]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-tdep.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
4
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "gdb_assert.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "symtab.h"
29 #include "value.h"
30 #include "gdbcmd.h"
31 #include "language.h"
32 #include "gdbcore.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "gdbtypes.h"
36 #include "target.h"
37 #include "arch-utils.h"
38 #include "regcache.h"
39 #include "osabi.h"
40 #include "mips-tdep.h"
41 #include "block.h"
42 #include "reggroups.h"
43 #include "opcode/mips.h"
44 #include "elf/mips.h"
45 #include "elf-bfd.h"
46 #include "symcat.h"
47 #include "sim-regno.h"
48 #include "dis-asm.h"
49 #include "frame-unwind.h"
50 #include "frame-base.h"
51 #include "trad-frame.h"
52 #include "infcall.h"
53 #include "floatformat.h"
54 #include "remote.h"
55 #include "target-descriptions.h"
56 #include "dwarf2-frame.h"
57 #include "user-regs.h"
58 #include "valprint.h"
59 #include "ax.h"
60
61 static const struct objfile_data *mips_pdr_data;
62
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
66 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
67 #define ST0_FR (1 << 26)
68
69 /* The sizes of floating point registers. */
70
71 enum
72 {
73 MIPS_FPU_SINGLE_REGSIZE = 4,
74 MIPS_FPU_DOUBLE_REGSIZE = 8
75 };
76
77 enum
78 {
79 MIPS32_REGSIZE = 4,
80 MIPS64_REGSIZE = 8
81 };
82
83 static const char *mips_abi_string;
84
85 static const char *const mips_abi_strings[] = {
86 "auto",
87 "n32",
88 "o32",
89 "n64",
90 "o64",
91 "eabi32",
92 "eabi64",
93 NULL
94 };
95
96 /* The standard register names, and all the valid aliases for them. */
97 struct register_alias
98 {
99 const char *name;
100 int regnum;
101 };
102
103 /* Aliases for o32 and most other ABIs. */
104 const struct register_alias mips_o32_aliases[] = {
105 { "ta0", 12 },
106 { "ta1", 13 },
107 { "ta2", 14 },
108 { "ta3", 15 }
109 };
110
111 /* Aliases for n32 and n64. */
112 const struct register_alias mips_n32_n64_aliases[] = {
113 { "ta0", 8 },
114 { "ta1", 9 },
115 { "ta2", 10 },
116 { "ta3", 11 }
117 };
118
119 /* Aliases for ABI-independent registers. */
120 const struct register_alias mips_register_aliases[] = {
121 /* The architecture manuals specify these ABI-independent names for
122 the GPRs. */
123 #define R(n) { "r" #n, n }
124 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
125 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
126 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
127 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
128 #undef R
129
130 /* k0 and k1 are sometimes called these instead (for "kernel
131 temp"). */
132 { "kt0", 26 },
133 { "kt1", 27 },
134
135 /* This is the traditional GDB name for the CP0 status register. */
136 { "sr", MIPS_PS_REGNUM },
137
138 /* This is the traditional GDB name for the CP0 BadVAddr register. */
139 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
140
141 /* This is the traditional GDB name for the FCSR. */
142 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
143 };
144
145 const struct register_alias mips_numeric_register_aliases[] = {
146 #define R(n) { #n, n }
147 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
148 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
149 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
150 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
151 #undef R
152 };
153
154 #ifndef MIPS_DEFAULT_FPU_TYPE
155 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
156 #endif
157 static int mips_fpu_type_auto = 1;
158 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
159
160 static int mips_debug = 0;
161
162 /* Properties (for struct target_desc) describing the g/G packet
163 layout. */
164 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
165 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
166
167 struct target_desc *mips_tdesc_gp32;
168 struct target_desc *mips_tdesc_gp64;
169
170 const struct mips_regnum *
171 mips_regnum (struct gdbarch *gdbarch)
172 {
173 return gdbarch_tdep (gdbarch)->regnum;
174 }
175
176 static int
177 mips_fpa0_regnum (struct gdbarch *gdbarch)
178 {
179 return mips_regnum (gdbarch)->fp0 + 12;
180 }
181
182 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
183 == MIPS_ABI_EABI32 \
184 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
185
186 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
187 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
188
189 #define MIPS_LAST_ARG_REGNUM(gdbarch) \
190 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
191
192 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
193
194 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
195 functions to test, set, or clear bit 0 of addresses. */
196
197 static CORE_ADDR
198 is_mips16_addr (CORE_ADDR addr)
199 {
200 return ((addr) & 1);
201 }
202
203 static CORE_ADDR
204 unmake_mips16_addr (CORE_ADDR addr)
205 {
206 return ((addr) & ~(CORE_ADDR) 1);
207 }
208
209 static CORE_ADDR
210 make_mips16_addr (CORE_ADDR addr)
211 {
212 return ((addr) | (CORE_ADDR) 1);
213 }
214
215 /* Return the MIPS ABI associated with GDBARCH. */
216 enum mips_abi
217 mips_abi (struct gdbarch *gdbarch)
218 {
219 return gdbarch_tdep (gdbarch)->mips_abi;
220 }
221
222 int
223 mips_isa_regsize (struct gdbarch *gdbarch)
224 {
225 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
226
227 /* If we know how big the registers are, use that size. */
228 if (tdep->register_size_valid_p)
229 return tdep->register_size;
230
231 /* Fall back to the previous behavior. */
232 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
233 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
234 }
235
236 /* Return the currently configured (or set) saved register size. */
237
238 unsigned int
239 mips_abi_regsize (struct gdbarch *gdbarch)
240 {
241 switch (mips_abi (gdbarch))
242 {
243 case MIPS_ABI_EABI32:
244 case MIPS_ABI_O32:
245 return 4;
246 case MIPS_ABI_N32:
247 case MIPS_ABI_N64:
248 case MIPS_ABI_O64:
249 case MIPS_ABI_EABI64:
250 return 8;
251 case MIPS_ABI_UNKNOWN:
252 case MIPS_ABI_LAST:
253 default:
254 internal_error (__FILE__, __LINE__, _("bad switch"));
255 }
256 }
257
258 /* Functions for setting and testing a bit in a minimal symbol that
259 marks it as 16-bit function. The MSB of the minimal symbol's
260 "info" field is used for this purpose.
261
262 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
263 i.e. refers to a 16-bit function, and sets a "special" bit in a
264 minimal symbol to mark it as a 16-bit function
265
266 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
267
268 static void
269 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
270 {
271 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
272 {
273 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
274 }
275 }
276
277 static int
278 msymbol_is_special (struct minimal_symbol *msym)
279 {
280 return MSYMBOL_TARGET_FLAG_1 (msym);
281 }
282
283 /* XFER a value from the big/little/left end of the register.
284 Depending on the size of the value it might occupy the entire
285 register or just part of it. Make an allowance for this, aligning
286 things accordingly. */
287
288 static void
289 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
290 int reg_num, int length,
291 enum bfd_endian endian, gdb_byte *in,
292 const gdb_byte *out, int buf_offset)
293 {
294 int reg_offset = 0;
295
296 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
297 /* Need to transfer the left or right part of the register, based on
298 the targets byte order. */
299 switch (endian)
300 {
301 case BFD_ENDIAN_BIG:
302 reg_offset = register_size (gdbarch, reg_num) - length;
303 break;
304 case BFD_ENDIAN_LITTLE:
305 reg_offset = 0;
306 break;
307 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
308 reg_offset = 0;
309 break;
310 default:
311 internal_error (__FILE__, __LINE__, _("bad switch"));
312 }
313 if (mips_debug)
314 fprintf_unfiltered (gdb_stderr,
315 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
316 reg_num, reg_offset, buf_offset, length);
317 if (mips_debug && out != NULL)
318 {
319 int i;
320 fprintf_unfiltered (gdb_stdlog, "out ");
321 for (i = 0; i < length; i++)
322 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
323 }
324 if (in != NULL)
325 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
326 in + buf_offset);
327 if (out != NULL)
328 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
329 out + buf_offset);
330 if (mips_debug && in != NULL)
331 {
332 int i;
333 fprintf_unfiltered (gdb_stdlog, "in ");
334 for (i = 0; i < length; i++)
335 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
336 }
337 if (mips_debug)
338 fprintf_unfiltered (gdb_stdlog, "\n");
339 }
340
341 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
342 compatiblity mode. A return value of 1 means that we have
343 physical 64-bit registers, but should treat them as 32-bit registers. */
344
345 static int
346 mips2_fp_compat (struct frame_info *frame)
347 {
348 struct gdbarch *gdbarch = get_frame_arch (frame);
349 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
350 meaningful. */
351 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
352 return 0;
353
354 #if 0
355 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
356 in all the places we deal with FP registers. PR gdb/413. */
357 /* Otherwise check the FR bit in the status register - it controls
358 the FP compatiblity mode. If it is clear we are in compatibility
359 mode. */
360 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
361 return 1;
362 #endif
363
364 return 0;
365 }
366
367 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
368
369 static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
370
371 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
372
373 /* The list of available "set mips " and "show mips " commands. */
374
375 static struct cmd_list_element *setmipscmdlist = NULL;
376 static struct cmd_list_element *showmipscmdlist = NULL;
377
378 /* Integer registers 0 thru 31 are handled explicitly by
379 mips_register_name(). Processor specific registers 32 and above
380 are listed in the following tables. */
381
382 enum
383 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
384
385 /* Generic MIPS. */
386
387 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
388 "sr", "lo", "hi", "bad", "cause", "pc",
389 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
390 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
391 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
392 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
393 "fsr", "fir", "" /*"fp" */ , "",
394 "", "", "", "", "", "", "", "",
395 "", "", "", "", "", "", "", "",
396 };
397
398 /* Names of IDT R3041 registers. */
399
400 static const char *mips_r3041_reg_names[] = {
401 "sr", "lo", "hi", "bad", "cause", "pc",
402 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
403 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
404 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
405 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
406 "fsr", "fir", "", /*"fp" */ "",
407 "", "", "bus", "ccfg", "", "", "", "",
408 "", "", "port", "cmp", "", "", "epc", "prid",
409 };
410
411 /* Names of tx39 registers. */
412
413 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
414 "sr", "lo", "hi", "bad", "cause", "pc",
415 "", "", "", "", "", "", "", "",
416 "", "", "", "", "", "", "", "",
417 "", "", "", "", "", "", "", "",
418 "", "", "", "", "", "", "", "",
419 "", "", "", "",
420 "", "", "", "", "", "", "", "",
421 "", "", "config", "cache", "debug", "depc", "epc", ""
422 };
423
424 /* Names of IRIX registers. */
425 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
426 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
427 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
428 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
429 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
430 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
431 };
432
433
434 /* Return the name of the register corresponding to REGNO. */
435 static const char *
436 mips_register_name (struct gdbarch *gdbarch, int regno)
437 {
438 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
439 /* GPR names for all ABIs other than n32/n64. */
440 static char *mips_gpr_names[] = {
441 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
442 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
443 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
444 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
445 };
446
447 /* GPR names for n32 and n64 ABIs. */
448 static char *mips_n32_n64_gpr_names[] = {
449 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
450 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
451 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
452 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
453 };
454
455 enum mips_abi abi = mips_abi (gdbarch);
456
457 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
458 but then don't make the raw register names visible. This (upper)
459 range of user visible register numbers are the pseudo-registers.
460
461 This approach was adopted accommodate the following scenario:
462 It is possible to debug a 64-bit device using a 32-bit
463 programming model. In such instances, the raw registers are
464 configured to be 64-bits wide, while the pseudo registers are
465 configured to be 32-bits wide. The registers that the user
466 sees - the pseudo registers - match the users expectations
467 given the programming model being used. */
468 int rawnum = regno % gdbarch_num_regs (gdbarch);
469 if (regno < gdbarch_num_regs (gdbarch))
470 return "";
471
472 /* The MIPS integer registers are always mapped from 0 to 31. The
473 names of the registers (which reflects the conventions regarding
474 register use) vary depending on the ABI. */
475 if (0 <= rawnum && rawnum < 32)
476 {
477 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
478 return mips_n32_n64_gpr_names[rawnum];
479 else
480 return mips_gpr_names[rawnum];
481 }
482 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
483 return tdesc_register_name (gdbarch, rawnum);
484 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
485 {
486 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
487 return tdep->mips_processor_reg_names[rawnum - 32];
488 }
489 else
490 internal_error (__FILE__, __LINE__,
491 _("mips_register_name: bad register number %d"), rawnum);
492 }
493
494 /* Return the groups that a MIPS register can be categorised into. */
495
496 static int
497 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
498 struct reggroup *reggroup)
499 {
500 int vector_p;
501 int float_p;
502 int raw_p;
503 int rawnum = regnum % gdbarch_num_regs (gdbarch);
504 int pseudo = regnum / gdbarch_num_regs (gdbarch);
505 if (reggroup == all_reggroup)
506 return pseudo;
507 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
508 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
509 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
510 (gdbarch), as not all architectures are multi-arch. */
511 raw_p = rawnum < gdbarch_num_regs (gdbarch);
512 if (gdbarch_register_name (gdbarch, regnum) == NULL
513 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
514 return 0;
515 if (reggroup == float_reggroup)
516 return float_p && pseudo;
517 if (reggroup == vector_reggroup)
518 return vector_p && pseudo;
519 if (reggroup == general_reggroup)
520 return (!vector_p && !float_p) && pseudo;
521 /* Save the pseudo registers. Need to make certain that any code
522 extracting register values from a saved register cache also uses
523 pseudo registers. */
524 if (reggroup == save_reggroup)
525 return raw_p && pseudo;
526 /* Restore the same pseudo register. */
527 if (reggroup == restore_reggroup)
528 return raw_p && pseudo;
529 return 0;
530 }
531
532 /* Return the groups that a MIPS register can be categorised into.
533 This version is only used if we have a target description which
534 describes real registers (and their groups). */
535
536 static int
537 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
538 struct reggroup *reggroup)
539 {
540 int rawnum = regnum % gdbarch_num_regs (gdbarch);
541 int pseudo = regnum / gdbarch_num_regs (gdbarch);
542 int ret;
543
544 /* Only save, restore, and display the pseudo registers. Need to
545 make certain that any code extracting register values from a
546 saved register cache also uses pseudo registers.
547
548 Note: saving and restoring the pseudo registers is slightly
549 strange; if we have 64 bits, we should save and restore all
550 64 bits. But this is hard and has little benefit. */
551 if (!pseudo)
552 return 0;
553
554 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
555 if (ret != -1)
556 return ret;
557
558 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
559 }
560
561 /* Map the symbol table registers which live in the range [1 *
562 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
563 registers. Take care of alignment and size problems. */
564
565 static enum register_status
566 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
567 int cookednum, gdb_byte *buf)
568 {
569 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
570 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
571 && cookednum < 2 * gdbarch_num_regs (gdbarch));
572 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
573 return regcache_raw_read (regcache, rawnum, buf);
574 else if (register_size (gdbarch, rawnum) >
575 register_size (gdbarch, cookednum))
576 {
577 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
578 return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
579 else
580 {
581 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
582 LONGEST regval;
583 enum register_status status;
584
585 status = regcache_raw_read_signed (regcache, rawnum, &regval);
586 if (status == REG_VALID)
587 store_signed_integer (buf, 4, byte_order, regval);
588 return status;
589 }
590 }
591 else
592 internal_error (__FILE__, __LINE__, _("bad register size"));
593 }
594
595 static void
596 mips_pseudo_register_write (struct gdbarch *gdbarch,
597 struct regcache *regcache, int cookednum,
598 const gdb_byte *buf)
599 {
600 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
601 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
602 && cookednum < 2 * gdbarch_num_regs (gdbarch));
603 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
604 regcache_raw_write (regcache, rawnum, buf);
605 else if (register_size (gdbarch, rawnum) >
606 register_size (gdbarch, cookednum))
607 {
608 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
609 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
610 else
611 {
612 /* Sign extend the shortened version of the register prior
613 to placing it in the raw register. This is required for
614 some mips64 parts in order to avoid unpredictable behavior. */
615 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
616 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
617 regcache_raw_write_signed (regcache, rawnum, regval);
618 }
619 }
620 else
621 internal_error (__FILE__, __LINE__, _("bad register size"));
622 }
623
624 static int
625 mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
626 struct agent_expr *ax, int reg)
627 {
628 int rawnum = reg % gdbarch_num_regs (gdbarch);
629 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
630 && reg < 2 * gdbarch_num_regs (gdbarch));
631
632 ax_reg_mask (ax, rawnum);
633
634 return 0;
635 }
636
637 static int
638 mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
639 struct agent_expr *ax, int reg)
640 {
641 int rawnum = reg % gdbarch_num_regs (gdbarch);
642 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
643 && reg < 2 * gdbarch_num_regs (gdbarch));
644 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
645 {
646 ax_reg (ax, rawnum);
647
648 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
649 {
650 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
651 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
652 {
653 ax_const_l (ax, 32);
654 ax_simple (ax, aop_lsh);
655 }
656 ax_const_l (ax, 32);
657 ax_simple (ax, aop_rsh_signed);
658 }
659 }
660 else
661 internal_error (__FILE__, __LINE__, _("bad register size"));
662
663 return 0;
664 }
665
666 /* Table to translate MIPS16 register field to actual register number. */
667 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
668
669 /* Heuristic_proc_start may hunt through the text section for a long
670 time across a 2400 baud serial line. Allows the user to limit this
671 search. */
672
673 static unsigned int heuristic_fence_post = 0;
674
675 /* Number of bytes of storage in the actual machine representation for
676 register N. NOTE: This defines the pseudo register type so need to
677 rebuild the architecture vector. */
678
679 static int mips64_transfers_32bit_regs_p = 0;
680
681 static void
682 set_mips64_transfers_32bit_regs (char *args, int from_tty,
683 struct cmd_list_element *c)
684 {
685 struct gdbarch_info info;
686 gdbarch_info_init (&info);
687 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
688 instead of relying on globals. Doing that would let generic code
689 handle the search for this specific architecture. */
690 if (!gdbarch_update_p (info))
691 {
692 mips64_transfers_32bit_regs_p = 0;
693 error (_("32-bit compatibility mode not supported"));
694 }
695 }
696
697 /* Convert to/from a register and the corresponding memory value. */
698
699 /* This predicate tests for the case of an 8 byte floating point
700 value that is being transferred to or from a pair of floating point
701 registers each of which are (or are considered to be) only 4 bytes
702 wide. */
703 static int
704 mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
705 struct type *type)
706 {
707 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
708 && register_size (gdbarch, regnum) == 4
709 && (regnum % gdbarch_num_regs (gdbarch))
710 >= mips_regnum (gdbarch)->fp0
711 && (regnum % gdbarch_num_regs (gdbarch))
712 < mips_regnum (gdbarch)->fp0 + 32
713 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
714 }
715
716 /* This predicate tests for the case of a value of less than 8
717 bytes in width that is being transfered to or from an 8 byte
718 general purpose register. */
719 static int
720 mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
721 struct type *type)
722 {
723 int num_regs = gdbarch_num_regs (gdbarch);
724
725 return (register_size (gdbarch, regnum) == 8
726 && regnum % num_regs > 0 && regnum % num_regs < 32
727 && TYPE_LENGTH (type) < 8);
728 }
729
730 static int
731 mips_convert_register_p (struct gdbarch *gdbarch,
732 int regnum, struct type *type)
733 {
734 return mips_convert_register_float_case_p (gdbarch, regnum, type)
735 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type);
736 }
737
738 static int
739 mips_register_to_value (struct frame_info *frame, int regnum,
740 struct type *type, gdb_byte *to,
741 int *optimizedp, int *unavailablep)
742 {
743 struct gdbarch *gdbarch = get_frame_arch (frame);
744
745 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
746 {
747 get_frame_register (frame, regnum + 0, to + 4);
748 get_frame_register (frame, regnum + 1, to + 0);
749
750 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
751 optimizedp, unavailablep))
752 return 0;
753
754 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
755 optimizedp, unavailablep))
756 return 0;
757 *optimizedp = *unavailablep = 0;
758 return 1;
759 }
760 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
761 {
762 int len = TYPE_LENGTH (type);
763 CORE_ADDR offset;
764
765 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
766 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
767 optimizedp, unavailablep))
768 return 0;
769
770 *optimizedp = *unavailablep = 0;
771 return 1;
772 }
773 else
774 {
775 internal_error (__FILE__, __LINE__,
776 _("mips_register_to_value: unrecognized case"));
777 }
778 }
779
780 static void
781 mips_value_to_register (struct frame_info *frame, int regnum,
782 struct type *type, const gdb_byte *from)
783 {
784 struct gdbarch *gdbarch = get_frame_arch (frame);
785
786 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
787 {
788 put_frame_register (frame, regnum + 0, from + 4);
789 put_frame_register (frame, regnum + 1, from + 0);
790 }
791 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
792 {
793 gdb_byte fill[8];
794 int len = TYPE_LENGTH (type);
795
796 /* Sign extend values, irrespective of type, that are stored to
797 a 64-bit general purpose register. (32-bit unsigned values
798 are stored as signed quantities within a 64-bit register.
799 When performing an operation, in compiled code, that combines
800 a 32-bit unsigned value with a signed 64-bit value, a type
801 conversion is first performed that zeroes out the high 32 bits.) */
802 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
803 {
804 if (from[0] & 0x80)
805 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
806 else
807 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
808 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
809 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
810 }
811 else
812 {
813 if (from[len-1] & 0x80)
814 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
815 else
816 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
817 put_frame_register_bytes (frame, regnum, 0, len, from);
818 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
819 }
820 }
821 else
822 {
823 internal_error (__FILE__, __LINE__,
824 _("mips_value_to_register: unrecognized case"));
825 }
826 }
827
828 /* Return the GDB type object for the "standard" data type of data in
829 register REG. */
830
831 static struct type *
832 mips_register_type (struct gdbarch *gdbarch, int regnum)
833 {
834 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
835 if ((regnum % gdbarch_num_regs (gdbarch)) >= mips_regnum (gdbarch)->fp0
836 && (regnum % gdbarch_num_regs (gdbarch))
837 < mips_regnum (gdbarch)->fp0 + 32)
838 {
839 /* The floating-point registers raw, or cooked, always match
840 mips_isa_regsize(), and also map 1:1, byte for byte. */
841 if (mips_isa_regsize (gdbarch) == 4)
842 return builtin_type (gdbarch)->builtin_float;
843 else
844 return builtin_type (gdbarch)->builtin_double;
845 }
846 else if (regnum < gdbarch_num_regs (gdbarch))
847 {
848 /* The raw or ISA registers. These are all sized according to
849 the ISA regsize. */
850 if (mips_isa_regsize (gdbarch) == 4)
851 return builtin_type (gdbarch)->builtin_int32;
852 else
853 return builtin_type (gdbarch)->builtin_int64;
854 }
855 else
856 {
857 /* The cooked or ABI registers. These are sized according to
858 the ABI (with a few complications). */
859 if (regnum >= (gdbarch_num_regs (gdbarch)
860 + mips_regnum (gdbarch)->fp_control_status)
861 && regnum <= gdbarch_num_regs (gdbarch) + MIPS_LAST_EMBED_REGNUM)
862 /* The pseudo/cooked view of the embedded registers is always
863 32-bit. The raw view is handled below. */
864 return builtin_type (gdbarch)->builtin_int32;
865 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
866 /* The target, while possibly using a 64-bit register buffer,
867 is only transfering 32-bits of each integer register.
868 Reflect this in the cooked/pseudo (ABI) register value. */
869 return builtin_type (gdbarch)->builtin_int32;
870 else if (mips_abi_regsize (gdbarch) == 4)
871 /* The ABI is restricted to 32-bit registers (the ISA could be
872 32- or 64-bit). */
873 return builtin_type (gdbarch)->builtin_int32;
874 else
875 /* 64-bit ABI. */
876 return builtin_type (gdbarch)->builtin_int64;
877 }
878 }
879
880 /* Return the GDB type for the pseudo register REGNUM, which is the
881 ABI-level view. This function is only called if there is a target
882 description which includes registers, so we know precisely the
883 types of hardware registers. */
884
885 static struct type *
886 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
887 {
888 const int num_regs = gdbarch_num_regs (gdbarch);
889 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
890 int rawnum = regnum % num_regs;
891 struct type *rawtype;
892
893 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
894
895 /* Absent registers are still absent. */
896 rawtype = gdbarch_register_type (gdbarch, rawnum);
897 if (TYPE_LENGTH (rawtype) == 0)
898 return rawtype;
899
900 if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
901 /* Present the floating point registers however the hardware did;
902 do not try to convert between FPU layouts. */
903 return rawtype;
904
905 if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
906 {
907 /* The pseudo/cooked view of embedded registers is always
908 32-bit, even if the target transfers 64-bit values for them.
