]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/parse.c
* ax-gdb.c (gen_expr): Handle UNOP_CAST_TYPE, UNOP_MEMVAL_TYPE.
[thirdparty/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986, 1989-2001, 2004-2005, 2007-2012 Free Software
4 Foundation, Inc.
5
6 Modified from expread.y by the Department of Computer Science at the
7 State University of New York at Buffalo, 1991.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 /* Parse an expression from text in a string,
25 and return the result as a struct expression pointer.
26 That structure contains arithmetic operations in reverse polish,
27 with constants represented by operations that are followed by special data.
28 See expression.h for the details of the format.
29 What is important here is that it can be built up sequentially
30 during the process of parsing; the lower levels of the tree always
31 come first in the result. */
32
33 #include "defs.h"
34 #include <ctype.h>
35 #include "arch-utils.h"
36 #include "gdb_string.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "frame.h"
40 #include "expression.h"
41 #include "value.h"
42 #include "command.h"
43 #include "language.h"
44 #include "f-lang.h"
45 #include "parser-defs.h"
46 #include "gdbcmd.h"
47 #include "symfile.h" /* for overlay functions */
48 #include "inferior.h"
49 #include "doublest.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "source.h"
53 #include "objfiles.h"
54 #include "exceptions.h"
55 #include "user-regs.h"
56
57 /* Standard set of definitions for printing, dumping, prefixifying,
58 * and evaluating expressions. */
59
60 const struct exp_descriptor exp_descriptor_standard =
61 {
62 print_subexp_standard,
63 operator_length_standard,
64 operator_check_standard,
65 op_name_standard,
66 dump_subexp_body_standard,
67 evaluate_subexp_standard
68 };
69 \f
70 /* Global variables declared in parser-defs.h (and commented there). */
71 struct expression *expout;
72 int expout_size;
73 int expout_ptr;
74 struct block *expression_context_block;
75 CORE_ADDR expression_context_pc;
76 struct block *innermost_block;
77 int arglist_len;
78 static struct type_stack type_stack;
79 char *lexptr;
80 char *prev_lexptr;
81 int paren_depth;
82 int comma_terminates;
83
84 /* True if parsing an expression to find a field reference. This is
85 only used by completion. */
86 int in_parse_field;
87
88 /* The index of the last struct expression directly before a '.' or
89 '->'. This is set when parsing and is only used when completing a
90 field name. It is -1 if no dereference operation was found. */
91 static int expout_last_struct = -1;
92 \f
93 static int expressiondebug = 0;
94 static void
95 show_expressiondebug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
99 }
100
101
102 /* Non-zero if an expression parser should set yydebug. */
103 int parser_debug;
104
105 static void
106 show_parserdebug (struct ui_file *file, int from_tty,
107 struct cmd_list_element *c, const char *value)
108 {
109 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
110 }
111
112
113 static void free_funcalls (void *ignore);
114
115 static int prefixify_subexp (struct expression *, struct expression *, int,
116 int);
117
118 static struct expression *parse_exp_in_context (char **, CORE_ADDR,
119 struct block *, int,
120 int, int *);
121
122 void _initialize_parse (void);
123
124 /* Data structure for saving values of arglist_len for function calls whose
125 arguments contain other function calls. */
126
127 struct funcall
128 {
129 struct funcall *next;
130 int arglist_len;
131 };
132
133 static struct funcall *funcall_chain;
134
135 /* Begin counting arguments for a function call,
136 saving the data about any containing call. */
137
138 void
139 start_arglist (void)
140 {
141 struct funcall *new;
142
143 new = (struct funcall *) xmalloc (sizeof (struct funcall));
144 new->next = funcall_chain;
145 new->arglist_len = arglist_len;
146 arglist_len = 0;
147 funcall_chain = new;
148 }
149
150 /* Return the number of arguments in a function call just terminated,
151 and restore the data for the containing function call. */
152
153 int
154 end_arglist (void)
155 {
156 int val = arglist_len;
157 struct funcall *call = funcall_chain;
158
159 funcall_chain = call->next;
160 arglist_len = call->arglist_len;
161 xfree (call);
162 return val;
163 }
164
165 /* Free everything in the funcall chain.
166 Used when there is an error inside parsing. */
167
168 static void
169 free_funcalls (void *ignore)
170 {
171 struct funcall *call, *next;
172
173 for (call = funcall_chain; call; call = next)
174 {
175 next = call->next;
176 xfree (call);
177 }
178 }
179 \f
180 /* This page contains the functions for adding data to the struct expression
181 being constructed. */
182
183 /* See definition in parser-defs.h. */
184
185 void
186 initialize_expout (int initial_size, const struct language_defn *lang,
187 struct gdbarch *gdbarch)
188 {
189 expout_size = initial_size;
190 expout_ptr = 0;
191 expout = xmalloc (sizeof (struct expression)
192 + EXP_ELEM_TO_BYTES (expout_size));
193 expout->language_defn = lang;
194 expout->gdbarch = gdbarch;
195 }
196
197 /* See definition in parser-defs.h. */
198
199 void
200 reallocate_expout (void)
201 {
202 /* Record the actual number of expression elements, and then
203 reallocate the expression memory so that we free up any
204 excess elements. */
205
206 expout->nelts = expout_ptr;
207 expout = xrealloc ((char *) expout,
208 sizeof (struct expression)
209 + EXP_ELEM_TO_BYTES (expout_ptr));
210 }
211
212 /* Add one element to the end of the expression. */
213
214 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
215 a register through here. */
216
217 static void
218 write_exp_elt (const union exp_element *expelt)
219 {
220 if (expout_ptr >= expout_size)
221 {
222 expout_size *= 2;
223 expout = (struct expression *)
224 xrealloc ((char *) expout, sizeof (struct expression)
225 + EXP_ELEM_TO_BYTES (expout_size));
226 }
227 expout->elts[expout_ptr++] = *expelt;
228 }
229
230 void
231 write_exp_elt_opcode (enum exp_opcode expelt)
232 {
233 union exp_element tmp;
234
235 memset (&tmp, 0, sizeof (union exp_element));
236 tmp.opcode = expelt;
237 write_exp_elt (&tmp);
238 }
239
240 void
241 write_exp_elt_sym (struct symbol *expelt)
242 {
243 union exp_element tmp;
244
245 memset (&tmp, 0, sizeof (union exp_element));
246 tmp.symbol = expelt;
247 write_exp_elt (&tmp);
248 }
249
250 void
251 write_exp_elt_block (struct block *b)
252 {
253 union exp_element tmp;
254
255 memset (&tmp, 0, sizeof (union exp_element));
256 tmp.block = b;
257 write_exp_elt (&tmp);
258 }
259
260 void
261 write_exp_elt_objfile (struct objfile *objfile)
262 {
263 union exp_element tmp;
264
265 memset (&tmp, 0, sizeof (union exp_element));
266 tmp.objfile = objfile;
267 write_exp_elt (&tmp);
268 }
269
270 void
271 write_exp_elt_longcst (LONGEST expelt)
272 {
273 union exp_element tmp;
274
275 memset (&tmp, 0, sizeof (union exp_element));
276 tmp.longconst = expelt;
277 write_exp_elt (&tmp);
278 }
279
280 void
281 write_exp_elt_dblcst (DOUBLEST expelt)
282 {
283 union exp_element tmp;
284
285 memset (&tmp, 0, sizeof (union exp_element));
286 tmp.doubleconst = expelt;
287 write_exp_elt (&tmp);
288 }
289
290 void
291 write_exp_elt_decfloatcst (gdb_byte expelt[16])
292 {
293 union exp_element tmp;
294 int index;
295
296 for (index = 0; index < 16; index++)
297 tmp.decfloatconst[index] = expelt[index];
298
299 write_exp_elt (&tmp);
300 }
301
302 void
303 write_exp_elt_type (struct type *expelt)
304 {
305 union exp_element tmp;
306
307 memset (&tmp, 0, sizeof (union exp_element));
308 tmp.type = expelt;
309 write_exp_elt (&tmp);
310 }
311
312 void
313 write_exp_elt_intern (struct internalvar *expelt)
314 {
315 union exp_element tmp;
316
317 memset (&tmp, 0, sizeof (union exp_element));
318 tmp.internalvar = expelt;
319 write_exp_elt (&tmp);
320 }
321
322 /* Add a string constant to the end of the expression.
