]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/objfiles.c
bfd_section_* macros
[thirdparty/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "gdbsupport/pathstuff.h"
56
57 #include <vector>
58
59 /* Keep a registry of per-objfile data-pointers required by other GDB
60 modules. */
61
62 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
63
64 /* Externally visible variables that are owned by this module.
65 See declarations in objfile.h for more info. */
66
67 struct objfile_pspace_info
68 {
69 objfile_pspace_info () = default;
70 ~objfile_pspace_info ();
71
72 struct obj_section **sections = nullptr;
73 int num_sections = 0;
74
75 /* Nonzero if object files have been added since the section map
76 was last updated. */
77 int new_objfiles_available = 0;
78
79 /* Nonzero if the section map MUST be updated before use. */
80 int section_map_dirty = 0;
81
82 /* Nonzero if section map updates should be inhibited if possible. */
83 int inhibit_updates = 0;
84 };
85
86 /* Per-program-space data key. */
87 static const struct program_space_key<objfile_pspace_info>
88 objfiles_pspace_data;
89
90 objfile_pspace_info::~objfile_pspace_info ()
91 {
92 xfree (sections);
93 }
94
95 /* Get the current svr4 data. If none is found yet, add it now. This
96 function always returns a valid object. */
97
98 static struct objfile_pspace_info *
99 get_objfile_pspace_data (struct program_space *pspace)
100 {
101 struct objfile_pspace_info *info;
102
103 info = objfiles_pspace_data.get (pspace);
104 if (info == NULL)
105 info = objfiles_pspace_data.emplace (pspace);
106
107 return info;
108 }
109
110 \f
111
112 /* Per-BFD data key. */
113
114 static const struct bfd_key<objfile_per_bfd_storage> objfiles_bfd_data;
115
116 objfile_per_bfd_storage::~objfile_per_bfd_storage ()
117 {
118 }
119
120 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
121 NULL, and it already has a per-BFD storage object, use that.
122 Otherwise, allocate a new per-BFD storage object. Note that it is
123 not safe to call this multiple times for a given OBJFILE -- it can
124 only be called when allocating or re-initializing OBJFILE. */
125
126 static struct objfile_per_bfd_storage *
127 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
128 {
129 struct objfile_per_bfd_storage *storage = NULL;
130
131 if (abfd != NULL)
132 storage = objfiles_bfd_data.get (abfd);
133
134 if (storage == NULL)
135 {
136 storage = new objfile_per_bfd_storage;
137 /* If the object requires gdb to do relocations, we simply fall
138 back to not sharing data across users. These cases are rare
139 enough that this seems reasonable. */
140 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
141 objfiles_bfd_data.set (abfd, storage);
142
143 /* Look up the gdbarch associated with the BFD. */
144 if (abfd != NULL)
145 storage->gdbarch = gdbarch_from_bfd (abfd);
146 }
147
148 return storage;
149 }
150
151 /* See objfiles.h. */
152
153 void
154 set_objfile_per_bfd (struct objfile *objfile)
155 {
156 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
157 }
158
159 /* Set the objfile's per-BFD notion of the "main" name and
160 language. */
161
162 void
163 set_objfile_main_name (struct objfile *objfile,
164 const char *name, enum language lang)
165 {
166 if (objfile->per_bfd->name_of_main == NULL
167 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
168 objfile->per_bfd->name_of_main
169 = obstack_strdup (&objfile->per_bfd->storage_obstack, name);
170 objfile->per_bfd->language_of_main = lang;
171 }
172
173 /* Helper structure to map blocks to static link properties in hash tables. */
174
175 struct static_link_htab_entry
176 {
177 const struct block *block;
178 const struct dynamic_prop *static_link;
179 };
180
181 /* Return a hash code for struct static_link_htab_entry *P. */
182
183 static hashval_t
184 static_link_htab_entry_hash (const void *p)
185 {
186 const struct static_link_htab_entry *e
187 = (const struct static_link_htab_entry *) p;
188
189 return htab_hash_pointer (e->block);
190 }
191
192 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
193 mappings for the same block. */
194
195 static int
196 static_link_htab_entry_eq (const void *p1, const void *p2)
197 {
198 const struct static_link_htab_entry *e1
199 = (const struct static_link_htab_entry *) p1;
200 const struct static_link_htab_entry *e2
201 = (const struct static_link_htab_entry *) p2;
202
203 return e1->block == e2->block;
204 }
205
206 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
207 Must not be called more than once for each BLOCK. */
208
209 void
210 objfile_register_static_link (struct objfile *objfile,
211 const struct block *block,
212 const struct dynamic_prop *static_link)
213 {
214 void **slot;
215 struct static_link_htab_entry lookup_entry;
216 struct static_link_htab_entry *entry;
217
218 if (objfile->static_links == NULL)
219 objfile->static_links.reset (htab_create_alloc
220 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
221 xcalloc, xfree));
222
223 /* Create a slot for the mapping, make sure it's the first mapping for this
224 block and then create the mapping itself. */
225 lookup_entry.block = block;
226 slot = htab_find_slot (objfile->static_links.get (), &lookup_entry, INSERT);
227 gdb_assert (*slot == NULL);
228
229 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
230 entry->block = block;
231 entry->static_link = static_link;
232 *slot = (void *) entry;
233 }
234
235 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
236 none was found. */
237
238 const struct dynamic_prop *
239 objfile_lookup_static_link (struct objfile *objfile,
240 const struct block *block)
