]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/parse.c
PR c++/9065:
[thirdparty/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "gdb_string.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "frame.h"
39 #include "expression.h"
40 #include "value.h"
41 #include "command.h"
42 #include "language.h"
43 #include "f-lang.h"
44 #include "parser-defs.h"
45 #include "gdbcmd.h"
46 #include "symfile.h" /* for overlay functions */
47 #include "inferior.h"
48 #include "doublest.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51 #include "source.h"
52 #include "objfiles.h"
53 #include "exceptions.h"
54 #include "user-regs.h"
55
56 /* Standard set of definitions for printing, dumping, prefixifying,
57 * and evaluating expressions. */
58
59 const struct exp_descriptor exp_descriptor_standard =
60 {
61 print_subexp_standard,
62 operator_length_standard,
63 operator_check_standard,
64 op_name_standard,
65 dump_subexp_body_standard,
66 evaluate_subexp_standard
67 };
68 \f
69 /* Global variables declared in parser-defs.h (and commented there). */
70 struct expression *expout;
71 int expout_size;
72 int expout_ptr;
73 const struct block *expression_context_block;
74 CORE_ADDR expression_context_pc;
75 const struct block *innermost_block;
76 int arglist_len;
77 static struct type_stack type_stack;
78 char *lexptr;
79 char *prev_lexptr;
80 int paren_depth;
81 int comma_terminates;
82
83 /* True if parsing an expression to attempt completion. */
84 int parse_completion;
85
86 /* The index of the last struct expression directly before a '.' or
87 '->'. This is set when parsing and is only used when completing a
88 field name. It is -1 if no dereference operation was found. */
89 static int expout_last_struct = -1;
90
91 /* If we are completing a tagged type name, this will be nonzero. */
92 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
93
94 /* The token for tagged type name completion. */
95 static char *expout_completion_name;
96
97 \f
98 static unsigned int expressiondebug = 0;
99 static void
100 show_expressiondebug (struct ui_file *file, int from_tty,
101 struct cmd_list_element *c, const char *value)
102 {
103 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
104 }
105
106
107 /* Non-zero if an expression parser should set yydebug. */
108 int parser_debug;
109
110 static void
111 show_parserdebug (struct ui_file *file, int from_tty,
112 struct cmd_list_element *c, const char *value)
113 {
114 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
115 }
116
117
118 static void free_funcalls (void *ignore);
119
120 static int prefixify_subexp (struct expression *, struct expression *, int,
121 int);
122
123 static struct expression *parse_exp_in_context (const char **, CORE_ADDR,
124 const struct block *, int,
125 int, int *);
126 static struct expression *parse_exp_in_context_1 (char **, CORE_ADDR,
127 const struct block *, int,
128 int, int *);
129
130 void _initialize_parse (void);
131
132 /* Data structure for saving values of arglist_len for function calls whose
133 arguments contain other function calls. */
134
135 struct funcall
136 {
137 struct funcall *next;
138 int arglist_len;
139 };
140
141 static struct funcall *funcall_chain;
142
143 /* Begin counting arguments for a function call,
144 saving the data about any containing call. */
145
146 void
147 start_arglist (void)
148 {
149 struct funcall *new;
150
151 new = (struct funcall *) xmalloc (sizeof (struct funcall));
152 new->next = funcall_chain;
153 new->arglist_len = arglist_len;
154 arglist_len = 0;
155 funcall_chain = new;
156 }
157
158 /* Return the number of arguments in a function call just terminated,
159 and restore the data for the containing function call. */
160
161 int
162 end_arglist (void)
163 {
164 int val = arglist_len;
165 struct funcall *call = funcall_chain;
166
167 funcall_chain = call->next;
168 arglist_len = call->arglist_len;
169 xfree (call);
170 return val;
171 }
172
173 /* Free everything in the funcall chain.
174 Used when there is an error inside parsing. */
175
176 static void
177 free_funcalls (void *ignore)
178 {
179 struct funcall *call, *next;
180
181 for (call = funcall_chain; call; call = next)
182 {
183 next = call->next;
184 xfree (call);
185 }
186 }
187 \f
188 /* This page contains the functions for adding data to the struct expression
189 being constructed. */
190
191 /* See definition in parser-defs.h. */
192
193 void
194 initialize_expout (int initial_size, const struct language_defn *lang,
195 struct gdbarch *gdbarch)
196 {
197 expout_size = initial_size;
198 expout_ptr = 0;
199 expout = xmalloc (sizeof (struct expression)
200 + EXP_ELEM_TO_BYTES (expout_size));
201 expout->language_defn = lang;
202 expout->gdbarch = gdbarch;
203 }
204
205 /* See definition in parser-defs.h. */
206
207 void
208 reallocate_expout (void)
209 {
210 /* Record the actual number of expression elements, and then
211 reallocate the expression memory so that we free up any
212 excess elements. */
213
214 expout->nelts = expout_ptr;
215 expout = xrealloc ((char *) expout,
216 sizeof (struct expression)
217 + EXP_ELEM_TO_BYTES (expout_ptr));
218 }
219
220 /* Add one element to the end of the expression. */
221
222 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
223 a register through here. */
224
225 static void
226 write_exp_elt (const union exp_element *expelt)
227 {
228 if (expout_ptr >= expout_size)
229 {
230 expout_size *= 2;
231 expout = (struct expression *)
232 xrealloc ((char *) expout, sizeof (struct expression)
233 + EXP_ELEM_TO_BYTES (expout_size));
234 }
235 expout->elts[expout_ptr++] = *expelt;
236 }
237
238 void
239 write_exp_elt_opcode (enum exp_opcode expelt)
240 {
241 union exp_element tmp;
242
243 memset (&tmp, 0, sizeof (union exp_element));
244 tmp.opcode = expelt;
245 write_exp_elt (&tmp);
246 }
247
248 void
249 write_exp_elt_sym (struct symbol *expelt)
250 {
251 union exp_element tmp;
252
253 memset (&tmp, 0, sizeof (union exp_element));
254 tmp.symbol = expelt;
255 write_exp_elt (&tmp);
256 }
257
258 void
259 write_exp_elt_block (const struct block *b)
260 {
261 union exp_element tmp;
262
263 memset (&tmp, 0, sizeof (union exp_element));
264 tmp.block = b;
265 write_exp_elt (&tmp);
266 }
267
268 void
269 write_exp_elt_objfile (struct objfile *objfile)
270 {
271 union exp_element tmp;
272
273 memset (&tmp, 0, sizeof (union exp_element));
274 tmp.objfile = objfile;
275 write_exp_elt (&tmp);
276 }
277
278 void
279 write_exp_elt_longcst (LONGEST expelt)
280 {
281 union exp_element tmp;
282
283 memset (&tmp, 0, sizeof (union exp_element));
284 tmp.longconst = expelt;
285 write_exp_elt (&tmp);
286 }
287
288 void
289 write_exp_elt_dblcst (DOUBLEST expelt)
290 {
291 union exp_element tmp;
292
293 memset (&tmp, 0, sizeof (union exp_element));
294 tmp.doubleconst = expelt;
295 write_exp_elt (&tmp);
296 }
297
298 void
299 write_exp_elt_decfloatcst (gdb_byte expelt[16])
300 {
301 union exp_element tmp;
302 int index;
303
304 for (index = 0; index < 16; index++)
305 tmp.decfloatconst[index] = expelt[index];
306
307 write_exp_elt (&tmp);
308 }
309
310 void
311 write_exp_elt_type (struct type *expelt)
312 {
313 union exp_element tmp;
314
315 memset (&tmp, 0, sizeof (union exp_element));
316 tmp.type = expelt;
317 write_exp_elt (&tmp);
318 }
319
320 void
321 write_exp_elt_intern (struct internalvar *expelt)
322 {
323 union exp_element tmp;
324
325 memset (&tmp, 0, sizeof (union exp_element));
326 tmp.internalvar = expelt;
327 write_exp_elt (&tmp);
328 }
329
330 /* Add a string constant to the end of the expression.
