]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
39bdd2e4ab08246b9c8fde9198f4c87ebb27c0a0
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82 #include "gdbsupport/selftest.h"
83
84 /* The remote target. */
85
86 static const char remote_doc[] = N_("\
87 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
88 Specify the serial device it is connected to\n\
89 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
90
91 /* See remote.h */
92
93 bool remote_debug = false;
94
95 #define OPAQUETHREADBYTES 8
96
97 /* a 64 bit opaque identifier */
98 typedef unsigned char threadref[OPAQUETHREADBYTES];
99
100 struct gdb_ext_thread_info;
101 struct threads_listing_context;
102 typedef int (*rmt_thread_action) (threadref *ref, void *context);
103 struct protocol_feature;
104 struct packet_reg;
105
106 struct stop_reply;
107 typedef std::unique_ptr<stop_reply> stop_reply_up;
108
109 /* Generic configuration support for packets the stub optionally
110 supports. Allows the user to specify the use of the packet as well
111 as allowing GDB to auto-detect support in the remote stub. */
112
113 enum packet_support
114 {
115 PACKET_SUPPORT_UNKNOWN = 0,
116 PACKET_ENABLE,
117 PACKET_DISABLE
118 };
119
120 /* Analyze a packet's return value and update the packet config
121 accordingly. */
122
123 enum packet_result
124 {
125 PACKET_ERROR,
126 PACKET_OK,
127 PACKET_UNKNOWN
128 };
129
130 struct threads_listing_context;
131
132 /* Stub vCont actions support.
133
134 Each field is a boolean flag indicating whether the stub reports
135 support for the corresponding action. */
136
137 struct vCont_action_support
138 {
139 /* vCont;t */
140 bool t = false;
141
142 /* vCont;r */
143 bool r = false;
144
145 /* vCont;s */
146 bool s = false;
147
148 /* vCont;S */
149 bool S = false;
150 };
151
152 /* About this many threadids fit in a packet. */
153
154 #define MAXTHREADLISTRESULTS 32
155
156 /* Data for the vFile:pread readahead cache. */
157
158 struct readahead_cache
159 {
160 /* Invalidate the readahead cache. */
161 void invalidate ();
162
163 /* Invalidate the readahead cache if it is holding data for FD. */
164 void invalidate_fd (int fd);
165
166 /* Serve pread from the readahead cache. Returns number of bytes
167 read, or 0 if the request can't be served from the cache. */
168 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
169
170 /* The file descriptor for the file that is being cached. -1 if the
171 cache is invalid. */
172 int fd = -1;
173
174 /* The offset into the file that the cache buffer corresponds
175 to. */
176 ULONGEST offset = 0;
177
178 /* The buffer holding the cache contents. */
179 gdb_byte *buf = nullptr;
180 /* The buffer's size. We try to read as much as fits into a packet
181 at a time. */
182 size_t bufsize = 0;
183
184 /* Cache hit and miss counters. */
185 ULONGEST hit_count = 0;
186 ULONGEST miss_count = 0;
187 };
188
189 /* Description of the remote protocol for a given architecture. */
190
191 struct packet_reg
192 {
193 long offset; /* Offset into G packet. */
194 long regnum; /* GDB's internal register number. */
195 LONGEST pnum; /* Remote protocol register number. */
196 int in_g_packet; /* Always part of G packet. */
197 /* long size in bytes; == register_size (target_gdbarch (), regnum);
198 at present. */
199 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
200 at present. */
201 };
202
203 struct remote_arch_state
204 {
205 explicit remote_arch_state (struct gdbarch *gdbarch);
206
207 /* Description of the remote protocol registers. */
208 long sizeof_g_packet;
209
210 /* Description of the remote protocol registers indexed by REGNUM
211 (making an array gdbarch_num_regs in size). */
212 std::unique_ptr<packet_reg[]> regs;
213
214 /* This is the size (in chars) of the first response to the ``g''
215 packet. It is used as a heuristic when determining the maximum
216 size of memory-read and memory-write packets. A target will
217 typically only reserve a buffer large enough to hold the ``g''
218 packet. The size does not include packet overhead (headers and
219 trailers). */
220 long actual_register_packet_size;
221
222 /* This is the maximum size (in chars) of a non read/write packet.
223 It is also used as a cap on the size of read/write packets. */
224 long remote_packet_size;
225 };
226
227 /* Description of the remote protocol state for the currently
228 connected target. This is per-target state, and independent of the
229 selected architecture. */
230
231 class remote_state
232 {
233 public:
234
235 remote_state ();
236 ~remote_state ();
237
238 /* Get the remote arch state for GDBARCH. */
239 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
240
241 public: /* data */
242
243 /* A buffer to use for incoming packets, and its current size. The
244 buffer is grown dynamically for larger incoming packets.
245 Outgoing packets may also be constructed in this buffer.
246 The size of the buffer is always at least REMOTE_PACKET_SIZE;
247 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
248 packets. */
249 gdb::char_vector buf;
250
251 /* True if we're going through initial connection setup (finding out
252 about the remote side's threads, relocating symbols, etc.). */
253 bool starting_up = false;
254
255 /* If we negotiated packet size explicitly (and thus can bypass
256 heuristics for the largest packet size that will not overflow
257 a buffer in the stub), this will be set to that packet size.
258 Otherwise zero, meaning to use the guessed size. */
259 long explicit_packet_size = 0;
260
261 /* remote_wait is normally called when the target is running and
262 waits for a stop reply packet. But sometimes we need to call it
263 when the target is already stopped. We can send a "?" packet
264 and have remote_wait read the response. Or, if we already have
265 the response, we can stash it in BUF and tell remote_wait to
266 skip calling getpkt. This flag is set when BUF contains a
267 stop reply packet and the target is not waiting. */
268 int cached_wait_status = 0;
269
270 /* True, if in no ack mode. That is, neither GDB nor the stub will
271 expect acks from each other. The connection is assumed to be
272 reliable. */
273 bool noack_mode = false;
274
275 /* True if we're connected in extended remote mode. */
276 bool extended = false;
277
278 /* True if we resumed the target and we're waiting for the target to
279 stop. In the mean time, we can't start another command/query.
280 The remote server wouldn't be ready to process it, so we'd
281 timeout waiting for a reply that would never come and eventually
282 we'd close the connection. This can happen in asynchronous mode
283 because we allow GDB commands while the target is running. */
284 bool waiting_for_stop_reply = false;
285
286 /* The status of the stub support for the various vCont actions. */
287 vCont_action_support supports_vCont;
288 /* Whether vCont support was probed already. This is a workaround
289 until packet_support is per-connection. */
290 bool supports_vCont_probed;
291
292 /* True if the user has pressed Ctrl-C, but the target hasn't
293 responded to that. */
294 bool ctrlc_pending_p = false;
295
296 /* True if we saw a Ctrl-C while reading or writing from/to the
297 remote descriptor. At that point it is not safe to send a remote
298 interrupt packet, so we instead remember we saw the Ctrl-C and
299 process it once we're done with sending/receiving the current
300 packet, which should be shortly. If however that takes too long,
301 and the user presses Ctrl-C again, we offer to disconnect. */
302 bool got_ctrlc_during_io = false;
303
304 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
305 remote_open knows that we don't have a file open when the program
306 starts. */
307 struct serial *remote_desc = nullptr;
308
309 /* These are the threads which we last sent to the remote system. The
310 TID member will be -1 for all or -2 for not sent yet. */
311 ptid_t general_thread = null_ptid;
312 ptid_t continue_thread = null_ptid;
313
314 /* This is the traceframe which we last selected on the remote system.
315 It will be -1 if no traceframe is selected. */
316 int remote_traceframe_number = -1;
317
318 char *last_pass_packet = nullptr;
319
320 /* The last QProgramSignals packet sent to the target. We bypass
321 sending a new program signals list down to the target if the new
322 packet is exactly the same as the last we sent. IOW, we only let
323 the target know about program signals list changes. */
324 char *last_program_signals_packet = nullptr;
325
326 gdb_signal last_sent_signal = GDB_SIGNAL_0;
327
328 bool last_sent_step = false;
329
330 /* The execution direction of the last resume we got. */
331 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
332
333 char *finished_object = nullptr;
334 char *finished_annex = nullptr;
335 ULONGEST finished_offset = 0;
336
337 /* Should we try the 'ThreadInfo' query packet?
338
339 This variable (NOT available to the user: auto-detect only!)
340 determines whether GDB will use the new, simpler "ThreadInfo"
341 query or the older, more complex syntax for thread queries.
342 This is an auto-detect variable (set to true at each connect,
343 and set to false when the target fails to recognize it). */
344 bool use_threadinfo_query = false;
345 bool use_threadextra_query = false;
346
347 threadref echo_nextthread {};
348 threadref nextthread {};
349 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
350
351 /* The state of remote notification. */
352 struct remote_notif_state *notif_state = nullptr;
353
354 /* The branch trace configuration. */
355 struct btrace_config btrace_config {};
356
357 /* The argument to the last "vFile:setfs:" packet we sent, used
358 to avoid sending repeated unnecessary "vFile:setfs:" packets.
359 Initialized to -1 to indicate that no "vFile:setfs:" packet
360 has yet been sent. */
361 int fs_pid = -1;
362
363 /* A readahead cache for vFile:pread. Often, reading a binary
364 involves a sequence of small reads. E.g., when parsing an ELF
365 file. A readahead cache helps mostly the case of remote
366 debugging on a connection with higher latency, due to the
367 request/reply nature of the RSP. We only cache data for a single
368 file descriptor at a time. */
369 struct readahead_cache readahead_cache;
370
371 /* The list of already fetched and acknowledged stop events. This
372 queue is used for notification Stop, and other notifications
373 don't need queue for their events, because the notification
374 events of Stop can't be consumed immediately, so that events
375 should be queued first, and be consumed by remote_wait_{ns,as}
376 one per time. Other notifications can consume their events
377 immediately, so queue is not needed for them. */
378 std::vector<stop_reply_up> stop_reply_queue;
379
380 /* Asynchronous signal handle registered as event loop source for
381 when we have pending events ready to be passed to the core. */
382 struct async_event_handler *remote_async_inferior_event_token = nullptr;
383
384 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
385 ``forever'' still use the normal timeout mechanism. This is
386 currently used by the ASYNC code to guarentee that target reads
387 during the initial connect always time-out. Once getpkt has been
388 modified to return a timeout indication and, in turn
389 remote_wait()/wait_for_inferior() have gained a timeout parameter
390 this can go away. */
391 int wait_forever_enabled_p = 1;
392
393 private:
394 /* Mapping of remote protocol data for each gdbarch. Usually there
395 is only one entry here, though we may see more with stubs that
396 support multi-process. */
397 std::unordered_map<struct gdbarch *, remote_arch_state>
398 m_arch_states;
399 };
400
401 static const target_info remote_target_info = {
402 "remote",
403 N_("Remote serial target in gdb-specific protocol"),
404 remote_doc
405 };
406
407 class remote_target : public process_stratum_target
408 {
409 public:
410 remote_target () = default;
411 ~remote_target () override;
412
413 const target_info &info () const override
414 { return remote_target_info; }
415
416 const char *connection_string () override;
417
418 thread_control_capabilities get_thread_control_capabilities () override
419 { return tc_schedlock; }
420
421 /* Open a remote connection. */
422 static void open (const char *, int);
423
424 void close () override;
425
426 void detach (inferior *, int) override;
427 void disconnect (const char *, int) override;
428
429 void commit_resumed () override;
430 void resume (ptid_t, int, enum gdb_signal) override;
431 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
432 bool has_pending_events () override;
433
434 void fetch_registers (struct regcache *, int) override;
435 void store_registers (struct regcache *, int) override;
436 void prepare_to_store (struct regcache *) override;
437
438 void files_info () override;
439
440 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
441
442 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
443 enum remove_bp_reason) override;
444
445
446 bool stopped_by_sw_breakpoint () override;
447 bool supports_stopped_by_sw_breakpoint () override;
448
449 bool stopped_by_hw_breakpoint () override;
450
451 bool supports_stopped_by_hw_breakpoint () override;
452
453 bool stopped_by_watchpoint () override;
454
455 bool stopped_data_address (CORE_ADDR *) override;
456
457 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
458
459 int can_use_hw_breakpoint (enum bptype, int, int) override;
460
461 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
464
465 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
466
467 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
468 struct expression *) override;
469
470 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
471 struct expression *) override;
472
473 void kill () override;
474
475 void load (const char *, int) override;
476
477 void mourn_inferior () override;
478
479 void pass_signals (gdb::array_view<const unsigned char>) override;
480
481 int set_syscall_catchpoint (int, bool, int,
482 gdb::array_view<const int>) override;
483
484 void program_signals (gdb::array_view<const unsigned char>) override;
485
486 bool thread_alive (ptid_t ptid) override;
487
488 const char *thread_name (struct thread_info *) override;
489
490 void update_thread_list () override;
491
492 std::string pid_to_str (ptid_t) override;
493
494 const char *extra_thread_info (struct thread_info *) override;
495
496 ptid_t get_ada_task_ptid (long lwp, long thread) override;
497
498 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
499 int handle_len,
500 inferior *inf) override;
501
502 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
503 override;
504
505 void stop (ptid_t) override;
506
507 void interrupt () override;
508
509 void pass_ctrlc () override;
510
511 enum target_xfer_status xfer_partial (enum target_object object,
512 const char *annex,
513 gdb_byte *readbuf,
514 const gdb_byte *writebuf,
515 ULONGEST offset, ULONGEST len,
516 ULONGEST *xfered_len) override;
517
518 ULONGEST get_memory_xfer_limit () override;
519
520 void rcmd (const char *command, struct ui_file *output) override;
521
522 char *pid_to_exec_file (int pid) override;
523
524 void log_command (const char *cmd) override
525 {
526 serial_log_command (this, cmd);
527 }
528
529 CORE_ADDR get_thread_local_address (ptid_t ptid,
530 CORE_ADDR load_module_addr,
531 CORE_ADDR offset) override;
532
533 bool can_execute_reverse () override;
534
535 std::vector<mem_region> memory_map () override;
536
537 void flash_erase (ULONGEST address, LONGEST length) override;
538
539 void flash_done () override;
540
541 const struct target_desc *read_description () override;
542
543 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
544 const gdb_byte *pattern, ULONGEST pattern_len,
545 CORE_ADDR *found_addrp) override;
546
547 bool can_async_p () override;
548
549 bool is_async_p () override;
550
551 void async (int) override;
552
553 int async_wait_fd () override;
554
555 void thread_events (int) override;
556
557 int can_do_single_step () override;
558
559 void terminal_inferior () override;
560
561 void terminal_ours () override;
562
563 bool supports_non_stop () override;
564
565 bool supports_multi_process () override;
566
567 bool supports_disable_randomization () override;
568
569 bool filesystem_is_local () override;
570
571
572 int fileio_open (struct inferior *inf, const char *filename,
573 int flags, int mode, int warn_if_slow,
574 int *target_errno) override;
575
576 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
577 ULONGEST offset, int *target_errno) override;
578
579 int fileio_pread (int fd, gdb_byte *read_buf, int len,
580 ULONGEST offset, int *target_errno) override;
581
582 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
583
584 int fileio_close (int fd, int *target_errno) override;
585
586 int fileio_unlink (struct inferior *inf,
587 const char *filename,
588 int *target_errno) override;
589
590 gdb::optional<std::string>
591 fileio_readlink (struct inferior *inf,
592 const char *filename,
593 int *target_errno) override;
594
595 bool supports_enable_disable_tracepoint () override;
596
597 bool supports_string_tracing () override;
598
599 bool supports_evaluation_of_breakpoint_conditions () override;
600
601 bool can_run_breakpoint_commands () override;
602
603 void trace_init () override;
604
605 void download_tracepoint (struct bp_location *location) override;
606
607 bool can_download_tracepoint () override;
608
609 void download_trace_state_variable (const trace_state_variable &tsv) override;
610
611 void enable_tracepoint (struct bp_location *location) override;
612
613 void disable_tracepoint (struct bp_location *location) override;
614
615 void trace_set_readonly_regions () override;
616
617 void trace_start () override;
618
619 int get_trace_status (struct trace_status *ts) override;
620
621 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
622 override;
623
624 void trace_stop () override;
625
626 int trace_find (enum trace_find_type type, int num,
627 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
628
629 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
630
631 int save_trace_data (const char *filename) override;
632
633 int upload_tracepoints (struct uploaded_tp **utpp) override;
634
635 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
636
637 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
638
639 int get_min_fast_tracepoint_insn_len () override;
640
641 void set_disconnected_tracing (int val) override;
642
643 void set_circular_trace_buffer (int val) override;
644
645 void set_trace_buffer_size (LONGEST val) override;
646
647 bool set_trace_notes (const char *user, const char *notes,
648 const char *stopnotes) override;
649
650 int core_of_thread (ptid_t ptid) override;
651
652 int verify_memory (const gdb_byte *data,
653 CORE_ADDR memaddr, ULONGEST size) override;
654
655
656 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
657
658 void set_permissions () override;
659
660 bool static_tracepoint_marker_at (CORE_ADDR,
661 struct static_tracepoint_marker *marker)
662 override;
663
664 std::vector<static_tracepoint_marker>
665 static_tracepoint_markers_by_strid (const char *id) override;
666
667 traceframe_info_up traceframe_info () override;
668
669 bool use_agent (bool use) override;
670 bool can_use_agent () override;
671
672 struct btrace_target_info *enable_btrace (ptid_t ptid,
673 const struct btrace_config *conf) override;
674
675 void disable_btrace (struct btrace_target_info *tinfo) override;
676
677 void teardown_btrace (struct btrace_target_info *tinfo) override;
678
679 enum btrace_error read_btrace (struct btrace_data *data,
680 struct btrace_target_info *btinfo,
681 enum btrace_read_type type) override;
682
683 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
684 bool augmented_libraries_svr4_read () override;
685 void follow_fork (bool, bool) override;
686 void follow_exec (inferior *, ptid_t, const char *) override;
687 int insert_fork_catchpoint (int) override;
688 int remove_fork_catchpoint (int) override;
689 int insert_vfork_catchpoint (int) override;
690 int remove_vfork_catchpoint (int) override;
691 int insert_exec_catchpoint (int) override;
692 int remove_exec_catchpoint (int) override;
693 enum exec_direction_kind execution_direction () override;
694
695 bool supports_memory_tagging () override;
696
697 bool fetch_memtags (CORE_ADDR address, size_t len,
698 gdb::byte_vector &tags, int type) override;
699
700 bool store_memtags (CORE_ADDR address, size_t len,
701 const gdb::byte_vector &tags, int type) override;
702
703 public: /* Remote specific methods. */
704
705 void remote_download_command_source (int num, ULONGEST addr,
706 struct command_line *cmds);
707
708 void remote_file_put (const char *local_file, const char *remote_file,
709 int from_tty);
710 void remote_file_get (const char *remote_file, const char *local_file,
711 int from_tty);
712 void remote_file_delete (const char *remote_file, int from_tty);
713
714 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
715 ULONGEST offset, int *remote_errno);
716 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
717 ULONGEST offset, int *remote_errno);
718 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
719 ULONGEST offset, int *remote_errno);
720
721 int remote_hostio_send_command (int command_bytes, int which_packet,
722 int *remote_errno, const char **attachment,
723 int *attachment_len);
724 int remote_hostio_set_filesystem (struct inferior *inf,
725 int *remote_errno);
726 /* We should get rid of this and use fileio_open directly. */
727 int remote_hostio_open (struct inferior *inf, const char *filename,
728 int flags, int mode, int warn_if_slow,
729 int *remote_errno);
730 int remote_hostio_close (int fd, int *remote_errno);
731
732 int remote_hostio_unlink (inferior *inf, const char *filename,
733 int *remote_errno);
734
735 struct remote_state *get_remote_state ();
736
737 long get_remote_packet_size (void);
738 long get_memory_packet_size (struct memory_packet_config *config);
739
740 long get_memory_write_packet_size ();
741 long get_memory_read_packet_size ();
742
743 char *append_pending_thread_resumptions (char *p, char *endp,
744 ptid_t ptid);
745 static void open_1 (const char *name, int from_tty, int extended_p);
746 void start_remote (int from_tty, int extended_p);
747 void remote_detach_1 (struct inferior *inf, int from_tty);
748
749 char *append_resumption (char *p, char *endp,
750 ptid_t ptid, int step, gdb_signal siggnal);
751 int remote_resume_with_vcont (ptid_t ptid, int step,
752 gdb_signal siggnal);
753
754 thread_info *add_current_inferior_and_thread (const char *wait_status);
755
756 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
757 target_wait_flags options);
758 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
759 target_wait_flags options);
760
761 ptid_t process_stop_reply (struct stop_reply *stop_reply,
762 target_waitstatus *status);
763
764 ptid_t select_thread_for_ambiguous_stop_reply
765 (const struct target_waitstatus *status);
766
767 void remote_notice_new_inferior (ptid_t currthread, bool executing);
768
769 void process_initial_stop_replies (int from_tty);
770
771 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
772
773 void btrace_sync_conf (const btrace_config *conf);
774
775 void remote_btrace_maybe_reopen ();
776
777 void remove_new_fork_children (threads_listing_context *context);
778 void kill_new_fork_children (int pid);
779 void discard_pending_stop_replies (struct inferior *inf);
780 int stop_reply_queue_length ();
781
782 void check_pending_events_prevent_wildcard_vcont
783 (bool *may_global_wildcard_vcont);
784
785 void discard_pending_stop_replies_in_queue ();
786 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
787 struct stop_reply *queued_stop_reply (ptid_t ptid);
788 int peek_stop_reply (ptid_t ptid);
789 void remote_parse_stop_reply (const char *buf, stop_reply *event);
790
791 void remote_stop_ns (ptid_t ptid);
792 void remote_interrupt_as ();
793 void remote_interrupt_ns ();
794
795 char *remote_get_noisy_reply ();
796 int remote_query_attached (int pid);
797 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
798 int try_open_exec);
799
800 ptid_t remote_current_thread (ptid_t oldpid);
801 ptid_t get_current_thread (const char *wait_status);
802
803 void set_thread (ptid_t ptid, int gen);
804 void set_general_thread (ptid_t ptid);
805 void set_continue_thread (ptid_t ptid);
806 void set_general_process ();
807
808 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
809
810 int remote_unpack_thread_info_response (const char *pkt, threadref *expectedref,
811 gdb_ext_thread_info *info);
812 int remote_get_threadinfo (threadref *threadid, int fieldset,
813 gdb_ext_thread_info *info);
814
815 int parse_threadlist_response (const char *pkt, int result_limit,
816 threadref *original_echo,
817 threadref *resultlist,
818 int *doneflag);
819 int remote_get_threadlist (int startflag, threadref *nextthread,
820 int result_limit, int *done, int *result_count,
821 threadref *threadlist);
822
823 int remote_threadlist_iterator (rmt_thread_action stepfunction,
824 void *context, int looplimit);
825
826 int remote_get_threads_with_ql (threads_listing_context *context);
827 int remote_get_threads_with_qxfer (threads_listing_context *context);
828 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
829
830 void extended_remote_restart ();
831
832 void get_offsets ();
833
834 void remote_check_symbols ();
835
836 void remote_supported_packet (const struct protocol_feature *feature,
837 enum packet_support support,
838 const char *argument);
839
840 void remote_query_supported ();
841
842 void remote_packet_size (const protocol_feature *feature,
843 packet_support support, const char *value);
844
845 void remote_serial_quit_handler ();
846
847 void remote_detach_pid (int pid);
848
849 void remote_vcont_probe ();
850
851 void remote_resume_with_hc (ptid_t ptid, int step,
852 gdb_signal siggnal);
853
854 void send_interrupt_sequence ();
855 void interrupt_query ();
856
857 void remote_notif_get_pending_events (notif_client *nc);
858
859 int fetch_register_using_p (struct regcache *regcache,
860 packet_reg *reg);
861 int send_g_packet ();
862 void process_g_packet (struct regcache *regcache);
863 void fetch_registers_using_g (struct regcache *regcache);
864 int store_register_using_P (const struct regcache *regcache,
865 packet_reg *reg);
866 void store_registers_using_G (const struct regcache *regcache);
867
868 void set_remote_traceframe ();
869
870 void check_binary_download (CORE_ADDR addr);
871
872 target_xfer_status remote_write_bytes_aux (const char *header,
873 CORE_ADDR memaddr,
874 const gdb_byte *myaddr,
875 ULONGEST len_units,
876 int unit_size,
877 ULONGEST *xfered_len_units,
878 char packet_format,
879 int use_length);
880
881 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
882 const gdb_byte *myaddr, ULONGEST len,
883 int unit_size, ULONGEST *xfered_len);
884
885 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
886 ULONGEST len_units,
887 int unit_size, ULONGEST *xfered_len_units);
888
889 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
890 ULONGEST memaddr,
891 ULONGEST len,
892 int unit_size,
893 ULONGEST *xfered_len);
894
895 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
896 gdb_byte *myaddr, ULONGEST len,
897 int unit_size,
898 ULONGEST *xfered_len);
899
900 packet_result remote_send_printf (const char *format, ...)
901 ATTRIBUTE_PRINTF (2, 3);
902
903 target_xfer_status remote_flash_write (ULONGEST address,
904 ULONGEST length, ULONGEST *xfered_len,
905 const gdb_byte *data);
906
907 int readchar (int timeout);
908
909 void remote_serial_write (const char *str, int len);
910
911 int putpkt (const char *buf);
912 int putpkt_binary (const char *buf, int cnt);
913
914 int putpkt (const gdb::char_vector &buf)
915 {
916 return putpkt (buf.data ());
917 }
918
919 void skip_frame ();
920 long read_frame (gdb::char_vector *buf_p);
921 void getpkt (gdb::char_vector *buf, int forever);
922 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
923 int expecting_notif, int *is_notif);
924 int getpkt_sane (gdb::char_vector *buf, int forever);
925 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
926 int *is_notif);
927 int remote_vkill (int pid);
928 void remote_kill_k ();
929
930 void extended_remote_disable_randomization (int val);
931 int extended_remote_run (const std::string &args);
932
933 void send_environment_packet (const char *action,
934 const char *packet,
935 const char *value);
936
937 void extended_remote_environment_support ();
938 void extended_remote_set_inferior_cwd ();
939
940 target_xfer_status remote_write_qxfer (const char *object_name,
941 const char *annex,
942 const gdb_byte *writebuf,
943 ULONGEST offset, LONGEST len,
944 ULONGEST *xfered_len,
945 struct packet_config *packet);
946
947 target_xfer_status remote_read_qxfer (const char *object_name,
948 const char *annex,
949 gdb_byte *readbuf, ULONGEST offset,
950 LONGEST len,
951 ULONGEST *xfered_len,
952 struct packet_config *packet);
953
954 void push_stop_reply (struct stop_reply *new_event);
955
956 bool vcont_r_supported ();
957
958 void packet_command (const char *args, int from_tty);
959
960 private: /* data fields */
961
962 /* The remote state. Don't reference this directly. Use the
963 get_remote_state method instead. */
964 remote_state m_remote_state;
965 };
966
967 static const target_info extended_remote_target_info = {
968 "extended-remote",
969 N_("Extended remote serial target in gdb-specific protocol"),
970 remote_doc
971 };
972
973 /* Set up the extended remote target by extending the standard remote
974 target and adding to it. */
975
976 class extended_remote_target final : public remote_target
977 {
978 public:
979 const target_info &info () const override
980 { return extended_remote_target_info; }
981
982 /* Open an extended-remote connection. */
983 static void open (const char *, int);
984
985 bool can_create_inferior () override { return true; }
986 void create_inferior (const char *, const std::string &,
987 char **, int) override;
988
989 void detach (inferior *, int) override;
990
991 bool can_attach () override { return true; }
992 void attach (const char *, int) override;
993
994 void post_attach (int) override;
995 bool supports_disable_randomization () override;
996 };
997
998 /* Per-program-space data key. */
999 static const struct program_space_key<char, gdb::xfree_deleter<char>>
1000 remote_pspace_data;
1001
1002 /* The variable registered as the control variable used by the
1003 remote exec-file commands. While the remote exec-file setting is
1004 per-program-space, the set/show machinery uses this as the
1005 location of the remote exec-file value. */
1006 static char *remote_exec_file_var;
1007
1008 /* The size to align memory write packets, when practical. The protocol
1009 does not guarantee any alignment, and gdb will generate short
1010 writes and unaligned writes, but even as a best-effort attempt this
1011 can improve bulk transfers. For instance, if a write is misaligned
1012 relative to the target's data bus, the stub may need to make an extra
1013 round trip fetching data from the target. This doesn't make a
1014 huge difference, but it's easy to do, so we try to be helpful.