323
324 String constants are stored by first writing an expression element
325 that contains the length of the string, then stuffing the string
326 constant itself into however many expression elements are needed
327 to hold it, and then writing another expression element that contains
328 the length of the string. I.e. an expression element at each end of
329 the string records the string length, so you can skip over the
330 expression elements containing the actual string bytes from either
331 end of the string. Note that this also allows gdb to handle
332 strings with embedded null bytes, as is required for some languages.
333
334 Don't be fooled by the fact that the string is null byte terminated,
335 this is strictly for the convenience of debugging gdb itself.
336 Gdb does not depend up the string being null terminated, since the
337 actual length is recorded in expression elements at each end of the
338 string. The null byte is taken into consideration when computing how
339 many expression elements are required to hold the string constant, of
340 course. */
341
342
343 void
344 write_exp_string (struct stoken str)
345 {
346 int len = str.length;
347 int lenelt;
348 char *strdata;
349
350 /* Compute the number of expression elements required to hold the string
351 (including a null byte terminator), along with one expression element
352 at each end to record the actual string length (not including the
353 null byte terminator). */
354
355 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
356
357 /* Ensure that we have enough available expression elements to store
358 everything. */
359
360 if ((expout_ptr + lenelt) >= expout_size)
361 {
362 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
363 expout = (struct expression *)
364 xrealloc ((char *) expout, (sizeof (struct expression)
365 + EXP_ELEM_TO_BYTES (expout_size)));
366 }
367
368 /* Write the leading length expression element (which advances the current
369 expression element index), then write the string constant followed by a
370 terminating null byte, and then write the trailing length expression
371 element. */
372
373 write_exp_elt_longcst ((LONGEST) len);
374 strdata = (char *) &expout->elts[expout_ptr];
375 memcpy (strdata, str.ptr, len);
376 *(strdata + len) = '\0';
377 expout_ptr += lenelt - 2;
378 write_exp_elt_longcst ((LONGEST) len);
379 }
380
381 /* Add a vector of string constants to the end of the expression.
382
383 This adds an OP_STRING operation, but encodes the contents
384 differently from write_exp_string. The language is expected to
385 handle evaluation of this expression itself.
386
387 After the usual OP_STRING header, TYPE is written into the
388 expression as a long constant. The interpretation of this field is
389 up to the language evaluator.
390
391 Next, each string in VEC is written. The length is written as a
392 long constant, followed by the contents of the string. */
393
394 void
395 write_exp_string_vector (int type, struct stoken_vector *vec)
396 {
397 int i, n_slots, len;
398
399 /* Compute the size. We compute the size in number of slots to
400 avoid issues with string padding. */
401 n_slots = 0;
402 for (i = 0; i < vec->len; ++i)
403 {
404 /* One slot for the length of this element, plus the number of
405 slots needed for this string. */
406 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
407 }
408
409 /* One more slot for the type of the string. */
410 ++n_slots;
411
412 /* Now compute a phony string length. */
413 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
414
415 n_slots += 4;
416 if ((expout_ptr + n_slots) >= expout_size)
417 {
418 expout_size = max (expout_size * 2, expout_ptr + n_slots + 10);
419 expout = (struct expression *)
420 xrealloc ((char *) expout, (sizeof (struct expression)
421 + EXP_ELEM_TO_BYTES (expout_size)));
422 }
423
424 write_exp_elt_opcode (OP_STRING);
425 write_exp_elt_longcst (len);
426 write_exp_elt_longcst (type);
427
428 for (i = 0; i < vec->len; ++i)
429 {
430 write_exp_elt_longcst (vec->tokens[i].length);
431 memcpy (&expout->elts[expout_ptr], vec->tokens[i].ptr,
432 vec->tokens[i].length);
433 expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
434 }
435
436 write_exp_elt_longcst (len);
437 write_exp_elt_opcode (OP_STRING);
438 }
439
440 /* Add a bitstring constant to the end of the expression.