331
332 String constants are stored by first writing an expression element
333 that contains the length of the string, then stuffing the string
334 constant itself into however many expression elements are needed
335 to hold it, and then writing another expression element that contains
336 the length of the string. I.e. an expression element at each end of
337 the string records the string length, so you can skip over the
338 expression elements containing the actual string bytes from either
339 end of the string. Note that this also allows gdb to handle
340 strings with embedded null bytes, as is required for some languages.
341
342 Don't be fooled by the fact that the string is null byte terminated,
343 this is strictly for the convenience of debugging gdb itself.
344 Gdb does not depend up the string being null terminated, since the
345 actual length is recorded in expression elements at each end of the
346 string. The null byte is taken into consideration when computing how
347 many expression elements are required to hold the string constant, of
348 course. */
349
350
351 void
352 write_exp_string (struct stoken str)
353 {
354 int len = str.length;
355 int lenelt;
356 char *strdata;
357
358 /* Compute the number of expression elements required to hold the string
359 (including a null byte terminator), along with one expression element
360 at each end to record the actual string length (not including the
361 null byte terminator). */
362
363 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
364
365 /* Ensure that we have enough available expression elements to store
366 everything. */
367
368 if ((expout_ptr + lenelt) >= expout_size)
369 {
370 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
371 expout = (struct expression *)
372 xrealloc ((char *) expout, (sizeof (struct expression)
373 + EXP_ELEM_TO_BYTES (expout_size)));
374 }
375
376 /* Write the leading length expression element (which advances the current
377 expression element index), then write the string constant followed by a
378 terminating null byte, and then write the trailing length expression
379 element. */
380
381 write_exp_elt_longcst ((LONGEST) len);
382 strdata = (char *) &expout->elts[expout_ptr];
383 memcpy (strdata, str.ptr, len);
384 *(strdata + len) = '\0';
385 expout_ptr += lenelt - 2;
386 write_exp_elt_longcst ((LONGEST) len);
387 }
388
389 /* Add a vector of string constants to the end of the expression.
390
391 This adds an OP_STRING operation, but encodes the contents
392 differently from write_exp_string. The language is expected to
393 handle evaluation of this expression itself.
394
395 After the usual OP_STRING header, TYPE is written into the
396 expression as a long constant. The interpretation of this field is
397 up to the language evaluator.
398
399 Next, each string in VEC is written. The length is written as a
400 long constant, followed by the contents of the string. */
401
402 void
403 write_exp_string_vector (int type, struct stoken_vector *vec)
404 {
405 int i, n_slots, len;
406
407 /* Compute the size. We compute the size in number of slots to
408 avoid issues with string padding. */
409 n_slots = 0;
410 for (i = 0; i < vec->len; ++i)
411 {
412 /* One slot for the length of this element, plus the number of
413 slots needed for this string. */
414 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
415 }
416
417 /* One more slot for the type of the string. */
418 ++n_slots;
419
420 /* Now compute a phony string length. */
421 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
422
423 n_slots += 4;
424 if ((expout_ptr + n_slots) >= expout_size)
425 {
426 expout_size = max (expout_size * 2, expout_ptr + n_slots + 10);
427 expout = (struct expression *)
428 xrealloc ((char *) expout, (sizeof (struct expression)
429 + EXP_ELEM_TO_BYTES (expout_size)));
430 }
431
432 write_exp_elt_opcode (OP_STRING);
433 write_exp_elt_longcst (len);
434 write_exp_elt_longcst (type);
435
436 for (i = 0; i < vec->len; ++i)
437 {
438 write_exp_elt_longcst (vec->tokens[i].length);
439 memcpy (&expout->elts[expout_ptr], vec->tokens[i].ptr,
440 vec->tokens[i].length);
441 expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
442 }
443
444 write_exp_elt_longcst (len);
445 write_exp_elt_opcode (OP_STRING);
446 }
447
448 /* Add a bitstring constant to the end of the expression.
449
450 Bitstring constants are stored by first writing an expression element
451 that contains the length of the bitstring (in bits), then stuffing the
452 bitstring constant itself into however many expression elements are
453 needed to hold it, and then writing another expression element that
454 contains the length of the bitstring. I.e. an expression element at
455 each end of the bitstring records the bitstring length, so you can skip
456 over the expression elements containing the actual bitstring bytes from
457 either end of the bitstring. */
458
459 void
460 write_exp_bitstring (struct stoken str)
461 {
462 int bits = str.length; /* length in bits */
463 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
464 int lenelt;
465 char *strdata;
466
467 /* Compute the number of expression elements required to hold the bitstring,
468 along with one expression element at each end to record the actual
469 bitstring length in bits. */
470
471 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
472
473 /* Ensure that we have enough available expression elements to store
474 everything. */
475
476 if ((expout_ptr + lenelt) >= expout_size)
477 {
478 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
479 expout = (struct expression *)
480 xrealloc ((char *) expout, (sizeof (struct expression)
481 + EXP_ELEM_TO_BYTES (expout_size)));
482 }
483
484 /* Write the leading length expression element (which advances the current
485 expression element index), then write the bitstring constant, and then
486 write the trailing length expression element. */
487
488 write_exp_elt_longcst ((LONGEST) bits);
489 strdata = (char *) &expout->elts[expout_ptr];
490 memcpy (strdata, str.ptr, len);
491 expout_ptr += lenelt - 2;
492 write_exp_elt_longcst ((LONGEST) bits);
493 }
494
495 /* Add the appropriate elements for a minimal symbol to the end of
496 the expression. */
497
498 void
499 write_exp_msymbol (struct minimal_symbol *msymbol)
500 {
501 struct objfile *objfile = msymbol_objfile (msymbol);
502 struct gdbarch *gdbarch = get_objfile_arch (objfile);
503
504 CORE_ADDR addr = SYMBOL_VALUE_ADDRESS (msymbol);
505 struct obj_section *section = SYMBOL_OBJ_SECTION (objfile, msymbol);
506 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
507 CORE_ADDR pc;
508
509 /* The minimal symbol might point to a function descriptor;
510 resolve it to the actual code address instead. */
511 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
512 if (pc != addr)
513 {
514 struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc);
515
516 /* In this case, assume we have a code symbol instead of
517 a data symbol. */
518
519 if (ifunc_msym.minsym != NULL
520 && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc
521 && SYMBOL_VALUE_ADDRESS (ifunc_msym.minsym) == pc)
522 {
523 /* A function descriptor has been resolved but PC is still in the
524 STT_GNU_IFUNC resolver body (such as because inferior does not
525 run to be able to call it). */
526
527 type = mst_text_gnu_ifunc;
528 }
529 else
530 type = mst_text;
531 section = NULL;
532 addr = pc;
533 }