1015
1016 The alignment chosen is arbitrary; usually data bus width is
1017 important here, not the possibly larger cache line size. */
1018 enum { REMOTE_ALIGN_WRITES = 16 };
1019
1020 /* Prototypes for local functions. */
1021
1022 static int hexnumlen (ULONGEST num);
1023
1024 static int stubhex (int ch);
1025
1026 static int hexnumstr (char *, ULONGEST);
1027
1028 static int hexnumnstr (char *, ULONGEST, int);
1029
1030 static CORE_ADDR remote_address_masked (CORE_ADDR);
1031
1032 static void print_packet (const char *);
1033
1034 static int stub_unpack_int (const char *buff, int fieldlength);
1035
1036 struct packet_config;
1037
1038 static void show_packet_config_cmd (struct packet_config *config);
1039
1040 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1041 int from_tty,
1042 struct cmd_list_element *c,
1043 const char *value);
1044
1045 static ptid_t read_ptid (const char *buf, const char **obuf);
1046
1047 static void remote_async_inferior_event_handler (gdb_client_data);
1048
1049 static bool remote_read_description_p (struct target_ops *target);
1050
1051 static void remote_console_output (const char *msg);
1052
1053 static void remote_btrace_reset (remote_state *rs);
1054
1055 static void remote_unpush_and_throw (remote_target *target);
1056
1057 /* For "remote". */
1058
1059 static struct cmd_list_element *remote_cmdlist;
1060
1061 /* For "set remote" and "show remote". */
1062
1063 static struct cmd_list_element *remote_set_cmdlist;
1064 static struct cmd_list_element *remote_show_cmdlist;
1065
1066 /* Controls whether GDB is willing to use range stepping. */
1067
1068 static bool use_range_stepping = true;
1069
1070 /* From the remote target's point of view, each thread is in one of these three
1071 states. */
1072 enum class resume_state
1073 {
1074 /* Not resumed - we haven't been asked to resume this thread. */
1075 NOT_RESUMED,
1076
1077 /* We have been asked to resume this thread, but haven't sent a vCont action
1078 for it yet. We'll need to consider it next time commit_resume is
1079 called. */
1080 RESUMED_PENDING_VCONT,
1081
1082 /* We have been asked to resume this thread, and we have sent a vCont action
1083 for it. */
1084 RESUMED,
1085 };
1086
1087 /* Information about a thread's pending vCont-resume. Used when a thread is in
1088 the remote_resume_state::RESUMED_PENDING_VCONT state. remote_target::resume
1089 stores this information which is then picked up by
1090 remote_target::commit_resume to know which is the proper action for this
1091 thread to include in the vCont packet. */
1092 struct resumed_pending_vcont_info
1093 {
1094 /* True if the last resume call for this thread was a step request, false
1095 if a continue request. */
1096 bool step;
1097
1098 /* The signal specified in the last resume call for this thread. */
1099 gdb_signal sig;
1100 };
1101
1102 /* Private data that we'll store in (struct thread_info)->priv. */
1103 struct remote_thread_info : public private_thread_info
1104 {
1105 std::string extra;
1106 std::string name;
1107 int core = -1;
1108
1109 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1110 sequence of bytes. */
1111 gdb::byte_vector thread_handle;
1112
1113 /* Whether the target stopped for a breakpoint/watchpoint. */
1114 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1115
1116 /* This is set to the data address of the access causing the target
1117 to stop for a watchpoint. */
1118 CORE_ADDR watch_data_address = 0;
1119
1120 /* Get the thread's resume state. */
1121 enum resume_state get_resume_state () const
1122 {
1123 return m_resume_state;
1124 }
1125
1126 /* Put the thread in the NOT_RESUMED state. */
1127 void set_not_resumed ()
1128 {
1129 m_resume_state = resume_state::NOT_RESUMED;
1130 }
1131
1132 /* Put the thread in the RESUMED_PENDING_VCONT state. */
1133 void set_resumed_pending_vcont (bool step, gdb_signal sig)
1134 {
1135 m_resume_state = resume_state::RESUMED_PENDING_VCONT;
1136 m_resumed_pending_vcont_info.step = step;
1137 m_resumed_pending_vcont_info.sig = sig;
1138 }
1139
1140 /* Get the information this thread's pending vCont-resumption.
1141
1142 Must only be called if the thread is in the RESUMED_PENDING_VCONT resume
1143 state. */
1144 const struct resumed_pending_vcont_info &resumed_pending_vcont_info () const
1145 {
1146 gdb_assert (m_resume_state == resume_state::RESUMED_PENDING_VCONT);
1147
1148 return m_resumed_pending_vcont_info;
1149 }
1150
1151 /* Put the thread in the VCONT_RESUMED state. */
1152 void set_resumed ()
1153 {
1154 m_resume_state = resume_state::RESUMED;
1155 }
1156
1157 private:
1158 /* Resume state for this thread. This is used to implement vCont action
1159 coalescing (only when the target operates in non-stop mode).
1160
1161 remote_target::resume moves the thread to the RESUMED_PENDING_VCONT state,
1162 which notes that this thread must be considered in the next commit_resume
1163 call.
1164
1165 remote_target::commit_resume sends a vCont packet with actions for the
1166 threads in the RESUMED_PENDING_VCONT state and moves them to the
1167 VCONT_RESUMED state.
1168
1169 When reporting a stop to the core for a thread, that thread is moved back
1170 to the NOT_RESUMED state. */
1171 enum resume_state m_resume_state = resume_state::NOT_RESUMED;
1172
1173 /* Extra info used if the thread is in the RESUMED_PENDING_VCONT state. */
1174 struct resumed_pending_vcont_info m_resumed_pending_vcont_info;
1175 };
1176
1177 remote_state::remote_state ()
1178 : buf (400)
1179 {
1180 }
1181
1182 remote_state::~remote_state ()
1183 {
1184 xfree (this->last_pass_packet);
1185 xfree (this->last_program_signals_packet);
1186 xfree (this->finished_object);
1187 xfree (this->finished_annex);
1188 }
1189
1190 /* Utility: generate error from an incoming stub packet. */
1191 static void
1192 trace_error (char *buf)
1193 {
1194 if (*buf++ != 'E')
1195 return; /* not an error msg */
1196 switch (*buf)
1197 {
1198 case '1': /* malformed packet error */
1199 if (*++buf == '0') /* general case: */
1200 error (_("remote.c: error in outgoing packet."));
1201 else
1202 error (_("remote.c: error in outgoing packet at field #%ld."),
1203 strtol (buf, NULL, 16));
1204 default:
1205 error (_("Target returns error code '%s'."), buf);
1206 }
1207 }
1208
1209 /* Utility: wait for reply from stub, while accepting "O" packets. */
1210
1211 char *
1212 remote_target::remote_get_noisy_reply ()
1213 {
1214 struct remote_state *rs = get_remote_state ();
1215
1216 do /* Loop on reply from remote stub. */
1217 {
1218 char *buf;
1219
1220 QUIT; /* Allow user to bail out with ^C. */
1221 getpkt (&rs->buf, 0);
1222 buf = rs->buf.data ();
1223 if (buf[0] == 'E')
1224 trace_error (buf);
1225 else if (startswith (buf, "qRelocInsn:"))
1226 {
1227 ULONGEST ul;
1228 CORE_ADDR from, to, org_to;
1229 const char *p, *pp;
1230 int adjusted_size = 0;
1231 int relocated = 0;
1232
1233 p = buf + strlen ("qRelocInsn:");
1234 pp = unpack_varlen_hex (p, &ul);
1235 if (*pp != ';')
1236 error (_("invalid qRelocInsn packet: %s"), buf);
1237 from = ul;
1238
1239 p = pp + 1;
1240 unpack_varlen_hex (p, &ul);
1241 to = ul;
1242
1243 org_to = to;
1244
1245 try
1246 {
1247 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1248 relocated = 1;
1249 }
1250 catch (const gdb_exception &ex)
1251 {
1252 if (ex.error == MEMORY_ERROR)
1253 {
1254 /* Propagate memory errors silently back to the
1255 target. The stub may have limited the range of
1256 addresses we can write to, for example. */
1257 }
1258 else
1259 {
1260 /* Something unexpectedly bad happened. Be verbose
1261 so we can tell what, and propagate the error back
1262 to the stub, so it doesn't get stuck waiting for
1263 a response. */
1264 exception_fprintf (gdb_stderr, ex,
1265 _("warning: relocating instruction: "));
1266 }
1267 putpkt ("E01");
1268 }
1269
1270 if (relocated)
1271 {
1272 adjusted_size = to - org_to;
1273
1274 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1275 putpkt (buf);
1276 }
1277 }
1278 else if (buf[0] == 'O' && buf[1] != 'K')
1279 remote_console_output (buf + 1); /* 'O' message from stub */
1280 else
1281 return buf; /* Here's the actual reply. */
1282 }
1283 while (1);
1284 }
1285
1286 struct remote_arch_state *
1287 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1288 {
1289 remote_arch_state *rsa;
1290
1291 auto it = this->m_arch_states.find (gdbarch);
1292 if (it == this->m_arch_states.end ())
1293 {
1294 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1295 std::forward_as_tuple (gdbarch),
1296 std::forward_as_tuple (gdbarch));
1297 rsa = &p.first->second;
1298
1299 /* Make sure that the packet buffer is plenty big enough for
1300 this architecture. */
1301 if (this->buf.size () < rsa->remote_packet_size)
1302 this->buf.resize (2 * rsa->remote_packet_size);
1303 }
1304 else
1305 rsa = &it->second;
1306
1307 return rsa;
1308 }
1309
1310 /* Fetch the global remote target state. */
1311
1312 remote_state *
1313 remote_target::get_remote_state ()
1314 {
1315 /* Make sure that the remote architecture state has been
1316 initialized, because doing so might reallocate rs->buf. Any
1317 function which calls getpkt also needs to be mindful of changes
1318 to rs->buf, but this call limits the number of places which run
1319 into trouble. */
1320 m_remote_state.get_remote_arch_state (target_gdbarch ());
1321
1322 return &m_remote_state;
1323 }
1324
1325 /* Fetch the remote exec-file from the current program space. */
1326
1327 static const char *
1328 get_remote_exec_file (void)
1329 {
1330 char *remote_exec_file;
1331
1332 remote_exec_file = remote_pspace_data.get (current_program_space);
1333 if (remote_exec_file == NULL)
1334 return "";
1335
1336 return remote_exec_file;
1337 }
1338
1339 /* Set the remote exec file for PSPACE. */
1340
1341 static void
1342 set_pspace_remote_exec_file (struct program_space *pspace,
1343 const char *remote_exec_file)
1344 {
1345 char *old_file = remote_pspace_data.get (pspace);
1346
1347 xfree (old_file);
1348 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1349 }
1350
1351 /* The "set/show remote exec-file" set command hook. */
1352
1353 static void
1354 set_remote_exec_file (const char *ignored, int from_tty,
1355 struct cmd_list_element *c)
1356 {
1357 gdb_assert (remote_exec_file_var != NULL);
1358 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1359 }
1360
1361 /* The "set/show remote exec-file" show command hook. */
1362
1363 static void
1364 show_remote_exec_file (struct ui_file *file, int from_tty,
1365 struct cmd_list_element *cmd, const char *value)
1366 {
1367 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1368 }
1369
1370 static int
1371 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1372 {
1373 int regnum, num_remote_regs, offset;
1374 struct packet_reg **remote_regs;
1375
1376 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1377 {
1378 struct packet_reg *r = &regs[regnum];
1379
1380 if (register_size (gdbarch, regnum) == 0)
1381 /* Do not try to fetch zero-sized (placeholder) registers. */
1382 r->pnum = -1;
1383 else
1384 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1385
1386 r->regnum = regnum;
1387 }
1388
1389 /* Define the g/G packet format as the contents of each register
1390 with a remote protocol number, in order of ascending protocol
1391 number. */
1392
1393 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1394 for (num_remote_regs = 0, regnum = 0;
1395 regnum < gdbarch_num_regs (gdbarch);
1396 regnum++)
1397 if (regs[regnum].pnum != -1)
1398 remote_regs[num_remote_regs++] = &regs[regnum];
1399
1400 std::sort (remote_regs, remote_regs + num_remote_regs,
1401 [] (const packet_reg *a, const packet_reg *b)
1402 { return a->pnum < b->pnum; });
1403
1404 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1405 {
1406 remote_regs[regnum]->in_g_packet = 1;
1407 remote_regs[regnum]->offset = offset;
1408 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1409 }
1410
1411 return offset;
1412 }
1413
1414 /* Given the architecture described by GDBARCH, return the remote
1415 protocol register's number and the register's offset in the g/G
1416 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1417 If the target does not have a mapping for REGNUM, return false,
1418 otherwise, return true. */
1419
1420 int
1421 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1422 int *pnum, int *poffset)
1423 {
1424 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1425
1426 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1427
1428 map_regcache_remote_table (gdbarch, regs.data ());
1429
1430 *pnum = regs[regnum].pnum;
1431 *poffset = regs[regnum].offset;
1432
1433 return *pnum != -1;
1434 }
1435
1436 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1437 {
1438 /* Use the architecture to build a regnum<->pnum table, which will be
1439 1:1 unless a feature set specifies otherwise. */
1440 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1441
1442 /* Record the maximum possible size of the g packet - it may turn out
1443 to be smaller. */
1444 this->sizeof_g_packet
1445 = map_regcache_remote_table (gdbarch, this->regs.get ());
1446
1447 /* Default maximum number of characters in a packet body. Many
1448 remote stubs have a hardwired buffer size of 400 bytes
1449 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1450 as the maximum packet-size to ensure that the packet and an extra
1451 NUL character can always fit in the buffer. This stops GDB
1452 trashing stubs that try to squeeze an extra NUL into what is
1453 already a full buffer (As of 1999-12-04 that was most stubs). */
1454 this->remote_packet_size = 400 - 1;
1455
1456 /* This one is filled in when a ``g'' packet is received. */
1457 this->actual_register_packet_size = 0;
1458
1459 /* Should rsa->sizeof_g_packet needs more space than the
1460 default, adjust the size accordingly. Remember that each byte is
1461 encoded as two characters. 32 is the overhead for the packet
1462 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1463 (``$NN:G...#NN'') is a better guess, the below has been padded a
1464 little. */
1465 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1466 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1467 }
1468
1469 /* Get a pointer to the current remote target. If not connected to a
1470 remote target, return NULL. */
1471
1472 static remote_target *
1473 get_current_remote_target ()
1474 {
1475 target_ops *proc_target = current_inferior ()->process_target ();
1476 return dynamic_cast<remote_target *> (proc_target);
1477 }
1478
1479 /* Return the current allowed size of a remote packet. This is
1480 inferred from the current architecture, and should be used to
1481 limit the length of outgoing packets. */
1482 long
1483 remote_target::get_remote_packet_size ()
1484 {
1485 struct remote_state *rs = get_remote_state ();
1486 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1487
1488 if (rs->explicit_packet_size)
1489 return rs->explicit_packet_size;
1490
1491 return rsa->remote_packet_size;
1492 }
1493
1494 static struct packet_reg *
1495 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1496 long regnum)
1497 {
1498 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1499 return NULL;
1500 else
1501 {
1502 struct packet_reg *r = &rsa->regs[regnum];
1503
1504 gdb_assert (r->regnum == regnum);
1505 return r;
1506 }
1507 }
1508
1509 static struct packet_reg *
1510 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1511 LONGEST pnum)
1512 {
1513 int i;
1514
1515 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1516 {
1517 struct packet_reg *r = &rsa->regs[i];
1518
1519 if (r->pnum == pnum)
1520 return r;
1521 }
1522 return NULL;
1523 }
1524
1525 /* Allow the user to specify what sequence to send to the remote
1526 when he requests a program interruption: Although ^C is usually
1527 what remote systems expect (this is the default, here), it is
1528 sometimes preferable to send a break. On other systems such
1529 as the Linux kernel, a break followed by g, which is Magic SysRq g
1530 is required in order to interrupt the execution. */
1531 const char interrupt_sequence_control_c[] = "Ctrl-C";
1532 const char interrupt_sequence_break[] = "BREAK";
1533 const char interrupt_sequence_break_g[] = "BREAK-g";
1534 static const char *const interrupt_sequence_modes[] =
1535 {
1536 interrupt_sequence_control_c,
1537 interrupt_sequence_break,
1538 interrupt_sequence_break_g,
1539 NULL
1540 };
1541 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1542
1543 static void
1544 show_interrupt_sequence (struct ui_file *file, int from_tty,
1545 struct cmd_list_element *c,
1546 const char *value)
1547 {
1548 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1549 fprintf_filtered (file,
1550 _("Send the ASCII ETX character (Ctrl-c) "
1551 "to the remote target to interrupt the "
1552 "execution of the program.\n"));
1553 else if (interrupt_sequence_mode == interrupt_sequence_break)
1554 fprintf_filtered (file,
1555 _("send a break signal to the remote target "
1556 "to interrupt the execution of the program.\n"));
1557 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1558 fprintf_filtered (file,
1559 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1560 "the remote target to interrupt the execution "
1561 "of Linux kernel.\n"));
1562 else
1563 internal_error (__FILE__, __LINE__,
1564 _("Invalid value for interrupt_sequence_mode: %s."),
1565 interrupt_sequence_mode);
1566 }
1567
1568 /* This boolean variable specifies whether interrupt_sequence is sent
1569 to the remote target when gdb connects to it.
1570 This is mostly needed when you debug the Linux kernel: The Linux kernel
1571 expects BREAK g which is Magic SysRq g for connecting gdb. */
1572 static bool interrupt_on_connect = false;
1573
1574 /* This variable is used to implement the "set/show remotebreak" commands.
1575 Since these commands are now deprecated in favor of "set/show remote
1576 interrupt-sequence", it no longer has any effect on the code. */
1577 static bool remote_break;
1578
1579 static void
1580 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1581 {
1582 if (remote_break)
1583 interrupt_sequence_mode = interrupt_sequence_break;
1584 else
1585 interrupt_sequence_mode = interrupt_sequence_control_c;
1586 }
1587
1588 static void
1589 show_remotebreak (struct ui_file *file, int from_tty,
1590 struct cmd_list_element *c,
1591 const char *value)
1592 {
1593 }
1594
1595 /* This variable sets the number of bits in an address that are to be
1596 sent in a memory ("M" or "m") packet. Normally, after stripping
1597 leading zeros, the entire address would be sent. This variable
1598 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1599 initial implementation of remote.c restricted the address sent in
1600 memory packets to ``host::sizeof long'' bytes - (typically 32
1601 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1602 address was never sent. Since fixing this bug may cause a break in
1603 some remote targets this variable is principally provided to
1604 facilitate backward compatibility. */
1605
1606 static unsigned int remote_address_size;
1607
1608 \f
1609 /* User configurable variables for the number of characters in a
1610 memory read/write packet. MIN (rsa->remote_packet_size,
1611 rsa->sizeof_g_packet) is the default. Some targets need smaller
1612 values (fifo overruns, et.al.) and some users need larger values
1613 (speed up transfers). The variables ``preferred_*'' (the user
1614 request), ``current_*'' (what was actually set) and ``forced_*''
1615 (Positive - a soft limit, negative - a hard limit). */
1616
1617 struct memory_packet_config
1618 {
1619 const char *name;
1620 long size;
1621 int fixed_p;
1622 };
1623
1624 /* The default max memory-write-packet-size, when the setting is
1625 "fixed". The 16k is historical. (It came from older GDB's using
1626 alloca for buffers and the knowledge (folklore?) that some hosts
1627 don't cope very well with large alloca calls.) */
1628 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1629
1630 /* The minimum remote packet size for memory transfers. Ensures we
1631 can write at least one byte. */
1632 #define MIN_MEMORY_PACKET_SIZE 20
1633
1634 /* Get the memory packet size, assuming it is fixed. */
1635
1636 static long
1637 get_fixed_memory_packet_size (struct memory_packet_config *config)
1638 {
1639 gdb_assert (config->fixed_p);
1640
1641 if (config->size <= 0)
1642 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1643 else
1644 return config->size;
1645 }
1646
1647 /* Compute the current size of a read/write packet. Since this makes
1648 use of ``actual_register_packet_size'' the computation is dynamic. */
1649
1650 long
1651 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1652 {
1653 struct remote_state *rs = get_remote_state ();
1654 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1655
1656 long what_they_get;
1657 if (config->fixed_p)
1658 what_they_get = get_fixed_memory_packet_size (config);
1659 else
1660 {
1661 what_they_get = get_remote_packet_size ();
1662 /* Limit the packet to the size specified by the user. */
1663 if (config->size > 0
1664 && what_they_get > config->size)
1665 what_they_get = config->size;
1666
1667 /* Limit it to the size of the targets ``g'' response unless we have
1668 permission from the stub to use a larger packet size. */
1669 if (rs->explicit_packet_size == 0
1670 && rsa->actual_register_packet_size > 0
1671 && what_they_get > rsa->actual_register_packet_size)
1672 what_they_get = rsa->actual_register_packet_size;
1673 }
1674 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1675 what_they_get = MIN_MEMORY_PACKET_SIZE;
1676
1677 /* Make sure there is room in the global buffer for this packet
1678 (including its trailing NUL byte). */
1679 if (rs->buf.size () < what_they_get + 1)
1680 rs->buf.resize (2 * what_they_get);
1681
1682 return what_they_get;
1683 }
1684
1685 /* Update the size of a read/write packet. If they user wants
1686 something really big then do a sanity check. */
1687
1688 static void
1689 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1690 {
1691 int fixed_p = config->fixed_p;
1692 long size = config->size;
1693
1694 if (args == NULL)
1695 error (_("Argument required (integer, `fixed' or `limited')."));
1696 else if (strcmp (args, "hard") == 0
1697 || strcmp (args, "fixed") == 0)
1698 fixed_p = 1;
1699 else if (strcmp (args, "soft") == 0
1700 || strcmp (args, "limit") == 0)
1701 fixed_p = 0;
1702 else
1703 {
1704 char *end;
1705
1706 size = strtoul (args, &end, 0);
1707 if (args == end)
1708 error (_("Invalid %s (bad syntax)."), config->name);
1709
1710 /* Instead of explicitly capping the size of a packet to or
1711 disallowing it, the user is allowed to set the size to
1712 something arbitrarily large. */
1713 }
1714
1715 /* Extra checks? */
1716 if (fixed_p && !config->fixed_p)
1717 {
1718 /* So that the query shows the correct value. */
1719 long query_size = (size <= 0
1720 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1721 : size);
1722
1723 if (! query (_("The target may not be able to correctly handle a %s\n"
1724 "of %ld bytes. Change the packet size? "),
1725 config->name, query_size))
1726 error (_("Packet size not changed."));
1727 }
1728 /* Update the config. */
1729 config->fixed_p = fixed_p;
1730 config->size = size;
1731 }
1732
1733 static void
1734 show_memory_packet_size (struct memory_packet_config *config)
1735 {
1736 if (config->size == 0)
1737 printf_filtered (_("The %s is 0 (default). "), config->name);
1738 else
1739 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1740 if (config->fixed_p)
1741 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1742 get_fixed_memory_packet_size (config));
1743 else
1744 {
1745 remote_target *remote = get_current_remote_target ();
1746
1747 if (remote != NULL)
1748 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1749 remote->get_memory_packet_size (config));
1750 else
1751 puts_filtered ("The actual limit will be further reduced "
1752 "dependent on the target.\n");
1753 }
1754 }
1755
1756 /* FIXME: needs to be per-remote-target. */
1757 static struct memory_packet_config memory_write_packet_config =
1758 {
1759 "memory-write-packet-size",
1760 };
1761
1762 static void
1763 set_memory_write_packet_size (const char *args, int from_tty)
1764 {
1765 set_memory_packet_size (args, &memory_write_packet_config);
1766 }
1767
1768 static void
1769 show_memory_write_packet_size (const char *args, int from_tty)
1770 {
1771 show_memory_packet_size (&memory_write_packet_config);
1772 }
1773
1774 /* Show the number of hardware watchpoints that can be used. */
1775
1776 static void
1777 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1778 struct cmd_list_element *c,
1779 const char *value)
1780 {
1781 fprintf_filtered (file, _("The maximum number of target hardware "
1782 "watchpoints is %s.\n"), value);
1783 }
1784
1785 /* Show the length limit (in bytes) for hardware watchpoints. */
1786
1787 static void
1788 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1789 struct cmd_list_element *c,
1790 const char *value)
1791 {
1792 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1793 "hardware watchpoint is %s.\n"), value);
1794 }
1795
1796 /* Show the number of hardware breakpoints that can be used. */
1797
1798 static void
1799 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1800 struct cmd_list_element *c,
1801 const char *value)
1802 {
1803 fprintf_filtered (file, _("The maximum number of target hardware "
1804 "breakpoints is %s.\n"), value);
1805 }
1806
1807 /* Controls the maximum number of characters to display in the debug output
1808 for each remote packet. The remaining characters are omitted. */
1809
1810 static int remote_packet_max_chars = 512;
1811
1812 /* Show the maximum number of characters to display for each remote packet
1813 when remote debugging is enabled. */
1814
1815 static void
1816 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1817 struct cmd_list_element *c,
1818 const char *value)
1819 {
1820 fprintf_filtered (file, _("Number of remote packet characters to "
1821 "display is %s.\n"), value);
1822 }
1823
1824 long
1825 remote_target::get_memory_write_packet_size ()
1826 {
1827 return get_memory_packet_size (&memory_write_packet_config);
1828 }
1829
1830 /* FIXME: needs to be per-remote-target. */
1831 static struct memory_packet_config memory_read_packet_config =
1832 {
1833 "memory-read-packet-size",
1834 };
1835
1836 static void
1837 set_memory_read_packet_size (const char *args, int from_tty)
1838 {
1839 set_memory_packet_size (args, &memory_read_packet_config);
1840 }
1841
1842 static void
1843 show_memory_read_packet_size (const char *args, int from_tty)
1844 {
1845 show_memory_packet_size (&memory_read_packet_config);
1846 }
1847
1848 long
1849 remote_target::get_memory_read_packet_size ()
1850 {
1851 long size = get_memory_packet_size (&memory_read_packet_config);
1852
1853 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1854 extra buffer size argument before the memory read size can be
1855 increased beyond this. */
1856 if (size > get_remote_packet_size ())
1857 size = get_remote_packet_size ();
1858 return size;
1859 }
1860
1861 \f
1862
1863 struct packet_config
1864 {
1865 const char *name;
1866 const char *title;
1867
1868 /* If auto, GDB auto-detects support for this packet or feature,
1869 either through qSupported, or by trying the packet and looking
1870 at the response. If true, GDB assumes the target supports this
1871 packet. If false, the packet is disabled. Configs that don't
1872 have an associated command always have this set to auto. */
1873 enum auto_boolean detect;
1874
1875 /* Does the target support this packet? */
1876 enum packet_support support;
1877 };
1878
1879 static enum packet_support packet_config_support (struct packet_config *config);
1880 static enum packet_support packet_support (int packet);
1881
1882 static void
1883 show_packet_config_cmd (struct packet_config *config)
1884 {
1885 const char *support = "internal-error";
1886
1887 switch (packet_config_support (config))
1888 {
1889 case PACKET_ENABLE:
1890 support = "enabled";
1891 break;
1892 case PACKET_DISABLE:
1893 support = "disabled";
1894 break;
1895 case PACKET_SUPPORT_UNKNOWN:
1896 support = "unknown";
1897 break;
1898 }
1899 switch (config->detect)
1900 {
1901 case AUTO_BOOLEAN_AUTO:
1902 printf_filtered (_("Support for the `%s' packet "
1903 "is auto-detected, currently %s.\n"),
1904 config->name, support);
1905 break;
1906 case AUTO_BOOLEAN_TRUE:
1907 case AUTO_BOOLEAN_FALSE:
1908 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1909 config->name, support);
1910 break;
1911 }
1912 }
1913
1914 static void
1915 add_packet_config_cmd (struct packet_config *config, const char *name,
1916 const char *title, int legacy)
1917 {
1918 char *set_doc;
1919 char *show_doc;
1920 char *cmd_name;
1921
1922 config->name = name;
1923 config->title = title;
1924 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1925 name, title);
1926 show_doc = xstrprintf ("Show current use of remote "
1927 "protocol `%s' (%s) packet.",
1928 name, title);
1929 /* set/show TITLE-packet {auto,on,off} */
1930 cmd_name = xstrprintf ("%s-packet", title);
1931 set_show_commands cmds
1932 = add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1933 &config->detect, set_doc,
1934 show_doc, NULL, /* help_doc */
1935 NULL,
1936 show_remote_protocol_packet_cmd,
1937 &remote_set_cmdlist, &remote_show_cmdlist);
1938
1939 /* The command code copies the documentation strings. */
1940 xfree (set_doc);
1941 xfree (show_doc);
1942
1943 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1944 if (legacy)
1945 {
1946 char *legacy_name;
1947
1948 legacy_name = xstrprintf ("%s-packet", name);
1949 add_alias_cmd (legacy_name, cmds.set, class_obscure, 0,
1950 &remote_set_cmdlist);
1951 add_alias_cmd (legacy_name, cmds.show, class_obscure, 0,
1952 &remote_show_cmdlist);
1953 }
1954 }
1955
1956 static enum packet_result
1957 packet_check_result (const char *buf)
1958 {
1959 if (buf[0] != '\0')
1960 {
1961 /* The stub recognized the packet request. Check that the
1962 operation succeeded. */
1963 if (buf[0] == 'E'
1964 && isxdigit (buf[1]) && isxdigit (buf[2])
1965 && buf[3] == '\0')
1966 /* "Enn" - definitely an error. */
1967 return PACKET_ERROR;
1968
1969 /* Always treat "E." as an error. This will be used for
1970 more verbose error messages, such as E.memtypes. */
1971 if (buf[0] == 'E' && buf[1] == '.')