241 {
242 struct static_link_htab_entry *entry;
243 struct static_link_htab_entry lookup_entry;
244
245 if (objfile->static_links == NULL)
246 return NULL;
247 lookup_entry.block = block;
248 entry = ((struct static_link_htab_entry *)
249 htab_find (objfile->static_links.get (), &lookup_entry));
250 if (entry == NULL)
251 return NULL;
252
253 gdb_assert (entry->block == block);
254 return entry->static_link;
255 }
256
257 \f
258
259 /* Called via bfd_map_over_sections to build up the section table that
260 the objfile references. The objfile contains pointers to the start
261 of the table (objfile->sections) and to the first location after
262 the end of the table (objfile->sections_end). */
263
264 static void
265 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
266 struct objfile *objfile, int force)
267 {
268 struct obj_section *section;
269
270 if (!force)
271 {
272 flagword aflag;
273
274 aflag = bfd_section_flags (asect);
275 if (!(aflag & SEC_ALLOC))
276 return;
277 }
278
279 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
280 section->objfile = objfile;
281 section->the_bfd_section = asect;
282 section->ovly_mapped = 0;
283 }
284
285 static void
286 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
287 void *objfilep)
288 {
289 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
290 }
291
292 /* Builds a section table for OBJFILE.
293
294 Note that the OFFSET and OVLY_MAPPED in each table entry are
295 initialized to zero. */
296
297 void
298 build_objfile_section_table (struct objfile *objfile)
299 {
300 int count = gdb_bfd_count_sections (objfile->obfd);
301
302 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
303 count,
304 struct obj_section);
305 objfile->sections_end = (objfile->sections + count);
306 bfd_map_over_sections (objfile->obfd,
307 add_to_objfile_sections, (void *) objfile);
308
309 /* See gdb_bfd_section_index. */
310 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
311 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
312 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
313 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
314 }
315
316 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
317 initialize the new objfile as best we can and link it into the list
318 of all known objfiles.
319
320 NAME should contain original non-canonicalized filename or other
321 identifier as entered by user. If there is no better source use
322 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
323 NAME content is copied into returned objfile.
324
325 The FLAGS word contains various bits (OBJF_*) that can be taken as
326 requests for specific operations. Other bits like OBJF_SHARED are
327 simply copied through to the new objfile flags member. */
328
329 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
330 : flags (flags_),
331 pspace (current_program_space),
332 partial_symtabs (new psymtab_storage ()),
333 obfd (abfd)
334 {
335 const char *expanded_name;
336
337 /* We could use obstack_specify_allocation here instead, but
338 gdb_obstack.h specifies the alloc/dealloc functions. */
339 obstack_init (&objfile_obstack);
340
341 objfile_alloc_data (this);
342
343 gdb::unique_xmalloc_ptr<char> name_holder;
344 if (name == NULL)
345 {
346 gdb_assert (abfd == NULL);
347 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
348 expanded_name = "<<anonymous objfile>>";
349 }
350 else if ((flags & OBJF_NOT_FILENAME) != 0
351 || is_target_filename (name))
352 expanded_name = name;
353 else
354 {
355 name_holder = gdb_abspath (name);
356 expanded_name = name_holder.get ();
357 }
358 original_name = obstack_strdup (&objfile_obstack, expanded_name);
359
360 /* Update the per-objfile information that comes from the bfd, ensuring
361 that any data that is reference is saved in the per-objfile data
362 region. */
363
364 gdb_bfd_ref (abfd);
365 if (abfd != NULL)
366 {
367 mtime = bfd_get_mtime (abfd);
368
369 /* Build section table. */
370 build_objfile_section_table (this);
371 }
372
373 per_bfd = get_objfile_bfd_data (this, abfd);
374
375 /* Add this file onto the tail of the linked list of other such files. */
376
377 if (object_files == NULL)
378 object_files = this;
379 else
380 {
381 struct objfile *last_one;
382
383 for (last_one = object_files;
384 last_one->next;
385 last_one = last_one->next);
386 last_one->next = this;
387 }
388
389 /* Rebuild section map next time we need it. */
390 get_objfile_pspace_data (pspace)->new_objfiles_available = 1;
391 }
392
393 /* Retrieve the gdbarch associated with OBJFILE. */
394
395 struct gdbarch *
396 get_objfile_arch (const struct objfile *objfile)
397 {
398 return objfile->per_bfd->gdbarch;
399 }
400
401 /* If there is a valid and known entry point, function fills *ENTRY_P with it
402 and returns non-zero; otherwise it returns zero. */
403
404 int
405 entry_point_address_query (CORE_ADDR *entry_p)
406 {
407 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
408 return 0;
409
410 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
411 + ANOFFSET (symfile_objfile->section_offsets,
412 symfile_objfile->per_bfd->ei.the_bfd_section_index));
413
414 return 1;
415 }
416
417 /* Get current entry point address. Call error if it is not known. */
418
419 CORE_ADDR
420 entry_point_address (void)
421 {
422 CORE_ADDR retval;
423
424 if (!entry_point_address_query (&retval))
425 error (_("Entry point address is not known."));
426
427 return retval;
428 }
429
430 separate_debug_iterator &
431 separate_debug_iterator::operator++ ()
432 {
433 gdb_assert (m_objfile != nullptr);
434
435 struct objfile *res;
436