534
535 if (overlay_debugging)
536 addr = symbol_overlayed_address (addr, section);
537
538 write_exp_elt_opcode (OP_LONG);
539 /* Let's make the type big enough to hold a 64-bit address. */
540 write_exp_elt_type (objfile_type (objfile)->builtin_core_addr);
541 write_exp_elt_longcst ((LONGEST) addr);
542 write_exp_elt_opcode (OP_LONG);
543
544 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
545 {
546 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
547 write_exp_elt_objfile (objfile);
548 write_exp_elt_type (objfile_type (objfile)->nodebug_tls_symbol);
549 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
550 return;
551 }
552
553 write_exp_elt_opcode (UNOP_MEMVAL);
554 switch (type)
555 {
556 case mst_text:
557 case mst_file_text:
558 case mst_solib_trampoline:
559 write_exp_elt_type (objfile_type (objfile)->nodebug_text_symbol);
560 break;
561
562 case mst_text_gnu_ifunc:
563 write_exp_elt_type (objfile_type (objfile)
564 ->nodebug_text_gnu_ifunc_symbol);
565 break;
566
567 case mst_data:
568 case mst_file_data:
569 case mst_bss:
570 case mst_file_bss:
571 write_exp_elt_type (objfile_type (objfile)->nodebug_data_symbol);
572 break;
573
574 case mst_slot_got_plt:
575 write_exp_elt_type (objfile_type (objfile)->nodebug_got_plt_symbol);
576 break;
577
578 default:
579 write_exp_elt_type (objfile_type (objfile)->nodebug_unknown_symbol);
580 break;
581 }
582 write_exp_elt_opcode (UNOP_MEMVAL);
583 }
584
585 /* Mark the current index as the starting location of a structure
586 expression. This is used when completing on field names. */
587
588 void
589 mark_struct_expression (void)
590 {
591 gdb_assert (parse_completion
592 && expout_tag_completion_type == TYPE_CODE_UNDEF);
593 expout_last_struct = expout_ptr;
594 }
595
596 /* Indicate that the current parser invocation is completing a tag.
597 TAG is the type code of the tag, and PTR and LENGTH represent the
598 start of the tag name. */
599
600 void
601 mark_completion_tag (enum type_code tag, const char *ptr, int length)
602 {
603 gdb_assert (parse_completion
604 && expout_tag_completion_type == TYPE_CODE_UNDEF
605 && expout_completion_name == NULL
606 && expout_last_struct == -1);
607 gdb_assert (tag == TYPE_CODE_UNION
608 || tag == TYPE_CODE_STRUCT
609 || tag == TYPE_CODE_CLASS
610 || tag == TYPE_CODE_ENUM);
611 expout_tag_completion_type = tag;
612 expout_completion_name = xmalloc (length + 1);
613 memcpy (expout_completion_name, ptr, length);
614 expout_completion_name[length] = '\0';
615 }
616
617 \f
618 /* Recognize tokens that start with '$'. These include:
619
620 $regname A native register name or a "standard
621 register name".
622
623 $variable A convenience variable with a name chosen
624 by the user.
625
626 $digits Value history with index <digits>, starting
627 from the first value which has index 1.
628
629 $$digits Value history with index <digits> relative
630 to the last value. I.e. $$0 is the last
631 value, $$1 is the one previous to that, $$2
632 is the one previous to $$1, etc.
633
634 $ | $0 | $$0 The last value in the value history.
635
636 $$ An abbreviation for the second to the last
637 value in the value history, I.e. $$1 */
638
639 void
640 write_dollar_variable (struct stoken str)
641 {
642 struct symbol *sym = NULL;
643 struct minimal_symbol *msym = NULL;
644 struct internalvar *isym = NULL;
645
646 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
647 and $$digits (equivalent to $<-digits> if you could type that). */
648
649 int negate = 0;
650 int i = 1;
651 /* Double dollar means negate the number and add -1 as well.
652 Thus $$ alone means -1. */
653 if (str.length >= 2 && str.ptr[1] == '$')
654 {
655 negate = 1;
656 i = 2;
657 }
658 if (i == str.length)
659 {
660 /* Just dollars (one or two). */
661 i = -negate;
662 goto handle_last;
663 }
664 /* Is the rest of the token digits? */
665 for (; i < str.length; i++)
666 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
667 break;
668 if (i == str.length)
669 {
670 i = atoi (str.ptr + 1 + negate);
671 if (negate)
672 i = -i;
673 goto handle_last;
674 }
675
676 /* Handle tokens that refer to machine registers:
677 $ followed by a register name. */
678 i = user_reg_map_name_to_regnum (parse_gdbarch,
679 str.ptr + 1, str.length - 1);
680 if (i >= 0)
681 goto handle_register;
682
683 /* Any names starting with $ are probably debugger internal variables. */
684
685 isym = lookup_only_internalvar (copy_name (str) + 1);
686 if (isym)
687 {
688 write_exp_elt_opcode (OP_INTERNALVAR);
689 write_exp_elt_intern (isym);
690 write_exp_elt_opcode (OP_INTERNALVAR);
691 return;
692 }
693
694 /* On some systems, such as HP-UX and hppa-linux, certain system routines
695 have names beginning with $ or $$. Check for those, first. */
696
697 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
698 VAR_DOMAIN, NULL);
699 if (sym)
700 {
701 write_exp_elt_opcode (OP_VAR_VALUE);
702 write_exp_elt_block (block_found); /* set by lookup_symbol */
703 write_exp_elt_sym (sym);
704 write_exp_elt_opcode (OP_VAR_VALUE);
705 return;
706 }
707 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
708 if (msym)
709 {
710 write_exp_msymbol (msym);
711 return;
712 }
713
714 /* Any other names are assumed to be debugger internal variables. */
715
716 write_exp_elt_opcode (OP_INTERNALVAR);
717 write_exp_elt_intern (create_internalvar (copy_name (str) + 1));
718 write_exp_elt_opcode (OP_INTERNALVAR);
719 return;
720 handle_last:
721 write_exp_elt_opcode (OP_LAST);
722 write_exp_elt_longcst ((LONGEST) i);
723 write_exp_elt_opcode (OP_LAST);
724 return;
725 handle_register:
726 write_exp_elt_opcode (OP_REGISTER);
727 str.length--;
728 str.ptr++;
729 write_exp_string (str);
730 write_exp_elt_opcode (OP_REGISTER);
731 return;
732 }
733
734
735 char *
736 find_template_name_end (char *p)
737 {
738 int depth = 1;
739 int just_seen_right = 0;
740 int just_seen_colon = 0;
741 int just_seen_space = 0;
742
743 if (!p || (*p != '<'))
744 return 0;
745
746 while (*++p)
747 {
748 switch (*p)
749 {
750 case '\'':
751 case '\"':
752 case '{':
753 case '}':
754 /* In future, may want to allow these?? */
755 return 0;
756 case '<':
757 depth++; /* start nested template */
758 if (just_seen_colon || just_seen_right || just_seen_space)
759 return 0; /* but not after : or :: or > or space */
760 break;
761 case '>':
762 if (just_seen_colon || just_seen_right)
763 return 0; /* end a (nested?) template */
764 just_seen_right = 1; /* but not after : or :: */
765 if (--depth == 0) /* also disallow >>, insist on > > */
766 return ++p; /* if outermost ended, return */
767 break;
768 case ':':
769 if (just_seen_space || (just_seen_colon > 1))
770 return 0; /* nested class spec coming up */
771 just_seen_colon++; /* we allow :: but not :::: */
772 break;
773 case ' ':
774 break;
775 default:
776 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
777 (*p >= 'A' && *p <= 'Z') ||
778 (*p >= '0' && *p <= '9') ||
779 (*p == '_') || (*p == ',') || /* commas for template args */
780 (*p == '&') || (*p == '*') || /* pointer and ref types */
781 (*p == '(') || (*p == ')') || /* function types */
782 (*p == '[') || (*p == ']'))) /* array types */
783 return 0;
784 }
785 if (*p != ' ')
786 just_seen_space = 0;
787 if (*p != ':')
788 just_seen_colon = 0;
789 if (*p != '>')
790 just_seen_right = 0;
791 }
792 return 0;
793 }
794 \f
795
796 /* Return a null-terminated temporary copy of the name of a string token.