1972 return PACKET_ERROR;
1973
1974 /* The packet may or may not be OK. Just assume it is. */
1975 return PACKET_OK;
1976 }
1977 else
1978 /* The stub does not support the packet. */
1979 return PACKET_UNKNOWN;
1980 }
1981
1982 static enum packet_result
1983 packet_check_result (const gdb::char_vector &buf)
1984 {
1985 return packet_check_result (buf.data ());
1986 }
1987
1988 static enum packet_result
1989 packet_ok (const char *buf, struct packet_config *config)
1990 {
1991 enum packet_result result;
1992
1993 if (config->detect != AUTO_BOOLEAN_TRUE
1994 && config->support == PACKET_DISABLE)
1995 internal_error (__FILE__, __LINE__,
1996 _("packet_ok: attempt to use a disabled packet"));
1997
1998 result = packet_check_result (buf);
1999 switch (result)
2000 {
2001 case PACKET_OK:
2002 case PACKET_ERROR:
2003 /* The stub recognized the packet request. */
2004 if (config->support == PACKET_SUPPORT_UNKNOWN)
2005 {
2006 remote_debug_printf ("Packet %s (%s) is supported",
2007 config->name, config->title);
2008 config->support = PACKET_ENABLE;
2009 }
2010 break;
2011 case PACKET_UNKNOWN:
2012 /* The stub does not support the packet. */
2013 if (config->detect == AUTO_BOOLEAN_AUTO
2014 && config->support == PACKET_ENABLE)
2015 {
2016 /* If the stub previously indicated that the packet was
2017 supported then there is a protocol error. */
2018 error (_("Protocol error: %s (%s) conflicting enabled responses."),
2019 config->name, config->title);
2020 }
2021 else if (config->detect == AUTO_BOOLEAN_TRUE)
2022 {
2023 /* The user set it wrong. */
2024 error (_("Enabled packet %s (%s) not recognized by stub"),
2025 config->name, config->title);
2026 }
2027
2028 remote_debug_printf ("Packet %s (%s) is NOT supported",
2029 config->name, config->title);
2030 config->support = PACKET_DISABLE;
2031 break;
2032 }
2033
2034 return result;
2035 }
2036
2037 static enum packet_result
2038 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
2039 {
2040 return packet_ok (buf.data (), config);
2041 }
2042
2043 enum {
2044 PACKET_vCont = 0,
2045 PACKET_X,
2046 PACKET_qSymbol,
2047 PACKET_P,
2048 PACKET_p,
2049 PACKET_Z0,
2050 PACKET_Z1,
2051 PACKET_Z2,
2052 PACKET_Z3,
2053 PACKET_Z4,
2054 PACKET_vFile_setfs,
2055 PACKET_vFile_open,
2056 PACKET_vFile_pread,
2057 PACKET_vFile_pwrite,
2058 PACKET_vFile_close,
2059 PACKET_vFile_unlink,
2060 PACKET_vFile_readlink,
2061 PACKET_vFile_fstat,
2062 PACKET_qXfer_auxv,
2063 PACKET_qXfer_features,
2064 PACKET_qXfer_exec_file,
2065 PACKET_qXfer_libraries,
2066 PACKET_qXfer_libraries_svr4,
2067 PACKET_qXfer_memory_map,
2068 PACKET_qXfer_osdata,
2069 PACKET_qXfer_threads,
2070 PACKET_qXfer_statictrace_read,
2071 PACKET_qXfer_traceframe_info,
2072 PACKET_qXfer_uib,
2073 PACKET_qGetTIBAddr,
2074 PACKET_qGetTLSAddr,
2075 PACKET_qSupported,
2076 PACKET_qTStatus,
2077 PACKET_QPassSignals,
2078 PACKET_QCatchSyscalls,
2079 PACKET_QProgramSignals,
2080 PACKET_QSetWorkingDir,
2081 PACKET_QStartupWithShell,
2082 PACKET_QEnvironmentHexEncoded,
2083 PACKET_QEnvironmentReset,
2084 PACKET_QEnvironmentUnset,
2085 PACKET_qCRC,
2086 PACKET_qSearch_memory,
2087 PACKET_vAttach,
2088 PACKET_vRun,
2089 PACKET_QStartNoAckMode,
2090 PACKET_vKill,
2091 PACKET_qXfer_siginfo_read,
2092 PACKET_qXfer_siginfo_write,
2093 PACKET_qAttached,
2094
2095 /* Support for conditional tracepoints. */
2096 PACKET_ConditionalTracepoints,
2097
2098 /* Support for target-side breakpoint conditions. */
2099 PACKET_ConditionalBreakpoints,
2100
2101 /* Support for target-side breakpoint commands. */
2102 PACKET_BreakpointCommands,
2103
2104 /* Support for fast tracepoints. */
2105 PACKET_FastTracepoints,
2106
2107 /* Support for static tracepoints. */
2108 PACKET_StaticTracepoints,
2109
2110 /* Support for installing tracepoints while a trace experiment is
2111 running. */
2112 PACKET_InstallInTrace,
2113
2114 PACKET_bc,
2115 PACKET_bs,
2116 PACKET_TracepointSource,
2117 PACKET_QAllow,
2118 PACKET_qXfer_fdpic,
2119 PACKET_QDisableRandomization,
2120 PACKET_QAgent,
2121 PACKET_QTBuffer_size,
2122 PACKET_Qbtrace_off,
2123 PACKET_Qbtrace_bts,
2124 PACKET_Qbtrace_pt,
2125 PACKET_qXfer_btrace,
2126
2127 /* Support for the QNonStop packet. */
2128 PACKET_QNonStop,
2129
2130 /* Support for the QThreadEvents packet. */
2131 PACKET_QThreadEvents,
2132
2133 /* Support for multi-process extensions. */
2134 PACKET_multiprocess_feature,
2135
2136 /* Support for enabling and disabling tracepoints while a trace
2137 experiment is running. */
2138 PACKET_EnableDisableTracepoints_feature,
2139
2140 /* Support for collecting strings using the tracenz bytecode. */
2141 PACKET_tracenz_feature,
2142
2143 /* Support for continuing to run a trace experiment while GDB is
2144 disconnected. */
2145 PACKET_DisconnectedTracing_feature,
2146
2147 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2148 PACKET_augmented_libraries_svr4_read_feature,
2149
2150 /* Support for the qXfer:btrace-conf:read packet. */
2151 PACKET_qXfer_btrace_conf,
2152
2153 /* Support for the Qbtrace-conf:bts:size packet. */
2154 PACKET_Qbtrace_conf_bts_size,
2155
2156 /* Support for swbreak+ feature. */
2157 PACKET_swbreak_feature,
2158
2159 /* Support for hwbreak+ feature. */
2160 PACKET_hwbreak_feature,
2161
2162 /* Support for fork events. */
2163 PACKET_fork_event_feature,
2164
2165 /* Support for vfork events. */
2166 PACKET_vfork_event_feature,
2167
2168 /* Support for the Qbtrace-conf:pt:size packet. */
2169 PACKET_Qbtrace_conf_pt_size,
2170
2171 /* Support for exec events. */
2172 PACKET_exec_event_feature,
2173
2174 /* Support for query supported vCont actions. */
2175 PACKET_vContSupported,
2176
2177 /* Support remote CTRL-C. */
2178 PACKET_vCtrlC,
2179
2180 /* Support TARGET_WAITKIND_NO_RESUMED. */
2181 PACKET_no_resumed,
2182
2183 /* Support for memory tagging, allocation tag fetch/store
2184 packets and the tag violation stop replies. */
2185 PACKET_memory_tagging_feature,
2186
2187 PACKET_MAX
2188 };
2189
2190 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2191 assuming all remote targets are the same server (thus all support
2192 the same packets). */
2193 static struct packet_config remote_protocol_packets[PACKET_MAX];
2194
2195 /* Returns the packet's corresponding "set remote foo-packet" command
2196 state. See struct packet_config for more details. */
2197
2198 static enum auto_boolean
2199 packet_set_cmd_state (int packet)
2200 {
2201 return remote_protocol_packets[packet].detect;
2202 }
2203
2204 /* Returns whether a given packet or feature is supported. This takes
2205 into account the state of the corresponding "set remote foo-packet"
2206 command, which may be used to bypass auto-detection. */
2207
2208 static enum packet_support
2209 packet_config_support (struct packet_config *config)
2210 {
2211 switch (config->detect)
2212 {
2213 case AUTO_BOOLEAN_TRUE:
2214 return PACKET_ENABLE;
2215 case AUTO_BOOLEAN_FALSE:
2216 return PACKET_DISABLE;
2217 case AUTO_BOOLEAN_AUTO:
2218 return config->support;
2219 default:
2220 gdb_assert_not_reached (_("bad switch"));
2221 }
2222 }
2223
2224 /* Same as packet_config_support, but takes the packet's enum value as
2225 argument. */
2226
2227 static enum packet_support
2228 packet_support (int packet)
2229 {
2230 struct packet_config *config = &remote_protocol_packets[packet];
2231
2232 return packet_config_support (config);
2233 }
2234
2235 static void
2236 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2237 struct cmd_list_element *c,
2238 const char *value)
2239 {
2240 struct packet_config *packet;
2241
2242 for (packet = remote_protocol_packets;
2243 packet < &remote_protocol_packets[PACKET_MAX];
2244 packet++)
2245 {
2246 if (&packet->detect == c->var)
2247 {
2248 show_packet_config_cmd (packet);
2249 return;
2250 }
2251 }
2252 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2253 c->name);
2254 }
2255
2256 /* Should we try one of the 'Z' requests? */
2257
2258 enum Z_packet_type
2259 {
2260 Z_PACKET_SOFTWARE_BP,
2261 Z_PACKET_HARDWARE_BP,
2262 Z_PACKET_WRITE_WP,
2263 Z_PACKET_READ_WP,
2264 Z_PACKET_ACCESS_WP,
2265 NR_Z_PACKET_TYPES
2266 };
2267
2268 /* For compatibility with older distributions. Provide a ``set remote
2269 Z-packet ...'' command that updates all the Z packet types. */
2270
2271 static enum auto_boolean remote_Z_packet_detect;
2272
2273 static void
2274 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2275 struct cmd_list_element *c)
2276 {
2277 int i;
2278
2279 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2280 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2281 }
2282
2283 static void
2284 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2285 struct cmd_list_element *c,
2286 const char *value)
2287 {
2288 int i;
2289
2290 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2291 {
2292 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2293 }
2294 }
2295
2296 /* Returns true if the multi-process extensions are in effect. */
2297
2298 static int
2299 remote_multi_process_p (struct remote_state *rs)
2300 {
2301 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2302 }
2303
2304 /* Returns true if fork events are supported. */
2305
2306 static int
2307 remote_fork_event_p (struct remote_state *rs)
2308 {
2309 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2310 }
2311
2312 /* Returns true if vfork events are supported. */
2313
2314 static int
2315 remote_vfork_event_p (struct remote_state *rs)
2316 {
2317 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2318 }
2319
2320 /* Returns true if exec events are supported. */
2321
2322 static int
2323 remote_exec_event_p (struct remote_state *rs)
2324 {
2325 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2326 }
2327
2328 /* Returns true if memory tagging is supported, false otherwise. */
2329
2330 static bool
2331 remote_memory_tagging_p ()
2332 {
2333 return packet_support (PACKET_memory_tagging_feature) == PACKET_ENABLE;
2334 }
2335
2336 /* Insert fork catchpoint target routine. If fork events are enabled
2337 then return success, nothing more to do. */
2338
2339 int
2340 remote_target::insert_fork_catchpoint (int pid)
2341 {
2342 struct remote_state *rs = get_remote_state ();
2343
2344 return !remote_fork_event_p (rs);
2345 }
2346
2347 /* Remove fork catchpoint target routine. Nothing to do, just
2348 return success. */
2349
2350 int
2351 remote_target::remove_fork_catchpoint (int pid)
2352 {
2353 return 0;
2354 }
2355
2356 /* Insert vfork catchpoint target routine. If vfork events are enabled
2357 then return success, nothing more to do. */
2358
2359 int
2360 remote_target::insert_vfork_catchpoint (int pid)
2361 {
2362 struct remote_state *rs = get_remote_state ();
2363
2364 return !remote_vfork_event_p (rs);
2365 }
2366
2367 /* Remove vfork catchpoint target routine. Nothing to do, just
2368 return success. */
2369
2370 int
2371 remote_target::remove_vfork_catchpoint (int pid)
2372 {
2373 return 0;
2374 }
2375
2376 /* Insert exec catchpoint target routine. If exec events are
2377 enabled, just return success. */
2378
2379 int
2380 remote_target::insert_exec_catchpoint (int pid)
2381 {
2382 struct remote_state *rs = get_remote_state ();
2383
2384 return !remote_exec_event_p (rs);
2385 }
2386
2387 /* Remove exec catchpoint target routine. Nothing to do, just
2388 return success. */
2389
2390 int
2391 remote_target::remove_exec_catchpoint (int pid)
2392 {
2393 return 0;
2394 }
2395
2396 \f
2397
2398 /* Take advantage of the fact that the TID field is not used, to tag
2399 special ptids with it set to != 0. */
2400 static const ptid_t magic_null_ptid (42000, -1, 1);
2401 static const ptid_t not_sent_ptid (42000, -2, 1);
2402 static const ptid_t any_thread_ptid (42000, 0, 1);
2403
2404 /* Find out if the stub attached to PID (and hence GDB should offer to
2405 detach instead of killing it when bailing out). */
2406
2407 int
2408 remote_target::remote_query_attached (int pid)
2409 {
2410 struct remote_state *rs = get_remote_state ();
2411 size_t size = get_remote_packet_size ();
2412
2413 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2414 return 0;
2415
2416 if (remote_multi_process_p (rs))
2417 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2418 else
2419 xsnprintf (rs->buf.data (), size, "qAttached");
2420
2421 putpkt (rs->buf);
2422 getpkt (&rs->buf, 0);
2423
2424 switch (packet_ok (rs->buf,
2425 &remote_protocol_packets[PACKET_qAttached]))
2426 {
2427 case PACKET_OK:
2428 if (strcmp (rs->buf.data (), "1") == 0)
2429 return 1;
2430 break;
2431 case PACKET_ERROR:
2432 warning (_("Remote failure reply: %s"), rs->buf.data ());
2433 break;
2434 case PACKET_UNKNOWN:
2435 break;
2436 }
2437
2438 return 0;
2439 }
2440
2441 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2442 has been invented by GDB, instead of reported by the target. Since
2443 we can be connected to a remote system before before knowing about
2444 any inferior, mark the target with execution when we find the first
2445 inferior. If ATTACHED is 1, then we had just attached to this
2446 inferior. If it is 0, then we just created this inferior. If it
2447 is -1, then try querying the remote stub to find out if it had
2448 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2449 attempt to open this inferior's executable as the main executable
2450 if no main executable is open already. */
2451
2452 inferior *
2453 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2454 int try_open_exec)
2455 {
2456 struct inferior *inf;
2457
2458 /* Check whether this process we're learning about is to be
2459 considered attached, or if is to be considered to have been
2460 spawned by the stub. */
2461 if (attached == -1)
2462 attached = remote_query_attached (pid);
2463
2464 if (gdbarch_has_global_solist (target_gdbarch ()))
2465 {
2466 /* If the target shares code across all inferiors, then every
2467 attach adds a new inferior. */
2468 inf = add_inferior (pid);
2469
2470 /* ... and every inferior is bound to the same program space.
2471 However, each inferior may still have its own address
2472 space. */
2473 inf->aspace = maybe_new_address_space ();
2474 inf->pspace = current_program_space;
2475 }
2476 else
2477 {
2478 /* In the traditional debugging scenario, there's a 1-1 match
2479 between program/address spaces. We simply bind the inferior
2480 to the program space's address space. */
2481 inf = current_inferior ();
2482
2483 /* However, if the current inferior is already bound to a
2484 process, find some other empty inferior. */
2485 if (inf->pid != 0)
2486 {
2487 inf = nullptr;
2488 for (inferior *it : all_inferiors ())
2489 if (it->pid == 0)
2490 {
2491 inf = it;
2492 break;
2493 }
2494 }
2495 if (inf == nullptr)
2496 {
2497 /* Since all inferiors were already bound to a process, add
2498 a new inferior. */
2499 inf = add_inferior_with_spaces ();
2500 }
2501 switch_to_inferior_no_thread (inf);
2502 inf->push_target (this);
2503 inferior_appeared (inf, pid);
2504 }
2505
2506 inf->attach_flag = attached;
2507 inf->fake_pid_p = fake_pid_p;
2508
2509 /* If no main executable is currently open then attempt to
2510 open the file that was executed to create this inferior. */
2511 if (try_open_exec && get_exec_file (0) == NULL)
2512 exec_file_locate_attach (pid, 0, 1);
2513
2514 /* Check for exec file mismatch, and let the user solve it. */
2515 validate_exec_file (1);
2516
2517 return inf;
2518 }
2519
2520 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2521 static remote_thread_info *get_remote_thread_info (remote_target *target,
2522 ptid_t ptid);
2523
2524 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2525 according to RUNNING. */
2526
2527 thread_info *
2528 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2529 {
2530 struct remote_state *rs = get_remote_state ();
2531 struct thread_info *thread;
2532
2533 /* GDB historically didn't pull threads in the initial connection
2534 setup. If the remote target doesn't even have a concept of
2535 threads (e.g., a bare-metal target), even if internally we
2536 consider that a single-threaded target, mentioning a new thread
2537 might be confusing to the user. Be silent then, preserving the
2538 age old behavior. */
2539 if (rs->starting_up)
2540 thread = add_thread_silent (this, ptid);
2541 else
2542 thread = add_thread (this, ptid);
2543
2544 /* We start by assuming threads are resumed. That state then gets updated
2545 when we process a matching stop reply. */
2546 get_remote_thread_info (thread)->set_resumed ();
2547
2548 set_executing (this, ptid, executing);
2549 set_running (this, ptid, running);
2550
2551 return thread;
2552 }
2553
2554 /* Come here when we learn about a thread id from the remote target.
2555 It may be the first time we hear about such thread, so take the
2556 opportunity to add it to GDB's thread list. In case this is the
2557 first time we're noticing its corresponding inferior, add it to
2558 GDB's inferior list as well. EXECUTING indicates whether the
2559 thread is (internally) executing or stopped. */
2560
2561 void
2562 remote_target::remote_notice_new_inferior (ptid_t currthread, bool executing)
2563 {
2564 /* In non-stop mode, we assume new found threads are (externally)
2565 running until proven otherwise with a stop reply. In all-stop,
2566 we can only get here if all threads are stopped. */
2567 bool running = target_is_non_stop_p ();
2568
2569 /* If this is a new thread, add it to GDB's thread list.
2570 If we leave it up to WFI to do this, bad things will happen. */
2571
2572 thread_info *tp = find_thread_ptid (this, currthread);
2573 if (tp != NULL && tp->state == THREAD_EXITED)
2574 {
2575 /* We're seeing an event on a thread id we knew had exited.
2576 This has to be a new thread reusing the old id. Add it. */
2577 remote_add_thread (currthread, running, executing);
2578 return;
2579 }
2580
2581 if (!in_thread_list (this, currthread))
2582 {
2583 struct inferior *inf = NULL;
2584 int pid = currthread.pid ();
2585
2586 if (inferior_ptid.is_pid ()
2587 && pid == inferior_ptid.pid ())
2588 {
2589 /* inferior_ptid has no thread member yet. This can happen
2590 with the vAttach -> remote_wait,"TAAthread:" path if the
2591 stub doesn't support qC. This is the first stop reported
2592 after an attach, so this is the main thread. Update the
2593 ptid in the thread list. */
2594 if (in_thread_list (this, ptid_t (pid)))
2595 thread_change_ptid (this, inferior_ptid, currthread);
2596 else
2597 {
2598 thread_info *thr
2599 = remote_add_thread (currthread, running, executing);
2600 switch_to_thread (thr);
2601 }
2602 return;
2603 }
2604
2605 if (magic_null_ptid == inferior_ptid)
2606 {
2607 /* inferior_ptid is not set yet. This can happen with the
2608 vRun -> remote_wait,"TAAthread:" path if the stub
2609 doesn't support qC. This is the first stop reported
2610 after an attach, so this is the main thread. Update the
2611 ptid in the thread list. */
2612 thread_change_ptid (this, inferior_ptid, currthread);
2613 return;
2614 }
2615
2616 /* When connecting to a target remote, or to a target
2617 extended-remote which already was debugging an inferior, we
2618 may not know about it yet. Add it before adding its child
2619 thread, so notifications are emitted in a sensible order. */
2620 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2621 {
2622 struct remote_state *rs = get_remote_state ();
2623 bool fake_pid_p = !remote_multi_process_p (rs);
2624
2625 inf = remote_add_inferior (fake_pid_p,
2626 currthread.pid (), -1, 1);
2627 }
2628
2629 /* This is really a new thread. Add it. */
2630 thread_info *new_thr
2631 = remote_add_thread (currthread, running, executing);
2632
2633 /* If we found a new inferior, let the common code do whatever
2634 it needs to with it (e.g., read shared libraries, insert
2635 breakpoints), unless we're just setting up an all-stop
2636 connection. */
2637 if (inf != NULL)
2638 {
2639 struct remote_state *rs = get_remote_state ();
2640
2641 if (!rs->starting_up)
2642 notice_new_inferior (new_thr, executing, 0);
2643 }
2644 }
2645 }
2646
2647 /* Return THREAD's private thread data, creating it if necessary. */
2648
2649 static remote_thread_info *
2650 get_remote_thread_info (thread_info *thread)
2651 {
2652 gdb_assert (thread != NULL);
2653
2654 if (thread->priv == NULL)
2655 thread->priv.reset (new remote_thread_info);
2656
2657 return static_cast<remote_thread_info *> (thread->priv.get ());
2658 }
2659
2660 /* Return PTID's private thread data, creating it if necessary. */
2661
2662 static remote_thread_info *
2663 get_remote_thread_info (remote_target *target, ptid_t ptid)
2664 {
2665 thread_info *thr = find_thread_ptid (target, ptid);
2666 return get_remote_thread_info (thr);
2667 }
2668
2669 /* Call this function as a result of
2670 1) A halt indication (T packet) containing a thread id
2671 2) A direct query of currthread
2672 3) Successful execution of set thread */
2673
2674 static void
2675 record_currthread (struct remote_state *rs, ptid_t currthread)
2676 {
2677 rs->general_thread = currthread;
2678 }
2679
2680 /* If 'QPassSignals' is supported, tell the remote stub what signals
2681 it can simply pass through to the inferior without reporting. */
2682
2683 void
2684 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2685 {
2686 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2687 {
2688 char *pass_packet, *p;
2689 int count = 0;
2690 struct remote_state *rs = get_remote_state ();
2691
2692 gdb_assert (pass_signals.size () < 256);
2693 for (size_t i = 0; i < pass_signals.size (); i++)
2694 {
2695 if (pass_signals[i])
2696 count++;
2697 }
2698 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2699 strcpy (pass_packet, "QPassSignals:");
2700 p = pass_packet + strlen (pass_packet);
2701 for (size_t i = 0; i < pass_signals.size (); i++)
2702 {
2703 if (pass_signals[i])
2704 {
2705 if (i >= 16)
2706 *p++ = tohex (i >> 4);
2707 *p++ = tohex (i & 15);
2708 if (count)
2709 *p++ = ';';
2710 else
2711 break;
2712 count--;
2713 }
2714 }
2715 *p = 0;
2716 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2717 {
2718 putpkt (pass_packet);
2719 getpkt (&rs->buf, 0);
2720 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2721 xfree (rs->last_pass_packet);
2722 rs->last_pass_packet = pass_packet;
2723 }
2724 else
2725 xfree (pass_packet);
2726 }
2727 }
2728
2729 /* If 'QCatchSyscalls' is supported, tell the remote stub
2730 to report syscalls to GDB. */
2731
2732 int
2733 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2734 gdb::array_view<const int> syscall_counts)
2735 {
2736 const char *catch_packet;
2737 enum packet_result result;
2738 int n_sysno = 0;
2739
2740 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2741 {
2742 /* Not supported. */
2743 return 1;
2744 }
2745
2746 if (needed && any_count == 0)
2747 {
2748 /* Count how many syscalls are to be caught. */
2749 for (size_t i = 0; i < syscall_counts.size (); i++)
2750 {
2751 if (syscall_counts[i] != 0)
2752 n_sysno++;
2753 }
2754 }
2755
2756 remote_debug_printf ("pid %d needed %d any_count %d n_sysno %d",
2757 pid, needed, any_count, n_sysno);
2758
2759 std::string built_packet;
2760 if (needed)
2761 {
2762 /* Prepare a packet with the sysno list, assuming max 8+1
2763 characters for a sysno. If the resulting packet size is too
2764 big, fallback on the non-selective packet. */
2765 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2766 built_packet.reserve (maxpktsz);
2767 built_packet = "QCatchSyscalls:1";
2768 if (any_count == 0)
2769 {
2770 /* Add in each syscall to be caught. */
2771 for (size_t i = 0; i < syscall_counts.size (); i++)
2772 {
2773 if (syscall_counts[i] != 0)
2774 string_appendf (built_packet, ";%zx", i);
2775 }
2776 }
2777 if (built_packet.size () > get_remote_packet_size ())
2778 {
2779 /* catch_packet too big. Fallback to less efficient
2780 non selective mode, with GDB doing the filtering. */
2781 catch_packet = "QCatchSyscalls:1";
2782 }
2783 else
2784 catch_packet = built_packet.c_str ();
2785 }
2786 else
2787 catch_packet = "QCatchSyscalls:0";
2788
2789 struct remote_state *rs = get_remote_state ();
2790
2791 putpkt (catch_packet);
2792 getpkt (&rs->buf, 0);
2793 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2794 if (result == PACKET_OK)
2795 return 0;
2796 else
2797 return -1;
2798 }
2799
2800 /* If 'QProgramSignals' is supported, tell the remote stub what
2801 signals it should pass through to the inferior when detaching. */
2802
2803 void
2804 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2805 {
2806 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2807 {
2808 char *packet, *p;
2809 int count = 0;
2810 struct remote_state *rs = get_remote_state ();
2811
2812 gdb_assert (signals.size () < 256);
2813 for (size_t i = 0; i < signals.size (); i++)
2814 {
2815 if (signals[i])
2816 count++;
2817 }
2818 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2819 strcpy (packet, "QProgramSignals:");
2820 p = packet + strlen (packet);
2821 for (size_t i = 0; i < signals.size (); i++)
2822 {
2823 if (signal_pass_state (i))
2824 {
2825 if (i >= 16)
2826 *p++ = tohex (i >> 4);
2827 *p++ = tohex (i & 15);
2828 if (count)
2829 *p++ = ';';
2830 else
2831 break;
2832 count--;
2833 }
2834 }
2835 *p = 0;
2836 if (!rs->last_program_signals_packet
2837 || strcmp (rs->last_program_signals_packet, packet) != 0)
2838 {
2839 putpkt (packet);
2840 getpkt (&rs->buf, 0);
2841 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2842 xfree (rs->last_program_signals_packet);
2843 rs->last_program_signals_packet = packet;
2844 }
2845 else
2846 xfree (packet);
2847 }
2848 }
2849
2850 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2851 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2852 thread. If GEN is set, set the general thread, if not, then set
2853 the step/continue thread. */
2854 void
2855 remote_target::set_thread (ptid_t ptid, int gen)
2856 {
2857 struct remote_state *rs = get_remote_state ();
2858 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2859 char *buf = rs->buf.data ();
2860 char *endbuf = buf + get_remote_packet_size ();
2861
2862 if (state == ptid)
2863 return;
2864
2865 *buf++ = 'H';
2866 *buf++ = gen ? 'g' : 'c';
2867 if (ptid == magic_null_ptid)
2868 xsnprintf (buf, endbuf - buf, "0");
2869 else if (ptid == any_thread_ptid)
2870 xsnprintf (buf, endbuf - buf, "0");
2871 else if (ptid == minus_one_ptid)
2872 xsnprintf (buf, endbuf - buf, "-1");
2873 else
2874 write_ptid (buf, endbuf, ptid);
2875 putpkt (rs->buf);
2876 getpkt (&rs->buf, 0);
2877 if (gen)
2878 rs->general_thread = ptid;
2879 else
2880 rs->continue_thread = ptid;
2881 }
2882
2883 void
2884 remote_target::set_general_thread (ptid_t ptid)
2885 {
2886 set_thread (ptid, 1);
2887 }
2888
2889 void
2890 remote_target::set_continue_thread (ptid_t ptid)
2891 {
2892 set_thread (ptid, 0);
2893 }
2894
2895 /* Change the remote current process. Which thread within the process
2896 ends up selected isn't important, as long as it is the same process
2897 as what INFERIOR_PTID points to.
