]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
Fix some K&R isms.
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* See the GDB User Guide for details of the GDB remote protocol. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <fcntl.h>
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42
43 #include <ctype.h>
44 #include <sys/time.h>
45 #ifdef USG
46 #include <sys/types.h>
47 #endif
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 /* Prototypes for local functions */
59 static void cleanup_sigint_signal_handler (void *dummy);
60 static void initialize_sigint_signal_handler (void);
61 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
62
63 static void handle_remote_sigint (int);
64 static void handle_remote_sigint_twice (int);
65 static void async_remote_interrupt (gdb_client_data);
66 void async_remote_interrupt_twice (gdb_client_data);
67
68 static void build_remote_gdbarch_data (void);
69
70 static int remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len);
71
72 static int remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len);
73
74 static void remote_files_info (struct target_ops *ignore);
75
76 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
77 int len, int should_write,
78 struct mem_attrib *attrib,
79 struct target_ops *target);
80
81 static void remote_prepare_to_store (void);
82
83 static void remote_fetch_registers (int regno);
84
85 static void remote_resume (ptid_t ptid, int step,
86 enum target_signal siggnal);
87 static void remote_async_resume (ptid_t ptid, int step,
88 enum target_signal siggnal);
89 static int remote_start_remote (struct ui_out *uiout, void *dummy);
90
91 static void remote_open (char *name, int from_tty);
92 static void remote_async_open (char *name, int from_tty);
93
94 static void extended_remote_open (char *name, int from_tty);
95 static void extended_remote_async_open (char *name, int from_tty);
96
97 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
98 static void remote_async_open_1 (char *, int, struct target_ops *,
99 int extended_p);
100
101 static void remote_close (int quitting);
102
103 static void remote_store_registers (int regno);
104
105 static void remote_mourn (void);
106 static void remote_async_mourn (void);
107
108 static void extended_remote_restart (void);
109
110 static void extended_remote_mourn (void);
111
112 static void extended_remote_create_inferior (char *, char *, char **);
113 static void extended_remote_async_create_inferior (char *, char *, char **);
114
115 static void remote_mourn_1 (struct target_ops *);
116
117 static void remote_send (char *buf, long sizeof_buf);
118
119 static int readchar (int timeout);
120
121 static ptid_t remote_wait (ptid_t ptid,
122 struct target_waitstatus *status);
123 static ptid_t remote_async_wait (ptid_t ptid,
124 struct target_waitstatus *status);
125
126 static void remote_kill (void);
127 static void remote_async_kill (void);
128
129 static int tohex (int nib);
130
131 static void remote_detach (char *args, int from_tty);
132 static void remote_async_detach (char *args, int from_tty);
133
134 static void remote_interrupt (int signo);
135
136 static void remote_interrupt_twice (int signo);
137
138 static void interrupt_query (void);
139
140 static void set_thread (int, int);
141
142 static int remote_thread_alive (ptid_t);
143
144 static void get_offsets (void);
145
146 static long read_frame (char *buf, long sizeof_buf);
147
148 static int remote_insert_breakpoint (CORE_ADDR, char *);
149
150 static int remote_remove_breakpoint (CORE_ADDR, char *);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void init_remote_cisco_ops (void);
159
160 static struct target_ops remote_cisco_ops;
161
162 static void remote_stop (void);
163
164 static int ishex (int ch, int *val);
165
166 static int stubhex (int ch);
167
168 static int remote_query (int /*char */ , char *, char *, int *);
169
170 static int hexnumstr (char *, ULONGEST);
171
172 static int hexnumnstr (char *, ULONGEST, int);
173
174 static CORE_ADDR remote_address_masked (CORE_ADDR);
175
176 static void print_packet (char *);
177
178 static unsigned long crc32 (unsigned char *, int, unsigned int);
179
180 static void compare_sections_command (char *, int);
181
182 static void packet_command (char *, int);
183
184 static int stub_unpack_int (char *buff, int fieldlength);
185
186 static ptid_t remote_current_thread (ptid_t oldptid);
187
188 static void remote_find_new_threads (void);
189
190 static void record_currthread (int currthread);
191
192 static int fromhex (int a);
193
194 static int hex2bin (const char *hex, char *bin, int count);
195
196 static int bin2hex (const char *bin, char *hex, int count);
197
198 static int putpkt_binary (char *buf, int cnt);
199
200 static void check_binary_download (CORE_ADDR addr);
201
202 struct packet_config;
203
204 static void show_packet_config_cmd (struct packet_config *config);
205
206 static void update_packet_config (struct packet_config *config);
207
208 /* Define the target subroutine names */
209
210 void open_remote_target (char *, int, struct target_ops *, int);
211
212 void _initialize_remote (void);
213
214 /* Description of the remote protocol. Strictly speaking, when the
215 target is open()ed, remote.c should create a per-target description
216 of the remote protocol using that target's architecture.
217 Unfortunatly, the target stack doesn't include local state. For
218 the moment keep the information in the target's architecture
219 object. Sigh.. */
220
221 struct packet_reg
222 {
223 long offset; /* Offset into G packet. */
224 long regnum; /* GDB's internal register number. */
225 LONGEST pnum; /* Remote protocol register number. */
226 int in_g_packet; /* Always part of G packet. */
227 /* long size in bytes; == REGISTER_RAW_SIZE (regnum); at present. */
228 /* char *name; == REGISTER_NAME (regnum); at present. */
229 };
230
231 struct remote_state
232 {
233 /* Description of the remote protocol registers. */
234 long sizeof_g_packet;
235
236 /* Description of the remote protocol registers indexed by REGNUM
237 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
238 struct packet_reg *regs;
239
240 /* This is the size (in chars) of the first response to the ``g''
241 packet. It is used as a heuristic when determining the maximum
242 size of memory-read and memory-write packets. A target will
243 typically only reserve a buffer large enough to hold the ``g''
244 packet. The size does not include packet overhead (headers and
245 trailers). */
246 long actual_register_packet_size;
247
248 /* This is the maximum size (in chars) of a non read/write packet.
249 It is also used as a cap on the size of read/write packets. */
250 long remote_packet_size;
251 };
252
253 /* Handle for retreving the remote protocol data from gdbarch. */
254 static struct gdbarch_data *remote_gdbarch_data_handle;
255
256 static struct remote_state *
257 get_remote_state (void)
258 {
259 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
260 }
261
262 static void *
263 init_remote_state (struct gdbarch *gdbarch)
264 {
265 int regnum;
266 struct remote_state *rs = xmalloc (sizeof (struct remote_state));
267
268 /* Start out by having the remote protocol mimic the existing
269 behavour - just copy in the description of the register cache. */
270 rs->sizeof_g_packet = REGISTER_BYTES; /* OK use. */
271
272 /* Assume a 1:1 regnum<->pnum table. */
273 rs->regs = xcalloc (NUM_REGS + NUM_PSEUDO_REGS, sizeof (struct packet_reg));
274 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
275 {
276 struct packet_reg *r = &rs->regs[regnum];
277 r->pnum = regnum;
278 r->regnum = regnum;
279 r->offset = REGISTER_BYTE (regnum);
280 r->in_g_packet = (regnum < NUM_REGS);
281 /* ...size = REGISTER_RAW_SIZE (regnum); */
282 /* ...name = REGISTER_NAME (regnum); */
283 }
284
285 /* Default maximum number of characters in a packet body. Many
286 remote stubs have a hardwired buffer size of 400 bytes
287 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
288 as the maximum packet-size to ensure that the packet and an extra
289 NUL character can always fit in the buffer. This stops GDB
290 trashing stubs that try to squeeze an extra NUL into what is
291 already a full buffer (As of 1999-12-04 that was most stubs. */
292 rs->remote_packet_size = 400 - 1;
293
294 /* Should rs->sizeof_g_packet needs more space than the
295 default, adjust the size accordingly. Remember that each byte is
296 encoded as two characters. 32 is the overhead for the packet
297 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
298 (``$NN:G...#NN'') is a better guess, the below has been padded a
299 little. */
300 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
301 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
302
303 /* This one is filled in when a ``g'' packet is received. */
304 rs->actual_register_packet_size = 0;
305
306 return rs;
307 }
308
309 static void
310 free_remote_state (struct gdbarch *gdbarch, void *pointer)
311 {
312 struct remote_state *data = pointer;
313 xfree (data->regs);
314 xfree (data);
315 }
316
317 static struct packet_reg *
318 packet_reg_from_regnum (struct remote_state *rs, long regnum)
319 {
320 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
321 return NULL;
322 else
323 {
324 struct packet_reg *r = &rs->regs[regnum];
325 gdb_assert (r->regnum == regnum);
326 return r;
327 }
328 }
329
330 static struct packet_reg *
331 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
332 {
333 int i;
334 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
335 {
336 struct packet_reg *r = &rs->regs[i];
337 if (r->pnum == pnum)
338 return r;
339 }
340 return NULL;
341 }
342
343 /* */
344
345 static struct target_ops remote_ops;
346
347 static struct target_ops extended_remote_ops;
348
349 /* Temporary target ops. Just like the remote_ops and
350 extended_remote_ops, but with asynchronous support. */
351 static struct target_ops remote_async_ops;
352
353 static struct target_ops extended_async_remote_ops;
354
355 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
356 ``forever'' still use the normal timeout mechanism. This is
357 currently used by the ASYNC code to guarentee that target reads
358 during the initial connect always time-out. Once getpkt has been
359 modified to return a timeout indication and, in turn
360 remote_wait()/wait_for_inferior() have gained a timeout parameter
361 this can go away. */
362 static int wait_forever_enabled_p = 1;
363
364
365 /* This variable chooses whether to send a ^C or a break when the user
366 requests program interruption. Although ^C is usually what remote
367 systems expect, and that is the default here, sometimes a break is
368 preferable instead. */
369
370 static int remote_break;
371
372 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
373 remote_open knows that we don't have a file open when the program
374 starts. */
375 static struct serial *remote_desc = NULL;
376
377 /* This is set by the target (thru the 'S' message)
378 to denote that the target is in kernel mode. */
379 static int cisco_kernel_mode = 0;
380
381 /* This variable sets the number of bits in an address that are to be
382 sent in a memory ("M" or "m") packet. Normally, after stripping
383 leading zeros, the entire address would be sent. This variable
384 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
385 initial implementation of remote.c restricted the address sent in
386 memory packets to ``host::sizeof long'' bytes - (typically 32
387 bits). Consequently, for 64 bit targets, the upper 32 bits of an
388 address was never sent. Since fixing this bug may cause a break in
389 some remote targets this variable is principly provided to
390 facilitate backward compatibility. */
391
392 static int remote_address_size;
393
394 /* Tempoary to track who currently owns the terminal. See
395 target_async_terminal_* for more details. */
396
397 static int remote_async_terminal_ours_p;
398
399 \f
400 /* User configurable variables for the number of characters in a
401 memory read/write packet. MIN ((rs->remote_packet_size),
402 rs->sizeof_g_packet) is the default. Some targets need smaller
403 values (fifo overruns, et.al.) and some users need larger values
404 (speed up transfers). The variables ``preferred_*'' (the user
405 request), ``current_*'' (what was actually set) and ``forced_*''
406 (Positive - a soft limit, negative - a hard limit). */
407
408 struct memory_packet_config
409 {
410 char *name;
411 long size;
412 int fixed_p;
413 };
414
415 /* Compute the current size of a read/write packet. Since this makes
416 use of ``actual_register_packet_size'' the computation is dynamic. */
417
418 static long
419 get_memory_packet_size (struct memory_packet_config *config)
420 {
421 struct remote_state *rs = get_remote_state ();
422 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
423 law?) that some hosts don't cope very well with large alloca()
424 calls. Eventually the alloca() code will be replaced by calls to
425 xmalloc() and make_cleanups() allowing this restriction to either
426 be lifted or removed. */
427 #ifndef MAX_REMOTE_PACKET_SIZE
428 #define MAX_REMOTE_PACKET_SIZE 16384
429 #endif
430 /* NOTE: 16 is just chosen at random. */
431 #ifndef MIN_REMOTE_PACKET_SIZE
432 #define MIN_REMOTE_PACKET_SIZE 16
433 #endif
434 long what_they_get;
435 if (config->fixed_p)
436 {
437 if (config->size <= 0)
438 what_they_get = MAX_REMOTE_PACKET_SIZE;
439 else
440 what_they_get = config->size;
441 }
442 else
443 {
444 what_they_get = (rs->remote_packet_size);
445 /* Limit the packet to the size specified by the user. */
446 if (config->size > 0
447 && what_they_get > config->size)
448 what_they_get = config->size;
449 /* Limit it to the size of the targets ``g'' response. */
450 if ((rs->actual_register_packet_size) > 0
451 && what_they_get > (rs->actual_register_packet_size))
452 what_they_get = (rs->actual_register_packet_size);
453 }
454 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
455 what_they_get = MAX_REMOTE_PACKET_SIZE;
456 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
457 what_they_get = MIN_REMOTE_PACKET_SIZE;
458 return what_they_get;
459 }
460
461 /* Update the size of a read/write packet. If they user wants
462 something really big then do a sanity check. */
463
464 static void
465 set_memory_packet_size (char *args, struct memory_packet_config *config)
466 {
467 int fixed_p = config->fixed_p;
468 long size = config->size;
469 if (args == NULL)
470 error ("Argument required (integer, `fixed' or `limited').");
471 else if (strcmp (args, "hard") == 0
472 || strcmp (args, "fixed") == 0)
473 fixed_p = 1;
474 else if (strcmp (args, "soft") == 0
475 || strcmp (args, "limit") == 0)
476 fixed_p = 0;
477 else
478 {
479 char *end;
480 size = strtoul (args, &end, 0);
481 if (args == end)
482 error ("Invalid %s (bad syntax).", config->name);
483 #if 0
484 /* Instead of explicitly capping the size of a packet to
485 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
486 instead allowed to set the size to something arbitrarily
487 large. */
488 if (size > MAX_REMOTE_PACKET_SIZE)
489 error ("Invalid %s (too large).", config->name);
490 #endif
491 }
492 /* Extra checks? */
493 if (fixed_p && !config->fixed_p)
494 {
495 if (! query ("The target may not be able to correctly handle a %s\n"
496 "of %ld bytes. Change the packet size? ",
497 config->name, size))
498 error ("Packet size not changed.");
499 }
500 /* Update the config. */
501 config->fixed_p = fixed_p;
502 config->size = size;
503 }
504
505 static void
506 show_memory_packet_size (struct memory_packet_config *config)
507 {
508 printf_filtered ("The %s is %ld. ", config->name, config->size);
509 if (config->fixed_p)
510 printf_filtered ("Packets are fixed at %ld bytes.\n",
511 get_memory_packet_size (config));
512 else
513 printf_filtered ("Packets are limited to %ld bytes.\n",
514 get_memory_packet_size (config));
515 }
516
517 static struct memory_packet_config memory_write_packet_config =
518 {
519 "memory-write-packet-size",
520 };
521
522 static void
523 set_memory_write_packet_size (char *args, int from_tty)
524 {
525 set_memory_packet_size (args, &memory_write_packet_config);
526 }
527
528 static void
529 show_memory_write_packet_size (char *args, int from_tty)
530 {
531 show_memory_packet_size (&memory_write_packet_config);
532 }
533
534 static long
535 get_memory_write_packet_size (void)
536 {
537 return get_memory_packet_size (&memory_write_packet_config);
538 }
539
540 static struct memory_packet_config memory_read_packet_config =
541 {
542 "memory-read-packet-size",
543 };
544
545 static void
546 set_memory_read_packet_size (char *args, int from_tty)
547 {
548 set_memory_packet_size (args, &memory_read_packet_config);
549 }
550
551 static void
552 show_memory_read_packet_size (char *args, int from_tty)
553 {
554 show_memory_packet_size (&memory_read_packet_config);
555 }
556
557 static long
558 get_memory_read_packet_size (void)
559 {
560 struct remote_state *rs = get_remote_state ();
561 long size = get_memory_packet_size (&memory_read_packet_config);
562 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
563 extra buffer size argument before the memory read size can be
564 increased beyond (rs->remote_packet_size). */
565 if (size > (rs->remote_packet_size))
566 size = (rs->remote_packet_size);
567 return size;
568 }
569
570 \f
571 /* Generic configuration support for packets the stub optionally
572 supports. Allows the user to specify the use of the packet as well
573 as allowing GDB to auto-detect support in the remote stub. */
574
575 enum packet_support
576 {
577 PACKET_SUPPORT_UNKNOWN = 0,
578 PACKET_ENABLE,
579 PACKET_DISABLE
580 };
581
582 struct packet_config
583 {
584 char *name;
585 char *title;
586 enum auto_boolean detect;
587 enum packet_support support;
588 };
589
590 /* Analyze a packet's return value and update the packet config
591 accordingly. */
592
593 enum packet_result
594 {
595 PACKET_ERROR,
596 PACKET_OK,
597 PACKET_UNKNOWN
598 };
599
600 static void
601 update_packet_config (struct packet_config *config)
602 {
603 switch (config->detect)
604 {
605 case AUTO_BOOLEAN_TRUE:
606 config->support = PACKET_ENABLE;
607 break;
608 case AUTO_BOOLEAN_FALSE:
609 config->support = PACKET_DISABLE;
610 break;
611 case AUTO_BOOLEAN_AUTO:
612 config->support = PACKET_SUPPORT_UNKNOWN;
613 break;
614 }
615 }
616
617 static void
618 show_packet_config_cmd (struct packet_config *config)
619 {
620 char *support = "internal-error";
621 switch (config->support)
622 {
623 case PACKET_ENABLE:
624 support = "enabled";
625 break;
626 case PACKET_DISABLE:
627 support = "disabled";
628 break;
629 case PACKET_SUPPORT_UNKNOWN:
630 support = "unknown";
631 break;
632 }
633 switch (config->detect)
634 {
635 case AUTO_BOOLEAN_AUTO:
636 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
637 config->name, config->title, support);
638 break;
639 case AUTO_BOOLEAN_TRUE:
640 case AUTO_BOOLEAN_FALSE:
641 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
642 config->name, config->title, support);
643 break;
644 }
645 }
646
647 static void
648 add_packet_config_cmd (struct packet_config *config,
649 char *name,
650 char *title,
651 cmd_sfunc_ftype *set_func,
652 cmd_sfunc_ftype *show_func,
653 struct cmd_list_element **set_remote_list,
654 struct cmd_list_element **show_remote_list,
655 int legacy)
656 {
657 struct cmd_list_element *set_cmd;
658 struct cmd_list_element *show_cmd;
659 char *set_doc;
660 char *show_doc;
661 char *cmd_name;
662 config->name = name;
663 config->title = title;
664 config->detect = AUTO_BOOLEAN_AUTO;
665 config->support = PACKET_SUPPORT_UNKNOWN;
666 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
667 name, title);
668 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
669 name, title);
670 /* set/show TITLE-packet {auto,on,off} */
671 xasprintf (&cmd_name, "%s-packet", title);
672 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
673 &config->detect, set_doc, show_doc,
674 set_func, show_func,
675 set_remote_list, show_remote_list);
676 /* set/show remote NAME-packet {auto,on,off} -- legacy */
677 if (legacy)
678 {
679 char *legacy_name;
680 xasprintf (&legacy_name, "%s-packet", name);
681 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
682 set_remote_list);
683 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
684 show_remote_list);
685 }
686 }
687
688 static enum packet_result
689 packet_ok (const char *buf, struct packet_config *config)
690 {
691 if (buf[0] != '\0')
692 {
693 /* The stub recognized the packet request. Check that the
694 operation succeeded. */
695 switch (config->support)
696 {
697 case PACKET_SUPPORT_UNKNOWN:
698 if (remote_debug)
699 fprintf_unfiltered (gdb_stdlog,
700 "Packet %s (%s) is supported\n",
701 config->name, config->title);
702 config->support = PACKET_ENABLE;
703 break;
704 case PACKET_DISABLE:
705 internal_error (__FILE__, __LINE__,
706 "packet_ok: attempt to use a disabled packet");
707 break;
708 case PACKET_ENABLE:
709 break;
710 }
711 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
712 /* "OK" - definitly OK. */
713 return PACKET_OK;
714 if (buf[0] == 'E'
715 && isxdigit (buf[1]) && isxdigit (buf[2])
716 && buf[3] == '\0')
717 /* "Enn" - definitly an error. */
718 return PACKET_ERROR;
719 /* The packet may or may not be OK. Just assume it is */
720 return PACKET_OK;
721 }
722 else
723 {
724 /* The stub does not support the packet. */
725 switch (config->support)
726 {
727 case PACKET_ENABLE:
728 if (config->detect == AUTO_BOOLEAN_AUTO)
729 /* If the stub previously indicated that the packet was
730 supported then there is a protocol error.. */
731 error ("Protocol error: %s (%s) conflicting enabled responses.",
732 config->name, config->title);
733 else
734 /* The user set it wrong. */
735 error ("Enabled packet %s (%s) not recognized by stub",
736 config->name, config->title);
737 break;
738 case PACKET_SUPPORT_UNKNOWN:
739 if (remote_debug)
740 fprintf_unfiltered (gdb_stdlog,
741 "Packet %s (%s) is NOT supported\n",
742 config->name, config->title);
743 config->support = PACKET_DISABLE;
744 break;
745 case PACKET_DISABLE:
746 break;
747 }
748 return PACKET_UNKNOWN;
749 }
750 }
751
752 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
753 static struct packet_config remote_protocol_qSymbol;
754
755 static void
756 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
757 struct cmd_list_element *c)
758 {
759 update_packet_config (&remote_protocol_qSymbol);
760 }
761
762 static void
763 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
764 struct cmd_list_element *c)
765 {
766 show_packet_config_cmd (&remote_protocol_qSymbol);
767 }
768
769 /* Should we try the 'e' (step over range) request? */
770 static struct packet_config remote_protocol_e;
771
772 static void
773 set_remote_protocol_e_packet_cmd (char *args, int from_tty,
774 struct cmd_list_element *c)
775 {
776 update_packet_config (&remote_protocol_e);
777 }
778
779 static void
780 show_remote_protocol_e_packet_cmd (char *args, int from_tty,
781 struct cmd_list_element *c)
782 {
783 show_packet_config_cmd (&remote_protocol_e);
784 }
785
786
787 /* Should we try the 'E' (step over range / w signal #) request? */
788 static struct packet_config remote_protocol_E;
789
790 static void
791 set_remote_protocol_E_packet_cmd (char *args, int from_tty,
792 struct cmd_list_element *c)
793 {
794 update_packet_config (&remote_protocol_E);
795 }
796
797 static void
798 show_remote_protocol_E_packet_cmd (char *args, int from_tty,
799 struct cmd_list_element *c)
800 {
801 show_packet_config_cmd (&remote_protocol_E);
802 }
803
804
805 /* Should we try the 'P' (set register) request? */
806
807 static struct packet_config remote_protocol_P;
808
809 static void
810 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
811 struct cmd_list_element *c)
812 {
813 update_packet_config (&remote_protocol_P);
814 }
815
816 static void
817 show_remote_protocol_P_packet_cmd (char *args, int from_tty,
818 struct cmd_list_element *c)
819 {
820 show_packet_config_cmd (&remote_protocol_P);
821 }
822
823 /* Should we try one of the 'Z' requests? */
824
825 enum Z_packet_type
826 {
827 Z_PACKET_SOFTWARE_BP,
828 Z_PACKET_HARDWARE_BP,
829 Z_PACKET_WRITE_WP,
830 Z_PACKET_READ_WP,
831 Z_PACKET_ACCESS_WP,
832 NR_Z_PACKET_TYPES
833 };
834
835 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
836
837 /* FIXME: Instead of having all these boiler plate functions, the
838 command callback should include a context argument. */
839
840 static void
841 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
842 struct cmd_list_element *c)
843 {
844 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
845 }
846
847 static void
848 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
849 struct cmd_list_element *c)
850 {
851 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
852 }
853
854 static void
855 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
856 struct cmd_list_element *c)
857 {
858 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
859 }
860
861 static void
862 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
863 struct cmd_list_element *c)
864 {
865 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
866 }
867
868 static void
869 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
870 struct cmd_list_element *c)
871 {
872 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
873 }
874
875 static void
876 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
877 struct cmd_list_element *c)
878 {
879 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
880 }
881
882 static void
883 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
884 struct cmd_list_element *c)
885 {
886 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
887 }
888
889 static void
890 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
891 struct cmd_list_element *c)
892 {
893 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
894 }
895
896 static void
897 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
898 struct cmd_list_element *c)
899 {
900 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
901 }
902
903 static void
904 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
905 struct cmd_list_element *c)
906 {
907 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
908 }
909
910 /* For compatibility with older distributions. Provide a ``set remote
911 Z-packet ...'' command that updates all the Z packet types. */
912
913 static enum auto_boolean remote_Z_packet_detect;
914
915 static void
916 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
917 struct cmd_list_element *c)
918 {
919 int i;
920 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
921 {
922 remote_protocol_Z[i].detect = remote_Z_packet_detect;
923 update_packet_config (&remote_protocol_Z[i]);
924 }
925 }
926
927 static void
928 show_remote_protocol_Z_packet_cmd (char *args, int from_tty,
929 struct cmd_list_element *c)
930 {
931 int i;
932 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
933 {
934 show_packet_config_cmd (&remote_protocol_Z[i]);
935 }
936 }
937
938 /* Should we try the 'X' (remote binary download) packet?
