]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/objfiles.c
Initial creation of sourceware repository
[thirdparty/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying objfile structures. */
23
24 #include "defs.h"
25 #include "bfd.h" /* Binary File Description */
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdb-stabs.h"
30 #include "target.h"
31
32 #include <sys/types.h>
33 #include "gdb_stat.h"
34 #include <fcntl.h>
35 #include "obstack.h"
36 #include "gdb_string.h"
37
38 /* Prototypes for local functions */
39
40 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
41
42 static int
43 open_existing_mapped_file PARAMS ((char *, long, int));
44
45 static int
46 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
47
48 static PTR
49 map_to_file PARAMS ((int));
50
51 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
52
53 static void
54 add_to_objfile_sections PARAMS ((bfd *, sec_ptr, PTR));
55
56 /* Externally visible variables that are owned by this module.
57 See declarations in objfile.h for more info. */
58
59 struct objfile *object_files; /* Linked list of all objfiles */
60 struct objfile *current_objfile; /* For symbol file being read in */
61 struct objfile *symfile_objfile; /* Main symbol table loaded from */
62 struct objfile *rt_common_objfile; /* For runtime common symbols */
63
64 int mapped_symbol_files; /* Try to use mapped symbol files */
65
66 /* Locate all mappable sections of a BFD file.
67 objfile_p_char is a char * to get it through
68 bfd_map_over_sections; we cast it back to its proper type. */
69
70 #ifndef TARGET_KEEP_SECTION
71 #define TARGET_KEEP_SECTION(ASECT) 0
72 #endif
73
74 static void
75 add_to_objfile_sections (abfd, asect, objfile_p_char)
76 bfd *abfd;
77 sec_ptr asect;
78 PTR objfile_p_char;
79 {
80 struct objfile *objfile = (struct objfile *) objfile_p_char;
81 struct obj_section section;
82 flagword aflag;
83
84 aflag = bfd_get_section_flags (abfd, asect);
85
86 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION(asect)))
87 return;
88
89 if (0 == bfd_section_size (abfd, asect))
90 return;
91 section.offset = 0;
92 section.objfile = objfile;
93 section.the_bfd_section = asect;
94 section.ovly_mapped = 0;
95 section.addr = bfd_section_vma (abfd, asect);
96 section.endaddr = section.addr + bfd_section_size (abfd, asect);
97 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof(section));
98 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
99 }
100
101 /* Builds a section table for OBJFILE.
102 Returns 0 if OK, 1 on error (in which case bfd_error contains the
103 error). */
104
105 int
106 build_objfile_section_table (objfile)
107 struct objfile *objfile;
108 {
109 /* objfile->sections can be already set when reading a mapped symbol
110 file. I believe that we do need to rebuild the section table in
111 this case (we rebuild other things derived from the bfd), but we
112 can't free the old one (it's in the psymbol_obstack). So we just
113 waste some memory. */
114
115 objfile->sections_end = 0;
116 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
117 objfile->sections = (struct obj_section *)
118 obstack_finish (&objfile->psymbol_obstack);
119 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
120 return(0);
121 }
122
123 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
124 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
125 struct, fill it in as best we can, link it into the list of all known
126 objfiles, and return a pointer to the new objfile struct.
127
128 USER_LOADED is simply recorded in the objfile. This record offers a way for
129 run_command to remove old objfile entries which are no longer valid (i.e.,
130 are associated with an old inferior), but to preserve ones that the user
131 explicitly loaded via the add-symbol-file command.
132
133 IS_SOLIB is also simply recorded in the objfile. */
134
135 struct objfile *
136 allocate_objfile (abfd, mapped, user_loaded, is_solib)
137 bfd *abfd;
138 int mapped;
139 int user_loaded;
140 int is_solib;
141 {
142 struct objfile *objfile = NULL;
143 struct objfile *last_one = NULL;
144
145 mapped |= mapped_symbol_files;
146
147 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
148 if (abfd != NULL)
149 {
150
151 /* If we can support mapped symbol files, try to open/reopen the
152 mapped file that corresponds to the file from which we wish to
153 read symbols. If the objfile is to be mapped, we must malloc
154 the structure itself using the mmap version, and arrange that
155 all memory allocation for the objfile uses the mmap routines.