2898
2899 This comes from that fact that there is no explicit notion of
2900 "selected process" in the protocol. The selected process for
2901 general operations is the process the selected general thread
2902 belongs to. */
2903
2904 void
2905 remote_target::set_general_process ()
2906 {
2907 struct remote_state *rs = get_remote_state ();
2908
2909 /* If the remote can't handle multiple processes, don't bother. */
2910 if (!remote_multi_process_p (rs))
2911 return;
2912
2913 /* We only need to change the remote current thread if it's pointing
2914 at some other process. */
2915 if (rs->general_thread.pid () != inferior_ptid.pid ())
2916 set_general_thread (inferior_ptid);
2917 }
2918
2919 \f
2920 /* Return nonzero if this is the main thread that we made up ourselves
2921 to model non-threaded targets as single-threaded. */
2922
2923 static int
2924 remote_thread_always_alive (ptid_t ptid)
2925 {
2926 if (ptid == magic_null_ptid)
2927 /* The main thread is always alive. */
2928 return 1;
2929
2930 if (ptid.pid () != 0 && ptid.lwp () == 0)
2931 /* The main thread is always alive. This can happen after a
2932 vAttach, if the remote side doesn't support
2933 multi-threading. */
2934 return 1;
2935
2936 return 0;
2937 }
2938
2939 /* Return nonzero if the thread PTID is still alive on the remote
2940 system. */
2941
2942 bool
2943 remote_target::thread_alive (ptid_t ptid)
2944 {
2945 struct remote_state *rs = get_remote_state ();
2946 char *p, *endp;
2947
2948 /* Check if this is a thread that we made up ourselves to model
2949 non-threaded targets as single-threaded. */
2950 if (remote_thread_always_alive (ptid))
2951 return 1;
2952
2953 p = rs->buf.data ();
2954 endp = p + get_remote_packet_size ();
2955
2956 *p++ = 'T';
2957 write_ptid (p, endp, ptid);
2958
2959 putpkt (rs->buf);
2960 getpkt (&rs->buf, 0);
2961 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2962 }
2963
2964 /* Return a pointer to a thread name if we know it and NULL otherwise.
2965 The thread_info object owns the memory for the name. */
2966
2967 const char *
2968 remote_target::thread_name (struct thread_info *info)
2969 {
2970 if (info->priv != NULL)
2971 {
2972 const std::string &name = get_remote_thread_info (info)->name;
2973 return !name.empty () ? name.c_str () : NULL;
2974 }
2975
2976 return NULL;
2977 }
2978
2979 /* About these extended threadlist and threadinfo packets. They are
2980 variable length packets but, the fields within them are often fixed
2981 length. They are redundant enough to send over UDP as is the
2982 remote protocol in general. There is a matching unit test module
2983 in libstub. */
2984
2985 /* WARNING: This threadref data structure comes from the remote O.S.,
2986 libstub protocol encoding, and remote.c. It is not particularly
2987 changable. */
2988
2989 /* Right now, the internal structure is int. We want it to be bigger.
2990 Plan to fix this. */
2991
2992 typedef int gdb_threadref; /* Internal GDB thread reference. */
2993
2994 /* gdb_ext_thread_info is an internal GDB data structure which is
2995 equivalent to the reply of the remote threadinfo packet. */
2996
2997 struct gdb_ext_thread_info
2998 {
2999 threadref threadid; /* External form of thread reference. */
3000 int active; /* Has state interesting to GDB?
3001 regs, stack. */
3002 char display[256]; /* Brief state display, name,
3003 blocked/suspended. */
3004 char shortname[32]; /* To be used to name threads. */
3005 char more_display[256]; /* Long info, statistics, queue depth,
3006 whatever. */
3007 };
3008
3009 /* The volume of remote transfers can be limited by submitting
3010 a mask containing bits specifying the desired information.
3011 Use a union of these values as the 'selection' parameter to
3012 get_thread_info. FIXME: Make these TAG names more thread specific. */
3013
3014 #define TAG_THREADID 1
3015 #define TAG_EXISTS 2
3016 #define TAG_DISPLAY 4
3017 #define TAG_THREADNAME 8
3018 #define TAG_MOREDISPLAY 16
3019
3020 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
3021
3022 static const char *unpack_nibble (const char *buf, int *val);
3023
3024 static const char *unpack_byte (const char *buf, int *value);
3025
3026 static char *pack_int (char *buf, int value);
3027
3028 static const char *unpack_int (const char *buf, int *value);
3029
3030 static const char *unpack_string (const char *src, char *dest, int length);
3031
3032 static char *pack_threadid (char *pkt, threadref *id);
3033
3034 static const char *unpack_threadid (const char *inbuf, threadref *id);
3035
3036 void int_to_threadref (threadref *id, int value);
3037
3038 static int threadref_to_int (threadref *ref);
3039
3040 static void copy_threadref (threadref *dest, threadref *src);
3041
3042 static int threadmatch (threadref *dest, threadref *src);
3043
3044 static char *pack_threadinfo_request (char *pkt, int mode,
3045 threadref *id);
3046
3047 static char *pack_threadlist_request (char *pkt, int startflag,
3048 int threadcount,
3049 threadref *nextthread);
3050
3051 static int remote_newthread_step (threadref *ref, void *context);
3052
3053
3054 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
3055 buffer we're allowed to write to. Returns
3056 BUF+CHARACTERS_WRITTEN. */
3057
3058 char *
3059 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
3060 {
3061 int pid, tid;
3062 struct remote_state *rs = get_remote_state ();
3063
3064 if (remote_multi_process_p (rs))
3065 {
3066 pid = ptid.pid ();
3067 if (pid < 0)
3068 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
3069 else
3070 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
3071 }
3072 tid = ptid.lwp ();
3073 if (tid < 0)
3074 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
3075 else
3076 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
3077
3078 return buf;
3079 }
3080
3081 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
3082 last parsed char. Returns null_ptid if no thread id is found, and
3083 throws an error if the thread id has an invalid format. */
3084
3085 static ptid_t
3086 read_ptid (const char *buf, const char **obuf)
3087 {
3088 const char *p = buf;
3089 const char *pp;
3090 ULONGEST pid = 0, tid = 0;
3091
3092 if (*p == 'p')
3093 {
3094 /* Multi-process ptid. */
3095 pp = unpack_varlen_hex (p + 1, &pid);
3096 if (*pp != '.')
3097 error (_("invalid remote ptid: %s"), p);
3098
3099 p = pp;
3100 pp = unpack_varlen_hex (p + 1, &tid);
3101 if (obuf)
3102 *obuf = pp;
3103 return ptid_t (pid, tid, 0);
3104 }
3105
3106 /* No multi-process. Just a tid. */
3107 pp = unpack_varlen_hex (p, &tid);
3108
3109 /* Return null_ptid when no thread id is found. */
3110 if (p == pp)
3111 {
3112 if (obuf)
3113 *obuf = pp;
3114 return null_ptid;
3115 }
3116
3117 /* Since the stub is not sending a process id, then default to
3118 what's in inferior_ptid, unless it's null at this point. If so,
3119 then since there's no way to know the pid of the reported
3120 threads, use the magic number. */
3121 if (inferior_ptid == null_ptid)
3122 pid = magic_null_ptid.pid ();
3123 else
3124 pid = inferior_ptid.pid ();
3125
3126 if (obuf)
3127 *obuf = pp;
3128 return ptid_t (pid, tid, 0);
3129 }
3130
3131 static int
3132 stubhex (int ch)
3133 {
3134 if (ch >= 'a' && ch <= 'f')
3135 return ch - 'a' + 10;
3136 if (ch >= '0' && ch <= '9')
3137 return ch - '0';
3138 if (ch >= 'A' && ch <= 'F')
3139 return ch - 'A' + 10;
3140 return -1;
3141 }
3142
3143 static int
3144 stub_unpack_int (const char *buff, int fieldlength)
3145 {
3146 int nibble;
3147 int retval = 0;
3148
3149 while (fieldlength)
3150 {
3151 nibble = stubhex (*buff++);
3152 retval |= nibble;
3153 fieldlength--;
3154 if (fieldlength)
3155 retval = retval << 4;
3156 }
3157 return retval;
3158 }
3159
3160 static const char *
3161 unpack_nibble (const char *buf, int *val)
3162 {
3163 *val = fromhex (*buf++);
3164 return buf;
3165 }
3166
3167 static const char *
3168 unpack_byte (const char *buf, int *value)
3169 {
3170 *value = stub_unpack_int (buf, 2);
3171 return buf + 2;
3172 }
3173
3174 static char *
3175 pack_int (char *buf, int value)
3176 {
3177 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3178 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3179 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3180 buf = pack_hex_byte (buf, (value & 0xff));
3181 return buf;
3182 }
3183
3184 static const char *
3185 unpack_int (const char *buf, int *value)
3186 {
3187 *value = stub_unpack_int (buf, 8);
3188 return buf + 8;
3189 }
3190
3191 #if 0 /* Currently unused, uncomment when needed. */
3192 static char *pack_string (char *pkt, char *string);
3193
3194 static char *
3195 pack_string (char *pkt, char *string)
3196 {
3197 char ch;
3198 int len;
3199
3200 len = strlen (string);
3201 if (len > 200)
3202 len = 200; /* Bigger than most GDB packets, junk??? */
3203 pkt = pack_hex_byte (pkt, len);
3204 while (len-- > 0)
3205 {
3206 ch = *string++;
3207 if ((ch == '\0') || (ch == '#'))
3208 ch = '*'; /* Protect encapsulation. */
3209 *pkt++ = ch;
3210 }
3211 return pkt;
3212 }
3213 #endif /* 0 (unused) */
3214
3215 static const char *
3216 unpack_string (const char *src, char *dest, int length)
3217 {
3218 while (length--)
3219 *dest++ = *src++;
3220 *dest = '\0';
3221 return src;
3222 }
3223
3224 static char *
3225 pack_threadid (char *pkt, threadref *id)
3226 {
3227 char *limit;
3228 unsigned char *altid;
3229
3230 altid = (unsigned char *) id;
3231 limit = pkt + BUF_THREAD_ID_SIZE;
3232 while (pkt < limit)
3233 pkt = pack_hex_byte (pkt, *altid++);
3234 return pkt;
3235 }
3236
3237
3238 static const char *
3239 unpack_threadid (const char *inbuf, threadref *id)
3240 {
3241 char *altref;
3242 const char *limit = inbuf + BUF_THREAD_ID_SIZE;
3243 int x, y;
3244
3245 altref = (char *) id;
3246
3247 while (inbuf < limit)
3248 {
3249 x = stubhex (*inbuf++);
3250 y = stubhex (*inbuf++);
3251 *altref++ = (x << 4) | y;
3252 }
3253 return inbuf;
3254 }
3255
3256 /* Externally, threadrefs are 64 bits but internally, they are still
3257 ints. This is due to a mismatch of specifications. We would like
3258 to use 64bit thread references internally. This is an adapter
3259 function. */
3260
3261 void
3262 int_to_threadref (threadref *id, int value)
3263 {
3264 unsigned char *scan;
3265
3266 scan = (unsigned char *) id;
3267 {
3268 int i = 4;
3269 while (i--)
3270 *scan++ = 0;
3271 }
3272 *scan++ = (value >> 24) & 0xff;
3273 *scan++ = (value >> 16) & 0xff;
3274 *scan++ = (value >> 8) & 0xff;
3275 *scan++ = (value & 0xff);
3276 }
3277
3278 static int
3279 threadref_to_int (threadref *ref)
3280 {
3281 int i, value = 0;
3282 unsigned char *scan;
3283
3284 scan = *ref;
3285 scan += 4;
3286 i = 4;
3287 while (i-- > 0)
3288 value = (value << 8) | ((*scan++) & 0xff);
3289 return value;
3290 }
3291
3292 static void
3293 copy_threadref (threadref *dest, threadref *src)
3294 {
3295 int i;
3296 unsigned char *csrc, *cdest;
3297
3298 csrc = (unsigned char *) src;
3299 cdest = (unsigned char *) dest;
3300 i = 8;
3301 while (i--)
3302 *cdest++ = *csrc++;
3303 }
3304
3305 static int
3306 threadmatch (threadref *dest, threadref *src)
3307 {
3308 /* Things are broken right now, so just assume we got a match. */
3309 #if 0
3310 unsigned char *srcp, *destp;
3311 int i, result;
3312 srcp = (char *) src;
3313 destp = (char *) dest;
3314
3315 result = 1;
3316 while (i-- > 0)
3317 result &= (*srcp++ == *destp++) ? 1 : 0;
3318 return result;
3319 #endif
3320 return 1;
3321 }
3322
3323 /*
3324 threadid:1, # always request threadid
3325 context_exists:2,
3326 display:4,
3327 unique_name:8,
3328 more_display:16
3329 */
3330
3331 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3332
3333 static char *
3334 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3335 {
3336 *pkt++ = 'q'; /* Info Query */
3337 *pkt++ = 'P'; /* process or thread info */
3338 pkt = pack_int (pkt, mode); /* mode */
3339 pkt = pack_threadid (pkt, id); /* threadid */
3340 *pkt = '\0'; /* terminate */
3341 return pkt;
3342 }
3343
3344 /* These values tag the fields in a thread info response packet. */
3345 /* Tagging the fields allows us to request specific fields and to
3346 add more fields as time goes by. */
3347
3348 #define TAG_THREADID 1 /* Echo the thread identifier. */
3349 #define TAG_EXISTS 2 /* Is this process defined enough to
3350 fetch registers and its stack? */
3351 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3352 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3353 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3354 the process. */
3355
3356 int
3357 remote_target::remote_unpack_thread_info_response (const char *pkt,
3358 threadref *expectedref,
3359 gdb_ext_thread_info *info)
3360 {
3361 struct remote_state *rs = get_remote_state ();
3362 int mask, length;
3363 int tag;
3364 threadref ref;
3365 const char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3366 int retval = 1;
3367
3368 /* info->threadid = 0; FIXME: implement zero_threadref. */
3369 info->active = 0;
3370 info->display[0] = '\0';
3371 info->shortname[0] = '\0';
3372 info->more_display[0] = '\0';
3373
3374 /* Assume the characters indicating the packet type have been
3375 stripped. */
3376 pkt = unpack_int (pkt, &mask); /* arg mask */
3377 pkt = unpack_threadid (pkt, &ref);
3378
3379 if (mask == 0)
3380 warning (_("Incomplete response to threadinfo request."));
3381 if (!threadmatch (&ref, expectedref))
3382 { /* This is an answer to a different request. */
3383 warning (_("ERROR RMT Thread info mismatch."));
3384 return 0;
3385 }
3386 copy_threadref (&info->threadid, &ref);
3387
3388 /* Loop on tagged fields , try to bail if something goes wrong. */
3389
3390 /* Packets are terminated with nulls. */
3391 while ((pkt < limit) && mask && *pkt)
3392 {
3393 pkt = unpack_int (pkt, &tag); /* tag */
3394 pkt = unpack_byte (pkt, &length); /* length */
3395 if (!(tag & mask)) /* Tags out of synch with mask. */
3396 {
3397 warning (_("ERROR RMT: threadinfo tag mismatch."));
3398 retval = 0;
3399 break;
3400 }
3401 if (tag == TAG_THREADID)
3402 {
3403 if (length != 16)
3404 {
3405 warning (_("ERROR RMT: length of threadid is not 16."));
3406 retval = 0;
3407 break;
3408 }
3409 pkt = unpack_threadid (pkt, &ref);
3410 mask = mask & ~TAG_THREADID;
3411 continue;
3412 }
3413 if (tag == TAG_EXISTS)
3414 {
3415 info->active = stub_unpack_int (pkt, length);
3416 pkt += length;
3417 mask = mask & ~(TAG_EXISTS);
3418 if (length > 8)
3419 {
3420 warning (_("ERROR RMT: 'exists' length too long."));
3421 retval = 0;
3422 break;
3423 }
3424 continue;
3425 }
3426 if (tag == TAG_THREADNAME)
3427 {
3428 pkt = unpack_string (pkt, &info->shortname[0], length);
3429 mask = mask & ~TAG_THREADNAME;
3430 continue;
3431 }
3432 if (tag == TAG_DISPLAY)
3433 {
3434 pkt = unpack_string (pkt, &info->display[0], length);
3435 mask = mask & ~TAG_DISPLAY;
3436 continue;
3437 }
3438 if (tag == TAG_MOREDISPLAY)
3439 {
3440 pkt = unpack_string (pkt, &info->more_display[0], length);
3441 mask = mask & ~TAG_MOREDISPLAY;
3442 continue;
3443 }
3444 warning (_("ERROR RMT: unknown thread info tag."));
3445 break; /* Not a tag we know about. */
3446 }
3447 return retval;
3448 }
3449
3450 int
3451 remote_target::remote_get_threadinfo (threadref *threadid,
3452 int fieldset,
3453 gdb_ext_thread_info *info)
3454 {
3455 struct remote_state *rs = get_remote_state ();
3456 int result;
3457
3458 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3459 putpkt (rs->buf);
3460 getpkt (&rs->buf, 0);
3461
3462 if (rs->buf[0] == '\0')
3463 return 0;
3464
3465 result = remote_unpack_thread_info_response (&rs->buf[2],
3466 threadid, info);
3467 return result;
3468 }
3469
3470 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3471
3472 static char *
3473 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3474 threadref *nextthread)
3475 {
3476 *pkt++ = 'q'; /* info query packet */
3477 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3478 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3479 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3480 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3481 *pkt = '\0';
3482 return pkt;
3483 }
3484
3485 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3486
3487 int
3488 remote_target::parse_threadlist_response (const char *pkt, int result_limit,
3489 threadref *original_echo,
3490 threadref *resultlist,
3491 int *doneflag)
3492 {
3493 struct remote_state *rs = get_remote_state ();
3494 int count, resultcount, done;
3495
3496 resultcount = 0;
3497 /* Assume the 'q' and 'M chars have been stripped. */
3498 const char *limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3499 /* done parse past here */
3500 pkt = unpack_byte (pkt, &count); /* count field */
3501 pkt = unpack_nibble (pkt, &done);
3502 /* The first threadid is the argument threadid. */
3503 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3504 while ((count-- > 0) && (pkt < limit))
3505 {
3506 pkt = unpack_threadid (pkt, resultlist++);
3507 if (resultcount++ >= result_limit)
3508 break;
3509 }
3510 if (doneflag)
3511 *doneflag = done;
3512 return resultcount;
3513 }
3514
3515 /* Fetch the next batch of threads from the remote. Returns -1 if the
3516 qL packet is not supported, 0 on error and 1 on success. */
3517
3518 int
3519 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3520 int result_limit, int *done, int *result_count,
3521 threadref *threadlist)
3522 {
3523 struct remote_state *rs = get_remote_state ();
3524 int result = 1;
3525
3526 /* Truncate result limit to be smaller than the packet size. */
3527 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3528 >= get_remote_packet_size ())
3529 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3530
3531 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3532 nextthread);
3533 putpkt (rs->buf);
3534 getpkt (&rs->buf, 0);
3535 if (rs->buf[0] == '\0')
3536 {
3537 /* Packet not supported. */
3538 return -1;
3539 }
3540
3541 *result_count =
3542 parse_threadlist_response (&rs->buf[2], result_limit,
3543 &rs->echo_nextthread, threadlist, done);
3544
3545 if (!threadmatch (&rs->echo_nextthread, nextthread))
3546 {
3547 /* FIXME: This is a good reason to drop the packet. */
3548 /* Possibly, there is a duplicate response. */
3549 /* Possibilities :
3550 retransmit immediatly - race conditions
3551 retransmit after timeout - yes
3552 exit
3553 wait for packet, then exit
3554 */
3555 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3556 return 0; /* I choose simply exiting. */
3557 }
3558 if (*result_count <= 0)
3559 {
3560 if (*done != 1)
3561 {
3562 warning (_("RMT ERROR : failed to get remote thread list."));
3563 result = 0;
3564 }
3565 return result; /* break; */
3566 }
3567 if (*result_count > result_limit)
3568 {
3569 *result_count = 0;
3570 warning (_("RMT ERROR: threadlist response longer than requested."));
3571 return 0;
3572 }
3573 return result;
3574 }
3575
3576 /* Fetch the list of remote threads, with the qL packet, and call
3577 STEPFUNCTION for each thread found. Stops iterating and returns 1
3578 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3579 STEPFUNCTION returns false. If the packet is not supported,
3580 returns -1. */
3581
3582 int
3583 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3584 void *context, int looplimit)
3585 {
3586 struct remote_state *rs = get_remote_state ();
3587 int done, i, result_count;
3588 int startflag = 1;
3589 int result = 1;
3590 int loopcount = 0;
3591
3592 done = 0;
3593 while (!done)
3594 {
3595 if (loopcount++ > looplimit)
3596 {
3597 result = 0;
3598 warning (_("Remote fetch threadlist -infinite loop-."));
3599 break;
3600 }
3601 result = remote_get_threadlist (startflag, &rs->nextthread,
3602 MAXTHREADLISTRESULTS,
3603 &done, &result_count,
3604 rs->resultthreadlist);
3605 if (result <= 0)
3606 break;
3607 /* Clear for later iterations. */
3608 startflag = 0;
3609 /* Setup to resume next batch of thread references, set nextthread. */
3610 if (result_count >= 1)
3611 copy_threadref (&rs->nextthread,
3612 &rs->resultthreadlist[result_count - 1]);
3613 i = 0;
3614 while (result_count--)
3615 {
3616 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3617 {
3618 result = 0;
3619 break;
3620 }
3621 }
3622 }
3623 return result;
3624 }
3625
3626 /* A thread found on the remote target. */
3627
3628 struct thread_item
3629 {
3630 explicit thread_item (ptid_t ptid_)
3631 : ptid (ptid_)
3632 {}
3633
3634 thread_item (thread_item &&other) = default;
3635 thread_item &operator= (thread_item &&other) = default;
3636
3637 DISABLE_COPY_AND_ASSIGN (thread_item);
3638
3639 /* The thread's PTID. */
3640 ptid_t ptid;
3641
3642 /* The thread's extra info. */
3643 std::string extra;
3644
3645 /* The thread's name. */
3646 std::string name;
3647
3648 /* The core the thread was running on. -1 if not known. */
3649 int core = -1;
3650
3651 /* The thread handle associated with the thread. */
3652 gdb::byte_vector thread_handle;
3653 };
3654
3655 /* Context passed around to the various methods listing remote
3656 threads. As new threads are found, they're added to the ITEMS
3657 vector. */
3658
3659 struct threads_listing_context
3660 {
3661 /* Return true if this object contains an entry for a thread with ptid
3662 PTID. */
3663
3664 bool contains_thread (ptid_t ptid) const
3665 {
3666 auto match_ptid = [&] (const thread_item &item)
3667 {
3668 return item.ptid == ptid;
3669 };
3670
3671 auto it = std::find_if (this->items.begin (),
3672 this->items.end (),
3673 match_ptid);
3674
3675 return it != this->items.end ();
3676 }
3677
3678 /* Remove the thread with ptid PTID. */
3679
3680 void remove_thread (ptid_t ptid)
3681 {
3682 auto match_ptid = [&] (const thread_item &item)
3683 {
3684 return item.ptid == ptid;
3685 };
3686
3687 auto it = std::remove_if (this->items.begin (),
3688 this->items.end (),
3689 match_ptid);
3690
3691 if (it != this->items.end ())
3692 this->items.erase (it);
3693 }
3694
3695 /* The threads found on the remote target. */
3696 std::vector<thread_item> items;
3697 };
3698
3699 static int
3700 remote_newthread_step (threadref *ref, void *data)
3701 {
3702 struct threads_listing_context *context
3703 = (struct threads_listing_context *) data;
3704 int pid = inferior_ptid.pid ();
3705 int lwp = threadref_to_int (ref);
3706 ptid_t ptid (pid, lwp);
3707
3708 context->items.emplace_back (ptid);
3709
3710 return 1; /* continue iterator */
3711 }
3712
3713 #define CRAZY_MAX_THREADS 1000
3714
3715 ptid_t
3716 remote_target::remote_current_thread (ptid_t oldpid)
3717 {
3718 struct remote_state *rs = get_remote_state ();
3719
3720 putpkt ("qC");
3721 getpkt (&rs->buf, 0);
3722 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3723 {
3724 const char *obuf;
3725 ptid_t result;
3726
3727 result = read_ptid (&rs->buf[2], &obuf);
3728 if (*obuf != '\0')
3729 remote_debug_printf ("warning: garbage in qC reply");
3730
3731 return result;
3732 }
3733 else
3734 return oldpid;
3735 }
3736
3737 /* List remote threads using the deprecated qL packet. */
3738
3739 int
3740 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3741 {
3742 if (remote_threadlist_iterator (remote_newthread_step, context,
3743 CRAZY_MAX_THREADS) >= 0)
3744 return 1;
3745
3746 return 0;
3747 }
3748
3749 #if defined(HAVE_LIBEXPAT)
3750
3751 static void
3752 start_thread (struct gdb_xml_parser *parser,
3753 const struct gdb_xml_element *element,
3754 void *user_data,
3755 std::vector<gdb_xml_value> &attributes)
3756 {
3757 struct threads_listing_context *data
3758 = (struct threads_listing_context *) user_data;
3759 struct gdb_xml_value *attr;
3760
3761 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3762 ptid_t ptid = read_ptid (id, NULL);
3763
3764 data->items.emplace_back (ptid);
3765 thread_item &item = data->items.back ();
3766
3767 attr = xml_find_attribute (attributes, "core");
3768 if (attr != NULL)
3769 item.core = *(ULONGEST *) attr->value.get ();
3770
3771 attr = xml_find_attribute (attributes, "name");
3772 if (attr != NULL)
3773 item.name = (const char *) attr->value.get ();
3774
3775 attr = xml_find_attribute (attributes, "handle");
3776 if (attr != NULL)
3777 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3778 }
3779
3780 static void
3781 end_thread (struct gdb_xml_parser *parser,
3782 const struct gdb_xml_element *element,
3783 void *user_data, const char *body_text)
3784 {
3785 struct threads_listing_context *data
3786 = (struct threads_listing_context *) user_data;
3787
3788 if (body_text != NULL && *body_text != '\0')
3789 data->items.back ().extra = body_text;
3790 }
3791
3792 const struct gdb_xml_attribute thread_attributes[] = {
3793 { "id", GDB_XML_AF_NONE, NULL, NULL },
3794 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3795 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3796 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3797 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3798 };
3799
3800 const struct gdb_xml_element thread_children[] = {
3801 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3802 };
3803
3804 const struct gdb_xml_element threads_children[] = {
3805 { "thread", thread_attributes, thread_children,
3806 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3807 start_thread, end_thread },
3808 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3809 };
3810
3811 const struct gdb_xml_element threads_elements[] = {
3812 { "threads", NULL, threads_children,
3813 GDB_XML_EF_NONE, NULL, NULL },
3814 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3815 };
3816
3817 #endif
3818
3819 /* List remote threads using qXfer:threads:read. */
3820
3821 int
3822 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3823 {
3824 #if defined(HAVE_LIBEXPAT)
3825 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3826 {
3827 gdb::optional<gdb::char_vector> xml
3828 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3829
3830 if (xml && (*xml)[0] != '\0')
3831 {
3832 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3833 threads_elements, xml->data (), context);
3834 }
3835
3836 return 1;
3837 }
3838 #endif
3839
3840 return 0;
3841 }
3842
3843 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3844
3845 int
3846 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3847 {
3848 struct remote_state *rs = get_remote_state ();
3849
3850 if (rs->use_threadinfo_query)
3851 {
3852 const char *bufp;
3853
3854 putpkt ("qfThreadInfo");
3855 getpkt (&rs->buf, 0);
3856 bufp = rs->buf.data ();
3857 if (bufp[0] != '\0') /* q packet recognized */
3858 {
3859 while (*bufp++ == 'm') /* reply contains one or more TID */
3860 {
3861 do
3862 {
3863 ptid_t ptid = read_ptid (bufp, &bufp);
3864 context->items.emplace_back (ptid);
3865 }
3866 while (*bufp++ == ','); /* comma-separated list */
3867 putpkt ("qsThreadInfo");
3868 getpkt (&rs->buf, 0);
3869 bufp = rs->buf.data ();
3870 }
3871 return 1;
3872 }
3873 else
3874 {
3875 /* Packet not recognized. */
3876 rs->use_threadinfo_query = 0;
3877 }
3878 }
3879
3880 return 0;
3881 }
3882
3883 /* Return true if INF only has one non-exited thread. */
3884
3885 static bool
3886 has_single_non_exited_thread (inferior *inf)
3887 {
3888 int count = 0;
3889 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3890 if (++count > 1)
3891 break;
3892 return count == 1;
3893 }
3894
3895 /* Implement the to_update_thread_list function for the remote
3896 targets. */
3897
3898 void
3899 remote_target::update_thread_list ()
3900 {
3901 struct threads_listing_context context;
3902 int got_list = 0;
3903
3904 /* We have a few different mechanisms to fetch the thread list. Try
3905 them all, starting with the most preferred one first, falling
3906 back to older methods. */
3907 if (remote_get_threads_with_qxfer (&context)
3908 || remote_get_threads_with_qthreadinfo (&context)
3909 || remote_get_threads_with_ql (&context))
3910 {
3911 got_list = 1;
3912
3913 if (context.items.empty ()
3914 && remote_thread_always_alive (inferior_ptid))
3915 {
3916 /* Some targets don't really support threads, but still
3917 reply an (empty) thread list in response to the thread
3918 listing packets, instead of replying "packet not
3919 supported". Exit early so we don't delete the main
3920 thread. */
3921 return;
3922 }
3923
3924 /* CONTEXT now holds the current thread list on the remote
3925 target end. Delete GDB-side threads no longer found on the
3926 target. */
3927 for (thread_info *tp : all_threads_safe ())
3928 {
3929 if (tp->inf->process_target () != this)
3930 continue;
3931
3932 if (!context.contains_thread (tp->ptid))
3933 {
3934 /* Do not remove the thread if it is the last thread in
3935 the inferior. This situation happens when we have a
3936 pending exit process status to process. Otherwise we
3937 may end up with a seemingly live inferior (i.e. pid
3938 != 0) that has no threads. */
3939 if (has_single_non_exited_thread (tp->inf))
3940 continue;
3941
3942 /* Not found. */
3943 delete_thread (tp);
3944 }
3945 }
3946
3947 /* Remove any unreported fork child threads from CONTEXT so
3948 that we don't interfere with follow fork, which is where
3949 creation of such threads is handled. */
3950 remove_new_fork_children (&context);
3951
3952 /* And now add threads we don't know about yet to our list. */
3953 for (thread_item &item : context.items)
3954 {
3955 if (item.ptid != null_ptid)
3956 {
3957 /* In non-stop mode, we assume new found threads are
3958 executing until proven otherwise with a stop reply.
