]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ns32knbsd-nat.c
Protoization.
[thirdparty/binutils-gdb.git] / gdb / ns32knbsd-nat.c
1 /* Functions specific to running gdb native on an ns32k running NetBSD
2 Copyright 1989, 1992, 1993, 1994, 1996 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include <sys/types.h>
22 #include <sys/ptrace.h>
23 #include <machine/reg.h>
24 #include <machine/frame.h>
25 #include <machine/pcb.h>
26
27 #include "defs.h"
28 #include "inferior.h"
29 #include "target.h"
30 #include "gdbcore.h"
31
32 #define RF(dst, src) \
33 memcpy(&registers[REGISTER_BYTE(dst)], &src, sizeof(src))
34
35 #define RS(src, dst) \
36 memcpy(&dst, &registers[REGISTER_BYTE(src)], sizeof(dst))
37
38 void
39 fetch_inferior_registers (int regno)
40 {
41 struct reg inferior_registers;
42 struct fpreg inferior_fpregisters;
43
44 ptrace (PT_GETREGS, inferior_pid,
45 (PTRACE_ARG3_TYPE) & inferior_registers, 0);
46 ptrace (PT_GETFPREGS, inferior_pid,
47 (PTRACE_ARG3_TYPE) & inferior_fpregisters, 0);
48
49 RF (R0_REGNUM + 0, inferior_registers.r_r0);
50 RF (R0_REGNUM + 1, inferior_registers.r_r1);
51 RF (R0_REGNUM + 2, inferior_registers.r_r2);
52 RF (R0_REGNUM + 3, inferior_registers.r_r3);
53 RF (R0_REGNUM + 4, inferior_registers.r_r4);
54 RF (R0_REGNUM + 5, inferior_registers.r_r5);
55 RF (R0_REGNUM + 6, inferior_registers.r_r6);
56 RF (R0_REGNUM + 7, inferior_registers.r_r7);
57
58 RF (SP_REGNUM, inferior_registers.r_sp);
59 RF (FP_REGNUM, inferior_registers.r_fp);
60 RF (PC_REGNUM, inferior_registers.r_pc);
61 RF (PS_REGNUM, inferior_registers.r_psr);
62
63 RF (FPS_REGNUM, inferior_fpregisters.r_fsr);
64 RF (FP0_REGNUM + 0, inferior_fpregisters.r_freg[0]);
65 RF (FP0_REGNUM + 2, inferior_fpregisters.r_freg[2]);
66 RF (FP0_REGNUM + 4, inferior_fpregisters.r_freg[4]);
67 RF (FP0_REGNUM + 6, inferior_fpregisters.r_freg[6]);
68 RF (LP0_REGNUM + 1, inferior_fpregisters.r_freg[1]);
69 RF (LP0_REGNUM + 3, inferior_fpregisters.r_freg[3]);
70 RF (LP0_REGNUM + 5, inferior_fpregisters.r_freg[5]);
71 RF (LP0_REGNUM + 7, inferior_fpregisters.r_freg[7]);
72 registers_fetched ();
73 }
74
75 void
76 store_inferior_registers (int regno)
77 {
78 struct reg inferior_registers;
79 struct fpreg inferior_fpregisters;
80
81 RS (R0_REGNUM + 0, inferior_registers.r_r0);
82 RS (R0_REGNUM + 1, inferior_registers.r_r1);
83 RS (R0_REGNUM + 2, inferior_registers.r_r2);
84 RS (R0_REGNUM + 3, inferior_registers.r_r3);
85 RS (R0_REGNUM + 4, inferior_registers.r_r4);
86 RS (R0_REGNUM + 5, inferior_registers.r_r5);
87 RS (R0_REGNUM + 6, inferior_registers.r_r6);
88 RS (R0_REGNUM + 7, inferior_registers.r_r7);
89
90 RS (SP_REGNUM, inferior_registers.r_sp);
91 RS (FP_REGNUM, inferior_registers.r_fp);
92 RS (PC_REGNUM, inferior_registers.r_pc);
93 RS (PS_REGNUM, inferior_registers.r_psr);
94
95 RS (FPS_REGNUM, inferior_fpregisters.r_fsr);
96 RS (FP0_REGNUM + 0, inferior_fpregisters.r_freg[0]);
97 RS (FP0_REGNUM + 2, inferior_fpregisters.r_freg[2]);
98 RS (FP0_REGNUM + 4, inferior_fpregisters.r_freg[4]);
99 RS (FP0_REGNUM + 6, inferior_fpregisters.r_freg[6]);
100 RS (LP0_REGNUM + 1, inferior_fpregisters.r_freg[1]);
101 RS (LP0_REGNUM + 3, inferior_fpregisters.r_freg[3]);
102 RS (LP0_REGNUM + 5, inferior_fpregisters.r_freg[5]);
103 RS (LP0_REGNUM + 7, inferior_fpregisters.r_freg[7]);
104
105 ptrace (PT_SETREGS, inferior_pid,
106 (PTRACE_ARG3_TYPE) & inferior_registers, 0);
107 ptrace (PT_SETFPREGS, inferior_pid,
108 (PTRACE_ARG3_TYPE) & inferior_fpregisters, 0);
109 }
110 \f
111
112 /* XXX - Add this to machine/regs.h instead? */
113 struct coreregs
114 {
115 struct reg intreg;
116 struct fpreg freg;
117 };
118
119 /* Get registers from a core file. */
120 static void
121 fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
122 char *core_reg_sect;
123 unsigned core_reg_size;
124 int which;
125 unsigned int reg_addr; /* Unused in this version */
126 {
127 struct coreregs *core_reg;
128
129 core_reg = (struct coreregs *) core_reg_sect;
130
131 /*
132 * We have *all* registers
133 * in the first core section.
