]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/progspace.c
update copyright year range in GDB files
[thirdparty/binutils-gdb.git] / gdb / progspace.c
1 /* Program and address space management, for GDB, the GNU debugger.
2
3 Copyright (C) 2009-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "objfiles.h"
23 #include "arch-utils.h"
24 #include "gdbcore.h"
25 #include "solib.h"
26 #include "gdbthread.h"
27
28 /* The last program space number assigned. */
29 int last_program_space_num = 0;
30
31 /* The head of the program spaces list. */
32 struct program_space *program_spaces;
33
34 /* Pointer to the current program space. */
35 struct program_space *current_program_space;
36
37 /* The last address space number assigned. */
38 static int highest_address_space_num;
39
40 \f
41
42 /* Keep a registry of per-program_space data-pointers required by other GDB
43 modules. */
44
45 DEFINE_REGISTRY (program_space, REGISTRY_ACCESS_FIELD)
46
47 /* An address space. It is used for comparing if pspaces/inferior/threads
48 see the same address space and for associating caches to each address
49 space. */
50
51 struct address_space
52 {
53 int num;
54
55 /* Per aspace data-pointers required by other GDB modules. */
56 REGISTRY_FIELDS;
57 };
58
59 /* Keep a registry of per-address_space data-pointers required by other GDB
60 modules. */
61
62 DEFINE_REGISTRY (address_space, REGISTRY_ACCESS_FIELD)
63
64 \f
65
66 /* Create a new address space object, and add it to the list. */
67
68 struct address_space *
69 new_address_space (void)
70 {
71 struct address_space *aspace;
72
73 aspace = XCNEW (struct address_space);
74 aspace->num = ++highest_address_space_num;
75 address_space_alloc_data (aspace);
76
77 return aspace;
78 }
79
80 /* Maybe create a new address space object, and add it to the list, or
81 return a pointer to an existing address space, in case inferiors
82 share an address space on this target system. */
83
84 struct address_space *
85 maybe_new_address_space (void)
86 {
87 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
88
89 if (shared_aspace)
90 {
91 /* Just return the first in the list. */
92 return program_spaces->aspace;
93 }
94
95 return new_address_space ();
96 }
97
98 static void
99 free_address_space (struct address_space *aspace)
100 {
101 address_space_free_data (aspace);
102 xfree (aspace);
103 }
104
105 int
106 address_space_num (struct address_space *aspace)
107 {
108 return aspace->num;
109 }
110
111 /* Start counting over from scratch. */
112
113 static void
114 init_address_spaces (void)
115 {
116 highest_address_space_num = 0;
117 }
118
119 \f
120
121 /* Adds a new empty program space to the program space list, and binds
122 it to ASPACE. Returns the pointer to the new object. */
123
124 struct program_space *
125 add_program_space (struct address_space *aspace)
126 {
127 struct program_space *pspace;
128
129 pspace = XCNEW (struct program_space);
130
131 pspace->num = ++last_program_space_num;
132 pspace->aspace = aspace;
133
134 program_space_alloc_data (pspace);
135
136 if (program_spaces == NULL)
137 program_spaces = pspace;
138 else
139 {
140 struct program_space *last;
141
142 for (last = program_spaces; last->next != NULL; last = last->next)
143 ;
144 last->next = pspace;
145 }
146
147 return pspace;
148 }
149
150 /* Releases program space PSPACE, and all its contents (shared
151 libraries, objfiles, and any other references to the PSPACE in
152 other modules). It is an internal error to call this when PSPACE
153 is the current program space, since there should always be a
154 program space. */
155
156 static void
157 release_program_space (struct program_space *pspace)
158 {
159 struct cleanup *old_chain = save_current_program_space ();
160
161 gdb_assert (pspace != current_program_space);
162
163 set_current_program_space (pspace);
164
165 breakpoint_program_space_exit (pspace);
166 no_shared_libraries (NULL, 0);
167 exec_close ();
168 free_all_objfiles ();
169 if (!gdbarch_has_shared_address_space (target_gdbarch ()))
170 free_address_space (pspace->aspace);
171 clear_section_table (&pspace->target_sections);
172 clear_program_space_solib_cache (pspace);
173 /* Discard any data modules have associated with the PSPACE. */
174 program_space_free_data (pspace);