909 New targets relying on XML descriptions should only transfer
910 the necessary 32 bits, but older versions of GDB expected 64,
911 so allow the target to provide 64 bits without interfering
912 with the displayed type. */
913 return builtin_type (gdbarch)->builtin_int32;
914 }
915
916 /* Use pointer types for registers if we can. For n32 we can not,
917 since we do not have a 64-bit pointer type. */
918 if (mips_abi_regsize (gdbarch)
919 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
920 {
921 if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
922 return builtin_type (gdbarch)->builtin_data_ptr;
923 else if (rawnum == MIPS_EMBED_PC_REGNUM)
924 return builtin_type (gdbarch)->builtin_func_ptr;
925 }
926
927 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
928 && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
929 return builtin_type (gdbarch)->builtin_int32;
930
931 /* For all other registers, pass through the hardware type. */
932 return rawtype;
933 }
934
935 /* Should the upper word of 64-bit addresses be zeroed? */
936 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
937
938 static int
939 mips_mask_address_p (struct gdbarch_tdep *tdep)
940 {
941 switch (mask_address_var)
942 {
943 case AUTO_BOOLEAN_TRUE:
944 return 1;
945 case AUTO_BOOLEAN_FALSE:
946 return 0;
947 break;
948 case AUTO_BOOLEAN_AUTO:
949 return tdep->default_mask_address_p;
950 default:
951 internal_error (__FILE__, __LINE__,
952 _("mips_mask_address_p: bad switch"));
953 return -1;
954 }
955 }
956
957 static void
958 show_mask_address (struct ui_file *file, int from_tty,
959 struct cmd_list_element *c, const char *value)
960 {
961 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
962
963 deprecated_show_value_hack (file, from_tty, c, value);
964 switch (mask_address_var)
965 {
966 case AUTO_BOOLEAN_TRUE:
967 printf_filtered ("The 32 bit mips address mask is enabled\n");
968 break;
969 case AUTO_BOOLEAN_FALSE:
970 printf_filtered ("The 32 bit mips address mask is disabled\n");
971 break;
972 case AUTO_BOOLEAN_AUTO:
973 printf_filtered
974 ("The 32 bit address mask is set automatically. Currently %s\n",
975 mips_mask_address_p (tdep) ? "enabled" : "disabled");
976 break;
977 default:
978 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
979 break;
980 }
981 }
982
983 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
984
985 int
986 mips_pc_is_mips16 (CORE_ADDR memaddr)
987 {
988 struct minimal_symbol *sym;
989
990 /* A flag indicating that this is a MIPS16 function is stored by
991 elfread.c in the high bit of the info field. Use this to decide
992 if the function is MIPS16 or normal MIPS. Otherwise if bit 0 of
993 the address is set, assume this is a MIPS16 address. */
994 sym = lookup_minimal_symbol_by_pc (memaddr);
995 if (sym)
996 return msymbol_is_special (sym);
997 else
998 return is_mips16_addr (memaddr);
999 }
1000
1001 /* MIPS believes that the PC has a sign extended value. Perhaps the
1002 all registers should be sign extended for simplicity? */
1003
1004 static CORE_ADDR
1005 mips_read_pc (struct regcache *regcache)
1006 {
1007 ULONGEST pc;
1008 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
1009 regcache_cooked_read_signed (regcache, regnum, &pc);
1010 if (is_mips16_addr (pc))
1011 pc = unmake_mips16_addr (pc);
1012 return pc;
1013 }
1014
1015 static CORE_ADDR
1016 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1017 {
1018 ULONGEST pc;
1019
1020 pc = frame_unwind_register_signed
1021 (next_frame, gdbarch_num_regs (gdbarch) + mips_regnum (gdbarch)->pc);
1022 if (is_mips16_addr (pc))
1023 pc = unmake_mips16_addr (pc);
1024 return pc;
1025 }
1026
1027 static CORE_ADDR
1028 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1029 {
1030 return frame_unwind_register_signed
1031 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
1032 }
1033
1034 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1035 dummy frame. The frame ID's base needs to match the TOS value
1036 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1037 breakpoint. */
1038
1039 static struct frame_id
1040 mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1041 {
1042 return frame_id_build
1043 (get_frame_register_signed (this_frame,
1044 gdbarch_num_regs (gdbarch)
1045 + MIPS_SP_REGNUM),
1046 get_frame_pc (this_frame));
1047 }
1048
1049 static void
1050 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
1051 {
1052 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
1053 if (mips_pc_is_mips16 (pc))
1054 regcache_cooked_write_unsigned (regcache, regnum, make_mips16_addr (pc));
1055 else
1056 regcache_cooked_write_unsigned (regcache, regnum, pc);
1057 }
1058
1059 /* Fetch and return instruction from the specified location. If the PC
1060 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
1061
1062 static ULONGEST
1063 mips_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR addr)
1064 {
1065 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1066 gdb_byte buf[MIPS_INSN32_SIZE];
1067 int instlen;
1068 int status;
1069
1070 if (mips_pc_is_mips16 (addr))
1071 {
1072 instlen = MIPS_INSN16_SIZE;
1073 addr = unmake_mips16_addr (addr);
1074 }
1075 else
1076 instlen = MIPS_INSN32_SIZE;
1077 status = target_read_memory (addr, buf, instlen);
1078 if (status)
1079 memory_error (status, addr);
1080 return extract_unsigned_integer (buf, instlen, byte_order);
1081 }
1082
1083 /* These are the fields of 32 bit mips instructions. */
1084 #define mips32_op(x) (x >> 26)
1085 #define itype_op(x) (x >> 26)
1086 #define itype_rs(x) ((x >> 21) & 0x1f)
1087 #define itype_rt(x) ((x >> 16) & 0x1f)
1088 #define itype_immediate(x) (x & 0xffff)
1089
1090 #define jtype_op(x) (x >> 26)
1091 #define jtype_target(x) (x & 0x03ffffff)
1092
1093 #define rtype_op(x) (x >> 26)
1094 #define rtype_rs(x) ((x >> 21) & 0x1f)
1095 #define rtype_rt(x) ((x >> 16) & 0x1f)
1096 #define rtype_rd(x) ((x >> 11) & 0x1f)
1097 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1098 #define rtype_funct(x) (x & 0x3f)
1099
1100 static LONGEST
1101 mips32_relative_offset (ULONGEST inst)
1102 {
1103 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
1104 }
1105
1106 /* Determine where to set a single step breakpoint while considering
1107 branch prediction. */
1108 static CORE_ADDR
1109 mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
1110 {
1111 struct gdbarch *gdbarch = get_frame_arch (frame);
1112 unsigned long inst;
1113 int op;
1114 inst = mips_fetch_instruction (gdbarch, pc);
1115 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1116 instruction. */
1117 {
1118 if (itype_op (inst) >> 2 == 5)
1119 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1120 {
1121 op = (itype_op (inst) & 0x03);
1122 switch (op)
1123 {
1124 case 0: /* BEQL */
1125 goto equal_branch;
1126 case 1: /* BNEL */
1127 goto neq_branch;
1128 case 2: /* BLEZL */
1129 goto less_branch;
1130 case 3: /* BGTZL */
1131 goto greater_branch;
1132 default:
1133 pc += 4;
1134 }
1135 }
1136 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1137 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1138 {
1139 int tf = itype_rt (inst) & 0x01;
1140 int cnum = itype_rt (inst) >> 2;
1141 int fcrcs =
1142 get_frame_register_signed (frame,
1143 mips_regnum (get_frame_arch (frame))->
1144 fp_control_status);
1145 int cond = ((fcrcs >> 24) & 0xfe) | ((fcrcs >> 23) & 0x01);
1146
1147 if (((cond >> cnum) & 0x01) == tf)
1148 pc += mips32_relative_offset (inst) + 4;
1149 else
1150 pc += 8;
1151 }
1152 else
1153 pc += 4; /* Not a branch, next instruction is easy. */
1154 }
1155 else
1156 { /* This gets way messy. */
1157
1158 /* Further subdivide into SPECIAL, REGIMM and other. */
1159 switch (op = itype_op (inst) & 0x07) /* Extract bits 28,27,26. */
1160 {
1161 case 0: /* SPECIAL */
1162 op = rtype_funct (inst);
1163 switch (op)
1164 {
1165 case 8: /* JR */
1166 case 9: /* JALR */
1167 /* Set PC to that address. */
1168 pc = get_frame_register_signed (frame, rtype_rs (inst));
1169 break;
1170 case 12: /* SYSCALL */
1171 {
1172 struct gdbarch_tdep *tdep;
1173
1174 tdep = gdbarch_tdep (get_frame_arch (frame));
1175 if (tdep->syscall_next_pc != NULL)
1176 pc = tdep->syscall_next_pc (frame);
1177 else
1178 pc += 4;
1179 }
1180 break;
1181 default:
1182 pc += 4;
1183 }
1184
1185 break; /* end SPECIAL */
1186 case 1: /* REGIMM */
1187 {
1188 op = itype_rt (inst); /* branch condition */
1189 switch (op)
1190 {
1191 case 0: /* BLTZ */
1192 case 2: /* BLTZL */
1193 case 16: /* BLTZAL */
1194 case 18: /* BLTZALL */
1195 less_branch:
1196 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1197 pc += mips32_relative_offset (inst) + 4;
1198 else
1199 pc += 8; /* after the delay slot */
1200 break;
1201 case 1: /* BGEZ */
1202 case 3: /* BGEZL */
1203 case 17: /* BGEZAL */
1204 case 19: /* BGEZALL */
1205 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1206 pc += mips32_relative_offset (inst) + 4;
1207 else
1208 pc += 8; /* after the delay slot */
1209 break;
1210 /* All of the other instructions in the REGIMM category */
1211 default:
1212 pc += 4;
1213 }
1214 }
1215 break; /* end REGIMM */
1216 case 2: /* J */
1217 case 3: /* JAL */
1218 {
1219 unsigned long reg;
1220 reg = jtype_target (inst) << 2;
1221 /* Upper four bits get never changed... */
1222 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1223 }
1224 break;
1225 /* FIXME case JALX : */
1226 {
1227 unsigned long reg;
1228 reg = jtype_target (inst) << 2;
1229 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
1230 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1231 }
1232 break; /* The new PC will be alternate mode */
1233 case 4: /* BEQ, BEQL */
1234 equal_branch:
1235 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1236 get_frame_register_signed (frame, itype_rt (inst)))
1237 pc += mips32_relative_offset (inst) + 4;
1238 else
1239 pc += 8;
1240 break;
1241 case 5: /* BNE, BNEL */
1242 neq_branch:
1243 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1244 get_frame_register_signed (frame, itype_rt (inst)))
1245 pc += mips32_relative_offset (inst) + 4;
1246 else
1247 pc += 8;
1248 break;
1249 case 6: /* BLEZ, BLEZL */
1250 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1251 pc += mips32_relative_offset (inst) + 4;
1252 else
1253 pc += 8;
1254 break;
1255 case 7:
1256 default:
1257 greater_branch: /* BGTZ, BGTZL */
1258 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1259 pc += mips32_relative_offset (inst) + 4;
1260 else
1261 pc += 8;
1262 break;
1263 } /* switch */
1264 } /* else */
1265 return pc;
1266 } /* mips32_next_pc */
1267
1268 /* Decoding the next place to set a breakpoint is irregular for the
1269 mips 16 variant, but fortunately, there fewer instructions. We have
1270 to cope ith extensions for 16 bit instructions and a pair of actual
1271 32 bit instructions. We dont want to set a single step instruction
1272 on the extend instruction either. */
1273
1274 /* Lots of mips16 instruction formats */
1275 /* Predicting jumps requires itype,ritype,i8type
1276 and their extensions extItype,extritype,extI8type. */
1277 enum mips16_inst_fmts
1278 {
1279 itype, /* 0 immediate 5,10 */
1280 ritype, /* 1 5,3,8 */
1281 rrtype, /* 2 5,3,3,5 */
1282 rritype, /* 3 5,3,3,5 */
1283 rrrtype, /* 4 5,3,3,3,2 */
1284 rriatype, /* 5 5,3,3,1,4 */
1285 shifttype, /* 6 5,3,3,3,2 */
1286 i8type, /* 7 5,3,8 */
1287 i8movtype, /* 8 5,3,3,5 */
1288 i8mov32rtype, /* 9 5,3,5,3 */
1289 i64type, /* 10 5,3,8 */
1290 ri64type, /* 11 5,3,3,5 */
1291 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1292 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1293 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1294 extRRItype, /* 15 5,5,5,5,3,3,5 */
1295 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1296 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1297 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1298 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1299 extRi64type, /* 20 5,6,5,5,3,3,5 */
1300 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1301 };
1302 /* I am heaping all the fields of the formats into one structure and
1303 then, only the fields which are involved in instruction extension. */
1304 struct upk_mips16
1305 {
1306 CORE_ADDR offset;
1307 unsigned int regx; /* Function in i8 type. */
1308 unsigned int regy;
1309 };
1310
1311
1312 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1313 for the bits which make up the immediate extension. */
1314
1315 static CORE_ADDR
1316 extended_offset (unsigned int extension)
1317 {
1318 CORE_ADDR value;
1319
1320 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
1321 value = value << 6;
1322 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
1323 value = value << 5;
1324 value |= extension & 0x1f; /* Extract 4:0. */
1325
1326 return value;
1327 }
1328
1329 /* Only call this function if you know that this is an extendable
1330 instruction. It won't malfunction, but why make excess remote memory
1331 references? If the immediate operands get sign extended or something,
1332 do it after the extension is performed. */
1333 /* FIXME: Every one of these cases needs to worry about sign extension
1334 when the offset is to be used in relative addressing. */
1335
1336 static unsigned int
1337 fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
1338 {
1339 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1340 gdb_byte buf[8];
1341 pc &= 0xfffffffe; /* Clear the low order bit. */
1342 target_read_memory (pc, buf, 2);
1343 return extract_unsigned_integer (buf, 2, byte_order);
1344 }
1345
1346 static void
1347 unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
1348 unsigned int extension,
1349 unsigned int inst,
1350 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1351 {
1352 CORE_ADDR offset;
1353 int regx;
1354 int regy;
1355 switch (insn_format)
1356 {
1357 case itype:
1358 {
1359 CORE_ADDR value;
1360 if (extension)
1361 {
1362 value = extended_offset ((extension << 16) | inst);
1363 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
1364 }
1365 else
1366 {
1367 value = inst & 0x7ff;
1368 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
1369 }
1370 offset = value;
1371 regx = -1;
1372 regy = -1;
1373 }
1374 break;
1375 case ritype:
1376 case i8type:
1377 { /* A register identifier and an offset. */
1378 /* Most of the fields are the same as I type but the
1379 immediate value is of a different length. */
1380 CORE_ADDR value;
1381 if (extension)
1382 {
1383 value = extended_offset ((extension << 16) | inst);
1384 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
1385 }
1386 else
1387 {
1388 value = inst & 0xff; /* 8 bits */
1389 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
1390 }
1391 offset = value;
1392 regx = (inst >> 8) & 0x07; /* i8 funct */
1393 regy = -1;
1394 break;
1395 }
1396 case jalxtype:
1397 {
1398 unsigned long value;
1399 unsigned int nexthalf;
1400 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1401 value = value << 16;
1402 nexthalf = mips_fetch_instruction (gdbarch, pc + 2); /* low bit
1403 still set. */
1404 value |= nexthalf;
1405 offset = value;
1406 regx = -1;
1407 regy = -1;
1408 break;
1409 }
1410 default:
1411 internal_error (__FILE__, __LINE__, _("bad switch"));
1412 }
1413 upk->offset = offset;
1414 upk->regx = regx;
1415 upk->regy = regy;
1416 }
1417
1418
1419 static CORE_ADDR
1420 add_offset_16 (CORE_ADDR pc, int offset)
1421 {
1422 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
1423 }
1424
1425 static CORE_ADDR
1426 extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
1427 unsigned int extension, unsigned int insn)
1428 {
1429 struct gdbarch *gdbarch = get_frame_arch (frame);
1430 int op = (insn >> 11);
1431 switch (op)
1432 {
1433 case 2: /* Branch */
1434 {
1435 CORE_ADDR offset;
1436 struct upk_mips16 upk;
1437 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
1438 pc += (upk.offset << 1) + 2;
1439 break;
1440 }
1441 case 3: /* JAL , JALX - Watch out, these are 32 bit
1442 instructions. */
1443 {
1444 struct upk_mips16 upk;
1445 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
1446 pc = add_offset_16 (pc, upk.offset);
1447 if ((insn >> 10) & 0x01) /* Exchange mode */
1448 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
1449 else
1450 pc |= 0x01;
1451 break;
1452 }
1453 case 4: /* beqz */
1454 {
1455 struct upk_mips16 upk;
1456 int reg;
1457 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
1458 reg = get_frame_register_signed (frame, mips16_to_32_reg[upk.regx]);
1459 if (reg == 0)
1460 pc += (upk.offset << 1) + 2;
1461 else
1462 pc += 2;
1463 break;
1464 }
1465 case 5: /* bnez */
1466 {
1467 struct upk_mips16 upk;
1468 int reg;
1469 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
1470 reg = get_frame_register_signed (frame, mips16_to_32_reg[upk.regx]);
1471 if (reg != 0)
1472 pc += (upk.offset << 1) + 2;
1473 else
1474 pc += 2;
1475 break;
1476 }
1477 case 12: /* I8 Formats btez btnez */
1478 {
1479 struct upk_mips16 upk;
1480 int reg;
1481 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
1482 /* upk.regx contains the opcode */
1483 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
1484 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1485 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1486 /* pc = add_offset_16(pc,upk.offset) ; */
1487 pc += (upk.offset << 1) + 2;
1488 else
1489 pc += 2;
1490 break;
1491 }
1492 case 29: /* RR Formats JR, JALR, JALR-RA */
1493 {
1494 struct upk_mips16 upk;
1495 /* upk.fmt = rrtype; */
1496 op = insn & 0x1f;
1497 if (op == 0)
1498 {
1499 int reg;
1500 upk.regx = (insn >> 8) & 0x07;
1501 upk.regy = (insn >> 5) & 0x07;
1502 if ((upk.regy & 1) == 0)
1503 reg = mips16_to_32_reg[upk.regx];
1504 else
1505 reg = 31; /* Function return instruction. */
1506 pc = get_frame_register_signed (frame, reg);
1507 }
1508 else
1509 pc += 2;
1510 break;
1511 }
1512 case 30:
1513 /* This is an instruction extension. Fetch the real instruction
1514 (which follows the extension) and decode things based on
1515 that. */
1516 {
1517 pc += 2;
1518 pc = extended_mips16_next_pc (frame, pc, insn,
1519 fetch_mips_16 (gdbarch, pc));
1520 break;
1521 }
1522 default:
1523 {
1524 pc += 2;
1525 break;
1526 }
1527 }
1528 return pc;
1529 }
1530
1531 static CORE_ADDR
1532 mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
1533 {
1534 struct gdbarch *gdbarch = get_frame_arch (frame);
1535 unsigned int insn = fetch_mips_16 (gdbarch, pc);
1536 return extended_mips16_next_pc (frame, pc, 0, insn);
1537 }
1538
1539 /* The mips_next_pc function supports single_step when the remote
1540 target monitor or stub is not developed enough to do a single_step.
1541 It works by decoding the current instruction and predicting where a
1542 branch will go. This isnt hard because all the data is available.
1543 The MIPS32 and MIPS16 variants are quite different. */
1544 static CORE_ADDR
1545 mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1546 {
1547 if (mips_pc_is_mips16 (pc))
1548 return mips16_next_pc (frame, pc);
1549 else
1550 return mips32_next_pc (frame, pc);
1551 }
1552
1553 struct mips_frame_cache
1554 {
1555 CORE_ADDR base;
1556 struct trad_frame_saved_reg *saved_regs;
1557 };
1558
1559 /* Set a register's saved stack address in temp_saved_regs. If an
1560 address has already been set for this register, do nothing; this
1561 way we will only recognize the first save of a given register in a
1562 function prologue.
1563
1564 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
1565 [gdbarch_num_regs .. 2*gdbarch_num_regs).
1566 Strictly speaking, only the second range is used as it is only second
1567 range (the ABI instead of ISA registers) that comes into play when finding
1568 saved registers in a frame. */
1569
1570 static void
1571 set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
1572 int regnum, CORE_ADDR offset)
1573 {
1574 if (this_cache != NULL
1575 && this_cache->saved_regs[regnum].addr == -1)
1576 {
1577 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
1578 = offset;
1579 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
1580 = offset;
1581 }
1582 }
1583
1584
1585 /* Fetch the immediate value from a MIPS16 instruction.
1586 If the previous instruction was an EXTEND, use it to extend
1587 the upper bits of the immediate value. This is a helper function
1588 for mips16_scan_prologue. */
1589
1590 static int
1591 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1592 unsigned short inst, /* current instruction */
1593 int nbits, /* number of bits in imm field */
1594 int scale, /* scale factor to be applied to imm */
1595 int is_signed) /* is the imm field signed? */
1596 {
1597 int offset;
1598
1599 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1600 {
1601 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1602 if (offset & 0x8000) /* check for negative extend */
1603 offset = 0 - (0x10000 - (offset & 0xffff));
1604 return offset | (inst & 0x1f);
1605 }
1606 else
1607 {
1608 int max_imm = 1 << nbits;
1609 int mask = max_imm - 1;
1610 int sign_bit = max_imm >> 1;
1611
1612 offset = inst & mask;
1613 if (is_signed && (offset & sign_bit))
1614 offset = 0 - (max_imm - offset);
1615 return offset * scale;
1616 }
1617 }
1618
1619
1620 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1621 the associated FRAME_CACHE if not null.
