]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/macroexp.c
Update copyright year range in header of all files managed by GDB
[thirdparty/binutils-gdb.git] / gdb / macroexp.c
1 /* C preprocessor macro expansion for GDB.
2 Copyright (C) 2002-2023 Free Software Foundation, Inc.
3 Contributed by Red Hat, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbsupport/gdb_obstack.h"
22 #include "macrotab.h"
23 #include "macroexp.h"
24 #include "macroscope.h"
25 #include "c-lang.h"
26
27
28 \f
29
30 /* A string type that we can use to refer to substrings of other
31 strings. */
32
33 struct shared_macro_buffer
34 {
35 /* An array of characters. This buffer is a pointer into some
36 larger string and thus we can't assume in that the text is
37 null-terminated. */
38 const char *text;
39
40 /* The number of characters in the string. */
41 int len;
42
43 /* For detecting token splicing.
44
45 This is the index in TEXT of the first character of the token
46 that abuts the end of TEXT. If TEXT contains no tokens, then we
47 set this equal to LEN. If TEXT ends in whitespace, then there is
48 no token abutting the end of TEXT (it's just whitespace), and
49 again, we set this equal to LEN. We set this to -1 if we don't
50 know the nature of TEXT. */
51 int last_token = -1;
52
53 /* If this buffer is holding the result from get_token, then this
54 is non-zero if it is an identifier token, zero otherwise. */
55 int is_identifier = 0;
56
57 shared_macro_buffer ()
58 : text (NULL),
59 len (0)
60 {
61 }
62
63 /* Set the macro buffer to refer to the LEN bytes at ADDR, as a
64 shared substring. */
65 shared_macro_buffer (const char *addr, int len)
66 {
67 set_shared (addr, len);
68 }
69
70 /* Set the macro buffer to refer to the LEN bytes at ADDR, as a
71 shared substring. */
72 void set_shared (const char *addr, int len_)
73 {
74 text = addr;
75 len = len_;
76 }
77 };
78
79 /* A string type that we can resize and quickly append to. */
80
81 struct growable_macro_buffer
82 {
83 /* An array of characters. The first LEN bytes are the real text,
84 but there are SIZE bytes allocated to the array. */
85 char *text;
86
87 /* The number of characters in the string. */
88 int len;
89
90 /* The number of characters allocated to the string. */
91 int size;
92
93 /* For detecting token splicing.
94
95 This is the index in TEXT of the first character of the token
96 that abuts the end of TEXT. If TEXT contains no tokens, then we
97 set this equal to LEN. If TEXT ends in whitespace, then there is
98 no token abutting the end of TEXT (it's just whitespace), and
99 again, we set this equal to LEN. We set this to -1 if we don't
100 know the nature of TEXT. */
101 int last_token = -1;
102
103 /* Set the macro buffer to the empty string, guessing that its
104 final contents will fit in N bytes. (It'll get resized if it
105 doesn't, so the guess doesn't have to be right.) Allocate the
106 initial storage with xmalloc. */
107 explicit growable_macro_buffer (int n)
108 : len (0),
109 size (n)
110 {
111 if (n > 0)
112 text = (char *) xmalloc (n);
113 else
114 text = NULL;
115 }
116
117 DISABLE_COPY_AND_ASSIGN (growable_macro_buffer);
118
119 ~growable_macro_buffer ()
120 {
121 xfree (text);
122 }
123
124 /* Release the text of the buffer to the caller. */
125 gdb::unique_xmalloc_ptr<char> release ()
126 {
127 gdb_assert (size);
128 char *result = text;
129 text = NULL;
130 return gdb::unique_xmalloc_ptr<char> (result);
131 }
132
133 /* Resize the buffer to be at least N bytes long. */
134 void resize_buffer (int n)
135 {
136 if (size == 0)
137 size = n;
138 else
139 while (size <= n)
140 size *= 2;
141
142 text = (char *) xrealloc (text, size);
143 }
144
145 /* Append the character C to the buffer. */
146 void appendc (int c)
147 {
148 int new_len = len + 1;
149
150 if (new_len > size)
151 resize_buffer (new_len);
152
153 text[len] = c;
154 len = new_len;
155 }
156
157 /* Append the COUNT bytes at ADDR to the buffer. */
158 void appendmem (const char *addr, int count)
159 {
160 int new_len = len + count;
161
162 if (new_len > size)
163 resize_buffer (new_len);
164
165 memcpy (text + len, addr, count);
166 len = new_len;
167 }
168 };
169
170
171 \f
172 /* Recognizing preprocessor tokens. */
173
174
175 int
176 macro_is_whitespace (int c)
177 {
178 return (c == ' '
179 || c == '\t'
180 || c == '\n'
181 || c == '\v'
182 || c == '\f');
183 }
184
185
186 int
187 macro_is_digit (int c)
188 {
189 return ('0' <= c && c <= '9');
190 }
191
192
193 int
194 macro_is_identifier_nondigit (int c)
195 {
196 return (c == '_'
197 || ('a' <= c && c <= 'z')
198 || ('A' <= c && c <= 'Z'));
199 }
200
201
202 static void
203 set_token (shared_macro_buffer *tok, const char *start, const char *end)
204 {
205 tok->set_shared (start, end - start);
206 tok->last_token = 0;
207
208 /* Presumed; get_identifier may overwrite this. */
209 tok->is_identifier = 0;
210 }
211
212
213 static int
214 get_comment (shared_macro_buffer *tok, const char *p, const char *end)
215 {
216 if (p + 2 > end)
217 return 0;
218 else if (p[0] == '/'
219 && p[1] == '*')
220 {
221 const char *tok_start = p;
222
223 p += 2;
224
225 for (; p < end; p++)
226 if (p + 2 <= end
227 && p[0] == '*'
228 && p[1] == '/')
229 {
230 p += 2;
231 set_token (tok, tok_start, p);
232 return 1;
233 }
234
235 error (_("Unterminated comment in macro expansion."));
236 }
237 else if (p[0] == '/'
238 && p[1] == '/')
239 {
240 const char *tok_start = p;
241
242 p += 2;
243 for (; p < end; p++)
244 if (*p == '\n')
245 break;
246
247 set_token (tok, tok_start, p);
248 return 1;
249 }
250 else
251 return 0;
252 }
253
254
255 static int
256 get_identifier (shared_macro_buffer *tok, const char *p, const char *end)
257 {
258 if (p < end
259 && macro_is_identifier_nondigit (*p))
260 {
261 const char *tok_start = p;
262
263 while (p < end
264 && (macro_is_identifier_nondigit (*p)
265 || macro_is_digit (*p)))
266 p++;
267
268 set_token (tok, tok_start, p);
269 tok->is_identifier = 1;
270 return 1;
271 }
272 else
273 return 0;
274 }
275
276
277 static int
278 get_pp_number (shared_macro_buffer *tok, const char *p, const char *end)
279 {
280 if (p < end
281 && (macro_is_digit (*p)
282 || (*p == '.'