437 /* If any, return the first child. */
438 res = m_objfile->separate_debug_objfile;
439 if (res != nullptr)
440 {
441 m_objfile = res;
442 return *this;
443 }
444
445 /* Common case where there is no separate debug objfile. */
446 if (m_objfile == m_parent)
447 {
448 m_objfile = nullptr;
449 return *this;
450 }
451
452 /* Return the brother if any. Note that we don't iterate on brothers of
453 the parents. */
454 res = m_objfile->separate_debug_objfile_link;
455 if (res != nullptr)
456 {
457 m_objfile = res;
458 return *this;
459 }
460
461 for (res = m_objfile->separate_debug_objfile_backlink;
462 res != m_parent;
463 res = res->separate_debug_objfile_backlink)
464 {
465 gdb_assert (res != nullptr);
466 if (res->separate_debug_objfile_link != nullptr)
467 {
468 m_objfile = res->separate_debug_objfile_link;
469 return *this;
470 }
471 }
472 m_objfile = nullptr;
473 return *this;
474 }
475
476 /* Put one object file before a specified on in the global list.
477 This can be used to make sure an object file is destroyed before
478 another when using objfiles_safe to free all objfiles. */
479 void
480 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
481 {
482 struct objfile **objp;
483
484 unlink_objfile (objfile);
485
486 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
487 {
488 if (*objp == before_this)
489 {
490 objfile->next = *objp;
491 *objp = objfile;
492 return;
493 }
494 }
495
496 internal_error (__FILE__, __LINE__,
497 _("put_objfile_before: before objfile not in list"));
498 }
499
500 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
501 list.
502
503 It is not a bug, or error, to call this function if OBJFILE is not known
504 to be in the current list. This is done in the case of mapped objfiles,
505 for example, just to ensure that the mapped objfile doesn't appear twice
506 in the list. Since the list is threaded, linking in a mapped objfile
507 twice would create a circular list.
508
509 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
510 unlinking it, just to ensure that we have completely severed any linkages
511 between the OBJFILE and the list. */
512
513 void
514 unlink_objfile (struct objfile *objfile)
515 {
516 struct objfile **objpp;
517
518 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
519 {
520 if (*objpp == objfile)
521 {
522 *objpp = (*objpp)->next;
523 objfile->next = NULL;
524 return;
525 }
526 }
527
528 internal_error (__FILE__, __LINE__,
529 _("unlink_objfile: objfile already unlinked"));
530 }
531
532 /* Add OBJFILE as a separate debug objfile of PARENT. */
533
534 void
535 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
536 {
537 gdb_assert (objfile && parent);
538
539 /* Must not be already in a list. */
540 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
541 gdb_assert (objfile->separate_debug_objfile_link == NULL);
542 gdb_assert (objfile->separate_debug_objfile == NULL);
543 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
544 gdb_assert (parent->separate_debug_objfile_link == NULL);
545
546 objfile->separate_debug_objfile_backlink = parent;
547 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
548 parent->separate_debug_objfile = objfile;
549
550 /* Put the separate debug object before the normal one, this is so that
551 usage of objfiles_safe will stay safe. */
552 put_objfile_before (objfile, parent);
553 }
554
555 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
556 itself. */
557
558 void
559 free_objfile_separate_debug (struct objfile *objfile)
560 {
561 struct objfile *child;
562
563 for (child = objfile->separate_debug_objfile; child;)
564 {
565 struct objfile *next_child = child->separate_debug_objfile_link;
566 delete child;
567 child = next_child;
568 }
569 }
570
571 /* Destroy an objfile and all the symtabs and psymtabs under it. */
572
573 objfile::~objfile ()
574 {
575 /* First notify observers that this objfile is about to be freed. */
576 gdb::observers::free_objfile.notify (this);
577
578 /* Free all separate debug objfiles. */
579 free_objfile_separate_debug (this);
580
581 if (separate_debug_objfile_backlink)
582 {
583 /* We freed the separate debug file, make sure the base objfile
584 doesn't reference it. */
585 struct objfile *child;
586
587 child = separate_debug_objfile_backlink->separate_debug_objfile;
588
589 if (child == this)
590 {
591 /* THIS is the first child. */
592 separate_debug_objfile_backlink->separate_debug_objfile =
593 separate_debug_objfile_link;
594 }
595 else
596 {
597 /* Find THIS in the list. */
598 while (1)
599 {
600 if (child->separate_debug_objfile_link == this)
601 {
602 child->separate_debug_objfile_link =
603 separate_debug_objfile_link;
604 break;
605 }
606 child = child->separate_debug_objfile_link;
607 gdb_assert (child);
608 }
609 }
610 }
611
612 /* Remove any references to this objfile in the global value
613 lists. */
614 preserve_values (this);
615
616 /* It still may reference data modules have associated with the objfile and
617 the symbol file data. */
618 forget_cached_source_info_for_objfile (this);
619
620 breakpoint_free_objfile (this);
621 btrace_free_objfile (this);
622
623 /* First do any symbol file specific actions required when we are
624 finished with a particular symbol file. Note that if the objfile
625 is using reusable symbol information (via mmalloc) then each of
626 these routines is responsible for doing the correct thing, either
627 freeing things which are valid only during this particular gdb
628 execution, or leaving them to be reused during the next one. */
629
630 if (sf != NULL)
631 (*sf->sym_finish) (this);
632