797
798 Tokens that refer to names do so with explicit pointer and length,
799 so they can share the storage that lexptr is parsing.
800 When it is necessary to pass a name to a function that expects
801 a null-terminated string, the substring is copied out
802 into a separate block of storage.
803
804 N.B. A single buffer is reused on each call. */
805
806 char *
807 copy_name (struct stoken token)
808 {
809 /* A temporary buffer for identifiers, so we can null-terminate them.
810 We allocate this with xrealloc. parse_exp_1 used to allocate with
811 alloca, using the size of the whole expression as a conservative
812 estimate of the space needed. However, macro expansion can
813 introduce names longer than the original expression; there's no
814 practical way to know beforehand how large that might be. */
815 static char *namecopy;
816 static size_t namecopy_size;
817
818 /* Make sure there's enough space for the token. */
819 if (namecopy_size < token.length + 1)
820 {
821 namecopy_size = token.length + 1;
822 namecopy = xrealloc (namecopy, token.length + 1);
823 }
824
825 memcpy (namecopy, token.ptr, token.length);
826 namecopy[token.length] = 0;
827
828 return namecopy;
829 }
830 \f
831
832 /* See comments on parser-defs.h. */
833
834 int
835 prefixify_expression (struct expression *expr)
836 {
837 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
838 struct expression *temp;
839 int inpos = expr->nelts, outpos = 0;
840
841 temp = (struct expression *) alloca (len);
842
843 /* Copy the original expression into temp. */
844 memcpy (temp, expr, len);
845
846 return prefixify_subexp (temp, expr, inpos, outpos);
847 }
848
849 /* Return the number of exp_elements in the postfix subexpression
850 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
851
852 int
853 length_of_subexp (struct expression *expr, int endpos)
854 {
855 int oplen, args;
856
857 operator_length (expr, endpos, &oplen, &args);
858
859 while (args > 0)
860 {
861 oplen += length_of_subexp (expr, endpos - oplen);
862 args--;
863 }
864
865 return oplen;
866 }
867
868 /* Sets *OPLENP to the length of the operator whose (last) index is
869 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
870 operator takes. */
871
872 void
873 operator_length (const struct expression *expr, int endpos, int *oplenp,
874 int *argsp)
875 {
876 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
877 oplenp, argsp);
878 }
879
880 /* Default value for operator_length in exp_descriptor vectors. */
881
882 void
883 operator_length_standard (const struct expression *expr, int endpos,
884 int *oplenp, int *argsp)
885 {
886 int oplen = 1;
887 int args = 0;
888 enum f90_range_type range_type;
889 int i;
890
891 if (endpos < 1)
892 error (_("?error in operator_length_standard"));
893
894 i = (int) expr->elts[endpos - 1].opcode;
895
896 switch (i)
897 {
898 /* C++ */
899 case OP_SCOPE:
900 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
901 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
902 break;
903
904 case OP_LONG:
905 case OP_DOUBLE:
906 case OP_DECFLOAT:
907 case OP_VAR_VALUE:
908 oplen = 4;
909 break;
910
911 case OP_TYPE:
912 case OP_BOOL:
913 case OP_LAST:
914 case OP_INTERNALVAR:
915 case OP_VAR_ENTRY_VALUE:
916 oplen = 3;
917 break;
918
919 case OP_COMPLEX:
920 oplen = 3;
921 args = 2;
922 break;
923
924 case OP_FUNCALL:
925 case OP_F77_UNDETERMINED_ARGLIST:
926 oplen = 3;
927 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
928 break;
929
930 case TYPE_INSTANCE:
931 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
932 args = 1;
933 break;
934
935 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
936 oplen = 4;
937 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
938 break;
939
940 case UNOP_MAX:
941 case UNOP_MIN:
942 oplen = 3;
943 break;
944
945 case UNOP_CAST_TYPE:
946 case UNOP_DYNAMIC_CAST:
947 case UNOP_REINTERPRET_CAST:
948 case UNOP_MEMVAL_TYPE:
949 oplen = 1;
950 args = 2;
951 break;
952
953 case BINOP_VAL:
954 case UNOP_CAST:
955 case UNOP_MEMVAL:
956 oplen = 3;
957 args = 1;
958 break;
959
960 case UNOP_MEMVAL_TLS:
961 oplen = 4;
962 args = 1;
963 break;
964
965 case UNOP_ABS:
966 case UNOP_CAP:
967 case UNOP_CHR:
968 case UNOP_FLOAT:
969 case UNOP_HIGH:
970 case UNOP_ODD:
971 case UNOP_ORD:
972 case UNOP_TRUNC:
973 case OP_TYPEOF:
974 case OP_DECLTYPE:
975 case OP_TYPEID:
976 oplen = 1;
977 args = 1;
978 break;
979
980 case OP_ADL_FUNC:
981 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
982 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
983 oplen++;
984 oplen++;
985 break;
986
987 case STRUCTOP_STRUCT:
988 case STRUCTOP_PTR:
989 args = 1;
990 /* fall through */
991 case OP_REGISTER:
992 case OP_M2_STRING:
993 case OP_STRING:
994 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
995 NSString constant. */
996 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
997 case OP_NAME:
998 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
999 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
1000 break;
1001
1002 case OP_ARRAY:
1003 oplen = 4;
1004 args = longest_to_int (expr->elts[endpos - 2].longconst);
1005 args -= longest_to_int (expr->elts[endpos - 3].longconst);
1006 args += 1;
1007 break;
1008
1009 case TERNOP_COND:
1010 case TERNOP_SLICE:
1011 args = 3;
1012 break;
1013
1014 /* Modula-2 */
1015 case MULTI_SUBSCRIPT:
1016 oplen = 3;
1017 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
1018 break;
1019
1020 case BINOP_ASSIGN_MODIFY:
1021 oplen = 3;
1022 args = 2;
1023 break;
1024
1025 /* C++ */
1026 case OP_THIS:
1027 oplen = 2;
1028 break;
1029
1030 case OP_F90_RANGE:
1031 oplen = 3;
1032
1033 range_type = longest_to_int (expr->elts[endpos - 2].longconst);
1034 switch (range_type)
1035 {
1036 case LOW_BOUND_DEFAULT:
1037 case HIGH_BOUND_DEFAULT:
1038 args = 1;
1039 break;
1040 case BOTH_BOUND_DEFAULT:
1041 args = 0;
1042 break;
1043 case NONE_BOUND_DEFAULT:
1044 args = 2;
1045 break;
1046 }
1047
1048 break;
1049
1050 default:
1051 args = 1 + (i < (int) BINOP_END);
1052 }
1053
1054 *oplenp = oplen;
1055 *argsp = args;
1056 }
1057
1058 /* Copy the subexpression ending just before index INEND in INEXPR
1059 into OUTEXPR, starting at index OUTBEG.
