]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/objfiles.c
import gdb-1999-09-21
[thirdparty/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32
33 #include <sys/types.h>
34 #include "gdb_stat.h"
35 #include <fcntl.h>
36 #include "obstack.h"
37 #include "gdb_string.h"
38
39 #include "breakpoint.h"
40
41 /* Prototypes for local functions */
42
43 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
44
45 static int
46 open_existing_mapped_file PARAMS ((char *, long, int));
47
48 static int
49 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
50
51 static PTR
52 map_to_file PARAMS ((int));
53
54 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
55
56 static void
57 add_to_objfile_sections PARAMS ((bfd *, sec_ptr, PTR));
58
59 /* Externally visible variables that are owned by this module.
60 See declarations in objfile.h for more info. */
61
62 struct objfile *object_files; /* Linked list of all objfiles */
63 struct objfile *current_objfile; /* For symbol file being read in */
64 struct objfile *symfile_objfile; /* Main symbol table loaded from */
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 int mapped_symbol_files; /* Try to use mapped symbol files */
68
69 /* Locate all mappable sections of a BFD file.
70 objfile_p_char is a char * to get it through
71 bfd_map_over_sections; we cast it back to its proper type. */
72
73 #ifndef TARGET_KEEP_SECTION
74 #define TARGET_KEEP_SECTION(ASECT) 0
75 #endif
76
77 /* Called via bfd_map_over_sections to build up the section table that
78 the objfile references. The objfile contains pointers to the start
79 of the table (objfile->sections) and to the first location after
80 the end of the table (objfile->sections_end). */
81
82 static void
83 add_to_objfile_sections (abfd, asect, objfile_p_char)
84 bfd *abfd;
85 sec_ptr asect;
86 PTR objfile_p_char;
87 {
88 struct objfile *objfile = (struct objfile *) objfile_p_char;
89 struct obj_section section;
90 flagword aflag;
91
92 aflag = bfd_get_section_flags (abfd, asect);
93
94 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
95 return;
96
97 if (0 == bfd_section_size (abfd, asect))
98 return;
99 section.offset = 0;
100 section.objfile = objfile;
101 section.the_bfd_section = asect;
102 section.ovly_mapped = 0;
103 section.addr = bfd_section_vma (abfd, asect);
104 section.endaddr = section.addr + bfd_section_size (abfd, asect);
105 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
106 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
107 }
108
109 /* Builds a section table for OBJFILE.
110 Returns 0 if OK, 1 on error (in which case bfd_error contains the
111 error).
112
113 Note that while we are building the table, which goes into the
114 psymbol obstack, we hijack the sections_end pointer to instead hold
115 a count of the number of sections. When bfd_map_over_sections
116 returns, this count is used to compute the pointer to the end of
117 the sections table, which then overwrites the count.
118
119 Also note that the OFFSET and OVLY_MAPPED in each table entry
120 are initialized to zero.
121
122 Also note that if anything else writes to the psymbol obstack while
123 we are building the table, we're pretty much hosed. */
124
125 int
126 build_objfile_section_table (objfile)
127 struct objfile *objfile;
128 {
129 /* objfile->sections can be already set when reading a mapped symbol
130 file. I believe that we do need to rebuild the section table in
131 this case (we rebuild other things derived from the bfd), but we
132 can't free the old one (it's in the psymbol_obstack). So we just
133 waste some memory. */
134
135 objfile->sections_end = 0;
136 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
137 objfile->sections = (struct obj_section *)
138 obstack_finish (&objfile->psymbol_obstack);
139 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
140 return (0);
141 }
142
143 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
144 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
145 struct, fill it in as best we can, link it into the list of all known
146 objfiles, and return a pointer to the new objfile struct.
147
148 USER_LOADED is simply recorded in the objfile. This record offers a way for
149 run_command to remove old objfile entries which are no longer valid (i.e.,
150 are associated with an old inferior), but to preserve ones that the user
151 explicitly loaded via the add-symbol-file command.