134 * Ignore which.
135 */
136
137 if (core_reg_size < sizeof (*core_reg))
138 {
139 fprintf_unfiltered (gdb_stderr, "Couldn't read regs from core file\n");
140 return;
141 }
142
143 /* Integer registers */
144 RF (R0_REGNUM + 0, core_reg->intreg.r_r0);
145 RF (R0_REGNUM + 1, core_reg->intreg.r_r1);
146 RF (R0_REGNUM + 2, core_reg->intreg.r_r2);
147 RF (R0_REGNUM + 3, core_reg->intreg.r_r3);
148 RF (R0_REGNUM + 4, core_reg->intreg.r_r4);
149 RF (R0_REGNUM + 5, core_reg->intreg.r_r5);
150 RF (R0_REGNUM + 6, core_reg->intreg.r_r6);
151 RF (R0_REGNUM + 7, core_reg->intreg.r_r7);
152
153 RF (SP_REGNUM, core_reg->intreg.r_sp);
154 RF (FP_REGNUM, core_reg->intreg.r_fp);
155 RF (PC_REGNUM, core_reg->intreg.r_pc);
156 RF (PS_REGNUM, core_reg->intreg.r_psr);
157
158 /* Floating point registers */
159 RF (FPS_REGNUM, core_reg->freg.r_fsr);
160 RF (FP0_REGNUM + 0, core_reg->freg.r_freg[0]);
161 RF (FP0_REGNUM + 2, core_reg->freg.r_freg[2]);
162 RF (FP0_REGNUM + 4, core_reg->freg.r_freg[4]);
163 RF (FP0_REGNUM + 6, core_reg->freg.r_freg[6]);
164 RF (LP0_REGNUM + 1, core_reg->freg.r_freg[1]);
165 RF (LP0_REGNUM + 3, core_reg->freg.r_freg[3]);
166 RF (LP0_REGNUM + 5, core_reg->freg.r_freg[5]);
167 RF (LP0_REGNUM + 7, core_reg->freg.r_freg[7]);
168 registers_fetched ();
169 }
170
171 /* Register that we are able to handle ns32knbsd core file formats.
172 FIXME: is this really bfd_target_unknown_flavour? */
173
174 static struct core_fns nat_core_fns =
175 {
176 bfd_target_unknown_flavour, /* core_flavour */
177 default_check_format, /* check_format */
178 default_core_sniffer, /* core_sniffer */
179 fetch_core_registers, /* core_read_registers */
180 NULL /* next */
181 };
182
183 void
184 _initialize_ns32knbsd_nat (void)
185 {
186 add_core_fns (&nat_core_fns);
187 }
188 \f
189
190 /*
191 * kernel_u_size() is not helpful on NetBSD because
192 * the "u" struct is NOT in the core dump file.
193 */
194
195 #ifdef FETCH_KCORE_REGISTERS
196 /*
197 * Get registers from a kernel crash dump or live kernel.
198 * Called by kcore-nbsd.c:get_kcore_registers().