441
442 Bitstring constants are stored by first writing an expression element
443 that contains the length of the bitstring (in bits), then stuffing the
444 bitstring constant itself into however many expression elements are
445 needed to hold it, and then writing another expression element that
446 contains the length of the bitstring. I.e. an expression element at
447 each end of the bitstring records the bitstring length, so you can skip
448 over the expression elements containing the actual bitstring bytes from
449 either end of the bitstring. */
450
451 void
452 write_exp_bitstring (struct stoken str)
453 {
454 int bits = str.length; /* length in bits */
455 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
456 int lenelt;
457 char *strdata;
458
459 /* Compute the number of expression elements required to hold the bitstring,
460 along with one expression element at each end to record the actual
461 bitstring length in bits. */
462
463 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
464
465 /* Ensure that we have enough available expression elements to store
466 everything. */
467
468 if ((expout_ptr + lenelt) >= expout_size)
469 {
470 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
471 expout = (struct expression *)
472 xrealloc ((char *) expout, (sizeof (struct expression)
473 + EXP_ELEM_TO_BYTES (expout_size)));
474 }
475
476 /* Write the leading length expression element (which advances the current
477 expression element index), then write the bitstring constant, and then
478 write the trailing length expression element. */
479
480 write_exp_elt_longcst ((LONGEST) bits);
481 strdata = (char *) &expout->elts[expout_ptr];
482 memcpy (strdata, str.ptr, len);
483 expout_ptr += lenelt - 2;
484 write_exp_elt_longcst ((LONGEST) bits);
485 }
486
487 /* Add the appropriate elements for a minimal symbol to the end of
488 the expression. */
489
490 void
491 write_exp_msymbol (struct minimal_symbol *msymbol)
492 {
493 struct objfile *objfile = msymbol_objfile (msymbol);
494 struct gdbarch *gdbarch = get_objfile_arch (objfile);
495
496 CORE_ADDR addr = SYMBOL_VALUE_ADDRESS (msymbol);
497 struct obj_section *section = SYMBOL_OBJ_SECTION (msymbol);
498 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
499 CORE_ADDR pc;
500
501 /* The minimal symbol might point to a function descriptor;
502 resolve it to the actual code address instead. */
503 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
504 if (pc != addr)
505 {
506 struct minimal_symbol *ifunc_msym = lookup_minimal_symbol_by_pc (pc);
507
508 /* In this case, assume we have a code symbol instead of
509 a data symbol. */
510
511 if (ifunc_msym != NULL && MSYMBOL_TYPE (ifunc_msym) == mst_text_gnu_ifunc
512 && SYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
513 {
514 /* A function descriptor has been resolved but PC is still in the
515 STT_GNU_IFUNC resolver body (such as because inferior does not
516 run to be able to call it). */
517
518 type = mst_text_gnu_ifunc;
519 }
520 else
521 type = mst_text;
522 section = NULL;
523 addr = pc;
524 }
525
526 if (overlay_debugging)
527 addr = symbol_overlayed_address (addr, section);
528
529 write_exp_elt_opcode (OP_LONG);
530 /* Let's make the type big enough to hold a 64-bit address. */
531 write_exp_elt_type (objfile_type (objfile)->builtin_core_addr);
532 write_exp_elt_longcst ((LONGEST) addr);
533 write_exp_elt_opcode (OP_LONG);
534
535 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
536 {
537 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
538 write_exp_elt_objfile (objfile);
539 write_exp_elt_type (objfile_type (objfile)->nodebug_tls_symbol);
540 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
541 return;
542 }
543
544 write_exp_elt_opcode (UNOP_MEMVAL);
545 switch (type)
546 {
547 case mst_text:
548 case mst_file_text:
549 case mst_solib_trampoline:
550 write_exp_elt_type (objfile_type (objfile)->nodebug_text_symbol);
551 break;
552
553 case mst_text_gnu_ifunc:
554 write_exp_elt_type (objfile_type (objfile)
555 ->nodebug_text_gnu_ifunc_symbol);
556 break;
557
558 case mst_data:
559 case mst_file_data:
560 case mst_bss:
561 case mst_file_bss:
562 write_exp_elt_type (objfile_type (objfile)->nodebug_data_symbol);
563 break;
564
565 case mst_slot_got_plt:
566 write_exp_elt_type (objfile_type (objfile)->nodebug_got_plt_symbol);
567 break;
568
569 default:
570 write_exp_elt_type (objfile_type (objfile)->nodebug_unknown_symbol);
571 break;
572 }
573 write_exp_elt_opcode (UNOP_MEMVAL);
574 }
575
576 /* Mark the current index as the starting location of a structure
577 expression. This is used when completing on field names. */
578
579 void
580 mark_struct_expression (void)
581 {
582 expout_last_struct = expout_ptr;
583 }
584
585 \f
586 /* Recognize tokens that start with '$'. These include:
587
588 $regname A native register name or a "standard
589 register name".
590
591 $variable A convenience variable with a name chosen
592 by the user.
593
594 $digits Value history with index <digits>, starting
595 from the first value which has index 1.
596
597 $$digits Value history with index <digits> relative
598 to the last value. I.e. $$0 is the last
599 value, $$1 is the one previous to that, $$2
600 is the one previous to $$1, etc.
601
602 $ | $0 | $$0 The last value in the value history.
603
604 $$ An abbreviation for the second to the last
605 value in the value history, I.e. $$1 */
606
607 void
608 write_dollar_variable (struct stoken str)
609 {
610 struct symbol *sym = NULL;
611 struct minimal_symbol *msym = NULL;
612 struct internalvar *isym = NULL;
613
614 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
615 and $$digits (equivalent to $<-digits> if you could type that). */
616
617 int negate = 0;
618 int i = 1;
619 /* Double dollar means negate the number and add -1 as well.
620 Thus $$ alone means -1. */
621 if (str.length >= 2 && str.ptr[1] == '$')
622 {
623 negate = 1;
624 i = 2;
625 }
626 if (i == str.length)
627 {
628 /* Just dollars (one or two). */
629 i = -negate;
630 goto handle_last;
631 }
632 /* Is the rest of the token digits? */
633 for (; i < str.length; i++)
634 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
635 break;
636 if (i == str.length)
637 {
638 i = atoi (str.ptr + 1 + negate);
639 if (negate)
640 i = -i;
641 goto handle_last;
642 }
643
644 /* Handle tokens that refer to machine registers:
645 $ followed by a register name. */
646 i = user_reg_map_name_to_regnum (parse_gdbarch,
647 str.ptr + 1, str.length - 1);
648 if (i >= 0)
649 goto handle_register;
650
651 /* Any names starting with $ are probably debugger internal variables. */
652
653 isym = lookup_only_internalvar (copy_name (str) + 1);
654 if (isym)
655 {
656 write_exp_elt_opcode (OP_INTERNALVAR);
657 write_exp_elt_intern (isym);
658 write_exp_elt_opcode (OP_INTERNALVAR);
659 return;
660 }
661
662 /* On some systems, such as HP-UX and hppa-linux, certain system routines
663 have names beginning with $ or $$. Check for those, first. */
664
665 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
666 VAR_DOMAIN, (int *) NULL);
667 if (sym)
668 {
669 write_exp_elt_opcode (OP_VAR_VALUE);
670 write_exp_elt_block (block_found); /* set by lookup_symbol */
671 write_exp_elt_sym (sym);
672 write_exp_elt_opcode (OP_VAR_VALUE);
673 return;
674 }
675 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
676 if (msym)
677 {
678 write_exp_msymbol (msym);
679 return;
680 }
681
682 /* Any other names are assumed to be debugger internal variables. */
683
684 write_exp_elt_opcode (OP_INTERNALVAR);
685 write_exp_elt_intern (create_internalvar (copy_name (str) + 1));
686 write_exp_elt_opcode (OP_INTERNALVAR);
687 return;
688 handle_last:
689 write_exp_elt_opcode (OP_LAST);
690 write_exp_elt_longcst ((LONGEST) i);
691 write_exp_elt_opcode (OP_LAST);
692 return;
693 handle_register:
694 write_exp_elt_opcode (OP_REGISTER);
695 str.length--;
696 str.ptr++;
697 write_exp_string (str);
698 write_exp_elt_opcode (OP_REGISTER);
699 return;
700 }
701
702
703 char *
704 find_template_name_end (char *p)
705 {
706 int depth = 1;
707 int just_seen_right = 0;
708 int just_seen_colon = 0;
709 int just_seen_space = 0;
710
711 if (!p || (*p != '<'))
712 return 0;
713
714 while (*++p)
715 {
716 switch (*p)
717 {
718 case '\'':
719 case '\"':
720 case '{':
721 case '}':
722 /* In future, may want to allow these?? */
723 return 0;
724 case '<':
725 depth++; /* start nested template */
726 if (just_seen_colon || just_seen_right || just_seen_space)
727 return 0; /* but not after : or :: or > or space */
728 break;
729 case '>':
730 if (just_seen_colon || just_seen_right)
731 return 0; /* end a (nested?) template */
732 just_seen_right = 1; /* but not after : or :: */
733 if (--depth == 0) /* also disallow >>, insist on > > */
734 return ++p; /* if outermost ended, return */
735 break;
736 case ':':
737 if (just_seen_space || (just_seen_colon > 1))
738 return 0; /* nested class spec coming up */
739 just_seen_colon++; /* we allow :: but not :::: */
740 break;
741 case ' ':
742 break;
743 default:
744 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
745 (*p >= 'A' && *p <= 'Z') ||
746 (*p >= '0' && *p <= '9') ||
747 (*p == '_') || (*p == ',') || /* commas for template args */
748 (*p == '&') || (*p == '*') || /* pointer and ref types */
749 (*p == '(') || (*p == ')') || /* function types */
750 (*p == '[') || (*p == ']'))) /* array types */
751 return 0;
752 }
753 if (*p != ' ')
754 just_seen_space = 0;
755 if (*p != ':')
756 just_seen_colon = 0;
757 if (*p != '>')
758 just_seen_right = 0;
759 }
760 return 0;
761 }
762 \f
763
764 /* Return a null-terminated temporary copy of the name of a string token.