156 If we are reusing an existing mapped file, from which we get
157 our objfile pointer, we have to make sure that we update the
158 pointers to the alloc/free functions in the obstack, in case
159 these functions have moved within the current gdb. */
160
161 int fd;
162
163 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
164 mapped);
165 if (fd >= 0)
166 {
167 PTR md;
168
169 if ((md = map_to_file (fd)) == NULL)
170 {
171 close (fd);
172 }
173 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
174 {
175 /* Update memory corruption handler function addresses. */
176 init_malloc (md);
177 objfile -> md = md;
178 objfile -> mmfd = fd;
179 /* Update pointers to functions to *our* copies */
180 obstack_chunkfun (&objfile -> psymbol_cache.cache, xmmalloc);
181 obstack_freefun (&objfile -> psymbol_cache.cache, mfree);
182 obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
183 obstack_freefun (&objfile -> psymbol_obstack, mfree);
184 obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
185 obstack_freefun (&objfile -> symbol_obstack, mfree);
186 obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
187 obstack_freefun (&objfile -> type_obstack, mfree);
188 /* If already in objfile list, unlink it. */
189 unlink_objfile (objfile);
190 /* Forget things specific to a particular gdb, may have changed. */
191 objfile -> sf = NULL;
192 }
193 else
194 {
195
196 /* Set up to detect internal memory corruption. MUST be
197 done before the first malloc. See comments in
198 init_malloc() and mmcheck(). */
199
200 init_malloc (md);
201
202 objfile = (struct objfile *)
203 xmmalloc (md, sizeof (struct objfile));
204 memset (objfile, 0, sizeof (struct objfile));
205 objfile -> md = md;
206 objfile -> mmfd = fd;
207 objfile -> flags |= OBJF_MAPPED;
208 mmalloc_setkey (objfile -> md, 0, objfile);
209 obstack_specify_allocation_with_arg (&objfile -> psymbol_cache.cache,
210 0, 0, xmmalloc, mfree,
211 objfile -> md);
212 obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
213 0, 0, xmmalloc, mfree,
214 objfile -> md);
215 obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
216 0, 0, xmmalloc, mfree,
217 objfile -> md);
218 obstack_specify_allocation_with_arg (&objfile -> type_obstack,
219 0, 0, xmmalloc, mfree,
220 objfile -> md);
221 }
222 }
223
224 if (mapped && (objfile == NULL))
225 {
226 warning ("symbol table for '%s' will not be mapped",
227 bfd_get_filename (abfd));
228 }
229 }
230 #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
231
232 if (mapped)
233 {
234 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
235
236 /* Turn off the global flag so we don't try to do mapped symbol tables
237 any more, which shuts up gdb unless the user specifically gives the
238 "mapped" keyword again. */
239
240 mapped_symbol_files = 0;
241 }
242
243 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
244
245 /* If we don't support mapped symbol files, didn't ask for the file to be
246 mapped, or failed to open the mapped file for some reason, then revert
247 back to an unmapped objfile. */
248
249 if (objfile == NULL)
250 {
251 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
252 memset (objfile, 0, sizeof (struct objfile));
253 objfile -> md = NULL;
254 obstack_specify_allocation (&objfile -> psymbol_cache.cache, 0, 0,
255 xmalloc, free);
256 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
257 free);
258 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
259 free);
260 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
261 free);
262 }
263
264 /* Update the per-objfile information that comes from the bfd, ensuring
265 that any data that is reference is saved in the per-objfile data
266 region. */
267
268 objfile -> obfd = abfd;
269 if (objfile -> name != NULL)
270 {
271 mfree (objfile -> md, objfile -> name);
272 }
273 if (abfd != NULL)
274 {
275 objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
276 objfile -> mtime = bfd_get_mtime (abfd);
277
278 /* Build section table. */
279
280 if (build_objfile_section_table (objfile))
281 {
282 error ("Can't find the file sections in `%s': %s",
283 objfile -> name, bfd_errmsg (bfd_get_error ()));
284 }
285 }
286
287 /* Add this file onto the tail of the linked list of other such files. */
288
289 objfile -> next = NULL;
290 if (object_files == NULL)
291 object_files = objfile;
292 else
293 {
294 for (last_one = object_files;
295 last_one -> next;
296 last_one = last_one -> next);
297 last_one -> next = objfile;
298 }
299
300 /* Record whether this objfile was created because the user explicitly
301 caused it (e.g., used the add-symbol-file command).