633 /* Discard any data modules have associated with the objfile. The function
634 still may reference obfd. */
635 objfile_free_data (this);
636
637 if (obfd)
638 gdb_bfd_unref (obfd);
639 else
640 delete per_bfd;
641
642 /* Remove it from the chain of all objfiles. */
643
644 unlink_objfile (this);
645
646 if (this == symfile_objfile)
647 symfile_objfile = NULL;
648
649 /* Before the symbol table code was redone to make it easier to
650 selectively load and remove information particular to a specific
651 linkage unit, gdb used to do these things whenever the monolithic
652 symbol table was blown away. How much still needs to be done
653 is unknown, but we play it safe for now and keep each action until
654 it is shown to be no longer needed. */
655
656 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
657 for example), so we need to call this here. */
658 clear_pc_function_cache ();
659
660 /* Check to see if the current_source_symtab belongs to this objfile,
661 and if so, call clear_current_source_symtab_and_line. */
662
663 {
664 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
665
666 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
667 clear_current_source_symtab_and_line ();
668 }
669
670 /* Free the obstacks for non-reusable objfiles. */
671 obstack_free (&objfile_obstack, 0);
672
673 /* Rebuild section map next time we need it. */
674 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
675 }
676
677 /* Free all the object files at once and clean up their users. */
678
679 void
680 free_all_objfiles (void)
681 {
682 struct so_list *so;
683
684 /* Any objfile reference would become stale. */
685 for (so = master_so_list (); so; so = so->next)
686 gdb_assert (so->objfile == NULL);
687
688 for (objfile *objfile : current_program_space->objfiles_safe ())
689 delete objfile;
690 clear_symtab_users (0);
691 }
692 \f
693 /* A helper function for objfile_relocate1 that relocates a single
694 symbol. */
695
696 static void
697 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
698 struct section_offsets *delta)
699 {
700 fixup_symbol_section (sym, objfile);
701
702 /* The RS6000 code from which this was taken skipped
703 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
704 But I'm leaving out that test, on the theory that
705 they can't possibly pass the tests below. */
706 if ((SYMBOL_CLASS (sym) == LOC_LABEL
707 || SYMBOL_CLASS (sym) == LOC_STATIC)
708 && SYMBOL_SECTION (sym) >= 0)
709 {
710 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
711 }
712 }
713
714 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
715 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
716 Return non-zero iff any change happened. */
717
718 static int
719 objfile_relocate1 (struct objfile *objfile,
720 const struct section_offsets *new_offsets)
721 {
722 struct section_offsets *delta =
723 ((struct section_offsets *)
724 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
725
726 int something_changed = 0;
727
728 for (int i = 0; i < objfile->num_sections; ++i)
729 {
730 delta->offsets[i] =
731 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
732 if (ANOFFSET (delta, i) != 0)
733 something_changed = 1;
734 }
735 if (!something_changed)
736 return 0;
737
738 /* OK, get all the symtabs. */
739 {
740 for (compunit_symtab *cust : objfile->compunits ())
741 {
742 for (symtab *s : compunit_filetabs (cust))
743 {
744 struct linetable *l;
745
746 /* First the line table. */
747 l = SYMTAB_LINETABLE (s);
748 if (l)
749 {
750 for (int i = 0; i < l->nitems; ++i)
751 l->item[i].pc += ANOFFSET (delta,
752 COMPUNIT_BLOCK_LINE_SECTION
753 (cust));
754 }
755 }
756 }
757
758 for (compunit_symtab *cust : objfile->compunits ())
759 {
760 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
761 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
762
763 if (BLOCKVECTOR_MAP (bv))
764 addrmap_relocate (BLOCKVECTOR_MAP (bv),
765 ANOFFSET (delta, block_line_section));
766
767 for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
768 {
769 struct block *b;
770 struct symbol *sym;
771 struct mdict_iterator miter;
772
773 b = BLOCKVECTOR_BLOCK (bv, i);
774 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
775 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
776
777 if (BLOCK_RANGES (b) != nullptr)
778 for (int j = 0; j < BLOCK_NRANGES (b); j++)
779 {
780 BLOCK_RANGE_START (b, j)
781 += ANOFFSET (delta, block_line_section);
782 BLOCK_RANGE_END (b, j) += ANOFFSET (delta,
783 block_line_section);
784 }
785
786 /* We only want to iterate over the local symbols, not any
787 symbols in included symtabs. */
788 ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (b), miter, sym)
789 {
790 relocate_one_symbol (sym, objfile, delta);
791 }
792 }
793 }
794 }
795
796 /* This stores relocated addresses and so must be cleared. This
797 will cause it to be recreated on demand. */
798 objfile->psymbol_map.clear ();
799
800 /* Relocate isolated symbols. */
801 {
802 struct symbol *iter;
803
804 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
805 relocate_one_symbol (iter, objfile, delta);
806 }
807
808 {
809 int i;
810
811 for (i = 0; i < objfile->num_sections; ++i)
812 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
813 }
814
815 /* Rebuild section map next time we need it. */
816 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
817
818 /* Update the table in exec_ops, used to read memory. */
819 struct obj_section *s;
820 ALL_OBJFILE_OSECTIONS (objfile, s)
821 {
822 int idx = s - objfile->sections;
823
824 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
825 obj_section_addr (s));
826 }
827
828 /* Data changed. */
829 return 1;