765
766 Tokens that refer to names do so with explicit pointer and length,
767 so they can share the storage that lexptr is parsing.
768 When it is necessary to pass a name to a function that expects
769 a null-terminated string, the substring is copied out
770 into a separate block of storage.
771
772 N.B. A single buffer is reused on each call. */
773
774 char *
775 copy_name (struct stoken token)
776 {
777 /* A temporary buffer for identifiers, so we can null-terminate them.
778 We allocate this with xrealloc. parse_exp_1 used to allocate with
779 alloca, using the size of the whole expression as a conservative
780 estimate of the space needed. However, macro expansion can
781 introduce names longer than the original expression; there's no
782 practical way to know beforehand how large that might be. */
783 static char *namecopy;
784 static size_t namecopy_size;
785
786 /* Make sure there's enough space for the token. */
787 if (namecopy_size < token.length + 1)
788 {
789 namecopy_size = token.length + 1;
790 namecopy = xrealloc (namecopy, token.length + 1);
791 }
792
793 memcpy (namecopy, token.ptr, token.length);
794 namecopy[token.length] = 0;
795
796 return namecopy;
797 }
798 \f
799
800 /* See comments on parser-defs.h. */
801
802 int
803 prefixify_expression (struct expression *expr)
804 {
805 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
806 struct expression *temp;
807 int inpos = expr->nelts, outpos = 0;
808
809 temp = (struct expression *) alloca (len);
810
811 /* Copy the original expression into temp. */
812 memcpy (temp, expr, len);
813
814 return prefixify_subexp (temp, expr, inpos, outpos);
815 }
816
817 /* Return the number of exp_elements in the postfix subexpression
818 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
819
820 int
821 length_of_subexp (struct expression *expr, int endpos)
822 {
823 int oplen, args;
824
825 operator_length (expr, endpos, &oplen, &args);
826
827 while (args > 0)
828 {
829 oplen += length_of_subexp (expr, endpos - oplen);
830 args--;
831 }
832
833 return oplen;
834 }
835
836 /* Sets *OPLENP to the length of the operator whose (last) index is
837 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
838 operator takes. */
839
840 void
841 operator_length (const struct expression *expr, int endpos, int *oplenp,
842 int *argsp)
843 {
844 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
845 oplenp, argsp);
846 }
847
848 /* Default value for operator_length in exp_descriptor vectors. */
849
850 void
851 operator_length_standard (const struct expression *expr, int endpos,
852 int *oplenp, int *argsp)
853 {
854 int oplen = 1;
855 int args = 0;
856 enum f90_range_type range_type;
857 int i;
858
859 if (endpos < 1)
860 error (_("?error in operator_length_standard"));
861
862 i = (int) expr->elts[endpos - 1].opcode;
863
864 switch (i)
865 {
866 /* C++ */
867 case OP_SCOPE:
868 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
869 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
870 break;
871
872 case OP_LONG:
873 case OP_DOUBLE:
874 case OP_DECFLOAT:
875 case OP_VAR_VALUE:
876 oplen = 4;
877 break;
878
879 case OP_TYPE:
880 case OP_BOOL:
881 case OP_LAST:
882 case OP_INTERNALVAR:
883 case OP_VAR_ENTRY_VALUE:
884 oplen = 3;
885 break;
886
887 case OP_COMPLEX:
888 oplen = 3;
889 args = 2;
890 break;
891
892 case OP_FUNCALL:
893 case OP_F77_UNDETERMINED_ARGLIST:
894 oplen = 3;
895 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
896 break;
897
898 case TYPE_INSTANCE:
899 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
900 args = 1;
901 break;
902
903 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
904 oplen = 4;
905 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
906 break;
907
908 case UNOP_MAX:
909 case UNOP_MIN:
910 oplen = 3;
911 break;
912
913 case UNOP_CAST_TYPE:
914 case UNOP_DYNAMIC_CAST:
915 case UNOP_REINTERPRET_CAST:
916 case UNOP_MEMVAL_TYPE:
917 oplen = 1;
918 args = 2;
919 break;
920
921 case BINOP_VAL:
922 case UNOP_CAST:
923 case UNOP_MEMVAL:
924 oplen = 3;
925 args = 1;
926 break;
927
928 case UNOP_MEMVAL_TLS:
929 oplen = 4;
930 args = 1;
931 break;
932
933 case UNOP_ABS:
934 case UNOP_CAP:
935 case UNOP_CHR:
936 case UNOP_FLOAT:
937 case UNOP_HIGH:
938 case UNOP_ODD:
939 case UNOP_ORD:
940 case UNOP_TRUNC:
941 oplen = 1;
942 args = 1;
943 break;
944
945 case OP_ADL_FUNC:
946 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
947 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
948 oplen++;
949 oplen++;
950 break;
951
952 case OP_LABELED:
953 case STRUCTOP_STRUCT:
954 case STRUCTOP_PTR:
955 args = 1;
956 /* fall through */
957 case OP_REGISTER:
958 case OP_M2_STRING:
959 case OP_STRING:
960 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
961 NSString constant. */
962 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
963 case OP_NAME:
964 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
965 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
966 break;
967
968 case OP_BITSTRING:
969 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
970 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
971 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
972 break;
973
974 case OP_ARRAY:
975 oplen = 4;
976 args = longest_to_int (expr->elts[endpos - 2].longconst);
977 args -= longest_to_int (expr->elts[endpos - 3].longconst);
978 args += 1;
979 break;
980
981 case TERNOP_COND:
982 case TERNOP_SLICE:
983 case TERNOP_SLICE_COUNT:
984 args = 3;
985 break;
986
987 /* Modula-2 */
988 case MULTI_SUBSCRIPT:
989 oplen = 3;
990 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
991 break;
992
993 case BINOP_ASSIGN_MODIFY:
994 oplen = 3;
995 args = 2;
996 break;
997
998 /* C++ */
999 case OP_THIS:
1000 oplen = 2;
1001 break;
1002
1003 case OP_F90_RANGE:
1004 oplen = 3;
1005
1006 range_type = longest_to_int (expr->elts[endpos - 2].longconst);
1007 switch (range_type)
1008 {
1009 case LOW_BOUND_DEFAULT:
1010 case HIGH_BOUND_DEFAULT:
1011 args = 1;
1012 break;
1013 case BOTH_BOUND_DEFAULT:
1014 args = 0;
1015 break;
1016 case NONE_BOUND_DEFAULT:
1017 args = 2;
1018 break;
1019 }
1020
1021 break;
1022
1023 default:
1024 args = 1 + (i < (int) BINOP_END);
1025 }
1026
1027 *oplenp = oplen;
1028 *argsp = args;
1029 }
1030
1031 /* Copy the subexpression ending just before index INEND in INEXPR
1032 into OUTEXPR, starting at index OUTBEG.
