]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mep-tdep.c
* mep-tdep.c (mep_analyze_frame_prologue, mep_frame_this_id):
[thirdparty/binutils-gdb.git] / gdb / mep-tdep.c
1 /* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 Contributed by Red Hat, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdb_string.h"
34 #include "value.h"
35 #include "inferior.h"
36 #include "dis-asm.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "language.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "remote.h"
43 #include "floatformat.h"
44 #include "sim-regno.h"
45 #include "disasm.h"
46 #include "trad-frame.h"
47 #include "reggroups.h"
48 #include "elf-bfd.h"
49 #include "elf/mep.h"
50 #include "prologue-value.h"
51 #include "opcode/cgen-bitset.h"
52 #include "infcall.h"
53
54 #include "gdb_assert.h"
55
56 /* Get the user's customized MeP coprocessor register names from
57 libopcodes. */
58 #include "opcodes/mep-desc.h"
59 #include "opcodes/mep-opc.h"
60
61 \f
62 /* The gdbarch_tdep structure. */
63
64 /* A quick recap for GDB hackers not familiar with the whole Toshiba
65 Media Processor story:
66
67 The MeP media engine is a configureable processor: users can design
68 their own coprocessors, implement custom instructions, adjust cache
69 sizes, select optional standard facilities like add-and-saturate
70 instructions, and so on. Then, they can build custom versions of
71 the GNU toolchain to support their customized chips. The
72 MeP-Integrator program (see utils/mep) takes a GNU toolchain source
73 tree, and a config file pointing to various files provided by the
74 user describing their customizations, and edits the source tree to
75 produce a compiler that can generate their custom instructions, an
76 assembler that can assemble them and recognize their custom
77 register names, and so on.
78
79 Furthermore, the user can actually specify several of these custom
80 configurations, called 'me_modules', and get a toolchain which can
81 produce code for any of them, given a compiler/assembler switch;
82 you say something like 'gcc -mconfig=mm_max' to generate code for
83 the me_module named 'mm_max'.
84
85 GDB, in particular, needs to:
86
87 - use the coprocessor control register names provided by the user
88 in their hardware description, in expressions, 'info register'
89 output, and disassembly,
90
91 - know the number, names, and types of the coprocessor's
92 general-purpose registers, adjust the 'info all-registers' output
93 accordingly, and print error messages if the user refers to one
94 that doesn't exist
95
96 - allow access to the control bus space only when the configuration
97 actually has a control bus, and recognize which regions of the
98 control bus space are actually populated,
99
100 - disassemble using the user's provided mnemonics for their custom
101 instructions, and
102
103 - recognize whether the $hi and $lo registers are present, and
104 allow access to them only when they are actually there.
105
106 There are three sources of information about what sort of me_module
107 we're actually dealing with:
108
109 - A MeP executable file indicates which me_module it was compiled
110 for, and libopcodes has tables describing each module. So, given
111 an executable file, we can find out about the processor it was
112 compiled for.
113
114 - There are SID command-line options to select a particular
115 me_module, overriding the one specified in the ELF file. SID
116 provides GDB with a fake read-only register, 'module', which
117 indicates which me_module GDB is communicating with an instance
118 of.
119
120 - There are SID command-line options to enable or disable certain
121 optional processor features, overriding the defaults for the
122 selected me_module. The MeP $OPT register indicates which
123 options are present on the current processor. */
124
125
126 struct gdbarch_tdep
127 {
128 /* A CGEN cpu descriptor for this BFD architecture and machine.
129
130 Note: this is *not* customized for any particular me_module; the
131 MeP libopcodes machinery actually puts off module-specific
132 customization until the last minute. So this contains
133 information about all supported me_modules. */
134 CGEN_CPU_DESC cpu_desc;
135
136 /* The me_module index from the ELF file we used to select this
137 architecture, or CONFIG_NONE if there was none.
138
139 Note that we should prefer to use the me_module number available
140 via the 'module' register, whenever we're actually talking to a
141 real target.
142
143 In the absence of live information, we'd like to get the
144 me_module number from the ELF file. But which ELF file: the
145 executable file, the core file, ... ? The answer is, "the last
146 ELF file we used to set the current architecture". Thus, we
147 create a separate instance of the gdbarch structure for each
148 me_module value mep_gdbarch_init sees, and store the me_module
149 value from the ELF file here. */
150 CONFIG_ATTR me_module;
151 };
152
153
154 \f
155 /* Getting me_module information from the CGEN tables. */
156
157
158 /* Find an entry in the DESC's hardware table whose name begins with
159 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
160 intersect with GENERIC_ISA_MASK. If there is no matching entry,
161 return zero. */
162 static const CGEN_HW_ENTRY *
163 find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
164 const char *prefix,
165 CGEN_BITSET *copro_isa_mask,
166 CGEN_BITSET *generic_isa_mask)
167 {
168 int prefix_len = strlen (prefix);
169 int i;
170
171 for (i = 0; i < desc->hw_table.num_entries; i++)
172 {
173 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
174 if (strncmp (prefix, hw->name, prefix_len) == 0)
175 {
176 CGEN_BITSET *hw_isa_mask
177 = ((CGEN_BITSET *)
178 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
179
180 if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
181 && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
182 return hw;
183 }
184 }
185
186 return 0;
187 }
188
189
190 /* Find an entry in DESC's hardware table whose type is TYPE. Return
191 zero if there is none. */
192 static const CGEN_HW_ENTRY *
193 find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
194 {
195 int i;
196
197 for (i = 0; i < desc->hw_table.num_entries; i++)
198 {
199 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
200
201 if (hw->type == type)
202 return hw;
203 }
204
205 return 0;
206 }
207
208
209 /* Return the CGEN hardware table entry for the coprocessor register
210 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
211 no such register set, return zero. If ME_MODULE is the generic
212 me_module CONFIG_NONE, return the table entry for the register set
213 whose hardware type is GENERIC_TYPE. */
214 static const CGEN_HW_ENTRY *
215 me_module_register_set (CONFIG_ATTR me_module,
216 const char *prefix,
217 CGEN_HW_TYPE generic_type)
218 {
219 /* This is kind of tricky, because the hardware table is constructed
220 in a way that isn't very helpful. Perhaps we can fix that, but
221 here's how it works at the moment:
222
223 The configuration map, `mep_config_map', is indexed by me_module
224 number, and indicates which coprocessor and core ISAs that
225 me_module supports. The 'core_isa' mask includes all the core
226 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
227 The entry for the generic me_module, CONFIG_NONE, has an empty
228 'cop_isa', and its 'core_isa' selects only the standard MeP
229 instruction set.
230
231 The CGEN CPU descriptor's hardware table, desc->hw_table, has
232 entries for all the register sets, for all me_modules. Each
233 entry has a mask indicating which ISAs use that register set.
234 So, if an me_module supports some coprocessor ISA, we can find
235 applicable register sets by scanning the hardware table for
236 register sets whose masks include (at least some of) those ISAs.
237
238 Each hardware table entry also has a name, whose prefix says
239 whether it's a general-purpose ("h-cr") or control ("h-ccr")
240 coprocessor register set. It might be nicer to have an attribute
241 indicating what sort of register set it was, that we could use
242 instead of pattern-matching on the name.
243
244 When there is no hardware table entry whose mask includes a
245 particular coprocessor ISA and whose name starts with a given
246 prefix, then that means that that coprocessor doesn't have any
247 registers of that type. In such cases, this function must return
248 a null pointer.
249
250 Coprocessor register sets' masks may or may not include the core
251 ISA for the me_module they belong to. Those generated by a2cgen
252 do, but the sample me_module included in the unconfigured tree,
253 'ccfx', does not.
254
255 There are generic coprocessor register sets, intended only for
256 use with the generic me_module. Unfortunately, their masks
257 include *all* ISAs --- even those for coprocessors that don't
258 have such register sets. This makes detecting the case where a
259 coprocessor lacks a particular register set more complicated.
260
261 So, here's the approach we take:
262
263 - For CONFIG_NONE, we return the generic coprocessor register set.
264
265 - For any other me_module, we search for a register set whose
266 mask contains any of the me_module's coprocessor ISAs,
267 specifically excluding the generic coprocessor register sets. */
268
269 CGEN_CPU_DESC desc = gdbarch_tdep (current_gdbarch)->cpu_desc;
270 const CGEN_HW_ENTRY *hw;
271
272 if (me_module == CONFIG_NONE)
273 hw = find_hw_entry_by_type (desc, generic_type);
274 else
275 {
276 CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
277 CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
278 CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
279 CGEN_BITSET *cop_and_core;
280
281 /* The coprocessor ISAs include the ISA for the specific core which
282 has that coprocessor. */
283 cop_and_core = cgen_bitset_copy (cop);
284 cgen_bitset_union (cop, core, cop_and_core);
285 hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
286 }
287
288 return hw;
289 }
290
291
292 /* Given a hardware table entry HW representing a register set, return
293 a pointer to the keyword table with all the register names. If HW
294 is NULL, return NULL, to propage the "no such register set" info
295 along. */
296 static CGEN_KEYWORD *
297 register_set_keyword_table (const CGEN_HW_ENTRY *hw)
298 {
299 if (! hw)
300 return NULL;
301
302 /* Check that HW is actually a keyword table. */
303 gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
304
305 /* The 'asm_data' field of a register set's hardware table entry
306 refers to a keyword table. */
307 return (CGEN_KEYWORD *) hw->asm_data;
308 }
309
310
311 /* Given a keyword table KEYWORD and a register number REGNUM, return
312 the name of the register, or "" if KEYWORD contains no register
313 whose number is REGNUM. */
314 static char *
315 register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
316 {
317 const CGEN_KEYWORD_ENTRY *entry
318 = cgen_keyword_lookup_value (keyword_table, regnum);
319
320 if (entry)
321 {
322 char *name = entry->name;
323
324 /* The CGEN keyword entries for register names include the
325 leading $, which appears in MeP assembly as well as in GDB.