830 }
831
832 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
833 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
834
835 The number and ordering of sections does differ between the two objfiles.
836 Only their names match. Also the file offsets will differ (objfile being
837 possibly prelinked but separate_debug_objfile is probably not prelinked) but
838 the in-memory absolute address as specified by NEW_OFFSETS must match both
839 files. */
840
841 void
842 objfile_relocate (struct objfile *objfile,
843 const struct section_offsets *new_offsets)
844 {
845 int changed = 0;
846
847 changed |= objfile_relocate1 (objfile, new_offsets);
848
849 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
850 {
851 if (debug_objfile == objfile)
852 continue;
853
854 section_addr_info objfile_addrs
855 = build_section_addr_info_from_objfile (objfile);
856
857 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
858 relative ones must be already created according to debug_objfile. */
859
860 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
861
862 gdb_assert (debug_objfile->num_sections
863 == gdb_bfd_count_sections (debug_objfile->obfd));
864 std::vector<struct section_offsets>
865 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
866 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
867 debug_objfile->num_sections,
868 objfile_addrs);
869
870 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
871 }
872
873 /* Relocate breakpoints as necessary, after things are relocated. */
874 if (changed)
875 breakpoint_re_set ();
876 }
877
878 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
879 not touched here.
880 Return non-zero iff any change happened. */
881
882 static int
883 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
884 {
885 struct section_offsets *new_offsets =
886 ((struct section_offsets *)
887 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
888 int i;
889
890 for (i = 0; i < objfile->num_sections; ++i)
891 new_offsets->offsets[i] = slide;
892
893 return objfile_relocate1 (objfile, new_offsets);
894 }
895
896 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
897 SEPARATE_DEBUG_OBJFILEs. */
898
899 void
900 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
901 {
902 int changed = 0;
903
904 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
905 changed |= objfile_rebase1 (debug_objfile, slide);
906
907 /* Relocate breakpoints as necessary, after things are relocated. */
908 if (changed)
909 breakpoint_re_set ();
910 }
911 \f
912 /* Return non-zero if OBJFILE has partial symbols. */
913
914 int
915 objfile_has_partial_symbols (struct objfile *objfile)
916 {
917 if (!objfile->sf)
918 return 0;
919
920 /* If we have not read psymbols, but we have a function capable of reading
921 them, then that is an indication that they are in fact available. Without
922 this function the symbols may have been already read in but they also may
923 not be present in this objfile. */
924 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
925 && objfile->sf->sym_read_psymbols != NULL)
926 return 1;
927
928 return objfile->sf->qf->has_symbols (objfile);
929 }
930
931 /* Return non-zero if OBJFILE has full symbols. */
932
933 int
934 objfile_has_full_symbols (struct objfile *objfile)
935 {
936 return objfile->compunit_symtabs != NULL;
937 }
938
939 /* Return non-zero if OBJFILE has full or partial symbols, either directly
940 or through a separate debug file. */
941
942 int
943 objfile_has_symbols (struct objfile *objfile)
944 {
945 for (::objfile *o : objfile->separate_debug_objfiles ())
946 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
947 return 1;
948 return 0;
949 }
950
951
952 /* Many places in gdb want to test just to see if we have any partial
953 symbols available. This function returns zero if none are currently
954 available, nonzero otherwise. */
955
956 int
957 have_partial_symbols (void)
958 {
959 for (objfile *ofp : current_program_space->objfiles ())
960 {
961 if (objfile_has_partial_symbols (ofp))
962 return 1;
963 }
964 return 0;
965 }
966
967 /* Many places in gdb want to test just to see if we have any full
968 symbols available. This function returns zero if none are currently
969 available, nonzero otherwise. */
970
971 int
972 have_full_symbols (void)
973 {
974 for (objfile *ofp : current_program_space->objfiles ())
975 {
976 if (objfile_has_full_symbols (ofp))
977 return 1;
978 }
979 return 0;
980 }
981
982
983 /* This operations deletes all objfile entries that represent solibs that
984 weren't explicitly loaded by the user, via e.g., the add-symbol-file
985 command. */
986
987 void
988 objfile_purge_solibs (void)
989 {
990 for (objfile *objf : current_program_space->objfiles_safe ())
991 {
992 /* We assume that the solib package has been purged already, or will
993 be soon. */
994
995 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
996 delete objf;
997 }
998 }
999
1000
1001 /* Many places in gdb want to test just to see if we have any minimal
1002 symbols available. This function returns zero if none are currently
1003 available, nonzero otherwise. */
1004
1005 int
1006 have_minimal_symbols (void)
1007 {
1008 for (objfile *ofp : current_program_space->objfiles ())
1009 {
1010 if (ofp->per_bfd->minimal_symbol_count > 0)
1011 {
1012 return 1;
1013 }
1014 }
1015 return 0;
1016 }
1017
1018 /* Qsort comparison function. */
1019
1020 static int
1021 qsort_cmp (const void *a, const void *b)
1022 {
1023 const struct obj_section *sect1 = *(const struct obj_section **) a;
1024 const struct obj_section *sect2 = *(const struct obj_section **) b;
1025 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1026 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1027
1028 if (sect1_addr < sect2_addr)
1029 return -1;
1030 else if (sect1_addr > sect2_addr)
1031 return 1;