302 */
303 objfile -> user_loaded = user_loaded;
304
305 /* Record whether this objfile definitely represents a solib. */
306 objfile -> is_solib = is_solib;
307
308 return (objfile);
309 }
310
311 /* Put OBJFILE at the front of the list. */
312
313 void
314 objfile_to_front (objfile)
315 struct objfile *objfile;
316 {
317 struct objfile **objp;
318 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
319 {
320 if (*objp == objfile)
321 {
322 /* Unhook it from where it is. */
323 *objp = objfile->next;
324 /* Put it in the front. */
325 objfile->next = object_files;
326 object_files = objfile;
327 break;
328 }
329 }
330 }
331
332 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
333 list.
334
335 It is not a bug, or error, to call this function if OBJFILE is not known
336 to be in the current list. This is done in the case of mapped objfiles,
337 for example, just to ensure that the mapped objfile doesn't appear twice
338 in the list. Since the list is threaded, linking in a mapped objfile
339 twice would create a circular list.
340
341 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
342 unlinking it, just to ensure that we have completely severed any linkages
343 between the OBJFILE and the list. */
344
345 void
346 unlink_objfile (objfile)
347 struct objfile *objfile;
348 {
349 struct objfile** objpp;
350
351 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
352 {
353 if (*objpp == objfile)
354 {
355 *objpp = (*objpp) -> next;
356 objfile -> next = NULL;
357 break;
358 }
359 }
360 }
361
362
363 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
364 that as much as possible is allocated on the symbol_obstack and
365 psymbol_obstack, so that the memory can be efficiently freed.
366
367 Things which we do NOT free because they are not in malloc'd memory
368 or not in memory specific to the objfile include:
369
370 objfile -> sf
371
372 FIXME: If the objfile is using reusable symbol information (via mmalloc),
373 then we need to take into account the fact that more than one process
374 may be using the symbol information at the same time (when mmalloc is
375 extended to support cooperative locking). When more than one process
376 is using the mapped symbol info, we need to be more careful about when
377 we free objects in the reusable area. */
378
379 void
380 free_objfile (objfile)
381 struct objfile *objfile;
382 {
383 /* First do any symbol file specific actions required when we are
384 finished with a particular symbol file. Note that if the objfile
385 is using reusable symbol information (via mmalloc) then each of
386 these routines is responsible for doing the correct thing, either
387 freeing things which are valid only during this particular gdb
388 execution, or leaving them to be reused during the next one. */
389
390 if (objfile -> sf != NULL)
391 {
392 (*objfile -> sf -> sym_finish) (objfile);
393 }
394
395 /* We always close the bfd. */
396
397 if (objfile -> obfd != NULL)
398 {
399 char *name = bfd_get_filename (objfile->obfd);
400 if (!bfd_close (objfile -> obfd))
401 warning ("cannot close \"%s\": %s",
402 name, bfd_errmsg (bfd_get_error ()));
403 free (name);
404 }
405
406 /* Remove it from the chain of all objfiles. */
407
408 unlink_objfile (objfile);
409
410 /* If we are going to free the runtime common objfile, mark it
411 as unallocated. */
412
413 if (objfile == rt_common_objfile)
414 rt_common_objfile = NULL;
415
416 /* Before the symbol table code was redone to make it easier to
417 selectively load and remove information particular to a specific
418 linkage unit, gdb used to do these things whenever the monolithic
419 symbol table was blown away. How much still needs to be done
420 is unknown, but we play it safe for now and keep each action until
421 it is shown to be no longer needed. */
422
423 #if defined (CLEAR_SOLIB)
424 CLEAR_SOLIB ();
425 /* CLEAR_SOLIB closes the bfd's for any shared libraries. But
426 the to_sections for a core file might refer to those bfd's. So