326 But we don't want to return that; GDB core code adds that
327 itself. */
328 if (name[0] == '$')
329 name++;
330
331 return name;
332 }
333 else
334 return "";
335 }
336
337
338 /* Masks for option bits in the OPT special-purpose register. */
339 enum {
340 MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
341 MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
342 MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
343 MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
344 MEP_OPT_CLP = 1 << 21, /* clip instruction option */
345 MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
346 MEP_OPT_AVE = 1 << 19, /* average instruction option */
347 MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
348 MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
349 MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
350 MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
351 MEP_OPT_COP = 1 << 4, /* coprocessor option */
352 MEP_OPT_DSP = 1 << 2, /* DSP option */
353 MEP_OPT_UCI = 1 << 1, /* UCI option */
354 MEP_OPT_DBG = 1 << 0, /* DBG function option */
355 };
356
357
358 /* Given the option_mask value for a particular entry in
359 mep_config_map, produce the value the processor's OPT register
360 would use to represent the same set of options. */
361 static unsigned int
362 opt_from_option_mask (unsigned int option_mask)
363 {
364 /* A table mapping OPT register bits onto CGEN config map option
365 bits. */
366 struct {
367 unsigned int opt_bit, option_mask_bit;
368 } bits[] = {
369 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
370 { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
371 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
372 { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
373 { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
374 { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
375 { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
376 { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
377 { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
378 { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
379 { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
380 { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
381 { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
382 };
383
384 int i;
385 unsigned int opt = 0;
386
387 for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
388 if (option_mask & bits[i].option_mask_bit)
389 opt |= bits[i].opt_bit;
390
391 return opt;
392 }
393
394
395 /* Return the value the $OPT register would use to represent the set
396 of options for ME_MODULE. */
397 static unsigned int
398 me_module_opt (CONFIG_ATTR me_module)
399 {
400 return opt_from_option_mask (mep_config_map[me_module].option_mask);
401 }
402
403
404 /* Return the width of ME_MODULE's coprocessor data bus, in bits.
405 This is either 32 or 64. */
406 static int
407 me_module_cop_data_bus_width (CONFIG_ATTR me_module)
408 {
409 if (mep_config_map[me_module].option_mask
410 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
411 return 64;
412 else
413 return 32;
414 }
415
416
417 /* Return true if ME_MODULE is big-endian, false otherwise. */
418 static int
419 me_module_big_endian (CONFIG_ATTR me_module)
420 {
421 return mep_config_map[me_module].big_endian;
422 }
423
424
425 /* Return the name of ME_MODULE, or NULL if it has no name. */
426 static const char *
427 me_module_name (CONFIG_ATTR me_module)
428 {
429 /* The default me_module has "" as its name, but it's easier for our
430 callers to test for NULL. */
431 if (! mep_config_map[me_module].name
432 || mep_config_map[me_module].name[0] == '\0')
433 return NULL;
434 else
435 return mep_config_map[me_module].name;
436 }
437 \f
438 /* Register set. */
439
440
441 /* The MeP spec defines the following registers:
442 16 general purpose registers (r0-r15)
443 32 control/special registers (csr0-csr31)
444 32 coprocessor general-purpose registers (c0 -- c31)
445 64 coprocessor control registers (ccr0 -- ccr63)
446
447 For the raw registers, we assign numbers here explicitly, instead
448 of letting the enum assign them for us; the numbers are a matter of
449 external protocol, and shouldn't shift around as things are edited.
450
451 We access the control/special registers via pseudoregisters, to
452 enforce read-only portions that some registers have.
453
454 We access the coprocessor general purpose and control registers via
455 pseudoregisters, to make sure they appear in the proper order in
456 the 'info all-registers' command (which uses the register number
457 ordering), and also to allow them to be renamed and resized
458 depending on the me_module in use.
459
460 The MeP allows coprocessor general-purpose registers to be either
461 32 or 64 bits long, depending on the configuration. Since we don't
462 want the format of the 'g' packet to vary from one core to another,
463 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
464 types of registers to change (see the implementation of
465 register_type), so we have four banks of pseudoregisters for the
466 coprocessor gprs --- 32-bit vs. 64-bit, and integer
467 vs. floating-point --- and we show or hide them depending on the
468 configuration. */
469 enum
470 {
471 MEP_FIRST_RAW_REGNUM = 0,
472
473 MEP_FIRST_GPR_REGNUM = 0,
474 MEP_R0_REGNUM = 0,
475 MEP_R1_REGNUM = 1,
476 MEP_R2_REGNUM = 2,
477 MEP_R3_REGNUM = 3,
478 MEP_R4_REGNUM = 4,
479 MEP_R5_REGNUM = 5,
480 MEP_R6_REGNUM = 6,
481 MEP_R7_REGNUM = 7,
482 MEP_R8_REGNUM = 8,
483 MEP_R9_REGNUM = 9,
484 MEP_R10_REGNUM = 10,
485 MEP_R11_REGNUM = 11,
486 MEP_R12_REGNUM = 12,
487 MEP_FP_REGNUM = MEP_R8_REGNUM,
488 MEP_R13_REGNUM = 13,
489 MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
490 MEP_R14_REGNUM = 14,
491 MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
492 MEP_R15_REGNUM = 15,
493 MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
494 MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
495
496 /* The raw control registers. These are the values as received via
497 the remote protocol, directly from the target; we only let user
498 code touch the via the pseudoregisters, which enforce read-only
499 bits. */
500 MEP_FIRST_RAW_CSR_REGNUM = 16,
501 MEP_RAW_PC_REGNUM = 16, /* Program counter */
502 MEP_RAW_LP_REGNUM = 17, /* Link pointer */
503 MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
504 MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
505 MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
506 MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
507 MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
508 MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
509 MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
510 MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
511 MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
512 MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
513 MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
514 MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
515 MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
516 MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
517 MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
518 MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
519 MEP_RAW_TMP_REGNUM = 34, /* Temporary */
520 MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
521 MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
522 MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
523 MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
524 MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
525 MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
526 MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
527 MEP_RAW_OPT_REGNUM = 42, /* Raw options */
528 MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
529 MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
530 MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
531 MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
532 MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
533 MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
534
535 /* The raw coprocessor general-purpose registers. These are all 64
536 bits wide. */
537 MEP_FIRST_RAW_CR_REGNUM = 48,
538 MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
539
540 MEP_FIRST_RAW_CCR_REGNUM = 80,
541 MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
542
543 /* The module number register. This is the index of the me_module
544 of which the current target is an instance. (This is not a real
545 MeP-specified register; it's provided by SID.) */
546 MEP_MODULE_REGNUM,
547
548 MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
549
550 MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
551
552 /* Pseudoregisters. See mep_pseudo_register_read and
553 mep_pseudo_register_write. */
554 MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
555
556 /* We have a pseudoregister for every control/special register, to
557 implement registers with read-only bits. */
558 MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
559 MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
560 MEP_LP_REGNUM, /* Link pointer */
561 MEP_SAR_REGNUM, /* shift amount */
562 MEP_CSR3_REGNUM, /* csr3: reserved */
563 MEP_RPB_REGNUM, /* repeat begin address */
564 MEP_RPE_REGNUM, /* Repeat end address */
565 MEP_RPC_REGNUM, /* Repeat count */
566 MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
567 MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
568 MEP_CSR9_REGNUM, /* csr3: reserved */
569 MEP_CSR10_REGNUM, /* csr3: reserved */
570 MEP_CSR11_REGNUM, /* csr3: reserved */
571 MEP_MB0_REGNUM, /* modulo begin address 0 */
572 MEP_ME0_REGNUM, /* modulo end address 0 */
573 MEP_MB1_REGNUM, /* modulo begin address 1 */
574 MEP_ME1_REGNUM, /* modulo end address 1 */
575 MEP_PSW_REGNUM, /* program status word */
576 MEP_ID_REGNUM, /* processor ID/revision */
577 MEP_TMP_REGNUM, /* Temporary */
578 MEP_EPC_REGNUM, /* Exception program counter */
579 MEP_EXC_REGNUM, /* exception cause */
580 MEP_CFG_REGNUM, /* processor configuration*/
581 MEP_CSR22_REGNUM, /* csr3: reserved */
582 MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
583 MEP_DBG_REGNUM, /* debug */
584 MEP_DEPC_REGNUM, /* Debug exception PC */
585 MEP_OPT_REGNUM, /* options */
586 MEP_RCFG_REGNUM, /* local ram config */
587 MEP_CCFG_REGNUM, /* cache config */
588 MEP_CSR29_REGNUM, /* csr3: reserved */
589 MEP_CSR30_REGNUM, /* csr3: reserved */
590 MEP_CSR31_REGNUM, /* csr3: reserved */
591 MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
592
593 /* The 32-bit integer view of the coprocessor GPR's. */
594 MEP_FIRST_CR32_REGNUM,
595 MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
596
597 /* The 32-bit floating-point view of the coprocessor GPR's. */
598 MEP_FIRST_FP_CR32_REGNUM,
599 MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
600
601 /* The 64-bit integer view of the coprocessor GPR's. */
602 MEP_FIRST_CR64_REGNUM,
603 MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
604
605 /* The 64-bit floating-point view of the coprocessor GPR's. */
606 MEP_FIRST_FP_CR64_REGNUM,
607 MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
608
609 MEP_FIRST_CCR_REGNUM,
610 MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
611
612 MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
613
614 MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
615
616 MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
617 };
618
619
620 #define IN_SET(set, n) \
621 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
622
623 #define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
624 #define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
625 #define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
626 #define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
627
628 #define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
629 #define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
630 #define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
631 #define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
632 #define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
633 #define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
634 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
635 #define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
636
637 #define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
638 #define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
639
640 #define NUM_REGS_IN_SET(set) \
641 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
642
643 #define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
644 #define MEP_PSW_SIZE (4) /* Size of the PSW register. */
645 #define MEP_LP_SIZE (4) /* Size of the LP register. */
646
647
648 /* Many of the control/special registers contain bits that cannot be
649 written to; some are entirely read-only. So we present them all as
650 pseudoregisters.