175 xfree (pspace);
176
177 do_cleanups (old_chain);
178 }
179
180 /* Copies program space SRC to DEST. Copies the main executable file,
181 and the main symbol file. Returns DEST. */
182
183 struct program_space *
184 clone_program_space (struct program_space *dest, struct program_space *src)
185 {
186 struct cleanup *old_chain;
187
188 old_chain = save_current_program_space ();
189
190 set_current_program_space (dest);
191
192 if (src->pspace_exec_filename != NULL)
193 exec_file_attach (src->pspace_exec_filename, 0);
194
195 if (src->symfile_object_file != NULL)
196 symbol_file_add_main (objfile_name (src->symfile_object_file), 0);
197
198 do_cleanups (old_chain);
199 return dest;
200 }
201
202 /* Sets PSPACE as the current program space. It is the caller's
203 responsibility to make sure that the currently selected
204 inferior/thread matches the selected program space. */
205
206 void
207 set_current_program_space (struct program_space *pspace)
208 {
209 if (current_program_space == pspace)
210 return;
211
212 gdb_assert (pspace != NULL);
213
214 current_program_space = pspace;
215
216 /* Different symbols change our view of the frame chain. */
217 reinit_frame_cache ();
218 }
219
220 /* A cleanups callback, helper for save_current_program_space
221 below. */
222
223 static void
224 restore_program_space (void *arg)
225 {
226 struct program_space *saved_pspace = (struct program_space *) arg;
227
228 set_current_program_space (saved_pspace);
229 }
230
231 /* Save the current program space so that it may be restored by a later
232 call to do_cleanups. Returns the struct cleanup pointer needed for
233 later doing the cleanup. */
234
235 struct cleanup *
236 save_current_program_space (void)
237 {
238 struct cleanup *old_chain = make_cleanup (restore_program_space,
239 current_program_space);
240
241 return old_chain;
242 }
243
244 /* Returns true iff there's no inferior bound to PSPACE. */
245
246 int
247 program_space_empty_p (struct program_space *pspace)
248 {
249 if (find_inferior_for_program_space (pspace) != NULL)
250 return 0;
251
252 return 1;
253 }
254
255 /* Remove a program space from the program spaces list and release it. It is
256 an error to call this function while PSPACE is the current program space. */
257
258 void
259 delete_program_space (struct program_space *pspace)
260 {
261 struct program_space *ss, **ss_link;
262 gdb_assert (pspace != NULL);
263 gdb_assert (pspace != current_program_space);
264
265 ss = program_spaces;
266 ss_link = &program_spaces;
267 while (ss != NULL)
268 {
269 if (ss == pspace)
270 {
271 *ss_link = ss->next;
272 break;
273 }
274
275 ss_link = &ss->next;
276 ss = *ss_link;
277 }
278
279 release_program_space (pspace);
280 }
281
282 /* Prints the list of program spaces and their details on UIOUT. If
283 REQUESTED is not -1, it's the ID of the pspace that should be
284 printed. Otherwise, all spaces are printed. */
285
286 static void
287 print_program_space (struct ui_out *uiout, int requested)
288 {
289 struct program_space *pspace;
290 int count = 0;
291 struct cleanup *old_chain;
292
293 /* Compute number of pspaces we will print. */
294 ALL_PSPACES (pspace)
295 {
296 if (requested != -1 && pspace->num != requested)
297 continue;
298
299 ++count;
300 }
301
302 /* There should always be at least one. */
303 gdb_assert (count > 0);
304
305 old_chain = make_cleanup_ui_out_table_begin_end (uiout, 3, count, "pspaces");
306 uiout->table_header (1, ui_left, "current", "");
307 uiout->table_header (4, ui_left, "id", "Id");
308 uiout->table_header (17, ui_left, "exec", "Executable");
309 uiout->table_body ();
310
311 ALL_PSPACES (pspace)
312 {
313 struct cleanup *chain2;
314 struct inferior *inf;
315 int printed_header;
316
317 if (requested != -1 && requested != pspace->num)
318 continue;
319
320 chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
321
322 if (pspace == current_program_space)
323 uiout->field_string ("current", "*");
324 else
325 uiout->field_skip ("current");
326
327 uiout->field_int ("id", pspace->num);
328
329 if (pspace->pspace_exec_filename)
330 uiout->field_string ("exec", pspace->pspace_exec_filename);
331 else
332 uiout->field_skip ("exec");
333
334 /* Print extra info that doesn't really fit in tabular form.