1622 Return the address of the first instruction past the prologue. */
1623
1624 static CORE_ADDR
1625 mips16_scan_prologue (struct gdbarch *gdbarch,
1626 CORE_ADDR start_pc, CORE_ADDR limit_pc,
1627 struct frame_info *this_frame,
1628 struct mips_frame_cache *this_cache)
1629 {
1630 CORE_ADDR cur_pc;
1631 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
1632 CORE_ADDR sp;
1633 long frame_offset = 0; /* Size of stack frame. */
1634 long frame_adjust = 0; /* Offset of FP from SP. */
1635 int frame_reg = MIPS_SP_REGNUM;
1636 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
1637 unsigned inst = 0; /* current instruction */
1638 unsigned entry_inst = 0; /* the entry instruction */
1639 unsigned save_inst = 0; /* the save instruction */
1640 int reg, offset;
1641
1642 int extend_bytes = 0;
1643 int prev_extend_bytes;
1644 CORE_ADDR end_prologue_addr = 0;
1645
1646 /* Can be called when there's no process, and hence when there's no
1647 THIS_FRAME. */
1648 if (this_frame != NULL)
1649 sp = get_frame_register_signed (this_frame,
1650 gdbarch_num_regs (gdbarch)
1651 + MIPS_SP_REGNUM);
1652 else
1653 sp = 0;
1654
1655 if (limit_pc > start_pc + 200)
1656 limit_pc = start_pc + 200;
1657
1658 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1659 {
1660 /* Save the previous instruction. If it's an EXTEND, we'll extract
1661 the immediate offset extension from it in mips16_get_imm. */
1662 prev_inst = inst;
1663
1664 /* Fetch and decode the instruction. */
1665 inst = (unsigned short) mips_fetch_instruction (gdbarch, cur_pc);
1666
1667 /* Normally we ignore extend instructions. However, if it is
1668 not followed by a valid prologue instruction, then this
1669 instruction is not part of the prologue either. We must
1670 remember in this case to adjust the end_prologue_addr back
1671 over the extend. */
1672 if ((inst & 0xf800) == 0xf000) /* extend */
1673 {
1674 extend_bytes = MIPS_INSN16_SIZE;
1675 continue;
1676 }
1677
1678 prev_extend_bytes = extend_bytes;
1679 extend_bytes = 0;
1680
1681 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1682 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1683 {
1684 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1685 if (offset < 0) /* Negative stack adjustment? */
1686 frame_offset -= offset;
1687 else
1688 /* Exit loop if a positive stack adjustment is found, which
1689 usually means that the stack cleanup code in the function
1690 epilogue is reached. */
1691 break;
1692 }
1693 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1694 {
1695 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1696 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1697 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1698 }
1699 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1700 {
1701 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1702 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1703 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1704 }
1705 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1706 {
1707 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1708 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
1709 }
1710 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1711 {
1712 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1713 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
1714 }
1715 else if (inst == 0x673d) /* move $s1, $sp */
1716 {
1717 frame_addr = sp;
1718 frame_reg = 17;
1719 }
1720 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1721 {
1722 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1723 frame_addr = sp + offset;
1724 frame_reg = 17;
1725 frame_adjust = offset;
1726 }
1727 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1728 {
1729 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1730 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1731 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
1732 }
1733 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1734 {
1735 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1736 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1737 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
1738 }
1739 else if ((inst & 0xf81f) == 0xe809
1740 && (inst & 0x700) != 0x700) /* entry */
1741 entry_inst = inst; /* Save for later processing. */
1742 else if ((inst & 0xff80) == 0x6480) /* save */
1743 {
1744 save_inst = inst; /* Save for later processing. */
1745 if (prev_extend_bytes) /* extend */
1746 save_inst |= prev_inst << 16;
1747 }
1748 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1749 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1750 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1751 {
1752 /* This instruction is part of the prologue, but we don't
1753 need to do anything special to handle it. */
1754 }
1755 else
1756 {
1757 /* This instruction is not an instruction typically found
1758 in a prologue, so we must have reached the end of the
1759 prologue. */
1760 if (end_prologue_addr == 0)
1761 end_prologue_addr = cur_pc - prev_extend_bytes;
1762 }
1763 }
1764
1765 /* The entry instruction is typically the first instruction in a function,
1766 and it stores registers at offsets relative to the value of the old SP
1767 (before the prologue). But the value of the sp parameter to this
1768 function is the new SP (after the prologue has been executed). So we
1769 can't calculate those offsets until we've seen the entire prologue,
1770 and can calculate what the old SP must have been. */
1771 if (entry_inst != 0)
1772 {
1773 int areg_count = (entry_inst >> 8) & 7;
1774 int sreg_count = (entry_inst >> 6) & 3;
1775
1776 /* The entry instruction always subtracts 32 from the SP. */
1777 frame_offset += 32;
1778
1779 /* Now we can calculate what the SP must have been at the
1780 start of the function prologue. */
1781 sp += frame_offset;
1782
1783 /* Check if a0-a3 were saved in the caller's argument save area. */
1784 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1785 {
1786 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1787 offset += mips_abi_regsize (gdbarch);
1788 }
1789
1790 /* Check if the ra register was pushed on the stack. */
1791 offset = -4;
1792 if (entry_inst & 0x20)
1793 {
1794 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
1795 offset -= mips_abi_regsize (gdbarch);
1796 }
1797
1798 /* Check if the s0 and s1 registers were pushed on the stack. */
1799 for (reg = 16; reg < sreg_count + 16; reg++)
1800 {
1801 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1802 offset -= mips_abi_regsize (gdbarch);
1803 }
1804 }
1805
1806 /* The SAVE instruction is similar to ENTRY, except that defined by the
1807 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
1808 size of the frame is specified as an immediate field of instruction
1809 and an extended variation exists which lets additional registers and
1810 frame space to be specified. The instruction always treats registers
1811 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
1812 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
1813 {
1814 static int args_table[16] = {
1815 0, 0, 0, 0, 1, 1, 1, 1,
1816 2, 2, 2, 0, 3, 3, 4, -1,
1817 };
1818 static int astatic_table[16] = {
1819 0, 1, 2, 3, 0, 1, 2, 3,
1820 0, 1, 2, 4, 0, 1, 0, -1,
1821 };
1822 int aregs = (save_inst >> 16) & 0xf;
1823 int xsregs = (save_inst >> 24) & 0x7;
1824 int args = args_table[aregs];
1825 int astatic = astatic_table[aregs];
1826 long frame_size;
1827
1828 if (args < 0)
1829 {
1830 warning (_("Invalid number of argument registers encoded in SAVE."));
1831 args = 0;
1832 }
1833 if (astatic < 0)
1834 {
1835 warning (_("Invalid number of static registers encoded in SAVE."));
1836 astatic = 0;
1837 }
1838
1839 /* For standard SAVE the frame size of 0 means 128. */
1840 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
1841 if (frame_size == 0 && (save_inst >> 16) == 0)
1842 frame_size = 16;
1843 frame_size *= 8;
1844 frame_offset += frame_size;
1845
1846 /* Now we can calculate what the SP must have been at the
1847 start of the function prologue. */
1848 sp += frame_offset;
1849
1850 /* Check if A0-A3 were saved in the caller's argument save area. */
1851 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
1852 {
1853 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1854 offset += mips_abi_regsize (gdbarch);
1855 }
1856
1857 offset = -4;
1858
1859 /* Check if the RA register was pushed on the stack. */
1860 if (save_inst & 0x40)
1861 {
1862 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
1863 offset -= mips_abi_regsize (gdbarch);
1864 }
1865
1866 /* Check if the S8 register was pushed on the stack. */
1867 if (xsregs > 6)
1868 {
1869 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
1870 offset -= mips_abi_regsize (gdbarch);
1871 xsregs--;
1872 }
1873 /* Check if S2-S7 were pushed on the stack. */
1874 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
1875 {
1876 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1877 offset -= mips_abi_regsize (gdbarch);
1878 }
1879
1880 /* Check if the S1 register was pushed on the stack. */
1881 if (save_inst & 0x10)
1882 {
1883 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
1884 offset -= mips_abi_regsize (gdbarch);
1885 }
1886 /* Check if the S0 register was pushed on the stack. */
1887 if (save_inst & 0x20)
1888 {
1889 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
1890 offset -= mips_abi_regsize (gdbarch);
1891 }
1892
1893 /* Check if A0-A3 were pushed on the stack. */
1894 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
1895 {
1896 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1897 offset -= mips_abi_regsize (gdbarch);
1898 }
1899 }
1900
1901 if (this_cache != NULL)
1902 {
1903 this_cache->base =
1904 (get_frame_register_signed (this_frame,
1905 gdbarch_num_regs (gdbarch) + frame_reg)
1906 + frame_offset - frame_adjust);
1907 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1908 be able to get rid of the assignment below, evetually. But it's
1909 still needed for now. */
1910 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
1911 + mips_regnum (gdbarch)->pc]
1912 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
1913 }
1914
1915 /* If we didn't reach the end of the prologue when scanning the function
1916 instructions, then set end_prologue_addr to the address of the
1917 instruction immediately after the last one we scanned. */
1918 if (end_prologue_addr == 0)
1919 end_prologue_addr = cur_pc;
1920
1921 return end_prologue_addr;
1922 }
1923
1924 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1925 Procedures that use the 32-bit instruction set are handled by the
1926 mips_insn32 unwinder. */
1927
1928 static struct mips_frame_cache *
1929 mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
1930 {
1931 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1932 struct mips_frame_cache *cache;
1933
1934 if ((*this_cache) != NULL)
1935 return (*this_cache);
1936 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1937 (*this_cache) = cache;
1938 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1939
1940 /* Analyze the function prologue. */
1941 {
1942 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
1943 CORE_ADDR start_addr;
1944
1945 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1946 if (start_addr == 0)
1947 start_addr = heuristic_proc_start (gdbarch, pc);
1948 /* We can't analyze the prologue if we couldn't find the begining
1949 of the function. */
1950 if (start_addr == 0)
1951 return cache;
1952
1953 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
1954 }
1955
1956 /* gdbarch_sp_regnum contains the value and not the address. */
1957 trad_frame_set_value (cache->saved_regs,
1958 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
1959 cache->base);
1960
1961 return (*this_cache);
1962 }
1963
1964 static void
1965 mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
1966 struct frame_id *this_id)
1967 {
1968 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
1969 this_cache);
1970 /* This marks the outermost frame. */
1971 if (info->base == 0)
1972 return;
1973 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
1974 }
1975
1976 static struct value *
1977 mips_insn16_frame_prev_register (struct frame_info *this_frame,
1978 void **this_cache, int regnum)
1979 {
1980 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
1981 this_cache);
1982 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1983 }
1984
1985 static int
1986 mips_insn16_frame_sniffer (const struct frame_unwind *self,
1987 struct frame_info *this_frame, void **this_cache)
1988 {
1989 CORE_ADDR pc = get_frame_pc (this_frame);
1990 if (mips_pc_is_mips16 (pc))
1991 return 1;
1992 return 0;
1993 }
1994
1995 static const struct frame_unwind mips_insn16_frame_unwind =
1996 {
1997 NORMAL_FRAME,
1998 default_frame_unwind_stop_reason,
1999 mips_insn16_frame_this_id,
2000 mips_insn16_frame_prev_register,
2001 NULL,
2002 mips_insn16_frame_sniffer
2003 };
2004
2005 static CORE_ADDR
2006 mips_insn16_frame_base_address (struct frame_info *this_frame,
2007 void **this_cache)
2008 {
2009 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2010 this_cache);
2011 return info->base;
2012 }
2013
2014 static const struct frame_base mips_insn16_frame_base =
2015 {
2016 &mips_insn16_frame_unwind,
2017 mips_insn16_frame_base_address,
2018 mips_insn16_frame_base_address,
2019 mips_insn16_frame_base_address
2020 };
2021
2022 static const struct frame_base *
2023 mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2024 {
2025 CORE_ADDR pc = get_frame_pc (this_frame);
2026 if (mips_pc_is_mips16 (pc))
2027 return &mips_insn16_frame_base;
2028 else
2029 return NULL;
2030 }
2031
2032 /* Mark all the registers as unset in the saved_regs array
2033 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
2034
2035 static void
2036 reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
2037 {
2038 if (this_cache == NULL || this_cache->saved_regs == NULL)
2039 return;
2040
2041 {
2042 const int num_regs = gdbarch_num_regs (gdbarch);
2043 int i;
2044
2045 for (i = 0; i < num_regs; i++)
2046 {
2047 this_cache->saved_regs[i].addr = -1;
2048 }
2049 }
2050 }
2051
2052 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2053 the associated FRAME_CACHE if not null.
2054 Return the address of the first instruction past the prologue. */
2055
2056 static CORE_ADDR
2057 mips32_scan_prologue (struct gdbarch *gdbarch,
2058 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2059 struct frame_info *this_frame,
2060 struct mips_frame_cache *this_cache)
2061 {
2062 CORE_ADDR cur_pc;
2063 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
2064 frame-pointer. */
2065 CORE_ADDR sp;
2066 long frame_offset;
2067 int frame_reg = MIPS_SP_REGNUM;
2068
2069 CORE_ADDR end_prologue_addr = 0;
2070 int seen_sp_adjust = 0;
2071 int load_immediate_bytes = 0;
2072 int in_delay_slot = 0;
2073 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
2074
2075 /* Can be called when there's no process, and hence when there's no
2076 THIS_FRAME. */
2077 if (this_frame != NULL)
2078 sp = get_frame_register_signed (this_frame,
2079 gdbarch_num_regs (gdbarch)
2080 + MIPS_SP_REGNUM);
2081 else
2082 sp = 0;
2083
2084 if (limit_pc > start_pc + 200)
2085 limit_pc = start_pc + 200;
2086
2087 restart:
2088
2089 frame_offset = 0;
2090 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
2091 {
2092 unsigned long inst, high_word, low_word;
2093 int reg;
2094
2095 /* Fetch the instruction. */
2096 inst = (unsigned long) mips_fetch_instruction (gdbarch, cur_pc);
2097
2098 /* Save some code by pre-extracting some useful fields. */
2099 high_word = (inst >> 16) & 0xffff;
2100 low_word = inst & 0xffff;
2101 reg = high_word & 0x1f;
2102
2103 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2104 || high_word == 0x23bd /* addi $sp,$sp,-i */
2105 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2106 {
2107 if (low_word & 0x8000) /* Negative stack adjustment? */
2108 frame_offset += 0x10000 - low_word;
2109 else
2110 /* Exit loop if a positive stack adjustment is found, which
2111 usually means that the stack cleanup code in the function
2112 epilogue is reached. */
2113 break;
2114 seen_sp_adjust = 1;
2115 }
2116 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2117 && !regsize_is_64_bits)
2118 {
2119 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
2120 }
2121 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2122 && regsize_is_64_bits)
2123 {
2124 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
2125 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
2126 }
2127 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2128 {
2129 /* Old gcc frame, r30 is virtual frame pointer. */
2130 if ((long) low_word != frame_offset)
2131 frame_addr = sp + low_word;
2132 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
2133 {
2134 unsigned alloca_adjust;
2135
2136 frame_reg = 30;
2137 frame_addr = get_frame_register_signed
2138 (this_frame, gdbarch_num_regs (gdbarch) + 30);
2139
2140 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2141 if (alloca_adjust > 0)
2142 {
2143 /* FP > SP + frame_size. This may be because of
2144 an alloca or somethings similar. Fix sp to
2145 "pre-alloca" value, and try again. */
2146 sp += alloca_adjust;
2147 /* Need to reset the status of all registers. Otherwise,
2148 we will hit a guard that prevents the new address
2149 for each register to be recomputed during the second
2150 pass. */
2151 reset_saved_regs (gdbarch, this_cache);
2152 goto restart;
2153 }
2154 }
2155 }
2156 /* move $30,$sp. With different versions of gas this will be either
2157 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2158 Accept any one of these. */
2159 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2160 {
2161 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2162 if (this_frame && frame_reg == MIPS_SP_REGNUM)
2163 {
2164 unsigned alloca_adjust;
2165
2166 frame_reg = 30;
2167 frame_addr = get_frame_register_signed
2168 (this_frame, gdbarch_num_regs (gdbarch) + 30);
2169
2170 alloca_adjust = (unsigned) (frame_addr - sp);
2171 if (alloca_adjust > 0)
2172 {
2173 /* FP > SP + frame_size. This may be because of
2174 an alloca or somethings similar. Fix sp to
2175 "pre-alloca" value, and try again. */
2176 sp = frame_addr;
2177 /* Need to reset the status of all registers. Otherwise,
2178 we will hit a guard that prevents the new address
2179 for each register to be recomputed during the second
2180 pass. */
2181 reset_saved_regs (gdbarch, this_cache);
2182 goto restart;
2183 }
2184 }
2185 }
2186 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
2187 && !regsize_is_64_bits)
2188 {
2189 set_reg_offset (gdbarch, this_cache, reg, frame_addr + low_word);
2190 }
2191 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
2192 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
2193 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
2194 || high_word == 0x3c1c /* lui $gp,n */
2195 || high_word == 0x279c /* addiu $gp,$gp,n */
2196 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
2197 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
2198 )
2199 {
2200 /* These instructions are part of the prologue, but we don't
2201 need to do anything special to handle them. */
2202 }
2203 /* The instructions below load $at or $t0 with an immediate
2204 value in preparation for a stack adjustment via
2205 subu $sp,$sp,[$at,$t0]. These instructions could also
2206 initialize a local variable, so we accept them only before
2207 a stack adjustment instruction was seen. */
2208 else if (!seen_sp_adjust
2209 && (high_word == 0x3c01 /* lui $at,n */
2210 || high_word == 0x3c08 /* lui $t0,n */
2211 || high_word == 0x3421 /* ori $at,$at,n */
2212 || high_word == 0x3508 /* ori $t0,$t0,n */
2213 || high_word == 0x3401 /* ori $at,$zero,n */
2214 || high_word == 0x3408 /* ori $t0,$zero,n */
2215 ))
2216 {
2217 if (end_prologue_addr == 0)
2218 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
2219 }
2220 else
2221 {
2222 /* This instruction is not an instruction typically found
2223 in a prologue, so we must have reached the end of the
2224 prologue. */
2225 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
2226 loop now? Why would we need to continue scanning the function
2227 instructions? */
2228 if (end_prologue_addr == 0)
2229 end_prologue_addr = cur_pc;
2230
2231 /* Check for branches and jumps. For now, only jump to
2232 register are caught (i.e. returns). */
2233 if ((itype_op (inst) & 0x07) == 0 && rtype_funct (inst) == 8)
2234 in_delay_slot = 1;
2235 }
2236
2237 /* If the previous instruction was a jump, we must have reached
2238 the end of the prologue by now. Stop scanning so that we do
2239 not go past the function return. */
2240 if (in_delay_slot)
2241 break;
2242 }
2243
2244 if (this_cache != NULL)
2245 {
2246 this_cache->base =
2247 (get_frame_register_signed (this_frame,
2248 gdbarch_num_regs (gdbarch) + frame_reg)
2249 + frame_offset);
2250 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
2251 this assignment below, eventually. But it's still needed
2252 for now. */
2253 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2254 + mips_regnum (gdbarch)->pc]
2255 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2256 + MIPS_RA_REGNUM];
2257 }
2258
2259 /* If we didn't reach the end of the prologue when scanning the function
2260 instructions, then set end_prologue_addr to the address of the
2261 instruction immediately after the last one we scanned. */
2262 /* brobecker/2004-10-10: I don't think this would ever happen, but
2263 we may as well be careful and do our best if we have a null
2264 end_prologue_addr. */
2265 if (end_prologue_addr == 0)
2266 end_prologue_addr = cur_pc;
2267
2268 /* In a frameless function, we might have incorrectly
2269 skipped some load immediate instructions. Undo the skipping
2270 if the load immediate was not followed by a stack adjustment. */
2271 if (load_immediate_bytes && !seen_sp_adjust)
2272 end_prologue_addr -= load_immediate_bytes;
2273
2274 return end_prologue_addr;
2275 }
2276
2277 /* Heuristic unwinder for procedures using 32-bit instructions (covers
2278 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
2279 instructions (a.k.a. MIPS16) are handled by the mips_insn16
2280 unwinder. */
2281
2282 static struct mips_frame_cache *
2283 mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
2284 {
2285 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2286 struct mips_frame_cache *cache;
2287
2288 if ((*this_cache) != NULL)
2289 return (*this_cache);
2290
2291 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2292 (*this_cache) = cache;
2293 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2294
2295 /* Analyze the function prologue. */
2296 {
2297 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2298 CORE_ADDR start_addr;
2299
2300 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2301 if (start_addr == 0)
2302 start_addr = heuristic_proc_start (gdbarch, pc);
2303 /* We can't analyze the prologue if we couldn't find the begining
2304 of the function. */
2305 if (start_addr == 0)
2306 return cache;
2307
2308 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
2309 }
2310
2311 /* gdbarch_sp_regnum contains the value and not the address. */
2312 trad_frame_set_value (cache->saved_regs,
2313 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2314 cache->base);
2315
2316 return (*this_cache);
2317 }
2318
2319 static void
2320 mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
2321 struct frame_id *this_id)
2322 {
2323 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
2324 this_cache);
2325 /* This marks the outermost frame. */
2326 if (info->base == 0)
2327 return;
2328 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2329 }
2330
2331 static struct value *
2332 mips_insn32_frame_prev_register (struct frame_info *this_frame,
2333 void **this_cache, int regnum)
2334 {
2335 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
2336 this_cache);
2337 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2338 }
2339
2340 static int
2341 mips_insn32_frame_sniffer (const struct frame_unwind *self,
2342 struct frame_info *this_frame, void **this_cache)
2343 {
2344 CORE_ADDR pc = get_frame_pc (this_frame);
2345 if (! mips_pc_is_mips16 (pc))
2346 return 1;
2347 return 0;
2348 }
2349
2350 static const struct frame_unwind mips_insn32_frame_unwind =
2351 {
2352 NORMAL_FRAME,
2353 default_frame_unwind_stop_reason,
2354 mips_insn32_frame_this_id,
2355 mips_insn32_frame_prev_register,
2356 NULL,
2357 mips_insn32_frame_sniffer
2358 };
2359
2360 static CORE_ADDR
2361 mips_insn32_frame_base_address (struct frame_info *this_frame,
2362 void **this_cache)
2363 {
2364 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
2365 this_cache);
2366 return info->base;
2367 }
2368
2369 static const struct frame_base mips_insn32_frame_base =
2370 {
2371 &mips_insn32_frame_unwind,
2372 mips_insn32_frame_base_address,
2373 mips_insn32_frame_base_address,
2374 mips_insn32_frame_base_address
2375 };
2376
2377 static const struct frame_base *
2378 mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
2379 {
2380 CORE_ADDR pc = get_frame_pc (this_frame);
2381 if (! mips_pc_is_mips16 (pc))
2382 return &mips_insn32_frame_base;
2383 else
2384 return NULL;
2385 }
2386
2387 static struct trad_frame_cache *
2388 mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
2389 {
2390 CORE_ADDR pc;
2391 CORE_ADDR start_addr;
2392 CORE_ADDR stack_addr;
2393 struct trad_frame_cache *this_trad_cache;
2394 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2395 int num_regs = gdbarch_num_regs (gdbarch);
2396
2397 if ((*this_cache) != NULL)
2398 return (*this_cache);
2399 this_trad_cache = trad_frame_cache_zalloc (this_frame);
2400 (*this_cache) = this_trad_cache;
2401
2402 /* The return address is in the link register. */
2403 trad_frame_set_reg_realreg (this_trad_cache,
2404 gdbarch_pc_regnum (gdbarch),
2405 num_regs + MIPS_RA_REGNUM);
2406
2407 /* Frame ID, since it's a frameless / stackless function, no stack
2408 space is allocated and SP on entry is the current SP. */
2409 pc = get_frame_pc (this_frame);
2410 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2411 stack_addr = get_frame_register_signed (this_frame,
2412 num_regs + MIPS_SP_REGNUM);
2413 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
2414
2415 /* Assume that the frame's base is the same as the
2416 stack-pointer. */
2417 trad_frame_set_this_base (this_trad_cache, stack_addr);
2418
2419 return this_trad_cache;
2420 }
2421
2422 static void
2423 mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
2424 struct frame_id *this_id)
2425 {
2426 struct trad_frame_cache *this_trad_cache
2427 = mips_stub_frame_cache (this_frame, this_cache);
2428 trad_frame_get_id (this_trad_cache, this_id);
2429 }
2430
2431 static struct value *
2432 mips_stub_frame_prev_register (struct frame_info *this_frame,
2433 void **this_cache, int regnum)
2434 {
2435 struct trad_frame_cache *this_trad_cache
2436 = mips_stub_frame_cache (this_frame, this_cache);
2437 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
2438 }
2439
2440 static int
2441 mips_stub_frame_sniffer (const struct frame_unwind *self,
2442 struct frame_info *this_frame, void **this_cache)
2443 {
2444 gdb_byte dummy[4];
2445 struct obj_section *s;
2446 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2447 struct minimal_symbol *msym;
2448
2449 /* Use the stub unwinder for unreadable code. */
2450 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
2451 return 1;
2452
2453 if (in_plt_section (pc, NULL))
2454 return 1;
2455
2456 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2457 s = find_pc_section (pc);
2458
2459 if (s != NULL
2460 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2461 ".MIPS.stubs") == 0)
2462 return 1;
2463
2464 /* Calling a PIC function from a non-PIC function passes through a
2465 stub. The stub for foo is named ".pic.foo". */
2466 msym = lookup_minimal_symbol_by_pc (pc);
2467 if (msym != NULL
2468 && SYMBOL_LINKAGE_NAME (msym) != NULL
2469 && strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) == 0)
2470 return 1;
2471
2472 return 0;
2473 }
2474
2475 static const struct frame_unwind mips_stub_frame_unwind =
2476 {
2477 NORMAL_FRAME,
2478 default_frame_unwind_stop_reason,
2479 mips_stub_frame_this_id,
2480 mips_stub_frame_prev_register,
2481 NULL,
2482 mips_stub_frame_sniffer
2483 };
2484
2485 static CORE_ADDR
2486 mips_stub_frame_base_address (struct frame_info *this_frame,
2487 void **this_cache)
2488 {
2489 struct trad_frame_cache *this_trad_cache
2490 = mips_stub_frame_cache (this_frame, this_cache);
2491 return trad_frame_get_this_base (this_trad_cache);
2492 }
2493
2494 static const struct frame_base mips_stub_frame_base =
2495 {
2496 &mips_stub_frame_unwind,
2497 mips_stub_frame_base_address,
2498 mips_stub_frame_base_address,
2499 mips_stub_frame_base_address
2500 };
2501
2502 static const struct frame_base *
2503 mips_stub_frame_base_sniffer (struct frame_info *this_frame)
2504 {
2505 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
2506 return &mips_stub_frame_base;
2507 else
2508 return NULL;
2509 }
2510
2511 /* mips_addr_bits_remove - remove useless address bits */
2512
2513 static CORE_ADDR
2514 mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2515 {
2516 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2517
2518 if (is_mips16_addr (addr))
2519 addr = unmake_mips16_addr (addr);
2520
2521 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2522 /* This hack is a work-around for existing boards using PMON, the
2523 simulator, and any other 64-bit targets that doesn't have true
2524 64-bit addressing. On these targets, the upper 32 bits of
2525 addresses are ignored by the hardware. Thus, the PC or SP are