283 && p + 2 <= end
284 && macro_is_digit (p[1]))))
285 {
286 const char *tok_start = p;
287
288 while (p < end)
289 {
290 if (p + 2 <= end
291 && strchr ("eEpP", *p)
292 && (p[1] == '+' || p[1] == '-'))
293 p += 2;
294 else if (macro_is_digit (*p)
295 || macro_is_identifier_nondigit (*p)
296 || *p == '.')
297 p++;
298 else
299 break;
300 }
301
302 set_token (tok, tok_start, p);
303 return 1;
304 }
305 else
306 return 0;
307 }
308
309
310
311 /* If the text starting at P going up to (but not including) END
312 starts with a character constant, set *TOK to point to that
313 character constant, and return 1. Otherwise, return zero.
314 Signal an error if it contains a malformed or incomplete character
315 constant. */
316 static int
317 get_character_constant (shared_macro_buffer *tok,
318 const char *p, const char *end)
319 {
320 /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1
321 But of course, what really matters is that we handle it the same
322 way GDB's C/C++ lexer does. So we call parse_escape in utils.c
323 to handle escape sequences. */
324 if ((p + 1 <= end && *p == '\'')
325 || (p + 2 <= end
326 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
327 && p[1] == '\''))
328 {
329 const char *tok_start = p;
330 int char_count = 0;
331
332 if (*p == '\'')
333 p++;
334 else if (*p == 'L' || *p == 'u' || *p == 'U')
335 p += 2;
336 else
337 gdb_assert_not_reached ("unexpected character constant");
338
339 for (;;)
340 {
341 if (p >= end)
342 error (_("Unmatched single quote."));
343 else if (*p == '\'')
344 {
345 if (!char_count)
346 error (_("A character constant must contain at least one "
347 "character."));
348 p++;
349 break;
350 }
351 else if (*p == '\\')
352 {
353 const char *s, *o;
354
355 s = o = ++p;
356 char_count += c_parse_escape (&s, NULL);
357 p += s - o;
358 }
359 else
360 {
361 p++;
362 char_count++;
363 }
364 }
365
366 set_token (tok, tok_start, p);
367 return 1;
368 }
369 else
370 return 0;
371 }
372
373
374 /* If the text starting at P going up to (but not including) END
375 starts with a string literal, set *TOK to point to that string
376 literal, and return 1. Otherwise, return zero. Signal an error if
377 it contains a malformed or incomplete string literal. */
378 static int
379 get_string_literal (shared_macro_buffer *tok, const char *p, const char *end)
380 {
381 if ((p + 1 <= end
382 && *p == '"')
383 || (p + 2 <= end
384 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
385 && p[1] == '"'))
386 {
387 const char *tok_start = p;
388
389 if (*p == '"')
390 p++;
391 else if (*p == 'L' || *p == 'u' || *p == 'U')
392 p += 2;
393 else
394 gdb_assert_not_reached ("unexpected string literal");
395
396 for (;;)
397 {
398 if (p >= end)
399 error (_("Unterminated string in expression."));
400 else if (*p == '"')
401 {
402 p++;
403 break;
404 }
405 else if (*p == '\n')
406 error (_("Newline characters may not appear in string "
407 "constants."));
408 else if (*p == '\\')
409 {
410 const char *s, *o;
411
412 s = o = ++p;
413 c_parse_escape (&s, NULL);
414 p += s - o;
415 }
416 else
417 p++;
418 }
419
420 set_token (tok, tok_start, p);
421 return 1;
422 }
423 else
424 return 0;
425 }
426
427
428 static int
429 get_punctuator (shared_macro_buffer *tok, const char *p, const char *end)
430 {
431 /* Here, speed is much less important than correctness and clarity. */
432
433 /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1.