1032 else
1033 {
1034 /* Sections are at the same address. This could happen if
1035 A) we have an objfile and a separate debuginfo.
1036 B) we are confused, and have added sections without proper relocation,
1037 or something like that. */
1038
1039 const struct objfile *const objfile1 = sect1->objfile;
1040 const struct objfile *const objfile2 = sect2->objfile;
1041
1042 if (objfile1->separate_debug_objfile == objfile2
1043 || objfile2->separate_debug_objfile == objfile1)
1044 {
1045 /* Case A. The ordering doesn't matter: separate debuginfo files
1046 will be filtered out later. */
1047
1048 return 0;
1049 }
1050
1051 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1052 triage. This section could be slow (since we iterate over all
1053 objfiles in each call to qsort_cmp), but this shouldn't happen
1054 very often (GDB is already in a confused state; one hopes this
1055 doesn't happen at all). If you discover that significant time is
1056 spent in the loops below, do 'set complaints 100' and examine the
1057 resulting complaints. */
1058
1059 if (objfile1 == objfile2)
1060 {
1061 /* Both sections came from the same objfile. We are really confused.
1062 Sort on sequence order of sections within the objfile. */
1063
1064 const struct obj_section *osect;
1065
1066 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1067 if (osect == sect1)
1068 return -1;
1069 else if (osect == sect2)
1070 return 1;
1071
1072 /* We should have found one of the sections before getting here. */
1073 gdb_assert_not_reached ("section not found");
1074 }
1075 else
1076 {
1077 /* Sort on sequence number of the objfile in the chain. */
1078
1079 for (objfile *objfile : current_program_space->objfiles ())
1080 if (objfile == objfile1)
1081 return -1;
1082 else if (objfile == objfile2)
1083 return 1;
1084
1085 /* We should have found one of the objfiles before getting here. */
1086 gdb_assert_not_reached ("objfile not found");
1087 }
1088 }
1089
1090 /* Unreachable. */
1091 gdb_assert_not_reached ("unexpected code path");
1092 return 0;
1093 }
1094
1095 /* Select "better" obj_section to keep. We prefer the one that came from
1096 the real object, rather than the one from separate debuginfo.
1097 Most of the time the two sections are exactly identical, but with
1098 prelinking the .rel.dyn section in the real object may have different
1099 size. */
1100
1101 static struct obj_section *
1102 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1103 {
1104 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1105 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1106 || (b->objfile->separate_debug_objfile == a->objfile));
1107 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1108 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1109
1110 if (a->objfile->separate_debug_objfile != NULL)
1111 return a;
1112 return b;
1113 }
1114
1115 /* Return 1 if SECTION should be inserted into the section map.
1116 We want to insert only non-overlay and non-TLS section. */
1117
1118 static int
1119 insert_section_p (const struct bfd *abfd,
1120 const struct bfd_section *section)
1121 {
1122 const bfd_vma lma = bfd_section_lma (section);
1123
1124 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (section)
1125 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1126 /* This is an overlay section. IN_MEMORY check is needed to avoid
1127 discarding sections from the "system supplied DSO" (aka vdso)
1128 on some Linux systems (e.g. Fedora 11). */
1129 return 0;
1130 if ((bfd_section_flags (section) & SEC_THREAD_LOCAL) != 0)
1131 /* This is a TLS section. */
1132 return 0;
1133
1134 return 1;
1135 }
1136
1137 /* Filter out overlapping sections where one section came from the real
1138 objfile, and the other from a separate debuginfo file.