427 detach any core file. */
428 {
429 struct target_ops *t = find_core_target ();
430 if (t != NULL)
431 (t->to_detach) (NULL, 0);
432 }
433 #endif
434 /* I *think* all our callers call clear_symtab_users. If so, no need
435 to call this here. */
436 clear_pc_function_cache ();
437
438 /* The last thing we do is free the objfile struct itself for the
439 non-reusable case, or detach from the mapped file for the reusable
440 case. Note that the mmalloc_detach or the mfree is the last thing
441 we can do with this objfile. */
442
443 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
444
445 if (objfile -> flags & OBJF_MAPPED)
446 {
447 /* Remember the fd so we can close it. We can't close it before
448 doing the detach, and after the detach the objfile is gone. */
449 int mmfd;
450
451 mmfd = objfile -> mmfd;
452 mmalloc_detach (objfile -> md);
453 objfile = NULL;
454 close (mmfd);
455 }
456
457 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
458
459 /* If we still have an objfile, then either we don't support reusable
460 objfiles or this one was not reusable. So free it normally. */
461
462 if (objfile != NULL)
463 {
464 if (objfile -> name != NULL)
465 {
466 mfree (objfile -> md, objfile -> name);
467 }
468 if (objfile->global_psymbols.list)
469 mfree (objfile->md, objfile->global_psymbols.list);
470 if (objfile->static_psymbols.list)
471 mfree (objfile->md, objfile->static_psymbols.list);
472 /* Free the obstacks for non-reusable objfiles */
473 obstack_free (&objfile -> psymbol_cache.cache, 0);
474 obstack_free (&objfile -> psymbol_obstack, 0);
475 obstack_free (&objfile -> symbol_obstack, 0);
476 obstack_free (&objfile -> type_obstack, 0);
477 mfree (objfile -> md, objfile);
478 objfile = NULL;
479 }
480 }
481
482
483 /* Free all the object files at once and clean up their users. */
484
485 void
486 free_all_objfiles ()
487 {
488 struct objfile *objfile, *temp;
489
490 ALL_OBJFILES_SAFE (objfile, temp)
491 {
492 free_objfile (objfile);
493 }
494 clear_symtab_users ();
495 }
496 \f
497 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
498 entries in new_offsets. */
499 void
500 objfile_relocate (objfile, new_offsets)
501 struct objfile *objfile;
502 struct section_offsets *new_offsets;
503 {
504 struct section_offsets *delta = (struct section_offsets *)
505 alloca (sizeof (struct section_offsets)
506 + objfile->num_sections * sizeof (delta->offsets));
507
508 {
509 int i;
510 int something_changed = 0;
511 for (i = 0; i < objfile->num_sections; ++i)
512 {
513 ANOFFSET (delta, i) =
514 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
515 if (ANOFFSET (delta, i) != 0)
516 something_changed = 1;
517 }
518 if (!something_changed)
519 return;
520 }
521
522 /* OK, get all the symtabs. */
523 {
524 struct symtab *s;
525
526 ALL_OBJFILE_SYMTABS (objfile, s)
527 {
528 struct linetable *l;
529 struct blockvector *bv;
530 int i;
531
532 /* First the line table. */
533 l = LINETABLE (s);
534 if (l)
535 {
536 for (i = 0; i < l->nitems; ++i)
537 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
538 }
539
540 /* Don't relocate a shared blockvector more than once. */
541 if (!s->primary)
542 continue;
543
544 bv = BLOCKVECTOR (s);
545 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
546 {
547 struct block *b;
548 int j;
549
550 b = BLOCKVECTOR_BLOCK (bv, i);
551 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
552 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
553
554 for (j = 0; j < BLOCK_NSYMS (b); ++j)
555 {
556 struct symbol *sym = BLOCK_SYM (b, j);
557 /* The RS6000 code from which this was taken skipped
558 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
559 But I'm leaving out that test, on the theory that
560 they can't possibly pass the tests below. */
561 if ((SYMBOL_CLASS (sym) == LOC_LABEL
562 || SYMBOL_CLASS (sym) == LOC_STATIC
563 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
564 && SYMBOL_SECTION (sym) >= 0)
565 {
566 SYMBOL_VALUE_ADDRESS (sym) +=
567 ANOFFSET (delta, SYMBOL_SECTION (sym));