651
652 The following table describes the special properties of each CSR. */
653 struct mep_csr_register
654 {
655 /* The number of this CSR's raw register. */
656 int raw;
657
658 /* The number of this CSR's pseudoregister. */
659 int pseudo;
660
661 /* A mask of the bits that are writeable: if a bit is set here, then
662 it can be modified; if the bit is clear, then it cannot. */
663 LONGEST writeable_bits;
664 };
665
666
667 /* mep_csr_registers[i] describes the i'th CSR.
668 We just list the register numbers here explicitly to help catch
669 typos. */
670 #define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
671 struct mep_csr_register mep_csr_registers[] = {
672 { CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
673 { CSR(LP), 0xffffffff },
674 { CSR(SAR), 0x0000003f },
675 { CSR(CSR3), 0xffffffff },
676 { CSR(RPB), 0xfffffffe },
677 { CSR(RPE), 0xffffffff },
678 { CSR(RPC), 0xffffffff },
679 { CSR(HI), 0xffffffff },
680 { CSR(LO), 0xffffffff },
681 { CSR(CSR9), 0xffffffff },
682 { CSR(CSR10), 0xffffffff },
683 { CSR(CSR11), 0xffffffff },
684 { CSR(MB0), 0x0000ffff },
685 { CSR(ME0), 0x0000ffff },
686 { CSR(MB1), 0x0000ffff },
687 { CSR(ME1), 0x0000ffff },
688 { CSR(PSW), 0x000003ff },
689 { CSR(ID), 0x00000000 },
690 { CSR(TMP), 0xffffffff },
691 { CSR(EPC), 0xffffffff },
692 { CSR(EXC), 0x000030f0 },
693 { CSR(CFG), 0x00c0001b },
694 { CSR(CSR22), 0xffffffff },
695 { CSR(NPC), 0xffffffff },
696 { CSR(DBG), 0x00000580 },
697 { CSR(DEPC), 0xffffffff },
698 { CSR(OPT), 0x00000000 },
699 { CSR(RCFG), 0x00000000 },
700 { CSR(CCFG), 0x00000000 },
701 { CSR(CSR29), 0xffffffff },
702 { CSR(CSR30), 0xffffffff },
703 { CSR(CSR31), 0xffffffff },
704 };
705
706
707 /* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
708 the number of the corresponding pseudoregister. Otherwise,
709 mep_raw_to_pseudo[R] == R. */
710 static int mep_raw_to_pseudo[MEP_NUM_REGS];
711
712 /* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
713 is the number of the underlying raw register. Otherwise
714 mep_pseudo_to_raw[R] == R. */
715 static int mep_pseudo_to_raw[MEP_NUM_REGS];
716
717 static void
718 mep_init_pseudoregister_maps (void)
719 {
720 int i;
721
722 /* Verify that mep_csr_registers covers all the CSRs, in order. */
723 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
724 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
725
726 /* Verify that the raw and pseudo ranges have matching sizes. */
727 gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
728 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
729 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
730 gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
731
732 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
733 {
734 struct mep_csr_register *r = &mep_csr_registers[i];
735
736 gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
737 gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
738 }
739
740 /* Set up the initial raw<->pseudo mappings. */
741 for (i = 0; i < MEP_NUM_REGS; i++)
742 {
743 mep_raw_to_pseudo[i] = i;
744 mep_pseudo_to_raw[i] = i;
745 }
746
747 /* Add the CSR raw<->pseudo mappings. */
748 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
749 {
750 struct mep_csr_register *r = &mep_csr_registers[i];
751
752 mep_raw_to_pseudo[r->raw] = r->pseudo;
753 mep_pseudo_to_raw[r->pseudo] = r->raw;
754 }
755
756 /* Add the CR raw<->pseudo mappings. */
757 for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
758 {
759 int raw = MEP_FIRST_RAW_CR_REGNUM + i;
760 int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
761 int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
762 int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
763 int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
764
765 /* Truly, the raw->pseudo mapping depends on the current module.
766 But we use the raw->pseudo mapping when we read the debugging
767 info; at that point, we don't know what module we'll actually
768 be running yet. So, we always supply the 64-bit register
769 numbers; GDB knows how to pick a smaller value out of a
770 larger register properly. */
771 mep_raw_to_pseudo[raw] = pseudo64;
772 mep_pseudo_to_raw[pseudo32] = raw;
773 mep_pseudo_to_raw[pseudofp32] = raw;
774 mep_pseudo_to_raw[pseudo64] = raw;
775 mep_pseudo_to_raw[pseudofp64] = raw;
776 }
777
778 /* Add the CCR raw<->pseudo mappings. */
779 for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
780 {
781 int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
782 int pseudo = MEP_FIRST_CCR_REGNUM + i;
783 mep_raw_to_pseudo[raw] = pseudo;
784 mep_pseudo_to_raw[pseudo] = raw;
785 }
786 }
787
788
789 static int
790 mep_debug_reg_to_regnum (int debug_reg)
791 {
792 /* The debug info uses the raw register numbers. */
793 return mep_raw_to_pseudo[debug_reg];
794 }
795
796
797 /* Return the size, in bits, of the coprocessor pseudoregister
798 numbered PSEUDO. */
799 static int
800 mep_pseudo_cr_size (int pseudo)
801 {
802 if (IS_CR32_REGNUM (pseudo)
803 || IS_FP_CR32_REGNUM (pseudo))
804 return 32;
805 else if (IS_CR64_REGNUM (pseudo)
806 || IS_FP_CR64_REGNUM (pseudo))
807 return 64;
808 else
809 gdb_assert (0);
810 }
811
812
813 /* If the coprocessor pseudoregister numbered PSEUDO is a
814 floating-point register, return non-zero; if it is an integer
815 register, return zero. */
816 static int
817 mep_pseudo_cr_is_float (int pseudo)
818 {
819 return (IS_FP_CR32_REGNUM (pseudo)
820 || IS_FP_CR64_REGNUM (pseudo));
821 }
822
823
824 /* Given a coprocessor GPR pseudoregister number, return its index
825 within that register bank. */
826 static int
827 mep_pseudo_cr_index (int pseudo)
828 {
829 if (IS_CR32_REGNUM (pseudo))
830 return pseudo - MEP_FIRST_CR32_REGNUM;
831 else if (IS_FP_CR32_REGNUM (pseudo))
832 return pseudo - MEP_FIRST_FP_CR32_REGNUM;
833 else if (IS_CR64_REGNUM (pseudo))
834 return pseudo - MEP_FIRST_CR64_REGNUM;
835 else if (IS_FP_CR64_REGNUM (pseudo))
836 return pseudo - MEP_FIRST_FP_CR64_REGNUM;
837 else
838 gdb_assert (0);
839 }
840
841
842 /* Return the me_module index describing the current target.
843
844 If the current target has registers (e.g., simulator, remote
845 target), then this uses the value of the 'module' register, raw
846 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
847 from the ELF header's e_flags field of the current executable
848 file. */
849 static CONFIG_ATTR
850 current_me_module ()
851 {
852 if (target_has_registers)
853 return read_register (MEP_MODULE_REGNUM);
854 else
855 return gdbarch_tdep (current_gdbarch)->me_module;
856 }
857
858
859 /* Return the set of options for the current target, in the form that
860 the OPT register would use.
861
862 If the current target has registers (e.g., simulator, remote
863 target), then this is the actual value of the OPT register. If the
864 current target does not have registers (e.g., an executable file),
865 then use the 'module_opt' field we computed when we build the
866 gdbarch object for this module. */
867 static unsigned int
868 current_options ()
869 {
870 if (target_has_registers)
871 return read_register (MEP_OPT_REGNUM);
872 else
873 return me_module_opt (current_me_module ());
874 }
875
876
877 /* Return the width of the current me_module's coprocessor data bus,
878 in bits. This is either 32 or 64. */
879 static int
880 current_cop_data_bus_width ()
881 {
882 return me_module_cop_data_bus_width (current_me_module ());
883 }
884
885
886 /* Return the keyword table of coprocessor general-purpose register
887 names appropriate for the me_module we're dealing with. */
888 static CGEN_KEYWORD *
889 current_cr_names ()
890 {
891 const CGEN_HW_ENTRY *hw
892 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
893
894 return register_set_keyword_table (hw);
895 }
896
897
898 /* Return non-zero if the coprocessor general-purpose registers are
899 floating-point values, zero otherwise. */
900 static int
901 current_cr_is_float ()
902 {
903 const CGEN_HW_ENTRY *hw
904 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
905
906 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
907 }
908
909
910 /* Return the keyword table of coprocessor control register names
911 appropriate for the me_module we're dealing with. */
912 static CGEN_KEYWORD *
913 current_ccr_names ()
914 {
915 const CGEN_HW_ENTRY *hw
916 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
917
918 return register_set_keyword_table (hw);
919 }
920
921
922 static const char *
923 mep_register_name (int regnr)
924 {
925 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
926
927 /* General-purpose registers. */
928 static const char *gpr_names[] = {
929 "r0", "r1", "r2", "r3", /* 0 */
930 "r4", "r5", "r6", "r7", /* 4 */
931 "fp", "r9", "r10", "r11", /* 8 */
932 "r12", "tp", "gp", "sp" /* 12 */
933 };
934
935 /* Special-purpose registers. */
936 static const char *csr_names[] = {
937 "pc", "lp", "sar", "", /* 0 csr3: reserved */
938 "rpb", "rpe", "rpc", "hi", /* 4 */
939 "lo", "", "", "", /* 8 csr9-csr11: reserved */
940 "mb0", "me0", "mb1", "me1", /* 12 */
941
942 "psw", "id", "tmp", "epc", /* 16 */
943 "exc", "cfg", "", "npc", /* 20 csr22: reserved */
944 "dbg", "depc", "opt", "rcfg", /* 24 */
945 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */
946 };
947
948 if (IS_GPR_REGNUM (regnr))
949 return gpr_names[regnr - MEP_R0_REGNUM];
950 else if (IS_CSR_REGNUM (regnr))
951 {
952 /* The 'hi' and 'lo' registers are only present on processors
953 that have the 'MUL' or 'DIV' instructions enabled. */
954 if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
955 && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
956 return "";
957
958 return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
959 }
960 else if (IS_CR_REGNUM (regnr))
961 {
962 CGEN_KEYWORD *names;
963 int cr_size;
964 int cr_is_float;
965
966 /* Does this module have a coprocessor at all? */
967 if (! (current_options () & MEP_OPT_COP))
968 return "";
969
970 names = current_cr_names ();
971 if (! names)
972 /* This module's coprocessor has no general-purpose registers. */
973 return "";
974
975 cr_size = current_cop_data_bus_width ();
976 if (cr_size != mep_pseudo_cr_size (regnr))
977 /* This module's coprocessor's GPR's are of a different size. */
978 return "";
979
980 cr_is_float = current_cr_is_float ();
981 /* The extra ! operators ensure we get boolean equality, not
982 numeric equality. */
983 if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
984 /* This module's coprocessor's GPR's are of a different type. */
985 return "";
986
987 return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
988 }
989 else if (IS_CCR_REGNUM (regnr))
990 {
991 /* Does this module have a coprocessor at all? */
992 if (! (current_options () & MEP_OPT_COP))
993 return "";
994
995 {
996 CGEN_KEYWORD *names = current_ccr_names ();
997
998 if (! names)
999 /* This me_module's coprocessor has no control registers. */
1000 return "";
1001
1002 return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1003 }
1004 }
1005
1006 /* It might be nice to give the 'module' register a name, but that
1007 would affect the output of 'info all-registers', which would
1008 disturb the test suites. So we leave it invisible. */
1009 else
1010 return NULL;
1011 }
1012
1013
1014 /* Custom register groups for the MeP. */
1015 static struct reggroup *mep_csr_reggroup; /* control/special */
1016 static struct reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
1017 static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1018
1019
1020 static int
1021 mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1022 struct reggroup *group)
1023 {
1024 /* Filter reserved or unused register numbers. */
1025 {
1026 const char *name = mep_register_name (regnum);
1027
1028 if (! name || name[0] == '\0')
1029 return 0;
1030 }
1031
1032 /* We could separate the GPRs and the CSRs. Toshiba has approved of
1033 the existing behavior, so we'd want to run that by them. */
1034 if (group == general_reggroup)
1035 return (IS_GPR_REGNUM (regnum)
1036 || IS_CSR_REGNUM (regnum));
1037
1038 /* Everything is in the 'all' reggroup, except for the raw CSR's. */
1039 else if (group == all_reggroup)
1040 return (IS_GPR_REGNUM (regnum)
1041 || IS_CSR_REGNUM (regnum)
1042 || IS_CR_REGNUM (regnum)
1043 || IS_CCR_REGNUM (regnum));