3959 In all-stop, we can only get here if all threads are
3960 stopped. */
3961 bool executing = target_is_non_stop_p ();
3962
3963 remote_notice_new_inferior (item.ptid, executing);
3964
3965 thread_info *tp = find_thread_ptid (this, item.ptid);
3966 remote_thread_info *info = get_remote_thread_info (tp);
3967 info->core = item.core;
3968 info->extra = std::move (item.extra);
3969 info->name = std::move (item.name);
3970 info->thread_handle = std::move (item.thread_handle);
3971 }
3972 }
3973 }
3974
3975 if (!got_list)
3976 {
3977 /* If no thread listing method is supported, then query whether
3978 each known thread is alive, one by one, with the T packet.
3979 If the target doesn't support threads at all, then this is a
3980 no-op. See remote_thread_alive. */
3981 prune_threads ();
3982 }
3983 }
3984
3985 /*
3986 * Collect a descriptive string about the given thread.
3987 * The target may say anything it wants to about the thread
3988 * (typically info about its blocked / runnable state, name, etc.).
3989 * This string will appear in the info threads display.
3990 *
3991 * Optional: targets are not required to implement this function.
3992 */
3993
3994 const char *
3995 remote_target::extra_thread_info (thread_info *tp)
3996 {
3997 struct remote_state *rs = get_remote_state ();
3998 int set;
3999 threadref id;
4000 struct gdb_ext_thread_info threadinfo;
4001
4002 if (rs->remote_desc == 0) /* paranoia */
4003 internal_error (__FILE__, __LINE__,
4004 _("remote_threads_extra_info"));
4005
4006 if (tp->ptid == magic_null_ptid
4007 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
4008 /* This is the main thread which was added by GDB. The remote
4009 server doesn't know about it. */
4010 return NULL;
4011
4012 std::string &extra = get_remote_thread_info (tp)->extra;
4013
4014 /* If already have cached info, use it. */
4015 if (!extra.empty ())
4016 return extra.c_str ();
4017
4018 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
4019 {
4020 /* If we're using qXfer:threads:read, then the extra info is
4021 included in the XML. So if we didn't have anything cached,
4022 it's because there's really no extra info. */
4023 return NULL;
4024 }
4025
4026 if (rs->use_threadextra_query)
4027 {
4028 char *b = rs->buf.data ();
4029 char *endb = b + get_remote_packet_size ();
4030
4031 xsnprintf (b, endb - b, "qThreadExtraInfo,");
4032 b += strlen (b);
4033 write_ptid (b, endb, tp->ptid);
4034
4035 putpkt (rs->buf);
4036 getpkt (&rs->buf, 0);
4037 if (rs->buf[0] != 0)
4038 {
4039 extra.resize (strlen (rs->buf.data ()) / 2);
4040 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
4041 return extra.c_str ();
4042 }
4043 }
4044
4045 /* If the above query fails, fall back to the old method. */
4046 rs->use_threadextra_query = 0;
4047 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4048 | TAG_MOREDISPLAY | TAG_DISPLAY;
4049 int_to_threadref (&id, tp->ptid.lwp ());
4050 if (remote_get_threadinfo (&id, set, &threadinfo))
4051 if (threadinfo.active)
4052 {
4053 if (*threadinfo.shortname)
4054 string_appendf (extra, " Name: %s", threadinfo.shortname);
4055 if (*threadinfo.display)
4056 {
4057 if (!extra.empty ())
4058 extra += ',';
4059 string_appendf (extra, " State: %s", threadinfo.display);
4060 }
4061 if (*threadinfo.more_display)
4062 {
4063 if (!extra.empty ())
4064 extra += ',';
4065 string_appendf (extra, " Priority: %s", threadinfo.more_display);
4066 }
4067 return extra.c_str ();
4068 }
4069 return NULL;
4070 }
4071 \f
4072
4073 bool
4074 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
4075 struct static_tracepoint_marker *marker)
4076 {
4077 struct remote_state *rs = get_remote_state ();
4078 char *p = rs->buf.data ();
4079
4080 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
4081 p += strlen (p);
4082 p += hexnumstr (p, addr);
4083 putpkt (rs->buf);
4084 getpkt (&rs->buf, 0);
4085 p = rs->buf.data ();
4086
4087 if (*p == 'E')
4088 error (_("Remote failure reply: %s"), p);
4089
4090 if (*p++ == 'm')
4091 {
4092 parse_static_tracepoint_marker_definition (p, NULL, marker);
4093 return true;
4094 }
4095
4096 return false;
4097 }
4098
4099 std::vector<static_tracepoint_marker>
4100 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4101 {
4102 struct remote_state *rs = get_remote_state ();
4103 std::vector<static_tracepoint_marker> markers;
4104 const char *p;
4105 static_tracepoint_marker marker;
4106
4107 /* Ask for a first packet of static tracepoint marker
4108 definition. */
4109 putpkt ("qTfSTM");
4110 getpkt (&rs->buf, 0);
4111 p = rs->buf.data ();
4112 if (*p == 'E')
4113 error (_("Remote failure reply: %s"), p);
4114
4115 while (*p++ == 'm')
4116 {
4117 do
4118 {
4119 parse_static_tracepoint_marker_definition (p, &p, &marker);
4120
4121 if (strid == NULL || marker.str_id == strid)
4122 markers.push_back (std::move (marker));
4123 }
4124 while (*p++ == ','); /* comma-separated list */
4125 /* Ask for another packet of static tracepoint definition. */
4126 putpkt ("qTsSTM");
4127 getpkt (&rs->buf, 0);
4128 p = rs->buf.data ();
4129 }
4130
4131 return markers;
4132 }
4133
4134 \f
4135 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4136
4137 ptid_t
4138 remote_target::get_ada_task_ptid (long lwp, long thread)
4139 {
4140 return ptid_t (inferior_ptid.pid (), lwp, 0);
4141 }
4142 \f
4143
4144 /* Restart the remote side; this is an extended protocol operation. */
4145
4146 void
4147 remote_target::extended_remote_restart ()
4148 {
4149 struct remote_state *rs = get_remote_state ();
4150
4151 /* Send the restart command; for reasons I don't understand the
4152 remote side really expects a number after the "R". */
4153 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4154 putpkt (rs->buf);
4155
4156 remote_fileio_reset ();
4157 }
4158 \f
4159 /* Clean up connection to a remote debugger. */
4160
4161 void
4162 remote_target::close ()
4163 {
4164 /* Make sure we leave stdin registered in the event loop. */
4165 terminal_ours ();
4166
4167 trace_reset_local_state ();
4168
4169 delete this;
4170 }
4171
4172 remote_target::~remote_target ()
4173 {
4174 struct remote_state *rs = get_remote_state ();
4175
4176 /* Check for NULL because we may get here with a partially
4177 constructed target/connection. */
4178 if (rs->remote_desc == nullptr)
4179 return;
4180
4181 serial_close (rs->remote_desc);
4182
4183 /* We are destroying the remote target, so we should discard
4184 everything of this target. */
4185 discard_pending_stop_replies_in_queue ();
4186
4187 if (rs->remote_async_inferior_event_token)
4188 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4189
4190 delete rs->notif_state;
4191 }
4192
4193 /* Query the remote side for the text, data and bss offsets. */
4194
4195 void
4196 remote_target::get_offsets ()
4197 {
4198 struct remote_state *rs = get_remote_state ();
4199 char *buf;
4200 char *ptr;
4201 int lose, num_segments = 0, do_sections, do_segments;
4202 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4203
4204 if (current_program_space->symfile_object_file == NULL)
4205 return;
4206
4207 putpkt ("qOffsets");
4208 getpkt (&rs->buf, 0);
4209 buf = rs->buf.data ();
4210
4211 if (buf[0] == '\000')
4212 return; /* Return silently. Stub doesn't support
4213 this command. */
4214 if (buf[0] == 'E')
4215 {
4216 warning (_("Remote failure reply: %s"), buf);
4217 return;
4218 }
4219
4220 /* Pick up each field in turn. This used to be done with scanf, but
4221 scanf will make trouble if CORE_ADDR size doesn't match
4222 conversion directives correctly. The following code will work
4223 with any size of CORE_ADDR. */
4224 text_addr = data_addr = bss_addr = 0;
4225 ptr = buf;
4226 lose = 0;
4227
4228 if (startswith (ptr, "Text="))
4229 {
4230 ptr += 5;
4231 /* Don't use strtol, could lose on big values. */
4232 while (*ptr && *ptr != ';')
4233 text_addr = (text_addr << 4) + fromhex (*ptr++);
4234
4235 if (startswith (ptr, ";Data="))
4236 {
4237 ptr += 6;
4238 while (*ptr && *ptr != ';')
4239 data_addr = (data_addr << 4) + fromhex (*ptr++);
4240 }
4241 else
4242 lose = 1;
4243
4244 if (!lose && startswith (ptr, ";Bss="))
4245 {
4246 ptr += 5;
4247 while (*ptr && *ptr != ';')
4248 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4249
4250 if (bss_addr != data_addr)
4251 warning (_("Target reported unsupported offsets: %s"), buf);
4252 }
4253 else
4254 lose = 1;
4255 }
4256 else if (startswith (ptr, "TextSeg="))
4257 {
4258 ptr += 8;
4259 /* Don't use strtol, could lose on big values. */
4260 while (*ptr && *ptr != ';')
4261 text_addr = (text_addr << 4) + fromhex (*ptr++);
4262 num_segments = 1;
4263
4264 if (startswith (ptr, ";DataSeg="))
4265 {
4266 ptr += 9;
4267 while (*ptr && *ptr != ';')
4268 data_addr = (data_addr << 4) + fromhex (*ptr++);
4269 num_segments++;
4270 }
4271 }
4272 else
4273 lose = 1;
4274
4275 if (lose)
4276 error (_("Malformed response to offset query, %s"), buf);
4277 else if (*ptr != '\0')
4278 warning (_("Target reported unsupported offsets: %s"), buf);
4279
4280 objfile *objf = current_program_space->symfile_object_file;
4281 section_offsets offs = objf->section_offsets;
4282
4283 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4284 do_segments = (data != NULL);
4285 do_sections = num_segments == 0;
4286
4287 if (num_segments > 0)
4288 {
4289 segments[0] = text_addr;
4290 segments[1] = data_addr;
4291 }
4292 /* If we have two segments, we can still try to relocate everything
4293 by assuming that the .text and .data offsets apply to the whole
4294 text and data segments. Convert the offsets given in the packet
4295 to base addresses for symfile_map_offsets_to_segments. */
4296 else if (data != nullptr && data->segments.size () == 2)
4297 {
4298 segments[0] = data->segments[0].base + text_addr;
4299 segments[1] = data->segments[1].base + data_addr;
4300 num_segments = 2;
4301 }
4302 /* If the object file has only one segment, assume that it is text
4303 rather than data; main programs with no writable data are rare,
4304 but programs with no code are useless. Of course the code might
4305 have ended up in the data segment... to detect that we would need
4306 the permissions here. */
4307 else if (data && data->segments.size () == 1)
4308 {
4309 segments[0] = data->segments[0].base + text_addr;
4310 num_segments = 1;
4311 }
4312 /* There's no way to relocate by segment. */
4313 else
4314 do_segments = 0;
4315
4316 if (do_segments)
4317 {
4318 int ret = symfile_map_offsets_to_segments (objf->obfd,
4319 data.get (), offs,
4320 num_segments, segments);
4321
4322 if (ret == 0 && !do_sections)
4323 error (_("Can not handle qOffsets TextSeg "
4324 "response with this symbol file"));
4325
4326 if (ret > 0)
4327 do_sections = 0;
4328 }
4329
4330 if (do_sections)
4331 {
4332 offs[SECT_OFF_TEXT (objf)] = text_addr;
4333
4334 /* This is a temporary kludge to force data and bss to use the
4335 same offsets because that's what nlmconv does now. The real
4336 solution requires changes to the stub and remote.c that I
4337 don't have time to do right now. */
4338
4339 offs[SECT_OFF_DATA (objf)] = data_addr;
4340 offs[SECT_OFF_BSS (objf)] = data_addr;
4341 }
4342
4343 objfile_relocate (objf, offs);
4344 }
4345
4346 /* Send interrupt_sequence to remote target. */
4347
4348 void
4349 remote_target::send_interrupt_sequence ()
4350 {
4351 struct remote_state *rs = get_remote_state ();
4352
4353 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4354 remote_serial_write ("\x03", 1);
4355 else if (interrupt_sequence_mode == interrupt_sequence_break)
4356 serial_send_break (rs->remote_desc);
4357 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4358 {
4359 serial_send_break (rs->remote_desc);
4360 remote_serial_write ("g", 1);
4361 }
4362 else
4363 internal_error (__FILE__, __LINE__,
4364 _("Invalid value for interrupt_sequence_mode: %s."),
4365 interrupt_sequence_mode);
4366 }
4367
4368
4369 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4370 and extract the PTID. Returns NULL_PTID if not found. */
4371
4372 static ptid_t
4373 stop_reply_extract_thread (const char *stop_reply)
4374 {
4375 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4376 {
4377 const char *p;
4378
4379 /* Txx r:val ; r:val (...) */
4380 p = &stop_reply[3];
4381
4382 /* Look for "register" named "thread". */
4383 while (*p != '\0')
4384 {
4385 const char *p1;
4386
4387 p1 = strchr (p, ':');
4388 if (p1 == NULL)
4389 return null_ptid;
4390
4391 if (strncmp (p, "thread", p1 - p) == 0)
4392 return read_ptid (++p1, &p);
4393
4394 p1 = strchr (p, ';');
4395 if (p1 == NULL)
4396 return null_ptid;
4397 p1++;
4398
4399 p = p1;
4400 }
4401 }
4402
4403 return null_ptid;
4404 }
4405
4406 /* Determine the remote side's current thread. If we have a stop
4407 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4408 "thread" register we can extract the current thread from. If not,
4409 ask the remote which is the current thread with qC. The former
4410 method avoids a roundtrip. */
4411
4412 ptid_t
4413 remote_target::get_current_thread (const char *wait_status)
4414 {
4415 ptid_t ptid = null_ptid;
4416
4417 /* Note we don't use remote_parse_stop_reply as that makes use of
4418 the target architecture, which we haven't yet fully determined at
4419 this point. */
4420 if (wait_status != NULL)
4421 ptid = stop_reply_extract_thread (wait_status);
4422 if (ptid == null_ptid)
4423 ptid = remote_current_thread (inferior_ptid);
4424
4425 return ptid;
4426 }
4427
4428 /* Query the remote target for which is the current thread/process,
4429 add it to our tables, and update INFERIOR_PTID. The caller is
4430 responsible for setting the state such that the remote end is ready
4431 to return the current thread.
4432
4433 This function is called after handling the '?' or 'vRun' packets,
4434 whose response is a stop reply from which we can also try
4435 extracting the thread. If the target doesn't support the explicit
4436 qC query, we infer the current thread from that stop reply, passed
4437 in in WAIT_STATUS, which may be NULL.
4438
4439 The function returns pointer to the main thread of the inferior. */
4440
4441 thread_info *
4442 remote_target::add_current_inferior_and_thread (const char *wait_status)
4443 {
4444 struct remote_state *rs = get_remote_state ();
4445 bool fake_pid_p = false;
4446
4447 switch_to_no_thread ();
4448
4449 /* Now, if we have thread information, update the current thread's
4450 ptid. */
4451 ptid_t curr_ptid = get_current_thread (wait_status);
4452
4453 if (curr_ptid != null_ptid)
4454 {
4455 if (!remote_multi_process_p (rs))
4456 fake_pid_p = true;
4457 }
4458 else
4459 {
4460 /* Without this, some commands which require an active target
4461 (such as kill) won't work. This variable serves (at least)
4462 double duty as both the pid of the target process (if it has
4463 such), and as a flag indicating that a target is active. */
4464 curr_ptid = magic_null_ptid;
4465 fake_pid_p = true;
4466 }
4467
4468 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4469
4470 /* Add the main thread and switch to it. Don't try reading
4471 registers yet, since we haven't fetched the target description
4472 yet. */
4473 thread_info *tp = add_thread_silent (this, curr_ptid);
4474 switch_to_thread_no_regs (tp);
4475
4476 return tp;
4477 }
4478
4479 /* Print info about a thread that was found already stopped on
4480 connection. */
4481
4482 static void
4483 print_one_stopped_thread (struct thread_info *thread)
4484 {
4485 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4486
4487 switch_to_thread (thread);
4488 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4489 set_current_sal_from_frame (get_current_frame ());
4490
4491 thread->suspend.waitstatus_pending_p = 0;
4492
4493 if (ws->kind == TARGET_WAITKIND_STOPPED)
4494 {
4495 enum gdb_signal sig = ws->value.sig;
4496
4497 if (signal_print_state (sig))
4498 gdb::observers::signal_received.notify (sig);
4499 }
4500 gdb::observers::normal_stop.notify (NULL, 1);
4501 }
4502
4503 /* Process all initial stop replies the remote side sent in response
4504 to the ? packet. These indicate threads that were already stopped
4505 on initial connection. We mark these threads as stopped and print
4506 their current frame before giving the user the prompt. */
4507
4508 void
4509 remote_target::process_initial_stop_replies (int from_tty)
4510 {
4511 int pending_stop_replies = stop_reply_queue_length ();
4512 struct thread_info *selected = NULL;
4513 struct thread_info *lowest_stopped = NULL;
4514 struct thread_info *first = NULL;
4515
4516 /* Consume the initial pending events. */
4517 while (pending_stop_replies-- > 0)
4518 {
4519 ptid_t waiton_ptid = minus_one_ptid;
4520 ptid_t event_ptid;
4521 struct target_waitstatus ws;
4522 int ignore_event = 0;
4523
4524 memset (&ws, 0, sizeof (ws));
4525 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4526 if (remote_debug)
4527 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4528
4529 switch (ws.kind)
4530 {
4531 case TARGET_WAITKIND_IGNORE:
4532 case TARGET_WAITKIND_NO_RESUMED:
4533 case TARGET_WAITKIND_SIGNALLED:
4534 case TARGET_WAITKIND_EXITED:
4535 /* We shouldn't see these, but if we do, just ignore. */
4536 remote_debug_printf ("event ignored");
4537 ignore_event = 1;
4538 break;
4539
4540 case TARGET_WAITKIND_EXECD:
4541 xfree (ws.value.execd_pathname);
4542 break;
4543 default:
4544 break;
4545 }
4546
4547 if (ignore_event)
4548 continue;
4549
4550 thread_info *evthread = find_thread_ptid (this, event_ptid);
4551
4552 if (ws.kind == TARGET_WAITKIND_STOPPED)
4553 {
4554 enum gdb_signal sig = ws.value.sig;
4555
4556 /* Stubs traditionally report SIGTRAP as initial signal,
4557 instead of signal 0. Suppress it. */
4558 if (sig == GDB_SIGNAL_TRAP)
4559 sig = GDB_SIGNAL_0;
4560 evthread->suspend.stop_signal = sig;
4561 ws.value.sig = sig;
4562 }
4563
4564 evthread->suspend.waitstatus = ws;
4565
4566 if (ws.kind != TARGET_WAITKIND_STOPPED
4567 || ws.value.sig != GDB_SIGNAL_0)
4568 evthread->suspend.waitstatus_pending_p = 1;
4569
4570 set_executing (this, event_ptid, false);
4571 set_running (this, event_ptid, false);
4572 get_remote_thread_info (evthread)->set_not_resumed ();
4573 }
4574
4575 /* "Notice" the new inferiors before anything related to
4576 registers/memory. */
4577 for (inferior *inf : all_non_exited_inferiors (this))
4578 {
4579 inf->needs_setup = 1;
4580
4581 if (non_stop)
4582 {
4583 thread_info *thread = any_live_thread_of_inferior (inf);
4584 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4585 from_tty);
4586 }
4587 }
4588
4589 /* If all-stop on top of non-stop, pause all threads. Note this
4590 records the threads' stop pc, so must be done after "noticing"
4591 the inferiors. */
4592 if (!non_stop)
4593 {
4594 stop_all_threads ();
4595
4596 /* If all threads of an inferior were already stopped, we
4597 haven't setup the inferior yet. */
4598 for (inferior *inf : all_non_exited_inferiors (this))
4599 {
4600 if (inf->needs_setup)
4601 {
4602 thread_info *thread = any_live_thread_of_inferior (inf);
4603 switch_to_thread_no_regs (thread);
4604 setup_inferior (0);
4605 }
4606 }
4607 }
4608
4609 /* Now go over all threads that are stopped, and print their current
4610 frame. If all-stop, then if there's a signalled thread, pick
4611 that as current. */
4612 for (thread_info *thread : all_non_exited_threads (this))
4613 {
4614 if (first == NULL)
4615 first = thread;
4616
4617 if (!non_stop)
4618 thread->set_running (false);
4619 else if (thread->state != THREAD_STOPPED)
4620 continue;
4621
4622 if (selected == NULL
4623 && thread->suspend.waitstatus_pending_p)
4624 selected = thread;
4625
4626 if (lowest_stopped == NULL
4627 || thread->inf->num < lowest_stopped->inf->num
4628 || thread->per_inf_num < lowest_stopped->per_inf_num)
4629 lowest_stopped = thread;
4630
4631 if (non_stop)
4632 print_one_stopped_thread (thread);
4633 }
4634
4635 /* In all-stop, we only print the status of one thread, and leave
4636 others with their status pending. */
4637 if (!non_stop)
4638 {
4639 thread_info *thread = selected;
4640 if (thread == NULL)
4641 thread = lowest_stopped;
4642 if (thread == NULL)
4643 thread = first;
4644
4645 print_one_stopped_thread (thread);
4646 }
4647
4648 /* For "info program". */
4649 thread_info *thread = inferior_thread ();
4650 if (thread->state == THREAD_STOPPED)
4651 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4652 }
4653
4654 /* Start the remote connection and sync state. */
4655
4656 void
4657 remote_target::start_remote (int from_tty, int extended_p)
4658 {
4659 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
4660
4661 struct remote_state *rs = get_remote_state ();
4662 struct packet_config *noack_config;
4663
4664 /* Signal other parts that we're going through the initial setup,
4665 and so things may not be stable yet. E.g., we don't try to
4666 install tracepoints until we've relocated symbols. Also, a
4667 Ctrl-C before we're connected and synced up can't interrupt the
4668 target. Instead, it offers to drop the (potentially wedged)
4669 connection. */
4670 rs->starting_up = 1;
4671
4672 QUIT;
4673
4674 if (interrupt_on_connect)
4675 send_interrupt_sequence ();
4676
4677 /* Ack any packet which the remote side has already sent. */
4678 remote_serial_write ("+", 1);
4679
4680 /* The first packet we send to the target is the optional "supported
4681 packets" request. If the target can answer this, it will tell us
4682 which later probes to skip. */
4683 remote_query_supported ();
4684
4685 /* If the stub wants to get a QAllow, compose one and send it. */
4686 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4687 set_permissions ();
4688
4689 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4690 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4691 as a reply to known packet. For packet "vFile:setfs:" it is an
4692 invalid reply and GDB would return error in
4693 remote_hostio_set_filesystem, making remote files access impossible.
4694 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4695 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4696 {
4697 const char v_mustreplyempty[] = "vMustReplyEmpty";
4698
4699 putpkt (v_mustreplyempty);
4700 getpkt (&rs->buf, 0);
4701 if (strcmp (rs->buf.data (), "OK") == 0)
4702 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4703 else if (strcmp (rs->buf.data (), "") != 0)
4704 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4705 rs->buf.data ());
4706 }
4707
4708 /* Next, we possibly activate noack mode.
4709
4710 If the QStartNoAckMode packet configuration is set to AUTO,
4711 enable noack mode if the stub reported a wish for it with
4712 qSupported.
4713
4714 If set to TRUE, then enable noack mode even if the stub didn't
4715 report it in qSupported. If the stub doesn't reply OK, the
4716 session ends with an error.
4717
4718 If FALSE, then don't activate noack mode, regardless of what the
4719 stub claimed should be the default with qSupported. */
4720
4721 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4722 if (packet_config_support (noack_config) != PACKET_DISABLE)
4723 {
4724 putpkt ("QStartNoAckMode");
4725 getpkt (&rs->buf, 0);
4726 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4727 rs->noack_mode = 1;
4728 }
4729
4730 if (extended_p)
4731 {
4732 /* Tell the remote that we are using the extended protocol. */
4733 putpkt ("!");
4734 getpkt (&rs->buf, 0);
4735 }
4736
4737 /* Let the target know which signals it is allowed to pass down to
4738 the program. */
4739 update_signals_program_target ();
4740
4741 /* Next, if the target can specify a description, read it. We do
4742 this before anything involving memory or registers. */
4743 target_find_description ();
4744
4745 /* Next, now that we know something about the target, update the
4746 address spaces in the program spaces. */
4747 update_address_spaces ();
4748
4749 /* On OSs where the list of libraries is global to all
4750 processes, we fetch them early. */
4751 if (gdbarch_has_global_solist (target_gdbarch ()))
4752 solib_add (NULL, from_tty, auto_solib_add);
4753
4754 if (target_is_non_stop_p ())
4755 {
4756 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4757 error (_("Non-stop mode requested, but remote "
4758 "does not support non-stop"));
4759
4760 putpkt ("QNonStop:1");
4761 getpkt (&rs->buf, 0);
4762
4763 if (strcmp (rs->buf.data (), "OK") != 0)
4764 error (_("Remote refused setting non-stop mode with: %s"),
4765 rs->buf.data ());
4766
4767 /* Find about threads and processes the stub is already
4768 controlling. We default to adding them in the running state.