1060 In the process, convert it from suffix to prefix form.
1061 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1062 Otherwise, it returns the index of the subexpression which is the
1063 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1064
1065 static int
1066 prefixify_subexp (struct expression *inexpr,
1067 struct expression *outexpr, int inend, int outbeg)
1068 {
1069 int oplen;
1070 int args;
1071 int i;
1072 int *arglens;
1073 int result = -1;
1074
1075 operator_length (inexpr, inend, &oplen, &args);
1076
1077 /* Copy the final operator itself, from the end of the input
1078 to the beginning of the output. */
1079 inend -= oplen;
1080 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1081 EXP_ELEM_TO_BYTES (oplen));
1082 outbeg += oplen;
1083
1084 if (expout_last_struct == inend)
1085 result = outbeg - oplen;
1086
1087 /* Find the lengths of the arg subexpressions. */
1088 arglens = (int *) alloca (args * sizeof (int));
1089 for (i = args - 1; i >= 0; i--)
1090 {
1091 oplen = length_of_subexp (inexpr, inend);
1092 arglens[i] = oplen;
1093 inend -= oplen;
1094 }
1095
1096 /* Now copy each subexpression, preserving the order of
1097 the subexpressions, but prefixifying each one.
1098 In this loop, inend starts at the beginning of
1099 the expression this level is working on
1100 and marches forward over the arguments.
1101 outbeg does similarly in the output. */
1102 for (i = 0; i < args; i++)
1103 {
1104 int r;
1105
1106 oplen = arglens[i];
1107 inend += oplen;
1108 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1109 if (r != -1)
1110 {
1111 /* Return immediately. We probably have only parsed a
1112 partial expression, so we don't want to try to reverse
1113 the other operands. */
1114 return r;
1115 }
1116 outbeg += oplen;
1117 }
1118
1119 return result;
1120 }
1121 \f
1122 /* Read an expression from the string *STRINGPTR points to,
1123 parse it, and return a pointer to a struct expression that we malloc.
1124 Use block BLOCK as the lexical context for variable names;
1125 if BLOCK is zero, use the block of the selected stack frame.
1126 Meanwhile, advance *STRINGPTR to point after the expression,
1127 at the first nonwhite character that is not part of the expression
1128 (possibly a null character).
1129
1130 If COMMA is nonzero, stop if a comma is reached. */
1131
1132 struct expression *
1133 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1134 int comma)
1135 {
1136 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1137 }
1138
1139 static struct expression *
1140 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1141 const struct block *block,
1142 int comma, int void_context_p, int *out_subexp)
1143 {
1144 struct expression *expr;
1145 char *const_hack = *stringptr ? xstrdup (*stringptr) : NULL;
1146 char *orig = const_hack;
1147 struct cleanup *back_to = make_cleanup (xfree, const_hack);
1148
1149 expr = parse_exp_in_context_1 (&const_hack, pc, block, comma,
1150 void_context_p, out_subexp);
1151 (*stringptr) += const_hack - orig;
1152 do_cleanups (back_to);
1153 return expr;
1154 }
1155
1156 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1157 no value is expected from the expression.
1158 OUT_SUBEXP is set when attempting to complete a field name; in this
1159 case it is set to the index of the subexpression on the
1160 left-hand-side of the struct op. If not doing such completion, it
1161 is left untouched. */
1162
1163 static struct expression *
1164 parse_exp_in_context_1 (char **stringptr, CORE_ADDR pc,
1165 const struct block *block,
1166 int comma, int void_context_p, int *out_subexp)
1167 {
1168 volatile struct gdb_exception except;
1169 struct cleanup *old_chain, *inner_chain;
1170 const struct language_defn *lang = NULL;
1171 int subexp;
1172
1173 lexptr = *stringptr;
1174 prev_lexptr = NULL;
1175
1176 paren_depth = 0;
1177 type_stack.depth = 0;
1178 expout_last_struct = -1;
1179 expout_tag_completion_type = TYPE_CODE_UNDEF;
1180 xfree (expout_completion_name);
1181 expout_completion_name = NULL;
1182
1183 comma_terminates = comma;
1184
1185 if (lexptr == 0 || *lexptr == 0)
1186 error_no_arg (_("expression to compute"));
1187
1188 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1189 funcall_chain = 0;
1190
1191 expression_context_block = block;
1192
1193 /* If no context specified, try using the current frame, if any. */
1194 if (!expression_context_block)
1195 expression_context_block = get_selected_block (&expression_context_pc);
1196 else if (pc == 0)
1197 expression_context_pc = BLOCK_START (expression_context_block);
1198 else
1199 expression_context_pc = pc;
1200
1201 /* Fall back to using the current source static context, if any. */
1202
1203 if (!expression_context_block)
1204 {
1205 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1206 if (cursal.symtab)
1207 expression_context_block
1208 = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
1209 if (expression_context_block)
1210 expression_context_pc = BLOCK_START (expression_context_block);
1211 }
1212
1213 if (language_mode == language_mode_auto && block != NULL)
1214 {
1215 /* Find the language associated to the given context block.