1044
1045 /* All registers should be saved and restored, except for the raw
1046 CSR's.
1047
1048 This is probably right if the coprocessor is something like a
1049 floating-point unit, but would be wrong if the coprocessor is
1050 something that does I/O, where register accesses actually cause
1051 externally-visible actions. But I get the impression that the
1052 coprocessor isn't supposed to do things like that --- you'd use a
1053 hardware engine, perhaps. */
1054 else if (group == save_reggroup || group == restore_reggroup)
1055 return (IS_GPR_REGNUM (regnum)
1056 || IS_CSR_REGNUM (regnum)
1057 || IS_CR_REGNUM (regnum)
1058 || IS_CCR_REGNUM (regnum));
1059
1060 else if (group == mep_csr_reggroup)
1061 return IS_CSR_REGNUM (regnum);
1062 else if (group == mep_cr_reggroup)
1063 return IS_CR_REGNUM (regnum);
1064 else if (group == mep_ccr_reggroup)
1065 return IS_CCR_REGNUM (regnum);
1066 else
1067 return 0;
1068 }
1069
1070
1071 static struct type *
1072 mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1073 {
1074 /* Coprocessor general-purpose registers may be either 32 or 64 bits
1075 long. So for them, the raw registers are always 64 bits long (to
1076 keep the 'g' packet format fixed), and the pseudoregisters vary
1077 in length. */
1078 if (IS_RAW_CR_REGNUM (reg_nr))
1079 return builtin_type_uint64;
1080
1081 /* Since GDB doesn't allow registers to change type, we have two
1082 banks of pseudoregisters for the coprocessor general-purpose
1083 registers: one that gives a 32-bit view, and one that gives a
1084 64-bit view. We hide or show one or the other depending on the
1085 current module. */
1086 if (IS_CR_REGNUM (reg_nr))
1087 {
1088 int size = mep_pseudo_cr_size (reg_nr);
1089 if (size == 32)
1090 {
1091 if (mep_pseudo_cr_is_float (reg_nr))
1092 return builtin_type_float;
1093 else
1094 return builtin_type_uint32;
1095 }
1096 else if (size == 64)
1097 {
1098 if (mep_pseudo_cr_is_float (reg_nr))
1099 return builtin_type_double;
1100 else
1101 return builtin_type_uint64;
1102 }
1103 else
1104 gdb_assert (0);
1105 }
1106
1107 /* All other registers are 32 bits long. */
1108 else
1109 return builtin_type_uint32;
1110 }
1111
1112
1113 static CORE_ADDR
1114 mep_read_pc (ptid_t ptid)
1115 {
1116 ptid_t saved_ptid;
1117 CORE_ADDR pc;
1118
1119 saved_ptid = inferior_ptid;
1120 inferior_ptid = ptid;
1121
1122 pc = read_register (MEP_PC_REGNUM);
1123
1124 inferior_ptid = saved_ptid;
1125 return pc;
1126 }
1127
1128 static void
1129 mep_write_pc (CORE_ADDR pc, ptid_t ptid)
1130 {
1131 ptid_t saved_ptid;
1132
1133 saved_ptid = inferior_ptid;
1134 inferior_ptid = ptid;
1135
1136 write_register (MEP_PC_REGNUM, pc);
1137
1138 inferior_ptid = saved_ptid;
1139 }
1140
1141
1142 static void
1143 mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1144 struct regcache *regcache,
1145 int cookednum,
1146 void *buf)
1147 {
1148 /* Read the raw register into a 64-bit buffer, and then return the
1149 appropriate end of that buffer. */
1150 int rawnum = mep_pseudo_to_raw[cookednum];
1151 char buf64[8];
1152
1153 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1154 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1155 regcache_raw_read (regcache, rawnum, buf64);
1156 /* Slow, but legible. */
1157 store_unsigned_integer (buf, 4, extract_unsigned_integer (buf64, 8));
1158 }
1159
1160
1161 static void
1162 mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1163 struct regcache *regcache,
1164 int cookednum,
1165 void *buf)
1166 {
1167 regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1168 }
1169
1170
1171 static void
1172 mep_pseudo_register_read (struct gdbarch *gdbarch,
1173 struct regcache *regcache,
1174 int cookednum,
1175 gdb_byte *buf)
1176 {
1177 if (IS_CSR_REGNUM (cookednum)
1178 || IS_CCR_REGNUM (cookednum))
1179 regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1180 else if (IS_CR32_REGNUM (cookednum)
1181 || IS_FP_CR32_REGNUM (cookednum))
1182 mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1183 else if (IS_CR64_REGNUM (cookednum)
1184 || IS_FP_CR64_REGNUM (cookednum))
1185 mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1186 else
1187 gdb_assert (0);
1188 }
1189
1190
1191 static void
1192 mep_pseudo_csr_write (struct gdbarch *gdbarch,
1193 struct regcache *regcache,
1194 int cookednum,
1195 const void *buf)
1196 {
1197 int size = register_size (gdbarch, cookednum);
1198 struct mep_csr_register *r
1199 = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1200
1201 if (r->writeable_bits == 0)
1202 /* A completely read-only register; avoid the read-modify-
1203 write cycle, and juts ignore the entire write. */
1204 ;
1205 else
1206 {
1207 /* A partially writeable register; do a read-modify-write cycle. */
1208 ULONGEST old_bits;
1209 ULONGEST new_bits;
1210 ULONGEST mixed_bits;
1211
1212 regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1213 new_bits = extract_unsigned_integer (buf, size);
1214 mixed_bits = ((r->writeable_bits & new_bits)
1215 | (~r->writeable_bits & old_bits));
1216 regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1217 }
1218 }
1219
1220
1221 static void
1222 mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1223 struct regcache *regcache,
1224 int cookednum,
1225 const void *buf)
1226 {
1227 /* Expand the 32-bit value into a 64-bit value, and write that to
1228 the pseudoregister. */
1229 int rawnum = mep_pseudo_to_raw[cookednum];
1230 char buf64[8];
1231
1232 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1233 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1234 /* Slow, but legible. */
1235 store_unsigned_integer (buf64, 8, extract_unsigned_integer (buf, 4));
1236 regcache_raw_write (regcache, rawnum, buf64);
1237 }
1238
1239
1240 static void
1241 mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1242 struct regcache *regcache,
1243 int cookednum,
1244 const void *buf)
1245 {
1246 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1247 }
1248
1249
1250 static void
1251 mep_pseudo_register_write (struct gdbarch *gdbarch,
1252 struct regcache *regcache,
1253 int cookednum,
1254 const gdb_byte *buf)
1255 {
1256 if (IS_CSR_REGNUM (cookednum))
1257 mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1258 else if (IS_CR32_REGNUM (cookednum)
1259 || IS_FP_CR32_REGNUM (cookednum))
1260 mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1261 else if (IS_CR64_REGNUM (cookednum)
1262 || IS_FP_CR64_REGNUM (cookednum))
1263 mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1264 else if (IS_CCR_REGNUM (cookednum))
1265 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1266 else
1267 gdb_assert (0);
1268 }
1269
1270
1271 \f
1272 /* Disassembly. */
1273
1274 /* The mep disassembler needs to know about the section in order to
1275 work correctly. */
1276 int
1277 mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1278 {
1279 struct obj_section * s = find_pc_section (pc);
1280
1281 if (s)
1282 {
1283 /* The libopcodes disassembly code uses the section to find the
1284 BFD, the BFD to find the ELF header, the ELF header to find
1285 the me_module index, and the me_module index to select the
1286 right instructions to print. */
1287 info->section = s->the_bfd_section;
1288 info->arch = bfd_arch_mep;
1289
1290 return print_insn_mep (pc, info);
1291 }
1292
1293 return 0;
1294 }
1295
1296 \f
1297 /* Prologue analysis. */
1298
1299
1300 /* The MeP has two classes of instructions: "core" instructions, which
1301 are pretty normal RISC chip stuff, and "coprocessor" instructions,
1302 which are mostly concerned with moving data in and out of
1303 coprocessor registers, and branching on coprocessor condition
1304 codes. There's space in the instruction set for custom coprocessor
1305 instructions, too.