939
940 This variable (available to the user via "set remote X-packet")
941 dictates whether downloads are sent in binary (via the 'X' packet).
942 We assume that the stub can, and attempt to do it. This will be
943 cleared if the stub does not understand it. This switch is still
944 needed, though in cases when the packet is supported in the stub,
945 but the connection does not allow it (i.e., 7-bit serial connection
946 only). */
947
948 static struct packet_config remote_protocol_binary_download;
949
950 /* Should we try the 'ThreadInfo' query packet?
951
952 This variable (NOT available to the user: auto-detect only!)
953 determines whether GDB will use the new, simpler "ThreadInfo"
954 query or the older, more complex syntax for thread queries.
955 This is an auto-detect variable (set to true at each connect,
956 and set to false when the target fails to recognize it). */
957
958 static int use_threadinfo_query;
959 static int use_threadextra_query;
960
961 static void
962 set_remote_protocol_binary_download_cmd (char *args,
963 int from_tty,
964 struct cmd_list_element *c)
965 {
966 update_packet_config (&remote_protocol_binary_download);
967 }
968
969 static void
970 show_remote_protocol_binary_download_cmd (char *args, int from_tty,
971 struct cmd_list_element *c)
972 {
973 show_packet_config_cmd (&remote_protocol_binary_download);
974 }
975
976
977 /* Tokens for use by the asynchronous signal handlers for SIGINT */
978 static void *sigint_remote_twice_token;
979 static void *sigint_remote_token;
980
981 /* These are pointers to hook functions that may be set in order to
982 modify resume/wait behavior for a particular architecture. */
983
984 void (*target_resume_hook) (void);
985 void (*target_wait_loop_hook) (void);
986 \f
987
988
989 /* These are the threads which we last sent to the remote system.
990 -1 for all or -2 for not sent yet. */
991 static int general_thread;
992 static int continue_thread;
993
994 /* Call this function as a result of
995 1) A halt indication (T packet) containing a thread id
996 2) A direct query of currthread
997 3) Successful execution of set thread
998 */
999
1000 static void
1001 record_currthread (int currthread)
1002 {
1003 general_thread = currthread;
1004
1005 /* If this is a new thread, add it to GDB's thread list.
1006 If we leave it up to WFI to do this, bad things will happen. */
1007 if (!in_thread_list (pid_to_ptid (currthread)))
1008 {
1009 add_thread (pid_to_ptid (currthread));
1010 ui_out_text (uiout, "[New ");
1011 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1012 ui_out_text (uiout, "]\n");
1013 }
1014 }
1015
1016 #define MAGIC_NULL_PID 42000
1017
1018 static void
1019 set_thread (int th, int gen)
1020 {
1021 struct remote_state *rs = get_remote_state ();
1022 char *buf = alloca (rs->remote_packet_size);
1023 int state = gen ? general_thread : continue_thread;
1024
1025 if (state == th)
1026 return;
1027
1028 buf[0] = 'H';
1029 buf[1] = gen ? 'g' : 'c';
1030 if (th == MAGIC_NULL_PID)
1031 {
1032 buf[2] = '0';
1033 buf[3] = '\0';
1034 }
1035 else if (th < 0)
1036 sprintf (&buf[2], "-%x", -th);
1037 else
1038 sprintf (&buf[2], "%x", th);
1039 putpkt (buf);
1040 getpkt (buf, (rs->remote_packet_size), 0);
1041 if (gen)
1042 general_thread = th;
1043 else
1044 continue_thread = th;
1045 }
1046 \f
1047 /* Return nonzero if the thread TH is still alive on the remote system. */
1048
1049 static int
1050 remote_thread_alive (ptid_t ptid)
1051 {
1052 int tid = PIDGET (ptid);
1053 char buf[16];
1054
1055 if (tid < 0)
1056 sprintf (buf, "T-%08x", -tid);
1057 else
1058 sprintf (buf, "T%08x", tid);
1059 putpkt (buf);
1060 getpkt (buf, sizeof (buf), 0);
1061 return (buf[0] == 'O' && buf[1] == 'K');
1062 }
1063
1064 /* About these extended threadlist and threadinfo packets. They are
1065 variable length packets but, the fields within them are often fixed
1066 length. They are redundent enough to send over UDP as is the
1067 remote protocol in general. There is a matching unit test module
1068 in libstub. */
1069
1070 #define OPAQUETHREADBYTES 8
1071
1072 /* a 64 bit opaque identifier */
1073 typedef unsigned char threadref[OPAQUETHREADBYTES];
1074
1075 /* WARNING: This threadref data structure comes from the remote O.S., libstub
1076 protocol encoding, and remote.c. it is not particularly changable */
1077
1078 /* Right now, the internal structure is int. We want it to be bigger.
1079 Plan to fix this.
1080 */
1081
1082 typedef int gdb_threadref; /* internal GDB thread reference */
1083
1084 /* gdb_ext_thread_info is an internal GDB data structure which is
1085 equivalint to the reply of the remote threadinfo packet */
1086
1087 struct gdb_ext_thread_info
1088 {
1089 threadref threadid; /* External form of thread reference */
1090 int active; /* Has state interesting to GDB? , regs, stack */
1091 char display[256]; /* Brief state display, name, blocked/syspended */
1092 char shortname[32]; /* To be used to name threads */
1093 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1094 };
1095
1096 /* The volume of remote transfers can be limited by submitting
1097 a mask containing bits specifying the desired information.
1098 Use a union of these values as the 'selection' parameter to
1099 get_thread_info. FIXME: Make these TAG names more thread specific.
1100 */
1101
1102 #define TAG_THREADID 1
1103 #define TAG_EXISTS 2
1104 #define TAG_DISPLAY 4
1105 #define TAG_THREADNAME 8
1106 #define TAG_MOREDISPLAY 16
1107
1108 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1109
1110 char *unpack_varlen_hex (char *buff, int *result);
1111
1112 static char *unpack_nibble (char *buf, int *val);
1113
1114 static char *pack_nibble (char *buf, int nibble);
1115
1116 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1117
1118 static char *unpack_byte (char *buf, int *value);
1119
1120 static char *pack_int (char *buf, int value);
1121
1122 static char *unpack_int (char *buf, int *value);
1123
1124 static char *unpack_string (char *src, char *dest, int length);
1125
1126 static char *pack_threadid (char *pkt, threadref * id);
1127
1128 static char *unpack_threadid (char *inbuf, threadref * id);
1129
1130 void int_to_threadref (threadref * id, int value);
1131
1132 static int threadref_to_int (threadref * ref);
1133
1134 static void copy_threadref (threadref * dest, threadref * src);
1135
1136 static int threadmatch (threadref * dest, threadref * src);
1137
1138 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1139
1140 static int remote_unpack_thread_info_response (char *pkt,
1141 threadref * expectedref,
1142 struct gdb_ext_thread_info
1143 *info);
1144
1145
1146 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1147 struct gdb_ext_thread_info *info);
1148
1149 static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1150 int selection,
1151 struct gdb_ext_thread_info *info);
1152
1153 static char *pack_threadlist_request (char *pkt, int startflag,
1154 int threadcount,
1155 threadref * nextthread);
1156
1157 static int parse_threadlist_response (char *pkt,
1158 int result_limit,
1159 threadref * original_echo,
1160 threadref * resultlist, int *doneflag);
1161
1162 static int remote_get_threadlist (int startflag,
1163 threadref * nextthread,
1164 int result_limit,
1165 int *done,
1166 int *result_count, threadref * threadlist);
1167
1168 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1169
1170 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1171 void *context, int looplimit);
1172
1173 static int remote_newthread_step (threadref * ref, void *context);
1174
1175 /* encode 64 bits in 16 chars of hex */
1176
1177 static const char hexchars[] = "0123456789abcdef";
1178
1179 static int
1180 ishex (int ch, int *val)
1181 {
1182 if ((ch >= 'a') && (ch <= 'f'))
1183 {
1184 *val = ch - 'a' + 10;
1185 return 1;
1186 }
1187 if ((ch >= 'A') && (ch <= 'F'))
1188 {
1189 *val = ch - 'A' + 10;
1190 return 1;
1191 }
1192 if ((ch >= '0') && (ch <= '9'))
1193 {
1194 *val = ch - '0';
1195 return 1;
1196 }
1197 return 0;
1198 }
1199
1200 static int
1201 stubhex (int ch)
1202 {
1203 if (ch >= 'a' && ch <= 'f')
1204 return ch - 'a' + 10;
1205 if (ch >= '0' && ch <= '9')
1206 return ch - '0';
1207 if (ch >= 'A' && ch <= 'F')
1208 return ch - 'A' + 10;
1209 return -1;
1210 }
1211
1212 static int
1213 stub_unpack_int (char *buff, int fieldlength)
1214 {
1215 int nibble;
1216 int retval = 0;
1217
1218 while (fieldlength)
1219 {
1220 nibble = stubhex (*buff++);
1221 retval |= nibble;
1222 fieldlength--;
1223 if (fieldlength)
1224 retval = retval << 4;
1225 }
1226 return retval;
1227 }
1228
1229 char *
1230 unpack_varlen_hex (char *buff, /* packet to parse */
1231 int *result)
1232 {
1233 int nibble;
1234 int retval = 0;
1235
1236 while (ishex (*buff, &nibble))
1237 {
1238 buff++;
1239 retval = retval << 4;
1240 retval |= nibble & 0x0f;
1241 }
1242 *result = retval;
1243 return buff;
1244 }
1245
1246 static char *
1247 unpack_nibble (char *buf, int *val)
1248 {
1249 ishex (*buf++, val);
1250 return buf;
1251 }
1252
1253 static char *
1254 pack_nibble (char *buf, int nibble)
1255 {
1256 *buf++ = hexchars[(nibble & 0x0f)];
1257 return buf;
1258 }
1259
1260 static char *
1261 pack_hex_byte (char *pkt, int byte)
1262 {
1263 *pkt++ = hexchars[(byte >> 4) & 0xf];
1264 *pkt++ = hexchars[(byte & 0xf)];
1265 return pkt;
1266 }
1267
1268 static char *
1269 unpack_byte (char *buf, int *value)
1270 {
1271 *value = stub_unpack_int (buf, 2);
1272 return buf + 2;
1273 }
1274
1275 static char *
1276 pack_int (char *buf, int value)
1277 {
1278 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1279 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1280 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1281 buf = pack_hex_byte (buf, (value & 0xff));
1282 return buf;
1283 }
1284
1285 static char *
1286 unpack_int (char *buf, int *value)
1287 {
1288 *value = stub_unpack_int (buf, 8);
1289 return buf + 8;
1290 }
1291
1292 #if 0 /* currently unused, uncomment when needed */
1293 static char *pack_string (char *pkt, char *string);
1294
1295 static char *
1296 pack_string (char *pkt, char *string)
1297 {
1298 char ch;
1299 int len;
1300
1301 len = strlen (string);
1302 if (len > 200)
1303 len = 200; /* Bigger than most GDB packets, junk??? */
1304 pkt = pack_hex_byte (pkt, len);
1305 while (len-- > 0)
1306 {
1307 ch = *string++;
1308 if ((ch == '\0') || (ch == '#'))
1309 ch = '*'; /* Protect encapsulation */
1310 *pkt++ = ch;
1311 }
1312 return pkt;
1313 }
1314 #endif /* 0 (unused) */
1315
1316 static char *
1317 unpack_string (char *src, char *dest, int length)
1318 {
1319 while (length--)
1320 *dest++ = *src++;
1321 *dest = '\0';
1322 return src;
1323 }
1324
1325 static char *
1326 pack_threadid (char *pkt, threadref *id)
1327 {
1328 char *limit;
1329 unsigned char *altid;
1330
1331 altid = (unsigned char *) id;
1332 limit = pkt + BUF_THREAD_ID_SIZE;
1333 while (pkt < limit)
1334 pkt = pack_hex_byte (pkt, *altid++);
1335 return pkt;
1336 }
1337
1338
1339 static char *
1340 unpack_threadid (char *inbuf, threadref *id)
1341 {
1342 char *altref;
1343 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1344 int x, y;
1345
1346 altref = (char *) id;
1347
1348 while (inbuf < limit)
1349 {
1350 x = stubhex (*inbuf++);
1351 y = stubhex (*inbuf++);
1352 *altref++ = (x << 4) | y;
1353 }
1354 return inbuf;
1355 }
1356
1357 /* Externally, threadrefs are 64 bits but internally, they are still
1358 ints. This is due to a mismatch of specifications. We would like
1359 to use 64bit thread references internally. This is an adapter
1360 function. */
1361
1362 void
1363 int_to_threadref (threadref *id, int value)
1364 {
1365 unsigned char *scan;
1366
1367 scan = (unsigned char *) id;
1368 {
1369 int i = 4;
1370 while (i--)
1371 *scan++ = 0;
1372 }
1373 *scan++ = (value >> 24) & 0xff;
1374 *scan++ = (value >> 16) & 0xff;
1375 *scan++ = (value >> 8) & 0xff;
1376 *scan++ = (value & 0xff);
1377 }
1378
1379 static int
1380 threadref_to_int (threadref *ref)
1381 {
1382 int i, value = 0;
1383 unsigned char *scan;
1384
1385 scan = (char *) ref;
1386 scan += 4;
1387 i = 4;
1388 while (i-- > 0)
1389 value = (value << 8) | ((*scan++) & 0xff);
1390 return value;
1391 }
1392
1393 static void
1394 copy_threadref (threadref *dest, threadref *src)
1395 {
1396 int i;
1397 unsigned char *csrc, *cdest;
1398
1399 csrc = (unsigned char *) src;
1400 cdest = (unsigned char *) dest;
1401 i = 8;
1402 while (i--)
1403 *cdest++ = *csrc++;
1404 }
1405
1406 static int
1407 threadmatch (threadref *dest, threadref *src)
1408 {
1409 /* things are broken right now, so just assume we got a match */
1410 #if 0
1411 unsigned char *srcp, *destp;
1412 int i, result;
1413 srcp = (char *) src;
1414 destp = (char *) dest;
1415
1416 result = 1;
1417 while (i-- > 0)
1418 result &= (*srcp++ == *destp++) ? 1 : 0;
1419 return result;
1420 #endif
1421 return 1;
1422 }
1423
1424 /*
1425 threadid:1, # always request threadid
1426 context_exists:2,
1427 display:4,
1428 unique_name:8,
1429 more_display:16
1430 */
1431
1432 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1433
1434 static char *
1435 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1436 {
1437 *pkt++ = 'q'; /* Info Query */
1438 *pkt++ = 'P'; /* process or thread info */
1439 pkt = pack_int (pkt, mode); /* mode */
1440 pkt = pack_threadid (pkt, id); /* threadid */
1441 *pkt = '\0'; /* terminate */
1442 return pkt;
1443 }
1444
1445 /* These values tag the fields in a thread info response packet */
1446 /* Tagging the fields allows us to request specific fields and to
1447 add more fields as time goes by */
1448
1449 #define TAG_THREADID 1 /* Echo the thread identifier */
1450 #define TAG_EXISTS 2 /* Is this process defined enough to
1451 fetch registers and its stack */
1452 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1453 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1454 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1455 the process */
1456
1457 static int
1458 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1459 struct gdb_ext_thread_info *info)
1460 {
1461 struct remote_state *rs = get_remote_state ();
1462 int mask, length;
1463 unsigned int tag;
1464 threadref ref;
1465 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1466 int retval = 1;
1467
1468 /* info->threadid = 0; FIXME: implement zero_threadref */
1469 info->active = 0;
1470 info->display[0] = '\0';
1471 info->shortname[0] = '\0';
1472 info->more_display[0] = '\0';
1473
1474 /* Assume the characters indicating the packet type have been stripped */
1475 pkt = unpack_int (pkt, &mask); /* arg mask */
1476 pkt = unpack_threadid (pkt, &ref);
1477
1478 if (mask == 0)
1479 warning ("Incomplete response to threadinfo request\n");
1480 if (!threadmatch (&ref, expectedref))
1481 { /* This is an answer to a different request */
1482 warning ("ERROR RMT Thread info mismatch\n");
1483 return 0;
1484 }
1485 copy_threadref (&info->threadid, &ref);
1486
1487 /* Loop on tagged fields , try to bail if somthing goes wrong */
1488
1489 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1490 {
1491 pkt = unpack_int (pkt, &tag); /* tag */
1492 pkt = unpack_byte (pkt, &length); /* length */
1493 if (!(tag & mask)) /* tags out of synch with mask */
1494 {
1495 warning ("ERROR RMT: threadinfo tag mismatch\n");
1496 retval = 0;
1497 break;
1498 }
1499 if (tag == TAG_THREADID)
1500 {
1501 if (length != 16)
1502 {
1503 warning ("ERROR RMT: length of threadid is not 16\n");
1504 retval = 0;
1505 break;
1506 }
1507 pkt = unpack_threadid (pkt, &ref);
1508 mask = mask & ~TAG_THREADID;
1509 continue;
1510 }
1511 if (tag == TAG_EXISTS)
1512 {
1513 info->active = stub_unpack_int (pkt, length);
1514 pkt += length;
1515 mask = mask & ~(TAG_EXISTS);
1516 if (length > 8)
1517 {
1518 warning ("ERROR RMT: 'exists' length too long\n");
1519 retval = 0;
1520 break;
1521 }
1522 continue;
1523 }
1524 if (tag == TAG_THREADNAME)
1525 {
1526 pkt = unpack_string (pkt, &info->shortname[0], length);
1527 mask = mask & ~TAG_THREADNAME;
1528 continue;
1529 }
1530 if (tag == TAG_DISPLAY)
1531 {
1532 pkt = unpack_string (pkt, &info->display[0], length);
1533 mask = mask & ~TAG_DISPLAY;
1534 continue;
1535 }
1536 if (tag == TAG_MOREDISPLAY)
1537 {
1538 pkt = unpack_string (pkt, &info->more_display[0], length);
1539 mask = mask & ~TAG_MOREDISPLAY;
1540 continue;
1541 }
1542 warning ("ERROR RMT: unknown thread info tag\n");
1543 break; /* Not a tag we know about */
1544 }
1545 return retval;
1546 }
1547
1548 static int
1549 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1550 struct gdb_ext_thread_info *info)
1551 {
1552 struct remote_state *rs = get_remote_state ();
1553 int result;
1554 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1555
1556 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1557 putpkt (threadinfo_pkt);
1558 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1559 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1560 info);
1561 return result;
1562 }
1563
1564 /* Unfortunately, 61 bit thread-ids are bigger than the internal
1565 representation of a threadid. */
1566
1567 static int
1568 adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1569 struct gdb_ext_thread_info *info)
1570 {
1571 threadref lclref;
1572
1573 int_to_threadref (&lclref, *ref);
1574 return remote_get_threadinfo (&lclref, selection, info);
1575 }
1576
1577 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1578
1579 static char *
1580 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1581 threadref *nextthread)
1582 {
1583 *pkt++ = 'q'; /* info query packet */
1584 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1585 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1586 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1587 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1588 *pkt = '\0';
1589 return pkt;
1590 }
1591
1592 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1593
1594 static int
1595 parse_threadlist_response (char *pkt, int result_limit,
1596 threadref *original_echo, threadref *resultlist,
1597 int *doneflag)
1598 {
1599 struct remote_state *rs = get_remote_state ();
1600 char *limit;
1601 int count, resultcount, done;
1602
1603 resultcount = 0;
1604 /* Assume the 'q' and 'M chars have been stripped. */
1605 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1606 pkt = unpack_byte (pkt, &count); /* count field */
1607 pkt = unpack_nibble (pkt, &done);
1608 /* The first threadid is the argument threadid. */
1609 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1610 while ((count-- > 0) && (pkt < limit))
1611 {
1612 pkt = unpack_threadid (pkt, resultlist++);
1613 if (resultcount++ >= result_limit)
1614 break;
1615 }
1616 if (doneflag)
1617 *doneflag = done;
1618 return resultcount;
1619 }
1620
1621 static int
1622 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1623 int *done, int *result_count, threadref *threadlist)
1624 {
1625 struct remote_state *rs = get_remote_state ();
1626 static threadref echo_nextthread;
1627 char *threadlist_packet = alloca (rs->remote_packet_size);
1628 char *t_response = alloca (rs->remote_packet_size);
1629 int result = 1;
1630
1631 /* Trancate result limit to be smaller than the packet size */
1632 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1633 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1634
1635 pack_threadlist_request (threadlist_packet,
1636 startflag, result_limit, nextthread);
1637 putpkt (threadlist_packet);
1638 getpkt (t_response, (rs->remote_packet_size), 0);
1639
1640 *result_count =
1641 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1642 threadlist, done);
1643
1644 if (!threadmatch (&echo_nextthread, nextthread))
1645 {
1646 /* FIXME: This is a good reason to drop the packet */
1647 /* Possably, there is a duplicate response */
1648 /* Possabilities :
1649 retransmit immediatly - race conditions
1650 retransmit after timeout - yes
1651 exit
1652 wait for packet, then exit
1653 */
1654 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1655 return 0; /* I choose simply exiting */
1656 }
1657 if (*result_count <= 0)
1658 {
1659 if (*done != 1)
1660 {
1661 warning ("RMT ERROR : failed to get remote thread list\n");
1662 result = 0;
1663 }
1664 return result; /* break; */
1665 }
1666 if (*result_count > result_limit)
1667 {
1668 *result_count = 0;
1669 warning ("RMT ERROR: threadlist response longer than requested\n");
1670 return 0;
1671 }
1672 return result;
1673 }
1674
1675 /* This is the interface between remote and threads, remotes upper interface */
1676
1677 /* remote_find_new_threads retrieves the thread list and for each
1678 thread in the list, looks up the thread in GDB's internal list,
1679 ading the thread if it does not already exist. This involves
1680 getting partial thread lists from the remote target so, polling the
1681 quit_flag is required. */
1682
1683
1684 /* About this many threadisds fit in a packet. */
1685
1686 #define MAXTHREADLISTRESULTS 32
1687
1688 static int
1689 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1690 int looplimit)
1691 {
1692 int done, i, result_count;
1693 int startflag = 1;
1694 int result = 1;
1695 int loopcount = 0;
1696 static threadref nextthread;
1697 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1698
1699 done = 0;
1700 while (!done)
1701 {
1702 if (loopcount++ > looplimit)
1703 {
1704 result = 0;
1705 warning ("Remote fetch threadlist -infinite loop-\n");
1706 break;
1707 }
1708 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1709 &done, &result_count, resultthreadlist))
1710 {
1711 result = 0;
1712 break;
1713 }
1714 /* clear for later iterations */
1715 startflag = 0;
1716 /* Setup to resume next batch of thread references, set nextthread. */
1717 if (result_count >= 1)
1718 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1719 i = 0;
1720 while (result_count--)
1721 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1722 break;
1723 }
1724 return result;
1725 }
1726
1727 static int
1728 remote_newthread_step (threadref *ref, void *context)
1729 {
1730 ptid_t ptid;
1731
1732 ptid = pid_to_ptid (threadref_to_int (ref));
1733
1734 if (!in_thread_list (ptid))
1735 add_thread (ptid);
1736 return 1; /* continue iterator */
1737 }
1738
1739 #define CRAZY_MAX_THREADS 1000
1740
1741 static ptid_t
1742 remote_current_thread (ptid_t oldpid)
1743 {
1744 struct remote_state *rs = get_remote_state ();
1745 char *buf = alloca (rs->remote_packet_size);
1746
1747 putpkt ("qC");
1748 getpkt (buf, (rs->remote_packet_size), 0);
1749 if (buf[0] == 'Q' && buf[1] == 'C')
1750 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1751 else
1752 return oldpid;
1753 }
1754
1755 /* Find new threads for info threads command.