1216 Default to the current language if it can not be determined.
1217
1218 Note that using the language corresponding to the current frame
1219 can sometimes give unexpected results. For instance, this
1220 routine is often called several times during the inferior
1221 startup phase to re-parse breakpoint expressions after
1222 a new shared library has been loaded. The language associated
1223 to the current frame at this moment is not relevant for
1224 the breakpoint. Using it would therefore be silly, so it seems
1225 better to rely on the current language rather than relying on
1226 the current frame language to parse the expression. That's why
1227 we do the following language detection only if the context block
1228 has been specifically provided. */
1229 struct symbol *func = block_linkage_function (block);
1230
1231 if (func != NULL)
1232 lang = language_def (SYMBOL_LANGUAGE (func));
1233 if (lang == NULL || lang->la_language == language_unknown)
1234 lang = current_language;
1235 }
1236 else
1237 lang = current_language;
1238
1239 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1240 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1241 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1242 to the value matching SELECTED_FRAME as set by get_current_arch. */
1243 initialize_expout (10, lang, get_current_arch ());
1244 inner_chain = make_cleanup_restore_current_language ();
1245 set_language (lang->la_language);
1246
1247 TRY_CATCH (except, RETURN_MASK_ALL)
1248 {
1249 if (lang->la_parser ())
1250 lang->la_error (NULL);
1251 }
1252 if (except.reason < 0)
1253 {
1254 if (! parse_completion)
1255 {
1256 xfree (expout);
1257 throw_exception (except);
1258 }
1259 }
1260
1261 reallocate_expout ();
1262
1263 /* Convert expression from postfix form as generated by yacc
1264 parser, to a prefix form. */
1265
1266 if (expressiondebug)
1267 dump_raw_expression (expout, gdb_stdlog,
1268 "before conversion to prefix form");
1269
1270 subexp = prefixify_expression (expout);
1271 if (out_subexp)
1272 *out_subexp = subexp;
1273
1274 lang->la_post_parser (&expout, void_context_p);
1275
1276 if (expressiondebug)
1277 dump_prefix_expression (expout, gdb_stdlog);
1278
1279 do_cleanups (inner_chain);
1280 discard_cleanups (old_chain);
1281
1282 *stringptr = lexptr;
1283 return expout;
1284 }
1285
1286 /* Parse STRING as an expression, and complain if this fails
1287 to use up all of the contents of STRING. */
1288
1289 struct expression *
1290 parse_expression (const char *string)
1291 {
1292 struct expression *exp;
1293
1294 exp = parse_exp_1 (&string, 0, 0, 0);
1295 if (*string)
1296 error (_("Junk after end of expression."));
1297 return exp;
1298 }
1299
1300 /* Parse STRING as an expression. If parsing ends in the middle of a
1301 field reference, return the type of the left-hand-side of the
1302 reference; furthermore, if the parsing ends in the field name,
1303 return the field name in *NAME. If the parsing ends in the middle
1304 of a field reference, but the reference is somehow invalid, throw
1305 an exception. In all other cases, return NULL. Returned non-NULL
1306 *NAME must be freed by the caller. */
1307
1308 struct type *
1309 parse_expression_for_completion (const char *string, char **name,
1310 enum type_code *code)
1311 {
1312 struct expression *exp = NULL;
1313 struct value *val;
1314 int subexp;
1315 volatile struct gdb_exception except;
1316
1317 TRY_CATCH (except, RETURN_MASK_ERROR)
1318 {
1319 parse_completion = 1;
1320 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1321 }
1322 parse_completion = 0;
1323 if (except.reason < 0 || ! exp)
1324 return NULL;
1325
1326 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1327 {
1328 *code = expout_tag_completion_type;
1329 *name = expout_completion_name;
1330 expout_completion_name = NULL;
1331 return NULL;
1332 }
1333
1334 if (expout_last_struct == -1)
1335 {
1336 xfree (exp);
1337 return NULL;
1338 }
1339
1340 *name = extract_field_op (exp, &subexp);
1341 if (!*name)
1342 {
1343 xfree (exp);
1344 return NULL;
1345 }
1346
1347 /* This might throw an exception. If so, we want to let it
1348 propagate. */
1349 val = evaluate_subexpression_type (exp, subexp);
1350 /* (*NAME) is a part of the EXP memory block freed below. */
1351 *name = xstrdup (*name);
1352 xfree (exp);
1353
1354 return value_type (val);
1355 }
1356
1357 /* A post-parser that does nothing. */
1358
1359 void
1360 null_post_parser (struct expression **exp, int void_context_p)
1361 {
1362 }
1363
1364 /* Parse floating point value P of length LEN.
1365 Return 0 (false) if invalid, 1 (true) if valid.
1366 The successfully parsed number is stored in D.
1367 *SUFFIX points to the suffix of the number in P.
1368
1369 NOTE: This accepts the floating point syntax that sscanf accepts. */
1370
1371 int
1372 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1373 {
1374 char *copy;
1375 int n, num;
1376
1377 copy = xmalloc (len + 1);
1378 memcpy (copy, p, len);
1379 copy[len] = 0;
1380
1381 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1382 xfree (copy);
1383
1384 /* The sscanf man page suggests not making any assumptions on the effect
1385 of %n on the result, so we don't.
1386 That is why we simply test num == 0. */
1387 if (num == 0)
1388 return 0;
1389
1390 *suffix = p + n;
1391 return 1;
1392 }
1393
1394 /* Parse floating point value P of length LEN, using the C syntax for floats.
1395 Return 0 (false) if invalid, 1 (true) if valid.
1396 The successfully parsed number is stored in *D.
1397 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1398
1399 int
1400 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1401 DOUBLEST *d, struct type **t)
1402 {
1403 const char *suffix;
1404 int suffix_len;
1405 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1406
1407 if (! parse_float (p, len, d, &suffix))
1408 return 0;
1409
1410 suffix_len = p + len - suffix;
1411
1412 if (suffix_len == 0)
1413 *t = builtin_types->builtin_double;
1414 else if (suffix_len == 1)
1415 {
1416 /* Handle suffixes: 'f' for float, 'l' for long double. */
1417 if (tolower (*suffix) == 'f')
1418 *t = builtin_types->builtin_float;
1419 else if (tolower (*suffix) == 'l')
1420 *t = builtin_types->builtin_long_double;
1421 else
1422 return 0;
1423 }
1424 else
1425 return 0;
1426
1427 return 1;
1428 }
1429 \f
1430 /* Stuff for maintaining a stack of types. Currently just used by C, but
1431 probably useful for any language which declares its types "backwards". */
1432
1433 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1434
1435 static void
1436 type_stack_reserve (struct type_stack *stack, int howmuch)
1437 {
1438 if (stack->depth + howmuch >= stack->size)
1439 {
1440 stack->size *= 2;
1441 if (stack->size < howmuch)
1442 stack->size = howmuch;
1443 stack->elements = xrealloc (stack->elements,
1444 stack->size * sizeof (union type_stack_elt));
1445 }
1446 }
1447
1448 /* Ensure that there is a single open slot in the global type stack. */
1449
1450 static void
1451 check_type_stack_depth (void)
1452 {
1453 type_stack_reserve (&type_stack, 1);
1454 }
1455
1456 /* A helper function for insert_type and insert_type_address_space.