152
153 IS_SOLIB is also simply recorded in the objfile. */
154
155 struct objfile *
156 allocate_objfile (abfd, mapped, user_loaded, is_solib)
157 bfd *abfd;
158 int mapped;
159 int user_loaded;
160 int is_solib;
161 {
162 struct objfile *objfile = NULL;
163 struct objfile *last_one = NULL;
164
165 mapped |= mapped_symbol_files;
166
167 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
168 if (abfd != NULL)
169 {
170
171 /* If we can support mapped symbol files, try to open/reopen the
172 mapped file that corresponds to the file from which we wish to
173 read symbols. If the objfile is to be mapped, we must malloc
174 the structure itself using the mmap version, and arrange that
175 all memory allocation for the objfile uses the mmap routines.
176 If we are reusing an existing mapped file, from which we get
177 our objfile pointer, we have to make sure that we update the
178 pointers to the alloc/free functions in the obstack, in case
179 these functions have moved within the current gdb. */
180
181 int fd;
182
183 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
184 mapped);
185 if (fd >= 0)
186 {
187 PTR md;
188
189 if ((md = map_to_file (fd)) == NULL)
190 {
191 close (fd);
192 }
193 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
194 {
195 /* Update memory corruption handler function addresses. */
196 init_malloc (md);
197 objfile->md = md;
198 objfile->mmfd = fd;
199 /* Update pointers to functions to *our* copies */
200 obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
201 obstack_freefun (&objfile->psymbol_cache.cache, mfree);
202 obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
203 obstack_freefun (&objfile->psymbol_obstack, mfree);
204 obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
205 obstack_freefun (&objfile->symbol_obstack, mfree);
206 obstack_chunkfun (&objfile->type_obstack, xmmalloc);
207 obstack_freefun (&objfile->type_obstack, mfree);
208 /* If already in objfile list, unlink it. */
209 unlink_objfile (objfile);
210 /* Forget things specific to a particular gdb, may have changed. */
211 objfile->sf = NULL;
212 }
213 else
214 {
215
216 /* Set up to detect internal memory corruption. MUST be
217 done before the first malloc. See comments in
218 init_malloc() and mmcheck(). */
219
220 init_malloc (md);
221
222 objfile = (struct objfile *)
223 xmmalloc (md, sizeof (struct objfile));
224 memset (objfile, 0, sizeof (struct objfile));
225 objfile->md = md;
226 objfile->mmfd = fd;
227 objfile->flags |= OBJF_MAPPED;
228 mmalloc_setkey (objfile->md, 0, objfile);
229 obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
230 0, 0, xmmalloc, mfree,
231 objfile->md);
232 obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
233 0, 0, xmmalloc, mfree,
234 objfile->md);
235 obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
236 0, 0, xmmalloc, mfree,
237 objfile->md);
238 obstack_specify_allocation_with_arg (&objfile->type_obstack,
239 0, 0, xmmalloc, mfree,
240 objfile->md);
241 }
242 }
243
244 if (mapped && (objfile == NULL))
245 {
246 warning ("symbol table for '%s' will not be mapped",
247 bfd_get_filename (abfd));
248 }
249 }
250 #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
251
252 if (mapped)
253 {
254 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
255
256 /* Turn off the global flag so we don't try to do mapped symbol tables
257 any more, which shuts up gdb unless the user specifically gives the
258 "mapped" keyword again. */
259
260 mapped_symbol_files = 0;
261 }
262
263 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
264
265 /* If we don't support mapped symbol files, didn't ask for the file to be
266 mapped, or failed to open the mapped file for some reason, then revert
267 back to an unmapped objfile. */
268
269 if (objfile == NULL)
270 {
271 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
272 memset (objfile, 0, sizeof (struct objfile));
273 objfile->md = NULL;
274 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
275 xmalloc, free);
276 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
277 free);
278 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
279 free);
280 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
281 free);
282 }
283
284 /* Update the per-objfile information that comes from the bfd, ensuring
285 that any data that is reference is saved in the per-objfile data
286 region. */
287
288 objfile->obfd = abfd;
289 if (objfile->name != NULL)
290 {
291 mfree (objfile->md, objfile->name);
292 }
293 if (abfd != NULL)
294 {
295 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
296 objfile->mtime = bfd_get_mtime (abfd);
297
298 /* Build section table. */
299
300 if (build_objfile_section_table (objfile))
301 {
302 error ("Can't find the file sections in `%s': %s",
303 objfile->name, bfd_errmsg (bfd_get_error ()));
304 }
305 }
306
307 /* Add this file onto the tail of the linked list of other such files. */
308
309 objfile->next = NULL;
310 if (object_files == NULL)
311 object_files = objfile;
312 else
313 {
314 for (last_one = object_files;
315 last_one->next;
316 last_one = last_one->next);
317 last_one->next = objfile;
318 }
319
320 /* Record whether this objfile was created because the user explicitly
321 caused it (e.g., used the add-symbol-file command).