2526 likely to have been sign extended to all 1s by instruction
2527 sequences that load 32-bit addresses. For example, a typical
2528 piece of code that loads an address is this:
2529
2530 lui $r2, <upper 16 bits>
2531 ori $r2, <lower 16 bits>
2532
2533 But the lui sign-extends the value such that the upper 32 bits
2534 may be all 1s. The workaround is simply to mask off these
2535 bits. In the future, gcc may be changed to support true 64-bit
2536 addressing, and this masking will have to be disabled. */
2537 return addr &= 0xffffffffUL;
2538 else
2539 return addr;
2540 }
2541
2542 /* Instructions used during single-stepping of atomic sequences. */
2543 #define LL_OPCODE 0x30
2544 #define LLD_OPCODE 0x34
2545 #define SC_OPCODE 0x38
2546 #define SCD_OPCODE 0x3c
2547
2548 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
2549 instruction and ending with a SC/SCD instruction. If such a sequence
2550 is found, attempt to step through it. A breakpoint is placed at the end of
2551 the sequence. */
2552
2553 static int
2554 deal_with_atomic_sequence (struct gdbarch *gdbarch,
2555 struct address_space *aspace, CORE_ADDR pc)
2556 {
2557 CORE_ADDR breaks[2] = {-1, -1};
2558 CORE_ADDR loc = pc;
2559 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
2560 unsigned long insn;
2561 int insn_count;
2562 int index;
2563 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
2564 const int atomic_sequence_length = 16; /* Instruction sequence length. */
2565
2566 if (pc & 0x01)
2567 return 0;
2568
2569 insn = mips_fetch_instruction (gdbarch, loc);
2570 /* Assume all atomic sequences start with a ll/lld instruction. */
2571 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
2572 return 0;
2573
2574 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
2575 instructions. */
2576 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
2577 {
2578 int is_branch = 0;
2579 loc += MIPS_INSN32_SIZE;
2580 insn = mips_fetch_instruction (gdbarch, loc);
2581
2582 /* Assume that there is at most one branch in the atomic
2583 sequence. If a branch is found, put a breakpoint in its
2584 destination address. */
2585 switch (itype_op (insn))
2586 {
2587 case 0: /* SPECIAL */
2588 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
2589 return 0; /* fallback to the standard single-step code. */
2590 break;
2591 case 1: /* REGIMM */
2592 is_branch = ((itype_rt (insn) & 0xc) == 0); /* B{LT,GE}Z* */
2593 break;
2594 case 2: /* J */
2595 case 3: /* JAL */
2596 return 0; /* fallback to the standard single-step code. */
2597 case 4: /* BEQ */
2598 case 5: /* BNE */
2599 case 6: /* BLEZ */
2600 case 7: /* BGTZ */
2601 case 20: /* BEQL */
2602 case 21: /* BNEL */
2603 case 22: /* BLEZL */
2604 case 23: /* BGTTL */
2605 is_branch = 1;
2606 break;
2607 case 17: /* COP1 */
2608 case 18: /* COP2 */
2609 case 19: /* COP3 */
2610 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
2611 break;
2612 }
2613 if (is_branch)
2614 {
2615 branch_bp = loc + mips32_relative_offset (insn) + 4;
2616 if (last_breakpoint >= 1)
2617 return 0; /* More than one branch found, fallback to the
2618 standard single-step code. */
2619 breaks[1] = branch_bp;
2620 last_breakpoint++;
2621 }
2622
2623 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
2624 break;
2625 }
2626
2627 /* Assume that the atomic sequence ends with a sc/scd instruction. */
2628 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
2629 return 0;
2630
2631 loc += MIPS_INSN32_SIZE;
2632
2633 /* Insert a breakpoint right after the end of the atomic sequence. */
2634 breaks[0] = loc;
2635
2636 /* Check for duplicated breakpoints. Check also for a breakpoint
2637 placed (branch instruction's destination) in the atomic sequence. */
2638 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
2639 last_breakpoint = 0;
2640
2641 /* Effectively inserts the breakpoints. */
2642 for (index = 0; index <= last_breakpoint; index++)
2643 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
2644
2645 return 1;
2646 }
2647
2648 /* mips_software_single_step() is called just before we want to resume
2649 the inferior, if we want to single-step it but there is no hardware
2650 or kernel single-step support (MIPS on GNU/Linux for example). We find
2651 the target of the coming instruction and breakpoint it. */
2652
2653 int
2654 mips_software_single_step (struct frame_info *frame)
2655 {
2656 struct gdbarch *gdbarch = get_frame_arch (frame);
2657 struct address_space *aspace = get_frame_address_space (frame);
2658 CORE_ADDR pc, next_pc;
2659
2660 pc = get_frame_pc (frame);
2661 if (deal_with_atomic_sequence (gdbarch, aspace, pc))
2662 return 1;
2663
2664 next_pc = mips_next_pc (frame, pc);
2665
2666 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
2667 return 1;
2668 }
2669
2670 /* Test whether the PC points to the return instruction at the
2671 end of a function. */
2672
2673 static int
2674 mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
2675 {
2676 if (mips_pc_is_mips16 (pc))
2677 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2678 generates a "jr $ra"; other times it generates code to load
2679 the return address from the stack to an accessible register (such
2680 as $a3), then a "jr" using that register. This second case
2681 is almost impossible to distinguish from an indirect jump
2682 used for switch statements, so we don't even try. */
2683 return mips_fetch_instruction (gdbarch, pc) == 0xe820; /* jr $ra */
2684 else
2685 return mips_fetch_instruction (gdbarch, pc) == 0x3e00008; /* jr $ra */
2686 }
2687
2688
2689 /* This fencepost looks highly suspicious to me. Removing it also
2690 seems suspicious as it could affect remote debugging across serial
2691 lines. */
2692
2693 static CORE_ADDR
2694 heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
2695 {
2696 CORE_ADDR start_pc;
2697 CORE_ADDR fence;
2698 int instlen;
2699 int seen_adjsp = 0;
2700 struct inferior *inf;
2701
2702 pc = gdbarch_addr_bits_remove (gdbarch, pc);
2703 start_pc = pc;
2704 fence = start_pc - heuristic_fence_post;
2705 if (start_pc == 0)
2706 return 0;
2707
2708 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2709 fence = VM_MIN_ADDRESS;
2710
2711 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2712
2713 inf = current_inferior ();
2714
2715 /* Search back for previous return. */
2716 for (start_pc -= instlen;; start_pc -= instlen)
2717 if (start_pc < fence)
2718 {
2719 /* It's not clear to me why we reach this point when
2720 stop_soon, but with this test, at least we
2721 don't print out warnings for every child forked (eg, on
2722 decstation). 22apr93 rich@cygnus.com. */
2723 if (inf->control.stop_soon == NO_STOP_QUIETLY)
2724 {
2725 static int blurb_printed = 0;
2726
2727 warning (_("GDB can't find the start of the function at %s."),
2728 paddress (gdbarch, pc));
2729
2730 if (!blurb_printed)
2731 {
2732 /* This actually happens frequently in embedded
2733 development, when you first connect to a board
2734 and your stack pointer and pc are nowhere in
2735 particular. This message needs to give people
2736 in that situation enough information to
2737 determine that it's no big deal. */
2738 printf_filtered ("\n\
2739 GDB is unable to find the start of the function at %s\n\
2740 and thus can't determine the size of that function's stack frame.\n\
2741 This means that GDB may be unable to access that stack frame, or\n\
2742 the frames below it.\n\
2743 This problem is most likely caused by an invalid program counter or\n\
2744 stack pointer.\n\
2745 However, if you think GDB should simply search farther back\n\
2746 from %s for code which looks like the beginning of a\n\
2747 function, you can increase the range of the search using the `set\n\
2748 heuristic-fence-post' command.\n",
2749 paddress (gdbarch, pc), paddress (gdbarch, pc));
2750 blurb_printed = 1;
2751 }
2752 }
2753
2754 return 0;
2755 }
2756 else if (mips_pc_is_mips16 (start_pc))
2757 {
2758 unsigned short inst;
2759
2760 /* On MIPS16, any one of the following is likely to be the
2761 start of a function:
2762 extend save
2763 save
2764 entry
2765 addiu sp,-n
2766 daddiu sp,-n
2767 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
2768 inst = mips_fetch_instruction (gdbarch, start_pc);
2769 if ((inst & 0xff80) == 0x6480) /* save */
2770 {
2771 if (start_pc - instlen >= fence)
2772 {
2773 inst = mips_fetch_instruction (gdbarch, start_pc - instlen);
2774 if ((inst & 0xf800) == 0xf000) /* extend */
2775 start_pc -= instlen;
2776 }
2777 break;
2778 }
2779 else if (((inst & 0xf81f) == 0xe809
2780 && (inst & 0x700) != 0x700) /* entry */
2781 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2782 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2783 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2784 break;
2785 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2786 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2787 seen_adjsp = 1;
2788 else
2789 seen_adjsp = 0;
2790 }
2791 else if (mips_about_to_return (gdbarch, start_pc))
2792 {
2793 /* Skip return and its delay slot. */
2794 start_pc += 2 * MIPS_INSN32_SIZE;
2795 break;
2796 }
2797
2798 return start_pc;
2799 }
2800
2801 struct mips_objfile_private
2802 {
2803 bfd_size_type size;
2804 char *contents;
2805 };
2806
2807 /* According to the current ABI, should the type be passed in a
2808 floating-point register (assuming that there is space)? When there
2809 is no FPU, FP are not even considered as possible candidates for
2810 FP registers and, consequently this returns false - forces FP
2811 arguments into integer registers. */
2812
2813 static int
2814 fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
2815 struct type *arg_type)
2816 {
2817 return ((typecode == TYPE_CODE_FLT
2818 || (MIPS_EABI (gdbarch)
2819 && (typecode == TYPE_CODE_STRUCT
2820 || typecode == TYPE_CODE_UNION)
2821 && TYPE_NFIELDS (arg_type) == 1
2822 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2823 == TYPE_CODE_FLT))
2824 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
2825 }
2826
2827 /* On o32, argument passing in GPRs depends on the alignment of the type being
2828 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2829
2830 static int
2831 mips_type_needs_double_align (struct type *type)
2832 {
2833 enum type_code typecode = TYPE_CODE (type);
2834
2835 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2836 return 1;
2837 else if (typecode == TYPE_CODE_STRUCT)
2838 {
2839 if (TYPE_NFIELDS (type) < 1)
2840 return 0;
2841 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2842 }
2843 else if (typecode == TYPE_CODE_UNION)
2844 {
2845 int i, n;
2846
2847 n = TYPE_NFIELDS (type);
2848 for (i = 0; i < n; i++)
2849 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2850 return 1;
2851 return 0;
2852 }
2853 return 0;
2854 }
2855
2856 /* Adjust the address downward (direction of stack growth) so that it
2857 is correctly aligned for a new stack frame. */
2858 static CORE_ADDR
2859 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2860 {
2861 return align_down (addr, 16);
2862 }
2863
2864 static CORE_ADDR
2865 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2866 struct regcache *regcache, CORE_ADDR bp_addr,
2867 int nargs, struct value **args, CORE_ADDR sp,
2868 int struct_return, CORE_ADDR struct_addr)
2869 {
2870 int argreg;
2871 int float_argreg;
2872 int argnum;
2873 int len = 0;
2874 int stack_offset = 0;
2875 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2876 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2877 CORE_ADDR func_addr = find_function_addr (function, NULL);
2878 int regsize = mips_abi_regsize (gdbarch);
2879
2880 /* For shared libraries, "t9" needs to point at the function
2881 address. */
2882 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2883
2884 /* Set the return address register to point to the entry point of
2885 the program, where a breakpoint lies in wait. */
2886 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2887
2888 /* First ensure that the stack and structure return address (if any)
2889 are properly aligned. The stack has to be at least 64-bit
2890 aligned even on 32-bit machines, because doubles must be 64-bit
2891 aligned. For n32 and n64, stack frames need to be 128-bit
2892 aligned, so we round to this widest known alignment. */
2893
2894 sp = align_down (sp, 16);
2895 struct_addr = align_down (struct_addr, 16);
2896
2897 /* Now make space on the stack for the args. We allocate more
2898 than necessary for EABI, because the first few arguments are
2899 passed in registers, but that's OK. */
2900 for (argnum = 0; argnum < nargs; argnum++)
2901 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
2902 sp -= align_up (len, 16);
2903
2904 if (mips_debug)
2905 fprintf_unfiltered (gdb_stdlog,
2906 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
2907 paddress (gdbarch, sp), (long) align_up (len, 16));
2908
2909 /* Initialize the integer and float register pointers. */
2910 argreg = MIPS_A0_REGNUM;
2911 float_argreg = mips_fpa0_regnum (gdbarch);
2912
2913 /* The struct_return pointer occupies the first parameter-passing reg. */
2914 if (struct_return)
2915 {
2916 if (mips_debug)
2917 fprintf_unfiltered (gdb_stdlog,
2918 "mips_eabi_push_dummy_call: "
2919 "struct_return reg=%d %s\n",
2920 argreg, paddress (gdbarch, struct_addr));
2921 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2922 }
2923
2924 /* Now load as many as possible of the first arguments into
2925 registers, and push the rest onto the stack. Loop thru args
2926 from first to last. */
2927 for (argnum = 0; argnum < nargs; argnum++)
2928 {
2929 const gdb_byte *val;
2930 gdb_byte valbuf[MAX_REGISTER_SIZE];
2931 struct value *arg = args[argnum];
2932 struct type *arg_type = check_typedef (value_type (arg));
2933 int len = TYPE_LENGTH (arg_type);
2934 enum type_code typecode = TYPE_CODE (arg_type);
2935
2936 if (mips_debug)
2937 fprintf_unfiltered (gdb_stdlog,
2938 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2939 argnum + 1, len, (int) typecode);
2940
2941 /* Function pointer arguments to mips16 code need to be made into
2942 mips16 pointers. */
2943 if (typecode == TYPE_CODE_PTR
2944 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
2945 {
2946 CORE_ADDR addr = extract_signed_integer (value_contents (arg),
2947 len, byte_order);
2948 if (mips_pc_is_mips16 (addr))
2949 {
2950 store_signed_integer (valbuf, len, byte_order,
2951 make_mips16_addr (addr));
2952 val = valbuf;
2953 }
2954 else
2955 val = value_contents (arg);
2956 }
2957 /* The EABI passes structures that do not fit in a register by
2958 reference. */
2959 else if (len > regsize
2960 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2961 {
2962 store_unsigned_integer (valbuf, regsize, byte_order,
2963 value_address (arg));
2964 typecode = TYPE_CODE_PTR;
2965 len = regsize;
2966 val = valbuf;
2967 if (mips_debug)
2968 fprintf_unfiltered (gdb_stdlog, " push");
2969 }
2970 else
2971 val = value_contents (arg);
2972
2973 /* 32-bit ABIs always start floating point arguments in an
2974 even-numbered floating point register. Round the FP register
2975 up before the check to see if there are any FP registers
2976 left. Non MIPS_EABI targets also pass the FP in the integer
2977 registers so also round up normal registers. */
2978 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
2979 {
2980 if ((float_argreg & 1))
2981 float_argreg++;
2982 }
2983
2984 /* Floating point arguments passed in registers have to be
2985 treated specially. On 32-bit architectures, doubles
2986 are passed in register pairs; the even register gets
2987 the low word, and the odd register gets the high word.
2988 On non-EABI processors, the first two floating point arguments are
2989 also copied to general registers, because MIPS16 functions
2990 don't use float registers for arguments. This duplication of
2991 arguments in general registers can't hurt non-MIPS16 functions
2992 because those registers are normally skipped. */
2993 /* MIPS_EABI squeezes a struct that contains a single floating
2994 point value into an FP register instead of pushing it onto the
2995 stack. */
2996 if (fp_register_arg_p (gdbarch, typecode, arg_type)
2997 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
2998 {
2999 /* EABI32 will pass doubles in consecutive registers, even on
3000 64-bit cores. At one time, we used to check the size of
3001 `float_argreg' to determine whether or not to pass doubles
3002 in consecutive registers, but this is not sufficient for
3003 making the ABI determination. */
3004 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
3005 {
3006 int low_offset = gdbarch_byte_order (gdbarch)
3007 == BFD_ENDIAN_BIG ? 4 : 0;
3008 long regval;
3009
3010 /* Write the low word of the double to the even register(s). */
3011 regval = extract_signed_integer (val + low_offset,
3012 4, byte_order);
3013 if (mips_debug)
3014 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3015 float_argreg, phex (regval, 4));
3016 regcache_cooked_write_signed (regcache, float_argreg++, regval);
3017
3018 /* Write the high word of the double to the odd register(s). */
3019 regval = extract_signed_integer (val + 4 - low_offset,
3020 4, byte_order);
3021 if (mips_debug)
3022 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3023 float_argreg, phex (regval, 4));
3024 regcache_cooked_write_signed (regcache, float_argreg++, regval);
3025 }
3026 else
3027 {
3028 /* This is a floating point value that fits entirely
3029 in a single register. */
3030 /* On 32 bit ABI's the float_argreg is further adjusted
3031 above to ensure that it is even register aligned. */
3032 LONGEST regval = extract_signed_integer (val, len, byte_order);
3033 if (mips_debug)
3034 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3035 float_argreg, phex (regval, len));
3036 regcache_cooked_write_signed (regcache, float_argreg++, regval);
3037 }
3038 }
3039 else
3040 {
3041 /* Copy the argument to general registers or the stack in
3042 register-sized pieces. Large arguments are split between
3043 registers and stack. */
3044 /* Note: structs whose size is not a multiple of regsize
3045 are treated specially: Irix cc passes
3046 them in registers where gcc sometimes puts them on the
3047 stack. For maximum compatibility, we will put them in
3048 both places. */
3049 int odd_sized_struct = (len > regsize && len % regsize != 0);
3050
3051 /* Note: Floating-point values that didn't fit into an FP
3052 register are only written to memory. */
3053 while (len > 0)
3054 {
3055 /* Remember if the argument was written to the stack. */
3056 int stack_used_p = 0;
3057 int partial_len = (len < regsize ? len : regsize);
3058
3059 if (mips_debug)
3060 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3061 partial_len);
3062
3063 /* Write this portion of the argument to the stack. */
3064 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
3065 || odd_sized_struct
3066 || fp_register_arg_p (gdbarch, typecode, arg_type))
3067 {
3068 /* Should shorter than int integer values be
3069 promoted to int before being stored? */
3070 int longword_offset = 0;
3071 CORE_ADDR addr;
3072 stack_used_p = 1;
3073 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
3074 {
3075 if (regsize == 8
3076 && (typecode == TYPE_CODE_INT
3077 || typecode == TYPE_CODE_PTR
3078 || typecode == TYPE_CODE_FLT) && len <= 4)
3079 longword_offset = regsize - len;
3080 else if ((typecode == TYPE_CODE_STRUCT
3081 || typecode == TYPE_CODE_UNION)
3082 && TYPE_LENGTH (arg_type) < regsize)
3083 longword_offset = regsize - len;
3084 }
3085
3086 if (mips_debug)
3087 {
3088 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
3089 paddress (gdbarch, stack_offset));
3090 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
3091 paddress (gdbarch, longword_offset));
3092 }
3093
3094 addr = sp + stack_offset + longword_offset;
3095
3096 if (mips_debug)
3097 {
3098 int i;
3099 fprintf_unfiltered (gdb_stdlog, " @%s ",
3100 paddress (gdbarch, addr));
3101 for (i = 0; i < partial_len; i++)
3102 {
3103 fprintf_unfiltered (gdb_stdlog, "%02x",
3104 val[i] & 0xff);
3105 }
3106 }
3107 write_memory (addr, val, partial_len);
3108 }
3109
3110 /* Note!!! This is NOT an else clause. Odd sized
3111 structs may go thru BOTH paths. Floating point
3112 arguments will not. */
3113 /* Write this portion of the argument to a general
3114 purpose register. */
3115 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
3116 && !fp_register_arg_p (gdbarch, typecode, arg_type))
3117 {
3118 LONGEST regval =
3119 extract_signed_integer (val, partial_len, byte_order);
3120
3121 if (mips_debug)
3122 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3123 argreg,
3124 phex (regval, regsize));
3125 regcache_cooked_write_signed (regcache, argreg, regval);
3126 argreg++;
3127 }
3128
3129 len -= partial_len;
3130 val += partial_len;
3131
3132 /* Compute the offset into the stack at which we will
3133 copy the next parameter.
3134
3135 In the new EABI (and the NABI32), the stack_offset
3136 only needs to be adjusted when it has been used. */
3137
3138 if (stack_used_p)
3139 stack_offset += align_up (partial_len, regsize);
3140 }
3141 }
3142 if (mips_debug)
3143 fprintf_unfiltered (gdb_stdlog, "\n");
3144 }
3145
3146 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3147
3148 /* Return adjusted stack pointer. */
3149 return sp;
3150 }
3151
3152 /* Determine the return value convention being used. */
3153
3154 static enum return_value_convention
3155 mips_eabi_return_value (struct gdbarch *gdbarch, struct type *func_type,
3156 struct type *type, struct regcache *regcache,
3157 gdb_byte *readbuf, const gdb_byte *writebuf)
3158 {
3159 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3160 int fp_return_type = 0;
3161 int offset, regnum, xfer;
3162
3163 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
3164 return RETURN_VALUE_STRUCT_CONVENTION;
3165
3166 /* Floating point type? */
3167 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
3168 {
3169 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3170 fp_return_type = 1;
3171 /* Structs with a single field of float type
3172 are returned in a floating point register. */
3173 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
3174 || TYPE_CODE (type) == TYPE_CODE_UNION)
3175 && TYPE_NFIELDS (type) == 1)
3176 {
3177 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
3178
3179 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
3180 fp_return_type = 1;
3181 }
3182 }
3183
3184 if (fp_return_type)
3185 {
3186 /* A floating-point value belongs in the least significant part
3187 of FP0/FP1. */
3188 if (mips_debug)
3189 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3190 regnum = mips_regnum (gdbarch)->fp0;
3191 }
3192 else
3193 {
3194 /* An integer value goes in V0/V1. */
3195 if (mips_debug)
3196 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
3197 regnum = MIPS_V0_REGNUM;
3198 }
3199 for (offset = 0;
3200 offset < TYPE_LENGTH (type);
3201 offset += mips_abi_regsize (gdbarch), regnum++)
3202 {
3203 xfer = mips_abi_regsize (gdbarch);
3204 if (offset + xfer > TYPE_LENGTH (type))
3205 xfer = TYPE_LENGTH (type) - offset;
3206 mips_xfer_register (gdbarch, regcache,
3207 gdbarch_num_regs (gdbarch) + regnum, xfer,
3208 gdbarch_byte_order (gdbarch), readbuf, writebuf,
3209 offset);
3210 }
3211
3212 return RETURN_VALUE_REGISTER_CONVENTION;
3213 }
3214
3215
3216 /* N32/N64 ABI stuff. */
3217
3218 /* Search for a naturally aligned double at OFFSET inside a struct
3219 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
3220 registers. */
3221
3222 static int
3223 mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
3224 int offset)
3225 {
3226 int i;
3227
3228 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
3229 return 0;
3230
3231 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
3232 return 0;
3233
3234 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
3235 return 0;
3236
3237 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
3238 {
3239 int pos;
3240 struct type *field_type;
3241
3242 /* We're only looking at normal fields. */
3243 if (field_is_static (&TYPE_FIELD (arg_type, i))
3244 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
3245 continue;
3246
3247 /* If we have gone past the offset, there is no double to pass. */
3248 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
3249 if (pos > offset)
3250 return 0;
3251
3252 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
3253
3254 /* If this field is entirely before the requested offset, go
3255 on to the next one. */
3256 if (pos + TYPE_LENGTH (field_type) <= offset)
3257 continue;
3258
3259 /* If this is our special aligned double, we can stop. */
3260 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
3261 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
3262 return 1;
3263
3264 /* This field starts at or before the requested offset, and
3265 overlaps it. If it is a structure, recurse inwards. */
3266 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
3267 }
3268
3269 return 0;
3270 }
3271
3272 static CORE_ADDR
3273 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3274 struct regcache *regcache, CORE_ADDR bp_addr,
3275 int nargs, struct value **args, CORE_ADDR sp,
3276 int struct_return, CORE_ADDR struct_addr)
3277 {
3278 int argreg;
3279 int float_argreg;
3280 int argnum;
3281 int len = 0;
3282 int stack_offset = 0;
3283 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3284 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3285 CORE_ADDR func_addr = find_function_addr (function, NULL);
3286
3287 /* For shared libraries, "t9" needs to point at the function
3288 address. */
3289 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3290
3291 /* Set the return address register to point to the entry point of
3292 the program, where a breakpoint lies in wait. */
3293 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3294
3295 /* First ensure that the stack and structure return address (if any)
3296 are properly aligned. The stack has to be at least 64-bit
3297 aligned even on 32-bit machines, because doubles must be 64-bit
3298 aligned. For n32 and n64, stack frames need to be 128-bit
3299 aligned, so we round to this widest known alignment. */
3300
3301 sp = align_down (sp, 16);
3302 struct_addr = align_down (struct_addr, 16);
3303
3304 /* Now make space on the stack for the args. */
3305 for (argnum = 0; argnum < nargs; argnum++)
3306 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
3307 sp -= align_up (len, 16);
3308
3309 if (mips_debug)
3310 fprintf_unfiltered (gdb_stdlog,
3311 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
3312 paddress (gdbarch, sp), (long) align_up (len, 16));
3313
3314 /* Initialize the integer and float register pointers. */
3315 argreg = MIPS_A0_REGNUM;
3316 float_argreg = mips_fpa0_regnum (gdbarch);
3317
3318 /* The struct_return pointer occupies the first parameter-passing reg. */
3319 if (struct_return)
3320 {
3321 if (mips_debug)
3322 fprintf_unfiltered (gdb_stdlog,
3323 "mips_n32n64_push_dummy_call: "
3324 "struct_return reg=%d %s\n",
3325 argreg, paddress (gdbarch, struct_addr));
3326 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3327 }
3328
3329 /* Now load as many as possible of the first arguments into
3330 registers, and push the rest onto the stack. Loop thru args
3331 from first to last. */
3332 for (argnum = 0; argnum < nargs; argnum++)
3333 {
3334 const gdb_byte *val;
3335 struct value *arg = args[argnum];
3336 struct type *arg_type = check_typedef (value_type (arg));
3337 int len = TYPE_LENGTH (arg_type);
3338 enum type_code typecode = TYPE_CODE (arg_type);
3339
3340 if (mips_debug)
3341 fprintf_unfiltered (gdb_stdlog,
3342 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
3343 argnum + 1, len, (int) typecode);
3344
3345 val = value_contents (arg);
3346
3347 /* A 128-bit long double value requires an even-odd pair of
3348 floating-point registers. */
3349 if (len == 16
3350 && fp_register_arg_p (gdbarch, typecode, arg_type)
3351 && (float_argreg & 1))
3352 {
3353 float_argreg++;
3354 argreg++;
3355 }
3356
3357 if (fp_register_arg_p (gdbarch, typecode, arg_type)
3358 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
3359 {
3360 /* This is a floating point value that fits entirely
3361 in a single register or a pair of registers. */
3362 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
3363 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
3364 if (mips_debug)
3365 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3366 float_argreg, phex (regval, reglen));
3367 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
3368
3369 if (mips_debug)
3370 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3371 argreg, phex (regval, reglen));
3372 regcache_cooked_write_unsigned (regcache, argreg, regval);
3373 float_argreg++;
3374 argreg++;
3375 if (len == 16)
3376 {
3377 regval = extract_unsigned_integer (val + reglen,
3378 reglen, byte_order);
3379 if (mips_debug)
3380 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3381 float_argreg, phex (regval, reglen));
3382 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
3383
3384 if (mips_debug)
3385 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3386 argreg, phex (regval, reglen));
3387 regcache_cooked_write_unsigned (regcache, argreg, regval);
3388 float_argreg++;
3389 argreg++;
3390 }
3391 }
3392 else
3393 {
3394 /* Copy the argument to general registers or the stack in
3395 register-sized pieces. Large arguments are split between
3396 registers and stack. */
3397 /* For N32/N64, structs, unions, or other composite types are
3398 treated as a sequence of doublewords, and are passed in integer
3399 or floating point registers as though they were simple scalar
3400 parameters to the extent that they fit, with any excess on the
3401 stack packed according to the normal memory layout of the
3402 object.