434 Note that this table is ordered in a special way. A punctuator
435 which is a prefix of another punctuator must appear after its
436 "extension". Otherwise, the wrong token will be returned. */
437 static const char * const punctuators[] = {
438 "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
439 "...", ".",
440 "->", "--", "-=", "-",
441 "++", "+=", "+",
442 "*=", "*",
443 "!=", "!",
444 "&&", "&=", "&",
445 "/=", "/",
446 "%>", "%:%:", "%:", "%=", "%",
447 "^=", "^",
448 "##", "#",
449 ":>", ":",
450 "||", "|=", "|",
451 "<<=", "<<", "<=", "<:", "<%", "<",
452 ">>=", ">>", ">=", ">",
453 "==", "=",
454 0
455 };
456
457 int i;
458
459 if (p + 1 <= end)
460 {
461 for (i = 0; punctuators[i]; i++)
462 {
463 const char *punctuator = punctuators[i];
464
465 if (p[0] == punctuator[0])
466 {
467 int len = strlen (punctuator);
468
469 if (p + len <= end
470 && ! memcmp (p, punctuator, len))
471 {
472 set_token (tok, p, p + len);
473 return 1;
474 }
475 }
476 }
477 }
478
479 return 0;
480 }
481
482
483 /* Peel the next preprocessor token off of SRC, and put it in TOK.
484 Mutate TOK to refer to the first token in SRC, and mutate SRC to
485 refer to the text after that token. The resulting TOK will point
486 into the same string SRC does. Initialize TOK's last_token field.
487 Return non-zero if we succeed, or 0 if we didn't find any more
488 tokens in SRC. */
489
490 static int
491 get_token (shared_macro_buffer *tok, shared_macro_buffer *src)
492 {
493 const char *p = src->text;
494 const char *end = p + src->len;
495
496 /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
497
498 preprocessing-token:
499 header-name
500 identifier
501 pp-number
502 character-constant
503 string-literal
504 punctuator
505 each non-white-space character that cannot be one of the above
506
507 We don't have to deal with header-name tokens, since those can
508 only occur after a #include, which we will never see. */
509
510 while (p < end)
511 if (macro_is_whitespace (*p))
512 p++;
513 else if (get_comment (tok, p, end))
514 p += tok->len;
515 else if (get_pp_number (tok, p, end)
516 || get_character_constant (tok, p, end)
517 || get_string_literal (tok, p, end)
518 /* Note: the grammar in the standard seems to be
519 ambiguous: L'x' can be either a wide character
520 constant, or an identifier followed by a normal
521 character constant. By trying `get_identifier' after
522 we try get_character_constant and get_string_literal,
523 we give the wide character syntax precedence. Now,
524 since GDB doesn't handle wide character constants
525 anyway, is this the right thing to do? */
526 || get_identifier (tok, p, end)
527 || get_punctuator (tok, p, end))
528 {
529 /* How many characters did we consume, including whitespace? */
530 int consumed = p - src->text + tok->len;
531
532 src->text += consumed;
533 src->len -= consumed;
534 return 1;
535 }
536 else
537 {
538 /* We have found a "non-whitespace character that cannot be
539 one of the above." Make a token out of it. */
540 int consumed;
541
542 set_token (tok, p, p + 1);
543 consumed = p - src->text + tok->len;
544 src->text += consumed;
545 src->len -= consumed;
546 return 1;
547 }
548
549 return 0;
550 }
551
552
553 \f
554 /* Appending token strings, with and without splicing */
555
556
557 /* Append the macro buffer SRC to the end of DEST, and ensure that
558 doing so doesn't splice the token at the end of SRC with the token
559 at the beginning of DEST. SRC and DEST must have their last_token
560 fields set. Upon return, DEST's last_token field is set correctly.
561
562 For example:
563
564 If DEST is "(" and SRC is "y", then we can return with
565 DEST set to "(y" --- we've simply appended the two buffers.
566
567 However, if DEST is "x" and SRC is "y", then we must not return
568 with DEST set to "xy" --- that would splice the two tokens "x" and
569 "y" together to make a single token "xy". However, it would be
570 fine to return with DEST set to "x y". Similarly, "<" and "<" must
571 yield "< <", not "<<", etc. */
572 static void
573 append_tokens_without_splicing (growable_macro_buffer *dest,
574 shared_macro_buffer *src)
575 {
576 int original_dest_len = dest->len;
577 shared_macro_buffer dest_tail, new_token;
578
579 gdb_assert (src->last_token != -1);
580 gdb_assert (dest->last_token != -1);
581
582 /* First, just try appending the two, and call get_token to see if
583 we got a splice. */
584 dest->appendmem (src->text, src->len);
585
586 /* If DEST originally had no token abutting its end, then we can't
587 have spliced anything, so we're done. */
588 if (dest->last_token == original_dest_len)
589 {
590 dest->last_token = original_dest_len + src->last_token;
591 return;
592 }
593
594 /* Set DEST_TAIL to point to the last token in DEST, followed by
595 all the stuff we just appended. */
596 dest_tail.set_shared (dest->text + dest->last_token,
597 dest->len - dest->last_token);
598
599 /* Re-parse DEST's last token. We know that DEST used to contain
600 at least one token, so if it doesn't contain any after the
601 append, then we must have spliced "/" and "*" or "/" and "/" to