1033 In the process, convert it from suffix to prefix form.
1034 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1035 Otherwise, it returns the index of the subexpression which is the
1036 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1037
1038 static int
1039 prefixify_subexp (struct expression *inexpr,
1040 struct expression *outexpr, int inend, int outbeg)
1041 {
1042 int oplen;
1043 int args;
1044 int i;
1045 int *arglens;
1046 int result = -1;
1047
1048 operator_length (inexpr, inend, &oplen, &args);
1049
1050 /* Copy the final operator itself, from the end of the input
1051 to the beginning of the output. */
1052 inend -= oplen;
1053 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1054 EXP_ELEM_TO_BYTES (oplen));
1055 outbeg += oplen;
1056
1057 if (expout_last_struct == inend)
1058 result = outbeg - oplen;
1059
1060 /* Find the lengths of the arg subexpressions. */
1061 arglens = (int *) alloca (args * sizeof (int));
1062 for (i = args - 1; i >= 0; i--)
1063 {
1064 oplen = length_of_subexp (inexpr, inend);
1065 arglens[i] = oplen;
1066 inend -= oplen;
1067 }
1068
1069 /* Now copy each subexpression, preserving the order of
1070 the subexpressions, but prefixifying each one.
1071 In this loop, inend starts at the beginning of
1072 the expression this level is working on
1073 and marches forward over the arguments.
1074 outbeg does similarly in the output. */
1075 for (i = 0; i < args; i++)
1076 {
1077 int r;
1078
1079 oplen = arglens[i];
1080 inend += oplen;
1081 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1082 if (r != -1)
1083 {
1084 /* Return immediately. We probably have only parsed a
1085 partial expression, so we don't want to try to reverse
1086 the other operands. */
1087 return r;
1088 }
1089 outbeg += oplen;
1090 }
1091
1092 return result;
1093 }
1094 \f
1095 /* Read an expression from the string *STRINGPTR points to,
1096 parse it, and return a pointer to a struct expression that we malloc.
1097 Use block BLOCK as the lexical context for variable names;
1098 if BLOCK is zero, use the block of the selected stack frame.
1099 Meanwhile, advance *STRINGPTR to point after the expression,
1100 at the first nonwhite character that is not part of the expression
1101 (possibly a null character).
1102
1103 If COMMA is nonzero, stop if a comma is reached. */
1104
1105 struct expression *
1106 parse_exp_1 (char **stringptr, CORE_ADDR pc, struct block *block, int comma)
1107 {
1108 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1109 }
1110
1111 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1112 no value is expected from the expression.
1113 OUT_SUBEXP is set when attempting to complete a field name; in this
1114 case it is set to the index of the subexpression on the
1115 left-hand-side of the struct op. If not doing such completion, it
1116 is left untouched. */
1117
1118 static struct expression *
1119 parse_exp_in_context (char **stringptr, CORE_ADDR pc, struct block *block,
1120 int comma, int void_context_p, int *out_subexp)
1121 {
1122 volatile struct gdb_exception except;
1123 struct cleanup *old_chain;
1124 const struct language_defn *lang = NULL;
1125 int subexp;
1126
1127 lexptr = *stringptr;
1128 prev_lexptr = NULL;
1129
1130 paren_depth = 0;
1131 type_stack.depth = 0;
1132 expout_last_struct = -1;
1133
1134 comma_terminates = comma;
1135
1136 if (lexptr == 0 || *lexptr == 0)
1137 error_no_arg (_("expression to compute"));
1138
1139 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1140 funcall_chain = 0;
1141
1142 expression_context_block = block;
1143
1144 /* If no context specified, try using the current frame, if any. */
1145 if (!expression_context_block)
1146 expression_context_block = get_selected_block (&expression_context_pc);
1147 else if (pc == 0)
1148 expression_context_pc = BLOCK_START (expression_context_block);
1149 else
1150 expression_context_pc = pc;
1151
1152 /* Fall back to using the current source static context, if any. */
1153
1154 if (!expression_context_block)
1155 {
1156 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1157 if (cursal.symtab)
1158 expression_context_block
1159 = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
1160 if (expression_context_block)
1161 expression_context_pc = BLOCK_START (expression_context_block);
1162 }
1163
1164 if (language_mode == language_mode_auto && block != NULL)
1165 {
1166 /* Find the language associated to the given context block.