1756 * Original version, using John Metzler's thread protocol.
1757 */
1758
1759 static void
1760 remote_find_new_threads (void)
1761 {
1762 remote_threadlist_iterator (remote_newthread_step, 0,
1763 CRAZY_MAX_THREADS);
1764 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1765 inferior_ptid = remote_current_thread (inferior_ptid);
1766 }
1767
1768 /*
1769 * Find all threads for info threads command.
1770 * Uses new thread protocol contributed by Cisco.
1771 * Falls back and attempts to use the older method (above)
1772 * if the target doesn't respond to the new method.
1773 */
1774
1775 static void
1776 remote_threads_info (void)
1777 {
1778 struct remote_state *rs = get_remote_state ();
1779 char *buf = alloca (rs->remote_packet_size);
1780 char *bufp;
1781 int tid;
1782
1783 if (remote_desc == 0) /* paranoia */
1784 error ("Command can only be used when connected to the remote target.");
1785
1786 if (use_threadinfo_query)
1787 {
1788 putpkt ("qfThreadInfo");
1789 bufp = buf;
1790 getpkt (bufp, (rs->remote_packet_size), 0);
1791 if (bufp[0] != '\0') /* q packet recognized */
1792 {
1793 while (*bufp++ == 'm') /* reply contains one or more TID */
1794 {
1795 do
1796 {
1797 tid = strtol (bufp, &bufp, 16);
1798 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1799 add_thread (pid_to_ptid (tid));
1800 }
1801 while (*bufp++ == ','); /* comma-separated list */
1802 putpkt ("qsThreadInfo");
1803 bufp = buf;
1804 getpkt (bufp, (rs->remote_packet_size), 0);
1805 }
1806 return; /* done */
1807 }
1808 }
1809
1810 /* Else fall back to old method based on jmetzler protocol. */
1811 use_threadinfo_query = 0;
1812 remote_find_new_threads ();
1813 return;
1814 }
1815
1816 /*
1817 * Collect a descriptive string about the given thread.
1818 * The target may say anything it wants to about the thread
1819 * (typically info about its blocked / runnable state, name, etc.).
1820 * This string will appear in the info threads display.
1821 *
1822 * Optional: targets are not required to implement this function.
1823 */
1824
1825 static char *
1826 remote_threads_extra_info (struct thread_info *tp)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829 int result;
1830 int set;
1831 threadref id;
1832 struct gdb_ext_thread_info threadinfo;
1833 static char display_buf[100]; /* arbitrary... */
1834 char *bufp = alloca (rs->remote_packet_size);
1835 int n = 0; /* position in display_buf */
1836
1837 if (remote_desc == 0) /* paranoia */
1838 internal_error (__FILE__, __LINE__,
1839 "remote_threads_extra_info");
1840
1841 if (use_threadextra_query)
1842 {
1843 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1844 putpkt (bufp);
1845 getpkt (bufp, (rs->remote_packet_size), 0);
1846 if (bufp[0] != 0)
1847 {
1848 n = min (strlen (bufp) / 2, sizeof (display_buf));
1849 result = hex2bin (bufp, display_buf, n);
1850 display_buf [result] = '\0';
1851 return display_buf;
1852 }
1853 }
1854
1855 /* If the above query fails, fall back to the old method. */
1856 use_threadextra_query = 0;
1857 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1858 | TAG_MOREDISPLAY | TAG_DISPLAY;
1859 int_to_threadref (&id, PIDGET (tp->ptid));
1860 if (remote_get_threadinfo (&id, set, &threadinfo))
1861 if (threadinfo.active)
1862 {
1863 if (*threadinfo.shortname)
1864 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1865 if (*threadinfo.display)
1866 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1867 if (*threadinfo.more_display)
1868 n += sprintf(&display_buf[n], " Priority: %s",
1869 threadinfo.more_display);
1870
1871 if (n > 0)
1872 {
1873 /* for purely cosmetic reasons, clear up trailing commas */
1874 if (',' == display_buf[n-1])
1875 display_buf[n-1] = ' ';
1876 return display_buf;
1877 }
1878 }
1879 return NULL;
1880 }
1881
1882 \f
1883
1884 /* Restart the remote side; this is an extended protocol operation. */
1885
1886 static void
1887 extended_remote_restart (void)
1888 {
1889 struct remote_state *rs = get_remote_state ();
1890 char *buf = alloca (rs->remote_packet_size);
1891
1892 /* Send the restart command; for reasons I don't understand the
1893 remote side really expects a number after the "R". */
1894 buf[0] = 'R';
1895 sprintf (&buf[1], "%x", 0);
1896 putpkt (buf);
1897
1898 /* Now query for status so this looks just like we restarted
1899 gdbserver from scratch. */
1900 putpkt ("?");
1901 getpkt (buf, (rs->remote_packet_size), 0);
1902 }
1903 \f
1904 /* Clean up connection to a remote debugger. */
1905
1906 /* ARGSUSED */
1907 static void
1908 remote_close (int quitting)
1909 {
1910 if (remote_desc)
1911 serial_close (remote_desc);
1912 remote_desc = NULL;
1913 }
1914
1915 /* Query the remote side for the text, data and bss offsets. */
1916
1917 static void
1918 get_offsets (void)
1919 {
1920 struct remote_state *rs = get_remote_state ();
1921 char *buf = alloca (rs->remote_packet_size);
1922 char *ptr;
1923 int lose;
1924 CORE_ADDR text_addr, data_addr, bss_addr;
1925 struct section_offsets *offs;
1926
1927 putpkt ("qOffsets");
1928
1929 getpkt (buf, (rs->remote_packet_size), 0);
1930
1931 if (buf[0] == '\000')
1932 return; /* Return silently. Stub doesn't support
1933 this command. */
1934 if (buf[0] == 'E')
1935 {
1936 warning ("Remote failure reply: %s", buf);
1937 return;
1938 }
1939
1940 /* Pick up each field in turn. This used to be done with scanf, but
1941 scanf will make trouble if CORE_ADDR size doesn't match
1942 conversion directives correctly. The following code will work
1943 with any size of CORE_ADDR. */
1944 text_addr = data_addr = bss_addr = 0;
1945 ptr = buf;
1946 lose = 0;
1947
1948 if (strncmp (ptr, "Text=", 5) == 0)
1949 {
1950 ptr += 5;
1951 /* Don't use strtol, could lose on big values. */
1952 while (*ptr && *ptr != ';')
1953 text_addr = (text_addr << 4) + fromhex (*ptr++);
1954 }
1955 else
1956 lose = 1;
1957
1958 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1959 {
1960 ptr += 6;
1961 while (*ptr && *ptr != ';')
1962 data_addr = (data_addr << 4) + fromhex (*ptr++);
1963 }
1964 else
1965 lose = 1;
1966
1967 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1968 {
1969 ptr += 5;
1970 while (*ptr && *ptr != ';')
1971 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1972 }
1973 else
1974 lose = 1;
1975
1976 if (lose)
1977 error ("Malformed response to offset query, %s", buf);
1978
1979 if (symfile_objfile == NULL)
1980 return;
1981
1982 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1983 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1984
1985 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1986
1987 /* This is a temporary kludge to force data and bss to use the same offsets
1988 because that's what nlmconv does now. The real solution requires changes
1989 to the stub and remote.c that I don't have time to do right now. */
1990
1991 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1992 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1993
1994 objfile_relocate (symfile_objfile, offs);
1995 }
1996
1997 /*
1998 * Cisco version of section offsets:
1999 *
2000 * Instead of having GDB query the target for the section offsets,
2001 * Cisco lets the target volunteer the information! It's also in
2002 * a different format, so here are the functions that will decode
2003 * a section offset packet from a Cisco target.
2004 */
2005
2006 /*
2007 * Function: remote_cisco_section_offsets
2008 *
2009 * Returns: zero for success, non-zero for failure
2010 */
2011
2012 static int
2013 remote_cisco_section_offsets (bfd_vma text_addr,
2014 bfd_vma data_addr,
2015 bfd_vma bss_addr,
2016 bfd_signed_vma *text_offs,
2017 bfd_signed_vma *data_offs,
2018 bfd_signed_vma *bss_offs)
2019 {
2020 bfd_vma text_base, data_base, bss_base;
2021 struct minimal_symbol *start;
2022 asection *sect;
2023 bfd *abfd;
2024 int len;
2025
2026 if (symfile_objfile == NULL)
2027 return -1; /* no can do nothin' */
2028
2029 start = lookup_minimal_symbol ("_start", NULL, NULL);
2030 if (start == NULL)
2031 return -1; /* Can't find "_start" symbol */
2032
2033 data_base = bss_base = 0;
2034 text_base = SYMBOL_VALUE_ADDRESS (start);
2035
2036 abfd = symfile_objfile->obfd;
2037 for (sect = abfd->sections;
2038 sect != 0;
2039 sect = sect->next)
2040 {
2041 const char *p = bfd_get_section_name (abfd, sect);
2042 len = strlen (p);
2043 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
2044 if (data_base == 0 ||
2045 data_base > bfd_get_section_vma (abfd, sect))
2046 data_base = bfd_get_section_vma (abfd, sect);
2047 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
2048 if (bss_base == 0 ||
2049 bss_base > bfd_get_section_vma (abfd, sect))
2050 bss_base = bfd_get_section_vma (abfd, sect);
2051 }
2052 *text_offs = text_addr - text_base;
2053 *data_offs = data_addr - data_base;
2054 *bss_offs = bss_addr - bss_base;
2055 if (remote_debug)
2056 {
2057 char tmp[128];
2058
2059 sprintf (tmp, "VMA: text = 0x");
2060 sprintf_vma (tmp + strlen (tmp), text_addr);
2061 sprintf (tmp + strlen (tmp), " data = 0x");
2062 sprintf_vma (tmp + strlen (tmp), data_addr);
2063 sprintf (tmp + strlen (tmp), " bss = 0x");
2064 sprintf_vma (tmp + strlen (tmp), bss_addr);
2065 fprintf_filtered (gdb_stdlog, tmp);
2066 fprintf_filtered (gdb_stdlog,
2067 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
2068 paddr_nz (*text_offs),
2069 paddr_nz (*data_offs),
2070 paddr_nz (*bss_offs));
2071 }
2072
2073 return 0;
2074 }
2075
2076 /*
2077 * Function: remote_cisco_objfile_relocate
2078 *
2079 * Relocate the symbol file for a remote target.
2080 */
2081
2082 void
2083 remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
2084 bfd_signed_vma bss_off)
2085 {
2086 struct section_offsets *offs;
2087
2088 if (text_off != 0 || data_off != 0 || bss_off != 0)
2089 {
2090 /* FIXME: This code assumes gdb-stabs.h is being used; it's
2091 broken for xcoff, dwarf, sdb-coff, etc. But there is no
2092 simple canonical representation for this stuff. */
2093
2094 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
2095 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
2096
2097 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
2098 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
2099 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
2100
2101 /* First call the standard objfile_relocate. */
2102 objfile_relocate (symfile_objfile, offs);
2103
2104 /* Now we need to fix up the section entries already attached to
2105 the exec target. These entries will control memory transfers
2106 from the exec file. */
2107
2108 exec_set_section_offsets (text_off, data_off, bss_off);
2109 }
2110 }
2111
2112 /* Stub for catch_errors. */
2113
2114 static int
2115 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2116 {
2117 start_remote (); /* Initialize gdb process mechanisms */
2118 /* NOTE: Return something >=0. A -ve value is reserved for
2119 catch_exceptions. */
2120 return 1;
2121 }
2122
2123 static int
2124 remote_start_remote (struct ui_out *uiout, void *dummy)
2125 {
2126 immediate_quit++; /* Allow user to interrupt it */
2127
2128 /* Ack any packet which the remote side has already sent. */
2129 serial_write (remote_desc, "+", 1);
2130
2131 /* Let the stub know that we want it to return the thread. */
2132 set_thread (-1, 0);
2133
2134 inferior_ptid = remote_current_thread (inferior_ptid);
2135
2136 get_offsets (); /* Get text, data & bss offsets */
2137
2138 putpkt ("?"); /* initiate a query from remote machine */
2139 immediate_quit--;
2140
2141 /* NOTE: See comment above in remote_start_remote_dummy(). This
2142 function returns something >=0. */
2143 return remote_start_remote_dummy (uiout, dummy);
2144 }
2145
2146 /* Open a connection to a remote debugger.
2147 NAME is the filename used for communication. */
2148
2149 static void
2150 remote_open (char *name, int from_tty)
2151 {
2152 remote_open_1 (name, from_tty, &remote_ops, 0);
2153 }
2154
2155 /* Just like remote_open, but with asynchronous support. */
2156 static void
2157 remote_async_open (char *name, int from_tty)
2158 {
2159 remote_async_open_1 (name, from_tty, &remote_async_ops, 0);
2160 }
2161
2162 /* Open a connection to a remote debugger using the extended
2163 remote gdb protocol. NAME is the filename used for communication. */
2164
2165 static void
2166 extended_remote_open (char *name, int from_tty)
2167 {
2168 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */ );
2169 }
2170
2171 /* Just like extended_remote_open, but with asynchronous support. */
2172 static void
2173 extended_remote_async_open (char *name, int from_tty)
2174 {
2175 remote_async_open_1 (name, from_tty, &extended_async_remote_ops, 1 /*extended_p */ );
2176 }
2177
2178 /* Generic code for opening a connection to a remote target. */
2179
2180 static void
2181 init_all_packet_configs (void)
2182 {
2183 int i;
2184 update_packet_config (&remote_protocol_e);
2185 update_packet_config (&remote_protocol_E);
2186 update_packet_config (&remote_protocol_P);
2187 update_packet_config (&remote_protocol_qSymbol);
2188 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2189 update_packet_config (&remote_protocol_Z[i]);
2190 /* Force remote_write_bytes to check whether target supports binary
2191 downloading. */
2192 update_packet_config (&remote_protocol_binary_download);
2193 }
2194
2195 /* Symbol look-up. */
2196
2197 static void
2198 remote_check_symbols (struct objfile *objfile)
2199 {
2200 struct remote_state *rs = get_remote_state ();
2201 char *msg, *reply, *tmp;
2202 struct minimal_symbol *sym;
2203 int end;
2204
2205 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2206 return;
2207
2208 msg = alloca (rs->remote_packet_size);
2209 reply = alloca (rs->remote_packet_size);
2210
2211 /* Invite target to request symbol lookups. */
2212
2213 putpkt ("qSymbol::");
2214 getpkt (reply, (rs->remote_packet_size), 0);
2215 packet_ok (reply, &remote_protocol_qSymbol);
2216
2217 while (strncmp (reply, "qSymbol:", 8) == 0)
2218 {
2219 tmp = &reply[8];
2220 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2221 msg[end] = '\0';
2222 sym = lookup_minimal_symbol (msg, NULL, NULL);
2223 if (sym == NULL)
2224 sprintf (msg, "qSymbol::%s", &reply[8]);
2225 else
2226 sprintf (msg, "qSymbol:%s:%s",
2227 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2228 &reply[8]);
2229 putpkt (msg);
2230 getpkt (reply, (rs->remote_packet_size), 0);
2231 }
2232 }
2233
2234 static struct serial *
2235 remote_serial_open (char *name)
2236 {
2237 static int udp_warning = 0;
2238
2239 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2240 of in ser-tcp.c, because it is the remote protocol assuming that the
2241 serial connection is reliable and not the serial connection promising
2242 to be. */
2243 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2244 {
2245 warning ("The remote protocol may be unreliable over UDP.");
2246 warning ("Some events may be lost, rendering further debugging "
2247 "impossible.");
2248 udp_warning = 1;
2249 }
2250
2251 return serial_open (name);
2252 }
2253
2254 static void
2255 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2256 int extended_p)
2257 {
2258 int ex;
2259 struct remote_state *rs = get_remote_state ();
2260 if (name == 0)
2261 error ("To open a remote debug connection, you need to specify what\n"
2262 "serial device is attached to the remote system\n"
2263 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2264
2265 /* See FIXME above */
2266 wait_forever_enabled_p = 1;
2267
2268 target_preopen (from_tty);
2269
2270 unpush_target (target);
2271
2272 remote_desc = remote_serial_open (name);
2273 if (!remote_desc)
2274 perror_with_name (name);
2275
2276 if (baud_rate != -1)
2277 {
2278 if (serial_setbaudrate (remote_desc, baud_rate))
2279 {
2280 serial_close (remote_desc);
2281 perror_with_name (name);
2282 }
2283 }
2284
2285 serial_raw (remote_desc);
2286
2287 /* If there is something sitting in the buffer we might take it as a
2288 response to a command, which would be bad. */
2289 serial_flush_input (remote_desc);
2290
2291 if (from_tty)
2292 {
2293 puts_filtered ("Remote debugging using ");
2294 puts_filtered (name);
2295 puts_filtered ("\n");
2296 }
2297 push_target (target); /* Switch to using remote target now */
2298
2299 init_all_packet_configs ();
2300
2301 general_thread = -2;
2302 continue_thread = -2;
2303
2304 /* Probe for ability to use "ThreadInfo" query, as required. */
2305 use_threadinfo_query = 1;
2306 use_threadextra_query = 1;
2307
2308 /* Without this, some commands which require an active target (such
2309 as kill) won't work. This variable serves (at least) double duty
2310 as both the pid of the target process (if it has such), and as a
2311 flag indicating that a target is active. These functions should
2312 be split out into seperate variables, especially since GDB will
2313 someday have a notion of debugging several processes. */
2314
2315 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2316 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2317 /* First delete any symbols previously loaded from shared libraries. */
2318 no_shared_libraries (NULL, 0);
2319 #endif
2320
2321 /* Start the remote connection. If error() or QUIT, discard this
2322 target (we'd otherwise be in an inconsistent state) and then
2323 propogate the error on up the exception chain. This ensures that
2324 the caller doesn't stumble along blindly assuming that the
2325 function succeeded. The CLI doesn't have this problem but other
2326 UI's, such as MI do.
2327
2328 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2329 this function should return an error indication letting the
2330 caller restore the previous state. Unfortunatly the command
2331 ``target remote'' is directly wired to this function making that
2332 impossible. On a positive note, the CLI side of this problem has
2333 been fixed - the function set_cmd_context() makes it possible for
2334 all the ``target ....'' commands to share a common callback
2335 function. See cli-dump.c. */
2336 ex = catch_exceptions (uiout,
2337 remote_start_remote, NULL,
2338 "Couldn't establish connection to remote"
2339 " target\n",
2340 RETURN_MASK_ALL);
2341 if (ex < 0)
2342 {
2343 pop_target ();
2344 throw_exception (ex);
2345 }
2346
2347 if (extended_p)
2348 {
2349 /* Tell the remote that we are using the extended protocol. */
2350 char *buf = alloca (rs->remote_packet_size);
2351 putpkt ("!");
2352 getpkt (buf, (rs->remote_packet_size), 0);
2353 }
2354 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2355 /* FIXME: need a master target_open vector from which all
2356 remote_opens can be called, so that stuff like this can
2357 go there. Failing that, the following code must be copied
2358 to the open function for any remote target that wants to
2359 support svr4 shared libraries. */
2360
2361 /* Set up to detect and load shared libraries. */
2362 if (exec_bfd) /* No use without an exec file. */
2363 {
2364 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2365 remote_check_symbols (symfile_objfile);
2366 }
2367 #endif
2368 }
2369
2370 /* Just like remote_open but with asynchronous support. */
2371 static void
2372 remote_async_open_1 (char *name, int from_tty, struct target_ops *target,
2373 int extended_p)
2374 {
2375 int ex;
2376 struct remote_state *rs = get_remote_state ();
2377 if (name == 0)
2378 error ("To open a remote debug connection, you need to specify what\n"
2379 "serial device is attached to the remote system\n"
2380 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2381
2382 target_preopen (from_tty);
2383
2384 unpush_target (target);
2385
2386 remote_desc = remote_serial_open (name);
2387 if (!remote_desc)
2388 perror_with_name (name);
2389
2390 if (baud_rate != -1)
2391 {
2392 if (serial_setbaudrate (remote_desc, baud_rate))
2393 {
2394 serial_close (remote_desc);
2395 perror_with_name (name);
2396 }
2397 }
2398
2399 serial_raw (remote_desc);
2400
2401 /* If there is something sitting in the buffer we might take it as a
2402 response to a command, which would be bad. */
2403 serial_flush_input (remote_desc);
2404
2405 if (from_tty)
2406 {
2407 puts_filtered ("Remote debugging using ");
2408 puts_filtered (name);
2409 puts_filtered ("\n");
2410 }
2411
2412 push_target (target); /* Switch to using remote target now */
2413
2414 init_all_packet_configs ();
2415
2416 general_thread = -2;
2417 continue_thread = -2;
2418
2419 /* Probe for ability to use "ThreadInfo" query, as required. */
2420 use_threadinfo_query = 1;
2421 use_threadextra_query = 1;
2422
2423 /* Without this, some commands which require an active target (such
2424 as kill) won't work. This variable serves (at least) double duty
2425 as both the pid of the target process (if it has such), and as a
2426 flag indicating that a target is active. These functions should
2427 be split out into seperate variables, especially since GDB will
2428 someday have a notion of debugging several processes. */
2429 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2430
2431 /* With this target we start out by owning the terminal. */
2432 remote_async_terminal_ours_p = 1;
2433
2434 /* FIXME: cagney/1999-09-23: During the initial connection it is
2435 assumed that the target is already ready and able to respond to
2436 requests. Unfortunately remote_start_remote() eventually calls
2437 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2438 around this. Eventually a mechanism that allows
2439 wait_for_inferior() to expect/get timeouts will be
2440 implemented. */
2441 wait_forever_enabled_p = 0;
2442
2443 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2444 /* First delete any symbols previously loaded from shared libraries. */
2445 no_shared_libraries (NULL, 0);
2446 #endif
2447
2448 /* Start the remote connection; if error, discard this target. See
2449 the comments in remote_open_1() for further details such as the
2450 need to re-throw the exception. */
2451 ex = catch_exceptions (uiout,
2452 remote_start_remote, NULL,
2453 "Couldn't establish connection to remote"
2454 " target\n",
2455 RETURN_MASK_ALL);
2456 if (ex < 0)
2457 {
2458 pop_target ();
2459 wait_forever_enabled_p = 1;
2460 throw_exception (ex);
2461 }
2462
2463 wait_forever_enabled_p = 1;
2464
2465 if (extended_p)
2466 {
2467 /* Tell the remote that we are using the extended protocol. */
2468 char *buf = alloca (rs->remote_packet_size);
2469 putpkt ("!");
2470 getpkt (buf, (rs->remote_packet_size), 0);
2471 }
2472 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2473 /* FIXME: need a master target_open vector from which all
2474 remote_opens can be called, so that stuff like this can
2475 go there. Failing that, the following code must be copied
2476 to the open function for any remote target that wants to
2477 support svr4 shared libraries. */
2478
2479 /* Set up to detect and load shared libraries. */
2480 if (exec_bfd) /* No use without an exec file. */
2481 {
2482 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2483 remote_check_symbols (symfile_objfile);
2484 }
2485 #endif
2486 }
2487
2488 /* This takes a program previously attached to and detaches it. After
2489 this is done, GDB can be used to debug some other program. We
2490 better not have left any breakpoints in the target program or it'll
2491 die when it hits one. */
2492
2493 static void
2494 remote_detach (char *args, int from_tty)
2495 {
2496 struct remote_state *rs = get_remote_state ();
2497 char *buf = alloca (rs->remote_packet_size);
2498
2499 if (args)
2500 error ("Argument given to \"detach\" when remotely debugging.");
2501
2502 /* Tell the remote target to detach. */
2503 strcpy (buf, "D");
2504 remote_send (buf, (rs->remote_packet_size));
2505
2506 target_mourn_inferior ();
2507 if (from_tty)
2508 puts_filtered ("Ending remote debugging.\n");
2509
2510 }
2511
2512 /* Same as remote_detach, but with async support. */
2513 static void
2514 remote_async_detach (char *args, int from_tty)
2515 {
2516 struct remote_state *rs = get_remote_state ();
2517 char *buf = alloca (rs->remote_packet_size);
2518
2519 if (args)
2520 error ("Argument given to \"detach\" when remotely debugging.");
2521
2522 /* Tell the remote target to detach. */
2523 strcpy (buf, "D");
2524 remote_send (buf, (rs->remote_packet_size));
2525
2526 /* Unregister the file descriptor from the event loop. */
2527 if (target_is_async_p ())
2528 serial_async (remote_desc, NULL, 0);
2529
2530 target_mourn_inferior ();
2531 if (from_tty)
2532 puts_filtered ("Ending remote debugging.\n");
2533 }
2534
2535 /* Convert hex digit A to a number. */
2536
2537 static int
2538 fromhex (int a)
2539 {
2540 if (a >= '0' && a <= '9')
2541 return a - '0';
2542 else if (a >= 'a' && a <= 'f')
2543 return a - 'a' + 10;
2544 else if (a >= 'A' && a <= 'F')
2545 return a - 'A' + 10;
2546 else
2547 error ("Reply contains invalid hex digit %d", a);
2548 }
2549
2550 static int
2551 hex2bin (const char *hex, char *bin, int count)
2552 {
2553 int i;
2554
2555 for (i = 0; i < count; i++)
2556 {
2557 if (hex[0] == 0 || hex[1] == 0)
2558 {
2559 /* Hex string is short, or of uneven length.