602 make a comment start. (Just for the record, I got this right
603 the first time. This is not a bug fix.) */
604 if (get_token (&new_token, &dest_tail)
605 && (new_token.text + new_token.len
606 == dest->text + original_dest_len))
607 {
608 /* No splice, so we're done. */
609 dest->last_token = original_dest_len + src->last_token;
610 return;
611 }
612
613 /* Okay, a simple append caused a splice. Let's chop dest back to
614 its original length and try again, but separate the texts with a
615 space. */
616 dest->len = original_dest_len;
617 dest->appendc (' ');
618 dest->appendmem (src->text, src->len);
619
620 dest_tail.set_shared (dest->text + dest->last_token,
621 dest->len - dest->last_token);
622
623 /* Try to re-parse DEST's last token, as above. */
624 if (get_token (&new_token, &dest_tail)
625 && (new_token.text + new_token.len
626 == dest->text + original_dest_len))
627 {
628 /* No splice, so we're done. */
629 dest->last_token = original_dest_len + 1 + src->last_token;
630 return;
631 }
632
633 /* As far as I know, there's no case where inserting a space isn't
634 enough to prevent a splice. */
635 internal_error (_("unable to avoid splicing tokens during macro expansion"));
636 }
637
638 /* Stringify an argument, and insert it into DEST. ARG is the text to
639 stringify; it is LEN bytes long. */
640
641 static void
642 stringify (growable_macro_buffer *dest, const char *arg, int len)
643 {
644 /* Trim initial whitespace from ARG. */
645 while (len > 0 && macro_is_whitespace (*arg))
646 {
647 ++arg;
648 --len;
649 }
650
651 /* Trim trailing whitespace from ARG. */
652 while (len > 0 && macro_is_whitespace (arg[len - 1]))
653 --len;
654
655 /* Insert the string. */
656 dest->appendc ('"');
657 while (len > 0)
658 {
659 /* We could try to handle strange cases here, like control
660 characters, but there doesn't seem to be much point. */
661 if (macro_is_whitespace (*arg))
662 {
663 /* Replace a sequence of whitespace with a single space. */
664 dest->appendc (' ');
665 while (len > 1 && macro_is_whitespace (arg[1]))
666 {
667 ++arg;
668 --len;
669 }
670 }
671 else if (*arg == '\\' || *arg == '"')
672 {
673 dest->appendc ('\\');
674 dest->appendc (*arg);
675 }
676 else
677 dest->appendc (*arg);
678 ++arg;
679 --len;
680 }
681 dest->appendc ('"');
682 dest->last_token = dest->len;
683 }
684
685 /* See macroexp.h. */
686
687 gdb::unique_xmalloc_ptr<char>
688 macro_stringify (const char *str)
689 {
690 int len = strlen (str);
691 growable_macro_buffer buffer (len);
692
693 stringify (&buffer, str, len);
694 buffer.appendc ('\0');
695
696 return buffer.release ();
697 }
698
699 \f
700 /* Expanding macros! */
701
702
703 /* A singly-linked list of the names of the macros we are currently
704 expanding --- for detecting expansion loops. */
705 struct macro_name_list {
706 const char *name;
707 struct macro_name_list *next;
708 };
709
710
711 /* Return non-zero if we are currently expanding the macro named NAME,
712 according to LIST; otherwise, return zero.
713
714 You know, it would be possible to get rid of all the NO_LOOP
715 arguments to these functions by simply generating a new lookup
716 function and baton which refuses to find the definition for a
717 particular macro, and otherwise delegates the decision to another
718 function/baton pair. But that makes the linked list of excluded
719 macros chained through untyped baton pointers, which will make it
720 harder to debug. :( */
721 static int
722 currently_rescanning (struct macro_name_list *list, const char *name)
723 {
724 for (; list; list = list->next)
725 if (strcmp (name, list->name) == 0)
726 return 1;
727
728 return 0;
729 }
730
731
732 /* Gather the arguments to a macro expansion.
733
734 NAME is the name of the macro being invoked. (It's only used for
735 printing error messages.)
736
737 Assume that SRC is the text of the macro invocation immediately
738 following the macro name. For example, if we're processing the
739 text foo(bar, baz), then NAME would be foo and SRC will be (bar,
740 baz).
741
742 If SRC doesn't start with an open paren ( token at all, return
743 false, leave SRC unchanged, and don't set *ARGS_PTR to anything.
744
745 If SRC doesn't contain a properly terminated argument list, then
746 raise an error.
747
748 For a variadic macro, NARGS holds the number of formal arguments to
749 the macro. For a GNU-style variadic macro, this should be the
750 number of named arguments. For a non-variadic macro, NARGS should
751 be -1.
752
753 Otherwise, return true and set *ARGS_PTR to a vector of macro
754 buffers referring to the argument texts. The macro buffers share
755 their text with SRC, and their last_token fields are initialized.
756
757 NOTE WELL: if SRC starts with a open paren ( token followed
758 immediately by a close paren ) token (e.g., the invocation looks
759 like "foo()"), we treat that as one argument, which happens to be
760 the empty list of tokens. The caller should keep in mind that such
761 a sequence of tokens is a valid way to invoke one-parameter
762 function-like macros, but also a valid way to invoke zero-parameter
763 function-like macros. Eeew.