1457 This does work of expanding the type stack and inserting the new
1458 element, ELEMENT, into the stack at location SLOT. */
1459
1460 static void
1461 insert_into_type_stack (int slot, union type_stack_elt element)
1462 {
1463 check_type_stack_depth ();
1464
1465 if (slot < type_stack.depth)
1466 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1467 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1468 type_stack.elements[slot] = element;
1469 ++type_stack.depth;
1470 }
1471
1472 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1473 tp_pointer or tp_reference, it is inserted at the bottom. If TP is
1474 a qualifier, it is inserted at slot 1 (just above a previous
1475 tp_pointer) if there is anything on the stack, or simply pushed if
1476 the stack is empty. Other values for TP are invalid. */
1477
1478 void
1479 insert_type (enum type_pieces tp)
1480 {
1481 union type_stack_elt element;
1482 int slot;
1483
1484 gdb_assert (tp == tp_pointer || tp == tp_reference
1485 || tp == tp_const || tp == tp_volatile);
1486
1487 /* If there is anything on the stack (we know it will be a
1488 tp_pointer), insert the qualifier above it. Otherwise, simply
1489 push this on the top of the stack. */
1490 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1491 slot = 1;
1492 else
1493 slot = 0;
1494
1495 element.piece = tp;
1496 insert_into_type_stack (slot, element);
1497 }
1498
1499 void
1500 push_type (enum type_pieces tp)
1501 {
1502 check_type_stack_depth ();
1503 type_stack.elements[type_stack.depth++].piece = tp;
1504 }
1505
1506 void
1507 push_type_int (int n)
1508 {
1509 check_type_stack_depth ();
1510 type_stack.elements[type_stack.depth++].int_val = n;
1511 }
1512
1513 /* Insert a tp_space_identifier and the corresponding address space
1514 value into the stack. STRING is the name of an address space, as
1515 recognized by address_space_name_to_int. If the stack is empty,
1516 the new elements are simply pushed. If the stack is not empty,
1517 this function assumes that the first item on the stack is a
1518 tp_pointer, and the new values are inserted above the first
1519 item. */
1520
1521 void
1522 insert_type_address_space (char *string)
1523 {
1524 union type_stack_elt element;
1525 int slot;
1526
1527 /* If there is anything on the stack (we know it will be a
1528 tp_pointer), insert the address space qualifier above it.
1529 Otherwise, simply push this on the top of the stack. */
1530 if (type_stack.depth)
1531 slot = 1;
1532 else
1533 slot = 0;
1534
1535 element.piece = tp_space_identifier;
1536 insert_into_type_stack (slot, element);
1537 element.int_val = address_space_name_to_int (parse_gdbarch, string);
1538 insert_into_type_stack (slot, element);
1539 }
1540
1541 enum type_pieces
1542 pop_type (void)
1543 {
1544 if (type_stack.depth)
1545 return type_stack.elements[--type_stack.depth].piece;
1546 return tp_end;
1547 }
1548
1549 int
1550 pop_type_int (void)
1551 {
1552 if (type_stack.depth)
1553 return type_stack.elements[--type_stack.depth].int_val;
1554 /* "Can't happen". */
1555 return 0;
1556 }
1557
1558 /* Pop a type list element from the global type stack. */
1559
1560 static VEC (type_ptr) *
1561 pop_typelist (void)
1562 {
1563 gdb_assert (type_stack.depth);
1564 return type_stack.elements[--type_stack.depth].typelist_val;
1565 }
1566
1567 /* Pop a type_stack element from the global type stack. */
1568
1569 static struct type_stack *
1570 pop_type_stack (void)
1571 {
1572 gdb_assert (type_stack.depth);
1573 return type_stack.elements[--type_stack.depth].stack_val;
1574 }
1575
1576 /* Append the elements of the type stack FROM to the type stack TO.
1577 Always returns TO. */
1578
1579 struct type_stack *
1580 append_type_stack (struct type_stack *to, struct type_stack *from)
1581 {
1582 type_stack_reserve (to, from->depth);
1583
1584 memcpy (&to->elements[to->depth], &from->elements[0],
1585 from->depth * sizeof (union type_stack_elt));
1586 to->depth += from->depth;
1587
1588 return to;
1589 }
1590
1591 /* Push the type stack STACK as an element on the global type stack. */
1592
1593 void
1594 push_type_stack (struct type_stack *stack)
1595 {
1596 check_type_stack_depth ();
1597 type_stack.elements[type_stack.depth++].stack_val = stack;
1598 push_type (tp_type_stack);
1599 }
1600
1601 /* Copy the global type stack into a newly allocated type stack and
1602 return it. The global stack is cleared. The returned type stack
1603 must be freed with type_stack_cleanup. */
1604
1605 struct type_stack *
1606 get_type_stack (void)
1607 {
1608 struct type_stack *result = XNEW (struct type_stack);
1609
1610 *result = type_stack;
1611 type_stack.depth = 0;
1612 type_stack.size = 0;
1613 type_stack.elements = NULL;
1614
1615 return result;
1616 }
1617
1618 /* A cleanup function that destroys a single type stack. */
1619
1620 void
1621 type_stack_cleanup (void *arg)
1622 {
1623 struct type_stack *stack = arg;
1624
1625 xfree (stack->elements);
1626 xfree (stack);
1627 }
1628
1629 /* Push a function type with arguments onto the global type stack.
1630 LIST holds the argument types. If the final item in LIST is NULL,
1631 then the function will be varargs. */
1632
1633 void
1634 push_typelist (VEC (type_ptr) *list)
1635 {
1636 check_type_stack_depth ();
1637 type_stack.elements[type_stack.depth++].typelist_val = list;
1638 push_type (tp_function_with_arguments);
1639 }
1640
1641 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1642 as modified by all the stuff on the stack. */
1643 struct type *
1644 follow_types (struct type *follow_type)
1645 {
1646 int done = 0;
1647 int make_const = 0;
1648 int make_volatile = 0;
1649 int make_addr_space = 0;
1650 int array_size;
1651
1652 while (!done)
1653 switch (pop_type ())
1654 {
1655 case tp_end:
1656 done = 1;
1657 if (make_const)
1658 follow_type = make_cv_type (make_const,
1659 TYPE_VOLATILE (follow_type),
1660 follow_type, 0);
1661 if (make_volatile)
1662 follow_type = make_cv_type (TYPE_CONST (follow_type),
1663 make_volatile,
1664 follow_type, 0);
1665 if (make_addr_space)
1666 follow_type = make_type_with_address_space (follow_type,
1667 make_addr_space);
1668 make_const = make_volatile = 0;
1669 make_addr_space = 0;
1670 break;
1671 case tp_const:
1672 make_const = 1;
1673 break;
1674 case tp_volatile:
1675 make_volatile = 1;
1676 break;
1677 case tp_space_identifier:
1678 make_addr_space = pop_type_int ();
1679 break;
1680 case tp_pointer:
1681 follow_type = lookup_pointer_type (follow_type);
1682 if (make_const)
1683 follow_type = make_cv_type (make_const,
1684 TYPE_VOLATILE (follow_type),
1685 follow_type, 0);
1686 if (make_volatile)
1687 follow_type = make_cv_type (TYPE_CONST (follow_type),
1688 make_volatile,
1689 follow_type, 0);
1690 if (make_addr_space)
1691 follow_type = make_type_with_address_space (follow_type,
1692 make_addr_space);
1693 make_const = make_volatile = 0;
1694 make_addr_space = 0;
1695 break;
1696 case tp_reference:
1697 follow_type = lookup_reference_type (follow_type);
1698 if (make_const)
1699 follow_type = make_cv_type (make_const,
1700 TYPE_VOLATILE (follow_type),
1701 follow_type, 0);
1702 if (make_volatile)
1703 follow_type = make_cv_type (TYPE_CONST (follow_type),
1704 make_volatile,
1705 follow_type, 0);
1706 if (make_addr_space)
1707 follow_type = make_type_with_address_space (follow_type,
1708 make_addr_space);
1709 make_const = make_volatile = 0;
1710 make_addr_space = 0;
1711 break;
1712 case tp_array:
1713 array_size = pop_type_int ();
1714 /* FIXME-type-allocation: need a way to free this type when we are
1715 done with it. */
1716 follow_type =
1717 lookup_array_range_type (follow_type,
1718 0, array_size >= 0 ? array_size - 1 : 0);
1719 if (array_size < 0)
1720 TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (follow_type) = 1;
1721 break;
1722 case tp_function:
1723 /* FIXME-type-allocation: need a way to free this type when we are
1724 done with it. */
1725 follow_type = lookup_function_type (follow_type);
1726 break;
1727
1728 case tp_function_with_arguments:
1729 {
1730 VEC (type_ptr) *args = pop_typelist ();
1731
1732 follow_type
1733 = lookup_function_type_with_arguments (follow_type,
1734 VEC_length (type_ptr, args),
1735 VEC_address (type_ptr,
1736 args));
1737 VEC_free (type_ptr, args);
1738 }
1739 break;
1740
1741 case tp_type_stack:
1742 {
1743 struct type_stack *stack = pop_type_stack ();
1744 /* Sort of ugly, but not really much worse than the
1745 alternatives. */
1746 struct type_stack save = type_stack;
1747
1748 type_stack = *stack;
1749 follow_type = follow_types (follow_type);
1750 gdb_assert (type_stack.depth == 0);
1751
1752 type_stack = save;
1753 }
1754 break;
1755 default:
1756 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1757 }
1758 return follow_type;
1759 }
1760 \f
1761 /* This function avoids direct calls to fprintf
1762 in the parser generated debug code. */
1763 void
1764 parser_fprintf (FILE *x, const char *y, ...)