2560 Return the count that has been converted so far. */
2561 return i;
2562 }
2563 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2564 hex += 2;
2565 }
2566 return i;
2567 }
2568
2569 /* Convert number NIB to a hex digit. */
2570
2571 static int
2572 tohex (int nib)
2573 {
2574 if (nib < 10)
2575 return '0' + nib;
2576 else
2577 return 'a' + nib - 10;
2578 }
2579
2580 static int
2581 bin2hex (const char *bin, char *hex, int count)
2582 {
2583 int i;
2584 /* May use a length, or a nul-terminated string as input. */
2585 if (count == 0)
2586 count = strlen (bin);
2587
2588 for (i = 0; i < count; i++)
2589 {
2590 *hex++ = tohex ((*bin >> 4) & 0xf);
2591 *hex++ = tohex (*bin++ & 0xf);
2592 }
2593 *hex = 0;
2594 return i;
2595 }
2596 \f
2597 /* Tell the remote machine to resume. */
2598
2599 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2600
2601 static int last_sent_step;
2602
2603 static void
2604 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2605 {
2606 struct remote_state *rs = get_remote_state ();
2607 char *buf = alloca (rs->remote_packet_size);
2608 int pid = PIDGET (ptid);
2609 char *p;
2610
2611 if (pid == -1)
2612 set_thread (0, 0); /* run any thread */
2613 else
2614 set_thread (pid, 0); /* run this thread */
2615
2616 last_sent_signal = siggnal;
2617 last_sent_step = step;
2618
2619 /* A hook for when we need to do something at the last moment before
2620 resumption. */
2621 if (target_resume_hook)
2622 (*target_resume_hook) ();
2623
2624
2625 /* The s/S/c/C packets do not return status. So if the target does
2626 not support the S or C packets, the debug agent returns an empty
2627 string which is detected in remote_wait(). This protocol defect
2628 is fixed in the e/E packets. */
2629
2630 if (step && step_range_end)
2631 {
2632 /* If the target does not support the 'E' packet, we try the 'S'
2633 packet. Ideally we would fall back to the 'e' packet if that
2634 too is not supported. But that would require another copy of
2635 the code to issue the 'e' packet (and fall back to 's' if not
2636 supported) in remote_wait(). */
2637
2638 if (siggnal != TARGET_SIGNAL_0)
2639 {
2640 if (remote_protocol_E.support != PACKET_DISABLE)
2641 {
2642 p = buf;
2643 *p++ = 'E';
2644 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2645 *p++ = tohex (((int) siggnal) & 0xf);
2646 *p++ = ',';
2647 p += hexnumstr (p, (ULONGEST) step_range_start);
2648 *p++ = ',';
2649 p += hexnumstr (p, (ULONGEST) step_range_end);
2650 *p++ = 0;
2651
2652 putpkt (buf);
2653 getpkt (buf, (rs->remote_packet_size), 0);
2654
2655 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2656 return;
2657 }
2658 }
2659 else
2660 {
2661 if (remote_protocol_e.support != PACKET_DISABLE)
2662 {
2663 p = buf;
2664 *p++ = 'e';
2665 p += hexnumstr (p, (ULONGEST) step_range_start);
2666 *p++ = ',';
2667 p += hexnumstr (p, (ULONGEST) step_range_end);
2668 *p++ = 0;
2669
2670 putpkt (buf);
2671 getpkt (buf, (rs->remote_packet_size), 0);
2672
2673 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2674 return;
2675 }
2676 }
2677 }
2678
2679 if (siggnal != TARGET_SIGNAL_0)
2680 {
2681 buf[0] = step ? 'S' : 'C';
2682 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2683 buf[2] = tohex (((int) siggnal) & 0xf);
2684 buf[3] = '\0';
2685 }
2686 else
2687 strcpy (buf, step ? "s" : "c");
2688
2689 putpkt (buf);
2690 }
2691
2692 /* Same as remote_resume, but with async support. */
2693 static void
2694 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2695 {
2696 struct remote_state *rs = get_remote_state ();
2697 char *buf = alloca (rs->remote_packet_size);
2698 int pid = PIDGET (ptid);
2699 char *p;
2700
2701 if (pid == -1)
2702 set_thread (0, 0); /* run any thread */
2703 else
2704 set_thread (pid, 0); /* run this thread */
2705
2706 last_sent_signal = siggnal;
2707 last_sent_step = step;
2708
2709 /* A hook for when we need to do something at the last moment before
2710 resumption. */
2711 if (target_resume_hook)
2712 (*target_resume_hook) ();
2713
2714 /* The s/S/c/C packets do not return status. So if the target does
2715 not support the S or C packets, the debug agent returns an empty
2716 string which is detected in remote_wait(). This protocol defect
2717 is fixed in the e/E packets. */
2718
2719 if (step && step_range_end)
2720 {
2721 /* If the target does not support the 'E' packet, we try the 'S'
2722 packet. Ideally we would fall back to the 'e' packet if that
2723 too is not supported. But that would require another copy of
2724 the code to issue the 'e' packet (and fall back to 's' if not
2725 supported) in remote_wait(). */
2726
2727 if (siggnal != TARGET_SIGNAL_0)
2728 {
2729 if (remote_protocol_E.support != PACKET_DISABLE)
2730 {
2731 p = buf;
2732 *p++ = 'E';
2733 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2734 *p++ = tohex (((int) siggnal) & 0xf);
2735 *p++ = ',';
2736 p += hexnumstr (p, (ULONGEST) step_range_start);
2737 *p++ = ',';
2738 p += hexnumstr (p, (ULONGEST) step_range_end);
2739 *p++ = 0;
2740
2741 putpkt (buf);
2742 getpkt (buf, (rs->remote_packet_size), 0);
2743
2744 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2745 goto register_event_loop;
2746 }
2747 }
2748 else
2749 {
2750 if (remote_protocol_e.support != PACKET_DISABLE)
2751 {
2752 p = buf;
2753 *p++ = 'e';
2754 p += hexnumstr (p, (ULONGEST) step_range_start);
2755 *p++ = ',';
2756 p += hexnumstr (p, (ULONGEST) step_range_end);
2757 *p++ = 0;
2758
2759 putpkt (buf);
2760 getpkt (buf, (rs->remote_packet_size), 0);
2761
2762 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2763 goto register_event_loop;
2764 }
2765 }
2766 }
2767
2768 if (siggnal != TARGET_SIGNAL_0)
2769 {
2770 buf[0] = step ? 'S' : 'C';
2771 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2772 buf[2] = tohex ((int) siggnal & 0xf);
2773 buf[3] = '\0';
2774 }
2775 else
2776 strcpy (buf, step ? "s" : "c");
2777
2778 putpkt (buf);
2779
2780 register_event_loop:
2781 /* We are about to start executing the inferior, let's register it
2782 with the event loop. NOTE: this is the one place where all the
2783 execution commands end up. We could alternatively do this in each
2784 of the execution commands in infcmd.c.*/
2785 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2786 into infcmd.c in order to allow inferior function calls to work
2787 NOT asynchronously. */
2788 if (event_loop_p && target_can_async_p ())
2789 target_async (inferior_event_handler, 0);
2790 /* Tell the world that the target is now executing. */
2791 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2792 this? Instead, should the client of target just assume (for
2793 async targets) that the target is going to start executing? Is
2794 this information already found in the continuation block? */
2795 if (target_is_async_p ())
2796 target_executing = 1;
2797 }
2798 \f
2799
2800 /* Set up the signal handler for SIGINT, while the target is
2801 executing, ovewriting the 'regular' SIGINT signal handler. */
2802 static void
2803 initialize_sigint_signal_handler (void)
2804 {
2805 sigint_remote_token =
2806 create_async_signal_handler (async_remote_interrupt, NULL);
2807 signal (SIGINT, handle_remote_sigint);
2808 }
2809
2810 /* Signal handler for SIGINT, while the target is executing. */
2811 static void
2812 handle_remote_sigint (int sig)
2813 {
2814 signal (sig, handle_remote_sigint_twice);
2815 sigint_remote_twice_token =
2816 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2817 mark_async_signal_handler_wrapper (sigint_remote_token);
2818 }
2819
2820 /* Signal handler for SIGINT, installed after SIGINT has already been
2821 sent once. It will take effect the second time that the user sends
2822 a ^C. */
2823 static void
2824 handle_remote_sigint_twice (int sig)
2825 {
2826 signal (sig, handle_sigint);
2827 sigint_remote_twice_token =
2828 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2829 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2830 }
2831
2832 /* Perform the real interruption of the target execution, in response
2833 to a ^C. */
2834 static void
2835 async_remote_interrupt (gdb_client_data arg)
2836 {
2837 if (remote_debug)
2838 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2839
2840 target_stop ();
2841 }
2842
2843 /* Perform interrupt, if the first attempt did not succeed. Just give
2844 up on the target alltogether. */
2845 void
2846 async_remote_interrupt_twice (gdb_client_data arg)
2847 {
2848 if (remote_debug)
2849 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2850 /* Do something only if the target was not killed by the previous
2851 cntl-C. */
2852 if (target_executing)
2853 {
2854 interrupt_query ();
2855 signal (SIGINT, handle_remote_sigint);
2856 }
2857 }
2858
2859 /* Reinstall the usual SIGINT handlers, after the target has
2860 stopped. */
2861 static void
2862 cleanup_sigint_signal_handler (void *dummy)
2863 {
2864 signal (SIGINT, handle_sigint);
2865 if (sigint_remote_twice_token)
2866 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2867 if (sigint_remote_token)
2868 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2869 }
2870
2871 /* Send ^C to target to halt it. Target will respond, and send us a
2872 packet. */
2873 static void (*ofunc) (int);
2874
2875 /* The command line interface's stop routine. This function is installed
2876 as a signal handler for SIGINT. The first time a user requests a
2877 stop, we call remote_stop to send a break or ^C. If there is no
2878 response from the target (it didn't stop when the user requested it),
2879 we ask the user if he'd like to detach from the target. */
2880 static void
2881 remote_interrupt (int signo)
2882 {
2883 /* If this doesn't work, try more severe steps. */
2884 signal (signo, remote_interrupt_twice);
2885
2886 if (remote_debug)
2887 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2888
2889 target_stop ();
2890 }
2891
2892 /* The user typed ^C twice. */
2893
2894 static void
2895 remote_interrupt_twice (int signo)
2896 {
2897 signal (signo, ofunc);
2898 interrupt_query ();
2899 signal (signo, remote_interrupt);
2900 }
2901
2902 /* This is the generic stop called via the target vector. When a target
2903 interrupt is requested, either by the command line or the GUI, we
2904 will eventually end up here. */
2905 static void
2906 remote_stop (void)
2907 {
2908 /* Send a break or a ^C, depending on user preference. */
2909 if (remote_debug)
2910 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2911
2912 if (remote_break)
2913 serial_send_break (remote_desc);
2914 else
2915 serial_write (remote_desc, "\003", 1);
2916 }
2917
2918 /* Ask the user what to do when an interrupt is received. */
2919
2920 static void
2921 interrupt_query (void)
2922 {
2923 target_terminal_ours ();
2924
2925 if (query ("Interrupted while waiting for the program.\n\
2926 Give up (and stop debugging it)? "))
2927 {
2928 target_mourn_inferior ();
2929 throw_exception (RETURN_QUIT);
2930 }
2931
2932 target_terminal_inferior ();
2933 }
2934
2935 /* Enable/disable target terminal ownership. Most targets can use
2936 terminal groups to control terminal ownership. Remote targets are
2937 different in that explicit transfer of ownership to/from GDB/target
2938 is required. */
2939
2940 static void
2941 remote_async_terminal_inferior (void)
2942 {
2943 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2944 sync_execution here. This function should only be called when
2945 GDB is resuming the inferior in the forground. A background
2946 resume (``run&'') should leave GDB in control of the terminal and
2947 consequently should not call this code. */
2948 if (!sync_execution)
2949 return;
2950 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2951 calls target_terminal_*() idenpotent. The event-loop GDB talking
2952 to an asynchronous target with a synchronous command calls this
2953 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2954 stops trying to transfer the terminal to the target when it
2955 shouldn't this guard can go away. */
2956 if (!remote_async_terminal_ours_p)
2957 return;
2958 delete_file_handler (input_fd);
2959 remote_async_terminal_ours_p = 0;
2960 initialize_sigint_signal_handler ();
2961 /* NOTE: At this point we could also register our selves as the
2962 recipient of all input. Any characters typed could then be
2963 passed on down to the target. */
2964 }
2965
2966 static void
2967 remote_async_terminal_ours (void)
2968 {
2969 /* See FIXME in remote_async_terminal_inferior. */
2970 if (!sync_execution)
2971 return;
2972 /* See FIXME in remote_async_terminal_inferior. */
2973 if (remote_async_terminal_ours_p)
2974 return;
2975 cleanup_sigint_signal_handler (NULL);
2976 add_file_handler (input_fd, stdin_event_handler, 0);
2977 remote_async_terminal_ours_p = 1;
2978 }
2979
2980 /* If nonzero, ignore the next kill. */
2981
2982 int kill_kludge;
2983
2984 void
2985 remote_console_output (char *msg)
2986 {
2987 char *p;
2988
2989 for (p = msg; p[0] && p[1]; p += 2)
2990 {
2991 char tb[2];
2992 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2993 tb[0] = c;
2994 tb[1] = 0;
2995 fputs_unfiltered (tb, gdb_stdtarg);
2996 }
2997 gdb_flush (gdb_stdtarg);
2998 }
2999
3000 /* Wait until the remote machine stops, then return,
3001 storing status in STATUS just as `wait' would.
3002 Returns "pid", which in the case of a multi-threaded
3003 remote OS, is the thread-id. */
3004
3005 static ptid_t
3006 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3007 {
3008 struct remote_state *rs = get_remote_state ();
3009 unsigned char *buf = alloca (rs->remote_packet_size);
3010 int thread_num = -1;
3011
3012 status->kind = TARGET_WAITKIND_EXITED;
3013 status->value.integer = 0;
3014
3015 while (1)
3016 {
3017 unsigned char *p;
3018
3019 ofunc = signal (SIGINT, remote_interrupt);
3020 getpkt (buf, (rs->remote_packet_size), 1);
3021 signal (SIGINT, ofunc);
3022
3023 /* This is a hook for when we need to do something (perhaps the
3024 collection of trace data) every time the target stops. */
3025 if (target_wait_loop_hook)
3026 (*target_wait_loop_hook) ();
3027
3028 switch (buf[0])
3029 {
3030 case 'E': /* Error of some sort */
3031 warning ("Remote failure reply: %s", buf);
3032 continue;
3033 case 'T': /* Status with PC, SP, FP, ... */
3034 {
3035 int i;
3036 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
3037
3038 /* Expedited reply, containing Signal, {regno, reg} repeat */
3039 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3040 ss = signal number
3041 n... = register number
3042 r... = register contents
3043 */
3044 p = &buf[3]; /* after Txx */
3045
3046 while (*p)
3047 {
3048 unsigned char *p1;
3049 char *p_temp;
3050 int fieldsize;
3051
3052 /* Read the ``P'' register number. */
3053 LONGEST pnum = strtol ((const char *) p, &p_temp, 16);
3054 p1 = (unsigned char *) p_temp;
3055
3056 if (p1 == p) /* No register number present here */
3057 {
3058 p1 = (unsigned char *) strchr ((const char *) p, ':');
3059 if (p1 == NULL)
3060 warning ("Malformed packet(a) (missing colon): %s\n\
3061 Packet: '%s'\n",
3062 p, buf);
3063 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
3064 {
3065 p_temp = unpack_varlen_hex (++p1, &thread_num);
3066 record_currthread (thread_num);
3067 p = (unsigned char *) p_temp;
3068 }
3069 }
3070 else
3071 {
3072 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3073 p = p1;
3074
3075 if (*p++ != ':')
3076 warning ("Malformed packet(b) (missing colon): %s\n\
3077 Packet: '%s'\n",
3078 p, buf);
3079
3080 if (reg == NULL)
3081 warning ("Remote sent bad register number %s: %s\n\
3082 Packet: '%s'\n",
3083 phex_nz (pnum, 0), p, buf);
3084
3085 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3086 p += 2 * fieldsize;
3087 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3088 warning ("Remote reply is too short: %s", buf);
3089 supply_register (reg->regnum, regs);
3090 }
3091
3092 if (*p++ != ';')
3093 {
3094 warning ("Remote register badly formatted: %s", buf);
3095 warning (" here: %s", p);
3096 }
3097 }
3098 }
3099 /* fall through */
3100 case 'S': /* Old style status, just signal only */
3101 status->kind = TARGET_WAITKIND_STOPPED;
3102 status->value.sig = (enum target_signal)
3103 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3104
3105 if (buf[3] == 'p')
3106 {
3107 /* Export Cisco kernel mode as a convenience variable
3108 (so that it can be used in the GDB prompt if desired). */
3109
3110 if (cisco_kernel_mode == 1)
3111 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3112 value_from_string ("PDEBUG-"));
3113 cisco_kernel_mode = 0;
3114 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3115 record_currthread (thread_num);
3116 }
3117 else if (buf[3] == 'k')
3118 {
3119 /* Export Cisco kernel mode as a convenience variable
3120 (so that it can be used in the GDB prompt if desired). */
3121
3122 if (cisco_kernel_mode == 1)
3123 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3124 value_from_string ("KDEBUG-"));
3125 cisco_kernel_mode = 1;
3126 }
3127 goto got_status;
3128 case 'N': /* Cisco special: status and offsets */
3129 {
3130 bfd_vma text_addr, data_addr, bss_addr;
3131 bfd_signed_vma text_off, data_off, bss_off;
3132 unsigned char *p1;
3133
3134 status->kind = TARGET_WAITKIND_STOPPED;
3135 status->value.sig = (enum target_signal)
3136 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3137
3138 if (symfile_objfile == NULL)
3139 {
3140 warning ("Relocation packet received with no symbol file. \
3141 Packet Dropped");
3142 goto got_status;
3143 }
3144
3145 /* Relocate object file. Buffer format is NAATT;DD;BB
3146 * where AA is the signal number, TT is the new text
3147 * address, DD * is the new data address, and BB is the
3148 * new bss address. */
3149
3150 p = &buf[3];
3151 text_addr = strtoul (p, (char **) &p1, 16);
3152 if (p1 == p || *p1 != ';')
3153 warning ("Malformed relocation packet: Packet '%s'", buf);
3154 p = p1 + 1;
3155 data_addr = strtoul (p, (char **) &p1, 16);
3156 if (p1 == p || *p1 != ';')
3157 warning ("Malformed relocation packet: Packet '%s'", buf);
3158 p = p1 + 1;
3159 bss_addr = strtoul (p, (char **) &p1, 16);
3160 if (p1 == p)
3161 warning ("Malformed relocation packet: Packet '%s'", buf);
3162
3163 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3164 &text_off, &data_off, &bss_off)
3165 == 0)
3166 if (text_off != 0 || data_off != 0 || bss_off != 0)
3167 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3168
3169 goto got_status;
3170 }
3171 case 'W': /* Target exited */
3172 {
3173 /* The remote process exited. */
3174 status->kind = TARGET_WAITKIND_EXITED;
3175 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3176 goto got_status;
3177 }
3178 case 'X':
3179 status->kind = TARGET_WAITKIND_SIGNALLED;
3180 status->value.sig = (enum target_signal)
3181 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3182 kill_kludge = 1;
3183
3184 goto got_status;
3185 case 'O': /* Console output */
3186 remote_console_output (buf + 1);
3187 continue;
3188 case '\0':
3189 if (last_sent_signal != TARGET_SIGNAL_0)
3190 {
3191 /* Zero length reply means that we tried 'S' or 'C' and
3192 the remote system doesn't support it. */
3193 target_terminal_ours_for_output ();
3194 printf_filtered
3195 ("Can't send signals to this remote system. %s not sent.\n",
3196 target_signal_to_name (last_sent_signal));
3197 last_sent_signal = TARGET_SIGNAL_0;
3198 target_terminal_inferior ();
3199
3200 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3201 putpkt ((char *) buf);
3202 continue;
3203 }
3204 /* else fallthrough */
3205 default:
3206 warning ("Invalid remote reply: %s", buf);
3207 continue;
3208 }
3209 }
3210 got_status:
3211 if (thread_num != -1)
3212 {
3213 return pid_to_ptid (thread_num);
3214 }
3215 return inferior_ptid;
3216 }
3217
3218 /* Async version of remote_wait. */
3219 static ptid_t
3220 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3221 {
3222 struct remote_state *rs = get_remote_state ();
3223 unsigned char *buf = alloca (rs->remote_packet_size);
3224 int thread_num = -1;
3225
3226 status->kind = TARGET_WAITKIND_EXITED;
3227 status->value.integer = 0;
3228
3229 while (1)
3230 {
3231 unsigned char *p;
3232
3233 if (!target_is_async_p ())
3234 ofunc = signal (SIGINT, remote_interrupt);
3235 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3236 _never_ wait for ever -> test on target_is_async_p().