3403 The caller does not reserve space for the register arguments;
3404 the callee is responsible for reserving it if required. */
3405 /* Note: Floating-point values that didn't fit into an FP
3406 register are only written to memory. */
3407 while (len > 0)
3408 {
3409 /* Remember if the argument was written to the stack. */
3410 int stack_used_p = 0;
3411 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
3412
3413 if (mips_debug)
3414 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3415 partial_len);
3416
3417 if (fp_register_arg_p (gdbarch, typecode, arg_type))
3418 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
3419
3420 /* Write this portion of the argument to the stack. */
3421 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
3422 {
3423 /* Should shorter than int integer values be
3424 promoted to int before being stored? */
3425 int longword_offset = 0;
3426 CORE_ADDR addr;
3427 stack_used_p = 1;
3428 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
3429 {
3430 if ((typecode == TYPE_CODE_INT
3431 || typecode == TYPE_CODE_PTR)
3432 && len <= 4)
3433 longword_offset = MIPS64_REGSIZE - len;
3434 }
3435
3436 if (mips_debug)
3437 {
3438 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
3439 paddress (gdbarch, stack_offset));
3440 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
3441 paddress (gdbarch, longword_offset));
3442 }
3443
3444 addr = sp + stack_offset + longword_offset;
3445
3446 if (mips_debug)
3447 {
3448 int i;
3449 fprintf_unfiltered (gdb_stdlog, " @%s ",
3450 paddress (gdbarch, addr));
3451 for (i = 0; i < partial_len; i++)
3452 {
3453 fprintf_unfiltered (gdb_stdlog, "%02x",
3454 val[i] & 0xff);
3455 }
3456 }
3457 write_memory (addr, val, partial_len);
3458 }
3459
3460 /* Note!!! This is NOT an else clause. Odd sized
3461 structs may go thru BOTH paths. */
3462 /* Write this portion of the argument to a general
3463 purpose register. */
3464 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
3465 {
3466 LONGEST regval;
3467
3468 /* Sign extend pointers, 32-bit integers and signed
3469 16-bit and 8-bit integers; everything else is taken
3470 as is. */
3471
3472 if ((partial_len == 4
3473 && (typecode == TYPE_CODE_PTR
3474 || typecode == TYPE_CODE_INT))
3475 || (partial_len < 4
3476 && typecode == TYPE_CODE_INT
3477 && !TYPE_UNSIGNED (arg_type)))
3478 regval = extract_signed_integer (val, partial_len,
3479 byte_order);
3480 else
3481 regval = extract_unsigned_integer (val, partial_len,
3482 byte_order);
3483
3484 /* A non-floating-point argument being passed in a
3485 general register. If a struct or union, and if
3486 the remaining length is smaller than the register
3487 size, we have to adjust the register value on
3488 big endian targets.
3489
3490 It does not seem to be necessary to do the
3491 same for integral types. */
3492
3493 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
3494 && partial_len < MIPS64_REGSIZE
3495 && (typecode == TYPE_CODE_STRUCT
3496 || typecode == TYPE_CODE_UNION))
3497 regval <<= ((MIPS64_REGSIZE - partial_len)
3498 * TARGET_CHAR_BIT);
3499
3500 if (mips_debug)
3501 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3502 argreg,
3503 phex (regval, MIPS64_REGSIZE));
3504 regcache_cooked_write_unsigned (regcache, argreg, regval);
3505
3506 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
3507 TYPE_LENGTH (arg_type) - len))
3508 {
3509 if (mips_debug)
3510 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
3511 float_argreg,
3512 phex (regval, MIPS64_REGSIZE));
3513 regcache_cooked_write_unsigned (regcache, float_argreg,
3514 regval);
3515 }
3516
3517 float_argreg++;
3518 argreg++;
3519 }
3520
3521 len -= partial_len;
3522 val += partial_len;
3523
3524 /* Compute the offset into the stack at which we will
3525 copy the next parameter.
3526
3527 In N32 (N64?), the stack_offset only needs to be
3528 adjusted when it has been used. */
3529
3530 if (stack_used_p)
3531 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3532 }
3533 }
3534 if (mips_debug)
3535 fprintf_unfiltered (gdb_stdlog, "\n");
3536 }
3537
3538 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3539
3540 /* Return adjusted stack pointer. */
3541 return sp;
3542 }
3543
3544 static enum return_value_convention
3545 mips_n32n64_return_value (struct gdbarch *gdbarch, struct type *func_type,
3546 struct type *type, struct regcache *regcache,
3547 gdb_byte *readbuf, const gdb_byte *writebuf)
3548 {
3549 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3550
3551 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
3552
3553 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
3554 if needed), as appropriate for the type. Composite results (struct,
3555 union, or array) are returned in $2/$f0 and $3/$f2 according to the
3556 following rules:
3557
3558 * A struct with only one or two floating point fields is returned in $f0
3559 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
3560 case.
3561
3562 * Any other composite results of at most 128 bits are returned in
3563 $2 (first 64 bits) and $3 (remainder, if necessary).
3564
3565 * Larger composite results are handled by converting the function to a
3566 procedure with an implicit first parameter, which is a pointer to an area
3567 reserved by the caller to receive the result. [The o32-bit ABI requires
3568 that all composite results be handled by conversion to implicit first
3569 parameters. The MIPS/SGI Fortran implementation has always made a
3570 specific exception to return COMPLEX results in the floating point
3571 registers.] */
3572
3573 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
3574 return RETURN_VALUE_STRUCT_CONVENTION;
3575 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3576 && TYPE_LENGTH (type) == 16
3577 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3578 {
3579 /* A 128-bit floating-point value fills both $f0 and $f2. The
3580 two registers are used in the same as memory order, so the
3581 eight bytes with the lower memory address are in $f0. */
3582 if (mips_debug)
3583 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
3584 mips_xfer_register (gdbarch, regcache,
3585 gdbarch_num_regs (gdbarch)
3586 + mips_regnum (gdbarch)->fp0,
3587 8, gdbarch_byte_order (gdbarch),
3588 readbuf, writebuf, 0);
3589 mips_xfer_register (gdbarch, regcache,
3590 gdbarch_num_regs (gdbarch)
3591 + mips_regnum (gdbarch)->fp0 + 2,
3592 8, gdbarch_byte_order (gdbarch),
3593 readbuf ? readbuf + 8 : readbuf,
3594 writebuf ? writebuf + 8 : writebuf, 0);
3595 return RETURN_VALUE_REGISTER_CONVENTION;
3596 }
3597 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3598 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3599 {
3600 /* A single or double floating-point value that fits in FP0. */
3601 if (mips_debug)
3602 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3603 mips_xfer_register (gdbarch, regcache,
3604 gdbarch_num_regs (gdbarch)
3605 + mips_regnum (gdbarch)->fp0,
3606 TYPE_LENGTH (type),
3607 gdbarch_byte_order (gdbarch),
3608 readbuf, writebuf, 0);
3609 return RETURN_VALUE_REGISTER_CONVENTION;
3610 }
3611 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3612 && TYPE_NFIELDS (type) <= 2
3613 && TYPE_NFIELDS (type) >= 1
3614 && ((TYPE_NFIELDS (type) == 1
3615 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
3616 == TYPE_CODE_FLT))
3617 || (TYPE_NFIELDS (type) == 2
3618 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
3619 == TYPE_CODE_FLT)
3620 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
3621 == TYPE_CODE_FLT))))
3622 {
3623 /* A struct that contains one or two floats. Each value is part
3624 in the least significant part of their floating point
3625 register (or GPR, for soft float). */
3626 int regnum;
3627 int field;
3628 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
3629 ? mips_regnum (gdbarch)->fp0
3630 : MIPS_V0_REGNUM);
3631 field < TYPE_NFIELDS (type); field++, regnum += 2)
3632 {
3633 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3634 / TARGET_CHAR_BIT);
3635 if (mips_debug)
3636 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3637 offset);
3638 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
3639 {
3640 /* A 16-byte long double field goes in two consecutive
3641 registers. */
3642 mips_xfer_register (gdbarch, regcache,
3643 gdbarch_num_regs (gdbarch) + regnum,
3644 8,
3645 gdbarch_byte_order (gdbarch),
3646 readbuf, writebuf, offset);
3647 mips_xfer_register (gdbarch, regcache,
3648 gdbarch_num_regs (gdbarch) + regnum + 1,
3649 8,
3650 gdbarch_byte_order (gdbarch),
3651 readbuf, writebuf, offset + 8);
3652 }
3653 else
3654 mips_xfer_register (gdbarch, regcache,
3655 gdbarch_num_regs (gdbarch) + regnum,
3656 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3657 gdbarch_byte_order (gdbarch),
3658 readbuf, writebuf, offset);
3659 }
3660 return RETURN_VALUE_REGISTER_CONVENTION;
3661 }
3662 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3663 || TYPE_CODE (type) == TYPE_CODE_UNION
3664 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3665 {
3666 /* A composite type. Extract the left justified value,
3667 regardless of the byte order. I.e. DO NOT USE
3668 mips_xfer_lower. */
3669 int offset;
3670 int regnum;
3671 for (offset = 0, regnum = MIPS_V0_REGNUM;
3672 offset < TYPE_LENGTH (type);
3673 offset += register_size (gdbarch, regnum), regnum++)
3674 {
3675 int xfer = register_size (gdbarch, regnum);
3676 if (offset + xfer > TYPE_LENGTH (type))
3677 xfer = TYPE_LENGTH (type) - offset;
3678 if (mips_debug)
3679 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3680 offset, xfer, regnum);
3681 mips_xfer_register (gdbarch, regcache,
3682 gdbarch_num_regs (gdbarch) + regnum,
3683 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
3684 offset);
3685 }
3686 return RETURN_VALUE_REGISTER_CONVENTION;
3687 }
3688 else
3689 {
3690 /* A scalar extract each part but least-significant-byte
3691 justified. */
3692 int offset;
3693 int regnum;
3694 for (offset = 0, regnum = MIPS_V0_REGNUM;
3695 offset < TYPE_LENGTH (type);
3696 offset += register_size (gdbarch, regnum), regnum++)
3697 {
3698 int xfer = register_size (gdbarch, regnum);
3699 if (offset + xfer > TYPE_LENGTH (type))
3700 xfer = TYPE_LENGTH (type) - offset;
3701 if (mips_debug)
3702 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3703 offset, xfer, regnum);
3704 mips_xfer_register (gdbarch, regcache,
3705 gdbarch_num_regs (gdbarch) + regnum,
3706 xfer, gdbarch_byte_order (gdbarch),
3707 readbuf, writebuf, offset);
3708 }
3709 return RETURN_VALUE_REGISTER_CONVENTION;
3710 }
3711 }
3712
3713 /* O32 ABI stuff. */
3714
3715 static CORE_ADDR
3716 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3717 struct regcache *regcache, CORE_ADDR bp_addr,
3718 int nargs, struct value **args, CORE_ADDR sp,
3719 int struct_return, CORE_ADDR struct_addr)
3720 {
3721 int argreg;
3722 int float_argreg;
3723 int argnum;
3724 int len = 0;
3725 int stack_offset = 0;
3726 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3727 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3728 CORE_ADDR func_addr = find_function_addr (function, NULL);
3729
3730 /* For shared libraries, "t9" needs to point at the function
3731 address. */
3732 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3733
3734 /* Set the return address register to point to the entry point of
3735 the program, where a breakpoint lies in wait. */
3736 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3737
3738 /* First ensure that the stack and structure return address (if any)
3739 are properly aligned. The stack has to be at least 64-bit
3740 aligned even on 32-bit machines, because doubles must be 64-bit
3741 aligned. For n32 and n64, stack frames need to be 128-bit
3742 aligned, so we round to this widest known alignment. */
3743
3744 sp = align_down (sp, 16);
3745 struct_addr = align_down (struct_addr, 16);
3746
3747 /* Now make space on the stack for the args. */
3748 for (argnum = 0; argnum < nargs; argnum++)
3749 {
3750 struct type *arg_type = check_typedef (value_type (args[argnum]));
3751 int arglen = TYPE_LENGTH (arg_type);
3752
3753 /* Align to double-word if necessary. */
3754 if (mips_type_needs_double_align (arg_type))
3755 len = align_up (len, MIPS32_REGSIZE * 2);
3756 /* Allocate space on the stack. */
3757 len += align_up (arglen, MIPS32_REGSIZE);
3758 }
3759 sp -= align_up (len, 16);
3760
3761 if (mips_debug)
3762 fprintf_unfiltered (gdb_stdlog,
3763 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
3764 paddress (gdbarch, sp), (long) align_up (len, 16));
3765
3766 /* Initialize the integer and float register pointers. */
3767 argreg = MIPS_A0_REGNUM;
3768 float_argreg = mips_fpa0_regnum (gdbarch);
3769
3770 /* The struct_return pointer occupies the first parameter-passing reg. */
3771 if (struct_return)
3772 {
3773 if (mips_debug)
3774 fprintf_unfiltered (gdb_stdlog,
3775 "mips_o32_push_dummy_call: "
3776 "struct_return reg=%d %s\n",
3777 argreg, paddress (gdbarch, struct_addr));
3778 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3779 stack_offset += MIPS32_REGSIZE;
3780 }
3781
3782 /* Now load as many as possible of the first arguments into
3783 registers, and push the rest onto the stack. Loop thru args
3784 from first to last. */
3785 for (argnum = 0; argnum < nargs; argnum++)
3786 {
3787 const gdb_byte *val;
3788 struct value *arg = args[argnum];
3789 struct type *arg_type = check_typedef (value_type (arg));
3790 int len = TYPE_LENGTH (arg_type);
3791 enum type_code typecode = TYPE_CODE (arg_type);
3792
3793 if (mips_debug)
3794 fprintf_unfiltered (gdb_stdlog,
3795 "mips_o32_push_dummy_call: %d len=%d type=%d",
3796 argnum + 1, len, (int) typecode);
3797
3798 val = value_contents (arg);
3799
3800 /* 32-bit ABIs always start floating point arguments in an
3801 even-numbered floating point register. Round the FP register
3802 up before the check to see if there are any FP registers
3803 left. O32/O64 targets also pass the FP in the integer
3804 registers so also round up normal registers. */
3805 if (fp_register_arg_p (gdbarch, typecode, arg_type))
3806 {
3807 if ((float_argreg & 1))
3808 float_argreg++;
3809 }
3810
3811 /* Floating point arguments passed in registers have to be
3812 treated specially. On 32-bit architectures, doubles
3813 are passed in register pairs; the even register gets
3814 the low word, and the odd register gets the high word.
3815 On O32/O64, the first two floating point arguments are
3816 also copied to general registers, because MIPS16 functions
3817 don't use float registers for arguments. This duplication of
3818 arguments in general registers can't hurt non-MIPS16 functions
3819 because those registers are normally skipped. */
3820
3821 if (fp_register_arg_p (gdbarch, typecode, arg_type)
3822 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
3823 {
3824 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
3825 {
3826 int low_offset = gdbarch_byte_order (gdbarch)
3827 == BFD_ENDIAN_BIG ? 4 : 0;
3828 unsigned long regval;
3829
3830 /* Write the low word of the double to the even register(s). */
3831 regval = extract_unsigned_integer (val + low_offset,
3832 4, byte_order);
3833 if (mips_debug)
3834 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3835 float_argreg, phex (regval, 4));
3836 regcache_cooked_write_unsigned (regcache,
3837 float_argreg++, regval);
3838 if (mips_debug)
3839 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3840 argreg, phex (regval, 4));
3841 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3842
3843 /* Write the high word of the double to the odd register(s). */
3844 regval = extract_unsigned_integer (val + 4 - low_offset,
3845 4, byte_order);
3846 if (mips_debug)
3847 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3848 float_argreg, phex (regval, 4));
3849 regcache_cooked_write_unsigned (regcache,
3850 float_argreg++, regval);
3851
3852 if (mips_debug)
3853 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3854 argreg, phex (regval, 4));
3855 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3856 }
3857 else
3858 {
3859 /* This is a floating point value that fits entirely
3860 in a single register. */
3861 /* On 32 bit ABI's the float_argreg is further adjusted
3862 above to ensure that it is even register aligned. */
3863 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
3864 if (mips_debug)
3865 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3866 float_argreg, phex (regval, len));
3867 regcache_cooked_write_unsigned (regcache,
3868 float_argreg++, regval);
3869 /* Although two FP registers are reserved for each
3870 argument, only one corresponding integer register is
3871 reserved. */
3872 if (mips_debug)
3873 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3874 argreg, phex (regval, len));
3875 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3876 }
3877 /* Reserve space for the FP register. */
3878 stack_offset += align_up (len, MIPS32_REGSIZE);
3879 }
3880 else
3881 {
3882 /* Copy the argument to general registers or the stack in
3883 register-sized pieces. Large arguments are split between
3884 registers and stack. */
3885 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
3886 are treated specially: Irix cc passes
3887 them in registers where gcc sometimes puts them on the
3888 stack. For maximum compatibility, we will put them in
3889 both places. */
3890 int odd_sized_struct = (len > MIPS32_REGSIZE
3891 && len % MIPS32_REGSIZE != 0);
3892 /* Structures should be aligned to eight bytes (even arg registers)
3893 on MIPS_ABI_O32, if their first member has double precision. */
3894 if (mips_type_needs_double_align (arg_type))
3895 {
3896 if ((argreg & 1))
3897 {
3898 argreg++;
3899 stack_offset += MIPS32_REGSIZE;
3900 }
3901 }
3902 while (len > 0)
3903 {
3904 /* Remember if the argument was written to the stack. */
3905 int stack_used_p = 0;
3906 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
3907
3908 if (mips_debug)
3909 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3910 partial_len);
3911
3912 /* Write this portion of the argument to the stack. */
3913 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
3914 || odd_sized_struct)
3915 {
3916 /* Should shorter than int integer values be
3917 promoted to int before being stored? */
3918 int longword_offset = 0;
3919 CORE_ADDR addr;
3920 stack_used_p = 1;
3921
3922 if (mips_debug)
3923 {
3924 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
3925 paddress (gdbarch, stack_offset));
3926 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
3927 paddress (gdbarch, longword_offset));
3928 }
3929
3930 addr = sp + stack_offset + longword_offset;
3931
3932 if (mips_debug)
3933 {
3934 int i;
3935 fprintf_unfiltered (gdb_stdlog, " @%s ",
3936 paddress (gdbarch, addr));
3937 for (i = 0; i < partial_len; i++)
3938 {
3939 fprintf_unfiltered (gdb_stdlog, "%02x",
3940 val[i] & 0xff);
3941 }
3942 }
3943 write_memory (addr, val, partial_len);
3944 }
3945
3946 /* Note!!! This is NOT an else clause. Odd sized
3947 structs may go thru BOTH paths. */
3948 /* Write this portion of the argument to a general
3949 purpose register. */
3950 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
3951 {
3952 LONGEST regval = extract_signed_integer (val, partial_len,
3953 byte_order);
3954 /* Value may need to be sign extended, because
3955 mips_isa_regsize() != mips_abi_regsize(). */
3956
3957 /* A non-floating-point argument being passed in a
3958 general register. If a struct or union, and if
3959 the remaining length is smaller than the register
3960 size, we have to adjust the register value on
3961 big endian targets.
3962
3963 It does not seem to be necessary to do the
3964 same for integral types.
3965
3966 Also don't do this adjustment on O64 binaries.
3967
3968 cagney/2001-07-23: gdb/179: Also, GCC, when
3969 outputting LE O32 with sizeof (struct) <
3970 mips_abi_regsize(), generates a left shift
3971 as part of storing the argument in a register
3972 (the left shift isn't generated when
3973 sizeof (struct) >= mips_abi_regsize()). Since
3974 it is quite possible that this is GCC
3975 contradicting the LE/O32 ABI, GDB has not been
3976 adjusted to accommodate this. Either someone
3977 needs to demonstrate that the LE/O32 ABI
3978 specifies such a left shift OR this new ABI gets
3979 identified as such and GDB gets tweaked
3980 accordingly. */
3981
3982 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
3983 && partial_len < MIPS32_REGSIZE
3984 && (typecode == TYPE_CODE_STRUCT
3985 || typecode == TYPE_CODE_UNION))
3986 regval <<= ((MIPS32_REGSIZE - partial_len)
3987 * TARGET_CHAR_BIT);
3988
3989 if (mips_debug)
3990 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3991 argreg,
3992 phex (regval, MIPS32_REGSIZE));
3993 regcache_cooked_write_unsigned (regcache, argreg, regval);
3994 argreg++;
3995
3996 /* Prevent subsequent floating point arguments from
3997 being passed in floating point registers. */
3998 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
3999 }
4000
4001 len -= partial_len;
4002 val += partial_len;
4003
4004 /* Compute the offset into the stack at which we will
4005 copy the next parameter.
4006
4007 In older ABIs, the caller reserved space for
4008 registers that contained arguments. This was loosely
4009 refered to as their "home". Consequently, space is
4010 always allocated. */
4011
4012 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
4013 }
4014 }
4015 if (mips_debug)
4016 fprintf_unfiltered (gdb_stdlog, "\n");
4017 }
4018
4019 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4020
4021 /* Return adjusted stack pointer. */
4022 return sp;
4023 }
4024
4025 static enum return_value_convention
4026 mips_o32_return_value (struct gdbarch *gdbarch, struct type *func_type,
4027 struct type *type, struct regcache *regcache,
4028 gdb_byte *readbuf, const gdb_byte *writebuf)
4029 {
4030 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4031
4032 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4033 || TYPE_CODE (type) == TYPE_CODE_UNION
4034 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
4035 return RETURN_VALUE_STRUCT_CONVENTION;
4036 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4037 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4038 {
4039 /* A single-precision floating-point value. It fits in the
4040 least significant part of FP0. */
4041 if (mips_debug)
4042 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4043 mips_xfer_register (gdbarch, regcache,
4044 gdbarch_num_regs (gdbarch)
4045 + mips_regnum (gdbarch)->fp0,
4046 TYPE_LENGTH (type),
4047 gdbarch_byte_order (gdbarch),
4048 readbuf, writebuf, 0);
4049 return RETURN_VALUE_REGISTER_CONVENTION;
4050 }
4051 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4052 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4053 {
4054 /* A double-precision floating-point value. The most
4055 significant part goes in FP1, and the least significant in
4056 FP0. */
4057 if (mips_debug)
4058 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
4059 switch (gdbarch_byte_order (gdbarch))
4060 {
4061 case BFD_ENDIAN_LITTLE:
4062 mips_xfer_register (gdbarch, regcache,
4063 gdbarch_num_regs (gdbarch)
4064 + mips_regnum (gdbarch)->fp0 +
4065 0, 4, gdbarch_byte_order (gdbarch),
4066 readbuf, writebuf, 0);
4067 mips_xfer_register (gdbarch, regcache,
4068 gdbarch_num_regs (gdbarch)
4069 + mips_regnum (gdbarch)->fp0 + 1,
4070 4, gdbarch_byte_order (gdbarch),
4071 readbuf, writebuf, 4);
4072 break;
4073 case BFD_ENDIAN_BIG:
4074 mips_xfer_register (gdbarch, regcache,
4075 gdbarch_num_regs (gdbarch)
4076 + mips_regnum (gdbarch)->fp0 + 1,
4077 4, gdbarch_byte_order (gdbarch),
4078 readbuf, writebuf, 0);
4079 mips_xfer_register (gdbarch, regcache,
4080 gdbarch_num_regs (gdbarch)
4081 + mips_regnum (gdbarch)->fp0 + 0,
4082 4, gdbarch_byte_order (gdbarch),
4083 readbuf, writebuf, 4);
4084 break;
4085 default:
4086 internal_error (__FILE__, __LINE__, _("bad switch"));
4087 }
4088 return RETURN_VALUE_REGISTER_CONVENTION;
4089 }
4090 #if 0
4091 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4092 && TYPE_NFIELDS (type) <= 2
4093 && TYPE_NFIELDS (type) >= 1
4094 && ((TYPE_NFIELDS (type) == 1
4095 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4096 == TYPE_CODE_FLT))
4097 || (TYPE_NFIELDS (type) == 2
4098 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4099 == TYPE_CODE_FLT)
4100 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4101 == TYPE_CODE_FLT)))
4102 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4103 {
4104 /* A struct that contains one or two floats. Each value is part
4105 in the least significant part of their floating point
4106 register.. */
4107 gdb_byte reg[MAX_REGISTER_SIZE];
4108 int regnum;
4109 int field;
4110 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
4111 field < TYPE_NFIELDS (type); field++, regnum += 2)
4112 {
4113 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4114 / TARGET_CHAR_BIT);
4115 if (mips_debug)
4116 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
4117 offset);
4118 mips_xfer_register (gdbarch, regcache,
4119 gdbarch_num_regs (gdbarch) + regnum,
4120 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4121 gdbarch_byte_order (gdbarch),
4122 readbuf, writebuf, offset);
4123 }
4124 return RETURN_VALUE_REGISTER_CONVENTION;
4125 }
4126 #endif
4127 #if 0
4128 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4129 || TYPE_CODE (type) == TYPE_CODE_UNION)
4130 {
4131 /* A structure or union. Extract the left justified value,
4132 regardless of the byte order. I.e. DO NOT USE
4133 mips_xfer_lower. */
4134 int offset;
4135 int regnum;
4136 for (offset = 0, regnum = MIPS_V0_REGNUM;
4137 offset < TYPE_LENGTH (type);
4138 offset += register_size (gdbarch, regnum), regnum++)
4139 {
4140 int xfer = register_size (gdbarch, regnum);
4141 if (offset + xfer > TYPE_LENGTH (type))
4142 xfer = TYPE_LENGTH (type) - offset;
4143 if (mips_debug)
4144 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4145 offset, xfer, regnum);
4146 mips_xfer_register (gdbarch, regcache,
4147 gdbarch_num_regs (gdbarch) + regnum, xfer,
4148 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
4149 }
4150 return RETURN_VALUE_REGISTER_CONVENTION;
4151 }
4152 #endif
4153 else
4154 {
4155 /* A scalar extract each part but least-significant-byte
4156 justified. o32 thinks registers are 4 byte, regardless of
4157 the ISA. */
4158 int offset;
4159 int regnum;
4160 for (offset = 0, regnum = MIPS_V0_REGNUM;
4161 offset < TYPE_LENGTH (type);
4162 offset += MIPS32_REGSIZE, regnum++)
4163 {
4164 int xfer = MIPS32_REGSIZE;
4165 if (offset + xfer > TYPE_LENGTH (type))
4166 xfer = TYPE_LENGTH (type) - offset;
4167 if (mips_debug)
4168 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4169 offset, xfer, regnum);
4170 mips_xfer_register (gdbarch, regcache,
4171 gdbarch_num_regs (gdbarch) + regnum, xfer,
4172 gdbarch_byte_order (gdbarch),
4173 readbuf, writebuf, offset);
4174 }
4175 return RETURN_VALUE_REGISTER_CONVENTION;
4176 }
4177 }
4178
4179 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
4180 ABI. */
4181
4182 static CORE_ADDR
4183 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4184 struct regcache *regcache, CORE_ADDR bp_addr,
4185 int nargs,
4186 struct value **args, CORE_ADDR sp,
4187 int struct_return, CORE_ADDR struct_addr)
4188 {
4189 int argreg;
4190 int float_argreg;
4191 int argnum;
4192 int len = 0;
4193 int stack_offset = 0;
4194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4195 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4196 CORE_ADDR func_addr = find_function_addr (function, NULL);
4197
4198 /* For shared libraries, "t9" needs to point at the function
4199 address. */
4200 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4201
4202 /* Set the return address register to point to the entry point of
4203 the program, where a breakpoint lies in wait. */
4204 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4205
4206 /* First ensure that the stack and structure return address (if any)
4207 are properly aligned. The stack has to be at least 64-bit
4208 aligned even on 32-bit machines, because doubles must be 64-bit
4209 aligned. For n32 and n64, stack frames need to be 128-bit
4210 aligned, so we round to this widest known alignment. */
4211
4212 sp = align_down (sp, 16);
4213 struct_addr = align_down (struct_addr, 16);
4214
4215 /* Now make space on the stack for the args. */
4216 for (argnum = 0; argnum < nargs; argnum++)
4217 {
4218 struct type *arg_type = check_typedef (value_type (args[argnum]));
4219 int arglen = TYPE_LENGTH (arg_type);
4220
4221 /* Allocate space on the stack. */
4222 len += align_up (arglen, MIPS64_REGSIZE);
4223 }
4224 sp -= align_up (len, 16);
4225
4226 if (mips_debug)
4227 fprintf_unfiltered (gdb_stdlog,
4228 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
4229 paddress (gdbarch, sp), (long) align_up (len, 16));
4230
4231 /* Initialize the integer and float register pointers. */
4232 argreg = MIPS_A0_REGNUM;
4233 float_argreg = mips_fpa0_regnum (gdbarch);
4234
4235 /* The struct_return pointer occupies the first parameter-passing reg. */
4236 if (struct_return)
4237 {
4238 if (mips_debug)
4239 fprintf_unfiltered (gdb_stdlog,
4240 "mips_o64_push_dummy_call: "
4241 "struct_return reg=%d %s\n",
4242 argreg, paddress (gdbarch, struct_addr));
4243 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4244 stack_offset += MIPS64_REGSIZE;
4245 }
4246
4247 /* Now load as many as possible of the first arguments into
4248 registers, and push the rest onto the stack. Loop thru args
4249 from first to last. */
4250 for (argnum = 0; argnum < nargs; argnum++)
4251 {
4252 const gdb_byte *val;
4253 gdb_byte valbuf[MAX_REGISTER_SIZE];
4254 struct value *arg = args[argnum];
4255 struct type *arg_type = check_typedef (value_type (arg));
4256 int len = TYPE_LENGTH (arg_type);
4257 enum type_code typecode = TYPE_CODE (arg_type);
4258
4259 if (mips_debug)
4260 fprintf_unfiltered (gdb_stdlog,
4261 "mips_o64_push_dummy_call: %d len=%d type=%d",
4262 argnum + 1, len, (int) typecode);
4263
4264 val = value_contents (arg);
4265
4266 /* Function pointer arguments to mips16 code need to be made into
4267 mips16 pointers. */
4268 if (typecode == TYPE_CODE_PTR
4269 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
4270 {
4271 CORE_ADDR addr = extract_signed_integer (value_contents (arg),
4272 len, byte_order);
4273 if (mips_pc_is_mips16 (addr))
4274 {
4275 store_signed_integer (valbuf, len, byte_order,
4276 make_mips16_addr (addr));
4277 val = valbuf;
4278 }
4279 }
4280
4281 /* Floating point arguments passed in registers have to be
4282 treated specially. On 32-bit architectures, doubles
4283 are passed in register pairs; the even register gets
4284 the low word, and the odd register gets the high word.