199 */
200 void
201 fetch_kcore_registers (struct pcb *pcb)
202 {
203 struct switchframe sf;
204 struct reg intreg;
205 int dummy;
206
207 /* Integer registers */
208 if (target_read_memory ((CORE_ADDR) pcb->pcb_ksp, (char *) &sf, sizeof sf))
209 error ("Cannot read integer registers.");
210
211 /* We use the psr at kernel entry */
212 if (target_read_memory ((CORE_ADDR) pcb->pcb_onstack, (char *) &intreg, sizeof intreg))
213 error ("Cannot read processor status register.");
214
215 dummy = 0;
216 RF (R0_REGNUM + 0, dummy);
217 RF (R0_REGNUM + 1, dummy);
218 RF (R0_REGNUM + 2, dummy);
219 RF (R0_REGNUM + 3, sf.sf_r3);
220 RF (R0_REGNUM + 4, sf.sf_r4);
221 RF (R0_REGNUM + 5, sf.sf_r5);
222 RF (R0_REGNUM + 6, sf.sf_r6);
223 RF (R0_REGNUM + 7, sf.sf_r7);
224
225 dummy = pcb->pcb_kfp + 8;
226 RF (SP_REGNUM, dummy);
227 RF (FP_REGNUM, sf.sf_fp);
228 RF (PC_REGNUM, sf.sf_pc);
229 RF (PS_REGNUM, intreg.r_psr);
230
231 /* Floating point registers */
232 RF (FPS_REGNUM, pcb->pcb_fsr);
233 RF (FP0_REGNUM + 0, pcb->pcb_freg[0]);
234 RF (FP0_REGNUM + 2, pcb->pcb_freg[2]);
235 RF (FP0_REGNUM + 4, pcb->pcb_freg[4]);
236 RF (FP0_REGNUM + 6, pcb->pcb_freg[6]);
237 RF (LP0_REGNUM + 1, pcb->pcb_freg[1]);
238 RF (LP0_REGNUM + 3, pcb->pcb_freg[3]);
239 RF (LP0_REGNUM + 5, pcb->pcb_freg[5]);
240 RF (LP0_REGNUM + 7, pcb->pcb_freg[7]);
241 registers_fetched ();
242 }
243 #endif /* FETCH_KCORE_REGISTERS */
244
245 void
246 clear_regs (void)
247 {
248 double zero = 0.0;
249 int null = 0;
250
251 /* Integer registers */
252 RF (R0_REGNUM + 0, null);
253 RF (R0_REGNUM + 1, null);
254 RF (R0_REGNUM + 2, null);
255 RF (R0_REGNUM + 3, null);
256 RF (R0_REGNUM + 4, null);
257 RF (R0_REGNUM + 5, null);
258 RF (R0_REGNUM + 6, null);
259 RF (R0_REGNUM + 7, null);
260
261 RF (SP_REGNUM, null);
262 RF (FP_REGNUM, null);
263 RF (PC_REGNUM, null);
264 RF (PS_REGNUM, null);
265
266 /* Floating point registers */
267 RF (FPS_REGNUM, zero);
268 RF (FP0_REGNUM + 0, zero);
269 RF (FP0_REGNUM + 2, zero);
270 RF (FP0_REGNUM + 4, zero);
271 RF (FP0_REGNUM + 6, zero);
272 RF (LP0_REGNUM + 0, zero);
273 RF (LP0_REGNUM + 1, zero);
274 RF (LP0_REGNUM + 2, zero);
275 RF (LP0_REGNUM + 3, zero);
276 return;
277 }
278
279 /* Return number of args passed to a frame.
280 Can return -1, meaning no way to tell. */
281
282 int
283 frame_num_args (struct frame_info *fi)
284 {
285 CORE_ADDR enter_addr;
286 CORE_ADDR argp;
287 int inst;
288 int args;
289 int i;
290
291 if (read_memory_integer (fi->frame, 4) == 0 && fi->pc < 0x10000)
292 {
293 /* main is always called with three args */
294 return (3);
295 }
296 enter_addr = ns32k_get_enter_addr (fi->pc);
297 if (enter_addr = 0)
298 return (-1);
299 argp = enter_addr == 1 ? SAVED_PC_AFTER_CALL (fi) : FRAME_SAVED_PC (fi);
300 for (i = 0; i < 16; i++)
301 {
302 /*
303 * After a bsr gcc may emit the following instructions
304 * to remove the arguments from the stack:
305 * cmpqd 0,tos - to remove 4 bytes from the stack
306 * cmpd tos,tos - to remove 8 bytes from the stack
307 * adjsp[bwd] -n - to remove n bytes from the stack
308 * Gcc sometimes delays emitting these instructions and
309 * may even throw a branch between our feet.
310 */
311 inst = read_memory_integer (argp, 4);
312 args = read_memory_integer (argp + 2, 4);
313 if ((inst & 0xff) == 0xea)
314 { /* br */
315 args = ((inst >> 8) & 0xffffff) | (args << 24);
316 if (args & 0x80)
317 {
318 if (args & 0x40)
319 {
320 args = ntohl (args);
321 }
322 else
323 {
324 args = ntohs (args & 0xffff);
325 if (args & 0x2000)
326 args |= 0xc000;
327 }
328 }
329 else
330 {
331 args = args & 0xff;
332 if (args & 0x40)
333 args |= 0x80;
334 }
335 argp += args;
336 continue;
337 }
338 if ((inst & 0xffff) == 0xb81f) /* cmpqd 0,tos */
339 return (1);
340 else if ((inst & 0xffff) == 0xbdc7) /* cmpd tos,tos */
341 return (2);
342 else if ((inst & 0xfffc) == 0xa57c)
343 { /* adjsp[bwd] */
344 switch (inst & 3)
345 {
346 case 0:
347 args = ((args & 0xff) + 0x80);
348 break;
349 case 1:
350 args = ((ntohs (args) & 0xffff) + 0x8000);
351 break;
352 case 3:
353 args = -ntohl (args);
354 break;
355 default:
356 return (-1);
357 }
358 if (args / 4 > 10 || (args & 3) != 0)
359 continue;
360 return (args / 4);
361 }
362 argp += 1;
363 }
364 return (-1);
365 }