3237 However, before we do that we need to ensure that the caller
3238 knows how to take the target into/out of async mode. */
3239 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3240 if (!target_is_async_p ())
3241 signal (SIGINT, ofunc);
3242
3243 /* This is a hook for when we need to do something (perhaps the
3244 collection of trace data) every time the target stops. */
3245 if (target_wait_loop_hook)
3246 (*target_wait_loop_hook) ();
3247
3248 switch (buf[0])
3249 {
3250 case 'E': /* Error of some sort */
3251 warning ("Remote failure reply: %s", buf);
3252 continue;
3253 case 'T': /* Status with PC, SP, FP, ... */
3254 {
3255 int i;
3256 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
3257
3258 /* Expedited reply, containing Signal, {regno, reg} repeat */
3259 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3260 ss = signal number
3261 n... = register number
3262 r... = register contents
3263 */
3264 p = &buf[3]; /* after Txx */
3265
3266 while (*p)
3267 {
3268 unsigned char *p1;
3269 char *p_temp;
3270 int fieldsize;
3271
3272 /* Read the register number */
3273 long pnum = strtol ((const char *) p, &p_temp, 16);
3274 p1 = (unsigned char *) p_temp;
3275
3276 if (p1 == p) /* No register number present here */
3277 {
3278 p1 = (unsigned char *) strchr ((const char *) p, ':');
3279 if (p1 == NULL)
3280 warning ("Malformed packet(a) (missing colon): %s\n\
3281 Packet: '%s'\n",
3282 p, buf);
3283 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
3284 {
3285 p_temp = unpack_varlen_hex (++p1, &thread_num);
3286 record_currthread (thread_num);
3287 p = (unsigned char *) p_temp;
3288 }
3289 }
3290 else
3291 {
3292 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3293 p = p1;
3294 if (*p++ != ':')
3295 warning ("Malformed packet(b) (missing colon): %s\n\
3296 Packet: '%s'\n",
3297 p, buf);
3298
3299 if (reg == NULL)
3300 warning ("Remote sent bad register number %ld: %s\n\
3301 Packet: '%s'\n",
3302 pnum, p, buf);
3303
3304 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3305 p += 2 * fieldsize;
3306 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3307 warning ("Remote reply is too short: %s", buf);
3308 supply_register (reg->regnum, regs);
3309 }
3310
3311 if (*p++ != ';')
3312 {
3313 warning ("Remote register badly formatted: %s", buf);
3314 warning (" here: %s", p);
3315 }
3316 }
3317 }
3318 /* fall through */
3319 case 'S': /* Old style status, just signal only */
3320 status->kind = TARGET_WAITKIND_STOPPED;
3321 status->value.sig = (enum target_signal)
3322 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3323
3324 if (buf[3] == 'p')
3325 {
3326 /* Export Cisco kernel mode as a convenience variable
3327 (so that it can be used in the GDB prompt if desired). */
3328
3329 if (cisco_kernel_mode == 1)
3330 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3331 value_from_string ("PDEBUG-"));
3332 cisco_kernel_mode = 0;
3333 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3334 record_currthread (thread_num);
3335 }
3336 else if (buf[3] == 'k')
3337 {
3338 /* Export Cisco kernel mode as a convenience variable
3339 (so that it can be used in the GDB prompt if desired). */
3340
3341 if (cisco_kernel_mode == 1)
3342 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3343 value_from_string ("KDEBUG-"));
3344 cisco_kernel_mode = 1;
3345 }
3346 goto got_status;
3347 case 'N': /* Cisco special: status and offsets */
3348 {
3349 bfd_vma text_addr, data_addr, bss_addr;
3350 bfd_signed_vma text_off, data_off, bss_off;
3351 unsigned char *p1;
3352
3353 status->kind = TARGET_WAITKIND_STOPPED;
3354 status->value.sig = (enum target_signal)
3355 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3356
3357 if (symfile_objfile == NULL)
3358 {
3359 warning ("Relocation packet recieved with no symbol file. \
3360 Packet Dropped");
3361 goto got_status;
3362 }
3363
3364 /* Relocate object file. Buffer format is NAATT;DD;BB
3365 * where AA is the signal number, TT is the new text
3366 * address, DD * is the new data address, and BB is the
3367 * new bss address. */
3368
3369 p = &buf[3];
3370 text_addr = strtoul (p, (char **) &p1, 16);
3371 if (p1 == p || *p1 != ';')
3372 warning ("Malformed relocation packet: Packet '%s'", buf);
3373 p = p1 + 1;
3374 data_addr = strtoul (p, (char **) &p1, 16);
3375 if (p1 == p || *p1 != ';')
3376 warning ("Malformed relocation packet: Packet '%s'", buf);
3377 p = p1 + 1;
3378 bss_addr = strtoul (p, (char **) &p1, 16);
3379 if (p1 == p)
3380 warning ("Malformed relocation packet: Packet '%s'", buf);
3381
3382 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3383 &text_off, &data_off, &bss_off)
3384 == 0)
3385 if (text_off != 0 || data_off != 0 || bss_off != 0)
3386 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3387
3388 goto got_status;
3389 }
3390 case 'W': /* Target exited */
3391 {
3392 /* The remote process exited. */
3393 status->kind = TARGET_WAITKIND_EXITED;
3394 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3395 goto got_status;
3396 }
3397 case 'X':
3398 status->kind = TARGET_WAITKIND_SIGNALLED;
3399 status->value.sig = (enum target_signal)
3400 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3401 kill_kludge = 1;
3402
3403 goto got_status;
3404 case 'O': /* Console output */
3405 remote_console_output (buf + 1);
3406 /* Return immediately to the event loop. The event loop will
3407 still be waiting on the inferior afterwards. */
3408 status->kind = TARGET_WAITKIND_IGNORE;
3409 goto got_status;
3410 case '\0':
3411 if (last_sent_signal != TARGET_SIGNAL_0)
3412 {
3413 /* Zero length reply means that we tried 'S' or 'C' and
3414 the remote system doesn't support it. */
3415 target_terminal_ours_for_output ();
3416 printf_filtered
3417 ("Can't send signals to this remote system. %s not sent.\n",
3418 target_signal_to_name (last_sent_signal));
3419 last_sent_signal = TARGET_SIGNAL_0;
3420 target_terminal_inferior ();
3421
3422 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3423 putpkt ((char *) buf);
3424 continue;
3425 }
3426 /* else fallthrough */
3427 default:
3428 warning ("Invalid remote reply: %s", buf);
3429 continue;
3430 }
3431 }
3432 got_status:
3433 if (thread_num != -1)
3434 {
3435 return pid_to_ptid (thread_num);
3436 }
3437 return inferior_ptid;
3438 }
3439
3440 /* Number of bytes of registers this stub implements. */
3441
3442 static int register_bytes_found;
3443
3444 /* Read the remote registers into the block REGS. */
3445 /* Currently we just read all the registers, so we don't use regnum. */
3446
3447 /* ARGSUSED */
3448 static void
3449 remote_fetch_registers (int regnum)
3450 {
3451 struct remote_state *rs = get_remote_state ();
3452 char *buf = alloca (rs->remote_packet_size);
3453 int i;
3454 char *p;
3455 char *regs = alloca (rs->sizeof_g_packet);
3456
3457 set_thread (PIDGET (inferior_ptid), 1);
3458
3459 if (regnum >= 0)
3460 {
3461 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3462 gdb_assert (reg != NULL);
3463 if (!reg->in_g_packet)
3464 internal_error (__FILE__, __LINE__,
3465 "Attempt to fetch a non G-packet register when this "
3466 "remote.c does not support the p-packet.");
3467 }
3468
3469 sprintf (buf, "g");
3470 remote_send (buf, (rs->remote_packet_size));
3471
3472 /* Save the size of the packet sent to us by the target. Its used
3473 as a heuristic when determining the max size of packets that the
3474 target can safely receive. */
3475 if ((rs->actual_register_packet_size) == 0)
3476 (rs->actual_register_packet_size) = strlen (buf);
3477
3478 /* Unimplemented registers read as all bits zero. */
3479 memset (regs, 0, rs->sizeof_g_packet);
3480
3481 /* We can get out of synch in various cases. If the first character
3482 in the buffer is not a hex character, assume that has happened
3483 and try to fetch another packet to read. */
3484 while ((buf[0] < '0' || buf[0] > '9')
3485 && (buf[0] < 'a' || buf[0] > 'f')
3486 && buf[0] != 'x') /* New: unavailable register value */
3487 {
3488 if (remote_debug)
3489 fprintf_unfiltered (gdb_stdlog,
3490 "Bad register packet; fetching a new packet\n");
3491 getpkt (buf, (rs->remote_packet_size), 0);
3492 }
3493
3494 /* Reply describes registers byte by byte, each byte encoded as two
3495 hex characters. Suck them all up, then supply them to the
3496 register cacheing/storage mechanism. */
3497
3498 p = buf;
3499 for (i = 0; i < rs->sizeof_g_packet; i++)
3500 {
3501 if (p[0] == 0)
3502 break;
3503 if (p[1] == 0)
3504 {
3505 warning ("Remote reply is of odd length: %s", buf);
3506 /* Don't change register_bytes_found in this case, and don't
3507 print a second warning. */
3508 goto supply_them;
3509 }
3510 if (p[0] == 'x' && p[1] == 'x')
3511 regs[i] = 0; /* 'x' */
3512 else
3513 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3514 p += 2;
3515 }
3516
3517 if (i != register_bytes_found)
3518 {
3519 register_bytes_found = i;
3520 if (REGISTER_BYTES_OK_P ()
3521 && !REGISTER_BYTES_OK (i))
3522 warning ("Remote reply is too short: %s", buf);
3523 }
3524
3525 supply_them:
3526 {
3527 int i;
3528 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3529 {
3530 struct packet_reg *r = &rs->regs[i];
3531 if (r->in_g_packet)
3532 {
3533 supply_register (r->regnum, regs + r->offset);
3534 if (buf[r->offset * 2] == 'x')
3535 set_register_cached (i, -1);
3536 }
3537 }
3538 }
3539 }
3540
3541 /* Prepare to store registers. Since we may send them all (using a
3542 'G' request), we have to read out the ones we don't want to change
3543 first. */
3544
3545 static void
3546 remote_prepare_to_store (void)
3547 {
3548 /* Make sure the entire registers array is valid. */
3549 switch (remote_protocol_P.support)
3550 {
3551 case PACKET_DISABLE:
3552 case PACKET_SUPPORT_UNKNOWN:
3553 /* NOTE: This isn't rs->sizeof_g_packet because here, we are
3554 forcing the register cache to read its and not the target
3555 registers. */
3556 read_register_bytes (0, (char *) NULL, REGISTER_BYTES); /* OK use. */
3557 break;
3558 case PACKET_ENABLE:
3559 break;
3560 }
3561 }
3562
3563 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3564 packet was not recognized. */
3565
3566 static int
3567 store_register_using_P (int regnum)
3568 {
3569 struct remote_state *rs = get_remote_state ();
3570 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3571 /* Try storing a single register. */
3572 char *buf = alloca (rs->remote_packet_size);
3573 char *regp = alloca (MAX_REGISTER_RAW_SIZE);
3574 char *p;
3575 int i;
3576
3577 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3578 p = buf + strlen (buf);
3579 regcache_collect (reg->regnum, regp);
3580 bin2hex (regp, p, REGISTER_RAW_SIZE (reg->regnum));
3581 remote_send (buf, rs->remote_packet_size);
3582
3583 return buf[0] != '\0';
3584 }
3585
3586
3587 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3588 of the register cache buffer. FIXME: ignores errors. */
3589
3590 static void
3591 remote_store_registers (int regnum)
3592 {
3593 struct remote_state *rs = get_remote_state ();
3594 char *buf;
3595 char *regs;
3596 int i;
3597 char *p;
3598
3599 set_thread (PIDGET (inferior_ptid), 1);
3600
3601 if (regnum >= 0)
3602 {
3603 switch (remote_protocol_P.support)
3604 {
3605 case PACKET_DISABLE:
3606 break;
3607 case PACKET_ENABLE:
3608 if (store_register_using_P (regnum))
3609 return;
3610 else
3611 error ("Protocol error: P packet not recognized by stub");
3612 case PACKET_SUPPORT_UNKNOWN:
3613 if (store_register_using_P (regnum))
3614 {
3615 /* The stub recognized the 'P' packet. Remember this. */
3616 remote_protocol_P.support = PACKET_ENABLE;
3617 return;
3618 }
3619 else
3620 {
3621 /* The stub does not support the 'P' packet. Use 'G'
3622 instead, and don't try using 'P' in the future (it
3623 will just waste our time). */
3624 remote_protocol_P.support = PACKET_DISABLE;
3625 break;
3626 }
3627 }
3628 }
3629
3630 /* Extract all the registers in the regcache copying them into a
3631 local buffer. */
3632 {
3633 int i;
3634 regs = alloca (rs->sizeof_g_packet);
3635 memset (regs, rs->sizeof_g_packet, 0);
3636 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3637 {
3638 struct packet_reg *r = &rs->regs[i];
3639 if (r->in_g_packet)
3640 regcache_collect (r->regnum, regs + r->offset);
3641 }
3642 }
3643
3644 /* Command describes registers byte by byte,
3645 each byte encoded as two hex characters. */
3646 buf = alloca (rs->remote_packet_size);
3647 p = buf;
3648 *p++ = 'G';
3649 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3650 bin2hex (regs, p, register_bytes_found);
3651 remote_send (buf, (rs->remote_packet_size));
3652 }
3653 \f
3654
3655 /* Return the number of hex digits in num. */
3656
3657 static int
3658 hexnumlen (ULONGEST num)
3659 {
3660 int i;
3661
3662 for (i = 0; num != 0; i++)
3663 num >>= 4;
3664
3665 return max (i, 1);
3666 }
3667
3668 /* Set BUF to the minimum number of hex digits representing NUM. */
3669
3670 static int
3671 hexnumstr (char *buf, ULONGEST num)
3672 {
3673 int len = hexnumlen (num);
3674 return hexnumnstr (buf, num, len);
3675 }
3676
3677
3678 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3679
3680 static int
3681 hexnumnstr (char *buf, ULONGEST num, int width)
3682 {
3683 int i;
3684
3685 buf[width] = '\0';
3686
3687 for (i = width - 1; i >= 0; i--)
3688 {
3689 buf[i] = "0123456789abcdef"[(num & 0xf)];
3690 num >>= 4;
3691 }
3692
3693 return width;
3694 }
3695
3696 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3697
3698 static CORE_ADDR
3699 remote_address_masked (CORE_ADDR addr)
3700 {
3701 if (remote_address_size > 0
3702 && remote_address_size < (sizeof (ULONGEST) * 8))
3703 {
3704 /* Only create a mask when that mask can safely be constructed
3705 in a ULONGEST variable. */
3706 ULONGEST mask = 1;
3707 mask = (mask << remote_address_size) - 1;
3708 addr &= mask;
3709 }
3710 return addr;
3711 }
3712
3713 /* Determine whether the remote target supports binary downloading.
3714 This is accomplished by sending a no-op memory write of zero length
3715 to the target at the specified address. It does not suffice to send
3716 the whole packet, since many stubs strip the eighth bit and subsequently
3717 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3718
3719 NOTE: This can still lose if the serial line is not eight-bit
3720 clean. In cases like this, the user should clear "remote
3721 X-packet". */
3722
3723 static void
3724 check_binary_download (CORE_ADDR addr)
3725 {
3726 struct remote_state *rs = get_remote_state ();
3727 switch (remote_protocol_binary_download.support)
3728 {
3729 case PACKET_DISABLE:
3730 break;
3731 case PACKET_ENABLE:
3732 break;
3733 case PACKET_SUPPORT_UNKNOWN:
3734 {
3735 char *buf = alloca (rs->remote_packet_size);
3736 char *p;
3737
3738 p = buf;
3739 *p++ = 'X';
3740 p += hexnumstr (p, (ULONGEST) addr);
3741 *p++ = ',';
3742 p += hexnumstr (p, (ULONGEST) 0);
3743 *p++ = ':';
3744 *p = '\0';
3745
3746 putpkt_binary (buf, (int) (p - buf));
3747 getpkt (buf, (rs->remote_packet_size), 0);
3748
3749 if (buf[0] == '\0')
3750 {
3751 if (remote_debug)
3752 fprintf_unfiltered (gdb_stdlog,
3753 "binary downloading NOT suppported by target\n");
3754 remote_protocol_binary_download.support = PACKET_DISABLE;
3755 }
3756 else
3757 {
3758 if (remote_debug)
3759 fprintf_unfiltered (gdb_stdlog,
3760 "binary downloading suppported by target\n");
3761 remote_protocol_binary_download.support = PACKET_ENABLE;
3762 }
3763 break;
3764 }
3765 }
3766 }
3767
3768 /* Write memory data directly to the remote machine.
3769 This does not inform the data cache; the data cache uses this.
3770 MEMADDR is the address in the remote memory space.
3771 MYADDR is the address of the buffer in our space.
3772 LEN is the number of bytes.
3773
3774 Returns number of bytes transferred, or 0 (setting errno) for
3775 error. Only transfer a single packet. */
3776
3777 static int
3778 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3779 {
3780 unsigned char *buf;
3781 int max_buf_size; /* Max size of packet output buffer */
3782 unsigned char *p;
3783 unsigned char *plen;
3784 long sizeof_buf;
3785 int plenlen;
3786 int todo;
3787 int nr_bytes;
3788
3789 /* Verify that the target can support a binary download */
3790 check_binary_download (memaddr);
3791
3792 /* Determine the max packet size. */
3793 max_buf_size = get_memory_write_packet_size ();
3794 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3795 buf = alloca (sizeof_buf);
3796
3797 /* Subtract header overhead from max payload size - $M<memaddr>,<len>:#nn */
3798 max_buf_size -= 2 + hexnumlen (memaddr + len - 1) + 1 + hexnumlen (len) + 4;
3799
3800 /* construct "M"<memaddr>","<len>":" */
3801 /* sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, todo); */
3802 p = buf;
3803
3804 /* Append [XM]. Compute a best guess of the number of bytes
3805 actually transfered. */
3806 switch (remote_protocol_binary_download.support)
3807 {
3808 case PACKET_ENABLE:
3809 *p++ = 'X';
3810 /* Best guess at number of bytes that will fit. */
3811 todo = min (len, max_buf_size);
3812 break;
3813 case PACKET_DISABLE:
3814 *p++ = 'M';
3815 /* num bytes that will fit */
3816 todo = min (len, max_buf_size / 2);
3817 break;
3818 case PACKET_SUPPORT_UNKNOWN:
3819 internal_error (__FILE__, __LINE__,
3820 "remote_write_bytes: bad internal state");
3821 default:
3822 internal_error (__FILE__, __LINE__, "bad switch");
3823 }
3824
3825 /* Append <memaddr> */
3826 memaddr = remote_address_masked (memaddr);
3827 p += hexnumstr (p, (ULONGEST) memaddr);
3828 *p++ = ',';
3829
3830 /* Append <len>. Retain the location/size of <len>. It may
3831 need to be adjusted once the packet body has been created. */
3832 plen = p;
3833 plenlen = hexnumstr (p, (ULONGEST) todo);
3834 p += plenlen;
3835 *p++ = ':';
3836 *p = '\0';
3837
3838 /* Append the packet body. */
3839 switch (remote_protocol_binary_download.support)
3840 {
3841 case PACKET_ENABLE:
3842 /* Binary mode. Send target system values byte by byte, in
3843 increasing byte addresses. Only escape certain critical
3844 characters. */
3845 for (nr_bytes = 0;
3846 (nr_bytes < todo) && (p - buf) < (max_buf_size - 2);
3847 nr_bytes++)
3848 {
3849 switch (myaddr[nr_bytes] & 0xff)
3850 {
3851 case '$':
3852 case '#':
3853 case 0x7d:
3854 /* These must be escaped */
3855 *p++ = 0x7d;
3856 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3857 break;
3858 default:
3859 *p++ = myaddr[nr_bytes] & 0xff;
3860 break;
3861 }
3862 }
3863 if (nr_bytes < todo)
3864 {
3865 /* Escape chars have filled up the buffer prematurely,
3866 and we have actually sent fewer bytes than planned.
3867 Fix-up the length field of the packet. Use the same
3868 number of characters as before. */
3869
3870 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3871 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3872 }
3873 break;
3874 case PACKET_DISABLE:
3875 /* Normal mode: Send target system values byte by byte, in
3876 increasing byte addresses. Each byte is encoded as a two hex
3877 value. */
3878 nr_bytes = bin2hex (myaddr, p, todo);
3879 p += 2 * nr_bytes;
3880 break;
3881 case PACKET_SUPPORT_UNKNOWN:
3882 internal_error (__FILE__, __LINE__,
3883 "remote_write_bytes: bad internal state");
3884 default:
3885 internal_error (__FILE__, __LINE__, "bad switch");
3886 }
3887
3888 putpkt_binary (buf, (int) (p - buf));
3889 getpkt (buf, sizeof_buf, 0);
3890
3891 if (buf[0] == 'E')
3892 {
3893 /* There is no correspondance between what the remote protocol
3894 uses for errors and errno codes. We would like a cleaner way
3895 of representing errors (big enough to include errno codes,
3896 bfd_error codes, and others). But for now just return EIO. */
3897 errno = EIO;
3898 return 0;
3899 }
3900
3901 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3902 bytes than we'd planned. */
3903 return nr_bytes;
3904 }
3905
3906 /* Read memory data directly from the remote machine.
3907 This does not use the data cache; the data cache uses this.
3908 MEMADDR is the address in the remote memory space.
3909 MYADDR is the address of the buffer in our space.
3910 LEN is the number of bytes.
3911
3912 Returns number of bytes transferred, or 0 for error. */
3913
3914 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3915 remote targets) shouldn't attempt to read the entire buffer.