1167 Default to the current language if it can not be determined.
1168
1169 Note that using the language corresponding to the current frame
1170 can sometimes give unexpected results. For instance, this
1171 routine is often called several times during the inferior
1172 startup phase to re-parse breakpoint expressions after
1173 a new shared library has been loaded. The language associated
1174 to the current frame at this moment is not relevant for
1175 the breakpoint. Using it would therefore be silly, so it seems
1176 better to rely on the current language rather than relying on
1177 the current frame language to parse the expression. That's why
1178 we do the following language detection only if the context block
1179 has been specifically provided. */
1180 struct symbol *func = block_linkage_function (block);
1181
1182 if (func != NULL)
1183 lang = language_def (SYMBOL_LANGUAGE (func));
1184 if (lang == NULL || lang->la_language == language_unknown)
1185 lang = current_language;
1186 }
1187 else
1188 lang = current_language;
1189
1190 initialize_expout (10, lang, get_current_arch ());
1191
1192 TRY_CATCH (except, RETURN_MASK_ALL)
1193 {
1194 if (lang->la_parser ())
1195 lang->la_error (NULL);
1196 }
1197 if (except.reason < 0)
1198 {
1199 if (! in_parse_field)
1200 {
1201 xfree (expout);
1202 throw_exception (except);
1203 }
1204 }
1205
1206 discard_cleanups (old_chain);
1207
1208 reallocate_expout ();
1209
1210 /* Convert expression from postfix form as generated by yacc
1211 parser, to a prefix form. */
1212
1213 if (expressiondebug)
1214 dump_raw_expression (expout, gdb_stdlog,
1215 "before conversion to prefix form");
1216
1217 subexp = prefixify_expression (expout);
1218 if (out_subexp)
1219 *out_subexp = subexp;
1220
1221 lang->la_post_parser (&expout, void_context_p);
1222
1223 if (expressiondebug)
1224 dump_prefix_expression (expout, gdb_stdlog);
1225
1226 *stringptr = lexptr;
1227 return expout;
1228 }
1229
1230 /* Parse STRING as an expression, and complain if this fails
1231 to use up all of the contents of STRING. */
1232
1233 struct expression *
1234 parse_expression (char *string)
1235 {
1236 struct expression *exp;
1237
1238 exp = parse_exp_1 (&string, 0, 0, 0);
1239 if (*string)
1240 error (_("Junk after end of expression."));
1241 return exp;
1242 }
1243
1244 /* Parse STRING as an expression. If parsing ends in the middle of a
1245 field reference, return the type of the left-hand-side of the
1246 reference; furthermore, if the parsing ends in the field name,
1247 return the field name in *NAME. If the parsing ends in the middle
1248 of a field reference, but the reference is somehow invalid, throw
1249 an exception. In all other cases, return NULL. Returned non-NULL
1250 *NAME must be freed by the caller. */
1251
1252 struct type *
1253 parse_field_expression (char *string, char **name)
1254 {
1255 struct expression *exp = NULL;
1256 struct value *val;
1257 int subexp;
1258 volatile struct gdb_exception except;
1259
1260 TRY_CATCH (except, RETURN_MASK_ERROR)
1261 {
1262 in_parse_field = 1;
1263 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1264 }
1265 in_parse_field = 0;
1266 if (except.reason < 0 || ! exp)
1267 return NULL;
1268 if (expout_last_struct == -1)
1269 {
1270 xfree (exp);
1271 return NULL;
1272 }
1273
1274 *name = extract_field_op (exp, &subexp);
1275 if (!*name)
1276 {
1277 xfree (exp);
1278 return NULL;
1279 }
1280
1281 /* This might throw an exception. If so, we want to let it
1282 propagate. */
1283 val = evaluate_subexpression_type (exp, subexp);
1284 /* (*NAME) is a part of the EXP memory block freed below. */
1285 *name = xstrdup (*name);
1286 xfree (exp);
1287
1288 return value_type (val);
1289 }
1290
1291 /* A post-parser that does nothing. */
1292
1293 void
1294 null_post_parser (struct expression **exp, int void_context_p)
1295 {
1296 }
1297
1298 /* Parse floating point value P of length LEN.
1299 Return 0 (false) if invalid, 1 (true) if valid.
1300 The successfully parsed number is stored in D.
1301 *SUFFIX points to the suffix of the number in P.
1302
1303 NOTE: This accepts the floating point syntax that sscanf accepts. */
1304
1305 int
1306 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1307 {
1308 char *copy;
1309 int n, num;
1310
1311 copy = xmalloc (len + 1);
1312 memcpy (copy, p, len);
1313 copy[len] = 0;
1314
1315 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1316 xfree (copy);
1317
1318 /* The sscanf man page suggests not making any assumptions on the effect
1319 of %n on the result, so we don't.
1320 That is why we simply test num == 0. */
1321 if (num == 0)
1322 return 0;
1323
1324 *suffix = p + n;
1325 return 1;
1326 }
1327
1328 /* Parse floating point value P of length LEN, using the C syntax for floats.
1329 Return 0 (false) if invalid, 1 (true) if valid.
1330 The successfully parsed number is stored in *D.
1331 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1332
1333 int
1334 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1335 DOUBLEST *d, struct type **t)
1336 {
1337 const char *suffix;
1338 int suffix_len;
1339 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1340
1341 if (! parse_float (p, len, d, &suffix))
1342 return 0;
1343
1344 suffix_len = p + len - suffix;
1345
1346 if (suffix_len == 0)
1347 *t = builtin_types->builtin_double;
1348 else if (suffix_len == 1)
1349 {
1350 /* Handle suffixes: 'f' for float, 'l' for long double. */
1351 if (tolower (*suffix) == 'f')
1352 *t = builtin_types->builtin_float;
1353 else if (tolower (*suffix) == 'l')
1354 *t = builtin_types->builtin_long_double;
1355 else
1356 return 0;
1357 }
1358 else
1359 return 0;
1360
1361 return 1;
1362 }
1363 \f
1364 /* Stuff for maintaining a stack of types. Currently just used by C, but
1365 probably useful for any language which declares its types "backwards". */
1366
1367 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1368
1369 static void
1370 type_stack_reserve (struct type_stack *stack, int howmuch)
1371 {
1372 if (stack->depth + howmuch >= stack->size)
1373 {
1374 stack->size *= 2;
1375 if (stack->size < howmuch)
1376 stack->size = howmuch;
1377 stack->elements = xrealloc (stack->elements,
1378 stack->size * sizeof (union type_stack_elt));
1379 }
1380 }
1381
1382 /* Ensure that there is a single open slot in the global type stack. */
1383
1384 static void
1385 check_type_stack_depth (void)
1386 {
1387 type_stack_reserve (&type_stack, 1);
1388 }
1389
1390 /* A helper function for insert_type and insert_type_address_space.
1391 This does work of expanding the type stack and inserting the new
1392 element, ELEMENT, into the stack at location SLOT. */
1393
1394 static void
1395 insert_into_type_stack (int slot, union type_stack_elt element)
1396 {
1397 check_type_stack_depth ();
1398
1399 if (slot < type_stack.depth)
1400 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1401 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1402 type_stack.elements[slot] = element;
1403 ++type_stack.depth;
1404 }
1405
1406 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1407 tp_pointer or tp_reference, it is inserted at the bottom. If TP is
1408 a qualifier, it is inserted at slot 1 (just above a previous
1409 tp_pointer) if there is anything on the stack, or simply pushed if
1410 the stack is empty. Other values for TP are invalid. */
1411
1412 void
1413 insert_type (enum type_pieces tp)
1414 {
1415 union type_stack_elt element;
1416 int slot;
1417
1418 gdb_assert (tp == tp_pointer || tp == tp_reference
1419 || tp == tp_const || tp == tp_volatile);
1420
1421 /* If there is anything on the stack (we know it will be a
1422 tp_pointer), insert the qualifier above it. Otherwise, simply
1423 push this on the top of the stack. */
1424 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1425 slot = 1;
1426 else
1427 slot = 0;
1428
1429 element.piece = tp;
1430 insert_into_type_stack (slot, element);
1431 }
1432
1433 void
1434 push_type (enum type_pieces tp)
1435 {
1436 check_type_stack_depth ();
1437 type_stack.elements[type_stack.depth++].piece = tp;
1438 }
1439
1440 void
1441 push_type_int (int n)
1442 {
1443 check_type_stack_depth ();
1444 type_stack.elements[type_stack.depth++].int_val = n;
1445 }
1446
1447 /* Insert a tp_space_identifier and the corresponding address space
1448 value into the stack. STRING is the name of an address space, as
1449 recognized by address_space_name_to_int. If the stack is empty,
1450 the new elements are simply pushed. If the stack is not empty,
1451 this function assumes that the first item on the stack is a
1452 tp_pointer, and the new values are inserted above the first
1453 item. */
1454
1455 void
1456 insert_type_address_space (char *string)
1457 {
1458 union type_stack_elt element;
1459 int slot;
1460
1461 /* If there is anything on the stack (we know it will be a
1462 tp_pointer), insert the address space qualifier above it.