764
765 Consume the tokens from SRC; after this call, SRC contains the text
766 following the invocation. */
767
768 static bool
769 gather_arguments (const char *name, shared_macro_buffer *src, int nargs,
770 std::vector<shared_macro_buffer> *args_ptr)
771 {
772 shared_macro_buffer tok;
773 std::vector<shared_macro_buffer> args;
774
775 /* Does SRC start with an opening paren token? Read from a copy of
776 SRC, so SRC itself is unaffected if we don't find an opening
777 paren. */
778 {
779 shared_macro_buffer temp (src->text, src->len);
780
781 if (! get_token (&tok, &temp)
782 || tok.len != 1
783 || tok.text[0] != '(')
784 return false;
785 }
786
787 /* Consume SRC's opening paren. */
788 get_token (&tok, src);
789
790 for (;;)
791 {
792 shared_macro_buffer *arg;
793 int depth;
794
795 /* Initialize the next argument. */
796 args.emplace_back ();
797 arg = &args.back ();
798 set_token (arg, src->text, src->text);
799
800 /* Gather the argument's tokens. */
801 depth = 0;
802 for (;;)
803 {
804 if (! get_token (&tok, src))
805 error (_("Malformed argument list for macro `%s'."), name);
806
807 /* Is tok an opening paren? */
808 if (tok.len == 1 && tok.text[0] == '(')
809 depth++;
810
811 /* Is tok is a closing paren? */
812 else if (tok.len == 1 && tok.text[0] == ')')
813 {
814 /* If it's a closing paren at the top level, then that's
815 the end of the argument list. */
816 if (depth == 0)
817 {
818 /* In the varargs case, the last argument may be
819 missing. Add an empty argument in this case. */
820 if (nargs != -1 && args.size () == nargs - 1)
821 {
822 args.emplace_back ();
823 arg = &args.back ();
824 set_token (arg, src->text, src->text);
825 }
826
827 *args_ptr = std::move (args);
828 return true;
829 }
830
831 depth--;
832 }
833
834 /* If tok is a comma at top level, then that's the end of
835 the current argument. However, if we are handling a
836 variadic macro and we are computing the last argument, we
837 want to include the comma and remaining tokens. */
838 else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
839 && (nargs == -1 || args.size () < nargs))
840 break;
841
842 /* Extend the current argument to enclose this token. If
843 this is the current argument's first token, leave out any
844 leading whitespace, just for aesthetics. */
845 if (arg->len == 0)
846 {
847 arg->text = tok.text;
848 arg->len = tok.len;
849 arg->last_token = 0;
850 }
851 else
852 {
853 arg->len = (tok.text + tok.len) - arg->text;
854 arg->last_token = tok.text - arg->text;
855 }
856 }
857 }
858 }
859
860
861 /* The `expand' and `substitute_args' functions both invoke `scan'
862 recursively, so we need a forward declaration somewhere. */
863 static void scan (growable_macro_buffer *dest,
864 shared_macro_buffer *src,
865 struct macro_name_list *no_loop,
866 const macro_scope &scope);
867
868 /* A helper function for substitute_args.
869
870 ARGV is a vector of all the arguments; ARGC is the number of
871 arguments. IS_VARARGS is true if the macro being substituted is a
872 varargs macro; in this case VA_ARG_NAME is the name of the
873 "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is
874 false.
875
876 If the token TOK is the name of a parameter, return the parameter's
877 index. If TOK is not an argument, return -1. */
878
879 static int
880 find_parameter (const shared_macro_buffer *tok,
881 int is_varargs, const shared_macro_buffer *va_arg_name,
882 int argc, const char * const *argv)
883 {
884 int i;
885
886 if (! tok->is_identifier)
887 return -1;
888
889 for (i = 0; i < argc; ++i)
890 if (tok->len == strlen (argv[i])
891 && !memcmp (tok->text, argv[i], tok->len))
892 return i;
893
894 if (is_varargs && tok->len == va_arg_name->len
895 && ! memcmp (tok->text, va_arg_name->text, tok->len))
896 return argc - 1;
897
898 return -1;
899 }
900
901 /* Helper function for substitute_args that gets the next token and
902 updates the passed-in state variables. */
903
904 static void
905 get_next_token_for_substitution (shared_macro_buffer *replacement_list,
906 shared_macro_buffer *token,
907 const char **start,
908 shared_macro_buffer *lookahead,
909 const char **lookahead_start,
910 int *lookahead_valid,
911 bool *keep_going)
912 {
913 if (!*lookahead_valid)
914 *keep_going = false;
915 else
916 {
917 *keep_going = true;
918 *token = *lookahead;
919 *start = *lookahead_start;
920 *lookahead_start = replacement_list->text;
921 *lookahead_valid = get_token (lookahead, replacement_list);
922 }
923 }
924
925 /* Given the macro definition DEF, being invoked with the actual
926 arguments given by ARGV, substitute the arguments into the
927 replacement list, and store the result in DEST.
928
929 IS_VARARGS should be true if DEF is a varargs macro. In this case,
930 VA_ARG_NAME should be the name of the "variable" argument -- either
931 __VA_ARGS__ for c99-style varargs, or the final argument name, for
932 GNU-style varargs. If IS_VARARGS is false, this parameter is
933 ignored.