3916 Instead it should read a single packet worth of data and then
3917 return the byte size of that packet to the caller. The caller (its
3918 caller and its callers caller ;-) already contains code for
3919 handling partial reads. */
3920
3921 static int
3922 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3923 {
3924 char *buf;
3925 int max_buf_size; /* Max size of packet output buffer */
3926 long sizeof_buf;
3927 int origlen;
3928
3929 /* Create a buffer big enough for this packet. */
3930 max_buf_size = get_memory_read_packet_size ();
3931 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3932 buf = alloca (sizeof_buf);
3933
3934 origlen = len;
3935 while (len > 0)
3936 {
3937 char *p;
3938 int todo;
3939 int i;
3940
3941 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3942
3943 /* construct "m"<memaddr>","<len>" */
3944 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3945 memaddr = remote_address_masked (memaddr);
3946 p = buf;
3947 *p++ = 'm';
3948 p += hexnumstr (p, (ULONGEST) memaddr);
3949 *p++ = ',';
3950 p += hexnumstr (p, (ULONGEST) todo);
3951 *p = '\0';
3952
3953 putpkt (buf);
3954 getpkt (buf, sizeof_buf, 0);
3955
3956 if (buf[0] == 'E')
3957 {
3958 /* There is no correspondance between what the remote protocol uses
3959 for errors and errno codes. We would like a cleaner way of
3960 representing errors (big enough to include errno codes, bfd_error
3961 codes, and others). But for now just return EIO. */
3962 errno = EIO;
3963 return 0;
3964 }
3965
3966 /* Reply describes memory byte by byte,
3967 each byte encoded as two hex characters. */
3968
3969 p = buf;
3970 if ((i = hex2bin (p, myaddr, todo)) < todo)
3971 {
3972 /* Reply is short. This means that we were able to read
3973 only part of what we wanted to. */
3974 return i + (origlen - len);
3975 }
3976 myaddr += todo;
3977 memaddr += todo;
3978 len -= todo;
3979 }
3980 return origlen;
3981 }
3982 \f
3983 /* Read or write LEN bytes from inferior memory at MEMADDR,
3984 transferring to or from debugger address BUFFER. Write to inferior if
3985 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3986 for error. TARGET is unused. */
3987
3988 /* ARGSUSED */
3989 static int
3990 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3991 int should_write, struct mem_attrib *attrib,
3992 struct target_ops *target)
3993 {
3994 CORE_ADDR targ_addr;
3995 int targ_len;
3996 int res;
3997
3998 REMOTE_TRANSLATE_XFER_ADDRESS (mem_addr, mem_len, &targ_addr, &targ_len);
3999 if (targ_len <= 0)
4000 return 0;
4001
4002 if (should_write)
4003 res = remote_write_bytes (targ_addr, buffer, targ_len);
4004 else
4005 res = remote_read_bytes (targ_addr, buffer, targ_len);
4006
4007 return res;
4008 }
4009
4010
4011 #if 0
4012 /* Enable after 4.12. */
4013
4014 void
4015 remote_search (int len, char *data, char *mask, CORE_ADDR startaddr,
4016 int increment, CORE_ADDR lorange, CORE_ADDR hirange,
4017 CORE_ADDR *addr_found, char *data_found)
4018 {
4019 if (increment == -4 && len == 4)
4020 {
4021 long mask_long, data_long;
4022 long data_found_long;
4023 CORE_ADDR addr_we_found;
4024 char *buf = alloca (rs->remote_packet_size);
4025 long returned_long[2];
4026 char *p;
4027
4028 mask_long = extract_unsigned_integer (mask, len);
4029 data_long = extract_unsigned_integer (data, len);
4030 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
4031 putpkt (buf);
4032 getpkt (buf, (rs->remote_packet_size), 0);
4033 if (buf[0] == '\0')
4034 {
4035 /* The stub doesn't support the 't' request. We might want to
4036 remember this fact, but on the other hand the stub could be
4037 switched on us. Maybe we should remember it only until
4038 the next "target remote". */
4039 generic_search (len, data, mask, startaddr, increment, lorange,
4040 hirange, addr_found, data_found);
4041 return;
4042 }
4043
4044 if (buf[0] == 'E')
4045 /* There is no correspondance between what the remote protocol uses
4046 for errors and errno codes. We would like a cleaner way of
4047 representing errors (big enough to include errno codes, bfd_error
4048 codes, and others). But for now just use EIO. */
4049 memory_error (EIO, startaddr);
4050 p = buf;
4051 addr_we_found = 0;
4052 while (*p != '\0' && *p != ',')
4053 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
4054 if (*p == '\0')
4055 error ("Protocol error: short return for search");
4056
4057 data_found_long = 0;
4058 while (*p != '\0' && *p != ',')
4059 data_found_long = (data_found_long << 4) + fromhex (*p++);
4060 /* Ignore anything after this comma, for future extensions. */
4061
4062 if (addr_we_found < lorange || addr_we_found >= hirange)
4063 {
4064 *addr_found = 0;
4065 return;
4066 }
4067
4068 *addr_found = addr_we_found;
4069 *data_found = store_unsigned_integer (data_we_found, len);
4070 return;
4071 }
4072 generic_search (len, data, mask, startaddr, increment, lorange,
4073 hirange, addr_found, data_found);
4074 }
4075 #endif /* 0 */
4076 \f
4077 static void
4078 remote_files_info (struct target_ops *ignore)
4079 {
4080 puts_filtered ("Debugging a target over a serial line.\n");
4081 }
4082 \f
4083 /* Stuff for dealing with the packets which are part of this protocol.
4084 See comment at top of file for details. */
4085
4086 /* Read a single character from the remote end, masking it down to 7 bits. */
4087
4088 static int
4089 readchar (int timeout)
4090 {
4091 int ch;
4092
4093 ch = serial_readchar (remote_desc, timeout);
4094
4095 if (ch >= 0)
4096 return (ch & 0x7f);
4097
4098 switch ((enum serial_rc) ch)
4099 {
4100 case SERIAL_EOF:
4101 target_mourn_inferior ();
4102 error ("Remote connection closed");
4103 /* no return */
4104 case SERIAL_ERROR:
4105 perror_with_name ("Remote communication error");
4106 /* no return */
4107 case SERIAL_TIMEOUT:
4108 break;
4109 }
4110 return ch;
4111 }
4112
4113 /* Send the command in BUF to the remote machine, and read the reply
4114 into BUF. Report an error if we get an error reply. */
4115
4116 static void
4117 remote_send (char *buf,
4118 long sizeof_buf)
4119 {
4120 putpkt (buf);
4121 getpkt (buf, sizeof_buf, 0);
4122
4123 if (buf[0] == 'E')
4124 error ("Remote failure reply: %s", buf);
4125 }
4126
4127 /* Display a null-terminated packet on stdout, for debugging, using C
4128 string notation. */
4129
4130 static void
4131 print_packet (char *buf)
4132 {
4133 puts_filtered ("\"");
4134 fputstr_filtered (buf, '"', gdb_stdout);
4135 puts_filtered ("\"");
4136 }
4137
4138 int
4139 putpkt (char *buf)
4140 {
4141 return putpkt_binary (buf, strlen (buf));
4142 }
4143
4144 /* Send a packet to the remote machine, with error checking. The data
4145 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
4146 to account for the $, # and checksum, and for a possible /0 if we are
4147 debugging (remote_debug) and want to print the sent packet as a string */
4148
4149 static int
4150 putpkt_binary (char *buf, int cnt)
4151 {
4152 struct remote_state *rs = get_remote_state ();
4153 int i;
4154 unsigned char csum = 0;
4155 char *buf2 = alloca (cnt + 6);
4156 long sizeof_junkbuf = (rs->remote_packet_size);
4157 char *junkbuf = alloca (sizeof_junkbuf);
4158
4159 int ch;
4160 int tcount = 0;
4161 char *p;
4162
4163 /* Copy the packet into buffer BUF2, encapsulating it
4164 and giving it a checksum. */
4165
4166 p = buf2;
4167 *p++ = '$';
4168
4169 for (i = 0; i < cnt; i++)
4170 {
4171 csum += buf[i];
4172 *p++ = buf[i];
4173 }
4174 *p++ = '#';
4175 *p++ = tohex ((csum >> 4) & 0xf);
4176 *p++ = tohex (csum & 0xf);
4177
4178 /* Send it over and over until we get a positive ack. */
4179
4180 while (1)
4181 {
4182 int started_error_output = 0;
4183
4184 if (remote_debug)
4185 {
4186 *p = '\0';
4187 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4188 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4189 fprintf_unfiltered (gdb_stdlog, "...");
4190 gdb_flush (gdb_stdlog);
4191 }
4192 if (serial_write (remote_desc, buf2, p - buf2))
4193 perror_with_name ("putpkt: write failed");
4194
4195 /* read until either a timeout occurs (-2) or '+' is read */
4196 while (1)
4197 {
4198 ch = readchar (remote_timeout);
4199
4200 if (remote_debug)
4201 {
4202 switch (ch)
4203 {
4204 case '+':
4205 case '-':
4206 case SERIAL_TIMEOUT:
4207 case '$':
4208 if (started_error_output)
4209 {
4210 putchar_unfiltered ('\n');
4211 started_error_output = 0;
4212 }
4213 }
4214 }
4215
4216 switch (ch)
4217 {
4218 case '+':
4219 if (remote_debug)
4220 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4221 return 1;
4222 case '-':
4223 if (remote_debug)
4224 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4225 case SERIAL_TIMEOUT:
4226 tcount++;
4227 if (tcount > 3)
4228 return 0;
4229 break; /* Retransmit buffer */
4230 case '$':
4231 {
4232 if (remote_debug)
4233 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
4234 /* It's probably an old response, and we're out of sync.
4235 Just gobble up the packet and ignore it. */
4236 read_frame (junkbuf, sizeof_junkbuf);
4237 continue; /* Now, go look for + */
4238 }
4239 default:
4240 if (remote_debug)
4241 {
4242 if (!started_error_output)
4243 {
4244 started_error_output = 1;
4245 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4246 }
4247 fputc_unfiltered (ch & 0177, gdb_stdlog);
4248 }
4249 continue;
4250 }
4251 break; /* Here to retransmit */
4252 }
4253
4254 #if 0
4255 /* This is wrong. If doing a long backtrace, the user should be
4256 able to get out next time we call QUIT, without anything as
4257 violent as interrupt_query. If we want to provide a way out of
4258 here without getting to the next QUIT, it should be based on
4259 hitting ^C twice as in remote_wait. */
4260 if (quit_flag)
4261 {
4262 quit_flag = 0;
4263 interrupt_query ();
4264 }
4265 #endif
4266 }
4267 }
4268
4269 static int remote_cisco_mode;
4270
4271 /* Come here after finding the start of the frame. Collect the rest
4272 into BUF, verifying the checksum, length, and handling run-length
4273 compression. No more than sizeof_buf-1 characters are read so that
4274 the buffer can be NUL terminated.
4275
4276 Returns -1 on error, number of characters in buffer (ignoring the
4277 trailing NULL) on success. (could be extended to return one of the
4278 SERIAL status indications). */
4279
4280 static long
4281 read_frame (char *buf,
4282 long sizeof_buf)
4283 {
4284 unsigned char csum;
4285 long bc;
4286 int c;
4287
4288 csum = 0;
4289 bc = 0;
4290
4291 while (1)
4292 {
4293 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4294 c = readchar (remote_timeout);
4295 switch (c)
4296 {
4297 case SERIAL_TIMEOUT:
4298 if (remote_debug)
4299 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4300 return -1;
4301 case '$':
4302 if (remote_debug)
4303 fputs_filtered ("Saw new packet start in middle of old one\n",
4304 gdb_stdlog);
4305 return -1; /* Start a new packet, count retries */
4306 case '#':
4307 {
4308 unsigned char pktcsum;
4309 int check_0 = 0;
4310 int check_1 = 0;
4311
4312 buf[bc] = '\0';
4313
4314 check_0 = readchar (remote_timeout);
4315 if (check_0 >= 0)
4316 check_1 = readchar (remote_timeout);
4317
4318 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4319 {
4320 if (remote_debug)
4321 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4322 return -1;
4323 }
4324 else if (check_0 < 0 || check_1 < 0)
4325 {
4326 if (remote_debug)
4327 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4328 return -1;
4329 }
4330
4331 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4332 if (csum == pktcsum)
4333 return bc;
4334
4335 if (remote_debug)
4336 {
4337 fprintf_filtered (gdb_stdlog,
4338 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4339 pktcsum, csum);
4340 fputs_filtered (buf, gdb_stdlog);
4341 fputs_filtered ("\n", gdb_stdlog);
4342 }
4343 /* Number of characters in buffer ignoring trailing
4344 NUL. */
4345 return -1;
4346 }
4347 case '*': /* Run length encoding */
4348 {
4349 int repeat;
4350 csum += c;
4351
4352 if (remote_cisco_mode == 0)
4353 {
4354 c = readchar (remote_timeout);
4355 csum += c;
4356 repeat = c - ' ' + 3; /* Compute repeat count */
4357 }
4358 else
4359 {
4360 /* Cisco's run-length encoding variant uses two
4361 hex chars to represent the repeat count. */
4362
4363 c = readchar (remote_timeout);
4364 csum += c;
4365 repeat = fromhex (c) << 4;
4366 c = readchar (remote_timeout);
4367 csum += c;
4368 repeat += fromhex (c);
4369 }
4370
4371 /* The character before ``*'' is repeated. */
4372
4373 if (repeat > 0 && repeat <= 255
4374 && bc > 0
4375 && bc + repeat - 1 < sizeof_buf - 1)
4376 {
4377 memset (&buf[bc], buf[bc - 1], repeat);
4378 bc += repeat;
4379 continue;
4380 }
4381
4382 buf[bc] = '\0';
4383 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4384 puts_filtered (buf);
4385 puts_filtered ("\n");
4386 return -1;
4387 }
4388 default:
4389 if (bc < sizeof_buf - 1)
4390 {
4391 buf[bc++] = c;
4392 csum += c;
4393 continue;
4394 }
4395
4396 buf[bc] = '\0';
4397 puts_filtered ("Remote packet too long: ");
4398 puts_filtered (buf);
4399 puts_filtered ("\n");
4400
4401 return -1;
4402 }
4403 }
4404 }
4405
4406 /* Read a packet from the remote machine, with error checking, and
4407 store it in BUF. If FOREVER, wait forever rather than timing out;
4408 this is used (in synchronous mode) to wait for a target that is is
4409 executing user code to stop. */
4410 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4411 don't have to change all the calls to getpkt to deal with the
4412 return value, because at the moment I don't know what the right
4413 thing to do it for those. */
4414 void
4415 getpkt (char *buf,
4416 long sizeof_buf,
4417 int forever)
4418 {
4419 int timed_out;
4420
4421 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4422 }
4423
4424
4425 /* Read a packet from the remote machine, with error checking, and
4426 store it in BUF. If FOREVER, wait forever rather than timing out;
4427 this is used (in synchronous mode) to wait for a target that is is
4428 executing user code to stop. If FOREVER == 0, this function is
4429 allowed to time out gracefully and return an indication of this to
4430 the caller. */
4431 static int
4432 getpkt_sane (char *buf,
4433 long sizeof_buf,
4434 int forever)
4435 {
4436 int c;
4437 int tries;
4438 int timeout;
4439 int val;
4440
4441 strcpy (buf, "timeout");
4442
4443 if (forever)
4444 {
4445 timeout = watchdog > 0 ? watchdog : -1;
4446 }
4447
4448 else
4449 timeout = remote_timeout;
4450
4451 #define MAX_TRIES 3
4452
4453 for (tries = 1; tries <= MAX_TRIES; tries++)
4454 {
4455 /* This can loop forever if the remote side sends us characters
4456 continuously, but if it pauses, we'll get a zero from readchar
4457 because of timeout. Then we'll count that as a retry. */
4458
4459 /* Note that we will only wait forever prior to the start of a packet.
4460 After that, we expect characters to arrive at a brisk pace. They
4461 should show up within remote_timeout intervals. */
4462
4463 do
4464 {
4465 c = readchar (timeout);
4466
4467 if (c == SERIAL_TIMEOUT)
4468 {
4469 if (forever) /* Watchdog went off? Kill the target. */
4470 {
4471 QUIT;
4472 target_mourn_inferior ();
4473 error ("Watchdog has expired. Target detached.\n");
4474 }
4475 if (remote_debug)
4476 fputs_filtered ("Timed out.\n", gdb_stdlog);
4477 goto retry;
4478 }
4479 }
4480 while (c != '$');
4481
4482 /* We've found the start of a packet, now collect the data. */
4483
4484 val = read_frame (buf, sizeof_buf);
4485
4486 if (val >= 0)
4487 {
4488 if (remote_debug)
4489 {
4490 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4491 fputstr_unfiltered (buf, 0, gdb_stdlog);
4492 fprintf_unfiltered (gdb_stdlog, "\n");
4493 }
4494 serial_write (remote_desc, "+", 1);
4495 return 0;
4496 }
4497
4498 /* Try the whole thing again. */
4499 retry:
4500 serial_write (remote_desc, "-", 1);
4501 }
4502
4503 /* We have tried hard enough, and just can't receive the packet. Give up. */
4504
4505 printf_unfiltered ("Ignoring packet error, continuing...\n");
4506 serial_write (remote_desc, "+", 1);
4507 return 1;
4508 }
4509 \f
4510 static void
4511 remote_kill (void)
4512 {
4513 /* For some mysterious reason, wait_for_inferior calls kill instead of
4514 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4515 if (kill_kludge)
4516 {
4517 kill_kludge = 0;
4518 target_mourn_inferior ();
4519 return;
4520 }
4521
4522 /* Use catch_errors so the user can quit from gdb even when we aren't on
4523 speaking terms with the remote system. */
4524 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4525
4526 /* Don't wait for it to die. I'm not really sure it matters whether
4527 we do or not. For the existing stubs, kill is a noop. */
4528 target_mourn_inferior ();
4529 }
4530
4531 /* Async version of remote_kill. */
4532 static void
4533 remote_async_kill (void)
4534 {
4535 /* Unregister the file descriptor from the event loop. */
4536 if (target_is_async_p ())
4537 serial_async (remote_desc, NULL, 0);
4538
4539 /* For some mysterious reason, wait_for_inferior calls kill instead of
4540 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4541 if (kill_kludge)
4542 {
4543 kill_kludge = 0;
4544 target_mourn_inferior ();
4545 return;
4546 }
4547
4548 /* Use catch_errors so the user can quit from gdb even when we aren't on
4549 speaking terms with the remote system. */
4550 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4551
4552 /* Don't wait for it to die. I'm not really sure it matters whether
4553 we do or not. For the existing stubs, kill is a noop. */
4554 target_mourn_inferior ();
4555 }
4556
4557 static void
4558 remote_mourn (void)
4559 {
4560 remote_mourn_1 (&remote_ops);
4561 }
4562
4563 static void
4564 remote_async_mourn (void)
4565 {
4566 remote_mourn_1 (&remote_async_ops);
4567 }
4568
4569 static void
4570 extended_remote_mourn (void)
4571 {
4572 /* We do _not_ want to mourn the target like this; this will
4573 remove the extended remote target from the target stack,
4574 and the next time the user says "run" it'll fail.
4575
4576 FIXME: What is the right thing to do here? */
4577 #if 0
4578 remote_mourn_1 (&extended_remote_ops);
4579 #endif
4580 }
4581
4582 /* Worker function for remote_mourn. */
4583 static void
4584 remote_mourn_1 (struct target_ops *target)
4585 {
4586 unpush_target (target);
4587 generic_mourn_inferior ();
4588 }
4589
4590 /* In the extended protocol we want to be able to do things like
4591 "run" and have them basically work as expected. So we need
4592 a special create_inferior function.
4593
4594 FIXME: One day add support for changing the exec file
4595 we're debugging, arguments and an environment. */
4596
4597 static void
4598 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4599 {
4600 /* Rip out the breakpoints; we'll reinsert them after restarting
4601 the remote server. */
4602 remove_breakpoints ();
4603
4604 /* Now restart the remote server. */
4605 extended_remote_restart ();
4606
4607 /* Now put the breakpoints back in. This way we're safe if the
4608 restart function works via a unix fork on the remote side. */
4609 insert_breakpoints ();
4610
4611 /* Clean up from the last time we were running. */
4612 clear_proceed_status ();
4613
4614 /* Let the remote process run. */
4615 proceed (-1, TARGET_SIGNAL_0, 0);
4616 }
4617
4618 /* Async version of extended_remote_create_inferior. */
4619 static void
4620 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4621 {
4622 /* Rip out the breakpoints; we'll reinsert them after restarting
4623 the remote server. */
4624 remove_breakpoints ();
4625
4626 /* If running asynchronously, register the target file descriptor
4627 with the event loop. */
4628 if (event_loop_p && target_can_async_p ())
4629 target_async (inferior_event_handler, 0);
4630
4631 /* Now restart the remote server. */
4632 extended_remote_restart ();
4633
4634 /* Now put the breakpoints back in. This way we're safe if the
4635 restart function works via a unix fork on the remote side. */
4636 insert_breakpoints ();
4637
4638 /* Clean up from the last time we were running. */
4639 clear_proceed_status ();
4640
4641 /* Let the remote process run. */
4642 proceed (-1, TARGET_SIGNAL_0, 0);
4643 }
4644 \f
4645
4646 /* On some machines, e.g. 68k, we may use a different breakpoint instruction
4647 than other targets; in those use REMOTE_BREAKPOINT instead of just
4648 BREAKPOINT. Also, bi-endian targets may define LITTLE_REMOTE_BREAKPOINT
4649 and BIG_REMOTE_BREAKPOINT. If none of these are defined, we just call
4650 the standard routines that are in mem-break.c. */
4651
4652 /* FIXME, these ought to be done in a more dynamic fashion. For instance,
4653 the choice of breakpoint instruction affects target program design and
4654 vice versa, and by making it user-tweakable, the special code here
4655 goes away and we need fewer special GDB configurations. */
4656
4657 #if defined (LITTLE_REMOTE_BREAKPOINT) && defined (BIG_REMOTE_BREAKPOINT) && !defined(REMOTE_BREAKPOINT)
4658 #define REMOTE_BREAKPOINT
4659 #endif
4660
4661 #ifdef REMOTE_BREAKPOINT
4662
4663 /* If the target isn't bi-endian, just pretend it is. */
4664 #if !defined (LITTLE_REMOTE_BREAKPOINT) && !defined (BIG_REMOTE_BREAKPOINT)
4665 #define LITTLE_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4666 #define BIG_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4667 #endif
4668
4669 static unsigned char big_break_insn[] = BIG_REMOTE_BREAKPOINT;
4670 static unsigned char little_break_insn[] = LITTLE_REMOTE_BREAKPOINT;
4671
4672 #endif /* REMOTE_BREAKPOINT */
4673
4674 /* Insert a breakpoint on targets that don't have any better breakpoint
4675 support. We read the contents of the target location and stash it,
4676 then overwrite it with a breakpoint instruction. ADDR is the target
4677 location in the target machine. CONTENTS_CACHE is a pointer to
4678 memory allocated for saving the target contents. It is guaranteed
4679 by the caller to be long enough to save sizeof BREAKPOINT bytes (this
4680 is accomplished via BREAKPOINT_MAX). */
4681
4682 static int
4683 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4684 {
4685 struct remote_state *rs = get_remote_state ();
4686 #ifdef REMOTE_BREAKPOINT
4687 int val;
4688 #endif
4689 int bp_size;
4690
4691 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4692 If it succeeds, then set the support to PACKET_ENABLE. If it
4693 fails, and the user has explicitly requested the Z support then
4694 report an error, otherwise, mark it disabled and go on. */
4695
4696 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4697 {
4698 char *buf = alloca (rs->remote_packet_size);
4699 char *p = buf;
4700
4701 addr = remote_address_masked (addr);
4702 *(p++) = 'Z';
4703 *(p++) = '0';
4704 *(p++) = ',';
4705 p += hexnumstr (p, (ULONGEST) addr);
4706 BREAKPOINT_FROM_PC (&addr, &bp_size);
4707 sprintf (p, ",%d", bp_size);
4708
4709 putpkt (buf);
4710 getpkt (buf, (rs->remote_packet_size), 0);
4711
4712 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4713 {
4714 case PACKET_ERROR:
4715 return -1;
4716 case PACKET_OK:
4717 return 0;
4718 case PACKET_UNKNOWN:
4719 break;
4720 }
4721 }
4722
4723 #ifdef REMOTE_BREAKPOINT
4724 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4725
4726 if (val == 0)
4727 {
4728 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4729 val = target_write_memory (addr, (char *) big_break_insn,
4730 sizeof big_break_insn);
4731 else
4732 val = target_write_memory (addr, (char *) little_break_insn,
4733 sizeof little_break_insn);
4734 }
4735
4736 return val;
4737 #else
4738 return memory_insert_breakpoint (addr, contents_cache);
4739 #endif /* REMOTE_BREAKPOINT */
4740 }
4741
4742 static int
4743 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4744 {
4745 struct remote_state *rs = get_remote_state ();
4746 int bp_size;
4747
4748 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4749 {
4750 char *buf = alloca (rs->remote_packet_size);
4751 char *p = buf;
4752
4753 *(p++) = 'z';
4754 *(p++) = '0';
4755 *(p++) = ',';
4756
4757 addr = remote_address_masked (addr);
4758 p += hexnumstr (p, (ULONGEST) addr);
4759 BREAKPOINT_FROM_PC (&addr, &bp_size);
4760 sprintf (p, ",%d", bp_size);
4761
4762 putpkt (buf);
4763 getpkt (buf, (rs->remote_packet_size), 0);
4764
4765 return (buf[0] == 'E');
4766 }
4767
4768 #ifdef REMOTE_BREAKPOINT
4769 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4770 #else
4771 return memory_remove_breakpoint (addr, contents_cache);
4772 #endif /* REMOTE_BREAKPOINT */
4773 }
4774
4775 static int
4776 watchpoint_to_Z_packet (int type)
4777 {
4778 switch (type)
4779 {
4780 case hw_write:
4781 return 2;
4782 break;
4783 case hw_read:
4784 return 3;
4785 break;
4786 case hw_access:
4787 return 4;
4788 break;
4789 default:
4790 internal_error (__FILE__, __LINE__,
4791 "hw_bp_to_z: bad watchpoint type %d", type);
4792 }
4793 }
4794
4795 /* FIXME: This function should be static and a member of the remote
4796 target vector. */
4797
4798 int
4799 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4800 {
4801 struct remote_state *rs = get_remote_state ();
4802 char *buf = alloca (rs->remote_packet_size);
4803 char *p;
4804 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4805
4806 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4807 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4808 remote_protocol_Z[packet].name,
4809 remote_protocol_Z[packet].title);
4810
4811 sprintf (buf, "Z%x,", packet);
4812 p = strchr (buf, '\0');
4813 addr = remote_address_masked (addr);
4814 p += hexnumstr (p, (ULONGEST) addr);
4815 sprintf (p, ",%x", len);
4816
4817 putpkt (buf);
4818 getpkt (buf, (rs->remote_packet_size), 0);
4819
4820 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4821 {
4822 case PACKET_ERROR:
4823 case PACKET_UNKNOWN:
4824 return -1;
4825 case PACKET_OK:
4826 return 0;
4827 }
4828 internal_error (__FILE__, __LINE__,
4829 "remote_insert_watchpoint: reached end of function");
4830 }
4831
4832 /* FIXME: This function should be static and a member of the remote
4833 target vector. */
4834
4835 int
4836 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4837 {
4838 struct remote_state *rs = get_remote_state ();
4839 char *buf = alloca (rs->remote_packet_size);
4840 char *p;
4841 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4842
4843 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4844 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4845 remote_protocol_Z[packet].name,
4846 remote_protocol_Z[packet].title);
4847
4848 sprintf (buf, "z%x,", packet);
4849 p = strchr (buf, '\0');
4850 addr = remote_address_masked (addr);
4851 p += hexnumstr (p, (ULONGEST) addr);
4852 sprintf (p, ",%x", len);
4853 putpkt (buf);
4854 getpkt (buf, (rs->remote_packet_size), 0);
4855
4856 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4857 {
4858 case PACKET_ERROR:
4859 case PACKET_UNKNOWN:
4860 return -1;
4861 case PACKET_OK:
4862 return 0;
4863 }
4864 internal_error (__FILE__, __LINE__,
4865 "remote_remove_watchpoint: reached end of function");
4866 }
4867
4868 /* FIXME: This function should be static and a member of the remote
4869 target vector. */
4870
4871 int
4872 remote_insert_hw_breakpoint (CORE_ADDR addr, int len)
4873 {
4874 struct remote_state *rs = get_remote_state ();
4875 char *buf = alloca (rs->remote_packet_size);
4876 char *p = buf;
4877
4878 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4879 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4880 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4881 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4882
4883 *(p++) = 'Z';
4884 *(p++) = '1';
4885 *(p++) = ',';
4886
4887 addr = remote_address_masked (addr);
4888 p += hexnumstr (p, (ULONGEST) addr);
4889 sprintf (p, ",%x", len);
4890
4891 putpkt (buf);
4892 getpkt (buf, (rs->remote_packet_size), 0);
4893
4894 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4895 {
4896 case PACKET_ERROR:
4897 case PACKET_UNKNOWN:
4898 return -1;
4899 case PACKET_OK:
4900 return 0;
4901 }
4902 internal_error (__FILE__, __LINE__,
4903 "remote_remove_watchpoint: reached end of function");
4904 }
4905
4906 /* FIXME: This function should be static and a member of the remote
4907 target vector. */
4908
4909 int
4910 remote_remove_hw_breakpoint (CORE_ADDR addr, int len)
4911 {
4912 struct remote_state *rs = get_remote_state ();
4913 char *buf = alloca (rs->remote_packet_size);
4914 char *p = buf;
4915
4916 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4917 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4918 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4919 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4920
4921 *(p++) = 'z';
4922 *(p++) = '1';
4923 *(p++) = ',';
4924
4925 addr = remote_address_masked (addr);
4926 p += hexnumstr (p, (ULONGEST) addr);
4927 sprintf (p, ",%x", len);
4928
4929 putpkt(buf);
4930 getpkt (buf, (rs->remote_packet_size), 0);
4931
4932 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4933 {
4934 case PACKET_ERROR:
4935 case PACKET_UNKNOWN:
4936 return -1;
4937 case PACKET_OK:
4938 return 0;
4939 }
4940 internal_error (__FILE__, __LINE__,
4941 "remote_remove_watchpoint: reached end of function");
4942 }
4943
4944 /* Some targets are only capable of doing downloads, and afterwards
4945 they switch to the remote serial protocol. This function provides
4946 a clean way to get from the download target to the remote target.