1306
1307 Instructions can be 16 or 32 bits long; the top two bits of the
1308 first byte indicate the length. The coprocessor instructions are
1309 mixed in with the core instructions, and there's no easy way to
1310 distinguish them; you have to completely decode them to tell one
1311 from the other.
1312
1313 The MeP also supports a "VLIW" operation mode, where instructions
1314 always occur in fixed-width bundles. The bundles are either 32
1315 bits or 64 bits long, depending on a fixed configuration flag. You
1316 decode the first part of the bundle as normal; if it's a core
1317 instruction, and there's any space left in the bundle, the
1318 remainder of the bundle is a coprocessor instruction, which will
1319 execute in parallel with the core instruction. If the first part
1320 of the bundle is a coprocessor instruction, it occupies the entire
1321 bundle.
1322
1323 So, here are all the cases:
1324
1325 - 32-bit VLIW mode:
1326 Every bundle is four bytes long, and naturally aligned, and can hold
1327 one or two instructions:
1328 - 16-bit core instruction; 16-bit coprocessor instruction
1329 These execute in parallel.
1330 - 32-bit core instruction
1331 - 32-bit coprocessor instruction
1332
1333 - 64-bit VLIW mode:
1334 Every bundle is eight bytes long, and naturally aligned, and can hold
1335 one or two instructions:
1336 - 16-bit core instruction; 48-bit (!) coprocessor instruction
1337 These execute in parallel.
1338 - 32-bit core instruction; 32-bit coprocessor instruction
1339 These execute in parallel.
1340 - 64-bit coprocessor instruction
1341
1342 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1343 instruction, so I don't really know what's up there; perhaps these
1344 are always the user-defined coprocessor instructions. */
1345
1346
1347 /* Return non-zero if PC is in a VLIW code section, zero
1348 otherwise. */
1349 static int
1350 mep_pc_in_vliw_section (CORE_ADDR pc)
1351 {
1352 struct obj_section *s = find_pc_section (pc);
1353 if (s)
1354 return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1355 return 0;
1356 }
1357
1358
1359 /* Set *INSN to the next core instruction at PC, and return the
1360 address of the next instruction.
1361
1362 The MeP instruction encoding is endian-dependent. 16- and 32-bit
1363 instructions are encoded as one or two two-byte parts, and each
1364 part is byte-swapped independently. Thus:
1365
1366 void
1367 foo (void)
1368 {
1369 asm ("movu $1, 0x123456");
1370 asm ("sb $1,0x5678($2)");
1371 asm ("clip $1, 19");
1372 }
1373
1374 compiles to this big-endian code:
1375
1376 0: d1 56 12 34 movu $1,0x123456
1377 4: c1 28 56 78 sb $1,22136($2)
1378 8: f1 01 10 98 clip $1,0x13
1379 c: 70 02 ret
1380
1381 and this little-endian code:
1382
1383 0: 56 d1 34 12 movu $1,0x123456
1384 4: 28 c1 78 56 sb $1,22136($2)
1385 8: 01 f1 98 10 clip $1,0x13
1386 c: 02 70 ret
1387
1388 Instructions are returned in *INSN in an endian-independent form: a
1389 given instruction always appears in *INSN the same way, regardless
1390 of whether the instruction stream is big-endian or little-endian.
1391
1392 *INSN's most significant 16 bits are the first (i.e., at lower
1393 addresses) 16 bit part of the instruction. Its least significant
1394 16 bits are the second (i.e., higher-addressed) 16 bit part of the
1395 instruction, or zero for a 16-bit instruction. Both 16-bit parts
1396 are fetched using the current endianness.
1397
1398 So, the *INSN values for the instruction sequence above would be
1399 the following, in either endianness:
1400
1401 0xd1561234 movu $1,0x123456
1402 0xc1285678 sb $1,22136($2)
1403 0xf1011098 clip $1,0x13
1404 0x70020000 ret
1405
1406 (In a sense, it would be more natural to return 16-bit instructions
1407 in the least significant 16 bits of *INSN, but that would be
1408 ambiguous. In order to tell whether you're looking at a 16- or a
1409 32-bit instruction, you have to consult the major opcode field ---
1410 the most significant four bits of the instruction's first 16-bit
1411 part. But if we put 16-bit instructions at the least significant
1412 end of *INSN, then you don't know where to find the major opcode
1413 field until you know if it's a 16- or a 32-bit instruction ---
1414 which is where we started.)
1415
1416 If PC points to a core / coprocessor bundle in a VLIW section, set
1417 *INSN to the core instruction, and return the address of the next
1418 bundle. This has the effect of skipping the bundled coprocessor
1419 instruction. That's okay, since coprocessor instructions aren't
1420 significant to prologue analysis --- for the time being,
1421 anyway. */
1422
1423 static CORE_ADDR
1424 mep_get_insn (CORE_ADDR pc, long *insn)
1425 {
1426 int pc_in_vliw_section;
1427 int vliw_mode;
1428 int insn_len;
1429 char buf[2];
1430
1431 *insn = 0;
1432
1433 /* Are we in a VLIW section? */
1434 pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1435 if (pc_in_vliw_section)
1436 {
1437 /* Yes, find out which bundle size. */
1438 vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1439
1440 /* If PC is in a VLIW section, but the current core doesn't say
1441 that it supports either VLIW mode, then we don't have enough
1442 information to parse the instruction stream it contains.
1443 Since the "undifferentiated" standard core doesn't have
1444 either VLIW mode bit set, this could happen.
1445
1446 But it shouldn't be an error to (say) set a breakpoint in a
1447 VLIW section, if you know you'll never reach it. (Perhaps
1448 you have a script that sets a bunch of standard breakpoints.)
1449
1450 So we'll just return zero here, and hope for the best. */
1451 if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1452 return 0;
1453
1454 /* If both VL32 and VL64 are set, that's bogus, too. */
1455 if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1456 return 0;
1457 }
1458 else
1459 vliw_mode = 0;
1460
1461 read_memory (pc, buf, sizeof (buf));
1462 *insn = extract_unsigned_integer (buf, 2) << 16;
1463
1464 /* The major opcode --- the top four bits of the first 16-bit
1465 part --- indicates whether this instruction is 16 or 32 bits
1466 long. All 32-bit instructions have a major opcode whose top
1467 two bits are 11; all the rest are 16-bit instructions. */
1468 if ((*insn & 0xc0000000) == 0xc0000000)
1469 {
1470 /* Fetch the second 16-bit part of the instruction. */
1471 read_memory (pc + 2, buf, sizeof (buf));
1472 *insn = *insn | extract_unsigned_integer (buf, 2);
1473 }
1474
1475 /* If we're in VLIW code, then the VLIW width determines the address
1476 of the next instruction. */
1477 if (vliw_mode)
1478 {
1479 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1480 coprocessor half of a core / copro bundle. */
1481 if (vliw_mode == MEP_OPT_VL32)
1482 insn_len = 4;
1483
1484 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1485 coprocessor half of a core / copro bundle. */
1486 else if (vliw_mode == MEP_OPT_VL64)
1487 insn_len = 8;
1488
1489 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1490 else
1491 gdb_assert (0);
1492 }
1493
1494 /* Otherwise, the top two bits of the major opcode are (again) what
1495 we need to check. */
1496 else if ((*insn & 0xc0000000) == 0xc0000000)
1497 insn_len = 4;
1498 else
1499 insn_len = 2;
1500
1501 return pc + insn_len;
1502 }
1503
1504
1505 /* Sign-extend the LEN-bit value N. */
1506 #define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1507
1508 /* Return the LEN-bit field at POS from I. */
1509 #define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1510
1511 /* Like FIELD, but sign-extend the field's value. */
1512 #define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1513
1514
1515 /* Macros for decoding instructions.
1516
1517 Remember that 16-bit instructions are placed in bits 16..31 of i,
1518 not at the least significant end; this means that the major opcode
1519 field is always in the same place, regardless of the width of the
1520 instruction. As a reminder of this, we show the lower 16 bits of a
1521 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1522
1523 /* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1524 /* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1525 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1526
1527 /* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1528 #define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1529 /* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1530 #define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1531 /* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1532 #define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1533 #define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1534 #define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1535 #define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1536
1537 /* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1538 #define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1539 #define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1540 #define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1541
1542 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1543 #define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1544 #define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1545 #define SW_REG_BASE(i) (FIELD (i, 20, 4))
1546
1547 /* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1548 #define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1549 #define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1550 #define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1551
1552 /* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1553 #define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1554 #define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1555 #define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1556 #define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1557
1558 /* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1559 #define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1560 #define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1561 #define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1562
1563 /* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1564 #define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1565 #define ADD_TARGET(i) (FIELD (i, 24, 4))
1566 #define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1567
1568 /* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1569 imm5 = I||i[7:4] */
1570 #define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1571 #define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1572 #define LDC_TARGET(i) (FIELD (i, 24, 4))
1573
1574 /* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1575 #define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1576 #define LW_TARGET(i) (FIELD (i, 24, 4))
1577 #define LW_BASE(i) (FIELD (i, 20, 4))
1578 #define LW_OFFSET(i) (SFIELD (i, 0, 16))
1579
1580 /* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1581 #define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1582 #define MOV_TARGET(i) (FIELD (i, 24, 4))
1583 #define MOV_SOURCE(i) (FIELD (i, 20, 4))
1584
1585
1586 /* This structure holds the results of a prologue analysis. */
1587 struct mep_prologue
1588 {
1589 /* The offset from the frame base to the stack pointer --- always
1590 zero or negative.