335 Currently, we print the list of inferiors bound to a pspace.
336 There can be more than one inferior bound to the same pspace,
337 e.g., both parent/child inferiors in a vfork, or, on targets
338 that share pspaces between inferiors. */
339 printed_header = 0;
340 for (inf = inferior_list; inf; inf = inf->next)
341 if (inf->pspace == pspace)
342 {
343 if (!printed_header)
344 {
345 printed_header = 1;
346 printf_filtered ("\n\tBound inferiors: ID %d (%s)",
347 inf->num,
348 target_pid_to_str (pid_to_ptid (inf->pid)));
349 }
350 else
351 printf_filtered (", ID %d (%s)",
352 inf->num,
353 target_pid_to_str (pid_to_ptid (inf->pid)));
354 }
355
356 uiout->text ("\n");
357 do_cleanups (chain2);
358 }
359
360 do_cleanups (old_chain);
361 }
362
363 /* Boolean test for an already-known program space id. */
364
365 static int
366 valid_program_space_id (int num)
367 {
368 struct program_space *pspace;
369
370 ALL_PSPACES (pspace)
371 if (pspace->num == num)
372 return 1;
373
374 return 0;
375 }
376
377 /* If ARGS is NULL or empty, print information about all program
378 spaces. Otherwise, ARGS is a text representation of a LONG
379 indicating which the program space to print information about. */
380
381 static void
382 maintenance_info_program_spaces_command (char *args, int from_tty)
383 {
384 int requested = -1;
385
386 if (args && *args)
387 {
388 requested = parse_and_eval_long (args);
389 if (!valid_program_space_id (requested))
390 error (_("program space ID %d not known."), requested);
391 }
392
393 print_program_space (current_uiout, requested);
394 }
395
396 /* Simply returns the count of program spaces. */
397
398 int
399 number_of_program_spaces (void)
400 {
401 struct program_space *pspace;
402 int count = 0;
403
404 ALL_PSPACES (pspace)
405 count++;
406
407 return count;
408 }
409
410 /* Update all program spaces matching to address spaces. The user may
411 have created several program spaces, and loaded executables into
412 them before connecting to the target interface that will create the
413 inferiors. All that happens before GDB has a chance to know if the
414 inferiors will share an address space or not. Call this after
415 having connected to the target interface and having fetched the
416 target description, to fixup the program/address spaces mappings.
417
418 It is assumed that there are no bound inferiors yet, otherwise,
419 they'd be left with stale referenced to released aspaces. */
420
421 void
422 update_address_spaces (void)
423 {
424 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
425 struct program_space *pspace;
426 struct inferior *inf;
427
428 init_address_spaces ();
429
430 if (shared_aspace)
431 {
432 struct address_space *aspace = new_address_space ();
433
434 free_address_space (current_program_space->aspace);
435 ALL_PSPACES (pspace)
436 pspace->aspace = aspace;
437 }
438 else
439 ALL_PSPACES (pspace)
440 {
441 free_address_space (pspace->aspace);
442 pspace->aspace = new_address_space ();
443 }
444
445 for (inf = inferior_list; inf; inf = inf->next)
446 if (gdbarch_has_global_solist (target_gdbarch ()))
447 inf->aspace = maybe_new_address_space ();
448 else
449 inf->aspace = inf->pspace->aspace;
450 }
451
452 /* Save the current program space so that it may be restored by a later
453 call to do_cleanups. Returns the struct cleanup pointer needed for
454 later doing the cleanup. */
455
456 struct cleanup *
457 save_current_space_and_thread (void)
458 {
459 struct cleanup *old_chain;
460
461 /* If restoring to null thread, we need to restore the pspace as
462 well, hence, we need to save the current program space first. */
463 old_chain = save_current_program_space ();
464 /* There's no need to save the current inferior here.
465 That is handled by make_cleanup_restore_current_thread. */
466 make_cleanup_restore_current_thread ();
467
468 return old_chain;
469 }
470
471 /* See progspace.h */
472
473 void
474 switch_to_program_space_and_thread (struct program_space *pspace)
475 {
476 struct inferior *inf;
477
478 inf = find_inferior_for_program_space (pspace);
479 if (inf != NULL && inf->pid != 0)
480 {
481 struct thread_info *tp;
482
483 tp = any_live_thread_of_process (inf->pid);
484 if (tp != NULL)
485 {
486 switch_to_thread (tp->ptid);
487 /* Switching thread switches pspace implicitly. We're
488 done. */
489 return;
490 }
491 }
492
493 switch_to_thread (null_ptid);
494 set_current_program_space (pspace);
495 }
496
497 \f
498
499 /* See progspace.h. */
500
501 void
502 clear_program_space_solib_cache (struct program_space *pspace)
503 {
504 VEC_free (so_list_ptr, pspace->added_solibs);
505
506 free_char_ptr_vec (pspace->deleted_solibs);
507 pspace->deleted_solibs = NULL;
508 }
509
510 \f
511
512 void
513 initialize_progspace (void)
514 {
515 add_cmd ("program-spaces", class_maintenance,
516 maintenance_info_program_spaces_command,
517 _("Info about currently known program spaces."),
518 &maintenanceinfolist);
519
520 /* There's always one program space. Note that this function isn't
521 an automatic _initialize_foo function, since other
522 _initialize_foo routines may need to install their per-pspace
523 data keys. We can only allocate a progspace when all those
524 modules have done that. Do this before
525 initialize_current_architecture, because that accesses exec_bfd,
526 which in turn dereferences current_program_space. */
527 current_program_space = add_program_space (new_address_space ());
528 }