322 */
323 objfile->user_loaded = user_loaded;
324
325 /* Record whether this objfile definitely represents a solib. */
326 objfile->is_solib = is_solib;
327
328 return (objfile);
329 }
330
331 /* Put OBJFILE at the front of the list. */
332
333 void
334 objfile_to_front (objfile)
335 struct objfile *objfile;
336 {
337 struct objfile **objp;
338 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
339 {
340 if (*objp == objfile)
341 {
342 /* Unhook it from where it is. */
343 *objp = objfile->next;
344 /* Put it in the front. */
345 objfile->next = object_files;
346 object_files = objfile;
347 break;
348 }
349 }
350 }
351
352 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
353 list.
354
355 It is not a bug, or error, to call this function if OBJFILE is not known
356 to be in the current list. This is done in the case of mapped objfiles,
357 for example, just to ensure that the mapped objfile doesn't appear twice
358 in the list. Since the list is threaded, linking in a mapped objfile
359 twice would create a circular list.
360
361 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
362 unlinking it, just to ensure that we have completely severed any linkages
363 between the OBJFILE and the list. */
364
365 void
366 unlink_objfile (objfile)
367 struct objfile *objfile;
368 {
369 struct objfile **objpp;
370
371 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
372 {
373 if (*objpp == objfile)
374 {
375 *objpp = (*objpp)->next;
376 objfile->next = NULL;
377 break;
378 }
379 }
380 }
381
382
383 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
384 that as much as possible is allocated on the symbol_obstack and
385 psymbol_obstack, so that the memory can be efficiently freed.
386
387 Things which we do NOT free because they are not in malloc'd memory
388 or not in memory specific to the objfile include:
389
390 objfile -> sf
391
392 FIXME: If the objfile is using reusable symbol information (via mmalloc),
393 then we need to take into account the fact that more than one process
394 may be using the symbol information at the same time (when mmalloc is
395 extended to support cooperative locking). When more than one process
396 is using the mapped symbol info, we need to be more careful about when
397 we free objects in the reusable area. */
398
399 void
400 free_objfile (objfile)
401 struct objfile *objfile;
402 {
403 /* First do any symbol file specific actions required when we are
404 finished with a particular symbol file. Note that if the objfile
405 is using reusable symbol information (via mmalloc) then each of
406 these routines is responsible for doing the correct thing, either
407 freeing things which are valid only during this particular gdb
408 execution, or leaving them to be reused during the next one. */
409
410 if (objfile->sf != NULL)
411 {
412 (*objfile->sf->sym_finish) (objfile);
413 }
414
415 /* We always close the bfd. */
416
417 if (objfile->obfd != NULL)
418 {
419 char *name = bfd_get_filename (objfile->obfd);
420 if (!bfd_close (objfile->obfd))
421 warning ("cannot close \"%s\": %s",
422 name, bfd_errmsg (bfd_get_error ()));
423 free (name);
424 }
425
426 /* Remove it from the chain of all objfiles. */
427
428 unlink_objfile (objfile);
429
430 /* If we are going to free the runtime common objfile, mark it
431 as unallocated. */
432
433 if (objfile == rt_common_objfile)
434 rt_common_objfile = NULL;
435
436 /* Before the symbol table code was redone to make it easier to
437 selectively load and remove information particular to a specific
438 linkage unit, gdb used to do these things whenever the monolithic
439 symbol table was blown away. How much still needs to be done
440 is unknown, but we play it safe for now and keep each action until
441 it is shown to be no longer needed. */
442
443 #if defined (CLEAR_SOLIB)
444 CLEAR_SOLIB ();
445 /* CLEAR_SOLIB closes the bfd's for any shared libraries. But
446 the to_sections for a core file might refer to those bfd's. So