1591
1592 Calling this a "size" is a bit misleading, but given that the
1593 stack grows downwards, using offsets for everything keeps one
1594 from going completely sign-crazy: you never change anything's
1595 sign for an ADD instruction; always change the second operand's
1596 sign for a SUB instruction; and everything takes care of
1597 itself. */
1598 int frame_size;
1599
1600 /* Non-zero if this function has initialized the frame pointer from
1601 the stack pointer, zero otherwise. */
1602 int has_frame_ptr;
1603
1604 /* If has_frame_ptr is non-zero, this is the offset from the frame
1605 base to where the frame pointer points. This is always zero or
1606 negative. */
1607 int frame_ptr_offset;
1608
1609 /* The address of the first instruction at which the frame has been
1610 set up and the arguments are where the debug info says they are
1611 --- as best as we can tell. */
1612 CORE_ADDR prologue_end;
1613
1614 /* reg_offset[R] is the offset from the CFA at which register R is
1615 saved, or 1 if register R has not been saved. (Real values are
1616 always zero or negative.) */
1617 int reg_offset[MEP_NUM_REGS];
1618 };
1619
1620 /* Return non-zero if VALUE is an incoming argument register. */
1621
1622 static int
1623 is_arg_reg (pv_t value)
1624 {
1625 return (value.kind == pvk_register
1626 && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1627 && value.k == 0);
1628 }
1629
1630 /* Return non-zero if a store of REG's current value VALUE to ADDR is
1631 probably spilling an argument register to its stack slot in STACK.
1632 Such instructions should be included in the prologue, if possible.
1633
1634 The store is a spill if:
1635 - the value being stored is REG's original value;
1636 - the value has not already been stored somewhere in STACK; and
1637 - ADDR is a stack slot's address (e.g., relative to the original
1638 value of the SP). */
1639 static int
1640 is_arg_spill (pv_t value, pv_t addr, struct pv_area *stack)
1641 {
1642 return (is_arg_reg (value)
1643 && pv_is_register (addr, MEP_SP_REGNUM)
1644 && ! pv_area_find_reg (stack, current_gdbarch, value.reg, 0));
1645 }
1646
1647
1648 /* Function for finding saved registers in a 'struct pv_area'; we pass
1649 this to pv_area_scan.
1650
1651 If VALUE is a saved register, ADDR says it was saved at a constant
1652 offset from the frame base, and SIZE indicates that the whole
1653 register was saved, record its offset in RESULT_UNTYPED. */
1654 static void
1655 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1656 {
1657 struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1658
1659 if (value.kind == pvk_register
1660 && value.k == 0
1661 && pv_is_register (addr, MEP_SP_REGNUM)
1662 && size == register_size (current_gdbarch, value.reg))
1663 result->reg_offset[value.reg] = addr.k;
1664 }
1665
1666
1667 /* Analyze a prologue starting at START_PC, going no further than
1668 LIMIT_PC. Fill in RESULT as appropriate. */
1669 static void
1670 mep_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1671 struct mep_prologue *result)
1672 {
1673 CORE_ADDR pc;
1674 unsigned long insn;
1675 int rn;
1676 int found_lp = 0;
1677 pv_t reg[MEP_NUM_REGS];
1678 struct pv_area *stack;
1679 struct cleanup *back_to;
1680 CORE_ADDR after_last_frame_setup_insn = start_pc;
1681
1682 memset (result, 0, sizeof (*result));
1683
1684 for (rn = 0; rn < MEP_NUM_REGS; rn++)
1685 {
1686 reg[rn] = pv_register (rn, 0);
1687 result->reg_offset[rn] = 1;
1688 }
1689
1690 stack = make_pv_area (MEP_SP_REGNUM);
1691 back_to = make_cleanup_free_pv_area (stack);
1692
1693 pc = start_pc;
1694 while (pc < limit_pc)
1695 {
1696 CORE_ADDR next_pc;
1697 pv_t pre_insn_fp, pre_insn_sp;
1698
1699 next_pc = mep_get_insn (pc, &insn);
1700
1701 /* A zero return from mep_get_insn means that either we weren't
1702 able to read the instruction from memory, or that we don't
1703 have enough information to be able to reliably decode it. So
1704 we'll store here and hope for the best. */
1705 if (! next_pc)
1706 break;
1707
1708 /* Note the current values of the SP and FP, so we can tell if
1709 this instruction changed them, below. */
1710 pre_insn_fp = reg[MEP_FP_REGNUM];
1711 pre_insn_sp = reg[MEP_SP_REGNUM];
1712
1713 if (IS_ADD (insn))
1714 {
1715 int rn = ADD_TARGET (insn);
1716 CORE_ADDR imm6 = ADD_OFFSET (insn);
1717
1718 reg[rn] = pv_add_constant (reg[rn], imm6);
1719 }
1720 else if (IS_ADD3_16 (insn))
1721 {
1722 int rn = ADD3_16_TARGET (insn);
1723 int imm7 = ADD3_16_OFFSET (insn);
1724
1725 reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1726 }
1727 else if (IS_ADD3_32 (insn))
1728 {
1729 int rn = ADD3_32_TARGET (insn);
1730 int rm = ADD3_32_SOURCE (insn);
1731 int imm16 = ADD3_32_OFFSET (insn);
1732
1733 reg[rn] = pv_add_constant (reg[rm], imm16);
1734 }
1735 else if (IS_SW_REG (insn))
1736 {
1737 int rn = SW_REG_SOURCE (insn);
1738 int rm = SW_REG_BASE (insn);
1739
1740 /* If simulating this store would require us to forget
1741 everything we know about the stack frame in the name of
1742 accuracy, it would be better to just quit now. */
1743 if (pv_area_store_would_trash (stack, reg[rm]))
1744 break;
1745
1746 if (is_arg_spill (reg[rn], reg[rm], stack))
1747 after_last_frame_setup_insn = next_pc;
1748
1749 pv_area_store (stack, reg[rm], 4, reg[rn]);
1750 }
1751 else if (IS_SW_IMMD (insn))
1752 {
1753 int rn = SW_IMMD_SOURCE (insn);
1754 int offset = SW_IMMD_OFFSET (insn);
1755 pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1756
1757 /* If simulating this store would require us to forget
1758 everything we know about the stack frame in the name of
1759 accuracy, it would be better to just quit now. */
1760 if (pv_area_store_would_trash (stack, addr))
1761 break;
1762
1763 if (is_arg_spill (reg[rn], addr, stack))
1764 after_last_frame_setup_insn = next_pc;
1765
1766 pv_area_store (stack, addr, 4, reg[rn]);
1767 }
1768 else if (IS_MOV (insn))
1769 {
1770 int rn = MOV_TARGET (insn);
1771 int rm = MOV_SOURCE (insn);
1772
1773 reg[rn] = reg[rm];
1774
1775 if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1776 after_last_frame_setup_insn = next_pc;
1777 }
1778 else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1779 {
1780 int rn = SWBH_32_SOURCE (insn);
1781 int rm = SWBH_32_BASE (insn);
1782 int disp = SWBH_32_OFFSET (insn);
1783 int size = (IS_SB (insn) ? 1
1784 : IS_SH (insn) ? 2
1785 : IS_SW (insn) ? 4
1786 : (gdb_assert (0), 1));
1787 pv_t addr = pv_add_constant (reg[rm], disp);
1788
1789 if (pv_area_store_would_trash (stack, addr))
1790 break;
1791
1792 if (is_arg_spill (reg[rn], addr, stack))
1793 after_last_frame_setup_insn = next_pc;
1794
1795 pv_area_store (stack, addr, size, reg[rn]);
1796 }
1797 else if (IS_LDC (insn))
1798 {
1799 int rn = LDC_TARGET (insn);
1800 int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1801
1802 reg[rn] = reg[cr];
1803 }
1804 else if (IS_LW (insn))
1805 {
1806 int rn = LW_TARGET (insn);
1807 int rm = LW_BASE (insn);
1808 int offset = LW_OFFSET (insn);
1809 pv_t addr = pv_add_constant (reg[rm], offset);
1810
1811 reg[rn] = pv_area_fetch (stack, addr, 4);
1812 }
1813 else
1814 /* We've hit some instruction we don't know how to simulate.
1815 Strictly speaking, we should set every value we're
1816 tracking to "unknown". But we'll be optimistic, assume
1817 that we have enough information already, and stop
1818 analysis here. */
1819 break;
1820
1821 /* If this instruction changed the FP or decreased the SP (i.e.,
1822 allocated more stack space), then this may be a good place to
1823 declare the prologue finished. However, there are some
1824 exceptions:
1825
1826 - If the instruction just changed the FP back to its original
1827 value, then that's probably a restore instruction. The
1828 prologue should definitely end before that.