568 }
569 #ifdef MIPS_EFI_SYMBOL_NAME
570 /* Relocate Extra Function Info for ecoff. */
571
572 else
573 if (SYMBOL_CLASS (sym) == LOC_CONST
574 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
575 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
576 ecoff_relocate_efi (sym, ANOFFSET (delta,
577 s->block_line_section));
578 #endif
579 }
580 }
581 }
582 }
583
584 {
585 struct partial_symtab *p;
586
587 ALL_OBJFILE_PSYMTABS (objfile, p)
588 {
589 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
590 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
591 }
592 }
593
594 {
595 struct partial_symbol **psym;
596
597 for (psym = objfile->global_psymbols.list;
598 psym < objfile->global_psymbols.next;
599 psym++)
600 if (SYMBOL_SECTION (*psym) >= 0)
601 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
602 SYMBOL_SECTION (*psym));
603 for (psym = objfile->static_psymbols.list;
604 psym < objfile->static_psymbols.next;
605 psym++)
606 if (SYMBOL_SECTION (*psym) >= 0)
607 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
608 SYMBOL_SECTION (*psym));
609 }
610
611 {
612 struct minimal_symbol *msym;
613 ALL_OBJFILE_MSYMBOLS (objfile, msym)
614 if (SYMBOL_SECTION (msym) >= 0)
615 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
616 }
617 /* Relocating different sections by different amounts may cause the symbols
618 to be out of order. */
619 msymbols_sort (objfile);
620
621 {
622 int i;
623 for (i = 0; i < objfile->num_sections; ++i)
624 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
625 }
626
627 {
628 struct obj_section *s;
629 bfd *abfd;
630
631 abfd = objfile->obfd;
632
633 for (s = objfile->sections;
634 s < objfile->sections_end; ++s)
635 {
636 flagword flags;
637
638 flags = bfd_get_section_flags (abfd, s->the_bfd_section);
639
640 if (flags & SEC_CODE)
641 {
642 s->addr += ANOFFSET (delta, SECT_OFF_TEXT);
643 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT);
644 }
645 else if (flags & (SEC_DATA | SEC_LOAD))
646 {
647 s->addr += ANOFFSET (delta, SECT_OFF_DATA);
648 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA);
649 }
650 else if (flags & SEC_ALLOC)
651 {
652 s->addr += ANOFFSET (delta, SECT_OFF_BSS);
653 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS);
654 }
655 }
656 }
657
658 if (objfile->ei.entry_point != ~(CORE_ADDR)0)
659 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT);
660
661 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
662 {
663 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
664 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
665 }
666
667 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
668 {
669 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
670 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
671 }
672
673 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
674 {
675 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
676 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
677 }
678
679 /* Relocate breakpoints as necessary, after things are relocated. */
680 breakpoint_re_set ();
681 }
682 \f
683 /* Many places in gdb want to test just to see if we have any partial
684 symbols available. This function returns zero if none are currently
685 available, nonzero otherwise. */
686
687 int
688 have_partial_symbols ()
689 {
690 struct objfile *ofp;
691
692 ALL_OBJFILES (ofp)
693 {
694 if (ofp -> psymtabs != NULL)
695 {
696 return 1;
697 }
698 }
699 return 0;
700 }
701
702 /* Many places in gdb want to test just to see if we have any full
703 symbols available. This function returns zero if none are currently
704 available, nonzero otherwise. */
705
706 int
707 have_full_symbols ()
708 {
709 struct objfile *ofp;
710
711 ALL_OBJFILES (ofp)
712 {
713 if (ofp -> symtabs != NULL)
714 {
715 return 1;
716 }
717 }
718 return 0;
719 }
720
721
722 /* This operations deletes all objfile entries that represent solibs that
723 weren't explicitly loaded by the user, via e.g., the add-symbol-file
724 command.