934
935 If it is necessary to expand macro invocations in one of the
936 arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
937 definitions, and don't expand invocations of the macros listed in
938 NO_LOOP. */
939
940 static void
941 substitute_args (growable_macro_buffer *dest,
942 struct macro_definition *def,
943 int is_varargs, const shared_macro_buffer *va_arg_name,
944 const std::vector<shared_macro_buffer> &argv,
945 struct macro_name_list *no_loop,
946 const macro_scope &scope)
947 {
948 /* The token we are currently considering. */
949 shared_macro_buffer tok;
950 /* The replacement list's pointer from just before TOK was lexed. */
951 const char *original_rl_start;
952 /* We have a single lookahead token to handle token splicing. */
953 shared_macro_buffer lookahead;
954 /* The lookahead token might not be valid. */
955 int lookahead_valid;
956 /* The replacement list's pointer from just before LOOKAHEAD was
957 lexed. */
958 const char *lookahead_rl_start;
959
960 /* A macro buffer for the macro's replacement list. */
961 shared_macro_buffer replacement_list (def->replacement,
962 strlen (def->replacement));
963
964 gdb_assert (dest->len == 0);
965 dest->last_token = 0;
966
967 original_rl_start = replacement_list.text;
968 if (! get_token (&tok, &replacement_list))
969 return;
970 lookahead_rl_start = replacement_list.text;
971 lookahead_valid = get_token (&lookahead, &replacement_list);
972
973 /* __VA_OPT__ state variable. The states are:
974 0 - nothing happening
975 1 - saw __VA_OPT__
976 >= 2 in __VA_OPT__, the value encodes the parenthesis depth. */
977 unsigned vaopt_state = 0;
978
979 for (bool keep_going = true;
980 keep_going;
981 get_next_token_for_substitution (&replacement_list,
982 &tok,
983 &original_rl_start,
984 &lookahead,
985 &lookahead_rl_start,
986 &lookahead_valid,
987 &keep_going))
988 {
989 bool token_is_vaopt = (tok.len == 10
990 && startswith (tok.text, "__VA_OPT__"));
991
992 if (vaopt_state > 0)
993 {
994 if (token_is_vaopt)
995 error (_("__VA_OPT__ cannot appear inside __VA_OPT__"));
996 else if (tok.len == 1 && tok.text[0] == '(')
997 {
998 ++vaopt_state;
999 /* We just entered __VA_OPT__, so don't emit this
1000 token. */
1001 continue;
1002 }
1003 else if (vaopt_state == 1)
1004 error (_("__VA_OPT__ must be followed by an open parenthesis"));
1005 else if (tok.len == 1 && tok.text[0] == ')')
1006 {
1007 --vaopt_state;
1008 if (vaopt_state == 1)
1009 {
1010 /* Done with __VA_OPT__. */
1011 vaopt_state = 0;
1012 /* Don't emit. */
1013 continue;
1014 }
1015 }
1016
1017 /* If __VA_ARGS__ is empty, then drop the contents of
1018 __VA_OPT__. */
1019 if (argv.back ().len == 0)
1020 continue;
1021 }
1022 else if (token_is_vaopt)
1023 {
1024 if (!is_varargs)
1025 error (_("__VA_OPT__ is only valid in a variadic macro"));
1026 vaopt_state = 1;
1027 /* Don't emit this token. */
1028 continue;
1029 }
1030
1031 /* Just for aesthetics. If we skipped some whitespace, copy
1032 that to DEST. */
1033 if (tok.text > original_rl_start)
1034 {
1035 dest->appendmem (original_rl_start, tok.text - original_rl_start);
1036 dest->last_token = dest->len;
1037 }
1038
1039 /* Is this token the stringification operator? */
1040 if (tok.len == 1
1041 && tok.text[0] == '#')
1042 {
1043 int arg;
1044
1045 if (!lookahead_valid)
1046 error (_("Stringification operator requires an argument."));
1047
1048 arg = find_parameter (&lookahead, is_varargs, va_arg_name,
1049 def->argc, def->argv);
1050 if (arg == -1)
1051 error (_("Argument to stringification operator must name "
1052 "a macro parameter."));
1053
1054 stringify (dest, argv[arg].text, argv[arg].len);
1055
1056 /* Read one token and let the loop iteration code handle the
1057 rest. */
1058 lookahead_rl_start = replacement_list.text;
1059 lookahead_valid = get_token (&lookahead, &replacement_list);
1060 }
1061 /* Is this token the splicing operator? */
1062 else if (tok.len == 2
1063 && tok.text[0] == '#'
1064 && tok.text[1] == '#')
1065 error (_("Stray splicing operator"));
1066 /* Is the next token the splicing operator? */
1067 else if (lookahead_valid
1068 && lookahead.len == 2
1069 && lookahead.text[0] == '#'
1070 && lookahead.text[1] == '#')
1071 {
1072 int finished = 0;
1073 int prev_was_comma = 0;
1074
1075 /* Note that GCC warns if the result of splicing is not a
1076 token. In the debugger there doesn't seem to be much
1077 benefit from doing this. */
1078
1079 /* Insert the first token. */
1080 if (tok.len == 1 && tok.text[0] == ',')
1081 prev_was_comma = 1;
1082 else
1083 {
1084 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1085 def->argc, def->argv);
1086
1087 if (arg != -1)
1088 dest->appendmem (argv[arg].text, argv[arg].len);
1089 else
1090 dest->appendmem (tok.text, tok.len);
1091 }
1092
1093 /* Apply a possible sequence of ## operators. */
1094 for (;;)
1095 {
1096 if (! get_token (&tok, &replacement_list))
1097 error (_("Splicing operator at end of macro"));
1098
1099 /* Handle a comma before a ##. If we are handling
1100 varargs, and the token on the right hand side is the
1101 varargs marker, and the final argument is empty or
1102 missing, then drop the comma. This is a GNU
1103 extension. There is one ambiguous case here,
1104 involving pedantic behavior with an empty argument,
1105 but we settle that in favor of GNU-style (GCC uses an
1106 option). If we aren't dealing with varargs, we
1107 simply insert the comma. */
1108 if (prev_was_comma)
1109 {
1110 if (! (is_varargs
1111 && tok.len == va_arg_name->len
1112 && !memcmp (tok.text, va_arg_name->text, tok.len)
1113 && argv.back ().len == 0))
1114 dest->appendmem (",", 1);
1115 prev_was_comma = 0;
1116 }
1117
1118 /* Insert the token. If it is a parameter, insert the