1463 Otherwise, simply push this on the top of the stack. */
1464 if (type_stack.depth)
1465 slot = 1;
1466 else
1467 slot = 0;
1468
1469 element.piece = tp_space_identifier;
1470 insert_into_type_stack (slot, element);
1471 element.int_val = address_space_name_to_int (parse_gdbarch, string);
1472 insert_into_type_stack (slot, element);
1473 }
1474
1475 enum type_pieces
1476 pop_type (void)
1477 {
1478 if (type_stack.depth)
1479 return type_stack.elements[--type_stack.depth].piece;
1480 return tp_end;
1481 }
1482
1483 int
1484 pop_type_int (void)
1485 {
1486 if (type_stack.depth)
1487 return type_stack.elements[--type_stack.depth].int_val;
1488 /* "Can't happen". */
1489 return 0;
1490 }
1491
1492 /* Pop a type list element from the global type stack. */
1493
1494 static VEC (type_ptr) *
1495 pop_typelist (void)
1496 {
1497 gdb_assert (type_stack.depth);
1498 return type_stack.elements[--type_stack.depth].typelist_val;
1499 }
1500
1501 /* Pop a type_stack element from the global type stack. */
1502
1503 static struct type_stack *
1504 pop_type_stack (void)
1505 {
1506 gdb_assert (type_stack.depth);
1507 return type_stack.elements[--type_stack.depth].stack_val;
1508 }
1509
1510 /* Append the elements of the type stack FROM to the type stack TO.
1511 Always returns TO. */
1512
1513 struct type_stack *
1514 append_type_stack (struct type_stack *to, struct type_stack *from)
1515 {
1516 type_stack_reserve (to, from->depth);
1517
1518 memcpy (&to->elements[to->depth], &from->elements[0],
1519 from->depth * sizeof (union type_stack_elt));
1520 to->depth += from->depth;
1521
1522 return to;
1523 }
1524
1525 /* Push the type stack STACK as an element on the global type stack. */
1526
1527 void
1528 push_type_stack (struct type_stack *stack)
1529 {
1530 check_type_stack_depth ();
1531 type_stack.elements[type_stack.depth++].stack_val = stack;
1532 push_type (tp_type_stack);
1533 }
1534
1535 /* Copy the global type stack into a newly allocated type stack and
1536 return it. The global stack is cleared. The returned type stack
1537 must be freed with type_stack_cleanup. */
1538
1539 struct type_stack *
1540 get_type_stack (void)
1541 {
1542 struct type_stack *result = XNEW (struct type_stack);
1543
1544 *result = type_stack;
1545 type_stack.depth = 0;
1546 type_stack.size = 0;
1547 type_stack.elements = NULL;
1548
1549 return result;
1550 }
1551
1552 /* A cleanup function that destroys a single type stack. */
1553
1554 void
1555 type_stack_cleanup (void *arg)
1556 {
1557 struct type_stack *stack = arg;
1558
1559 xfree (stack->elements);
1560 xfree (stack);
1561 }
1562
1563 /* Push a function type with arguments onto the global type stack.
1564 LIST holds the argument types. If the final item in LIST is NULL,
1565 then the function will be varargs. */
1566
1567 void
1568 push_typelist (VEC (type_ptr) *list)
1569 {
1570 check_type_stack_depth ();
1571 type_stack.elements[type_stack.depth++].typelist_val = list;
1572 push_type (tp_function_with_arguments);
1573 }
1574
1575 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1576 as modified by all the stuff on the stack. */
1577 struct type *
1578 follow_types (struct type *follow_type)
1579 {
1580 int done = 0;
1581 int make_const = 0;
1582 int make_volatile = 0;
1583 int make_addr_space = 0;
1584 int array_size;
1585
1586 while (!done)
1587 switch (pop_type ())
1588 {
1589 case tp_end:
1590 done = 1;
1591 if (make_const)
1592 follow_type = make_cv_type (make_const,
1593 TYPE_VOLATILE (follow_type),
1594 follow_type, 0);
1595 if (make_volatile)
1596 follow_type = make_cv_type (TYPE_CONST (follow_type),
1597 make_volatile,
1598 follow_type, 0);
1599 if (make_addr_space)
1600 follow_type = make_type_with_address_space (follow_type,
1601 make_addr_space);
1602 make_const = make_volatile = 0;
1603 make_addr_space = 0;
1604 break;
1605 case tp_const:
1606 make_const = 1;
1607 break;
1608 case tp_volatile:
1609 make_volatile = 1;
1610 break;
1611 case tp_space_identifier:
1612 make_addr_space = pop_type_int ();
1613 break;
1614 case tp_pointer:
1615 follow_type = lookup_pointer_type (follow_type);
1616 if (make_const)
1617 follow_type = make_cv_type (make_const,
1618 TYPE_VOLATILE (follow_type),
1619 follow_type, 0);
1620 if (make_volatile)
1621 follow_type = make_cv_type (TYPE_CONST (follow_type),
1622 make_volatile,
1623 follow_type, 0);
1624 if (make_addr_space)
1625 follow_type = make_type_with_address_space (follow_type,
1626 make_addr_space);
1627 make_const = make_volatile = 0;
1628 make_addr_space = 0;
1629 break;
1630 case tp_reference:
1631 follow_type = lookup_reference_type (follow_type);
1632 if (make_const)
1633 follow_type = make_cv_type (make_const,
1634 TYPE_VOLATILE (follow_type),
1635 follow_type, 0);
1636 if (make_volatile)
1637 follow_type = make_cv_type (TYPE_CONST (follow_type),
1638 make_volatile,
1639 follow_type, 0);
1640 if (make_addr_space)
1641 follow_type = make_type_with_address_space (follow_type,
1642 make_addr_space);
1643 make_const = make_volatile = 0;
1644 make_addr_space = 0;
1645 break;
1646 case tp_array:
1647 array_size = pop_type_int ();
1648 /* FIXME-type-allocation: need a way to free this type when we are
1649 done with it. */
1650 follow_type =
1651 lookup_array_range_type (follow_type,
1652 0, array_size >= 0 ? array_size - 1 : 0);
1653 if (array_size < 0)
1654 TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (follow_type) = 1;
1655 break;
1656 case tp_function:
1657 /* FIXME-type-allocation: need a way to free this type when we are
1658 done with it. */
1659 follow_type = lookup_function_type (follow_type);
1660 break;
1661
1662 case tp_function_with_arguments:
1663 {
1664 VEC (type_ptr) *args = pop_typelist ();
1665
1666 follow_type
1667 = lookup_function_type_with_arguments (follow_type,
1668 VEC_length (type_ptr, args),
1669 VEC_address (type_ptr,
1670 args));
1671 VEC_free (type_ptr, args);
1672 }
1673 break;
1674
1675 case tp_type_stack:
1676 {
1677 struct type_stack *stack = pop_type_stack ();
1678 /* Sort of ugly, but not really much worse than the
1679 alternatives. */
1680 struct type_stack save = type_stack;
1681
1682 type_stack = *stack;
1683 follow_type = follow_types (follow_type);
1684 gdb_assert (type_stack.depth == 0);
1685
1686 type_stack = save;
1687 }
1688 break;
1689 default:
1690 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1691 }
1692 return follow_type;
1693 }
1694 \f
1695 /* This function avoids direct calls to fprintf
1696 in the parser generated debug code. */
1697 void
1698 parser_fprintf (FILE *x, const char *y, ...)