725 */
726 void
727 objfile_purge_solibs ()
728 {
729 struct objfile * objf;
730 struct objfile * temp;
731
732 ALL_OBJFILES_SAFE (objf, temp)
733 {
734 /* We assume that the solib package has been purged already, or will
735 be soon.
736 */
737 if (! objf->user_loaded && objf->is_solib)
738 free_objfile (objf);
739 }
740 }
741
742
743 /* Many places in gdb want to test just to see if we have any minimal
744 symbols available. This function returns zero if none are currently
745 available, nonzero otherwise. */
746
747 int
748 have_minimal_symbols ()
749 {
750 struct objfile *ofp;
751
752 ALL_OBJFILES (ofp)
753 {
754 if (ofp -> msymbols != NULL)
755 {
756 return 1;
757 }
758 }
759 return 0;
760 }
761
762 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
763
764 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
765 of the corresponding symbol file in MTIME, try to open an existing file
766 with the name SYMSFILENAME and verify it is more recent than the base
767 file by checking it's timestamp against MTIME.
768
769 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
770
771 If SYMSFILENAME does exist, but is out of date, we check to see if the
772 user has specified creation of a mapped file. If so, we don't issue
773 any warning message because we will be creating a new mapped file anyway,
774 overwriting the old one. If not, then we issue a warning message so that
775 the user will know why we aren't using this existing mapped symbol file.
776 In either case, we return -1.
777
778 If SYMSFILENAME does exist and is not out of date, but can't be opened for
779 some reason, then prints an appropriate system error message and returns -1.
780
781 Otherwise, returns the open file descriptor. */
782
783 static int
784 open_existing_mapped_file (symsfilename, mtime, mapped)
785 char *symsfilename;
786 long mtime;
787 int mapped;
788 {
789 int fd = -1;
790 struct stat sbuf;
791
792 if (stat (symsfilename, &sbuf) == 0)
793 {
794 if (sbuf.st_mtime < mtime)
795 {
796 if (!mapped)
797 {
798 warning ("mapped symbol file `%s' is out of date, ignored it",
799 symsfilename);
800 }
801 }
802 else if ((fd = open (symsfilename, O_RDWR)) < 0)
803 {
804 if (error_pre_print)
805 {
806 printf_unfiltered (error_pre_print);
807 }
808 print_sys_errmsg (symsfilename, errno);
809 }
810 }
811 return (fd);
812 }
813
814 /* Look for a mapped symbol file that corresponds to FILENAME and is more
815 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
816 use a mapped symbol file for this file, so create a new one if one does
817 not currently exist.
818
819 If found, then return an open file descriptor for the file, otherwise
820 return -1.
821
822 This routine is responsible for implementing the policy that generates
823 the name of the mapped symbol file from the name of a file containing
824 symbols that gdb would like to read. Currently this policy is to append
825 ".syms" to the name of the file.
826
827 This routine is also responsible for implementing the policy that
828 determines where the mapped symbol file is found (the search path).
829 This policy is that when reading an existing mapped file, a file of
830 the correct name in the current directory takes precedence over a
831 file of the correct name in the same directory as the symbol file.
