (dest, &substituted_src, &new_no_loop, lookup_func, lookup_baton);
1299
1300 do_cleanups (back_to);
1301
1302 return 1;
1303 }
1304 else
1305 internal_error (__FILE__, __LINE__, _("bad macro definition kind"));
1306 }
1307
1308
1309 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1310 constitute a macro invokation not forbidden in NO_LOOP, append its
1311 expansion to DEST and return non-zero. Otherwise, return zero, and
1312 leave DEST unchanged.
1313
1314 SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one.
1315 SRC_FIRST must be a string built by get_token. */
1316 static int
1317 maybe_expand (struct macro_buffer *dest,
1318 struct macro_buffer *src_first,
1319 struct macro_buffer *src_rest,
1320 struct macro_name_list *no_loop,
1321 macro_lookup_ftype *lookup_func,
1322 void *lookup_baton)
1323 {
1324 gdb_assert (src_first->shared);
1325 gdb_assert (src_rest->shared);
1326 gdb_assert (! dest->shared);
1327
1328 /* Is this token an identifier? */
1329 if (src_first->is_identifier)
1330 {
1331 /* Make a null-terminated copy of it, since that's what our
1332 lookup function expects. */
1333 char *id = xmalloc (src_first->len + 1);
1334 struct cleanup *back_to = make_cleanup (xfree, id);
1335
1336 memcpy (id, src_first->text, src_first->len);
1337 id[src_first->len] = 0;
1338
1339 /* If we're currently re-scanning the result of expanding
1340 this macro, don't expand it again. */
1341 if (! currently_rescanning (no_loop, id))
1342 {
1343 /* Does this identifier have a macro definition in scope? */
1344 struct macro_definition *def = lookup_func (id, lookup_baton);
1345
1346 if (def && expand (id, def, dest, src_rest, no_loop,
1347 lookup_func, lookup_baton))
1348 {
1349 do_cleanups (back_to);
1350 return 1;
1351 }
1352 }
1353
1354 do_cleanups (back_to);
1355 }
1356
1357 return 0;
1358 }
1359
1360
1361 /* Expand macro references in SRC, appending the results to DEST.
1362 Assume we are re-scanning the result of expanding the macros named
1363 in NO_LOOP, and don't try to re-expand references to them.
1364
1365 SRC must be a shared buffer; DEST must not be one. */
1366 static void
1367 scan (struct macro_buffer *dest,
1368 struct macro_buffer *src,
1369 struct macro_name_list *no_loop,
1370 macro_lookup_ftype *lookup_func,
1371 void *lookup_baton)
1372 {
1373 gdb_assert (src->shared);
1374 gdb_assert (! dest->shared);
1375
1376 for (;;)
1377 {
1378 struct macro_buffer tok;
1379 char *original_src_start = src->text;
1380
1381 /* Find the next token in SRC. */
1382 if (! get_token (&tok, src))
1383 break;
1384
1385 /* Just for aesthetics. If we skipped some whitespace, copy
1386 that to DEST. */
1387 if (tok.text > original_src_start)
1388 {
1389 appendmem (dest, original_src_start, tok.text - original_src_start);
1390 dest->last_token = dest->len;
1391 }
1392
1393 if (! maybe_expand (dest, &tok, src, no_loop, lookup_func, lookup_baton))
1394 /* We didn't end up expanding tok as a macro reference, so
1395 simply append it to dest. */
1396 append_tokens_without_splicing (dest, &tok);
1397 }
1398
1399 /* Just for aesthetics. If there was any trailing whitespace in
1400 src, copy it to dest. */
1401 if (src->len)
1402 {
1403 appendmem (dest, src->text, src->len);
1404 dest->last_token = dest->len;
1405 }
1406 }
1407
1408
1409 char *
1410 macro_expand (const char *source,
1411 macro_lookup_ftype *lookup_func,
1412 void *lookup_func_baton)
1413 {
1414 struct macro_buffer src, dest;
1415 struct cleanup *back_to;
1416
1417 init_shared_buffer (&src, (char *) source, strlen (source));
1418
1419 init_buffer (&dest, 0);
1420 dest.last_token = 0;
1421 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1422
1423 scan (&dest, &src, 0, lookup_func, lookup_func_baton);
1424
1425 appendc (&dest, '\0');
1426
1427 discard_cleanups (back_to);
1428 return dest.text;
1429 }
1430
1431
1432 char *
1433 macro_expand_once (const char *source,
1434 macro_lookup_ftype *lookup_func,
1435 void *lookup_func_baton)
1436 {
1437 error (_("Expand-once not implemented yet."));
1438 }
1439
1440
1441 char *
1442 macro_expand_next (const char **lexptr,
1443 macro_lookup_ftype *lookup_func,
1444 void *lookup_baton)
1445 {
1446 struct macro_buffer src, dest, tok;
1447 struct cleanup *back_to;
1448
1449 /* Set up SRC to refer to the input text, pointed to by *lexptr. */
1450 init_shared_buffer (&src, (char *) *lexptr, strlen (*lexptr));
1451
1452 /* Set up DEST to receive the expansion, if there is one. */
1453 init_buffer (&dest, 0);
1454 dest.last_token = 0;
1455 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1456
1457 /* Get the text's first preprocessing token. */
1458 if (! get_token (&tok, &src))
1459 {
1460 do_cleanups (back_to);
1461 return 0;
1462 }
1463
1464 /* If it's a macro invocation, expand it. */
1465 if (maybe_expand (&dest, &tok, &src, 0, lookup_func, lookup_baton))
1466 {
1467 /* It was a macro invocation! Package up the expansion as a
1468 null-terminated string and return it. Set *lexptr to the
1469 start of the next token in the input. */
1470 appendc (&dest, '\0');
1471 discard_cleanups (back_to);
1472 *lexptr = src.text;
1473 return dest.text;
1474 }
1475 else
1476 {
1477 /* It wasn't a macro invocation. */
1478 do_cleanups (back_to);
1479 return 0;
1480 }
1481 }