447 detach any core file. */
448 {
449 struct target_ops *t = find_core_target ();
450 if (t != NULL)
451 (t->to_detach) (NULL, 0);
452 }
453 #endif
454 /* I *think* all our callers call clear_symtab_users. If so, no need
455 to call this here. */
456 clear_pc_function_cache ();
457
458 /* The last thing we do is free the objfile struct itself for the
459 non-reusable case, or detach from the mapped file for the reusable
460 case. Note that the mmalloc_detach or the mfree is the last thing
461 we can do with this objfile. */
462
463 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
464
465 if (objfile->flags & OBJF_MAPPED)
466 {
467 /* Remember the fd so we can close it. We can't close it before
468 doing the detach, and after the detach the objfile is gone. */
469 int mmfd;
470
471 mmfd = objfile->mmfd;
472 mmalloc_detach (objfile->md);
473 objfile = NULL;
474 close (mmfd);
475 }
476
477 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
478
479 /* If we still have an objfile, then either we don't support reusable
480 objfiles or this one was not reusable. So free it normally. */
481
482 if (objfile != NULL)
483 {
484 if (objfile->name != NULL)
485 {
486 mfree (objfile->md, objfile->name);
487 }
488 if (objfile->global_psymbols.list)
489 mfree (objfile->md, objfile->global_psymbols.list);
490 if (objfile->static_psymbols.list)
491 mfree (objfile->md, objfile->static_psymbols.list);
492 /* Free the obstacks for non-reusable objfiles */
493 obstack_free (&objfile->psymbol_cache.cache, 0);
494 obstack_free (&objfile->psymbol_obstack, 0);
495 obstack_free (&objfile->symbol_obstack, 0);
496 obstack_free (&objfile->type_obstack, 0);
497 mfree (objfile->md, objfile);
498 objfile = NULL;
499 }
500 }
501
502
503 /* Free all the object files at once and clean up their users. */
504
505 void
506 free_all_objfiles ()
507 {
508 struct objfile *objfile, *temp;
509
510 ALL_OBJFILES_SAFE (objfile, temp)
511 {
512 free_objfile (objfile);
513 }
514 clear_symtab_users ();
515 }
516 \f
517 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
518 entries in new_offsets. */
519 void
520 objfile_relocate (objfile, new_offsets)
521 struct objfile *objfile;
522 struct section_offsets *new_offsets;
523 {
524 struct section_offsets *delta =
525 (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
526
527 {
528 int i;
529 int something_changed = 0;
530 for (i = 0; i < objfile->num_sections; ++i)
531 {
532 ANOFFSET (delta, i) =
533 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
534 if (ANOFFSET (delta, i) != 0)
535 something_changed = 1;
536 }
537 if (!something_changed)
538 return;
539 }
540
541 /* OK, get all the symtabs. */
542 {
543 struct symtab *s;
544
545 ALL_OBJFILE_SYMTABS (objfile, s)
546 {
547 struct linetable *l;
548 struct blockvector *bv;
549 int i;
550
551 /* First the line table. */
552 l = LINETABLE (s);
553 if (l)
554 {
555 for (i = 0; i < l->nitems; ++i)
556 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
557 }
558
559 /* Don't relocate a shared blockvector more than once. */
560 if (!s->primary)
561 continue;
562
563 bv = BLOCKVECTOR (s);
564 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
565 {
566 struct block *b;
567 int j;
568
569 b = BLOCKVECTOR_BLOCK (bv, i);
570 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
571 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
572
573 for (j = 0; j < BLOCK_NSYMS (b); ++j)
574 {
575 struct symbol *sym = BLOCK_SYM (b, j);
576 /* The RS6000 code from which this was taken skipped
577 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
578 But I'm leaving out that test, on the theory that
579 they can't possibly pass the tests below. */
580 if ((SYMBOL_CLASS (sym) == LOC_LABEL
581 || SYMBOL_CLASS (sym) == LOC_STATIC
582 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
583 && SYMBOL_SECTION (sym) >= 0)
584 {
585 SYMBOL_VALUE_ADDRESS (sym) +=
586 ANOFFSET (delta, SYMBOL_SECTION (sym));