1829
1830 - If the instruction increased the value of the SP (that is,
1831 shrunk the frame), then it's probably part of a frame
1832 teardown sequence, and the prologue should end before that. */
1833
1834 if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1835 {
1836 if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1837 after_last_frame_setup_insn = next_pc;
1838 }
1839 else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1840 {
1841 /* The comparison of constants looks odd, there, because .k
1842 is unsigned. All it really means is that the new value
1843 is lower than it was before the instruction. */
1844 if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1845 && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1846 && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1847 < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1848 after_last_frame_setup_insn = next_pc;
1849 }
1850
1851 pc = next_pc;
1852 }
1853
1854 /* Is the frame size (offset, really) a known constant? */
1855 if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1856 result->frame_size = reg[MEP_SP_REGNUM].k;
1857
1858 /* Was the frame pointer initialized? */
1859 if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1860 {
1861 result->has_frame_ptr = 1;
1862 result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1863 }
1864
1865 /* Record where all the registers were saved. */
1866 pv_area_scan (stack, check_for_saved, (void *) result);
1867
1868 result->prologue_end = after_last_frame_setup_insn;
1869
1870 do_cleanups (back_to);
1871 }
1872
1873
1874 static CORE_ADDR
1875 mep_skip_prologue (CORE_ADDR pc)
1876 {
1877 char *name;
1878 CORE_ADDR func_addr, func_end;
1879 struct mep_prologue p;
1880
1881 /* Try to find the extent of the function that contains PC. */
1882 if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1883 return pc;
1884
1885 mep_analyze_prologue (pc, func_end, &p);
1886 return p.prologue_end;
1887 }
1888
1889
1890 \f
1891 /* Breakpoints. */
1892
1893 static const unsigned char *
1894 mep_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
1895 {
1896 static unsigned char breakpoint[] = { 0x70, 0x32 };
1897 *lenptr = sizeof (breakpoint);
1898 return breakpoint;
1899 }
1900
1901
1902 \f
1903 /* Frames and frame unwinding. */
1904
1905
1906 static struct mep_prologue *
1907 mep_analyze_frame_prologue (struct frame_info *next_frame,
1908 void **this_prologue_cache)
1909 {
1910 if (! *this_prologue_cache)
1911 {
1912 CORE_ADDR func_start, stop_addr;
1913
1914 *this_prologue_cache
1915 = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1916
1917 func_start = frame_func_unwind (next_frame, NORMAL_FRAME);
1918 stop_addr = frame_pc_unwind (next_frame);
1919
1920 /* If we couldn't find any function containing the PC, then
1921 just initialize the prologue cache, but don't do anything. */
1922 if (! func_start)
1923 stop_addr = func_start;
1924
1925 mep_analyze_prologue (func_start, stop_addr, *this_prologue_cache);
1926 }
1927
1928 return *this_prologue_cache;
1929 }
1930
1931
1932 /* Given the next frame and a prologue cache, return this frame's
1933 base. */
1934 static CORE_ADDR
1935 mep_frame_base (struct frame_info *next_frame,
1936 void **this_prologue_cache)
1937 {
1938 struct mep_prologue *p
1939 = mep_analyze_frame_prologue (next_frame, this_prologue_cache);
1940
1941 /* In functions that use alloca, the distance between the stack
1942 pointer and the frame base varies dynamically, so we can't use
1943 the SP plus static information like prologue analysis to find the
1944 frame base. However, such functions must have a frame pointer,
1945 to be able to restore the SP on exit. So whenever we do have a
1946 frame pointer, use that to find the base. */
1947 if (p->has_frame_ptr)
1948 {
1949 CORE_ADDR fp
1950 = frame_unwind_register_unsigned (next_frame, MEP_FP_REGNUM);
1951 return fp - p->frame_ptr_offset;
1952 }
1953 else
1954 {
1955 CORE_ADDR sp
1956 = frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
1957 return sp - p->frame_size;
1958 }
1959 }
1960
1961
1962 static void
1963 mep_frame_this_id (struct frame_info *next_frame,
1964 void **this_prologue_cache,
1965 struct frame_id *this_id)
1966 {
1967 *this_id = frame_id_build (mep_frame_base (next_frame, this_prologue_cache),
1968 frame_func_unwind (next_frame, NORMAL_FRAME));
1969 }
1970
1971
1972 static void
1973 mep_frame_prev_register (struct frame_info *next_frame,
1974 void **this_prologue_cache,
1975 int regnum, int *optimizedp,
1976 enum lval_type *lvalp, CORE_ADDR *addrp,
1977 int *realnump, gdb_byte *bufferp)
1978 {
1979 struct mep_prologue *p
1980 = mep_analyze_frame_prologue (next_frame, this_prologue_cache);
1981
1982 /* There are a number of complications in unwinding registers on the
1983 MeP, having to do with core functions calling VLIW functions and
1984 vice versa.
1985
1986 The least significant bit of the link register, LP.LTOM, is the
1987 VLIW mode toggle bit: it's set if a core function called a VLIW
1988 function, or vice versa, and clear when the caller and callee
1989 were both in the same mode.
1990
1991 So, if we're asked to unwind the PC, then we really want to
1992 unwind the LP and clear the least significant bit. (Real return
1993 addresses are always even.) And if we want to unwind the program
1994 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
1995
1996 Tweaking the register values we return in this way means that the
1997 bits in BUFFERP[] are not the same as the bits you'd find at
1998 ADDRP in the inferior, so we make sure lvalp is not_lval when we
1999 do this. */
2000 if (regnum == MEP_PC_REGNUM)
2001 {
2002 mep_frame_prev_register (next_frame, this_prologue_cache, MEP_LP_REGNUM,
2003 optimizedp, lvalp, addrp, realnump, bufferp);
2004 store_unsigned_integer (bufferp, MEP_LP_SIZE,
2005 (extract_unsigned_integer (bufferp, MEP_LP_SIZE)
2006 & ~1));
2007 *lvalp = not_lval;
2008 }
2009 else
2010 {
2011 CORE_ADDR frame_base = mep_frame_base (next_frame, this_prologue_cache);
2012 int reg_size = register_size (get_frame_arch (next_frame), regnum);
2013
2014 /* Our caller's SP is our frame base. */
2015 if (regnum == MEP_SP_REGNUM)
2016 {
2017 *optimizedp = 0;
2018 *lvalp = not_lval;
2019 *addrp = 0;
2020 *realnump = -1;
2021 if (bufferp)
2022 store_unsigned_integer (bufferp, reg_size, frame_base);
2023 }
2024
2025 /* If prologue analysis says we saved this register somewhere,
2026 return a description of the stack slot holding it. */
2027 else if (p->reg_offset[regnum] != 1)
2028 {
2029 *optimizedp = 0;
2030 *lvalp = lval_memory;
2031 *addrp = frame_base + p->reg_offset[regnum];
2032 *realnump = -1;
2033 if (bufferp)
2034 get_frame_memory (next_frame, *addrp, bufferp, reg_size);
2035 }
2036
2037 /* Otherwise, presume we haven't changed the value of this
2038 register, and get it from the next frame. */
2039 else
2040 frame_register_unwind (next_frame, regnum,
2041 optimizedp, lvalp, addrp, realnump, bufferp);
2042
2043 /* If we need to toggle the operating mode, do so. */
2044 if (regnum == MEP_PSW_REGNUM)
2045 {
2046 int lp_optimized;
2047 enum lval_type lp_lval;
2048 CORE_ADDR lp_addr;
2049 int lp_realnum;
2050 char lp_buffer[MEP_LP_SIZE];
2051
2052 /* Get the LP's value, too. */
2053 frame_register_unwind (next_frame, MEP_LP_REGNUM,
2054 &lp_optimized, &lp_lval, &lp_addr,
2055 &lp_realnum, lp_buffer);
2056
2057 /* If LP.LTOM is set, then toggle PSW.OM. */
2058 if (extract_unsigned_integer (lp_buffer, MEP_LP_SIZE) & 0x1)
2059 store_unsigned_integer
2060 (bufferp, MEP_PSW_SIZE,
2061 (extract_unsigned_integer (bufferp, MEP_PSW_SIZE) ^ 0x1000));
2062 *lvalp = not_lval;
2063 }
2064 }
2065 }
2066
2067
2068 static const struct frame_unwind mep_frame_unwind = {
2069 NORMAL_FRAME,
2070 mep_frame_this_id,
2071 mep_frame_prev_register
2072 };
2073
2074
2075 static const struct frame_unwind *
2076 mep_frame_sniffer (struct frame_info *next_frame)
2077 {
2078 return &mep_frame_unwind;
2079 }
2080
2081
2082 /* Our general unwinding function can handle unwinding the PC. */
2083 static CORE_ADDR
2084 mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2085 {
2086 return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2087 }
2088
2089
2090 /* Our general unwinding function can handle unwinding the SP. */
2091 static CORE_ADDR
2092 mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2093 {
2094 return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2095 }
2096
2097
2098 \f
2099 /* Return values. */
2100
2101
2102 static int
2103 mep_use_struct_convention (struct type *type)
2104 {
2105 return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2106 }
2107
2108
2109 static void
2110 mep_extract_return_value (struct gdbarch *arch,
2111 struct type *type,
2112 struct regcache *regcache,
2113 gdb_byte *valbuf)
2114 {
2115 int byte_order = gdbarch_byte_order (arch);
2116
2117 /* Values that don't occupy a full register appear at the less
2118 significant end of the value. This is the offset to where the
2119 value starts. */
2120 int offset;
2121
2122 /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2123 pointed to by R0. */
2124 gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2125
2126 if (byte_order == BFD_ENDIAN_BIG)
2127 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2128 else
2129 offset = 0;
2130
2131 /* Return values that do fit in a single register are returned in R0. */
2132 regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2133 offset, TYPE_LENGTH (type),
2134 valbuf);
2135 }
2136
2137
2138 static void
2139 mep_store_return_value (struct gdbarch *arch,
2140 struct type *type,
2141 struct regcache *regcache,
2142 const gdb_byte *valbuf)
2143 {
2144 int byte_order = gdbarch_byte_order (arch);
2145
2146 /* Values that fit in a single register go in R0. */
2147 if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2148 {
2149 /* Values that don't occupy a full register appear at the least
2150 significant end of the value. This is the offset to where the
2151 value starts. */
2152 int offset;
2153
2154 if (byte_order == BFD_ENDIAN_BIG)
2155 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2156 else
2157 offset = 0;
2158
2159 regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2160 offset, TYPE_LENGTH (type),
2161 valbuf);
2162 }
2163
2164 /* Return values larger than a single register are returned in
2165 memory, pointed to by R0. Unfortunately, we can't count on R0
2166 pointing to the return buffer, so we raise an error here. */
2167 else
2168 error ("GDB cannot set return values larger than four bytes; "
2169 "the Media Processor's\n"
2170 "calling conventions do not provide enough information "
2171 "to do this.\n"
2172 "Try using the 'return' command with no argument.");
2173 }
2174
2175 enum return_value_convention
2176 mep_return_value (struct gdbarch *gdbarch, struct type *type,
2177 struct regcache *regcache, gdb_byte *readbuf,
2178 const gdb_byte *writebuf)
2179 {
2180 if (mep_use_struct_convention (type))
2181 {
2182 if (readbuf)
2183 {
2184 ULONGEST addr;
2185 /* Although the address of the struct buffer gets passed in R1, it's
2186 returned in R0. Fetch R0's value and then read the memory
2187 at that address. */
2188 regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2189 read_memory (addr, readbuf, TYPE_LENGTH (type));
2190 }
2191 if (writebuf)
2192 {
2193 /* Return values larger than a single register are returned in
2194 memory, pointed to by R0. Unfortunately, we can't count on R0
2195 pointing to the return buffer, so we raise an error here. */
2196 error ("GDB cannot set return values larger than four bytes; "
2197 "the Media Processor's\n"
2198 "calling conventions do not provide enough information "
2199 "to do this.\n"
2200 "Try using the 'return' command with no argument.");
2201 }
2202 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2203 }
2204
2205 if (readbuf)
2206 mep_extract_return_value (gdbarch, type, regcache, readbuf);
2207 if (writebuf)
2208 mep_store_return_value (gdbarch, type, regcache, writebuf);
2209
2210 return RETURN_VALUE_REGISTER_CONVENTION;
2211 }
2212
2213 \f
2214 /* Inferior calls. */
2215
2216
2217 static CORE_ADDR
2218 mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2219 {
2220 /* Require word alignment. */
2221 return sp & -4;
2222 }
2223
2224
2225 /* From "lang_spec2.txt":
2226
2227 4.2 Calling conventions
2228
2229 4.2.1 Core register conventions
2230
2231 - Parameters should be evaluated from left to right, and they
2232 should be held in $1,$2,$3,$4 in order. The fifth parameter or
2233 after should be held in the stack. If the size is larger than 4
2234 bytes in the first four parameters, the pointer should be held in
2235 the registers instead. If the size is larger than 4 bytes in the
2236 fifth parameter or after, the pointer should be held in the stack.