1119 argument. If it is a comma, treat it specially. */
1120 if (tok.len == 1 && tok.text[0] == ',')
1121 prev_was_comma = 1;
1122 else
1123 {
1124 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1125 def->argc, def->argv);
1126
1127 if (arg != -1)
1128 dest->appendmem (argv[arg].text, argv[arg].len);
1129 else
1130 dest->appendmem (tok.text, tok.len);
1131 }
1132
1133 /* Now read another token. If it is another splice, we
1134 loop. */
1135 original_rl_start = replacement_list.text;
1136 if (! get_token (&tok, &replacement_list))
1137 {
1138 finished = 1;
1139 break;
1140 }
1141
1142 if (! (tok.len == 2
1143 && tok.text[0] == '#'
1144 && tok.text[1] == '#'))
1145 break;
1146 }
1147
1148 if (prev_was_comma)
1149 {
1150 /* We saw a comma. Insert it now. */
1151 dest->appendmem (",", 1);
1152 }
1153
1154 dest->last_token = dest->len;
1155 if (finished)
1156 lookahead_valid = 0;
1157 else
1158 {
1159 /* Set up for the loop iterator. */
1160 lookahead = tok;
1161 lookahead_rl_start = original_rl_start;
1162 lookahead_valid = 1;
1163 }
1164 }
1165 else
1166 {
1167 /* Is this token an identifier? */
1168 int substituted = 0;
1169 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1170 def->argc, def->argv);
1171
1172 if (arg != -1)
1173 {
1174 /* Expand any macro invocations in the argument text,
1175 and append the result to dest. Remember that scan
1176 mutates its source, so we need to scan a new buffer
1177 referring to the argument's text, not the argument
1178 itself. */
1179 shared_macro_buffer arg_src (argv[arg].text, argv[arg].len);
1180 scan (dest, &arg_src, no_loop, scope);
1181 substituted = 1;
1182 }
1183
1184 /* If it wasn't a parameter, then just copy it across. */
1185 if (! substituted)
1186 append_tokens_without_splicing (dest, &tok);
1187 }
1188 }
1189
1190 if (vaopt_state > 0)
1191 error (_("Unterminated __VA_OPT__"));
1192 }
1193
1194
1195 /* Expand a call to a macro named ID, whose definition is DEF. Append
1196 its expansion to DEST. SRC is the input text following the ID
1197 token. We are currently rescanning the expansions of the macros
1198 named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and
1199 LOOKUP_BATON to find definitions for any nested macro references.
1200
1201 Return 1 if we decided to expand it, zero otherwise. (If it's a
1202 function-like macro name that isn't followed by an argument list,
1203 we don't expand it.) If we return zero, leave SRC unchanged. */
1204 static int
1205 expand (const char *id,
1206 struct macro_definition *def,
1207 growable_macro_buffer *dest,
1208 shared_macro_buffer *src,
1209 struct macro_name_list *no_loop,
1210 const macro_scope &scope)
1211 {
1212 struct macro_name_list new_no_loop;
1213
1214 /* Create a new node to be added to the front of the no-expand list.
1215 This list is appropriate for re-scanning replacement lists, but
1216 it is *not* appropriate for scanning macro arguments; invocations
1217 of the macro whose arguments we are gathering *do* get expanded
1218 there. */
1219 new_no_loop.name = id;
1220 new_no_loop.next = no_loop;
1221
1222 /* What kind of macro are we expanding? */
1223 if (def->kind == macro_object_like)
1224 {
1225 shared_macro_buffer replacement_list (def->replacement,
1226 strlen (def->replacement));
1227
1228 scan (dest, &replacement_list, &new_no_loop, scope);
1229 return 1;
1230 }
1231 else if (def->kind == macro_function_like)
1232 {
1233 shared_macro_buffer va_arg_name;
1234 int is_varargs = 0;
1235
1236 if (def->argc >= 1)
1237 {
1238 if (strcmp (def->argv[def->argc - 1], "...") == 0)
1239 {
1240 /* In C99-style varargs, substitution is done using
1241 __VA_ARGS__. */
1242 va_arg_name.set_shared ("__VA_ARGS__", strlen ("__VA_ARGS__"));
1243 is_varargs = 1;
1244 }
1245 else
1246 {
1247 int len = strlen (def->argv[def->argc - 1]);
1248
1249 if (len > 3
1250 && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1251 {
1252 /* In GNU-style varargs, the name of the
1253 substitution parameter is the name of the formal
1254 argument without the "...". */
1255 va_arg_name.set_shared (def->argv[def->argc - 1], len - 3);
1256 is_varargs = 1;
1257 }
1258 }
1259 }
1260
1261 std::vector<shared_macro_buffer> argv;
1262 /* If we couldn't find any argument list, then we don't expand
1263 this macro. */
1264 if (!gather_arguments (id, src, is_varargs ? def->argc : -1,
1265 &argv))
1266 return 0;
1267
1268 /* Check that we're passing an acceptable number of arguments for
1269 this macro. */
1270 if (argv.size () != def->argc)
1271 {
1272 if (is_varargs && argv.size () >= def->argc - 1)
1273 {
1274 /* Ok. */
1275 }
1276 /* Remember that a sequence of tokens like "foo()" is a
1277 valid invocation of a macro expecting either zero or one
1278 arguments. */
1279 else if (! (argv.size () == 1
1280 && argv[0].len == 0
1281 && def->argc == 0))
1282 error (_("Wrong number of arguments to macro `%s' "
1283 "(expected %d, got %d)."),
1284 id, def->argc, int (argv.size ()));
1285 }
1286
1287 /* Note that we don't expand macro invocations in the arguments
1288 yet --- we let subst_args take care of that. Parameters that
1289 appear as operands of the stringifying operator "#" or the
1290 splicing operator "##" don't get macro references expanded,
1291 so we can't really tell whether it's appropriate to macro-
1292 expand an argument until we see how it's being used. */
1293 growable_macro_buffer substituted (0);
1294 substitute_args (&substituted, def, is_varargs, &va_arg_name,
1295 argv, no_loop, scope);
1296
1297 /* Now `substituted' is the macro's replacement list, with all
1298 argument values substituted into it properly. Re-scan it for
1299 macro references, but don't expand invocations of this macro.