4947 It's basically just a wrapper so that we don't have to expose any
4948 of the internal workings of remote.c.
4949
4950 Prior to calling this routine, you should shutdown the current
4951 target code, else you will get the "A program is being debugged
4952 already..." message. Usually a call to pop_target() suffices. */
4953
4954 void
4955 push_remote_target (char *name, int from_tty)
4956 {
4957 printf_filtered ("Switching to remote protocol\n");
4958 remote_open (name, from_tty);
4959 }
4960
4961 /* Other targets want to use the entire remote serial module but with
4962 certain remote_ops overridden. */
4963
4964 void
4965 open_remote_target (char *name, int from_tty, struct target_ops *target,
4966 int extended_p)
4967 {
4968 printf_filtered ("Selecting the %sremote protocol\n",
4969 (extended_p ? "extended-" : ""));
4970 remote_open_1 (name, from_tty, target, extended_p);
4971 }
4972
4973 /* Table used by the crc32 function to calcuate the checksum. */
4974
4975 static unsigned long crc32_table[256] =
4976 {0, 0};
4977
4978 static unsigned long
4979 crc32 (unsigned char *buf, int len, unsigned int crc)
4980 {
4981 if (!crc32_table[1])
4982 {
4983 /* Initialize the CRC table and the decoding table. */
4984 int i, j;
4985 unsigned int c;
4986
4987 for (i = 0; i < 256; i++)
4988 {
4989 for (c = i << 24, j = 8; j > 0; --j)
4990 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4991 crc32_table[i] = c;
4992 }
4993 }
4994
4995 while (len--)
4996 {
4997 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4998 buf++;
4999 }
5000 return crc;
5001 }
5002
5003 /* compare-sections command
5004
5005 With no arguments, compares each loadable section in the exec bfd
5006 with the same memory range on the target, and reports mismatches.
5007 Useful for verifying the image on the target against the exec file.
5008 Depends on the target understanding the new "qCRC:" request. */
5009
5010 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5011 target method (target verify memory) and generic version of the
5012 actual command. This will allow other high-level code (especially
5013 generic_load()) to make use of this target functionality. */
5014
5015 static void
5016 compare_sections_command (char *args, int from_tty)
5017 {
5018 struct remote_state *rs = get_remote_state ();
5019 asection *s;
5020 unsigned long host_crc, target_crc;
5021 extern bfd *exec_bfd;
5022 struct cleanup *old_chain;
5023 char *tmp;
5024 char *sectdata;
5025 const char *sectname;
5026 char *buf = alloca (rs->remote_packet_size);
5027 bfd_size_type size;
5028 bfd_vma lma;
5029 int matched = 0;
5030 int mismatched = 0;
5031
5032 if (!exec_bfd)
5033 error ("command cannot be used without an exec file");
5034 if (!current_target.to_shortname ||
5035 strcmp (current_target.to_shortname, "remote") != 0)
5036 error ("command can only be used with remote target");
5037
5038 for (s = exec_bfd->sections; s; s = s->next)
5039 {
5040 if (!(s->flags & SEC_LOAD))
5041 continue; /* skip non-loadable section */
5042
5043 size = bfd_get_section_size_before_reloc (s);
5044 if (size == 0)
5045 continue; /* skip zero-length section */
5046
5047 sectname = bfd_get_section_name (exec_bfd, s);
5048 if (args && strcmp (args, sectname) != 0)
5049 continue; /* not the section selected by user */
5050
5051 matched = 1; /* do this section */
5052 lma = s->lma;
5053 /* FIXME: assumes lma can fit into long */
5054 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
5055 putpkt (buf);
5056
5057 /* be clever; compute the host_crc before waiting for target reply */
5058 sectdata = xmalloc (size);
5059 old_chain = make_cleanup (xfree, sectdata);
5060 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5061 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5062
5063 getpkt (buf, (rs->remote_packet_size), 0);
5064 if (buf[0] == 'E')
5065 error ("target memory fault, section %s, range 0x%s -- 0x%s",
5066 sectname, paddr (lma), paddr (lma + size));
5067 if (buf[0] != 'C')
5068 error ("remote target does not support this operation");
5069
5070 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
5071 target_crc = target_crc * 16 + fromhex (*tmp);
5072
5073 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5074 sectname, paddr (lma), paddr (lma + size));
5075 if (host_crc == target_crc)
5076 printf_filtered ("matched.\n");
5077 else
5078 {
5079 printf_filtered ("MIS-MATCHED!\n");
5080 mismatched++;
5081 }
5082
5083 do_cleanups (old_chain);
5084 }
5085 if (mismatched > 0)
5086 warning ("One or more sections of the remote executable does not match\n\
5087 the loaded file\n");
5088 if (args && !matched)
5089 printf_filtered ("No loaded section named '%s'.\n", args);
5090 }
5091
5092 static int
5093 remote_query (int query_type, char *buf, char *outbuf, int *bufsiz)
5094 {
5095 struct remote_state *rs = get_remote_state ();
5096 int i;
5097 char *buf2 = alloca (rs->remote_packet_size);
5098 char *p2 = &buf2[0];
5099
5100 if (!bufsiz)
5101 error ("null pointer to remote bufer size specified");
5102
5103 /* minimum outbuf size is (rs->remote_packet_size) - if bufsiz is not large enough let
5104 the caller know and return what the minimum size is */
5105 /* Note: a zero bufsiz can be used to query the minimum buffer size */
5106 if (*bufsiz < (rs->remote_packet_size))
5107 {
5108 *bufsiz = (rs->remote_packet_size);
5109 return -1;
5110 }
5111
5112 /* except for querying the minimum buffer size, target must be open */
5113 if (!remote_desc)
5114 error ("remote query is only available after target open");
5115
5116 /* we only take uppercase letters as query types, at least for now */
5117 if ((query_type < 'A') || (query_type > 'Z'))
5118 error ("invalid remote query type");
5119
5120 if (!buf)
5121 error ("null remote query specified");
5122
5123 if (!outbuf)
5124 error ("remote query requires a buffer to receive data");
5125
5126 outbuf[0] = '\0';
5127
5128 *p2++ = 'q';
5129 *p2++ = query_type;
5130
5131 /* we used one buffer char for the remote protocol q command and another
5132 for the query type. As the remote protocol encapsulation uses 4 chars
5133 plus one extra in case we are debugging (remote_debug),
5134 we have PBUFZIZ - 7 left to pack the query string */
5135 i = 0;
5136 while (buf[i] && (i < ((rs->remote_packet_size) - 8)))
5137 {
5138 /* bad caller may have sent forbidden characters */
5139 if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#'))
5140 error ("illegal characters in query string");
5141
5142 *p2++ = buf[i];
5143 i++;
5144 }
5145 *p2 = buf[i];
5146
5147 if (buf[i])
5148 error ("query larger than available buffer");
5149
5150 i = putpkt (buf2);
5151 if (i < 0)
5152 return i;
5153
5154 getpkt (outbuf, *bufsiz, 0);
5155
5156 return 0;
5157 }
5158
5159 static void
5160 remote_rcmd (char *command,
5161 struct ui_file *outbuf)
5162 {
5163 struct remote_state *rs = get_remote_state ();
5164 int i;
5165 char *buf = alloca (rs->remote_packet_size);
5166 char *p = buf;
5167
5168 if (!remote_desc)
5169 error ("remote rcmd is only available after target open");
5170
5171 /* Send a NULL command across as an empty command */
5172 if (command == NULL)
5173 command = "";
5174
5175 /* The query prefix */
5176 strcpy (buf, "qRcmd,");
5177 p = strchr (buf, '\0');
5178
5179 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5180 error ("\"monitor\" command ``%s'' is too long\n", command);
5181
5182 /* Encode the actual command */
5183 bin2hex (command, p, 0);
5184
5185 if (putpkt (buf) < 0)
5186 error ("Communication problem with target\n");
5187
5188 /* get/display the response */
5189 while (1)
5190 {
5191 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
5192 buf[0] = '\0';
5193 getpkt (buf, (rs->remote_packet_size), 0);
5194 if (buf[0] == '\0')
5195 error ("Target does not support this command\n");
5196 if (buf[0] == 'O' && buf[1] != 'K')
5197 {
5198 remote_console_output (buf + 1); /* 'O' message from stub */
5199 continue;
5200 }
5201 if (strcmp (buf, "OK") == 0)
5202 break;
5203 if (strlen (buf) == 3 && buf[0] == 'E'
5204 && isdigit (buf[1]) && isdigit (buf[2]))
5205 {
5206 error ("Protocol error with Rcmd");
5207 }
5208 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5209 {
5210 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5211 fputc_unfiltered (c, outbuf);
5212 }
5213 break;
5214 }
5215 }
5216
5217 static void
5218 packet_command (char *args, int from_tty)
5219 {
5220 struct remote_state *rs = get_remote_state ();
5221 char *buf = alloca (rs->remote_packet_size);
5222
5223 if (!remote_desc)
5224 error ("command can only be used with remote target");
5225
5226 if (!args)
5227 error ("remote-packet command requires packet text as argument");
5228
5229 puts_filtered ("sending: ");
5230 print_packet (args);
5231 puts_filtered ("\n");
5232 putpkt (args);
5233
5234 getpkt (buf, (rs->remote_packet_size), 0);
5235 puts_filtered ("received: ");
5236 print_packet (buf);
5237 puts_filtered ("\n");
5238 }
5239
5240 #if 0
5241 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5242
5243 static void display_thread_info (struct gdb_ext_thread_info *info);
5244
5245 static void threadset_test_cmd (char *cmd, int tty);
5246
5247 static void threadalive_test (char *cmd, int tty);
5248
5249 static void threadlist_test_cmd (char *cmd, int tty);
5250
5251 int get_and_display_threadinfo (threadref * ref);
5252
5253 static void threadinfo_test_cmd (char *cmd, int tty);
5254
5255 static int thread_display_step (threadref * ref, void *context);
5256
5257 static void threadlist_update_test_cmd (char *cmd, int tty);
5258
5259 static void init_remote_threadtests (void);
5260
5261 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5262
5263 static void
5264 threadset_test_cmd (char *cmd, int tty)
5265 {
5266 int sample_thread = SAMPLE_THREAD;
5267
5268 printf_filtered ("Remote threadset test\n");
5269 set_thread (sample_thread, 1);
5270 }
5271
5272
5273 static void
5274 threadalive_test (char *cmd, int tty)
5275 {
5276 int sample_thread = SAMPLE_THREAD;
5277
5278 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5279 printf_filtered ("PASS: Thread alive test\n");
5280 else
5281 printf_filtered ("FAIL: Thread alive test\n");
5282 }
5283
5284 void output_threadid (char *title, threadref * ref);
5285
5286 void
5287 output_threadid (char *title, threadref *ref)
5288 {
5289 char hexid[20];
5290
5291 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5292 hexid[16] = 0;
5293 printf_filtered ("%s %s\n", title, (&hexid[0]));
5294 }
5295
5296 static void
5297 threadlist_test_cmd (char *cmd, int tty)
5298 {
5299 int startflag = 1;
5300 threadref nextthread;
5301 int done, result_count;
5302 threadref threadlist[3];
5303
5304 printf_filtered ("Remote Threadlist test\n");
5305 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5306 &result_count, &threadlist[0]))
5307 printf_filtered ("FAIL: threadlist test\n");
5308 else
5309 {
5310 threadref *scan = threadlist;
5311 threadref *limit = scan + result_count;
5312
5313 while (scan < limit)
5314 output_threadid (" thread ", scan++);
5315 }
5316 }
5317
5318 void
5319 display_thread_info (struct gdb_ext_thread_info *info)
5320 {
5321 output_threadid ("Threadid: ", &info->threadid);
5322 printf_filtered ("Name: %s\n ", info->shortname);
5323 printf_filtered ("State: %s\n", info->display);
5324 printf_filtered ("other: %s\n\n", info->more_display);
5325 }
5326
5327 int
5328 get_and_display_threadinfo (threadref *ref)
5329 {
5330 int result;
5331 int set;
5332 struct gdb_ext_thread_info threadinfo;
5333
5334 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5335 | TAG_MOREDISPLAY | TAG_DISPLAY;
5336 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5337 display_thread_info (&threadinfo);
5338 return result;
5339 }
5340
5341 static void
5342 threadinfo_test_cmd (char *cmd, int tty)
5343 {
5344 int athread = SAMPLE_THREAD;
5345 threadref thread;
5346 int set;
5347
5348 int_to_threadref (&thread, athread);
5349 printf_filtered ("Remote Threadinfo test\n");
5350 if (!get_and_display_threadinfo (&thread))
5351 printf_filtered ("FAIL cannot get thread info\n");
5352 }
5353
5354 static int
5355 thread_display_step (threadref *ref, void *context)
5356 {
5357 /* output_threadid(" threadstep ",ref); *//* simple test */
5358 return get_and_display_threadinfo (ref);
5359 }
5360
5361 static void
5362 threadlist_update_test_cmd (char *cmd, int tty)
5363 {
5364 printf_filtered ("Remote Threadlist update test\n");
5365 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5366 }
5367
5368 static void
5369 init_remote_threadtests (void)
5370 {
5371 add_com ("tlist", class_obscure, threadlist_test_cmd,
5372 "Fetch and print the remote list of thread identifiers, one pkt only");
5373 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5374 "Fetch and display info about one thread");
5375 add_com ("tset", class_obscure, threadset_test_cmd,
5376 "Test setting to a different thread");
5377 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5378 "Iterate through updating all remote thread info");
5379 add_com ("talive", class_obscure, threadalive_test,
5380 " Remote thread alive test ");
5381 }
5382
5383 #endif /* 0 */
5384
5385 /* Convert a thread ID to a string. Returns the string in a static
5386 buffer. */
5387
5388 static char *
5389 remote_pid_to_str (ptid_t ptid)
5390 {
5391 static char buf[30];
5392
5393 sprintf (buf, "Thread %d", PIDGET (ptid));
5394 return buf;
5395 }
5396
5397 static void
5398 init_remote_ops (void)
5399 {
5400 remote_ops.to_shortname = "remote";
5401 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5402 remote_ops.to_doc =
5403 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5404 Specify the serial device it is connected to\n\
5405 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5406 remote_ops.to_open = remote_open;
5407 remote_ops.to_close = remote_close;
5408 remote_ops.to_detach = remote_detach;
5409 remote_ops.to_resume = remote_resume;
5410 remote_ops.to_wait = remote_wait;
5411 remote_ops.to_fetch_registers = remote_fetch_registers;
5412 remote_ops.to_store_registers = remote_store_registers;
5413 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5414 remote_ops.to_xfer_memory = remote_xfer_memory;
5415 remote_ops.to_files_info = remote_files_info;
5416 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5417 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5418 remote_ops.to_kill = remote_kill;
5419 remote_ops.to_load = generic_load;
5420 remote_ops.to_mourn_inferior = remote_mourn;
5421 remote_ops.to_thread_alive = remote_thread_alive;
5422 remote_ops.to_find_new_threads = remote_threads_info;
5423 remote_ops.to_pid_to_str = remote_pid_to_str;
5424 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5425 remote_ops.to_stop = remote_stop;
5426 remote_ops.to_query = remote_query;
5427 remote_ops.to_rcmd = remote_rcmd;
5428 remote_ops.to_stratum = process_stratum;
5429 remote_ops.to_has_all_memory = 1;
5430 remote_ops.to_has_memory = 1;
5431 remote_ops.to_has_stack = 1;
5432 remote_ops.to_has_registers = 1;
5433 remote_ops.to_has_execution = 1;
5434 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5435 remote_ops.to_magic = OPS_MAGIC;
5436 }
5437
5438 /* Set up the extended remote vector by making a copy of the standard
5439 remote vector and adding to it. */
5440
5441 static void
5442 init_extended_remote_ops (void)
5443 {
5444 extended_remote_ops = remote_ops;
5445
5446 extended_remote_ops.to_shortname = "extended-remote";
5447 extended_remote_ops.to_longname =
5448 "Extended remote serial target in gdb-specific protocol";
5449 extended_remote_ops.to_doc =
5450 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5451 Specify the serial device it is connected to (e.g. /dev/ttya).",
5452 extended_remote_ops.to_open = extended_remote_open;
5453 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5454 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5455 }
5456
5457 /*
5458 * Command: info remote-process
5459 *
5460 * This implements Cisco's version of the "info proc" command.
5461 *
5462 * This query allows the target stub to return an arbitrary string
5463 * (or strings) giving arbitrary information about the target process.
5464 * This is optional; the target stub isn't required to implement it.