1139 Return the size of table after redundant sections have been eliminated. */
1140
1141 static int
1142 filter_debuginfo_sections (struct obj_section **map, int map_size)
1143 {
1144 int i, j;
1145
1146 for (i = 0, j = 0; i < map_size - 1; i++)
1147 {
1148 struct obj_section *const sect1 = map[i];
1149 struct obj_section *const sect2 = map[i + 1];
1150 const struct objfile *const objfile1 = sect1->objfile;
1151 const struct objfile *const objfile2 = sect2->objfile;
1152 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1153 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1154
1155 if (sect1_addr == sect2_addr
1156 && (objfile1->separate_debug_objfile == objfile2
1157 || objfile2->separate_debug_objfile == objfile1))
1158 {
1159 map[j++] = preferred_obj_section (sect1, sect2);
1160 ++i;
1161 }
1162 else
1163 map[j++] = sect1;
1164 }
1165
1166 if (i < map_size)
1167 {
1168 gdb_assert (i == map_size - 1);
1169 map[j++] = map[i];
1170 }
1171
1172 /* The map should not have shrunk to less than half the original size. */
1173 gdb_assert (map_size / 2 <= j);
1174
1175 return j;
1176 }
1177
1178 /* Filter out overlapping sections, issuing a warning if any are found.
1179 Overlapping sections could really be overlay sections which we didn't
1180 classify as such in insert_section_p, or we could be dealing with a
1181 corrupt binary. */
1182
1183 static int
1184 filter_overlapping_sections (struct obj_section **map, int map_size)
1185 {
1186 int i, j;
1187
1188 for (i = 0, j = 0; i < map_size - 1; )
1189 {
1190 int k;
1191
1192 map[j++] = map[i];
1193 for (k = i + 1; k < map_size; k++)
1194 {
1195 struct obj_section *const sect1 = map[i];
1196 struct obj_section *const sect2 = map[k];
1197 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1198 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1199 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1200
1201 gdb_assert (sect1_addr <= sect2_addr);
1202
1203 if (sect1_endaddr <= sect2_addr)
1204 break;
1205 else
1206 {
1207 /* We have an overlap. Report it. */
1208
1209 struct objfile *const objf1 = sect1->objfile;
1210 struct objfile *const objf2 = sect2->objfile;
1211
1212 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1213 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1214
1215 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1216
1217 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1218
1219 complaint (_("unexpected overlap between:\n"
1220 " (A) section `%s' from `%s' [%s, %s)\n"
1221 " (B) section `%s' from `%s' [%s, %s).\n"
1222 "Will ignore section B"),
1223 bfd_section_name (bfds1), objfile_name (objf1),
1224 paddress (gdbarch, sect1_addr),
1225 paddress (gdbarch, sect1_endaddr),
1226 bfd_section_name (bfds2), objfile_name (objf2),
1227 paddress (gdbarch, sect2_addr),
1228 paddress (gdbarch, sect2_endaddr));
1229 }
1230 }
1231 i = k;
1232 }
1233
1234 if (i < map_size)
1235 {
1236 gdb_assert (i == map_size - 1);
1237 map[j++] = map[i];
1238 }
1239
1240 return j;
1241 }
1242
1243
1244 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1245 TLS, overlay and overlapping sections. */
1246
1247 static void
1248 update_section_map (struct program_space *pspace,
1249 struct obj_section ***pmap, int *pmap_size)
1250 {
1251 struct objfile_pspace_info *pspace_info;
1252 int alloc_size, map_size, i;
1253 struct obj_section *s, **map;
1254
1255 pspace_info = get_objfile_pspace_data (pspace);
1256 gdb_assert (pspace_info->section_map_dirty != 0
1257 || pspace_info->new_objfiles_available != 0);
1258
1259 map = *pmap;
1260 xfree (map);
1261
1262 alloc_size = 0;
1263 for (objfile *objfile : pspace->objfiles ())
1264 ALL_OBJFILE_OSECTIONS (objfile, s)
1265 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1266 alloc_size += 1;
1267
1268 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1269 if (alloc_size == 0)
1270 {
1271 *pmap = NULL;
1272 *pmap_size = 0;
1273 return;
1274 }
1275
1276 map = XNEWVEC (struct obj_section *, alloc_size);
1277
1278 i = 0;
1279 for (objfile *objfile : pspace->objfiles ())
1280 ALL_OBJFILE_OSECTIONS (objfile, s)
1281 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1282 map[i++] = s;
1283
1284 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1285 map_size = filter_debuginfo_sections(map, alloc_size);
1286 map_size = filter_overlapping_sections(map, map_size);
1287
1288 if (map_size < alloc_size)
1289 /* Some sections were eliminated. Trim excess space. */
1290 map = XRESIZEVEC (struct obj_section *, map, map_size);
1291 else
1292 gdb_assert (alloc_size == map_size);
1293
1294 *pmap = map;
1295 *pmap_size = map_size;
1296 }
1297
1298 /* Bsearch comparison function. */
1299
1300 static int
1301 bsearch_cmp (const void *key, const void *elt)
1302 {
1303 const CORE_ADDR pc = *(CORE_ADDR *) key;
1304 const struct obj_section *section = *(const struct obj_section **) elt;