1300
1301 We create a new buffer, `substituted_src', which points into
1302 `substituted', and scan that. We can't scan `substituted'
1303 itself, since the tokenization process moves the buffer's
1304 text pointer around, and we still need to be able to find
1305 `substituted's original text buffer after scanning it so we
1306 can free it. */
1307 shared_macro_buffer substituted_src (substituted.text, substituted.len);
1308 scan (dest, &substituted_src, &new_no_loop, scope);
1309
1310 return 1;
1311 }
1312 else
1313 internal_error (_("bad macro definition kind"));
1314 }
1315
1316
1317 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1318 constitute a macro invocation not forbidden in NO_LOOP, append its
1319 expansion to DEST and return non-zero. Otherwise, return zero, and
1320 leave DEST unchanged.
1321
1322 SRC_FIRST must be a string built by get_token. */
1323 static int
1324 maybe_expand (growable_macro_buffer *dest,
1325 shared_macro_buffer *src_first,
1326 shared_macro_buffer *src_rest,
1327 struct macro_name_list *no_loop,
1328 const macro_scope &scope)
1329 {
1330 /* Is this token an identifier? */
1331 if (src_first->is_identifier)
1332 {
1333 /* Make a null-terminated copy of it, since that's what our
1334 lookup function expects. */
1335 std::string id (src_first->text, src_first->len);
1336
1337 /* If we're currently re-scanning the result of expanding
1338 this macro, don't expand it again. */
1339 if (! currently_rescanning (no_loop, id.c_str ()))
1340 {
1341 /* Does this identifier have a macro definition in scope? */
1342 macro_definition *def = standard_macro_lookup (id.c_str (), scope);
1343
1344 if (def && expand (id.c_str (), def, dest, src_rest, no_loop, scope))
1345 return 1;
1346 }
1347 }
1348
1349 return 0;
1350 }
1351
1352
1353 /* Expand macro references in SRC, appending the results to DEST.
1354 Assume we are re-scanning the result of expanding the macros named
1355 in NO_LOOP, and don't try to re-expand references to them. */
1356
1357 static void
1358 scan (growable_macro_buffer *dest,
1359 shared_macro_buffer *src,
1360 struct macro_name_list *no_loop,
1361 const macro_scope &scope)
1362 {
1363
1364 for (;;)
1365 {
1366 shared_macro_buffer tok;
1367 const char *original_src_start = src->text;
1368
1369 /* Find the next token in SRC. */
1370 if (! get_token (&tok, src))
1371 break;
1372
1373 /* Just for aesthetics. If we skipped some whitespace, copy
1374 that to DEST. */
1375 if (tok.text > original_src_start)
1376 {
1377 dest->appendmem (original_src_start, tok.text - original_src_start);
1378 dest->last_token = dest->len;
1379 }
1380
1381 if (! maybe_expand (dest, &tok, src, no_loop, scope))
1382 /* We didn't end up expanding tok as a macro reference, so
1383 simply append it to dest. */
1384 append_tokens_without_splicing (dest, &tok);
1385 }
1386
1387 /* Just for aesthetics. If there was any trailing whitespace in
1388 src, copy it to dest. */
1389 if (src->len)
1390 {
1391 dest->appendmem (src->text, src->len);
1392 dest->last_token = dest->len;
1393 }
1394 }
1395
1396
1397 gdb::unique_xmalloc_ptr<char>
1398 macro_expand (const char *source, const macro_scope &scope)
1399 {
1400 shared_macro_buffer src (source, strlen (source));
1401
1402 growable_macro_buffer dest (0);
1403 dest.last_token = 0;
1404
1405 scan (&dest, &src, 0, scope);
1406
1407 dest.appendc ('\0');
1408
1409 return dest.release ();
1410 }
1411
1412
1413 gdb::unique_xmalloc_ptr<char>
1414 macro_expand_once (const char *source, const macro_scope &scope)
1415 {
1416 error (_("Expand-once not implemented yet."));
1417 }
1418
1419 gdb::unique_xmalloc_ptr<char>
1420 macro_expand_next (const char **lexptr, const macro_scope &scope)
1421 {
1422 shared_macro_buffer tok;
1423
1424 /* Set up SRC to refer to the input text, pointed to by *lexptr. */
1425 shared_macro_buffer src (*lexptr, strlen (*lexptr));
1426
1427 /* Set up DEST to receive the expansion, if there is one. */
1428 growable_macro_buffer dest (0);
1429 dest.last_token = 0;
1430
1431 /* Get the text's first preprocessing token. */
1432 if (! get_token (&tok, &src))
1433 return nullptr;
1434
1435 /* If it's a macro invocation, expand it. */
1436 if (maybe_expand (&dest, &tok, &src, 0, scope))
1437 {
1438 /* It was a macro invocation! Package up the expansion as a
1439 null-terminated string and return it. Set *lexptr to the
1440 start of the next token in the input. */
1441 dest.appendc ('\0');
1442 *lexptr = src.text;
1443 return dest.release ();
1444 }
1445 else
1446 {
1447 /* It wasn't a macro invocation. */
1448 return nullptr;
1449 }
1450 }