1765 {
1766 va_list args;
1767
1768 va_start (args, y);
1769 if (x == stderr)
1770 vfprintf_unfiltered (gdb_stderr, y, args);
1771 else
1772 {
1773 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1774 vfprintf_unfiltered (gdb_stderr, y, args);
1775 }
1776 va_end (args);
1777 }
1778
1779 /* Implementation of the exp_descriptor method operator_check. */
1780
1781 int
1782 operator_check_standard (struct expression *exp, int pos,
1783 int (*objfile_func) (struct objfile *objfile,
1784 void *data),
1785 void *data)
1786 {
1787 const union exp_element *const elts = exp->elts;
1788 struct type *type = NULL;
1789 struct objfile *objfile = NULL;
1790
1791 /* Extended operators should have been already handled by exp_descriptor
1792 iterate method of its specific language. */
1793 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1794
1795 /* Track the callers of write_exp_elt_type for this table. */
1796
1797 switch (elts[pos].opcode)
1798 {
1799 case BINOP_VAL:
1800 case OP_COMPLEX:
1801 case OP_DECFLOAT:
1802 case OP_DOUBLE:
1803 case OP_LONG:
1804 case OP_SCOPE:
1805 case OP_TYPE:
1806 case UNOP_CAST:
1807 case UNOP_MAX:
1808 case UNOP_MEMVAL:
1809 case UNOP_MIN:
1810 type = elts[pos + 1].type;
1811 break;
1812
1813 case TYPE_INSTANCE:
1814 {
1815 LONGEST arg, nargs = elts[pos + 1].longconst;
1816
1817 for (arg = 0; arg < nargs; arg++)
1818 {
1819 struct type *type = elts[pos + 2 + arg].type;
1820 struct objfile *objfile = TYPE_OBJFILE (type);
1821
1822 if (objfile && (*objfile_func) (objfile, data))
1823 return 1;
1824 }
1825 }
1826 break;
1827
1828 case UNOP_MEMVAL_TLS:
1829 objfile = elts[pos + 1].objfile;
1830 type = elts[pos + 2].type;
1831 break;
1832
1833 case OP_VAR_VALUE:
1834 {
1835 const struct block *const block = elts[pos + 1].block;
1836 const struct symbol *const symbol = elts[pos + 2].symbol;
1837
1838 /* Check objfile where the variable itself is placed.
1839 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1840 if ((*objfile_func) (SYMBOL_SYMTAB (symbol)->objfile, data))
1841 return 1;
1842
1843 /* Check objfile where is placed the code touching the variable. */
1844 objfile = lookup_objfile_from_block (block);
1845
1846 type = SYMBOL_TYPE (symbol);
1847 }
1848 break;
1849 }
1850
1851 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1852
1853 if (type && TYPE_OBJFILE (type)
1854 && (*objfile_func) (TYPE_OBJFILE (type), data))
1855 return 1;
1856 if (objfile && (*objfile_func) (objfile, data))
1857 return 1;
1858
1859 return 0;
1860 }
1861
1862 /* Call OBJFILE_FUNC for any TYPE and OBJFILE found being referenced by EXP.
1863 The functions are never called with NULL OBJFILE. Functions get passed an
1864 arbitrary caller supplied DATA pointer. If any of the functions returns
1865 non-zero value then (any other) non-zero value is immediately returned to
1866 the caller. Otherwise zero is returned after iterating through whole EXP.
1867 */
1868
1869 static int
1870 exp_iterate (struct expression *exp,
1871 int (*objfile_func) (struct objfile *objfile, void *data),
1872 void *data)
1873 {
1874 int endpos;
1875
1876 for (endpos = exp->nelts; endpos > 0; )
1877 {
1878 int pos, args, oplen = 0;
1879
1880 operator_length (exp, endpos, &oplen, &args);
1881 gdb_assert (oplen > 0);
1882
1883 pos = endpos - oplen;
1884 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1885 objfile_func, data))
1886 return 1;
1887
1888 endpos = pos;
1889 }
1890
1891 return 0;
1892 }
1893
1894 /* Helper for exp_uses_objfile. */
1895
1896 static int
1897 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1898 {
1899 struct objfile *objfile = objfile_voidp;
1900
1901 if (exp_objfile->separate_debug_objfile_backlink)
1902 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1903
1904 return exp_objfile == objfile;
1905 }
1906
1907 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1908 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1909 file. */
1910
1911 int
1912 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1913 {
1914 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1915
1916 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1917 }
1918
1919 void
1920 _initialize_parse (void)
1921 {
1922 type_stack.size = 0;
1923 type_stack.depth = 0;
1924 type_stack.elements = NULL;
1925
1926 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1927 &expressiondebug,
1928 _("Set expression debugging."),
1929 _("Show expression debugging."),
1930 _("When non-zero, the internal representation "
1931 "of expressions will be printed."),
1932 NULL,
1933 show_expressiondebug,
1934 &setdebuglist, &showdebuglist);
1935 add_setshow_boolean_cmd ("parser", class_maintenance,
1936 &parser_debug,
1937 _("Set parser debugging."),
1938 _("Show parser debugging."),
1939 _("When non-zero, expression parser "
1940 "tracing will be enabled."),
1941 NULL,
1942 show_parserdebug,
1943 &setdebuglist, &showdebuglist);
1944 }