587 }
588 #ifdef MIPS_EFI_SYMBOL_NAME
589 /* Relocate Extra Function Info for ecoff. */
590
591 else if (SYMBOL_CLASS (sym) == LOC_CONST
592 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
593 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
594 ecoff_relocate_efi (sym, ANOFFSET (delta,
595 s->block_line_section));
596 #endif
597 }
598 }
599 }
600 }
601
602 {
603 struct partial_symtab *p;
604
605 ALL_OBJFILE_PSYMTABS (objfile, p)
606 {
607 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
608 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
609 }
610 }
611
612 {
613 struct partial_symbol **psym;
614
615 for (psym = objfile->global_psymbols.list;
616 psym < objfile->global_psymbols.next;
617 psym++)
618 if (SYMBOL_SECTION (*psym) >= 0)
619 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
620 SYMBOL_SECTION (*psym));
621 for (psym = objfile->static_psymbols.list;
622 psym < objfile->static_psymbols.next;
623 psym++)
624 if (SYMBOL_SECTION (*psym) >= 0)
625 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
626 SYMBOL_SECTION (*psym));
627 }
628
629 {
630 struct minimal_symbol *msym;
631 ALL_OBJFILE_MSYMBOLS (objfile, msym)
632 if (SYMBOL_SECTION (msym) >= 0)
633 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
634 }
635 /* Relocating different sections by different amounts may cause the symbols
636 to be out of order. */
637 msymbols_sort (objfile);
638
639 {
640 int i;
641 for (i = 0; i < objfile->num_sections; ++i)
642 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
643 }
644
645 {
646 struct obj_section *s;
647 bfd *abfd;
648
649 abfd = objfile->obfd;
650
651 ALL_OBJFILE_OSECTIONS (objfile, s)
652 {
653 flagword flags;
654
655 flags = bfd_get_section_flags (abfd, s->the_bfd_section);
656
657 if (flags & SEC_CODE)
658 {
659 s->addr += ANOFFSET (delta, SECT_OFF_TEXT);
660 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT);
661 }
662 else if (flags & (SEC_DATA | SEC_LOAD))
663 {
664 s->addr += ANOFFSET (delta, SECT_OFF_DATA);
665 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA);
666 }
667 else if (flags & SEC_ALLOC)
668 {
669 s->addr += ANOFFSET (delta, SECT_OFF_BSS);
670 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS);
671 }
672 }
673 }
674
675 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
676 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT);
677
678 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
679 {
680 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
681 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
682 }
683
684 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
685 {
686 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
687 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
688 }
689
690 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
691 {
692 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
693 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
694 }
695
696 /* Relocate breakpoints as necessary, after things are relocated. */
697 breakpoint_re_set ();
698 }
699 \f
700 /* Many places in gdb want to test just to see if we have any partial
701 symbols available. This function returns zero if none are currently
702 available, nonzero otherwise. */
703
704 int
705 have_partial_symbols ()
706 {
707 struct objfile *ofp;
708
709 ALL_OBJFILES (ofp)
710 {
711 if (ofp->psymtabs != NULL)
712 {
713 return 1;
714 }
715 }
716 return 0;
717 }
718
719 /* Many places in gdb want to test just to see if we have any full
720 symbols available. This function returns zero if none are currently
721 available, nonzero otherwise. */
722
723 int
724 have_full_symbols ()
725 {
726 struct objfile *ofp;
727
728 ALL_OBJFILES (ofp)
729 {
730 if (ofp->symtabs != NULL)
731 {
732 return 1;
733 }
734 }
735 return 0;
736 }
737
738
739 /* This operations deletes all objfile entries that represent solibs that
740 weren't explicitly loaded by the user, via e.g., the add-symbol-file
741 command.