4769 The '?' query below will then tell us about which threads are
4770 stopped. */
4771 this->update_thread_list ();
4772 }
4773 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4774 {
4775 /* Don't assume that the stub can operate in all-stop mode.
4776 Request it explicitly. */
4777 putpkt ("QNonStop:0");
4778 getpkt (&rs->buf, 0);
4779
4780 if (strcmp (rs->buf.data (), "OK") != 0)
4781 error (_("Remote refused setting all-stop mode with: %s"),
4782 rs->buf.data ());
4783 }
4784
4785 /* Upload TSVs regardless of whether the target is running or not. The
4786 remote stub, such as GDBserver, may have some predefined or builtin
4787 TSVs, even if the target is not running. */
4788 if (get_trace_status (current_trace_status ()) != -1)
4789 {
4790 struct uploaded_tsv *uploaded_tsvs = NULL;
4791
4792 upload_trace_state_variables (&uploaded_tsvs);
4793 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4794 }
4795
4796 /* Check whether the target is running now. */
4797 putpkt ("?");
4798 getpkt (&rs->buf, 0);
4799
4800 if (!target_is_non_stop_p ())
4801 {
4802 char *wait_status = NULL;
4803
4804 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4805 {
4806 if (!extended_p)
4807 error (_("The target is not running (try extended-remote?)"));
4808
4809 /* We're connected, but not running. Drop out before we
4810 call start_remote. */
4811 rs->starting_up = 0;
4812 return;
4813 }
4814 else
4815 {
4816 /* Save the reply for later. */
4817 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4818 strcpy (wait_status, rs->buf.data ());
4819 }
4820
4821 /* Fetch thread list. */
4822 target_update_thread_list ();
4823
4824 /* Let the stub know that we want it to return the thread. */
4825 set_continue_thread (minus_one_ptid);
4826
4827 if (thread_count (this) == 0)
4828 {
4829 /* Target has no concept of threads at all. GDB treats
4830 non-threaded target as single-threaded; add a main
4831 thread. */
4832 thread_info *tp = add_current_inferior_and_thread (wait_status);
4833 get_remote_thread_info (tp)->set_resumed ();
4834 }
4835 else
4836 {
4837 /* We have thread information; select the thread the target
4838 says should be current. If we're reconnecting to a
4839 multi-threaded program, this will ideally be the thread
4840 that last reported an event before GDB disconnected. */
4841 ptid_t curr_thread = get_current_thread (wait_status);
4842 if (curr_thread == null_ptid)
4843 {
4844 /* Odd... The target was able to list threads, but not
4845 tell us which thread was current (no "thread"
4846 register in T stop reply?). Just pick the first
4847 thread in the thread list then. */
4848
4849 remote_debug_printf ("warning: couldn't determine remote "
4850 "current thread; picking first in list.");
4851
4852 for (thread_info *tp : all_non_exited_threads (this,
4853 minus_one_ptid))
4854 {
4855 switch_to_thread (tp);
4856 break;
4857 }
4858 }
4859 else
4860 switch_to_thread (find_thread_ptid (this, curr_thread));
4861 }
4862
4863 /* init_wait_for_inferior should be called before get_offsets in order
4864 to manage `inserted' flag in bp loc in a correct state.
4865 breakpoint_init_inferior, called from init_wait_for_inferior, set
4866 `inserted' flag to 0, while before breakpoint_re_set, called from
4867 start_remote, set `inserted' flag to 1. In the initialization of
4868 inferior, breakpoint_init_inferior should be called first, and then
4869 breakpoint_re_set can be called. If this order is broken, state of
4870 `inserted' flag is wrong, and cause some problems on breakpoint
4871 manipulation. */
4872 init_wait_for_inferior ();
4873
4874 get_offsets (); /* Get text, data & bss offsets. */
4875
4876 /* If we could not find a description using qXfer, and we know
4877 how to do it some other way, try again. This is not
4878 supported for non-stop; it could be, but it is tricky if
4879 there are no stopped threads when we connect. */
4880 if (remote_read_description_p (this)
4881 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4882 {
4883 target_clear_description ();
4884 target_find_description ();
4885 }
4886
4887 /* Use the previously fetched status. */
4888 gdb_assert (wait_status != NULL);
4889 strcpy (rs->buf.data (), wait_status);
4890 rs->cached_wait_status = 1;
4891
4892 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4893 }
4894 else
4895 {
4896 /* Clear WFI global state. Do this before finding about new
4897 threads and inferiors, and setting the current inferior.
4898 Otherwise we would clear the proceed status of the current
4899 inferior when we want its stop_soon state to be preserved
4900 (see notice_new_inferior). */
4901 init_wait_for_inferior ();
4902
4903 /* In non-stop, we will either get an "OK", meaning that there
4904 are no stopped threads at this time; or, a regular stop
4905 reply. In the latter case, there may be more than one thread
4906 stopped --- we pull them all out using the vStopped
4907 mechanism. */
4908 if (strcmp (rs->buf.data (), "OK") != 0)
4909 {
4910 struct notif_client *notif = &notif_client_stop;
4911
4912 /* remote_notif_get_pending_replies acks this one, and gets
4913 the rest out. */
4914 rs->notif_state->pending_event[notif_client_stop.id]
4915 = remote_notif_parse (this, notif, rs->buf.data ());
4916 remote_notif_get_pending_events (notif);
4917 }
4918
4919 if (thread_count (this) == 0)
4920 {
4921 if (!extended_p)
4922 error (_("The target is not running (try extended-remote?)"));
4923
4924 /* We're connected, but not running. Drop out before we
4925 call start_remote. */
4926 rs->starting_up = 0;
4927 return;
4928 }
4929
4930 /* Report all signals during attach/startup. */
4931 pass_signals ({});
4932
4933 /* If there are already stopped threads, mark them stopped and
4934 report their stops before giving the prompt to the user. */
4935 process_initial_stop_replies (from_tty);
4936
4937 if (target_can_async_p ())
4938 target_async (1);
4939 }
4940
4941 /* If we connected to a live target, do some additional setup. */
4942 if (target_has_execution ())
4943 {
4944 /* No use without a symbol-file. */
4945 if (current_program_space->symfile_object_file)
4946 remote_check_symbols ();
4947 }
4948
4949 /* Possibly the target has been engaged in a trace run started
4950 previously; find out where things are at. */
4951 if (get_trace_status (current_trace_status ()) != -1)
4952 {
4953 struct uploaded_tp *uploaded_tps = NULL;
4954
4955 if (current_trace_status ()->running)
4956 printf_filtered (_("Trace is already running on the target.\n"));
4957
4958 upload_tracepoints (&uploaded_tps);
4959
4960 merge_uploaded_tracepoints (&uploaded_tps);
4961 }
4962
4963 /* Possibly the target has been engaged in a btrace record started
4964 previously; find out where things are at. */
4965 remote_btrace_maybe_reopen ();
4966
4967 /* The thread and inferior lists are now synchronized with the
4968 target, our symbols have been relocated, and we're merged the
4969 target's tracepoints with ours. We're done with basic start
4970 up. */
4971 rs->starting_up = 0;
4972
4973 /* Maybe breakpoints are global and need to be inserted now. */
4974 if (breakpoints_should_be_inserted_now ())
4975 insert_breakpoints ();
4976 }
4977
4978 const char *
4979 remote_target::connection_string ()
4980 {
4981 remote_state *rs = get_remote_state ();
4982
4983 if (rs->remote_desc->name != NULL)
4984 return rs->remote_desc->name;
4985 else
4986 return NULL;
4987 }
4988
4989 /* Open a connection to a remote debugger.
4990 NAME is the filename used for communication. */
4991
4992 void
4993 remote_target::open (const char *name, int from_tty)
4994 {
4995 open_1 (name, from_tty, 0);
4996 }
4997
4998 /* Open a connection to a remote debugger using the extended
4999 remote gdb protocol. NAME is the filename used for communication. */
5000
5001 void
5002 extended_remote_target::open (const char *name, int from_tty)
5003 {
5004 open_1 (name, from_tty, 1 /*extended_p */);
5005 }
5006
5007 /* Reset all packets back to "unknown support". Called when opening a
5008 new connection to a remote target. */
5009
5010 static void
5011 reset_all_packet_configs_support (void)
5012 {
5013 int i;
5014
5015 for (i = 0; i < PACKET_MAX; i++)
5016 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5017 }
5018
5019 /* Initialize all packet configs. */
5020
5021 static void
5022 init_all_packet_configs (void)
5023 {
5024 int i;
5025
5026 for (i = 0; i < PACKET_MAX; i++)
5027 {
5028 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
5029 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5030 }
5031 }
5032
5033 /* Symbol look-up. */
5034
5035 void
5036 remote_target::remote_check_symbols ()
5037 {
5038 char *tmp;
5039 int end;
5040
5041 /* The remote side has no concept of inferiors that aren't running
5042 yet, it only knows about running processes. If we're connected
5043 but our current inferior is not running, we should not invite the
5044 remote target to request symbol lookups related to its
5045 (unrelated) current process. */
5046 if (!target_has_execution ())
5047 return;
5048
5049 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
5050 return;
5051
5052 /* Make sure the remote is pointing at the right process. Note
5053 there's no way to select "no process". */
5054 set_general_process ();
5055
5056 /* Allocate a message buffer. We can't reuse the input buffer in RS,
5057 because we need both at the same time. */
5058 gdb::char_vector msg (get_remote_packet_size ());
5059 gdb::char_vector reply (get_remote_packet_size ());
5060
5061 /* Invite target to request symbol lookups. */
5062
5063 putpkt ("qSymbol::");
5064 getpkt (&reply, 0);
5065 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
5066
5067 while (startswith (reply.data (), "qSymbol:"))
5068 {
5069 struct bound_minimal_symbol sym;
5070
5071 tmp = &reply[8];
5072 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
5073 strlen (tmp) / 2);
5074 msg[end] = '\0';
5075 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
5076 if (sym.minsym == NULL)
5077 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
5078 &reply[8]);
5079 else
5080 {
5081 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5082 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
5083
5084 /* If this is a function address, return the start of code
5085 instead of any data function descriptor. */
5086 sym_addr = gdbarch_convert_from_func_ptr_addr
5087 (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
5088
5089 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
5090 phex_nz (sym_addr, addr_size), &reply[8]);
5091 }
5092
5093 putpkt (msg.data ());
5094 getpkt (&reply, 0);
5095 }
5096 }
5097
5098 static struct serial *
5099 remote_serial_open (const char *name)
5100 {
5101 static int udp_warning = 0;
5102
5103 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5104 of in ser-tcp.c, because it is the remote protocol assuming that the
5105 serial connection is reliable and not the serial connection promising
5106 to be. */
5107 if (!udp_warning && startswith (name, "udp:"))
5108 {
5109 warning (_("The remote protocol may be unreliable over UDP.\n"
5110 "Some events may be lost, rendering further debugging "
5111 "impossible."));
5112 udp_warning = 1;
5113 }
5114
5115 return serial_open (name);
5116 }
5117
5118 /* Inform the target of our permission settings. The permission flags
5119 work without this, but if the target knows the settings, it can do
5120 a couple things. First, it can add its own check, to catch cases
5121 that somehow manage to get by the permissions checks in target
5122 methods. Second, if the target is wired to disallow particular
5123 settings (for instance, a system in the field that is not set up to
5124 be able to stop at a breakpoint), it can object to any unavailable
5125 permissions. */
5126
5127 void
5128 remote_target::set_permissions ()
5129 {
5130 struct remote_state *rs = get_remote_state ();
5131
5132 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5133 "WriteReg:%x;WriteMem:%x;"
5134 "InsertBreak:%x;InsertTrace:%x;"
5135 "InsertFastTrace:%x;Stop:%x",
5136 may_write_registers, may_write_memory,
5137 may_insert_breakpoints, may_insert_tracepoints,
5138 may_insert_fast_tracepoints, may_stop);
5139 putpkt (rs->buf);
5140 getpkt (&rs->buf, 0);
5141
5142 /* If the target didn't like the packet, warn the user. Do not try
5143 to undo the user's settings, that would just be maddening. */
5144 if (strcmp (rs->buf.data (), "OK") != 0)
5145 warning (_("Remote refused setting permissions with: %s"),
5146 rs->buf.data ());
5147 }
5148
5149 /* This type describes each known response to the qSupported
5150 packet. */
5151 struct protocol_feature
5152 {
5153 /* The name of this protocol feature. */
5154 const char *name;
5155
5156 /* The default for this protocol feature. */
5157 enum packet_support default_support;
5158
5159 /* The function to call when this feature is reported, or after
5160 qSupported processing if the feature is not supported.
5161 The first argument points to this structure. The second
5162 argument indicates whether the packet requested support be
5163 enabled, disabled, or probed (or the default, if this function
5164 is being called at the end of processing and this feature was
5165 not reported). The third argument may be NULL; if not NULL, it
5166 is a NUL-terminated string taken from the packet following
5167 this feature's name and an equals sign. */
5168 void (*func) (remote_target *remote, const struct protocol_feature *,
5169 enum packet_support, const char *);
5170
5171 /* The corresponding packet for this feature. Only used if
5172 FUNC is remote_supported_packet. */
5173 int packet;
5174 };
5175
5176 static void
5177 remote_supported_packet (remote_target *remote,
5178 const struct protocol_feature *feature,
5179 enum packet_support support,
5180 const char *argument)
5181 {
5182 if (argument)
5183 {
5184 warning (_("Remote qSupported response supplied an unexpected value for"
5185 " \"%s\"."), feature->name);
5186 return;
5187 }
5188
5189 remote_protocol_packets[feature->packet].support = support;
5190 }
5191
5192 void
5193 remote_target::remote_packet_size (const protocol_feature *feature,
5194 enum packet_support support, const char *value)
5195 {
5196 struct remote_state *rs = get_remote_state ();
5197
5198 int packet_size;
5199 char *value_end;
5200
5201 if (support != PACKET_ENABLE)
5202 return;
5203
5204 if (value == NULL || *value == '\0')
5205 {
5206 warning (_("Remote target reported \"%s\" without a size."),
5207 feature->name);
5208 return;
5209 }
5210
5211 errno = 0;
5212 packet_size = strtol (value, &value_end, 16);
5213 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5214 {
5215 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5216 feature->name, value);
5217 return;
5218 }
5219
5220 /* Record the new maximum packet size. */
5221 rs->explicit_packet_size = packet_size;
5222 }
5223
5224 static void
5225 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5226 enum packet_support support, const char *value)
5227 {
5228 remote->remote_packet_size (feature, support, value);
5229 }
5230
5231 static const struct protocol_feature remote_protocol_features[] = {
5232 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5233 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5234 PACKET_qXfer_auxv },
5235 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5236 PACKET_qXfer_exec_file },
5237 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5238 PACKET_qXfer_features },
5239 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5240 PACKET_qXfer_libraries },
5241 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5242 PACKET_qXfer_libraries_svr4 },
5243 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5244 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5245 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5246 PACKET_qXfer_memory_map },
5247 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5248 PACKET_qXfer_osdata },
5249 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5250 PACKET_qXfer_threads },
5251 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5252 PACKET_qXfer_traceframe_info },
5253 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5254 PACKET_QPassSignals },
5255 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5256 PACKET_QCatchSyscalls },
5257 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5258 PACKET_QProgramSignals },
5259 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5260 PACKET_QSetWorkingDir },
5261 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5262 PACKET_QStartupWithShell },
5263 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5264 PACKET_QEnvironmentHexEncoded },
5265 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5266 PACKET_QEnvironmentReset },
5267 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5268 PACKET_QEnvironmentUnset },
5269 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5270 PACKET_QStartNoAckMode },
5271 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5272 PACKET_multiprocess_feature },
5273 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5274 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5275 PACKET_qXfer_siginfo_read },
5276 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5277 PACKET_qXfer_siginfo_write },
5278 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5279 PACKET_ConditionalTracepoints },
5280 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5281 PACKET_ConditionalBreakpoints },
5282 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5283 PACKET_BreakpointCommands },
5284 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5285 PACKET_FastTracepoints },
5286 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5287 PACKET_StaticTracepoints },
5288 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5289 PACKET_InstallInTrace},
5290 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5291 PACKET_DisconnectedTracing_feature },
5292 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5293 PACKET_bc },
5294 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5295 PACKET_bs },
5296 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5297 PACKET_TracepointSource },
5298 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5299 PACKET_QAllow },
5300 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5301 PACKET_EnableDisableTracepoints_feature },
5302 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5303 PACKET_qXfer_fdpic },
5304 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5305 PACKET_qXfer_uib },
5306 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5307 PACKET_QDisableRandomization },
5308 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5309 { "QTBuffer:size", PACKET_DISABLE,
5310 remote_supported_packet, PACKET_QTBuffer_size},
5311 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5312 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5313 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5314 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5315 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5316 PACKET_qXfer_btrace },
5317 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5318 PACKET_qXfer_btrace_conf },
5319 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5320 PACKET_Qbtrace_conf_bts_size },
5321 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5322 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5323 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5324 PACKET_fork_event_feature },
5325 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5326 PACKET_vfork_event_feature },
5327 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5328 PACKET_exec_event_feature },
5329 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5330 PACKET_Qbtrace_conf_pt_size },
5331 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5332 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5333 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5334 { "memory-tagging", PACKET_DISABLE, remote_supported_packet,
5335 PACKET_memory_tagging_feature },
5336 };
5337
5338 static char *remote_support_xml;
5339
5340 /* Register string appended to "xmlRegisters=" in qSupported query. */
5341
5342 void
5343 register_remote_support_xml (const char *xml)
5344 {
5345 #if defined(HAVE_LIBEXPAT)
5346 if (remote_support_xml == NULL)
5347 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5348 else
5349 {
5350 char *copy = xstrdup (remote_support_xml + 13);
5351 char *saveptr;
5352 char *p = strtok_r (copy, ",", &saveptr);
5353
5354 do
5355 {
5356 if (strcmp (p, xml) == 0)
5357 {
5358 /* already there */
5359 xfree (copy);
5360 return;
5361 }
5362 }
5363 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5364 xfree (copy);
5365
5366 remote_support_xml = reconcat (remote_support_xml,
5367 remote_support_xml, ",", xml,
5368 (char *) NULL);
5369 }
5370 #endif
5371 }
5372
5373 static void
5374 remote_query_supported_append (std::string *msg, const char *append)
5375 {
5376 if (!msg->empty ())
5377 msg->append (";");
5378 msg->append (append);
5379 }
5380
5381 void
5382 remote_target::remote_query_supported ()
5383 {
5384 struct remote_state *rs = get_remote_state ();
5385 char *next;
5386 int i;
5387 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5388
5389 /* The packet support flags are handled differently for this packet
5390 than for most others. We treat an error, a disabled packet, and
5391 an empty response identically: any features which must be reported
5392 to be used will be automatically disabled. An empty buffer
5393 accomplishes this, since that is also the representation for a list
5394 containing no features. */
5395
5396 rs->buf[0] = 0;
5397 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5398 {
5399 std::string q;
5400
5401 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5402 remote_query_supported_append (&q, "multiprocess+");
5403
5404 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5405 remote_query_supported_append (&q, "swbreak+");
5406 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5407 remote_query_supported_append (&q, "hwbreak+");
5408
5409 remote_query_supported_append (&q, "qRelocInsn+");
5410
5411 if (packet_set_cmd_state (PACKET_fork_event_feature)
5412 != AUTO_BOOLEAN_FALSE)
5413 remote_query_supported_append (&q, "fork-events+");
5414 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5415 != AUTO_BOOLEAN_FALSE)
5416 remote_query_supported_append (&q, "vfork-events+");
5417 if (packet_set_cmd_state (PACKET_exec_event_feature)
5418 != AUTO_BOOLEAN_FALSE)
5419 remote_query_supported_append (&q, "exec-events+");
5420
5421 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5422 remote_query_supported_append (&q, "vContSupported+");
5423
5424 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5425 remote_query_supported_append (&q, "QThreadEvents+");
5426
5427 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5428 remote_query_supported_append (&q, "no-resumed+");
5429
5430 if (packet_set_cmd_state (PACKET_memory_tagging_feature)
5431 != AUTO_BOOLEAN_FALSE)
5432 remote_query_supported_append (&q, "memory-tagging+");
5433
5434 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5435 the qSupported:xmlRegisters=i386 handling. */
5436 if (remote_support_xml != NULL
5437 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5438 remote_query_supported_append (&q, remote_support_xml);
5439
5440 q = "qSupported:" + q;
5441 putpkt (q.c_str ());
5442
5443 getpkt (&rs->buf, 0);
5444
5445 /* If an error occured, warn, but do not return - just reset the
5446 buffer to empty and go on to disable features. */
5447 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5448 == PACKET_ERROR)
5449 {
5450 warning (_("Remote failure reply: %s"), rs->buf.data ());
5451 rs->buf[0] = 0;
5452 }
5453 }
5454
5455 memset (seen, 0, sizeof (seen));
5456
5457 next = rs->buf.data ();
5458 while (*next)
5459 {
5460 enum packet_support is_supported;
5461 char *p, *end, *name_end, *value;
5462
5463 /* First separate out this item from the rest of the packet. If
5464 there's another item after this, we overwrite the separator
5465 (terminated strings are much easier to work with). */
5466 p = next;
5467 end = strchr (p, ';');
5468 if (end == NULL)
5469 {
5470 end = p + strlen (p);
5471 next = end;
5472 }
5473 else
5474 {
5475 *end = '\0';
5476 next = end + 1;
5477
5478 if (end == p)
5479 {
5480 warning (_("empty item in \"qSupported\" response"));
5481 continue;
5482 }
5483 }
5484
5485 name_end = strchr (p, '=');
5486 if (name_end)
5487 {
5488 /* This is a name=value entry. */
5489 is_supported = PACKET_ENABLE;
5490 value = name_end + 1;
5491 *name_end = '\0';
5492 }
5493 else
5494 {
5495 value = NULL;
5496 switch (end[-1])
5497 {
5498 case '+':
5499 is_supported = PACKET_ENABLE;
5500 break;
5501
5502 case '-':
5503 is_supported = PACKET_DISABLE;
5504 break;
5505
5506 case '?':
5507 is_supported = PACKET_SUPPORT_UNKNOWN;
5508 break;
5509
5510 default:
5511 warning (_("unrecognized item \"%s\" "
5512 "in \"qSupported\" response"), p);
5513 continue;
5514 }
5515 end[-1] = '\0';
5516 }
5517
5518 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5519 if (strcmp (remote_protocol_features[i].name, p) == 0)
5520 {
5521 const struct protocol_feature *feature;
5522
5523 seen[i] = 1;
5524 feature = &remote_protocol_features[i];
5525 feature->func (this, feature, is_supported, value);
5526 break;
5527 }
5528 }
5529
5530 /* If we increased the packet size, make sure to increase the global
5531 buffer size also. We delay this until after parsing the entire
5532 qSupported packet, because this is the same buffer we were
5533 parsing. */
5534 if (rs->buf.size () < rs->explicit_packet_size)
5535 rs->buf.resize (rs->explicit_packet_size);
5536
5537 /* Handle the defaults for unmentioned features. */
5538 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5539 if (!seen[i])
5540 {
5541 const struct protocol_feature *feature;
5542
5543 feature = &remote_protocol_features[i];
5544 feature->func (this, feature, feature->default_support, NULL);
5545 }
5546 }
5547
5548 /* Serial QUIT handler for the remote serial descriptor.
5549
5550 Defers handling a Ctrl-C until we're done with the current
5551 command/response packet sequence, unless:
5552
5553 - We're setting up the connection. Don't send a remote interrupt
5554 request, as we're not fully synced yet. Quit immediately
5555 instead.
5556
5557 - The target has been resumed in the foreground
5558 (target_terminal::is_ours is false) with a synchronous resume
5559 packet, and we're blocked waiting for the stop reply, thus a
5560 Ctrl-C should be immediately sent to the target.
5561
5562 - We get a second Ctrl-C while still within the same serial read or
5563 write. In that case the serial is seemingly wedged --- offer to
5564 quit/disconnect.
5565
5566 - We see a second Ctrl-C without target response, after having
5567 previously interrupted the target. In that case the target/stub
5568 is probably wedged --- offer to quit/disconnect.
5569 */
5570
5571 void
5572 remote_target::remote_serial_quit_handler ()
5573 {
5574 struct remote_state *rs = get_remote_state ();
5575
5576 if (check_quit_flag ())
5577 {
5578 /* If we're starting up, we're not fully synced yet. Quit
5579 immediately. */
5580 if (rs->starting_up)
5581 quit ();
5582 else if (rs->got_ctrlc_during_io)
5583 {
5584 if (query (_("The target is not responding to GDB commands.\n"
5585 "Stop debugging it? ")))
5586 remote_unpush_and_throw (this);
5587 }
5588 /* If ^C has already been sent once, offer to disconnect. */
5589 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5590 interrupt_query ();
5591 /* All-stop protocol, and blocked waiting for stop reply. Send
5592 an interrupt request. */
5593 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5594 target_interrupt ();
5595 else
5596 rs->got_ctrlc_during_io = 1;
5597 }
5598 }
5599
5600 /* The remote_target that is current while the quit handler is
5601 overridden with remote_serial_quit_handler. */
5602 static remote_target *curr_quit_handler_target;
5603
5604 static void
5605 remote_serial_quit_handler ()
5606 {
5607 curr_quit_handler_target->remote_serial_quit_handler ();
5608 }
5609
5610 /* Remove the remote target from the target stack of each inferior
5611 that is using it. Upper targets depend on it so remove them
5612 first. */
5613
5614 static void
5615 remote_unpush_target (remote_target *target)
5616 {
5617 /* We have to unpush the target from all inferiors, even those that
5618 aren't running. */
5619 scoped_restore_current_inferior restore_current_inferior;
5620
5621 for (inferior *inf : all_inferiors (target))
5622 {
5623 switch_to_inferior_no_thread (inf);
5624 pop_all_targets_at_and_above (process_stratum);
5625 generic_mourn_inferior ();
5626 }
5627 }
5628
5629 static void
5630 remote_unpush_and_throw (remote_target *target)
5631 {
5632 remote_unpush_target (target);
5633 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5634 }
5635
5636 void
5637 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5638 {
5639 remote_target *curr_remote = get_current_remote_target ();
5640
5641 if (name == 0)
5642 error (_("To open a remote debug connection, you need to specify what\n"
5643 "serial device is attached to the remote system\n"
5644 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5645
5646 /* If we're connected to a running target, target_preopen will kill it.