2237
2238 - Return value of a function should be held in register $0. If the
2239 size of return value is larger than 4 bytes, $1 should hold the
2240 pointer pointing memory that would hold the return value. In this
2241 case, the first parameter should be held in $2, the second one in
2242 $3, and the third one in $4, and the forth parameter or after
2243 should be held in the stack.
2244
2245 [This doesn't say so, but arguments shorter than four bytes are
2246 passed in the least significant end of a four-byte word when
2247 they're passed on the stack.] */
2248
2249
2250 /* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2251 large to fit in a register, save it on the stack, and place its
2252 address in COPY[i]. SP is the initial stack pointer; return the
2253 new stack pointer. */
2254 static CORE_ADDR
2255 push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2256 CORE_ADDR copy[])
2257 {
2258 int i;
2259
2260 for (i = 0; i < argc; i++)
2261 {
2262 unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2263
2264 if (arg_len > MEP_GPR_SIZE)
2265 {
2266 /* Reserve space for the copy, and then round the SP down, to
2267 make sure it's all aligned properly. */
2268 sp = (sp - arg_len) & -4;
2269 write_memory (sp, value_contents (argv[i]), arg_len);
2270 copy[i] = sp;
2271 }
2272 }
2273
2274 return sp;
2275 }
2276
2277
2278 static CORE_ADDR
2279 mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2280 struct regcache *regcache, CORE_ADDR bp_addr,
2281 int argc, struct value **argv, CORE_ADDR sp,
2282 int struct_return,
2283 CORE_ADDR struct_addr)
2284 {
2285 CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2286 CORE_ADDR func_addr = find_function_addr (function, NULL);
2287 int i;
2288
2289 /* The number of the next register available to hold an argument. */
2290 int arg_reg;
2291
2292 /* The address of the next stack slot available to hold an argument. */
2293 CORE_ADDR arg_stack;
2294
2295 /* The address of the end of the stack area for arguments. This is
2296 just for error checking. */
2297 CORE_ADDR arg_stack_end;
2298
2299 sp = push_large_arguments (sp, argc, argv, copy);
2300
2301 /* Reserve space for the stack arguments, if any. */
2302 arg_stack_end = sp;
2303 if (argc + (struct_addr ? 1 : 0) > 4)
2304 sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2305
2306 arg_reg = MEP_R1_REGNUM;
2307 arg_stack = sp;
2308
2309 /* If we're returning a structure by value, push the pointer to the
2310 buffer as the first argument. */
2311 if (struct_return)
2312 {
2313 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2314 arg_reg++;
2315 }
2316
2317 for (i = 0; i < argc; i++)
2318 {
2319 unsigned arg_size = TYPE_LENGTH (value_type (argv[i]));
2320 ULONGEST value;
2321
2322 /* Arguments that fit in a GPR get expanded to fill the GPR. */
2323 if (arg_size <= MEP_GPR_SIZE)
2324 value = extract_unsigned_integer (value_contents (argv[i]),
2325 TYPE_LENGTH (value_type (argv[i])));
2326
2327 /* Arguments too large to fit in a GPR get copied to the stack,
2328 and we pass a pointer to the copy. */
2329 else
2330 value = copy[i];
2331
2332 /* We use $1 -- $4 for passing arguments, then use the stack. */
2333 if (arg_reg <= MEP_R4_REGNUM)
2334 {
2335 regcache_cooked_write_unsigned (regcache, arg_reg, value);
2336 arg_reg++;
2337 }
2338 else
2339 {
2340 char buf[MEP_GPR_SIZE];
2341 store_unsigned_integer (buf, MEP_GPR_SIZE, value);
2342 write_memory (arg_stack, buf, MEP_GPR_SIZE);
2343 arg_stack += MEP_GPR_SIZE;
2344 }
2345 }
2346
2347 gdb_assert (arg_stack <= arg_stack_end);
2348
2349 /* Set the return address. */
2350 regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2351
2352 /* Update the stack pointer. */
2353 regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2354
2355 return sp;
2356 }
2357
2358
2359 static struct frame_id
2360 mep_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2361 {
2362 return frame_id_build (mep_unwind_sp (gdbarch, next_frame),
2363 frame_pc_unwind (next_frame));
2364 }
2365
2366
2367 \f
2368 /* Initialization. */
2369
2370
2371 static struct gdbarch *
2372 mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2373 {
2374 struct gdbarch *gdbarch;
2375 struct gdbarch_tdep *tdep;
2376
2377 /* Which me_module are we building a gdbarch object for? */
2378 CONFIG_ATTR me_module;
2379
2380 /* If we have a BFD in hand, figure out which me_module it was built
2381 for. Otherwise, use the no-particular-me_module code. */
2382 if (info.abfd)
2383 {
2384 /* The way to get the me_module code depends on the object file
2385 format. At the moment, we only know how to handle ELF. */
2386 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2387 me_module = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2388 else
2389 me_module = CONFIG_NONE;
2390 }
2391 else
2392 me_module = CONFIG_NONE;
2393
2394 /* If we're setting the architecture from a file, check the
2395 endianness of the file against that of the me_module. */
2396 if (info.abfd)
2397 {
2398 /* The negations on either side make the comparison treat all
2399 non-zero (true) values as equal. */
2400 if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2401 {
2402 const char *module_name = me_module_name (me_module);
2403 const char *module_endianness
2404 = me_module_big_endian (me_module) ? "big" : "little";
2405 const char *file_name = bfd_get_filename (info.abfd);
2406 const char *file_endianness
2407 = bfd_big_endian (info.abfd) ? "big" : "little";
2408
2409 fputc_unfiltered ('\n', gdb_stderr);
2410 if (module_name)
2411 warning ("the MeP module '%s' is %s-endian, but the executable\n"
2412 "%s is %s-endian.",
2413 module_name, module_endianness,
2414 file_name, file_endianness);
2415 else
2416 warning ("the selected MeP module is %s-endian, but the "
2417 "executable\n"
2418 "%s is %s-endian.",
2419 module_endianness, file_name, file_endianness);
2420 }
2421 }
2422
2423 /* Find a candidate among the list of architectures we've created
2424 already. info->bfd_arch_info needs to match, but we also want
2425 the right me_module: the ELF header's e_flags field needs to
2426 match as well. */
2427 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2428 arches != NULL;
2429 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2430 if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2431 return arches->gdbarch;
2432
2433 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
2434 gdbarch = gdbarch_alloc (&info, tdep);
2435
2436 /* Get a CGEN CPU descriptor for this architecture. */
2437 {
2438 const char *mach_name = info.bfd_arch_info->printable_name;
2439 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2440 ? CGEN_ENDIAN_BIG
2441 : CGEN_ENDIAN_LITTLE);
2442
2443 tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2444 CGEN_CPU_OPEN_ENDIAN, endian,
2445 CGEN_CPU_OPEN_END);
2446 }
2447
2448 tdep->me_module = me_module;
2449
2450 /* Register set. */
2451 set_gdbarch_read_pc (gdbarch, mep_read_pc);
2452 set_gdbarch_write_pc (gdbarch, mep_write_pc);
2453 set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2454 set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2455 set_gdbarch_register_name (gdbarch, mep_register_name);
2456 set_gdbarch_register_type (gdbarch, mep_register_type);
2457 set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2458 set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2459 set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2460 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2461 set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2462
2463 set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2464 reggroup_add (gdbarch, all_reggroup);
2465 reggroup_add (gdbarch, general_reggroup);
2466 reggroup_add (gdbarch, save_reggroup);
2467 reggroup_add (gdbarch, restore_reggroup);
2468 reggroup_add (gdbarch, mep_csr_reggroup);
2469 reggroup_add (gdbarch, mep_cr_reggroup);
2470 reggroup_add (gdbarch, mep_ccr_reggroup);
2471
2472 /* Disassembly. */
2473 set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2474
2475 /* Breakpoints. */
2476 set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
2477 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2478 set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2479
2480 /* Frames and frame unwinding. */
2481 frame_unwind_append_sniffer (gdbarch, mep_frame_sniffer);
2482 set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2483 set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2484 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2485 set_gdbarch_frame_args_skip (gdbarch, 0);
2486
2487 /* Return values. */
2488 set_gdbarch_return_value (gdbarch, mep_return_value);
2489
2490 /* Inferior function calls. */
2491 set_gdbarch_frame_align (gdbarch, mep_frame_align);
2492 set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2493 set_gdbarch_unwind_dummy_id (gdbarch, mep_unwind_dummy_id);
2494
2495 return gdbarch;
2496 }
2497
2498
2499 void
2500 _initialize_mep_tdep (void)
2501 {
2502 mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2503 mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2504 mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2505
2506 register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2507
2508 mep_init_pseudoregister_maps ();
2509 }