742 */
743 void
744 objfile_purge_solibs ()
745 {
746 struct objfile *objf;
747 struct objfile *temp;
748
749 ALL_OBJFILES_SAFE (objf, temp)
750 {
751 /* We assume that the solib package has been purged already, or will
752 be soon.
753 */
754 if (!objf->user_loaded && objf->is_solib)
755 free_objfile (objf);
756 }
757 }
758
759
760 /* Many places in gdb want to test just to see if we have any minimal
761 symbols available. This function returns zero if none are currently
762 available, nonzero otherwise. */
763
764 int
765 have_minimal_symbols ()
766 {
767 struct objfile *ofp;
768
769 ALL_OBJFILES (ofp)
770 {
771 if (ofp->msymbols != NULL)
772 {
773 return 1;
774 }
775 }
776 return 0;
777 }
778
779 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
780
781 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
782 of the corresponding symbol file in MTIME, try to open an existing file
783 with the name SYMSFILENAME and verify it is more recent than the base
784 file by checking it's timestamp against MTIME.
785
786 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
787
788 If SYMSFILENAME does exist, but is out of date, we check to see if the
789 user has specified creation of a mapped file. If so, we don't issue
790 any warning message because we will be creating a new mapped file anyway,
791 overwriting the old one. If not, then we issue a warning message so that
792 the user will know why we aren't using this existing mapped symbol file.
793 In either case, we return -1.
794
795 If SYMSFILENAME does exist and is not out of date, but can't be opened for
796 some reason, then prints an appropriate system error message and returns -1.
797
798 Otherwise, returns the open file descriptor. */
799
800 static int
801 open_existing_mapped_file (symsfilename, mtime, mapped)
802 char *symsfilename;
803 long mtime;
804 int mapped;
805 {
806 int fd = -1;
807 struct stat sbuf;
808
809 if (stat (symsfilename, &sbuf) == 0)
810 {
811 if (sbuf.st_mtime < mtime)
812 {
813 if (!mapped)
814 {
815 warning ("mapped symbol file `%s' is out of date, ignored it",
816 symsfilename);
817 }
818 }
819 else if ((fd = open (symsfilename, O_RDWR)) < 0)
820 {
821 if (error_pre_print)
822 {
823 printf_unfiltered (error_pre_print);
824 }
825 print_sys_errmsg (symsfilename, errno);
826 }
827 }
828 return (fd);
829 }
830
831 /* Look for a mapped symbol file that corresponds to FILENAME and is more
832 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
833 use a mapped symbol file for this file, so create a new one if one does
834 not currently exist.
835
836 If found, then return an open file descriptor for the file, otherwise
837 return -1.
838
839 This routine is responsible for implementing the policy that generates
840 the name of the mapped symbol file from the name of a file containing
841 symbols that gdb would like to read. Currently this policy is to append
842 ".syms" to the name of the file.
843
844 This routine is also responsible for implementing the policy that
845 determines where the mapped symbol file is found (the search path).
846 This policy is that when reading an existing mapped file, a file of
847 the correct name in the current directory takes precedence over a
848 file of the correct name in the same directory as the symbol file.
849 When creating a new mapped file, it is always created in the current
850 directory. This helps to minimize the chances of a user unknowingly
851 creating big mapped files in places like /bin and /usr/local/bin, and
852 allows a local copy to override a manually installed global copy (in
853 /bin for example). */
854
855 static int
856 open_mapped_file (filename, mtime, mapped)
857 char *filename;
858 long mtime;
859 int mapped;
860 {
861 int fd;
862 char *symsfilename;
863
864 /* First try to open an existing file in the current directory, and
865 then try the directory where the symbol file is located. */
866
867 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
868 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
869 {
870 free (symsfilename);
871 symsfilename = concat (filename, ".syms", (char *) NULL);
872 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
873 }
874
875 /* If we don't have an open file by now, then either the file does not
876 already exist, or the base file has changed since it was created. In
877 either case, if the user has specified use of a mapped file, then
878 create a new mapped file, truncating any existing one. If we can't
879 create one, print a system error message saying why we can't.