4285 On O32/O64, the first two floating point arguments are
4286 also copied to general registers, because MIPS16 functions
4287 don't use float registers for arguments. This duplication of
4288 arguments in general registers can't hurt non-MIPS16 functions
4289 because those registers are normally skipped. */
4290
4291 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4292 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4293 {
4294 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
4295 if (mips_debug)
4296 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4297 float_argreg, phex (regval, len));
4298 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
4299 if (mips_debug)
4300 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4301 argreg, phex (regval, len));
4302 regcache_cooked_write_unsigned (regcache, argreg, regval);
4303 argreg++;
4304 /* Reserve space for the FP register. */
4305 stack_offset += align_up (len, MIPS64_REGSIZE);
4306 }
4307 else
4308 {
4309 /* Copy the argument to general registers or the stack in
4310 register-sized pieces. Large arguments are split between
4311 registers and stack. */
4312 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
4313 are treated specially: Irix cc passes them in registers
4314 where gcc sometimes puts them on the stack. For maximum
4315 compatibility, we will put them in both places. */
4316 int odd_sized_struct = (len > MIPS64_REGSIZE
4317 && len % MIPS64_REGSIZE != 0);
4318 while (len > 0)
4319 {
4320 /* Remember if the argument was written to the stack. */
4321 int stack_used_p = 0;
4322 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4323
4324 if (mips_debug)
4325 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4326 partial_len);
4327
4328 /* Write this portion of the argument to the stack. */
4329 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4330 || odd_sized_struct)
4331 {
4332 /* Should shorter than int integer values be
4333 promoted to int before being stored? */
4334 int longword_offset = 0;
4335 CORE_ADDR addr;
4336 stack_used_p = 1;
4337 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4338 {
4339 if ((typecode == TYPE_CODE_INT
4340 || typecode == TYPE_CODE_PTR
4341 || typecode == TYPE_CODE_FLT)
4342 && len <= 4)
4343 longword_offset = MIPS64_REGSIZE - len;
4344 }
4345
4346 if (mips_debug)
4347 {
4348 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4349 paddress (gdbarch, stack_offset));
4350 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4351 paddress (gdbarch, longword_offset));
4352 }
4353
4354 addr = sp + stack_offset + longword_offset;
4355
4356 if (mips_debug)
4357 {
4358 int i;
4359 fprintf_unfiltered (gdb_stdlog, " @%s ",
4360 paddress (gdbarch, addr));
4361 for (i = 0; i < partial_len; i++)
4362 {
4363 fprintf_unfiltered (gdb_stdlog, "%02x",
4364 val[i] & 0xff);
4365 }
4366 }
4367 write_memory (addr, val, partial_len);
4368 }
4369
4370 /* Note!!! This is NOT an else clause. Odd sized
4371 structs may go thru BOTH paths. */
4372 /* Write this portion of the argument to a general
4373 purpose register. */
4374 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4375 {
4376 LONGEST regval = extract_signed_integer (val, partial_len,
4377 byte_order);
4378 /* Value may need to be sign extended, because
4379 mips_isa_regsize() != mips_abi_regsize(). */
4380
4381 /* A non-floating-point argument being passed in a
4382 general register. If a struct or union, and if
4383 the remaining length is smaller than the register
4384 size, we have to adjust the register value on
4385 big endian targets.
4386
4387 It does not seem to be necessary to do the
4388 same for integral types. */
4389
4390 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
4391 && partial_len < MIPS64_REGSIZE
4392 && (typecode == TYPE_CODE_STRUCT
4393 || typecode == TYPE_CODE_UNION))
4394 regval <<= ((MIPS64_REGSIZE - partial_len)
4395 * TARGET_CHAR_BIT);
4396
4397 if (mips_debug)
4398 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4399 argreg,
4400 phex (regval, MIPS64_REGSIZE));
4401 regcache_cooked_write_unsigned (regcache, argreg, regval);
4402 argreg++;
4403
4404 /* Prevent subsequent floating point arguments from
4405 being passed in floating point registers. */
4406 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
4407 }
4408
4409 len -= partial_len;
4410 val += partial_len;
4411
4412 /* Compute the offset into the stack at which we will
4413 copy the next parameter.
4414
4415 In older ABIs, the caller reserved space for
4416 registers that contained arguments. This was loosely
4417 refered to as their "home". Consequently, space is
4418 always allocated. */
4419
4420 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
4421 }
4422 }
4423 if (mips_debug)
4424 fprintf_unfiltered (gdb_stdlog, "\n");
4425 }
4426
4427 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4428
4429 /* Return adjusted stack pointer. */
4430 return sp;
4431 }
4432
4433 static enum return_value_convention
4434 mips_o64_return_value (struct gdbarch *gdbarch, struct type *func_type,
4435 struct type *type, struct regcache *regcache,
4436 gdb_byte *readbuf, const gdb_byte *writebuf)
4437 {
4438 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4439
4440 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4441 || TYPE_CODE (type) == TYPE_CODE_UNION
4442 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
4443 return RETURN_VALUE_STRUCT_CONVENTION;
4444 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
4445 {
4446 /* A floating-point value. It fits in the least significant
4447 part of FP0. */
4448 if (mips_debug)
4449 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4450 mips_xfer_register (gdbarch, regcache,
4451 gdbarch_num_regs (gdbarch)
4452 + mips_regnum (gdbarch)->fp0,
4453 TYPE_LENGTH (type),
4454 gdbarch_byte_order (gdbarch),
4455 readbuf, writebuf, 0);
4456 return RETURN_VALUE_REGISTER_CONVENTION;
4457 }
4458 else
4459 {
4460 /* A scalar extract each part but least-significant-byte
4461 justified. */
4462 int offset;
4463 int regnum;
4464 for (offset = 0, regnum = MIPS_V0_REGNUM;
4465 offset < TYPE_LENGTH (type);
4466 offset += MIPS64_REGSIZE, regnum++)
4467 {
4468 int xfer = MIPS64_REGSIZE;
4469 if (offset + xfer > TYPE_LENGTH (type))
4470 xfer = TYPE_LENGTH (type) - offset;
4471 if (mips_debug)
4472 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4473 offset, xfer, regnum);
4474 mips_xfer_register (gdbarch, regcache,
4475 gdbarch_num_regs (gdbarch) + regnum,
4476 xfer, gdbarch_byte_order (gdbarch),
4477 readbuf, writebuf, offset);
4478 }
4479 return RETURN_VALUE_REGISTER_CONVENTION;
4480 }
4481 }
4482
4483 /* Floating point register management.
4484
4485 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
4486 64bit operations, these early MIPS cpus treat fp register pairs
4487 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
4488 registers and offer a compatibility mode that emulates the MIPS2 fp
4489 model. When operating in MIPS2 fp compat mode, later cpu's split
4490 double precision floats into two 32-bit chunks and store them in
4491 consecutive fp regs. To display 64-bit floats stored in this
4492 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
4493 Throw in user-configurable endianness and you have a real mess.
4494
4495 The way this works is:
4496 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
4497 double-precision value will be split across two logical registers.
4498 The lower-numbered logical register will hold the low-order bits,
4499 regardless of the processor's endianness.
4500 - If we are on a 64-bit processor, and we are looking for a
4501 single-precision value, it will be in the low ordered bits
4502 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
4503 save slot in memory.
4504 - If we are in 64-bit mode, everything is straightforward.
4505
4506 Note that this code only deals with "live" registers at the top of the
4507 stack. We will attempt to deal with saved registers later, when
4508 the raw/cooked register interface is in place. (We need a general
4509 interface that can deal with dynamic saved register sizes -- fp
4510 regs could be 32 bits wide in one frame and 64 on the frame above
4511 and below). */
4512
4513 /* Copy a 32-bit single-precision value from the current frame
4514 into rare_buffer. */
4515
4516 static void
4517 mips_read_fp_register_single (struct frame_info *frame, int regno,
4518 gdb_byte *rare_buffer)
4519 {
4520 struct gdbarch *gdbarch = get_frame_arch (frame);
4521 int raw_size = register_size (gdbarch, regno);
4522 gdb_byte *raw_buffer = alloca (raw_size);
4523
4524 if (!frame_register_read (frame, regno, raw_buffer))
4525 error (_("can't read register %d (%s)"),
4526 regno, gdbarch_register_name (gdbarch, regno));
4527 if (raw_size == 8)
4528 {
4529 /* We have a 64-bit value for this register. Find the low-order
4530 32 bits. */
4531 int offset;
4532
4533 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4534 offset = 4;
4535 else
4536 offset = 0;
4537
4538 memcpy (rare_buffer, raw_buffer + offset, 4);
4539 }
4540 else
4541 {
4542 memcpy (rare_buffer, raw_buffer, 4);
4543 }
4544 }
4545
4546 /* Copy a 64-bit double-precision value from the current frame into
4547 rare_buffer. This may include getting half of it from the next
4548 register. */
4549
4550 static void
4551 mips_read_fp_register_double (struct frame_info *frame, int regno,
4552 gdb_byte *rare_buffer)
4553 {
4554 struct gdbarch *gdbarch = get_frame_arch (frame);
4555 int raw_size = register_size (gdbarch, regno);
4556
4557 if (raw_size == 8 && !mips2_fp_compat (frame))
4558 {
4559 /* We have a 64-bit value for this register, and we should use
4560 all 64 bits. */
4561 if (!frame_register_read (frame, regno, rare_buffer))
4562 error (_("can't read register %d (%s)"),
4563 regno, gdbarch_register_name (gdbarch, regno));
4564 }
4565 else
4566 {
4567 int rawnum = regno % gdbarch_num_regs (gdbarch);
4568
4569 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
4570 internal_error (__FILE__, __LINE__,
4571 _("mips_read_fp_register_double: bad access to "
4572 "odd-numbered FP register"));
4573
4574 /* mips_read_fp_register_single will find the correct 32 bits from
4575 each register. */
4576 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4577 {
4578 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4579 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4580 }
4581 else
4582 {
4583 mips_read_fp_register_single (frame, regno, rare_buffer);
4584 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4585 }
4586 }
4587 }
4588
4589 static void
4590 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4591 int regnum)
4592 { /* Do values for FP (float) regs. */
4593 struct gdbarch *gdbarch = get_frame_arch (frame);
4594 gdb_byte *raw_buffer;
4595 double doub, flt1; /* Doubles extracted from raw hex data. */
4596 int inv1, inv2;
4597
4598 raw_buffer = alloca (2 * register_size (gdbarch,
4599 mips_regnum (gdbarch)->fp0));
4600
4601 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
4602 fprintf_filtered (file, "%*s",
4603 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
4604 "");
4605
4606 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
4607 {
4608 struct value_print_options opts;
4609
4610 /* 4-byte registers: Print hex and floating. Also print even
4611 numbered registers as doubles. */
4612 mips_read_fp_register_single (frame, regnum, raw_buffer);
4613 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
4614 raw_buffer, &inv1);
4615
4616 get_formatted_print_options (&opts, 'x');
4617 print_scalar_formatted (raw_buffer,
4618 builtin_type (gdbarch)->builtin_uint32,
4619 &opts, 'w', file);
4620
4621 fprintf_filtered (file, " flt: ");
4622 if (inv1)
4623 fprintf_filtered (file, " <invalid float> ");
4624 else
4625 fprintf_filtered (file, "%-17.9g", flt1);
4626
4627 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
4628 {
4629 mips_read_fp_register_double (frame, regnum, raw_buffer);
4630 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
4631 raw_buffer, &inv2);
4632
4633 fprintf_filtered (file, " dbl: ");
4634 if (inv2)
4635 fprintf_filtered (file, "<invalid double>");
4636 else
4637 fprintf_filtered (file, "%-24.17g", doub);
4638 }
4639 }
4640 else
4641 {
4642 struct value_print_options opts;
4643
4644 /* Eight byte registers: print each one as hex, float and double. */
4645 mips_read_fp_register_single (frame, regnum, raw_buffer);
4646 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
4647 raw_buffer, &inv1);
4648
4649 mips_read_fp_register_double (frame, regnum, raw_buffer);
4650 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
4651 raw_buffer, &inv2);
4652
4653 get_formatted_print_options (&opts, 'x');
4654 print_scalar_formatted (raw_buffer,
4655 builtin_type (gdbarch)->builtin_uint64,
4656 &opts, 'g', file);
4657
4658 fprintf_filtered (file, " flt: ");
4659 if (inv1)
4660 fprintf_filtered (file, "<invalid float>");
4661 else
4662 fprintf_filtered (file, "%-17.9g", flt1);
4663
4664 fprintf_filtered (file, " dbl: ");
4665 if (inv2)
4666 fprintf_filtered (file, "<invalid double>");
4667 else
4668 fprintf_filtered (file, "%-24.17g", doub);
4669 }
4670 }
4671
4672 static void
4673 mips_print_register (struct ui_file *file, struct frame_info *frame,
4674 int regnum)
4675 {
4676 struct gdbarch *gdbarch = get_frame_arch (frame);
4677 int offset;
4678 struct value_print_options opts;
4679 struct value *val;
4680
4681 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4682 {
4683 mips_print_fp_register (file, frame, regnum);
4684 return;
4685 }
4686
4687 val = get_frame_register_value (frame, regnum);
4688 if (value_optimized_out (val))
4689 {
4690 fprintf_filtered (file, "%s: [Invalid]",
4691 gdbarch_register_name (gdbarch, regnum));
4692 return;
4693 }
4694
4695 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
4696
4697 /* The problem with printing numeric register names (r26, etc.) is that
4698 the user can't use them on input. Probably the best solution is to
4699 fix it so that either the numeric or the funky (a2, etc.) names
4700 are accepted on input. */
4701 if (regnum < MIPS_NUMREGS)
4702 fprintf_filtered (file, "(r%d): ", regnum);
4703 else
4704 fprintf_filtered (file, ": ");
4705
4706 get_formatted_print_options (&opts, 'x');
4707 val_print_scalar_formatted (value_type (val),
4708 value_contents_for_printing (val),
4709 value_embedded_offset (val),
4710 val,
4711 &opts, 0, file);
4712 }
4713
4714 /* Replacement for generic do_registers_info.
4715 Print regs in pretty columns. */
4716
4717 static int
4718 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4719 int regnum)
4720 {
4721 fprintf_filtered (file, " ");
4722 mips_print_fp_register (file, frame, regnum);
4723 fprintf_filtered (file, "\n");
4724 return regnum + 1;
4725 }
4726
4727
4728 /* Print a row's worth of GP (int) registers, with name labels above. */
4729
4730 static int
4731 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4732 int start_regnum)
4733 {
4734 struct gdbarch *gdbarch = get_frame_arch (frame);
4735 /* Do values for GP (int) regs. */
4736 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4737 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
4738 per row. */
4739 int col, byte;
4740 int regnum;
4741
4742 /* For GP registers, we print a separate row of names above the vals. */
4743 for (col = 0, regnum = start_regnum;
4744 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4745 + gdbarch_num_pseudo_regs (gdbarch);
4746 regnum++)
4747 {
4748 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
4749 continue; /* unused register */
4750 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4751 TYPE_CODE_FLT)
4752 break; /* End the row: reached FP register. */
4753 /* Large registers are handled separately. */
4754 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
4755 {
4756 if (col > 0)
4757 break; /* End the row before this register. */
4758
4759 /* Print this register on a row by itself. */
4760 mips_print_register (file, frame, regnum);
4761 fprintf_filtered (file, "\n");
4762 return regnum + 1;
4763 }
4764 if (col == 0)
4765 fprintf_filtered (file, " ");
4766 fprintf_filtered (file,
4767 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
4768 gdbarch_register_name (gdbarch, regnum));
4769 col++;
4770 }
4771
4772 if (col == 0)
4773 return regnum;
4774
4775 /* Print the R0 to R31 names. */
4776 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
4777 fprintf_filtered (file, "\n R%-4d",
4778 start_regnum % gdbarch_num_regs (gdbarch));
4779 else
4780 fprintf_filtered (file, "\n ");
4781
4782 /* Now print the values in hex, 4 or 8 to the row. */
4783 for (col = 0, regnum = start_regnum;
4784 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4785 + gdbarch_num_pseudo_regs (gdbarch);
4786 regnum++)
4787 {
4788 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
4789 continue; /* unused register */
4790 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4791 TYPE_CODE_FLT)
4792 break; /* End row: reached FP register. */
4793 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
4794 break; /* End row: large register. */
4795
4796 /* OK: get the data in raw format. */
4797 if (!frame_register_read (frame, regnum, raw_buffer))
4798 error (_("can't read register %d (%s)"),
4799 regnum, gdbarch_register_name (gdbarch, regnum));
4800 /* pad small registers */
4801 for (byte = 0;
4802 byte < (mips_abi_regsize (gdbarch)
4803 - register_size (gdbarch, regnum)); byte++)
4804 printf_filtered (" ");
4805 /* Now print the register value in hex, endian order. */
4806 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4807 for (byte =
4808 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
4809 byte < register_size (gdbarch, regnum); byte++)
4810 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4811 else
4812 for (byte = register_size (gdbarch, regnum) - 1;
4813 byte >= 0; byte--)
4814 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4815 fprintf_filtered (file, " ");
4816 col++;
4817 }
4818 if (col > 0) /* ie. if we actually printed anything... */
4819 fprintf_filtered (file, "\n");
4820
4821 return regnum;
4822 }
4823
4824 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
4825
4826 static void
4827 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4828 struct frame_info *frame, int regnum, int all)
4829 {
4830 if (regnum != -1) /* Do one specified register. */
4831 {
4832 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
4833 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
4834 error (_("Not a valid register for the current processor type"));
4835
4836 mips_print_register (file, frame, regnum);
4837 fprintf_filtered (file, "\n");
4838 }
4839 else
4840 /* Do all (or most) registers. */
4841 {
4842 regnum = gdbarch_num_regs (gdbarch);
4843 while (regnum < gdbarch_num_regs (gdbarch)
4844 + gdbarch_num_pseudo_regs (gdbarch))
4845 {
4846 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4847 TYPE_CODE_FLT)
4848 {
4849 if (all) /* True for "INFO ALL-REGISTERS" command. */
4850 regnum = print_fp_register_row (file, frame, regnum);
4851 else
4852 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
4853 }
4854 else
4855 regnum = print_gp_register_row (file, frame, regnum);
4856 }
4857 }
4858 }
4859
4860 /* Is this a branch with a delay slot? */
4861
4862 static int
4863 is_delayed (unsigned long insn)
4864 {
4865 int i;
4866 for (i = 0; i < NUMOPCODES; ++i)
4867 if (mips_opcodes[i].pinfo != INSN_MACRO
4868 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4869 break;
4870 return (i < NUMOPCODES
4871 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4872 | INSN_COND_BRANCH_DELAY
4873 | INSN_COND_BRANCH_LIKELY)));
4874 }
4875
4876 static int
4877 mips_single_step_through_delay (struct gdbarch *gdbarch,
4878 struct frame_info *frame)
4879 {
4880 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4881 CORE_ADDR pc = get_frame_pc (frame);
4882 gdb_byte buf[MIPS_INSN32_SIZE];
4883
4884 /* There is no branch delay slot on MIPS16. */
4885 if (mips_pc_is_mips16 (pc))
4886 return 0;
4887
4888 if (!breakpoint_here_p (get_frame_address_space (frame), pc + 4))
4889 return 0;
4890
4891 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4892 /* If error reading memory, guess that it is not a delayed
4893 branch. */
4894 return 0;
4895 return is_delayed (extract_unsigned_integer (buf, sizeof buf, byte_order));
4896 }
4897
4898 /* To skip prologues, I use this predicate. Returns either PC itself
4899 if the code at PC does not look like a function prologue; otherwise
4900 returns an address that (if we're lucky) follows the prologue. If
4901 LENIENT, then we must skip everything which is involved in setting
4902 up the frame (it's OK to skip more, just so long as we don't skip
4903 anything which might clobber the registers which are being saved.
4904 We must skip more in the case where part of the prologue is in the
4905 delay slot of a non-prologue instruction). */
4906
4907 static CORE_ADDR
4908 mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
4909 {
4910 CORE_ADDR limit_pc;
4911 CORE_ADDR func_addr;
4912
4913 /* See if we can determine the end of the prologue via the symbol table.
4914 If so, then return either PC, or the PC after the prologue, whichever
4915 is greater. */
4916 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4917 {
4918 CORE_ADDR post_prologue_pc
4919 = skip_prologue_using_sal (gdbarch, func_addr);
4920 if (post_prologue_pc != 0)
4921 return max (pc, post_prologue_pc);
4922 }
4923
4924 /* Can't determine prologue from the symbol table, need to examine
4925 instructions. */
4926
4927 /* Find an upper limit on the function prologue using the debug
4928 information. If the debug information could not be used to provide
4929 that bound, then use an arbitrary large number as the upper bound. */
4930 limit_pc = skip_prologue_using_sal (gdbarch, pc);
4931 if (limit_pc == 0)
4932 limit_pc = pc + 100; /* Magic. */
4933
4934 if (mips_pc_is_mips16 (pc))
4935 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
4936 else
4937 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
4938 }
4939
4940 /* Check whether the PC is in a function epilogue (32-bit version).