5647 Ask this question first, before target_preopen has a chance to kill
5648 anything. */
5649 if (curr_remote != NULL && !target_has_execution ())
5650 {
5651 if (from_tty
5652 && !query (_("Already connected to a remote target. Disconnect? ")))
5653 error (_("Still connected."));
5654 }
5655
5656 /* Here the possibly existing remote target gets unpushed. */
5657 target_preopen (from_tty);
5658
5659 remote_fileio_reset ();
5660 reopen_exec_file ();
5661 reread_symbols ();
5662
5663 remote_target *remote
5664 = (extended_p ? new extended_remote_target () : new remote_target ());
5665 target_ops_up target_holder (remote);
5666
5667 remote_state *rs = remote->get_remote_state ();
5668
5669 /* See FIXME above. */
5670 if (!target_async_permitted)
5671 rs->wait_forever_enabled_p = 1;
5672
5673 rs->remote_desc = remote_serial_open (name);
5674 if (!rs->remote_desc)
5675 perror_with_name (name);
5676
5677 if (baud_rate != -1)
5678 {
5679 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5680 {
5681 /* The requested speed could not be set. Error out to
5682 top level after closing remote_desc. Take care to
5683 set remote_desc to NULL to avoid closing remote_desc
5684 more than once. */
5685 serial_close (rs->remote_desc);
5686 rs->remote_desc = NULL;
5687 perror_with_name (name);
5688 }
5689 }
5690
5691 serial_setparity (rs->remote_desc, serial_parity);
5692 serial_raw (rs->remote_desc);
5693
5694 /* If there is something sitting in the buffer we might take it as a
5695 response to a command, which would be bad. */
5696 serial_flush_input (rs->remote_desc);
5697
5698 if (from_tty)
5699 {
5700 puts_filtered ("Remote debugging using ");
5701 puts_filtered (name);
5702 puts_filtered ("\n");
5703 }
5704
5705 /* Switch to using the remote target now. */
5706 current_inferior ()->push_target (std::move (target_holder));
5707
5708 /* Register extra event sources in the event loop. */
5709 rs->remote_async_inferior_event_token
5710 = create_async_event_handler (remote_async_inferior_event_handler, nullptr,
5711 "remote");
5712 rs->notif_state = remote_notif_state_allocate (remote);
5713
5714 /* Reset the target state; these things will be queried either by
5715 remote_query_supported or as they are needed. */
5716 reset_all_packet_configs_support ();
5717 rs->cached_wait_status = 0;
5718 rs->explicit_packet_size = 0;
5719 rs->noack_mode = 0;
5720 rs->extended = extended_p;
5721 rs->waiting_for_stop_reply = 0;
5722 rs->ctrlc_pending_p = 0;
5723 rs->got_ctrlc_during_io = 0;
5724
5725 rs->general_thread = not_sent_ptid;
5726 rs->continue_thread = not_sent_ptid;
5727 rs->remote_traceframe_number = -1;
5728
5729 rs->last_resume_exec_dir = EXEC_FORWARD;
5730
5731 /* Probe for ability to use "ThreadInfo" query, as required. */
5732 rs->use_threadinfo_query = 1;
5733 rs->use_threadextra_query = 1;
5734
5735 rs->readahead_cache.invalidate ();
5736
5737 if (target_async_permitted)
5738 {
5739 /* FIXME: cagney/1999-09-23: During the initial connection it is
5740 assumed that the target is already ready and able to respond to
5741 requests. Unfortunately remote_start_remote() eventually calls
5742 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5743 around this. Eventually a mechanism that allows
5744 wait_for_inferior() to expect/get timeouts will be
5745 implemented. */
5746 rs->wait_forever_enabled_p = 0;
5747 }
5748
5749 /* First delete any symbols previously loaded from shared libraries. */
5750 no_shared_libraries (NULL, 0);
5751
5752 /* Start the remote connection. If error() or QUIT, discard this
5753 target (we'd otherwise be in an inconsistent state) and then
5754 propogate the error on up the exception chain. This ensures that
5755 the caller doesn't stumble along blindly assuming that the
5756 function succeeded. The CLI doesn't have this problem but other
5757 UI's, such as MI do.
5758
5759 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5760 this function should return an error indication letting the
5761 caller restore the previous state. Unfortunately the command
5762 ``target remote'' is directly wired to this function making that
5763 impossible. On a positive note, the CLI side of this problem has
5764 been fixed - the function set_cmd_context() makes it possible for
5765 all the ``target ....'' commands to share a common callback
5766 function. See cli-dump.c. */
5767 {
5768
5769 try
5770 {
5771 remote->start_remote (from_tty, extended_p);
5772 }
5773 catch (const gdb_exception &ex)
5774 {
5775 /* Pop the partially set up target - unless something else did
5776 already before throwing the exception. */
5777 if (ex.error != TARGET_CLOSE_ERROR)
5778 remote_unpush_target (remote);
5779 throw;
5780 }
5781 }
5782
5783 remote_btrace_reset (rs);
5784
5785 if (target_async_permitted)
5786 rs->wait_forever_enabled_p = 1;
5787 }
5788
5789 /* Detach the specified process. */
5790
5791 void
5792 remote_target::remote_detach_pid (int pid)
5793 {
5794 struct remote_state *rs = get_remote_state ();
5795
5796 /* This should not be necessary, but the handling for D;PID in
5797 GDBserver versions prior to 8.2 incorrectly assumes that the
5798 selected process points to the same process we're detaching,
5799 leading to misbehavior (and possibly GDBserver crashing) when it
5800 does not. Since it's easy and cheap, work around it by forcing
5801 GDBserver to select GDB's current process. */
5802 set_general_process ();
5803
5804 if (remote_multi_process_p (rs))
5805 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5806 else
5807 strcpy (rs->buf.data (), "D");
5808
5809 putpkt (rs->buf);
5810 getpkt (&rs->buf, 0);
5811
5812 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5813 ;
5814 else if (rs->buf[0] == '\0')
5815 error (_("Remote doesn't know how to detach"));
5816 else
5817 error (_("Can't detach process."));
5818 }
5819
5820 /* This detaches a program to which we previously attached, using
5821 inferior_ptid to identify the process. After this is done, GDB
5822 can be used to debug some other program. We better not have left
5823 any breakpoints in the target program or it'll die when it hits
5824 one. */
5825
5826 void
5827 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5828 {
5829 int pid = inferior_ptid.pid ();
5830 struct remote_state *rs = get_remote_state ();
5831 int is_fork_parent;
5832
5833 if (!target_has_execution ())
5834 error (_("No process to detach from."));
5835
5836 target_announce_detach (from_tty);
5837
5838 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
5839 {
5840 /* If we're in breakpoints-always-inserted mode, or the inferior
5841 is running, we have to remove breakpoints before detaching.
5842 We don't do this in common code instead because not all
5843 targets support removing breakpoints while the target is
5844 running. The remote target / gdbserver does, though. */
5845 remove_breakpoints_inf (current_inferior ());
5846 }
5847
5848 /* Tell the remote target to detach. */
5849 remote_detach_pid (pid);
5850
5851 /* Exit only if this is the only active inferior. */
5852 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5853 puts_filtered (_("Ending remote debugging.\n"));
5854
5855 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5856
5857 /* Check to see if we are detaching a fork parent. Note that if we
5858 are detaching a fork child, tp == NULL. */
5859 is_fork_parent = (tp != NULL
5860 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5861
5862 /* If doing detach-on-fork, we don't mourn, because that will delete
5863 breakpoints that should be available for the followed inferior. */
5864 if (!is_fork_parent)
5865 {
5866 /* Save the pid as a string before mourning, since that will
5867 unpush the remote target, and we need the string after. */
5868 std::string infpid = target_pid_to_str (ptid_t (pid));
5869
5870 target_mourn_inferior (inferior_ptid);
5871 if (print_inferior_events)
5872 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5873 inf->num, infpid.c_str ());
5874 }
5875 else
5876 {
5877 switch_to_no_thread ();
5878 detach_inferior (current_inferior ());
5879 }
5880 }
5881
5882 void
5883 remote_target::detach (inferior *inf, int from_tty)
5884 {
5885 remote_detach_1 (inf, from_tty);
5886 }
5887
5888 void
5889 extended_remote_target::detach (inferior *inf, int from_tty)
5890 {
5891 remote_detach_1 (inf, from_tty);
5892 }
5893
5894 /* Target follow-fork function for remote targets. On entry, and
5895 at return, the current inferior is the fork parent.
5896
5897 Note that although this is currently only used for extended-remote,
5898 it is named remote_follow_fork in anticipation of using it for the
5899 remote target as well. */
5900
5901 void
5902 remote_target::follow_fork (bool follow_child, bool detach_fork)
5903 {
5904 struct remote_state *rs = get_remote_state ();
5905 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5906
5907 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5908 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5909 {
5910 /* When following the parent and detaching the child, we detach
5911 the child here. For the case of following the child and
5912 detaching the parent, the detach is done in the target-
5913 independent follow fork code in infrun.c. We can't use
5914 target_detach when detaching an unfollowed child because
5915 the client side doesn't know anything about the child. */
5916 if (detach_fork && !follow_child)
5917 {
5918 /* Detach the fork child. */
5919 ptid_t child_ptid;
5920 pid_t child_pid;
5921
5922 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5923 child_pid = child_ptid.pid ();
5924
5925 remote_detach_pid (child_pid);
5926 }
5927 }
5928 }
5929
5930 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5931 in the program space of the new inferior. */
5932
5933 void
5934 remote_target::follow_exec (inferior *follow_inf, ptid_t ptid,
5935 const char *execd_pathname)
5936 {
5937 process_stratum_target::follow_exec (follow_inf, ptid, execd_pathname);
5938
5939 /* We know that this is a target file name, so if it has the "target:"
5940 prefix we strip it off before saving it in the program space. */
5941 if (is_target_filename (execd_pathname))
5942 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5943
5944 set_pspace_remote_exec_file (follow_inf->pspace, execd_pathname);
5945 }
5946
5947 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5948
5949 void
5950 remote_target::disconnect (const char *args, int from_tty)
5951 {
5952 if (args)
5953 error (_("Argument given to \"disconnect\" when remotely debugging."));
5954
5955 /* Make sure we unpush even the extended remote targets. Calling
5956 target_mourn_inferior won't unpush, and
5957 remote_target::mourn_inferior won't unpush if there is more than
5958 one inferior left. */
5959 remote_unpush_target (this);
5960
5961 if (from_tty)
5962 puts_filtered ("Ending remote debugging.\n");
5963 }
5964
5965 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5966 be chatty about it. */
5967
5968 void
5969 extended_remote_target::attach (const char *args, int from_tty)
5970 {
5971 struct remote_state *rs = get_remote_state ();
5972 int pid;
5973 char *wait_status = NULL;
5974
5975 pid = parse_pid_to_attach (args);
5976
5977 /* Remote PID can be freely equal to getpid, do not check it here the same
5978 way as in other targets. */
5979
5980 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5981 error (_("This target does not support attaching to a process"));
5982
5983 if (from_tty)
5984 {
5985 const char *exec_file = get_exec_file (0);
5986
5987 if (exec_file)
5988 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5989 target_pid_to_str (ptid_t (pid)).c_str ());
5990 else
5991 printf_unfiltered (_("Attaching to %s\n"),
5992 target_pid_to_str (ptid_t (pid)).c_str ());
5993 }
5994
5995 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5996 putpkt (rs->buf);
5997 getpkt (&rs->buf, 0);
5998
5999 switch (packet_ok (rs->buf,
6000 &remote_protocol_packets[PACKET_vAttach]))
6001 {
6002 case PACKET_OK:
6003 if (!target_is_non_stop_p ())
6004 {
6005 /* Save the reply for later. */
6006 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
6007 strcpy (wait_status, rs->buf.data ());
6008 }
6009 else if (strcmp (rs->buf.data (), "OK") != 0)
6010 error (_("Attaching to %s failed with: %s"),
6011 target_pid_to_str (ptid_t (pid)).c_str (),
6012 rs->buf.data ());
6013 break;
6014 case PACKET_UNKNOWN:
6015 error (_("This target does not support attaching to a process"));
6016 default:
6017 error (_("Attaching to %s failed"),
6018 target_pid_to_str (ptid_t (pid)).c_str ());
6019 }
6020
6021 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
6022
6023 inferior_ptid = ptid_t (pid);
6024
6025 if (target_is_non_stop_p ())
6026 {
6027 /* Get list of threads. */
6028 update_thread_list ();
6029
6030 thread_info *thread = first_thread_of_inferior (current_inferior ());
6031 if (thread != nullptr)
6032 switch_to_thread (thread);
6033
6034 /* Invalidate our notion of the remote current thread. */
6035 record_currthread (rs, minus_one_ptid);
6036 }
6037 else
6038 {
6039 /* Now, if we have thread information, update the main thread's
6040 ptid. */
6041 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
6042
6043 /* Add the main thread to the thread list. */
6044 thread_info *thr = add_thread_silent (this, curr_ptid);
6045
6046 switch_to_thread (thr);
6047
6048 /* Don't consider the thread stopped until we've processed the
6049 saved stop reply. */
6050 set_executing (this, thr->ptid, true);
6051 }
6052
6053 /* Next, if the target can specify a description, read it. We do
6054 this before anything involving memory or registers. */
6055 target_find_description ();
6056
6057 if (!target_is_non_stop_p ())
6058 {
6059 /* Use the previously fetched status. */
6060 gdb_assert (wait_status != NULL);
6061
6062 if (target_can_async_p ())
6063 {
6064 struct notif_event *reply
6065 = remote_notif_parse (this, &notif_client_stop, wait_status);
6066
6067 push_stop_reply ((struct stop_reply *) reply);
6068
6069 target_async (1);
6070 }
6071 else
6072 {
6073 gdb_assert (wait_status != NULL);
6074 strcpy (rs->buf.data (), wait_status);
6075 rs->cached_wait_status = 1;
6076 }
6077 }
6078 else
6079 {
6080 gdb_assert (wait_status == NULL);
6081
6082 gdb_assert (target_can_async_p ());
6083 target_async (1);
6084 }
6085 }
6086
6087 /* Implementation of the to_post_attach method. */
6088
6089 void
6090 extended_remote_target::post_attach (int pid)
6091 {
6092 /* Get text, data & bss offsets. */
6093 get_offsets ();
6094
6095 /* In certain cases GDB might not have had the chance to start
6096 symbol lookup up until now. This could happen if the debugged
6097 binary is not using shared libraries, the vsyscall page is not
6098 present (on Linux) and the binary itself hadn't changed since the
6099 debugging process was started. */
6100 if (current_program_space->symfile_object_file != NULL)
6101 remote_check_symbols();
6102 }
6103
6104 \f
6105 /* Check for the availability of vCont. This function should also check
6106 the response. */
6107
6108 void
6109 remote_target::remote_vcont_probe ()
6110 {
6111 remote_state *rs = get_remote_state ();
6112 char *buf;
6113
6114 strcpy (rs->buf.data (), "vCont?");
6115 putpkt (rs->buf);
6116 getpkt (&rs->buf, 0);
6117 buf = rs->buf.data ();
6118
6119 /* Make sure that the features we assume are supported. */
6120 if (startswith (buf, "vCont"))
6121 {
6122 char *p = &buf[5];
6123 int support_c, support_C;
6124
6125 rs->supports_vCont.s = 0;
6126 rs->supports_vCont.S = 0;
6127 support_c = 0;
6128 support_C = 0;
6129 rs->supports_vCont.t = 0;
6130 rs->supports_vCont.r = 0;
6131 while (p && *p == ';')
6132 {
6133 p++;
6134 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6135 rs->supports_vCont.s = 1;
6136 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6137 rs->supports_vCont.S = 1;
6138 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6139 support_c = 1;
6140 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6141 support_C = 1;
6142 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6143 rs->supports_vCont.t = 1;
6144 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6145 rs->supports_vCont.r = 1;
6146
6147 p = strchr (p, ';');
6148 }
6149
6150 /* If c, and C are not all supported, we can't use vCont. Clearing
6151 BUF will make packet_ok disable the packet. */
6152 if (!support_c || !support_C)
6153 buf[0] = 0;
6154 }
6155
6156 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6157 rs->supports_vCont_probed = true;
6158 }
6159
6160 /* Helper function for building "vCont" resumptions. Write a
6161 resumption to P. ENDP points to one-passed-the-end of the buffer
6162 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6163 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6164 resumed thread should be single-stepped and/or signalled. If PTID
6165 equals minus_one_ptid, then all threads are resumed; if PTID
6166 represents a process, then all threads of the process are resumed;
6167 the thread to be stepped and/or signalled is given in the global
6168 INFERIOR_PTID. */
6169
6170 char *
6171 remote_target::append_resumption (char *p, char *endp,
6172 ptid_t ptid, int step, gdb_signal siggnal)
6173 {
6174 struct remote_state *rs = get_remote_state ();
6175
6176 if (step && siggnal != GDB_SIGNAL_0)
6177 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6178 else if (step
6179 /* GDB is willing to range step. */
6180 && use_range_stepping
6181 /* Target supports range stepping. */
6182 && rs->supports_vCont.r
6183 /* We don't currently support range stepping multiple
6184 threads with a wildcard (though the protocol allows it,
6185 so stubs shouldn't make an active effort to forbid
6186 it). */
6187 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6188 {
6189 struct thread_info *tp;
6190
6191 if (ptid == minus_one_ptid)
6192 {
6193 /* If we don't know about the target thread's tid, then
6194 we're resuming magic_null_ptid (see caller). */
6195 tp = find_thread_ptid (this, magic_null_ptid);
6196 }
6197 else
6198 tp = find_thread_ptid (this, ptid);
6199 gdb_assert (tp != NULL);
6200
6201 if (tp->control.may_range_step)
6202 {
6203 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6204
6205 p += xsnprintf (p, endp - p, ";r%s,%s",
6206 phex_nz (tp->control.step_range_start,
6207 addr_size),
6208 phex_nz (tp->control.step_range_end,
6209 addr_size));
6210 }
6211 else
6212 p += xsnprintf (p, endp - p, ";s");
6213 }
6214 else if (step)
6215 p += xsnprintf (p, endp - p, ";s");
6216 else if (siggnal != GDB_SIGNAL_0)
6217 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6218 else
6219 p += xsnprintf (p, endp - p, ";c");
6220
6221 if (remote_multi_process_p (rs) && ptid.is_pid ())
6222 {
6223 ptid_t nptid;
6224
6225 /* All (-1) threads of process. */
6226 nptid = ptid_t (ptid.pid (), -1, 0);
6227
6228 p += xsnprintf (p, endp - p, ":");
6229 p = write_ptid (p, endp, nptid);
6230 }
6231 else if (ptid != minus_one_ptid)
6232 {
6233 p += xsnprintf (p, endp - p, ":");
6234 p = write_ptid (p, endp, ptid);
6235 }
6236
6237 return p;
6238 }
6239
6240 /* Clear the thread's private info on resume. */
6241
6242 static void
6243 resume_clear_thread_private_info (struct thread_info *thread)
6244 {
6245 if (thread->priv != NULL)
6246 {
6247 remote_thread_info *priv = get_remote_thread_info (thread);
6248
6249 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6250 priv->watch_data_address = 0;
6251 }
6252 }
6253
6254 /* Append a vCont continue-with-signal action for threads that have a
6255 non-zero stop signal. */
6256
6257 char *
6258 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6259 ptid_t ptid)
6260 {
6261 for (thread_info *thread : all_non_exited_threads (this, ptid))
6262 if (inferior_ptid != thread->ptid
6263 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6264 {
6265 p = append_resumption (p, endp, thread->ptid,
6266 0, thread->suspend.stop_signal);
6267 thread->suspend.stop_signal = GDB_SIGNAL_0;
6268 resume_clear_thread_private_info (thread);
6269 }
6270
6271 return p;
6272 }
6273
6274 /* Set the target running, using the packets that use Hc
6275 (c/s/C/S). */
6276
6277 void
6278 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6279 gdb_signal siggnal)
6280 {
6281 struct remote_state *rs = get_remote_state ();
6282 char *buf;
6283
6284 rs->last_sent_signal = siggnal;
6285 rs->last_sent_step = step;
6286
6287 /* The c/s/C/S resume packets use Hc, so set the continue
6288 thread. */
6289 if (ptid == minus_one_ptid)
6290 set_continue_thread (any_thread_ptid);
6291 else
6292 set_continue_thread (ptid);
6293
6294 for (thread_info *thread : all_non_exited_threads (this))
6295 resume_clear_thread_private_info (thread);
6296
6297 buf = rs->buf.data ();
6298 if (::execution_direction == EXEC_REVERSE)
6299 {
6300 /* We don't pass signals to the target in reverse exec mode. */
6301 if (info_verbose && siggnal != GDB_SIGNAL_0)
6302 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6303 siggnal);
6304
6305 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6306 error (_("Remote reverse-step not supported."));
6307 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6308 error (_("Remote reverse-continue not supported."));
6309
6310 strcpy (buf, step ? "bs" : "bc");
6311 }
6312 else if (siggnal != GDB_SIGNAL_0)
6313 {
6314 buf[0] = step ? 'S' : 'C';
6315 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6316 buf[2] = tohex (((int) siggnal) & 0xf);
6317 buf[3] = '\0';
6318 }
6319 else
6320 strcpy (buf, step ? "s" : "c");
6321
6322 putpkt (buf);
6323 }
6324
6325 /* Resume the remote inferior by using a "vCont" packet. The thread
6326 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6327 resumed thread should be single-stepped and/or signalled. If PTID
6328 equals minus_one_ptid, then all threads are resumed; the thread to
6329 be stepped and/or signalled is given in the global INFERIOR_PTID.
6330 This function returns non-zero iff it resumes the inferior.
6331
6332 This function issues a strict subset of all possible vCont commands
6333 at the moment. */
6334
6335 int
6336 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6337 enum gdb_signal siggnal)
6338 {
6339 struct remote_state *rs = get_remote_state ();
6340 char *p;
6341 char *endp;
6342
6343 /* No reverse execution actions defined for vCont. */
6344 if (::execution_direction == EXEC_REVERSE)
6345 return 0;
6346
6347 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6348 remote_vcont_probe ();
6349
6350 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6351 return 0;
6352
6353 p = rs->buf.data ();
6354 endp = p + get_remote_packet_size ();
6355
6356 /* If we could generate a wider range of packets, we'd have to worry
6357 about overflowing BUF. Should there be a generic
6358 "multi-part-packet" packet? */
6359
6360 p += xsnprintf (p, endp - p, "vCont");
6361
6362 if (ptid == magic_null_ptid)
6363 {
6364 /* MAGIC_NULL_PTID means that we don't have any active threads,
6365 so we don't have any TID numbers the inferior will
6366 understand. Make sure to only send forms that do not specify
6367 a TID. */
6368 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6369 }
6370 else if (ptid == minus_one_ptid || ptid.is_pid ())
6371 {
6372 /* Resume all threads (of all processes, or of a single
6373 process), with preference for INFERIOR_PTID. This assumes
6374 inferior_ptid belongs to the set of all threads we are about
6375 to resume. */
6376 if (step || siggnal != GDB_SIGNAL_0)
6377 {
6378 /* Step inferior_ptid, with or without signal. */
6379 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6380 }
6381
6382 /* Also pass down any pending signaled resumption for other
6383 threads not the current. */
6384 p = append_pending_thread_resumptions (p, endp, ptid);
6385
6386 /* And continue others without a signal. */
6387 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6388 }
6389 else
6390 {
6391 /* Scheduler locking; resume only PTID. */
6392 append_resumption (p, endp, ptid, step, siggnal);
6393 }
6394
6395 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6396 putpkt (rs->buf);
6397
6398 if (target_is_non_stop_p ())
6399 {
6400 /* In non-stop, the stub replies to vCont with "OK". The stop
6401 reply will be reported asynchronously by means of a `%Stop'
6402 notification. */
6403 getpkt (&rs->buf, 0);
6404 if (strcmp (rs->buf.data (), "OK") != 0)
6405 error (_("Unexpected vCont reply in non-stop mode: %s"),
6406 rs->buf.data ());
6407 }
6408
6409 return 1;
6410 }
6411
6412 /* Tell the remote machine to resume. */
6413
6414 void
6415 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6416 {
6417 struct remote_state *rs = get_remote_state ();
6418
6419 /* When connected in non-stop mode, the core resumes threads
6420 individually. Resuming remote threads directly in target_resume
6421 would thus result in sending one packet per thread. Instead, to
6422 minimize roundtrip latency, here we just store the resume
6423 request (put the thread in RESUMED_PENDING_VCONT state); the actual remote
6424 resumption will be done in remote_target::commit_resume, where we'll be
6425 able to do vCont action coalescing. */
6426 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6427 {
6428 remote_thread_info *remote_thr;
6429
6430 if (minus_one_ptid == ptid || ptid.is_pid ())
6431 remote_thr = get_remote_thread_info (this, inferior_ptid);
6432 else
6433 remote_thr = get_remote_thread_info (this, ptid);
6434
6435 /* We don't expect the core to ask to resume an already resumed (from
6436 its point of view) thread. */
6437 gdb_assert (remote_thr->get_resume_state () == resume_state::NOT_RESUMED);
6438
6439 remote_thr->set_resumed_pending_vcont (step, siggnal);
6440 return;
6441 }
6442
6443 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6444 (explained in remote-notif.c:handle_notification) so
6445 remote_notif_process is not called. We need find a place where
6446 it is safe to start a 'vNotif' sequence. It is good to do it
6447 before resuming inferior, because inferior was stopped and no RSP
6448 traffic at that moment. */
6449 if (!target_is_non_stop_p ())
6450 remote_notif_process (rs->notif_state, &notif_client_stop);
6451
6452 rs->last_resume_exec_dir = ::execution_direction;
6453
6454 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6455 if (!remote_resume_with_vcont (ptid, step, siggnal))
6456 remote_resume_with_hc (ptid, step, siggnal);
6457
6458 /* Update resumed state tracked by the remote target. */
6459 for (thread_info *tp : all_non_exited_threads (this, ptid))
6460 get_remote_thread_info (tp)->set_resumed ();
6461
6462 /* We are about to start executing the inferior, let's register it
6463 with the event loop. NOTE: this is the one place where all the
6464 execution commands end up. We could alternatively do this in each
6465 of the execution commands in infcmd.c. */
6466 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6467 into infcmd.c in order to allow inferior function calls to work
6468 NOT asynchronously. */
6469 if (target_can_async_p ())
6470 target_async (1);
6471
6472 /* We've just told the target to resume. The remote server will
6473 wait for the inferior to stop, and then send a stop reply. In
6474 the mean time, we can't start another command/query ourselves
6475 because the stub wouldn't be ready to process it. This applies
6476 only to the base all-stop protocol, however. In non-stop (which
6477 only supports vCont), the stub replies with an "OK", and is
6478 immediate able to process further serial input. */
6479 if (!target_is_non_stop_p ())
6480 rs->waiting_for_stop_reply = 1;
6481 }
6482
6483 static int is_pending_fork_parent_thread (struct thread_info *thread);
6484
6485 /* Private per-inferior info for target remote processes. */
6486
6487 struct remote_inferior : public private_inferior
6488 {
6489 /* Whether we can send a wildcard vCont for this process. */
6490 bool may_wildcard_vcont = true;
6491 };
6492
6493 /* Get the remote private inferior data associated to INF. */
6494
6495 static remote_inferior *
6496 get_remote_inferior (inferior *inf)
6497 {
6498 if (inf->priv == NULL)
6499 inf->priv.reset (new remote_inferior);
6500
6501 return static_cast<remote_inferior *> (inf->priv.get ());
6502 }
6503
6504 struct stop_reply : public notif_event
6505 {
6506 ~stop_reply ();
6507
6508 /* The identifier of the thread about this event */
6509 ptid_t ptid;
6510
6511 /* The remote state this event is associated with. When the remote
6512 connection, represented by a remote_state object, is closed,
6513 all the associated stop_reply events should be released. */
6514 struct remote_state *rs;
6515
6516 struct target_waitstatus ws;
6517
6518 /* The architecture associated with the expedited registers. */
6519 gdbarch *arch;
6520
6521 /* Expedited registers. This makes remote debugging a bit more
6522 efficient for those targets that provide critical registers as
6523 part of their normal status mechanism (as another roundtrip to
6524 fetch them is avoided). */
6525 std::vector<cached_reg_t> regcache;
6526
6527 enum target_stop_reason stop_reason;
6528
6529 CORE_ADDR watch_data_address;
6530
6531 int core;
6532 };
6533
6534 /* Class used to track the construction of a vCont packet in the
6535 outgoing packet buffer. This is used to send multiple vCont
6536 packets if we have more actions than would fit a single packet. */
6537
6538 class vcont_builder
6539 {
6540 public:
6541 explicit vcont_builder (remote_target *remote)
6542 : m_remote (remote)
6543 {
6544 restart ();
6545 }
6546
6547 void flush ();
6548 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6549
6550 private:
6551 void restart ();
6552
6553 /* The remote target. */
6554 remote_target *m_remote;
6555
6556 /* Pointer to the first action. P points here if no action has been
6557 appended yet. */
6558 char *m_first_action;
6559
6560 /* Where the next action will be appended. */
6561 char *m_p;
6562
6563 /* The end of the buffer. Must never write past this. */
6564 char *m_endp;
6565 };
6566
6567 /* Prepare the outgoing buffer for a new vCont packet. */
6568
6569 void
6570 vcont_builder::restart ()
6571 {
6572 struct remote_state *rs = m_remote->get_remote_state ();
6573
6574 m_p = rs->buf.data ();
6575 m_endp = m_p + m_remote->get_remote_packet_size ();
6576 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6577 m_first_action = m_p;
6578 }
6579
6580 /* If the vCont packet being built has any action, send it to the
6581 remote end. */
6582
6583 void
6584 vcont_builder::flush ()
6585 {
6586 struct remote_state *rs;
6587
6588 if (m_p == m_first_action)
6589 return;
6590
6591 rs = m_remote->get_remote_state ();
6592 m_remote->putpkt (rs->buf);
6593 m_remote->getpkt (&rs->buf, 0);
6594 if (strcmp (rs->buf.data (), "OK") != 0)
6595 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6596 }
6597
6598 /* The largest action is range-stepping, with its two addresses. This
6599 is more than sufficient. If a new, bigger action is created, it'll
6600 quickly trigger a failed assertion in append_resumption (and we'll
6601 just bump this). */
6602 #define MAX_ACTION_SIZE 200
6603
6604 /* Append a new vCont action in the outgoing packet being built. If
6605 the action doesn't fit the packet along with previous actions, push
6606 what we've got so far to the remote end and start over a new vCont
6607 packet (with the new action). */
6608
6609 void
6610 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6611 {
6612 char buf[MAX_ACTION_SIZE + 1];
6613
6614 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6615 ptid, step, siggnal);
6616
6617 /* Check whether this new action would fit in the vCont packet along
6618 with previous actions. If not, send what we've got so far and
6619 start a new vCont packet. */
6620 size_t rsize = endp - buf;
6621 if (rsize > m_endp - m_p)
6622 {
6623 flush ();
6624 restart ();
6625
6626 /* Should now fit. */
6627 gdb_assert (rsize <= m_endp - m_p);
6628 }
6629
6630 memcpy (m_p, buf, rsize);
6631 m_p += rsize;
6632 *m_p = '\0';
6633 }
6634
6635 /* to_commit_resume implementation. */
6636
6637 void
6638 remote_target::commit_resumed ()
6639 {
6640 /* If connected in all-stop mode, we'd send the remote resume
6641 request directly from remote_resume. Likewise if
6642 reverse-debugging, as there are no defined vCont actions for
6643 reverse execution. */
6644 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6645 return;
6646
6647 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6648 instead of resuming all threads of each process individually.