1305
1306 if (pc < obj_section_addr (section))
1307 return -1;
1308 if (pc < obj_section_endaddr (section))
1309 return 0;
1310 return 1;
1311 }
1312
1313 /* Returns a section whose range includes PC or NULL if none found. */
1314
1315 struct obj_section *
1316 find_pc_section (CORE_ADDR pc)
1317 {
1318 struct objfile_pspace_info *pspace_info;
1319 struct obj_section *s, **sp;
1320
1321 /* Check for mapped overlay section first. */
1322 s = find_pc_mapped_section (pc);
1323 if (s)
1324 return s;
1325
1326 pspace_info = get_objfile_pspace_data (current_program_space);
1327 if (pspace_info->section_map_dirty
1328 || (pspace_info->new_objfiles_available
1329 && !pspace_info->inhibit_updates))
1330 {
1331 update_section_map (current_program_space,
1332 &pspace_info->sections,
1333 &pspace_info->num_sections);
1334
1335 /* Don't need updates to section map until objfiles are added,
1336 removed or relocated. */
1337 pspace_info->new_objfiles_available = 0;
1338 pspace_info->section_map_dirty = 0;
1339 }
1340
1341 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1342 bsearch be non-NULL. */
1343 if (pspace_info->sections == NULL)
1344 {
1345 gdb_assert (pspace_info->num_sections == 0);
1346 return NULL;
1347 }
1348
1349 sp = (struct obj_section **) bsearch (&pc,
1350 pspace_info->sections,
1351 pspace_info->num_sections,
1352 sizeof (*pspace_info->sections),
1353 bsearch_cmp);
1354 if (sp != NULL)
1355 return *sp;
1356 return NULL;
1357 }
1358
1359
1360 /* Return non-zero if PC is in a section called NAME. */
1361
1362 int
1363 pc_in_section (CORE_ADDR pc, const char *name)
1364 {
1365 struct obj_section *s;
1366 int retval = 0;
1367
1368 s = find_pc_section (pc);
1369
1370 retval = (s != NULL
1371 && s->the_bfd_section->name != NULL
1372 && strcmp (s->the_bfd_section->name, name) == 0);
1373 return (retval);
1374 }
1375 \f
1376
1377 /* Set section_map_dirty so section map will be rebuilt next time it
1378 is used. Called by reread_symbols. */
1379
1380 void
1381 objfiles_changed (void)
1382 {
1383 /* Rebuild section map next time we need it. */
1384 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1385 }
1386
1387 /* See comments in objfiles.h. */
1388
1389 scoped_restore_tmpl<int>
1390 inhibit_section_map_updates (struct program_space *pspace)
1391 {
1392 return scoped_restore_tmpl<int>
1393 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1394 }
1395
1396 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1397 otherwise. */
1398
1399 int
1400 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1401 {
1402 struct obj_section *osect;
1403
1404 if (objfile == NULL)
1405 return 0;
1406
1407 ALL_OBJFILE_OSECTIONS (objfile, osect)
1408 {
1409 if (section_is_overlay (osect) && !section_is_mapped (osect))
1410 continue;
1411
1412 if (obj_section_addr (osect) <= addr
1413 && addr < obj_section_endaddr (osect))
1414 return 1;
1415 }
1416 return 0;
1417 }
1418
1419 int
1420 shared_objfile_contains_address_p (struct program_space *pspace,
1421 CORE_ADDR address)
1422 {
1423 for (objfile *objfile : pspace->objfiles ())
1424 {
1425 if ((objfile->flags & OBJF_SHARED) != 0
1426 && is_addr_in_objfile (address, objfile))
1427 return 1;
1428 }
1429
1430 return 0;
1431 }
1432
1433 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1434 gdbarch method. It is equivalent to use the objfiles iterable,
1435 searching the objfiles in the order they are stored internally,
1436 ignoring CURRENT_OBJFILE.
1437
1438 On most platorms, it should be close enough to doing the best
1439 we can without some knowledge specific to the architecture. */
1440
1441 void
1442 default_iterate_over_objfiles_in_search_order
1443 (struct gdbarch *gdbarch,
1444 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1445 void *cb_data, struct objfile *current_objfile)
1446 {
1447 int stop = 0;
1448
1449 for (objfile *objfile : current_program_space->objfiles ())
1450 {
1451 stop = cb (objfile, cb_data);
1452 if (stop)
1453 return;
1454 }
1455 }
1456
1457 /* See objfiles.h. */
1458
1459 const char *
1460 objfile_name (const struct objfile *objfile)
1461 {
1462 if (objfile->obfd != NULL)
1463 return bfd_get_filename (objfile->obfd);
1464
1465 return objfile->original_name;
1466 }
1467
1468 /* See objfiles.h. */
1469
1470 const char *
1471 objfile_filename (const struct objfile *objfile)
1472 {
1473 if (objfile->obfd != NULL)
1474 return bfd_get_filename (objfile->obfd);
1475
1476 return NULL;
1477 }
1478
1479 /* See objfiles.h. */
1480
1481 const char *
1482 objfile_debug_name (const struct objfile *objfile)
1483 {
1484 return lbasename (objfile->original_name);
1485 }
1486
1487 /* See objfiles.h. */
1488
1489 const char *
1490 objfile_flavour_name (struct objfile *objfile)
1491 {
1492 if (objfile->obfd != NULL)
1493 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1494 return NULL;
1495 }