832 When creating a new mapped file, it is always created in the current
833 directory. This helps to minimize the chances of a user unknowingly
834 creating big mapped files in places like /bin and /usr/local/bin, and
835 allows a local copy to override a manually installed global copy (in
836 /bin for example). */
837
838 static int
839 open_mapped_file (filename, mtime, mapped)
840 char *filename;
841 long mtime;
842 int mapped;
843 {
844 int fd;
845 char *symsfilename;
846
847 /* First try to open an existing file in the current directory, and
848 then try the directory where the symbol file is located. */
849
850 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
851 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
852 {
853 free (symsfilename);
854 symsfilename = concat (filename, ".syms", (char *) NULL);
855 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
856 }
857
858 /* If we don't have an open file by now, then either the file does not
859 already exist, or the base file has changed since it was created. In
860 either case, if the user has specified use of a mapped file, then
861 create a new mapped file, truncating any existing one. If we can't
862 create one, print a system error message saying why we can't.
863
864 By default the file is rw for everyone, with the user's umask taking
865 care of turning off the permissions the user wants off. */
866
867 if ((fd < 0) && mapped)
868 {
869 free (symsfilename);
870 symsfilename = concat ("./", basename (filename), ".syms",
871 (char *) NULL);
872 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
873 {
874 if (error_pre_print)
875 {
876 printf_unfiltered (error_pre_print);
877 }
878 print_sys_errmsg (symsfilename, errno);
879 }
880 }
881
882 free (symsfilename);
883 return (fd);
884 }
885
886 static PTR
887 map_to_file (fd)
888 int fd;
889 {
890 PTR md;
891 CORE_ADDR mapto;
892
893 md = mmalloc_attach (fd, (PTR) 0);
894 if (md != NULL)
895 {
896 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
897 md = mmalloc_detach (md);
898 if (md != NULL)
899 {
900 /* FIXME: should figure out why detach failed */
901 md = NULL;
902 }
903 else if (mapto != (CORE_ADDR) NULL)
904 {
905 /* This mapping file needs to be remapped at "mapto" */
906 md = mmalloc_attach (fd, (PTR) mapto);
907 }
908 else
909 {
910 /* This is a freshly created mapping file. */
911 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
912 if (mapto != 0)
913 {
914 /* To avoid reusing the freshly created mapping file, at the
915 address selected by mmap, we must truncate it before trying
916 to do an attach at the address we want. */
917 ftruncate (fd, 0);
918 md = mmalloc_attach (fd, (PTR) mapto);
919 if (md != NULL)
920 {
921 mmalloc_setkey (md, 1, (PTR) mapto);
922 }
923 }
924 }
925 }
926 return (md);
927 }
928
929 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
930
931 /* Returns a section whose range includes PC and SECTION,
932 or NULL if none found. Note the distinction between the return type,
933 struct obj_section (which is defined in gdb), and the input type
934 struct sec (which is a bfd-defined data type). The obj_section
935 contains a pointer to the bfd struct sec section. */
936
937 struct obj_section *
938 find_pc_sect_section (pc, section)
939 CORE_ADDR pc;
940 struct sec *section;
941 {
942 struct obj_section *s;
943 struct objfile *objfile;
944
945 ALL_OBJFILES (objfile)
946 for (s = objfile->sections; s < objfile->sections_end; ++s)
947 #if defined(HPUXHPPA)
948 if ((section == 0 || section == s->the_bfd_section) &&
949 s->addr <= pc && pc <= s->endaddr)
950 #else
951 if ((section == 0 || section == s->the_bfd_section) &&
952 s->addr <= pc && pc < s->endaddr)
953 #endif
954 return(s);
955
956 return(NULL);
957 }
958
959 /* Returns a section whose range includes PC or NULL if none found.
960 Backward compatibility, no section. */
961
962 struct obj_section *
963 find_pc_section(pc)
964 CORE_ADDR pc;
965 {
966 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
967 }
968
969
970 /* In SVR4, we recognize a trampoline by it's section name.
971 That is, if the pc is in a section named ".plt" then we are in
972 a trampoline. */
973
974 int
975 in_plt_section(pc, name)
976 CORE_ADDR pc;
977 char *name;
978 {
979 struct obj_section *s;
980 int retval = 0;
981
982 s = find_pc_section(pc);
983
984 retval = (s != NULL
985 && s->the_bfd_section->name != NULL
986 && STREQ (s->the_bfd_section->name, ".plt"));
987 return(retval);
988 }