880
881 By default the file is rw for everyone, with the user's umask taking
882 care of turning off the permissions the user wants off. */
883
884 if ((fd < 0) && mapped)
885 {
886 free (symsfilename);
887 symsfilename = concat ("./", basename (filename), ".syms",
888 (char *) NULL);
889 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
890 {
891 if (error_pre_print)
892 {
893 printf_unfiltered (error_pre_print);
894 }
895 print_sys_errmsg (symsfilename, errno);
896 }
897 }
898
899 free (symsfilename);
900 return (fd);
901 }
902
903 static PTR
904 map_to_file (fd)
905 int fd;
906 {
907 PTR md;
908 CORE_ADDR mapto;
909
910 md = mmalloc_attach (fd, (PTR) 0);
911 if (md != NULL)
912 {
913 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
914 md = mmalloc_detach (md);
915 if (md != NULL)
916 {
917 /* FIXME: should figure out why detach failed */
918 md = NULL;
919 }
920 else if (mapto != (CORE_ADDR) NULL)
921 {
922 /* This mapping file needs to be remapped at "mapto" */
923 md = mmalloc_attach (fd, (PTR) mapto);
924 }
925 else
926 {
927 /* This is a freshly created mapping file. */
928 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
929 if (mapto != 0)
930 {
931 /* To avoid reusing the freshly created mapping file, at the
932 address selected by mmap, we must truncate it before trying
933 to do an attach at the address we want. */
934 ftruncate (fd, 0);
935 md = mmalloc_attach (fd, (PTR) mapto);
936 if (md != NULL)
937 {
938 mmalloc_setkey (md, 1, (PTR) mapto);
939 }
940 }
941 }
942 }
943 return (md);
944 }
945
946 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
947
948 /* Returns a section whose range includes PC and SECTION,
949 or NULL if none found. Note the distinction between the return type,
950 struct obj_section (which is defined in gdb), and the input type
951 struct sec (which is a bfd-defined data type). The obj_section
952 contains a pointer to the bfd struct sec section. */
953
954 struct obj_section *
955 find_pc_sect_section (pc, section)
956 CORE_ADDR pc;
957 struct sec *section;
958 {
959 struct obj_section *s;
960 struct objfile *objfile;
961
962 ALL_OBJSECTIONS (objfile, s)
963 if ((section == 0 || section == s->the_bfd_section) &&
964 s->addr <= pc && pc < s->endaddr)
965 return (s);
966
967 return (NULL);
968 }
969
970 /* Returns a section whose range includes PC or NULL if none found.
971 Backward compatibility, no section. */
972
973 struct obj_section *
974 find_pc_section (pc)
975 CORE_ADDR pc;
976 {
977 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
978 }
979
980
981 /* In SVR4, we recognize a trampoline by it's section name.
982 That is, if the pc is in a section named ".plt" then we are in
983 a trampoline. */
984
985 int
986 in_plt_section (pc, name)
987 CORE_ADDR pc;
988 char *name;
989 {
990 struct obj_section *s;
991 int retval = 0;
992
993 s = find_pc_section (pc);
994
995 retval = (s != NULL
996 && s->the_bfd_section->name != NULL
997 && STREQ (s->the_bfd_section->name, ".plt"));
998 return (retval);
999 }
1000
1001 /* Return nonzero if NAME is in the import list of OBJFILE. Else
1002 return zero. */
1003
1004 int
1005 is_in_import_list (name, objfile)
1006 char *name;
1007 struct objfile *objfile;
1008 {
1009 register int i;
1010
1011 if (!objfile || !name || !*name)
1012 return 0;
1013
1014 for (i = 0; i < objfile->import_list_size; i++)
1015 if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
1016 return 1;
1017 return 0;
1018 }
1019