4941 This is a helper function for mips_in_function_epilogue_p. */
4942 static int
4943 mips32_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4944 {
4945 CORE_ADDR func_addr = 0, func_end = 0;
4946
4947 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4948 {
4949 /* The MIPS epilogue is max. 12 bytes long. */
4950 CORE_ADDR addr = func_end - 12;
4951
4952 if (addr < func_addr + 4)
4953 addr = func_addr + 4;
4954 if (pc < addr)
4955 return 0;
4956
4957 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
4958 {
4959 unsigned long high_word;
4960 unsigned long inst;
4961
4962 inst = mips_fetch_instruction (gdbarch, pc);
4963 high_word = (inst >> 16) & 0xffff;
4964
4965 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
4966 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
4967 && inst != 0x03e00008 /* jr $ra */
4968 && inst != 0x00000000) /* nop */
4969 return 0;
4970 }
4971
4972 return 1;
4973 }
4974
4975 return 0;
4976 }
4977
4978 /* Check whether the PC is in a function epilogue (16-bit version).
4979 This is a helper function for mips_in_function_epilogue_p. */
4980 static int
4981 mips16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4982 {
4983 CORE_ADDR func_addr = 0, func_end = 0;
4984
4985 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4986 {
4987 /* The MIPS epilogue is max. 12 bytes long. */
4988 CORE_ADDR addr = func_end - 12;
4989
4990 if (addr < func_addr + 4)
4991 addr = func_addr + 4;
4992 if (pc < addr)
4993 return 0;
4994
4995 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
4996 {
4997 unsigned short inst;
4998
4999 inst = mips_fetch_instruction (gdbarch, pc);
5000
5001 if ((inst & 0xf800) == 0xf000) /* extend */
5002 continue;
5003
5004 if (inst != 0x6300 /* addiu $sp,offset */
5005 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
5006 && inst != 0xe820 /* jr $ra */
5007 && inst != 0xe8a0 /* jrc $ra */
5008 && inst != 0x6500) /* nop */
5009 return 0;
5010 }
5011
5012 return 1;
5013 }
5014
5015 return 0;
5016 }
5017
5018 /* The epilogue is defined here as the area at the end of a function,
5019 after an instruction which destroys the function's stack frame. */
5020 static int
5021 mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
5022 {
5023 if (mips_pc_is_mips16 (pc))
5024 return mips16_in_function_epilogue_p (gdbarch, pc);
5025 else
5026 return mips32_in_function_epilogue_p (gdbarch, pc);
5027 }
5028
5029 /* Root of all "set mips "/"show mips " commands. This will eventually be
5030 used for all MIPS-specific commands. */
5031
5032 static void
5033 show_mips_command (char *args, int from_tty)
5034 {
5035 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
5036 }
5037
5038 static void
5039 set_mips_command (char *args, int from_tty)
5040 {
5041 printf_unfiltered
5042 ("\"set mips\" must be followed by an appropriate subcommand.\n");
5043 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
5044 }
5045
5046 /* Commands to show/set the MIPS FPU type. */
5047
5048 static void
5049 show_mipsfpu_command (char *args, int from_tty)
5050 {
5051 char *fpu;
5052
5053 if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_mips)
5054 {
5055 printf_unfiltered
5056 ("The MIPS floating-point coprocessor is unknown "
5057 "because the current architecture is not MIPS.\n");
5058 return;
5059 }
5060
5061 switch (MIPS_FPU_TYPE (target_gdbarch))
5062 {
5063 case MIPS_FPU_SINGLE:
5064 fpu = "single-precision";
5065 break;
5066 case MIPS_FPU_DOUBLE:
5067 fpu = "double-precision";
5068 break;
5069 case MIPS_FPU_NONE:
5070 fpu = "absent (none)";
5071 break;
5072 default:
5073 internal_error (__FILE__, __LINE__, _("bad switch"));
5074 }
5075 if (mips_fpu_type_auto)
5076 printf_unfiltered ("The MIPS floating-point coprocessor "
5077 "is set automatically (currently %s)\n",
5078 fpu);
5079 else
5080 printf_unfiltered
5081 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
5082 }
5083
5084
5085 static void
5086 set_mipsfpu_command (char *args, int from_tty)
5087 {
5088 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
5089 "\"single\",\"none\" or \"auto\".\n");
5090 show_mipsfpu_command (args, from_tty);
5091 }
5092
5093 static void
5094 set_mipsfpu_single_command (char *args, int from_tty)
5095 {
5096 struct gdbarch_info info;
5097 gdbarch_info_init (&info);
5098 mips_fpu_type = MIPS_FPU_SINGLE;
5099 mips_fpu_type_auto = 0;
5100 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
5101 instead of relying on globals. Doing that would let generic code
5102 handle the search for this specific architecture. */
5103 if (!gdbarch_update_p (info))
5104 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
5105 }
5106
5107 static void
5108 set_mipsfpu_double_command (char *args, int from_tty)
5109 {
5110 struct gdbarch_info info;
5111 gdbarch_info_init (&info);
5112 mips_fpu_type = MIPS_FPU_DOUBLE;
5113 mips_fpu_type_auto = 0;
5114 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
5115 instead of relying on globals. Doing that would let generic code
5116 handle the search for this specific architecture. */
5117 if (!gdbarch_update_p (info))
5118 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
5119 }
5120
5121 static void
5122 set_mipsfpu_none_command (char *args, int from_tty)
5123 {
5124 struct gdbarch_info info;
5125 gdbarch_info_init (&info);
5126 mips_fpu_type = MIPS_FPU_NONE;
5127 mips_fpu_type_auto = 0;
5128 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
5129 instead of relying on globals. Doing that would let generic code
5130 handle the search for this specific architecture. */
5131 if (!gdbarch_update_p (info))
5132 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
5133 }
5134
5135 static void
5136 set_mipsfpu_auto_command (char *args, int from_tty)
5137 {
5138 mips_fpu_type_auto = 1;
5139 }
5140
5141 /* Attempt to identify the particular processor model by reading the
5142 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
5143 the relevant processor still exists (it dates back to '94) and
5144 secondly this is not the way to do this. The processor type should
5145 be set by forcing an architecture change. */
5146
5147 void
5148 deprecated_mips_set_processor_regs_hack (void)
5149 {
5150 struct regcache *regcache = get_current_regcache ();
5151 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5152 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5153 ULONGEST prid;
5154
5155 regcache_cooked_read_unsigned (regcache, MIPS_PRID_REGNUM, &prid);
5156 if ((prid & ~0xf) == 0x700)
5157 tdep->mips_processor_reg_names = mips_r3041_reg_names;
5158 }
5159
5160 /* Just like reinit_frame_cache, but with the right arguments to be
5161 callable as an sfunc. */
5162
5163 static void
5164 reinit_frame_cache_sfunc (char *args, int from_tty,
5165 struct cmd_list_element *c)
5166 {
5167 reinit_frame_cache ();
5168 }
5169
5170 static int
5171 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
5172 {
5173 /* FIXME: cagney/2003-06-26: Is this even necessary? The
5174 disassembler needs to be able to locally determine the ISA, and
5175 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
5176 work. */
5177 if (mips_pc_is_mips16 (memaddr))
5178 info->mach = bfd_mach_mips16;
5179
5180 /* Round down the instruction address to the appropriate boundary. */
5181 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5182
5183 /* Set the disassembler options. */
5184 if (!info->disassembler_options)
5185 /* This string is not recognized explicitly by the disassembler,
5186 but it tells the disassembler to not try to guess the ABI from
5187 the bfd elf headers, such that, if the user overrides the ABI
5188 of a program linked as NewABI, the disassembly will follow the
5189 register naming conventions specified by the user. */
5190 info->disassembler_options = "gpr-names=32";
5191
5192 /* Call the appropriate disassembler based on the target endian-ness. */
5193 if (info->endian == BFD_ENDIAN_BIG)
5194 return print_insn_big_mips (memaddr, info);
5195 else
5196 return print_insn_little_mips (memaddr, info);
5197 }
5198
5199 static int
5200 gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
5201 {
5202 /* Set up the disassembler info, so that we get the right
5203 register names from libopcodes. */
5204 info->disassembler_options = "gpr-names=n32";
5205 info->flavour = bfd_target_elf_flavour;
5206
5207 return gdb_print_insn_mips (memaddr, info);
5208 }
5209
5210 static int
5211 gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
5212 {
5213 /* Set up the disassembler info, so that we get the right
5214 register names from libopcodes. */
5215 info->disassembler_options = "gpr-names=64";
5216 info->flavour = bfd_target_elf_flavour;
5217
5218 return gdb_print_insn_mips (memaddr, info);
5219 }
5220
5221 /* This function implements gdbarch_breakpoint_from_pc. It uses the
5222 program counter value to determine whether a 16- or 32-bit breakpoint
5223 should be used. It returns a pointer to a string of bytes that encode a
5224 breakpoint instruction, stores the length of the string to *lenptr, and
5225 adjusts pc (if necessary) to point to the actual memory location where
5226 the breakpoint should be inserted. */
5227
5228 static const gdb_byte *
5229 mips_breakpoint_from_pc (struct gdbarch *gdbarch,
5230 CORE_ADDR *pcptr, int *lenptr)
5231 {
5232 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5233 {
5234 if (mips_pc_is_mips16 (*pcptr))
5235 {
5236 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
5237 *pcptr = unmake_mips16_addr (*pcptr);
5238 *lenptr = sizeof (mips16_big_breakpoint);
5239 return mips16_big_breakpoint;
5240 }
5241 else
5242 {
5243 /* The IDT board uses an unusual breakpoint value, and
5244 sometimes gets confused when it sees the usual MIPS
5245 breakpoint instruction. */
5246 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
5247 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
5248 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
5249 /* Likewise, IRIX appears to expect a different breakpoint,
5250 although this is not apparent until you try to use pthreads. */
5251 static gdb_byte irix_big_breakpoint[] = { 0, 0, 0, 0xd };
5252
5253 *lenptr = sizeof (big_breakpoint);
5254
5255 if (strcmp (target_shortname, "mips") == 0)
5256 return idt_big_breakpoint;
5257 else if (strcmp (target_shortname, "ddb") == 0
5258 || strcmp (target_shortname, "pmon") == 0
5259 || strcmp (target_shortname, "lsi") == 0)
5260 return pmon_big_breakpoint;
5261 else if (gdbarch_osabi (gdbarch) == GDB_OSABI_IRIX)
5262 return irix_big_breakpoint;
5263 else
5264 return big_breakpoint;
5265 }
5266 }
5267 else
5268 {
5269 if (mips_pc_is_mips16 (*pcptr))
5270 {
5271 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
5272 *pcptr = unmake_mips16_addr (*pcptr);
5273 *lenptr = sizeof (mips16_little_breakpoint);
5274 return mips16_little_breakpoint;
5275 }
5276 else
5277 {
5278 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
5279 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
5280 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
5281
5282 *lenptr = sizeof (little_breakpoint);
5283
5284 if (strcmp (target_shortname, "mips") == 0)
5285 return idt_little_breakpoint;
5286 else if (strcmp (target_shortname, "ddb") == 0
5287 || strcmp (target_shortname, "pmon") == 0
5288 || strcmp (target_shortname, "lsi") == 0)
5289 return pmon_little_breakpoint;
5290 else
5291 return little_breakpoint;
5292 }
5293 }
5294 }
5295
5296 /* If PC is in a mips16 call or return stub, return the address of the target
5297 PC, which is either the callee or the caller. There are several
5298 cases which must be handled:
5299
5300 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5301 target PC is in $31 ($ra).
5302 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5303 and the target PC is in $2.
5304 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5305 before the jal instruction, this is effectively a call stub
5306 and the target PC is in $2. Otherwise this is effectively
5307 a return stub and the target PC is in $18.
5308
5309 See the source code for the stubs in gcc/config/mips/mips16.S for
5310 gory details. */
5311
5312 static CORE_ADDR
5313 mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
5314 {
5315 struct gdbarch *gdbarch = get_frame_arch (frame);
5316 char *name;
5317 CORE_ADDR start_addr;
5318
5319 /* Find the starting address and name of the function containing the PC. */
5320 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5321 return 0;
5322
5323 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5324 target PC is in $31 ($ra). */
5325 if (strcmp (name, "__mips16_ret_sf") == 0
5326 || strcmp (name, "__mips16_ret_df") == 0)
5327 return get_frame_register_signed (frame, MIPS_RA_REGNUM);
5328
5329 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5330 {
5331 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5332 and the target PC is in $2. */
5333 if (name[19] >= '0' && name[19] <= '9')
5334 return get_frame_register_signed (frame, 2);
5335
5336 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5337 before the jal instruction, this is effectively a call stub
5338 and the target PC is in $2. Otherwise this is effectively
5339 a return stub and the target PC is in $18. */
5340 else if (name[19] == 's' || name[19] == 'd')
5341 {
5342 if (pc == start_addr)
5343 {
5344 /* Check if the target of the stub is a compiler-generated
5345 stub. Such a stub for a function bar might have a name
5346 like __fn_stub_bar, and might look like this:
5347 mfc1 $4,$f13
5348 mfc1 $5,$f12
5349 mfc1 $6,$f15
5350 mfc1 $7,$f14
5351 la $1,bar (becomes a lui/addiu pair)
5352 jr $1
5353 So scan down to the lui/addi and extract the target
5354 address from those two instructions. */
5355
5356 CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
5357 int i;
5358
5359 /* See if the name of the target function is __fn_stub_*. */
5360 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
5361 0)
5362 return target_pc;
5363 if (strncmp (name, "__fn_stub_", 10) != 0
5364 && strcmp (name, "etext") != 0
5365 && strcmp (name, "_etext") != 0)
5366 return target_pc;
5367
5368 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5369 The limit on the search is arbitrarily set to 20
5370 instructions. FIXME. */
5371 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
5372 {
5373 ULONGEST inst = mips_fetch_instruction (gdbarch, target_pc);
5374 CORE_ADDR addr = inst;
5375
5376 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5377 pc = (((addr & 0xffff) ^ 0x8000) - 0x8000) << 16;
5378 /* high word */
5379 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5380 return pc + ((addr & 0xffff) ^ 0x8000) - 0x8000;
5381 /* low word */
5382 }
5383
5384 /* Couldn't find the lui/addui pair, so return stub address. */
5385 return target_pc;
5386 }
5387 else
5388 /* This is the 'return' part of a call stub. The return
5389 address is in $r18. */
5390 return get_frame_register_signed (frame, 18);
5391 }
5392 }
5393 return 0; /* not a stub */
5394 }
5395
5396 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
5397 PC of the stub target. The stub just loads $t9 and jumps to it,
5398 so that $t9 has the correct value at function entry. */
5399
5400 static CORE_ADDR
5401 mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
5402 {
5403 struct gdbarch *gdbarch = get_frame_arch (frame);
5404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5405 struct minimal_symbol *msym;
5406 int i;
5407 gdb_byte stub_code[16];
5408 int32_t stub_words[4];
5409
5410 /* The stub for foo is named ".pic.foo", and is either two
5411 instructions inserted before foo or a three instruction sequence
5412 which jumps to foo. */
5413 msym = lookup_minimal_symbol_by_pc (pc);
5414 if (msym == NULL
5415 || SYMBOL_VALUE_ADDRESS (msym) != pc
5416 || SYMBOL_LINKAGE_NAME (msym) == NULL
5417 || strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) != 0)
5418 return 0;
5419
5420 /* A two-instruction header. */
5421 if (MSYMBOL_SIZE (msym) == 8)
5422 return pc + 8;
5423
5424 /* A three-instruction (plus delay slot) trampoline. */
5425 if (MSYMBOL_SIZE (msym) == 16)
5426 {
5427 if (target_read_memory (pc, stub_code, 16) != 0)
5428 return 0;
5429 for (i = 0; i < 4; i++)
5430 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
5431 4, byte_order);
5432
5433 /* A stub contains these instructions:
5434 lui t9, %hi(target)
5435 j target
5436 addiu t9, t9, %lo(target)
5437 nop
5438
5439 This works even for N64, since stubs are only generated with
5440 -msym32. */
5441 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
5442 && (stub_words[1] & 0xfc000000U) == 0x08000000
5443 && (stub_words[2] & 0xffff0000U) == 0x27390000
5444 && stub_words[3] == 0x00000000)
5445 return (((stub_words[0] & 0x0000ffff) << 16)
5446 + (stub_words[2] & 0x0000ffff));
5447 }
5448
5449 /* Not a recognized stub. */
5450 return 0;
5451 }
5452
5453 static CORE_ADDR
5454 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
5455 {
5456 CORE_ADDR target_pc;
5457
5458 target_pc = mips_skip_mips16_trampoline_code (frame, pc);
5459 if (target_pc)
5460 return target_pc;
5461
5462 target_pc = find_solib_trampoline_target (frame, pc);
5463 if (target_pc)
5464 return target_pc;
5465
5466 target_pc = mips_skip_pic_trampoline_code (frame, pc);
5467 if (target_pc)
5468 return target_pc;
5469
5470 return 0;
5471 }
5472
5473 /* Convert a dbx stab register number (from `r' declaration) to a GDB
5474 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
5475
5476 static int
5477 mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
5478 {
5479 int regnum;
5480 if (num >= 0 && num < 32)
5481 regnum = num;
5482 else if (num >= 38 && num < 70)
5483 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
5484 else if (num == 70)
5485 regnum = mips_regnum (gdbarch)->hi;
5486 else if (num == 71)
5487 regnum = mips_regnum (gdbarch)->lo;
5488 else
5489 /* This will hopefully (eventually) provoke a warning. Should
5490 we be calling complaint() here? */
5491 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
5492 return gdbarch_num_regs (gdbarch) + regnum;
5493 }
5494
5495
5496 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
5497 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
5498
5499 static int
5500 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
5501 {
5502 int regnum;
5503 if (num >= 0 && num < 32)
5504 regnum = num;
5505 else if (num >= 32 && num < 64)
5506 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
5507 else if (num == 64)
5508 regnum = mips_regnum (gdbarch)->hi;
5509 else if (num == 65)
5510 regnum = mips_regnum (gdbarch)->lo;
5511 else
5512 /* This will hopefully (eventually) provoke a warning. Should we
5513 be calling complaint() here? */
5514 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
5515 return gdbarch_num_regs (gdbarch) + regnum;
5516 }
5517
5518 static int
5519 mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
5520 {
5521 /* Only makes sense to supply raw registers. */
5522 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
5523 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5524 decide if it is valid. Should instead define a standard sim/gdb
5525 register numbering scheme. */
5526 if (gdbarch_register_name (gdbarch,
5527 gdbarch_num_regs (gdbarch) + regnum) != NULL
5528 && gdbarch_register_name (gdbarch,
5529 gdbarch_num_regs (gdbarch)
5530 + regnum)[0] != '\0')
5531 return regnum;
5532 else
5533 return LEGACY_SIM_REGNO_IGNORE;
5534 }
5535
5536
5537 /* Convert an integer into an address. Extracting the value signed
5538 guarantees a correctly sign extended address. */
5539
5540 static CORE_ADDR
5541 mips_integer_to_address (struct gdbarch *gdbarch,
5542 struct type *type, const gdb_byte *buf)
5543 {
5544 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5545 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
5546 }
5547
5548 /* Dummy virtual frame pointer method. This is no more or less accurate
5549 than most other architectures; we just need to be explicit about it,
5550 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
5551 an assertion failure. */
5552
5553 static void
5554 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
5555 CORE_ADDR pc, int *reg, LONGEST *offset)
5556 {
5557 *reg = MIPS_SP_REGNUM;
5558 *offset = 0;
5559 }
5560
5561 static void
5562 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5563 {
5564 enum mips_abi *abip = (enum mips_abi *) obj;
5565 const char *name = bfd_get_section_name (abfd, sect);
5566
5567 if (*abip != MIPS_ABI_UNKNOWN)
5568 return;
5569
5570 if (strncmp (name, ".mdebug.", 8) != 0)
5571 return;
5572
5573 if (strcmp (name, ".mdebug.abi32") == 0)
5574 *abip = MIPS_ABI_O32;
5575 else if (strcmp (name, ".mdebug.abiN32") == 0)
5576 *abip = MIPS_ABI_N32;
5577 else if (strcmp (name, ".mdebug.abi64") == 0)
5578 *abip = MIPS_ABI_N64;
5579 else if (strcmp (name, ".mdebug.abiO64") == 0)
5580 *abip = MIPS_ABI_O64;
5581 else if (strcmp (name, ".mdebug.eabi32") == 0)
5582 *abip = MIPS_ABI_EABI32;
5583 else if (strcmp (name, ".mdebug.eabi64") == 0)
5584 *abip = MIPS_ABI_EABI64;
5585 else
5586 warning (_("unsupported ABI %s."), name + 8);
5587 }
5588
5589 static void
5590 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
5591 {
5592 int *lbp = (int *) obj;
5593 const char *name = bfd_get_section_name (abfd, sect);
5594
5595 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
5596 *lbp = 32;
5597 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
5598 *lbp = 64;
5599 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
5600 warning (_("unrecognized .gcc_compiled_longXX"));
5601 }
5602
5603 static enum mips_abi
5604 global_mips_abi (void)
5605 {
5606 int i;
5607
5608 for (i = 0; mips_abi_strings[i] != NULL; i++)
5609 if (mips_abi_strings[i] == mips_abi_string)
5610 return (enum mips_abi) i;
5611
5612 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
5613 }
5614
5615 static void
5616 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
5617 {
5618 /* If the size matches the set of 32-bit or 64-bit integer registers,
5619 assume that's what we've got. */
5620 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
5621 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
5622
5623 /* If the size matches the full set of registers GDB traditionally
5624 knows about, including floating point, for either 32-bit or
5625 64-bit, assume that's what we've got. */
5626 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
5627 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
5628
5629 /* Otherwise we don't have a useful guess. */
5630 }
5631
5632 static struct value *
5633 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
5634 {
5635 const int *reg_p = baton;
5636 return value_of_register (*reg_p, frame);
5637 }
5638
5639 static struct gdbarch *
5640 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5641 {
5642 struct gdbarch *gdbarch;
5643 struct gdbarch_tdep *tdep;
5644 int elf_flags;
5645 enum mips_abi mips_abi, found_abi, wanted_abi;
5646 int i, num_regs;
5647 enum mips_fpu_type fpu_type;
5648 struct tdesc_arch_data *tdesc_data = NULL;
5649 int elf_fpu_type = 0;
5650
5651 /* Check any target description for validity. */
5652 if (tdesc_has_registers (info.target_desc))
5653 {
5654 static const char *const mips_gprs[] = {
5655 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5656 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5657 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5658 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5659 };
5660 static const char *const mips_fprs[] = {
5661 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5662 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5663 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5664 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
5665 };
5666
5667 const struct tdesc_feature *feature;
5668 int valid_p;
5669
5670 feature = tdesc_find_feature (info.target_desc,
5671 "org.gnu.gdb.mips.cpu");
5672 if (feature == NULL)
5673 return NULL;
5674
5675 tdesc_data = tdesc_data_alloc ();
5676
5677 valid_p = 1;
5678 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
5679 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
5680 mips_gprs[i]);
5681
5682
5683 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5684 MIPS_EMBED_LO_REGNUM, "lo");
5685 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5686 MIPS_EMBED_HI_REGNUM, "hi");
5687 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5688 MIPS_EMBED_PC_REGNUM, "pc");
5689
5690 if (!valid_p)
5691 {
5692 tdesc_data_cleanup (tdesc_data);
5693 return NULL;
5694 }
5695
5696 feature = tdesc_find_feature (info.target_desc,
5697 "org.gnu.gdb.mips.cp0");
5698 if (feature == NULL)
5699 {
5700 tdesc_data_cleanup (tdesc_data);
5701 return NULL;
5702 }
5703
5704 valid_p = 1;
5705 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5706 MIPS_EMBED_BADVADDR_REGNUM,
5707 "badvaddr");
5708 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5709 MIPS_PS_REGNUM, "status");
5710 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5711 MIPS_EMBED_CAUSE_REGNUM, "cause");
5712
5713 if (!valid_p)
5714 {
5715 tdesc_data_cleanup (tdesc_data);
5716 return NULL;
5717 }
5718
5719 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
5720 backend is not prepared for that, though. */
5721 feature = tdesc_find_feature (info.target_desc,
5722 "org.gnu.gdb.mips.fpu");
5723 if (feature == NULL)
5724 {
5725 tdesc_data_cleanup (tdesc_data);
5726 return NULL;
5727 }
5728
5729 valid_p = 1;
5730 for (i = 0; i < 32; i++)
5731 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5732 i + MIPS_EMBED_FP0_REGNUM,
5733 mips_fprs[i]);
5734
5735 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5736 MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
5737 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5738 MIPS_EMBED_FP0_REGNUM + 33, "fir");
5739
5740 if (!valid_p)
5741 {
5742 tdesc_data_cleanup (tdesc_data);
5743 return NULL;
5744 }
5745
5746 /* It would be nice to detect an attempt to use a 64-bit ABI
5747 when only 32-bit registers are provided. */
5748 }
5749
5750 /* First of all, extract the elf_flags, if available. */
5751 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5752 elf_flags = elf_elfheader (info.abfd)->e_flags;
5753 else if (arches != NULL)
5754 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
5755 else
5756 elf_flags = 0;
5757 if (gdbarch_debug)
5758 fprintf_unfiltered (gdb_stdlog,
5759 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
5760
5761 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5762 switch ((elf_flags & EF_MIPS_ABI))
5763 {
5764 case E_MIPS_ABI_O32:
5765 found_abi = MIPS_ABI_O32;
5766 break;
5767 case E_MIPS_ABI_O64:
5768 found_abi = MIPS_ABI_O64;
5769 break;
5770 case E_MIPS_ABI_EABI32:
5771 found_abi = MIPS_ABI_EABI32;
5772 break;
5773 case E_MIPS_ABI_EABI64:
5774 found_abi = MIPS_ABI_EABI64;
5775 break;
5776 default:
5777 if ((elf_flags & EF_MIPS_ABI2))
5778 found_abi = MIPS_ABI_N32;
5779 else
5780 found_abi = MIPS_ABI_UNKNOWN;
5781 break;
5782 }
5783
5784 /* GCC creates a pseudo-section whose name describes the ABI. */
5785 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5786 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
5787
5788 /* If we have no useful BFD information, use the ABI from the last
5789 MIPS architecture (if there is one). */
5790 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5791 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5792
5793 /* Try the architecture for any hint of the correct ABI. */
5794 if (found_abi == MIPS_ABI_UNKNOWN
5795 && info.bfd_arch_info != NULL
5796 && info.bfd_arch_info->arch == bfd_arch_mips)
5797 {
5798 switch (info.bfd_arch_info->mach)
5799 {
5800 case bfd_mach_mips3900:
5801 found_abi = MIPS_ABI_EABI32;
5802 break;
5803 case bfd_mach_mips4100:
5804 case bfd_mach_mips5000:
5805 found_abi = MIPS_ABI_EABI64;
5806 break;