1699 {
1700 va_list args;
1701
1702 va_start (args, y);
1703 if (x == stderr)
1704 vfprintf_unfiltered (gdb_stderr, y, args);
1705 else
1706 {
1707 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1708 vfprintf_unfiltered (gdb_stderr, y, args);
1709 }
1710 va_end (args);
1711 }
1712
1713 /* Implementation of the exp_descriptor method operator_check. */
1714
1715 int
1716 operator_check_standard (struct expression *exp, int pos,
1717 int (*objfile_func) (struct objfile *objfile,
1718 void *data),
1719 void *data)
1720 {
1721 const union exp_element *const elts = exp->elts;
1722 struct type *type = NULL;
1723 struct objfile *objfile = NULL;
1724
1725 /* Extended operators should have been already handled by exp_descriptor
1726 iterate method of its specific language. */
1727 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1728
1729 /* Track the callers of write_exp_elt_type for this table. */
1730
1731 switch (elts[pos].opcode)
1732 {
1733 case BINOP_VAL:
1734 case OP_COMPLEX:
1735 case OP_DECFLOAT:
1736 case OP_DOUBLE:
1737 case OP_LONG:
1738 case OP_SCOPE:
1739 case OP_TYPE:
1740 case UNOP_CAST:
1741 case UNOP_MAX:
1742 case UNOP_MEMVAL:
1743 case UNOP_MIN:
1744 type = elts[pos + 1].type;
1745 break;
1746
1747 case TYPE_INSTANCE:
1748 {
1749 LONGEST arg, nargs = elts[pos + 1].longconst;
1750
1751 for (arg = 0; arg < nargs; arg++)
1752 {
1753 struct type *type = elts[pos + 2 + arg].type;
1754 struct objfile *objfile = TYPE_OBJFILE (type);
1755
1756 if (objfile && (*objfile_func) (objfile, data))
1757 return 1;
1758 }
1759 }
1760 break;
1761
1762 case UNOP_MEMVAL_TLS:
1763 objfile = elts[pos + 1].objfile;
1764 type = elts[pos + 2].type;
1765 break;
1766
1767 case OP_VAR_VALUE:
1768 {
1769 const struct block *const block = elts[pos + 1].block;
1770 const struct symbol *const symbol = elts[pos + 2].symbol;
1771
1772 /* Check objfile where the variable itself is placed.
1773 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1774 if ((*objfile_func) (SYMBOL_SYMTAB (symbol)->objfile, data))
1775 return 1;
1776
1777 /* Check objfile where is placed the code touching the variable. */
1778 objfile = lookup_objfile_from_block (block);
1779
1780 type = SYMBOL_TYPE (symbol);
1781 }
1782 break;
1783 }
1784
1785 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1786
1787 if (type && TYPE_OBJFILE (type)
1788 && (*objfile_func) (TYPE_OBJFILE (type), data))
1789 return 1;
1790 if (objfile && (*objfile_func) (objfile, data))
1791 return 1;
1792
1793 return 0;
1794 }
1795
1796 /* Call OBJFILE_FUNC for any TYPE and OBJFILE found being referenced by EXP.
1797 The functions are never called with NULL OBJFILE. Functions get passed an
1798 arbitrary caller supplied DATA pointer. If any of the functions returns
1799 non-zero value then (any other) non-zero value is immediately returned to
1800 the caller. Otherwise zero is returned after iterating through whole EXP.
1801 */
1802
1803 static int
1804 exp_iterate (struct expression *exp,
1805 int (*objfile_func) (struct objfile *objfile, void *data),
1806 void *data)
1807 {
1808 int endpos;
1809
1810 for (endpos = exp->nelts; endpos > 0; )
1811 {
1812 int pos, args, oplen = 0;
1813
1814 operator_length (exp, endpos, &oplen, &args);
1815 gdb_assert (oplen > 0);
1816
1817 pos = endpos - oplen;
1818 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1819 objfile_func, data))
1820 return 1;
1821
1822 endpos = pos;
1823 }
1824
1825 return 0;
1826 }
1827
1828 /* Helper for exp_uses_objfile. */
1829
1830 static int
1831 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1832 {
1833 struct objfile *objfile = objfile_voidp;
1834
1835 if (exp_objfile->separate_debug_objfile_backlink)
1836 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1837
1838 return exp_objfile == objfile;
1839 }
1840
1841 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1842 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1843 file. */
1844
1845 int
1846 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1847 {
1848 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1849
1850 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1851 }
1852
1853 void
1854 _initialize_parse (void)
1855 {
1856 type_stack.size = 0;
1857 type_stack.depth = 0;
1858 type_stack.elements = NULL;
1859
1860 add_setshow_zinteger_cmd ("expression", class_maintenance,
1861 &expressiondebug,
1862 _("Set expression debugging."),
1863 _("Show expression debugging."),
1864 _("When non-zero, the internal representation "
1865 "of expressions will be printed."),
1866 NULL,
1867 show_expressiondebug,
1868 &setdebuglist, &showdebuglist);
1869 add_setshow_boolean_cmd ("parser", class_maintenance,
1870 &parser_debug,
1871 _("Set parser debugging."),
1872 _("Show parser debugging."),
1873 _("When non-zero, expression parser "
1874 "tracing will be enabled."),
1875 NULL,
1876 show_parserdebug,
1877 &setdebuglist, &showdebuglist);
1878 }