5465 *
5466 * Syntax: qfProcessInfo request first string
5467 * qsProcessInfo request subsequent string
5468 * reply: 'O'<hex-encoded-string>
5469 * 'l' last reply (empty)
5470 */
5471
5472 static void
5473 remote_info_process (char *args, int from_tty)
5474 {
5475 struct remote_state *rs = get_remote_state ();
5476 char *buf = alloca (rs->remote_packet_size);
5477
5478 if (remote_desc == 0)
5479 error ("Command can only be used when connected to the remote target.");
5480
5481 putpkt ("qfProcessInfo");
5482 getpkt (buf, (rs->remote_packet_size), 0);
5483 if (buf[0] == 0)
5484 return; /* Silently: target does not support this feature. */
5485
5486 if (buf[0] == 'E')
5487 error ("info proc: target error.");
5488
5489 while (buf[0] == 'O') /* Capitol-O packet */
5490 {
5491 remote_console_output (&buf[1]);
5492 putpkt ("qsProcessInfo");
5493 getpkt (buf, (rs->remote_packet_size), 0);
5494 }
5495 }
5496
5497 /*
5498 * Target Cisco
5499 */
5500
5501 static void
5502 remote_cisco_open (char *name, int from_tty)
5503 {
5504 int ex;
5505 if (name == 0)
5506 error ("To open a remote debug connection, you need to specify what \n"
5507 "device is attached to the remote system (e.g. host:port).");
5508
5509 /* See FIXME above */
5510 wait_forever_enabled_p = 1;
5511
5512 target_preopen (from_tty);
5513
5514 unpush_target (&remote_cisco_ops);
5515
5516 remote_desc = remote_serial_open (name);
5517 if (!remote_desc)
5518 perror_with_name (name);
5519
5520 /*
5521 * If a baud rate was specified on the gdb command line it will
5522 * be greater than the initial value of -1. If it is, use it otherwise
5523 * default to 9600
5524 */
5525
5526 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5527 if (serial_setbaudrate (remote_desc, baud_rate))
5528 {
5529 serial_close (remote_desc);
5530 perror_with_name (name);
5531 }
5532
5533 serial_raw (remote_desc);
5534
5535 /* If there is something sitting in the buffer we might take it as a
5536 response to a command, which would be bad. */
5537 serial_flush_input (remote_desc);
5538
5539 if (from_tty)
5540 {
5541 puts_filtered ("Remote debugging using ");
5542 puts_filtered (name);
5543 puts_filtered ("\n");
5544 }
5545
5546 remote_cisco_mode = 1;
5547
5548 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5549
5550 init_all_packet_configs ();
5551
5552 general_thread = -2;
5553 continue_thread = -2;
5554
5555 /* Probe for ability to use "ThreadInfo" query, as required. */
5556 use_threadinfo_query = 1;
5557 use_threadextra_query = 1;
5558
5559 /* Without this, some commands which require an active target (such
5560 as kill) won't work. This variable serves (at least) double duty
5561 as both the pid of the target process (if it has such), and as a
5562 flag indicating that a target is active. These functions should
5563 be split out into seperate variables, especially since GDB will
5564 someday have a notion of debugging several processes. */
5565 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5566
5567 /* Start the remote connection; if error, discard this target. See
5568 the comments in remote_open_1() for further details such as the
5569 need to re-throw the exception. */
5570 ex = catch_exceptions (uiout,
5571 remote_start_remote_dummy, NULL,
5572 "Couldn't establish connection to remote"
5573 " target\n",
5574 RETURN_MASK_ALL);
5575 if (ex < 0)
5576 {
5577 pop_target ();
5578 throw_exception (ex);
5579 }
5580 }
5581
5582 static void
5583 remote_cisco_close (int quitting)
5584 {
5585 remote_cisco_mode = 0;
5586 remote_close (quitting);
5587 }
5588
5589 static void
5590 remote_cisco_mourn (void)
5591 {
5592 remote_mourn_1 (&remote_cisco_ops);
5593 }
5594
5595 enum
5596 {
5597 READ_MORE,
5598 FATAL_ERROR,
5599 ENTER_DEBUG,
5600 DISCONNECT_TELNET
5601 }
5602 minitelnet_return;
5603
5604 /* Shared between readsocket() and readtty(). The size is arbitrary,
5605 however all targets are known to support a 400 character packet. */
5606 static char tty_input[400];
5607
5608 static int escape_count;
5609 static int echo_check;
5610 extern int quit_flag;
5611
5612 static int
5613 readsocket (void)
5614 {
5615 int data;
5616
5617 /* Loop until the socket doesn't have any more data */
5618
5619 while ((data = readchar (0)) >= 0)
5620 {
5621 /* Check for the escape sequence */
5622 if (data == '|')
5623 {
5624 /* If this is the fourth escape, get out */
5625 if (++escape_count == 4)
5626 {
5627 return ENTER_DEBUG;
5628 }
5629 else
5630 { /* This is a '|', but not the fourth in a row.
5631 Continue without echoing it. If it isn't actually
5632 one of four in a row, it'll be echoed later. */
5633 continue;
5634 }
5635 }
5636 else
5637 /* Not a '|' */
5638 {
5639 /* Ensure any pending '|'s are flushed. */
5640
5641 for (; escape_count > 0; escape_count--)
5642 putchar ('|');
5643 }
5644
5645 if (data == '\r') /* If this is a return character, */
5646 continue; /* - just supress it. */
5647
5648 if (echo_check != -1) /* Check for echo of user input. */
5649 {
5650 if (tty_input[echo_check] == data)
5651 {
5652 gdb_assert (echo_check <= sizeof (tty_input));
5653 echo_check++; /* Character matched user input: */
5654 continue; /* Continue without echoing it. */
5655 }
5656 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5657 { /* End of the line (and of echo checking). */
5658 echo_check = -1; /* No more echo supression */
5659 continue; /* Continue without echoing. */
5660 }
5661 else
5662 { /* Failed check for echo of user input.
5663 We now have some suppressed output to flush! */
5664 int j;
5665
5666 for (j = 0; j < echo_check; j++)
5667 putchar (tty_input[j]);
5668 echo_check = -1;
5669 }
5670 }
5671 putchar (data); /* Default case: output the char. */
5672 }
5673
5674 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5675 return READ_MORE; /* Try to read some more */
5676 else
5677 return FATAL_ERROR; /* Trouble, bail out */
5678 }
5679
5680 static int
5681 readtty (void)
5682 {
5683 int tty_bytecount;
5684
5685 /* First, read a buffer full from the terminal */
5686 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5687 if (tty_bytecount == -1)
5688 {
5689 perror ("readtty: read failed");
5690 return FATAL_ERROR;
5691 }
5692
5693 /* Remove a quoted newline. */
5694 if (tty_input[tty_bytecount - 1] == '\n' &&
5695 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5696 {
5697 tty_input[--tty_bytecount] = 0; /* remove newline */
5698 tty_input[--tty_bytecount] = 0; /* remove backslash */
5699 }
5700
5701 /* Turn trailing newlines into returns */
5702 if (tty_input[tty_bytecount - 1] == '\n')
5703 tty_input[tty_bytecount - 1] = '\r';
5704
5705 /* If the line consists of a ~, enter debugging mode. */
5706 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5707 return ENTER_DEBUG;
5708
5709 /* Make this a zero terminated string and write it out */
5710 tty_input[tty_bytecount] = 0;
5711 if (serial_write (remote_desc, tty_input, tty_bytecount))
5712 {
5713 perror_with_name ("readtty: write failed");
5714 return FATAL_ERROR;
5715 }
5716
5717 return READ_MORE;
5718 }
5719
5720 static int
5721 minitelnet (void)
5722 {
5723 fd_set input; /* file descriptors for select */
5724 int tablesize; /* max number of FDs for select */
5725 int status;
5726 int quit_count = 0;
5727
5728 extern int escape_count; /* global shared by readsocket */
5729 extern int echo_check; /* ditto */
5730
5731 escape_count = 0;
5732 echo_check = -1;
5733
5734 tablesize = 8 * sizeof (input);
5735
5736 for (;;)
5737 {
5738 /* Check for anything from our socket - doesn't block. Note that
5739 this must be done *before* the select as there may be
5740 buffered I/O waiting to be processed. */
5741
5742 if ((status = readsocket ()) == FATAL_ERROR)
5743 {
5744 error ("Debugging terminated by communications error");
5745 }
5746 else if (status != READ_MORE)
5747 {
5748 return (status);
5749 }
5750
5751 fflush (stdout); /* Flush output before blocking */
5752
5753 /* Now block on more socket input or TTY input */
5754
5755 FD_ZERO (&input);
5756 FD_SET (fileno (stdin), &input);
5757 FD_SET (deprecated_serial_fd (remote_desc), &input);
5758
5759 status = select (tablesize, &input, 0, 0, 0);
5760 if ((status == -1) && (errno != EINTR))
5761 {
5762 error ("Communications error on select %d", errno);
5763 }
5764
5765 /* Handle Control-C typed */
5766
5767 if (quit_flag)
5768 {
5769 if ((++quit_count) == 2)
5770 {
5771 if (query ("Interrupt GDB? "))
5772 {
5773 printf_filtered ("Interrupted by user.\n");
5774 throw_exception (RETURN_QUIT);
5775 }
5776 quit_count = 0;
5777 }
5778 quit_flag = 0;
5779
5780 if (remote_break)
5781 serial_send_break (remote_desc);
5782 else
5783 serial_write (remote_desc, "\003", 1);
5784
5785 continue;
5786 }
5787
5788 /* Handle console input */
5789
5790 if (FD_ISSET (fileno (stdin), &input))
5791 {
5792 quit_count = 0;
5793 echo_check = 0;
5794 status = readtty ();
5795 if (status == READ_MORE)
5796 continue;
5797
5798 return status; /* telnet session ended */
5799 }
5800 }
5801 }
5802
5803 static ptid_t
5804 remote_cisco_wait (ptid_t ptid, struct target_waitstatus *status)
5805 {
5806 if (minitelnet () != ENTER_DEBUG)
5807 {
5808 error ("Debugging session terminated by protocol error");
5809 }
5810 putpkt ("?");
5811 return remote_wait (ptid, status);
5812 }
5813
5814 static void
5815 init_remote_cisco_ops (void)
5816 {
5817 remote_cisco_ops.to_shortname = "cisco";
5818 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5819 remote_cisco_ops.to_doc =
5820 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5821 Specify the serial device it is connected to (e.g. host:2020).";
5822 remote_cisco_ops.to_open = remote_cisco_open;
5823 remote_cisco_ops.to_close = remote_cisco_close;
5824 remote_cisco_ops.to_detach = remote_detach;
5825 remote_cisco_ops.to_resume = remote_resume;
5826 remote_cisco_ops.to_wait = remote_cisco_wait;
5827 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5828 remote_cisco_ops.to_store_registers = remote_store_registers;
5829 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5830 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5831 remote_cisco_ops.to_files_info = remote_files_info;
5832 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5833 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5834 remote_cisco_ops.to_kill = remote_kill;
5835 remote_cisco_ops.to_load = generic_load;
5836 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5837 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5838 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5839 remote_cisco_ops.to_pid_to_str = remote_pid_to_str;
5840 remote_cisco_ops.to_extra_thread_info = remote_threads_extra_info;
5841 remote_cisco_ops.to_stratum = process_stratum;
5842 remote_cisco_ops.to_has_all_memory = 1;
5843 remote_cisco_ops.to_has_memory = 1;
5844 remote_cisco_ops.to_has_stack = 1;
5845 remote_cisco_ops.to_has_registers = 1;
5846 remote_cisco_ops.to_has_execution = 1;
5847 remote_cisco_ops.to_magic = OPS_MAGIC;
5848 }
5849
5850 static int
5851 remote_can_async_p (void)
5852 {
5853 /* We're async whenever the serial device is. */
5854 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5855 }
5856
5857 static int
5858 remote_is_async_p (void)
5859 {
5860 /* We're async whenever the serial device is. */
5861 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5862 }
5863
5864 /* Pass the SERIAL event on and up to the client. One day this code
5865 will be able to delay notifying the client of an event until the
5866 point where an entire packet has been received. */
5867
5868 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5869 static void *async_client_context;
5870 static serial_event_ftype remote_async_serial_handler;
5871
5872 static void
5873 remote_async_serial_handler (struct serial *scb, void *context)
5874 {
5875 /* Don't propogate error information up to the client. Instead let
5876 the client find out about the error by querying the target. */
5877 async_client_callback (INF_REG_EVENT, async_client_context);
5878 }
5879
5880 static void
5881 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5882 {
5883 if (current_target.to_async_mask_value == 0)
5884 internal_error (__FILE__, __LINE__,
5885 "Calling remote_async when async is masked");
5886
5887 if (callback != NULL)
5888 {
5889 serial_async (remote_desc, remote_async_serial_handler, NULL);
5890 async_client_callback = callback;
5891 async_client_context = context;
5892 }
5893 else
5894 serial_async (remote_desc, NULL, NULL);
5895 }
5896
5897 /* Target async and target extended-async.
5898
5899 This are temporary targets, until it is all tested. Eventually
5900 async support will be incorporated int the usual 'remote'
5901 target. */
5902
5903 static void
5904 init_remote_async_ops (void)
5905 {
5906 remote_async_ops.to_shortname = "async";
5907 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5908 remote_async_ops.to_doc =
5909 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5910 Specify the serial device it is connected to (e.g. /dev/ttya).";
5911 remote_async_ops.to_open = remote_async_open;
5912 remote_async_ops.to_close = remote_close;
5913 remote_async_ops.to_detach = remote_async_detach;
5914 remote_async_ops.to_resume = remote_async_resume;
5915 remote_async_ops.to_wait = remote_async_wait;
5916 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5917 remote_async_ops.to_store_registers = remote_store_registers;
5918 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5919 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5920 remote_async_ops.to_files_info = remote_files_info;
5921 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5922 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5923 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5924 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5925 remote_async_ops.to_kill = remote_async_kill;
5926 remote_async_ops.to_load = generic_load;
5927 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5928 remote_async_ops.to_thread_alive = remote_thread_alive;
5929 remote_async_ops.to_find_new_threads = remote_threads_info;
5930 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5931 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5932 remote_async_ops.to_stop = remote_stop;
5933 remote_async_ops.to_query = remote_query;
5934 remote_async_ops.to_rcmd = remote_rcmd;
5935 remote_async_ops.to_stratum = process_stratum;
5936 remote_async_ops.to_has_all_memory = 1;
5937 remote_async_ops.to_has_memory = 1;
5938 remote_async_ops.to_has_stack = 1;
5939 remote_async_ops.to_has_registers = 1;
5940 remote_async_ops.to_has_execution = 1;
5941 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5942 remote_async_ops.to_can_async_p = remote_can_async_p;
5943 remote_async_ops.to_is_async_p = remote_is_async_p;
5944 remote_async_ops.to_async = remote_async;
5945 remote_async_ops.to_async_mask_value = 1;
5946 remote_async_ops.to_magic = OPS_MAGIC;
5947 }
5948
5949 /* Set up the async extended remote vector by making a copy of the standard
5950 remote vector and adding to it. */
5951
5952 static void
5953 init_extended_async_remote_ops (void)
5954 {
5955 extended_async_remote_ops = remote_async_ops;
5956
5957 extended_async_remote_ops.to_shortname = "extended-async";
5958 extended_async_remote_ops.to_longname =
5959 "Extended remote serial target in async gdb-specific protocol";
5960 extended_async_remote_ops.to_doc =
5961 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5962 Specify the serial device it is connected to (e.g. /dev/ttya).",
5963 extended_async_remote_ops.to_open = extended_remote_async_open;
5964 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5965 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5966 }
5967
5968 static void
5969 set_remote_cmd (char *args, int from_tty)
5970 {
5971 }
5972
5973 static void
5974 show_remote_cmd (char *args, int from_tty)
5975 {
5976 /* FIXME: cagney/2002-06-15: This function should iterate over
5977 remote_show_cmdlist for a list of sub commands to show. */
5978 show_remote_protocol_Z_packet_cmd (args, from_tty, NULL);
5979 show_remote_protocol_e_packet_cmd (args, from_tty, NULL);
5980 show_remote_protocol_E_packet_cmd (args, from_tty, NULL);
5981 show_remote_protocol_P_packet_cmd (args, from_tty, NULL);
5982 show_remote_protocol_qSymbol_packet_cmd (args, from_tty, NULL);
5983 show_remote_protocol_binary_download_cmd (args, from_tty, NULL);
5984 }
5985
5986 static void
5987 build_remote_gdbarch_data (void)
5988 {
5989 remote_address_size = TARGET_ADDR_BIT;
5990 }
5991
5992 /* Saved pointer to previous owner of the new_objfile event. */
5993 static void (*remote_new_objfile_chain) (struct objfile *);
5994
5995 /* Function to be called whenever a new objfile (shlib) is detected. */
5996 static void
5997 remote_new_objfile (struct objfile *objfile)
5998 {
5999 if (remote_desc != 0) /* Have a remote connection */
6000 {
6001 remote_check_symbols (objfile);
6002 }
6003 /* Call predecessor on chain, if any. */
6004 if (remote_new_objfile_chain != 0 &&
6005 remote_desc == 0)
6006 remote_new_objfile_chain (objfile);
6007 }
6008
6009 void
6010 _initialize_remote (void)
6011 {
6012 static struct cmd_list_element *remote_set_cmdlist;
6013 static struct cmd_list_element *remote_show_cmdlist;
6014 struct cmd_list_element *tmpcmd;
6015
6016 /* architecture specific data */
6017 remote_gdbarch_data_handle = register_gdbarch_data (init_remote_state,
6018 free_remote_state);
6019
6020 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6021 that the remote protocol has been initialized. */
6022 register_gdbarch_swap (&remote_address_size,
6023 sizeof (&remote_address_size), NULL);
6024 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6025
6026 init_remote_ops ();
6027 add_target (&remote_ops);
6028
6029 init_extended_remote_ops ();
6030 add_target (&extended_remote_ops);
6031
6032 init_remote_async_ops ();
6033 add_target (&remote_async_ops);
6034
6035 init_extended_async_remote_ops ();
6036 add_target (&extended_async_remote_ops);
6037
6038 init_remote_cisco_ops ();
6039 add_target (&remote_cisco_ops);
6040
6041 /* Hook into new objfile notification. */
6042 remote_new_objfile_chain = target_new_objfile_hook;
6043 target_new_objfile_hook = remote_new_objfile;
6044
6045 #if 0
6046 init_remote_threadtests ();
6047 #endif
6048
6049 /* set/show remote ... */
6050
6051 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
6052 Remote protocol specific variables\n\
6053 Configure various remote-protocol specific variables such as\n\
6054 the packets being used",
6055 &remote_set_cmdlist, "set remote ",
6056 0/*allow-unknown*/, &setlist);
6057 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
6058 Remote protocol specific variables\n\
6059 Configure various remote-protocol specific variables such as\n\
6060 the packets being used",
6061 &remote_show_cmdlist, "show remote ",
6062 0/*allow-unknown*/, &showlist);
6063
6064 add_cmd ("compare-sections", class_obscure, compare_sections_command,
6065 "Compare section data on target to the exec file.\n\
6066 Argument is a single section name (default: all loaded sections).",
6067 &cmdlist);
6068
6069 add_cmd ("packet", class_maintenance, packet_command,
6070 "Send an arbitrary packet to a remote target.\n\
6071 maintenance packet TEXT\n\
6072 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6073 this command sends the string TEXT to the inferior, and displays the\n\
6074 response packet. GDB supplies the initial `$' character, and the\n\
6075 terminating `#' character and checksum.",
6076 &maintenancelist);
6077
6078 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break,
6079 "Set whether to send break if interrupted.\n",
6080 "Show whether to send break if interrupted.\n",
6081 NULL, NULL,
6082 &setlist, &showlist);
6083
6084 /* Install commands for configuring memory read/write packets. */
6085
6086 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
6087 "Set the maximum number of bytes per memory write packet (deprecated).\n",
6088 &setlist);
6089 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
6090 "Show the maximum number of bytes per memory write packet (deprecated).\n",
6091 &showlist);
6092 add_cmd ("memory-write-packet-size", no_class,
6093 set_memory_write_packet_size,
6094 "Set the maximum number of bytes per memory-write packet.\n"
6095 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6096 "default packet size. The actual limit is further reduced\n"
6097 "dependent on the target. Specify ``fixed'' to disable the\n"
6098 "further restriction and ``limit'' to enable that restriction\n",
6099 &remote_set_cmdlist);
6100 add_cmd ("memory-read-packet-size", no_class,
6101 set_memory_read_packet_size,
6102 "Set the maximum number of bytes per memory-read packet.\n"
6103 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6104 "default packet size. The actual limit is further reduced\n"
6105 "dependent on the target. Specify ``fixed'' to disable the\n"
6106 "further restriction and ``limit'' to enable that restriction\n",
6107 &remote_set_cmdlist);
6108 add_cmd ("memory-write-packet-size", no_class,
6109 show_memory_write_packet_size,
6110 "Show the maximum number of bytes per memory-write packet.\n",
6111 &remote_show_cmdlist);
6112 add_cmd ("memory-read-packet-size", no_class,
6113 show_memory_read_packet_size,
6114 "Show the maximum number of bytes per memory-read packet.\n",
6115 &remote_show_cmdlist);
6116
6117 add_show_from_set
6118 (add_set_cmd ("remoteaddresssize", class_obscure,
6119 var_integer, (char *) &remote_address_size,
6120 "Set the maximum size of the address (in bits) \
6121 in a memory packet.\n",
6122 &setlist),
6123 &showlist);
6124
6125 add_packet_config_cmd (&remote_protocol_binary_download,
6126 "X", "binary-download",
6127 set_remote_protocol_binary_download_cmd,
6128 show_remote_protocol_binary_download_cmd,
6129 &remote_set_cmdlist, &remote_show_cmdlist,
6130 1);
6131 #if 0
6132 /* XXXX - should ``set remotebinarydownload'' be retained for
6133 compatibility. */
6134 add_show_from_set
6135 (add_set_cmd ("remotebinarydownload", no_class,
6136 var_boolean, (char *) &remote_binary_download,
6137 "Set binary downloads.\n", &setlist),
6138 &showlist);
6139 #endif
6140
6141 add_info ("remote-process", remote_info_process,
6142 "Query the remote system for process info.");
6143
6144 add_packet_config_cmd (&remote_protocol_qSymbol,
6145 "qSymbol", "symbol-lookup",
6146 set_remote_protocol_qSymbol_packet_cmd,
6147 show_remote_protocol_qSymbol_packet_cmd,
6148 &remote_set_cmdlist, &remote_show_cmdlist,
6149 0);
6150
6151 add_packet_config_cmd (&remote_protocol_e,
6152 "e", "step-over-range",
6153 set_remote_protocol_e_packet_cmd,
6154 show_remote_protocol_e_packet_cmd,
6155 &remote_set_cmdlist, &remote_show_cmdlist,
6156 0);
6157 /* Disable by default. The ``e'' packet has nasty interactions with
6158 the threading code - it relies on global state. */
6159 remote_protocol_e.detect = AUTO_BOOLEAN_FALSE;
6160 update_packet_config (&remote_protocol_e);
6161
6162 add_packet_config_cmd (&remote_protocol_E,
6163 "E", "step-over-range-w-signal",
6164 set_remote_protocol_E_packet_cmd,
6165 show_remote_protocol_E_packet_cmd,
6166 &remote_set_cmdlist, &remote_show_cmdlist,
6167 0);
6168 /* Disable by default. The ``e'' packet has nasty interactions with
6169 the threading code - it relies on global state. */
6170 remote_protocol_E.detect = AUTO_BOOLEAN_FALSE;
6171 update_packet_config (&remote_protocol_E);
6172
6173 add_packet_config_cmd (&remote_protocol_P,
6174 "P", "set-register",
6175 set_remote_protocol_P_packet_cmd,
6176 show_remote_protocol_P_packet_cmd,
6177 &remote_set_cmdlist, &remote_show_cmdlist,
6178 1);
6179
6180 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
6181 "Z0", "software-breakpoint",
6182 set_remote_protocol_Z_software_bp_packet_cmd,
6183 show_remote_protocol_Z_software_bp_packet_cmd,
6184 &remote_set_cmdlist, &remote_show_cmdlist,
6185 0);
6186
6187 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
6188 "Z1", "hardware-breakpoint",
6189 set_remote_protocol_Z_hardware_bp_packet_cmd,
6190 show_remote_protocol_Z_hardware_bp_packet_cmd,
6191 &remote_set_cmdlist, &remote_show_cmdlist,
6192 0);
6193
6194 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
6195 "Z2", "write-watchpoint",
6196 set_remote_protocol_Z_write_wp_packet_cmd,
6197 show_remote_protocol_Z_write_wp_packet_cmd,
6198 &remote_set_cmdlist, &remote_show_cmdlist,
6199 0);
6200
6201 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
6202 "Z3", "read-watchpoint",
6203 set_remote_protocol_Z_read_wp_packet_cmd,
6204 show_remote_protocol_Z_read_wp_packet_cmd,
6205 &remote_set_cmdlist, &remote_show_cmdlist,
6206 0);
6207
6208 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
6209 "Z4", "access-watchpoint",
6210 set_remote_protocol_Z_access_wp_packet_cmd,
6211 show_remote_protocol_Z_access_wp_packet_cmd,
6212 &remote_set_cmdlist, &remote_show_cmdlist,
6213 0);
6214
6215 /* Keep the old ``set remote Z-packet ...'' working. */
6216 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6217 &remote_Z_packet_detect, "\
6218 Set use of remote protocol `Z' packets",
6219 "Show use of remote protocol `Z' packets ",
6220 set_remote_protocol_Z_packet_cmd,
6221 show_remote_protocol_Z_packet_cmd,
6222 &remote_set_cmdlist, &remote_show_cmdlist);
6223 }