5807 case bfd_mach_mips8000:
5808 case bfd_mach_mips10000:
5809 /* On Irix, ELF64 executables use the N64 ABI. The
5810 pseudo-sections which describe the ABI aren't present
5811 on IRIX. (Even for executables created by gcc.) */
5812 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5813 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5814 found_abi = MIPS_ABI_N64;
5815 else
5816 found_abi = MIPS_ABI_N32;
5817 break;
5818 }
5819 }
5820
5821 /* Default 64-bit objects to N64 instead of O32. */
5822 if (found_abi == MIPS_ABI_UNKNOWN
5823 && info.abfd != NULL
5824 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5825 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5826 found_abi = MIPS_ABI_N64;
5827
5828 if (gdbarch_debug)
5829 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5830 found_abi);
5831
5832 /* What has the user specified from the command line? */
5833 wanted_abi = global_mips_abi ();
5834 if (gdbarch_debug)
5835 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5836 wanted_abi);
5837
5838 /* Now that we have found what the ABI for this binary would be,
5839 check whether the user is overriding it. */
5840 if (wanted_abi != MIPS_ABI_UNKNOWN)
5841 mips_abi = wanted_abi;
5842 else if (found_abi != MIPS_ABI_UNKNOWN)
5843 mips_abi = found_abi;
5844 else
5845 mips_abi = MIPS_ABI_O32;
5846 if (gdbarch_debug)
5847 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5848 mips_abi);
5849
5850 /* Also used when doing an architecture lookup. */
5851 if (gdbarch_debug)
5852 fprintf_unfiltered (gdb_stdlog,
5853 "mips_gdbarch_init: "
5854 "mips64_transfers_32bit_regs_p = %d\n",
5855 mips64_transfers_32bit_regs_p);
5856
5857 /* Determine the MIPS FPU type. */
5858 #ifdef HAVE_ELF
5859 if (info.abfd
5860 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5861 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5862 Tag_GNU_MIPS_ABI_FP);
5863 #endif /* HAVE_ELF */
5864
5865 if (!mips_fpu_type_auto)
5866 fpu_type = mips_fpu_type;
5867 else if (elf_fpu_type != 0)
5868 {
5869 switch (elf_fpu_type)
5870 {
5871 case 1:
5872 fpu_type = MIPS_FPU_DOUBLE;
5873 break;
5874 case 2:
5875 fpu_type = MIPS_FPU_SINGLE;
5876 break;
5877 case 3:
5878 default:
5879 /* Soft float or unknown. */
5880 fpu_type = MIPS_FPU_NONE;
5881 break;
5882 }
5883 }
5884 else if (info.bfd_arch_info != NULL
5885 && info.bfd_arch_info->arch == bfd_arch_mips)
5886 switch (info.bfd_arch_info->mach)
5887 {
5888 case bfd_mach_mips3900:
5889 case bfd_mach_mips4100:
5890 case bfd_mach_mips4111:
5891 case bfd_mach_mips4120:
5892 fpu_type = MIPS_FPU_NONE;
5893 break;
5894 case bfd_mach_mips4650:
5895 fpu_type = MIPS_FPU_SINGLE;
5896 break;
5897 default:
5898 fpu_type = MIPS_FPU_DOUBLE;
5899 break;
5900 }
5901 else if (arches != NULL)
5902 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5903 else
5904 fpu_type = MIPS_FPU_DOUBLE;
5905 if (gdbarch_debug)
5906 fprintf_unfiltered (gdb_stdlog,
5907 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
5908
5909 /* Check for blatant incompatibilities. */
5910
5911 /* If we have only 32-bit registers, then we can't debug a 64-bit
5912 ABI. */
5913 if (info.target_desc
5914 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
5915 && mips_abi != MIPS_ABI_EABI32
5916 && mips_abi != MIPS_ABI_O32)
5917 {
5918 if (tdesc_data != NULL)
5919 tdesc_data_cleanup (tdesc_data);
5920 return NULL;
5921 }
5922
5923 /* Try to find a pre-existing architecture. */
5924 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5925 arches != NULL;
5926 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5927 {
5928 /* MIPS needs to be pedantic about which ABI the object is
5929 using. */
5930 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5931 continue;
5932 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5933 continue;
5934 /* Need to be pedantic about which register virtual size is
5935 used. */
5936 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5937 != mips64_transfers_32bit_regs_p)
5938 continue;
5939 /* Be pedantic about which FPU is selected. */
5940 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5941 continue;
5942
5943 if (tdesc_data != NULL)
5944 tdesc_data_cleanup (tdesc_data);
5945 return arches->gdbarch;
5946 }
5947
5948 /* Need a new architecture. Fill in a target specific vector. */
5949 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5950 gdbarch = gdbarch_alloc (&info, tdep);
5951 tdep->elf_flags = elf_flags;
5952 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
5953 tdep->found_abi = found_abi;
5954 tdep->mips_abi = mips_abi;
5955 tdep->mips_fpu_type = fpu_type;
5956 tdep->register_size_valid_p = 0;
5957 tdep->register_size = 0;
5958 tdep->gregset = NULL;
5959 tdep->gregset64 = NULL;
5960 tdep->fpregset = NULL;
5961 tdep->fpregset64 = NULL;
5962
5963 if (info.target_desc)
5964 {
5965 /* Some useful properties can be inferred from the target. */
5966 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
5967 {
5968 tdep->register_size_valid_p = 1;
5969 tdep->register_size = 4;
5970 }
5971 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
5972 {
5973 tdep->register_size_valid_p = 1;
5974 tdep->register_size = 8;
5975 }
5976 }
5977
5978 /* Initially set everything according to the default ABI/ISA. */
5979 set_gdbarch_short_bit (gdbarch, 16);
5980 set_gdbarch_int_bit (gdbarch, 32);
5981 set_gdbarch_float_bit (gdbarch, 32);
5982 set_gdbarch_double_bit (gdbarch, 64);
5983 set_gdbarch_long_double_bit (gdbarch, 64);
5984 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5985 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5986 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5987
5988 set_gdbarch_ax_pseudo_register_collect (gdbarch,
5989 mips_ax_pseudo_register_collect);
5990 set_gdbarch_ax_pseudo_register_push_stack
5991 (gdbarch, mips_ax_pseudo_register_push_stack);
5992
5993 set_gdbarch_elf_make_msymbol_special (gdbarch,
5994 mips_elf_make_msymbol_special);
5995
5996 /* Fill in the OS dependant register numbers and names. */
5997 {
5998 const char **reg_names;
5999 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
6000 struct mips_regnum);
6001 if (tdesc_has_registers (info.target_desc))
6002 {
6003 regnum->lo = MIPS_EMBED_LO_REGNUM;
6004 regnum->hi = MIPS_EMBED_HI_REGNUM;
6005 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
6006 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
6007 regnum->pc = MIPS_EMBED_PC_REGNUM;
6008 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
6009 regnum->fp_control_status = 70;
6010 regnum->fp_implementation_revision = 71;
6011 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
6012 reg_names = NULL;
6013 }
6014 else if (info.osabi == GDB_OSABI_IRIX)
6015 {
6016 regnum->fp0 = 32;
6017 regnum->pc = 64;
6018 regnum->cause = 65;
6019 regnum->badvaddr = 66;
6020 regnum->hi = 67;
6021 regnum->lo = 68;
6022 regnum->fp_control_status = 69;
6023 regnum->fp_implementation_revision = 70;
6024 num_regs = 71;
6025 reg_names = mips_irix_reg_names;
6026 }
6027 else
6028 {
6029 regnum->lo = MIPS_EMBED_LO_REGNUM;
6030 regnum->hi = MIPS_EMBED_HI_REGNUM;
6031 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
6032 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
6033 regnum->pc = MIPS_EMBED_PC_REGNUM;
6034 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
6035 regnum->fp_control_status = 70;
6036 regnum->fp_implementation_revision = 71;
6037 num_regs = 90;
6038 if (info.bfd_arch_info != NULL
6039 && info.bfd_arch_info->mach == bfd_mach_mips3900)
6040 reg_names = mips_tx39_reg_names;
6041 else
6042 reg_names = mips_generic_reg_names;
6043 }
6044 /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
6045 replaced by gdbarch_read_pc? */
6046 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
6047 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
6048 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
6049 set_gdbarch_num_regs (gdbarch, num_regs);
6050 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
6051 set_gdbarch_register_name (gdbarch, mips_register_name);
6052 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
6053 tdep->mips_processor_reg_names = reg_names;
6054 tdep->regnum = regnum;
6055 }
6056
6057 switch (mips_abi)
6058 {
6059 case MIPS_ABI_O32:
6060 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
6061 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
6062 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
6063 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
6064 tdep->default_mask_address_p = 0;
6065 set_gdbarch_long_bit (gdbarch, 32);
6066 set_gdbarch_ptr_bit (gdbarch, 32);
6067 set_gdbarch_long_long_bit (gdbarch, 64);
6068 break;
6069 case MIPS_ABI_O64:
6070 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
6071 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
6072 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
6073 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
6074 tdep->default_mask_address_p = 0;
6075 set_gdbarch_long_bit (gdbarch, 32);
6076 set_gdbarch_ptr_bit (gdbarch, 32);
6077 set_gdbarch_long_long_bit (gdbarch, 64);
6078 break;
6079 case MIPS_ABI_EABI32:
6080 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
6081 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
6082 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
6083 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
6084 tdep->default_mask_address_p = 0;
6085 set_gdbarch_long_bit (gdbarch, 32);
6086 set_gdbarch_ptr_bit (gdbarch, 32);
6087 set_gdbarch_long_long_bit (gdbarch, 64);
6088 break;
6089 case MIPS_ABI_EABI64:
6090 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
6091 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
6092 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
6093 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
6094 tdep->default_mask_address_p = 0;
6095 set_gdbarch_long_bit (gdbarch, 64);
6096 set_gdbarch_ptr_bit (gdbarch, 64);
6097 set_gdbarch_long_long_bit (gdbarch, 64);
6098 break;
6099 case MIPS_ABI_N32:
6100 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
6101 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
6102 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
6103 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
6104 tdep->default_mask_address_p = 0;
6105 set_gdbarch_long_bit (gdbarch, 32);
6106 set_gdbarch_ptr_bit (gdbarch, 32);
6107 set_gdbarch_long_long_bit (gdbarch, 64);
6108 set_gdbarch_long_double_bit (gdbarch, 128);
6109 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
6110 break;
6111 case MIPS_ABI_N64:
6112 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
6113 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
6114 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
6115 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
6116 tdep->default_mask_address_p = 0;
6117 set_gdbarch_long_bit (gdbarch, 64);
6118 set_gdbarch_ptr_bit (gdbarch, 64);
6119 set_gdbarch_long_long_bit (gdbarch, 64);
6120 set_gdbarch_long_double_bit (gdbarch, 128);
6121 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
6122 break;
6123 default:
6124 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
6125 }
6126
6127 /* GCC creates a pseudo-section whose name specifies the size of
6128 longs, since -mlong32 or -mlong64 may be used independent of
6129 other options. How those options affect pointer sizes is ABI and
6130 architecture dependent, so use them to override the default sizes
6131 set by the ABI. This table shows the relationship between ABI,
6132 -mlongXX, and size of pointers:
6133
6134 ABI -mlongXX ptr bits
6135 --- -------- --------
6136 o32 32 32
6137 o32 64 32
6138 n32 32 32
6139 n32 64 64
6140 o64 32 32
6141 o64 64 64
6142 n64 32 32
6143 n64 64 64
6144 eabi32 32 32
6145 eabi32 64 32
6146 eabi64 32 32
6147 eabi64 64 64
6148
6149 Note that for o32 and eabi32, pointers are always 32 bits
6150 regardless of any -mlongXX option. For all others, pointers and
6151 longs are the same, as set by -mlongXX or set by defaults. */
6152
6153 if (info.abfd != NULL)
6154 {
6155 int long_bit = 0;
6156
6157 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
6158 if (long_bit)
6159 {
6160 set_gdbarch_long_bit (gdbarch, long_bit);
6161 switch (mips_abi)
6162 {
6163 case MIPS_ABI_O32:
6164 case MIPS_ABI_EABI32:
6165 break;
6166 case MIPS_ABI_N32:
6167 case MIPS_ABI_O64:
6168 case MIPS_ABI_N64:
6169 case MIPS_ABI_EABI64:
6170 set_gdbarch_ptr_bit (gdbarch, long_bit);
6171 break;
6172 default:
6173 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
6174 }
6175 }
6176 }
6177
6178 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
6179 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
6180 comment:
6181
6182 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
6183 flag in object files because to do so would make it impossible to
6184 link with libraries compiled without "-gp32". This is
6185 unnecessarily restrictive.
6186
6187 We could solve this problem by adding "-gp32" multilibs to gcc,
6188 but to set this flag before gcc is built with such multilibs will
6189 break too many systems.''
6190
6191 But even more unhelpfully, the default linker output target for
6192 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
6193 for 64-bit programs - you need to change the ABI to change this,
6194 and not all gcc targets support that currently. Therefore using
6195 this flag to detect 32-bit mode would do the wrong thing given
6196 the current gcc - it would make GDB treat these 64-bit programs
6197 as 32-bit programs by default. */
6198
6199 set_gdbarch_read_pc (gdbarch, mips_read_pc);
6200 set_gdbarch_write_pc (gdbarch, mips_write_pc);
6201
6202 /* Add/remove bits from an address. The MIPS needs be careful to
6203 ensure that all 32 bit addresses are sign extended to 64 bits. */
6204 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
6205
6206 /* Unwind the frame. */
6207 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
6208 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
6209 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
6210
6211 /* Map debug register numbers onto internal register numbers. */
6212 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6213 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
6214 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6215 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
6216 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6217 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
6218
6219 /* MIPS version of CALL_DUMMY. */
6220
6221 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
6222 replaced by a command, and all targets will default to on stack
6223 (regardless of the stack's execute status). */
6224 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
6225 set_gdbarch_frame_align (gdbarch, mips_frame_align);
6226
6227 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
6228 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
6229 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
6230
6231 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6232 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6233
6234 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6235
6236 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
6237
6238 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6239 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6240 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
6241
6242 set_gdbarch_register_type (gdbarch, mips_register_type);
6243
6244 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
6245
6246 if (mips_abi == MIPS_ABI_N32)
6247 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
6248 else if (mips_abi == MIPS_ABI_N64)
6249 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
6250 else
6251 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
6252
6253 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
6254 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
6255 need to all be folded into the target vector. Since they are
6256 being used as guards for target_stopped_by_watchpoint, why not have
6257 target_stopped_by_watchpoint return the type of watchpoint that the code
6258 is sitting on? */
6259 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6260
6261 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
6262
6263 set_gdbarch_single_step_through_delay (gdbarch,
6264 mips_single_step_through_delay);
6265
6266 /* Virtual tables. */
6267 set_gdbarch_vbit_in_delta (gdbarch, 1);
6268
6269 mips_register_g_packet_guesses (gdbarch);
6270
6271 /* Hook in OS ABI-specific overrides, if they have been registered. */
6272 info.tdep_info = (void *) tdesc_data;
6273 gdbarch_init_osabi (info, gdbarch);
6274
6275 /* Unwind the frame. */
6276 dwarf2_append_unwinders (gdbarch);
6277 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
6278 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
6279 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
6280 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
6281 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
6282 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
6283 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
6284
6285 if (tdesc_data)
6286 {
6287 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
6288 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
6289
6290 /* Override the normal target description methods to handle our
6291 dual real and pseudo registers. */
6292 set_gdbarch_register_name (gdbarch, mips_register_name);
6293 set_gdbarch_register_reggroup_p (gdbarch,
6294 mips_tdesc_register_reggroup_p);
6295
6296 num_regs = gdbarch_num_regs (gdbarch);
6297 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
6298 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
6299 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
6300 }
6301
6302 /* Add ABI-specific aliases for the registers. */
6303 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
6304 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
6305 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
6306 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
6307 else
6308 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
6309 user_reg_add (gdbarch, mips_o32_aliases[i].name,
6310 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
6311
6312 /* Add some other standard aliases. */
6313 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
6314 user_reg_add (gdbarch, mips_register_aliases[i].name,
6315 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
6316
6317 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
6318 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
6319 value_of_mips_user_reg,
6320 &mips_numeric_register_aliases[i].regnum);
6321
6322 return gdbarch;
6323 }
6324
6325 static void
6326 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
6327 {
6328 struct gdbarch_info info;
6329
6330 /* Force the architecture to update, and (if it's a MIPS architecture)
6331 mips_gdbarch_init will take care of the rest. */
6332 gdbarch_info_init (&info);
6333 gdbarch_update_p (info);
6334 }
6335
6336 /* Print out which MIPS ABI is in use. */
6337
6338 static void
6339 show_mips_abi (struct ui_file *file,
6340 int from_tty,
6341 struct cmd_list_element *ignored_cmd,
6342 const char *ignored_value)
6343 {
6344 if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_mips)
6345 fprintf_filtered
6346 (file,
6347 "The MIPS ABI is unknown because the current architecture "
6348 "is not MIPS.\n");
6349 else
6350 {
6351 enum mips_abi global_abi = global_mips_abi ();
6352 enum mips_abi actual_abi = mips_abi (target_gdbarch);
6353 const char *actual_abi_str = mips_abi_strings[actual_abi];
6354
6355 if (global_abi == MIPS_ABI_UNKNOWN)
6356 fprintf_filtered
6357 (file,
6358 "The MIPS ABI is set automatically (currently \"%s\").\n",
6359 actual_abi_str);
6360 else if (global_abi == actual_abi)
6361 fprintf_filtered
6362 (file,
6363 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6364 actual_abi_str);
6365 else
6366 {
6367 /* Probably shouldn't happen... */
6368 fprintf_filtered (file,
6369 "The (auto detected) MIPS ABI \"%s\" is in use "
6370 "even though the user setting was \"%s\".\n",
6371 actual_abi_str, mips_abi_strings[global_abi]);
6372 }
6373 }
6374 }
6375
6376 static void
6377 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
6378 {
6379 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6380 if (tdep != NULL)
6381 {
6382 int ef_mips_arch;
6383 int ef_mips_32bitmode;
6384 /* Determine the ISA. */
6385 switch (tdep->elf_flags & EF_MIPS_ARCH)
6386 {
6387 case E_MIPS_ARCH_1:
6388 ef_mips_arch = 1;
6389 break;
6390 case E_MIPS_ARCH_2:
6391 ef_mips_arch = 2;
6392 break;
6393 case E_MIPS_ARCH_3:
6394 ef_mips_arch = 3;
6395 break;
6396 case E_MIPS_ARCH_4:
6397 ef_mips_arch = 4;
6398 break;
6399 default:
6400 ef_mips_arch = 0;
6401 break;
6402 }
6403 /* Determine the size of a pointer. */
6404 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6405 fprintf_unfiltered (file,
6406 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6407 tdep->elf_flags);
6408 fprintf_unfiltered (file,
6409 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6410 ef_mips_32bitmode);
6411 fprintf_unfiltered (file,
6412 "mips_dump_tdep: ef_mips_arch = %d\n",
6413 ef_mips_arch);
6414 fprintf_unfiltered (file,
6415 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6416 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
6417 fprintf_unfiltered (file,
6418 "mips_dump_tdep: "
6419 "mips_mask_address_p() %d (default %d)\n",
6420 mips_mask_address_p (tdep),
6421 tdep->default_mask_address_p);
6422 }
6423 fprintf_unfiltered (file,
6424 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6425 MIPS_DEFAULT_FPU_TYPE,
6426 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6427 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6428 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6429 : "???"));
6430 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
6431 MIPS_EABI (gdbarch));
6432 fprintf_unfiltered (file,
6433 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6434 MIPS_FPU_TYPE (gdbarch),
6435 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
6436 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
6437 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
6438 : "???"));
6439 }
6440
6441 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6442
6443 void
6444 _initialize_mips_tdep (void)
6445 {
6446 static struct cmd_list_element *mipsfpulist = NULL;
6447 struct cmd_list_element *c;
6448
6449 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
6450 if (MIPS_ABI_LAST + 1
6451 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6452 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
6453
6454 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6455
6456 mips_pdr_data = register_objfile_data ();
6457
6458 /* Create feature sets with the appropriate properties. The values
6459 are not important. */
6460 mips_tdesc_gp32 = allocate_target_description ();
6461 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
6462
6463 mips_tdesc_gp64 = allocate_target_description ();
6464 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
6465
6466 /* Add root prefix command for all "set mips"/"show mips" commands. */
6467 add_prefix_cmd ("mips", no_class, set_mips_command,
6468 _("Various MIPS specific commands."),
6469 &setmipscmdlist, "set mips ", 0, &setlist);
6470
6471 add_prefix_cmd ("mips", no_class, show_mips_command,
6472 _("Various MIPS specific commands."),
6473 &showmipscmdlist, "show mips ", 0, &showlist);
6474
6475 /* Allow the user to override the ABI. */
6476 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
6477 &mips_abi_string, _("\
6478 Set the MIPS ABI used by this program."), _("\
6479 Show the MIPS ABI used by this program."), _("\
6480 This option can be set to one of:\n\
6481 auto - the default ABI associated with the current binary\n\
6482 o32\n\
6483 o64\n\
6484 n32\n\
6485 n64\n\
6486 eabi32\n\
6487 eabi64"),
6488 mips_abi_update,
6489 show_mips_abi,
6490 &setmipscmdlist, &showmipscmdlist);
6491
6492 /* Let the user turn off floating point and set the fence post for
6493 heuristic_proc_start. */
6494
6495 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6496 _("Set use of MIPS floating-point coprocessor."),
6497 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6498 add_cmd ("single", class_support, set_mipsfpu_single_command,
6499 _("Select single-precision MIPS floating-point coprocessor."),
6500 &mipsfpulist);
6501 add_cmd ("double", class_support, set_mipsfpu_double_command,
6502 _("Select double-precision MIPS floating-point coprocessor."),
6503 &mipsfpulist);
6504 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6505 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6506 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6507 add_cmd ("none", class_support, set_mipsfpu_none_command,
6508 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
6509 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6510 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6511 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6512 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6513 _("Select MIPS floating-point coprocessor automatically."),
6514 &mipsfpulist);
6515 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6516 _("Show current use of MIPS floating-point coprocessor target."),
6517 &showlist);
6518
6519 /* We really would like to have both "0" and "unlimited" work, but
6520 command.c doesn't deal with that. So make it a var_zinteger
6521 because the user can always use "999999" or some such for unlimited. */
6522 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
6523 &heuristic_fence_post, _("\
6524 Set the distance searched for the start of a function."), _("\
6525 Show the distance searched for the start of a function."), _("\
6526 If you are debugging a stripped executable, GDB needs to search through the\n\
6527 program for the start of a function. This command sets the distance of the\n\
6528 search. The only need to set it is when debugging a stripped executable."),
6529 reinit_frame_cache_sfunc,
6530 NULL, /* FIXME: i18n: The distance searched for
6531 the start of a function is %s. */
6532 &setlist, &showlist);
6533
6534 /* Allow the user to control whether the upper bits of 64-bit
6535 addresses should be zeroed. */
6536 add_setshow_auto_boolean_cmd ("mask-address", no_class,
6537 &mask_address_var, _("\
6538 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
6539 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
6540 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
6541 allow GDB to determine the correct value."),
6542 NULL, show_mask_address,
6543 &setmipscmdlist, &showmipscmdlist);
6544
6545 /* Allow the user to control the size of 32 bit registers within the
6546 raw remote packet. */
6547 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
6548 &mips64_transfers_32bit_regs_p, _("\
6549 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
6550 _("\
6551 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
6552 _("\
6553 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6554 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6555 64 bits for others. Use \"off\" to disable compatibility mode"),
6556 set_mips64_transfers_32bit_regs,
6557 NULL, /* FIXME: i18n: Compatibility with 64-bit
6558 MIPS target that transfers 32-bit
6559 quantities is %s. */
6560 &setlist, &showlist);
6561
6562 /* Debug this files internals. */
6563 add_setshow_zinteger_cmd ("mips", class_maintenance,
6564 &mips_debug, _("\
6565 Set mips debugging."), _("\
6566 Show mips debugging."), _("\
6567 When non-zero, mips specific debugging is enabled."),
6568 NULL,
6569 NULL, /* FIXME: i18n: Mips debugging is
6570 currently %s. */
6571 &setdebuglist, &showdebuglist);
6572 }