6649 However, if any thread of a process must remain halted, we can't
6650 send wildcard resumes and must send one action per thread.
6651
6652 Care must be taken to not resume threads/processes the server
6653 side already told us are stopped, but the core doesn't know about
6654 yet, because the events are still in the vStopped notification
6655 queue. For example:
6656
6657 #1 => vCont s:p1.1;c
6658 #2 <= OK
6659 #3 <= %Stopped T05 p1.1
6660 #4 => vStopped
6661 #5 <= T05 p1.2
6662 #6 => vStopped
6663 #7 <= OK
6664 #8 (infrun handles the stop for p1.1 and continues stepping)
6665 #9 => vCont s:p1.1;c
6666
6667 The last vCont above would resume thread p1.2 by mistake, because
6668 the server has no idea that the event for p1.2 had not been
6669 handled yet.
6670
6671 The server side must similarly ignore resume actions for the
6672 thread that has a pending %Stopped notification (and any other
6673 threads with events pending), until GDB acks the notification
6674 with vStopped. Otherwise, e.g., the following case is
6675 mishandled:
6676
6677 #1 => g (or any other packet)
6678 #2 <= [registers]
6679 #3 <= %Stopped T05 p1.2
6680 #4 => vCont s:p1.1;c
6681 #5 <= OK
6682
6683 Above, the server must not resume thread p1.2. GDB can't know
6684 that p1.2 stopped until it acks the %Stopped notification, and
6685 since from GDB's perspective all threads should be running, it
6686 sends a "c" action.
6687
6688 Finally, special care must also be given to handling fork/vfork
6689 events. A (v)fork event actually tells us that two processes
6690 stopped -- the parent and the child. Until we follow the fork,
6691 we must not resume the child. Therefore, if we have a pending
6692 fork follow, we must not send a global wildcard resume action
6693 (vCont;c). We can still send process-wide wildcards though. */
6694
6695 /* Start by assuming a global wildcard (vCont;c) is possible. */
6696 bool may_global_wildcard_vcont = true;
6697
6698 /* And assume every process is individually wildcard-able too. */
6699 for (inferior *inf : all_non_exited_inferiors (this))
6700 {
6701 remote_inferior *priv = get_remote_inferior (inf);
6702
6703 priv->may_wildcard_vcont = true;
6704 }
6705
6706 /* Check for any pending events (not reported or processed yet) and
6707 disable process and global wildcard resumes appropriately. */
6708 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6709
6710 bool any_pending_vcont_resume = false;
6711
6712 for (thread_info *tp : all_non_exited_threads (this))
6713 {
6714 remote_thread_info *priv = get_remote_thread_info (tp);
6715
6716 /* If a thread of a process is not meant to be resumed, then we
6717 can't wildcard that process. */
6718 if (priv->get_resume_state () == resume_state::NOT_RESUMED)
6719 {
6720 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6721
6722 /* And if we can't wildcard a process, we can't wildcard
6723 everything either. */
6724 may_global_wildcard_vcont = false;
6725 continue;
6726 }
6727
6728 if (priv->get_resume_state () == resume_state::RESUMED_PENDING_VCONT)
6729 any_pending_vcont_resume = true;
6730
6731 /* If a thread is the parent of an unfollowed fork, then we
6732 can't do a global wildcard, as that would resume the fork
6733 child. */
6734 if (is_pending_fork_parent_thread (tp))
6735 may_global_wildcard_vcont = false;
6736 }
6737
6738 /* We didn't have any resumed thread pending a vCont resume, so nothing to
6739 do. */
6740 if (!any_pending_vcont_resume)
6741 return;
6742
6743 /* Now let's build the vCont packet(s). Actions must be appended
6744 from narrower to wider scopes (thread -> process -> global). If
6745 we end up with too many actions for a single packet vcont_builder
6746 flushes the current vCont packet to the remote side and starts a
6747 new one. */
6748 struct vcont_builder vcont_builder (this);
6749
6750 /* Threads first. */
6751 for (thread_info *tp : all_non_exited_threads (this))
6752 {
6753 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6754
6755 /* If the thread was previously vCont-resumed, no need to send a specific
6756 action for it. If we didn't receive a resume request for it, don't
6757 send an action for it either. */
6758 if (remote_thr->get_resume_state () != resume_state::RESUMED_PENDING_VCONT)
6759 continue;
6760
6761 gdb_assert (!thread_is_in_step_over_chain (tp));
6762
6763 /* We should never be commit-resuming a thread that has a stop reply.
6764 Otherwise, we would end up reporting a stop event for a thread while
6765 it is running on the remote target. */
6766 remote_state *rs = get_remote_state ();
6767 for (const auto &stop_reply : rs->stop_reply_queue)
6768 gdb_assert (stop_reply->ptid != tp->ptid);
6769
6770 const resumed_pending_vcont_info &info
6771 = remote_thr->resumed_pending_vcont_info ();
6772
6773 /* Check if we need to send a specific action for this thread. If not,
6774 it will be included in a wildcard resume instead. */
6775 if (info.step || info.sig != GDB_SIGNAL_0
6776 || !get_remote_inferior (tp->inf)->may_wildcard_vcont)
6777 vcont_builder.push_action (tp->ptid, info.step, info.sig);
6778
6779 remote_thr->set_resumed ();
6780 }
6781
6782 /* Now check whether we can send any process-wide wildcard. This is
6783 to avoid sending a global wildcard in the case nothing is
6784 supposed to be resumed. */
6785 bool any_process_wildcard = false;
6786
6787 for (inferior *inf : all_non_exited_inferiors (this))
6788 {
6789 if (get_remote_inferior (inf)->may_wildcard_vcont)
6790 {
6791 any_process_wildcard = true;
6792 break;
6793 }
6794 }
6795
6796 if (any_process_wildcard)
6797 {
6798 /* If all processes are wildcard-able, then send a single "c"
6799 action, otherwise, send an "all (-1) threads of process"
6800 continue action for each running process, if any. */
6801 if (may_global_wildcard_vcont)
6802 {
6803 vcont_builder.push_action (minus_one_ptid,
6804 false, GDB_SIGNAL_0);
6805 }
6806 else
6807 {
6808 for (inferior *inf : all_non_exited_inferiors (this))
6809 {
6810 if (get_remote_inferior (inf)->may_wildcard_vcont)
6811 {
6812 vcont_builder.push_action (ptid_t (inf->pid),
6813 false, GDB_SIGNAL_0);
6814 }
6815 }
6816 }
6817 }
6818
6819 vcont_builder.flush ();
6820 }
6821
6822 /* Implementation of target_has_pending_events. */
6823
6824 bool
6825 remote_target::has_pending_events ()
6826 {
6827 if (target_can_async_p ())
6828 {
6829 remote_state *rs = get_remote_state ();
6830
6831 if (async_event_handler_marked (rs->remote_async_inferior_event_token))
6832 return true;
6833
6834 /* Note that BUFCNT can be negative, indicating sticky
6835 error. */
6836 if (rs->remote_desc->bufcnt != 0)
6837 return true;
6838 }
6839 return false;
6840 }
6841
6842 \f
6843
6844 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6845 thread, all threads of a remote process, or all threads of all
6846 processes. */
6847
6848 void
6849 remote_target::remote_stop_ns (ptid_t ptid)
6850 {
6851 struct remote_state *rs = get_remote_state ();
6852 char *p = rs->buf.data ();
6853 char *endp = p + get_remote_packet_size ();
6854
6855 /* If any thread that needs to stop was resumed but pending a vCont
6856 resume, generate a phony stop_reply. However, first check
6857 whether the thread wasn't resumed with a signal. Generating a
6858 phony stop in that case would result in losing the signal. */
6859 bool needs_commit = false;
6860 for (thread_info *tp : all_non_exited_threads (this, ptid))
6861 {
6862 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6863
6864 if (remote_thr->get_resume_state ()
6865 == resume_state::RESUMED_PENDING_VCONT)
6866 {
6867 const resumed_pending_vcont_info &info
6868 = remote_thr->resumed_pending_vcont_info ();
6869 if (info.sig != GDB_SIGNAL_0)
6870 {
6871 /* This signal must be forwarded to the inferior. We
6872 could commit-resume just this thread, but its simpler
6873 to just commit-resume everything. */
6874 needs_commit = true;
6875 break;
6876 }
6877 }
6878 }
6879
6880 if (needs_commit)
6881 commit_resumed ();
6882 else
6883 for (thread_info *tp : all_non_exited_threads (this, ptid))
6884 {
6885 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6886
6887 if (remote_thr->get_resume_state ()
6888 == resume_state::RESUMED_PENDING_VCONT)
6889 {
6890 remote_debug_printf ("Enqueueing phony stop reply for thread pending "
6891 "vCont-resume (%d, %ld, %ld)", tp->ptid.pid(),
6892 tp->ptid.lwp (), tp->ptid.tid ());
6893
6894 /* Check that the thread wasn't resumed with a signal.
6895 Generating a phony stop would result in losing the
6896 signal. */
6897 const resumed_pending_vcont_info &info
6898 = remote_thr->resumed_pending_vcont_info ();
6899 gdb_assert (info.sig == GDB_SIGNAL_0);
6900
6901 stop_reply *sr = new stop_reply ();
6902 sr->ptid = tp->ptid;
6903 sr->rs = rs;
6904 sr->ws.kind = TARGET_WAITKIND_STOPPED;
6905 sr->ws.value.sig = GDB_SIGNAL_0;
6906 sr->arch = tp->inf->gdbarch;
6907 sr->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6908 sr->watch_data_address = 0;
6909 sr->core = 0;
6910 this->push_stop_reply (sr);
6911
6912 /* Pretend that this thread was actually resumed on the
6913 remote target, then stopped. If we leave it in the
6914 RESUMED_PENDING_VCONT state and the commit_resumed
6915 method is called while the stop reply is still in the
6916 queue, we'll end up reporting a stop event to the core
6917 for that thread while it is running on the remote
6918 target... that would be bad. */
6919 remote_thr->set_resumed ();
6920 }
6921 }
6922
6923 /* FIXME: This supports_vCont_probed check is a workaround until
6924 packet_support is per-connection. */
6925 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6926 || !rs->supports_vCont_probed)
6927 remote_vcont_probe ();
6928
6929 if (!rs->supports_vCont.t)
6930 error (_("Remote server does not support stopping threads"));
6931
6932 if (ptid == minus_one_ptid
6933 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6934 p += xsnprintf (p, endp - p, "vCont;t");
6935 else
6936 {
6937 ptid_t nptid;
6938
6939 p += xsnprintf (p, endp - p, "vCont;t:");
6940
6941 if (ptid.is_pid ())
6942 /* All (-1) threads of process. */
6943 nptid = ptid_t (ptid.pid (), -1, 0);
6944 else
6945 {
6946 /* Small optimization: if we already have a stop reply for
6947 this thread, no use in telling the stub we want this
6948 stopped. */
6949 if (peek_stop_reply (ptid))
6950 return;
6951
6952 nptid = ptid;
6953 }
6954
6955 write_ptid (p, endp, nptid);
6956 }
6957
6958 /* In non-stop, we get an immediate OK reply. The stop reply will
6959 come in asynchronously by notification. */
6960 putpkt (rs->buf);
6961 getpkt (&rs->buf, 0);
6962 if (strcmp (rs->buf.data (), "OK") != 0)
6963 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6964 rs->buf.data ());
6965 }
6966
6967 /* All-stop version of target_interrupt. Sends a break or a ^C to
6968 interrupt the remote target. It is undefined which thread of which
6969 process reports the interrupt. */
6970
6971 void
6972 remote_target::remote_interrupt_as ()
6973 {
6974 struct remote_state *rs = get_remote_state ();
6975
6976 rs->ctrlc_pending_p = 1;
6977
6978 /* If the inferior is stopped already, but the core didn't know
6979 about it yet, just ignore the request. The cached wait status
6980 will be collected in remote_wait. */
6981 if (rs->cached_wait_status)
6982 return;
6983
6984 /* Send interrupt_sequence to remote target. */
6985 send_interrupt_sequence ();
6986 }
6987
6988 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6989 the remote target. It is undefined which thread of which process
6990 reports the interrupt. Throws an error if the packet is not
6991 supported by the server. */
6992
6993 void
6994 remote_target::remote_interrupt_ns ()
6995 {
6996 struct remote_state *rs = get_remote_state ();
6997 char *p = rs->buf.data ();
6998 char *endp = p + get_remote_packet_size ();
6999
7000 xsnprintf (p, endp - p, "vCtrlC");
7001
7002 /* In non-stop, we get an immediate OK reply. The stop reply will
7003 come in asynchronously by notification. */
7004 putpkt (rs->buf);
7005 getpkt (&rs->buf, 0);
7006
7007 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
7008 {
7009 case PACKET_OK:
7010 break;
7011 case PACKET_UNKNOWN:
7012 error (_("No support for interrupting the remote target."));
7013 case PACKET_ERROR:
7014 error (_("Interrupting target failed: %s"), rs->buf.data ());
7015 }
7016 }
7017
7018 /* Implement the to_stop function for the remote targets. */
7019
7020 void
7021 remote_target::stop (ptid_t ptid)
7022 {
7023 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7024
7025 if (target_is_non_stop_p ())
7026 remote_stop_ns (ptid);
7027 else
7028 {
7029 /* We don't currently have a way to transparently pause the
7030 remote target in all-stop mode. Interrupt it instead. */
7031 remote_interrupt_as ();
7032 }
7033 }
7034
7035 /* Implement the to_interrupt function for the remote targets. */
7036
7037 void
7038 remote_target::interrupt ()
7039 {
7040 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7041
7042 if (target_is_non_stop_p ())
7043 remote_interrupt_ns ();
7044 else
7045 remote_interrupt_as ();
7046 }
7047
7048 /* Implement the to_pass_ctrlc function for the remote targets. */
7049
7050 void
7051 remote_target::pass_ctrlc ()
7052 {
7053 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7054
7055 struct remote_state *rs = get_remote_state ();
7056
7057 /* If we're starting up, we're not fully synced yet. Quit
7058 immediately. */
7059 if (rs->starting_up)
7060 quit ();
7061 /* If ^C has already been sent once, offer to disconnect. */
7062 else if (rs->ctrlc_pending_p)
7063 interrupt_query ();
7064 else
7065 target_interrupt ();
7066 }
7067
7068 /* Ask the user what to do when an interrupt is received. */
7069
7070 void
7071 remote_target::interrupt_query ()
7072 {
7073 struct remote_state *rs = get_remote_state ();
7074
7075 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
7076 {
7077 if (query (_("The target is not responding to interrupt requests.\n"
7078 "Stop debugging it? ")))
7079 {
7080 remote_unpush_target (this);
7081 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
7082 }
7083 }
7084 else
7085 {
7086 if (query (_("Interrupted while waiting for the program.\n"
7087 "Give up waiting? ")))
7088 quit ();
7089 }
7090 }
7091
7092 /* Enable/disable target terminal ownership. Most targets can use
7093 terminal groups to control terminal ownership. Remote targets are
7094 different in that explicit transfer of ownership to/from GDB/target
7095 is required. */
7096
7097 void
7098 remote_target::terminal_inferior ()
7099 {
7100 /* NOTE: At this point we could also register our selves as the
7101 recipient of all input. Any characters typed could then be
7102 passed on down to the target. */
7103 }
7104
7105 void
7106 remote_target::terminal_ours ()
7107 {
7108 }
7109
7110 static void
7111 remote_console_output (const char *msg)
7112 {
7113 const char *p;
7114
7115 for (p = msg; p[0] && p[1]; p += 2)
7116 {
7117 char tb[2];
7118 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
7119
7120 tb[0] = c;
7121 tb[1] = 0;
7122 gdb_stdtarg->puts (tb);
7123 }
7124 gdb_stdtarg->flush ();
7125 }
7126
7127 /* Return the length of the stop reply queue. */
7128
7129 int
7130 remote_target::stop_reply_queue_length ()
7131 {
7132 remote_state *rs = get_remote_state ();
7133 return rs->stop_reply_queue.size ();
7134 }
7135
7136 static void
7137 remote_notif_stop_parse (remote_target *remote,
7138 struct notif_client *self, const char *buf,
7139 struct notif_event *event)
7140 {
7141 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
7142 }
7143
7144 static void
7145 remote_notif_stop_ack (remote_target *remote,
7146 struct notif_client *self, const char *buf,
7147 struct notif_event *event)
7148 {
7149 struct stop_reply *stop_reply = (struct stop_reply *) event;
7150
7151 /* acknowledge */
7152 putpkt (remote, self->ack_command);
7153
7154 /* Kind can be TARGET_WAITKIND_IGNORE if we have meanwhile discarded
7155 the notification. It was left in the queue because we need to
7156 acknowledge it and pull the rest of the notifications out. */
7157 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
7158 remote->push_stop_reply (stop_reply);
7159 }
7160
7161 static int
7162 remote_notif_stop_can_get_pending_events (remote_target *remote,
7163 struct notif_client *self)
7164 {
7165 /* We can't get pending events in remote_notif_process for
7166 notification stop, and we have to do this in remote_wait_ns
7167 instead. If we fetch all queued events from stub, remote stub
7168 may exit and we have no chance to process them back in
7169 remote_wait_ns. */
7170 remote_state *rs = remote->get_remote_state ();
7171 mark_async_event_handler (rs->remote_async_inferior_event_token);
7172 return 0;
7173 }
7174
7175 stop_reply::~stop_reply ()
7176 {
7177 for (cached_reg_t &reg : regcache)
7178 xfree (reg.data);
7179 }
7180
7181 static notif_event_up
7182 remote_notif_stop_alloc_reply ()
7183 {
7184 return notif_event_up (new struct stop_reply ());
7185 }
7186
7187 /* A client of notification Stop. */
7188
7189 struct notif_client notif_client_stop =
7190 {
7191 "Stop",
7192 "vStopped",
7193 remote_notif_stop_parse,
7194 remote_notif_stop_ack,
7195 remote_notif_stop_can_get_pending_events,
7196 remote_notif_stop_alloc_reply,
7197 REMOTE_NOTIF_STOP,
7198 };
7199
7200 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
7201 the pid of the process that owns the threads we want to check, or
7202 -1 if we want to check all threads. */
7203
7204 static int
7205 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
7206 ptid_t thread_ptid)
7207 {
7208 if (ws->kind == TARGET_WAITKIND_FORKED
7209 || ws->kind == TARGET_WAITKIND_VFORKED)
7210 {
7211 if (event_pid == -1 || event_pid == thread_ptid.pid ())
7212 return 1;
7213 }
7214
7215 return 0;
7216 }
7217
7218 /* Return the thread's pending status used to determine whether the
7219 thread is a fork parent stopped at a fork event. */
7220
7221 static struct target_waitstatus *
7222 thread_pending_fork_status (struct thread_info *thread)
7223 {
7224 if (thread->suspend.waitstatus_pending_p)
7225 return &thread->suspend.waitstatus;
7226 else
7227 return &thread->pending_follow;
7228 }
7229
7230 /* Determine if THREAD is a pending fork parent thread. */
7231
7232 static int
7233 is_pending_fork_parent_thread (struct thread_info *thread)
7234 {
7235 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7236 int pid = -1;
7237
7238 return is_pending_fork_parent (ws, pid, thread->ptid);
7239 }
7240
7241 /* If CONTEXT contains any fork child threads that have not been
7242 reported yet, remove them from the CONTEXT list. If such a
7243 thread exists it is because we are stopped at a fork catchpoint
7244 and have not yet called follow_fork, which will set up the
7245 host-side data structures for the new process. */
7246
7247 void
7248 remote_target::remove_new_fork_children (threads_listing_context *context)
7249 {
7250 int pid = -1;
7251 struct notif_client *notif = &notif_client_stop;
7252
7253 /* For any threads stopped at a fork event, remove the corresponding
7254 fork child threads from the CONTEXT list. */
7255 for (thread_info *thread : all_non_exited_threads (this))
7256 {
7257 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7258
7259 if (is_pending_fork_parent (ws, pid, thread->ptid))
7260 context->remove_thread (ws->value.related_pid);
7261 }
7262
7263 /* Check for any pending fork events (not reported or processed yet)
7264 in process PID and remove those fork child threads from the
7265 CONTEXT list as well. */
7266 remote_notif_get_pending_events (notif);
7267 for (auto &event : get_remote_state ()->stop_reply_queue)
7268 if (event->ws.kind == TARGET_WAITKIND_FORKED
7269 || event->ws.kind == TARGET_WAITKIND_VFORKED
7270 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7271 context->remove_thread (event->ws.value.related_pid);
7272 }
7273
7274 /* Check whether any event pending in the vStopped queue would prevent a
7275 global or process wildcard vCont action. Set *may_global_wildcard to
7276 false if we can't do a global wildcard (vCont;c), and clear the event
7277 inferior's may_wildcard_vcont flag if we can't do a process-wide
7278 wildcard resume (vCont;c:pPID.-1). */
7279
7280 void
7281 remote_target::check_pending_events_prevent_wildcard_vcont
7282 (bool *may_global_wildcard)
7283 {
7284 struct notif_client *notif = &notif_client_stop;
7285
7286 remote_notif_get_pending_events (notif);
7287 for (auto &event : get_remote_state ()->stop_reply_queue)
7288 {
7289 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7290 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7291 continue;
7292
7293 if (event->ws.kind == TARGET_WAITKIND_FORKED
7294 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7295 *may_global_wildcard = false;
7296
7297 /* This may be the first time we heard about this process.
7298 Regardless, we must not do a global wildcard resume, otherwise
7299 we'd resume this process too. */
7300 *may_global_wildcard = false;
7301 if (event->ptid != null_ptid)
7302 {
7303 inferior *inf = find_inferior_ptid (this, event->ptid);
7304 if (inf != NULL)
7305 get_remote_inferior (inf)->may_wildcard_vcont = false;
7306 }
7307 }
7308 }
7309
7310 /* Discard all pending stop replies of inferior INF. */
7311
7312 void
7313 remote_target::discard_pending_stop_replies (struct inferior *inf)
7314 {
7315 struct stop_reply *reply;
7316 struct remote_state *rs = get_remote_state ();
7317 struct remote_notif_state *rns = rs->notif_state;
7318
7319 /* This function can be notified when an inferior exists. When the
7320 target is not remote, the notification state is NULL. */
7321 if (rs->remote_desc == NULL)
7322 return;
7323
7324 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7325
7326 /* Discard the in-flight notification. */
7327 if (reply != NULL && reply->ptid.pid () == inf->pid)
7328 {
7329 /* Leave the notification pending, since the server expects that
7330 we acknowledge it with vStopped. But clear its contents, so
7331 that later on when we acknowledge it, we also discard it. */
7332 reply->ws.kind = TARGET_WAITKIND_IGNORE;
7333
7334 if (remote_debug)
7335 fprintf_unfiltered (gdb_stdlog,
7336 "discarded in-flight notification\n");
7337 }
7338
7339 /* Discard the stop replies we have already pulled with
7340 vStopped. */
7341 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7342 rs->stop_reply_queue.end (),
7343 [=] (const stop_reply_up &event)
7344 {
7345 return event->ptid.pid () == inf->pid;
7346 });
7347 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7348 }
7349
7350 /* Discard the stop replies for RS in stop_reply_queue. */
7351
7352 void
7353 remote_target::discard_pending_stop_replies_in_queue ()
7354 {
7355 remote_state *rs = get_remote_state ();
7356
7357 /* Discard the stop replies we have already pulled with
7358 vStopped. */
7359 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7360 rs->stop_reply_queue.end (),
7361 [=] (const stop_reply_up &event)
7362 {
7363 return event->rs == rs;
7364 });
7365 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7366 }
7367
7368 /* Remove the first reply in 'stop_reply_queue' which matches
7369 PTID. */
7370
7371 struct stop_reply *
7372 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7373 {
7374 remote_state *rs = get_remote_state ();
7375
7376 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7377 rs->stop_reply_queue.end (),
7378 [=] (const stop_reply_up &event)
7379 {
7380 return event->ptid.matches (ptid);
7381 });
7382 struct stop_reply *result;
7383 if (iter == rs->stop_reply_queue.end ())
7384 result = nullptr;
7385 else
7386 {
7387 result = iter->release ();
7388 rs->stop_reply_queue.erase (iter);
7389 }
7390
7391 if (notif_debug)
7392 fprintf_unfiltered (gdb_stdlog,
7393 "notif: discard queued event: 'Stop' in %s\n",
7394 target_pid_to_str (ptid).c_str ());
7395
7396 return result;
7397 }
7398
7399 /* Look for a queued stop reply belonging to PTID. If one is found,
7400 remove it from the queue, and return it. Returns NULL if none is
7401 found. If there are still queued events left to process, tell the
7402 event loop to get back to target_wait soon. */
7403
7404 struct stop_reply *
7405 remote_target::queued_stop_reply (ptid_t ptid)
7406 {
7407 remote_state *rs = get_remote_state ();
7408 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7409
7410 if (!rs->stop_reply_queue.empty ())
7411 {
7412 /* There's still at least an event left. */
7413 mark_async_event_handler (rs->remote_async_inferior_event_token);
7414 }
7415
7416 return r;
7417 }
7418
7419 /* Push a fully parsed stop reply in the stop reply queue. Since we
7420 know that we now have at least one queued event left to pass to the
7421 core side, tell the event loop to get back to target_wait soon. */
7422
7423 void
7424 remote_target::push_stop_reply (struct stop_reply *new_event)
7425 {
7426 remote_state *rs = get_remote_state ();
7427 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7428
7429 if (notif_debug)
7430 fprintf_unfiltered (gdb_stdlog,
7431 "notif: push 'Stop' %s to queue %d\n",
7432 target_pid_to_str (new_event->ptid).c_str (),
7433 int (rs->stop_reply_queue.size ()));
7434
7435 mark_async_event_handler (rs->remote_async_inferior_event_token);
7436 }
7437
7438 /* Returns true if we have a stop reply for PTID. */
7439
7440 int
7441 remote_target::peek_stop_reply (ptid_t ptid)
7442 {
7443 remote_state *rs = get_remote_state ();
7444 for (auto &event : rs->stop_reply_queue)
7445 if (ptid == event->ptid
7446 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7447 return 1;
7448 return 0;
7449 }
7450
7451 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7452 starting with P and ending with PEND matches PREFIX. */
7453
7454 static int
7455 strprefix (const char *p, const char *pend, const char *prefix)
7456 {
7457 for ( ; p < pend; p++, prefix++)
7458 if (*p != *prefix)
7459 return 0;
7460 return *prefix == '\0';
7461 }
7462
7463 /* Parse the stop reply in BUF. Either the function succeeds, and the
7464 result is stored in EVENT, or throws an error. */
7465
7466 void
7467 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7468 {
7469 remote_arch_state *rsa = NULL;
7470 ULONGEST addr;
7471 const char *p;
7472 int skipregs = 0;
7473
7474 event->ptid = null_ptid;
7475 event->rs = get_remote_state ();
7476 event->ws.kind = TARGET_WAITKIND_IGNORE;
7477 event->ws.value.integer = 0;
7478 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7479 event->regcache.clear ();
7480 event->core = -1;
7481
7482 switch (buf[0])
7483 {
7484 case 'T': /* Status with PC, SP, FP, ... */
7485 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7486 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7487 ss = signal number
7488 n... = register number
7489 r... = register contents
7490 */
7491
7492 p = &buf[3]; /* after Txx */
7493 while (*p)
7494 {
7495 const char *p1;
7496 int fieldsize;
7497
7498 p1 = strchr (p, ':');
7499 if (p1 == NULL)
7500 error (_("Malformed packet(a) (missing colon): %s\n\
7501 Packet: '%s'\n"),
7502 p, buf);
7503 if (p == p1)
7504 error (_("Malformed packet(a) (missing register number): %s\n\
7505 Packet: '%s'\n"),
7506 p, buf);
7507
7508 /* Some "registers" are actually extended stop information.
7509 Note if you're adding a new entry here: GDB 7.9 and
7510 earlier assume that all register "numbers" that start
7511 with an hex digit are real register numbers. Make sure
7512 the server only sends such a packet if it knows the
7513 client understands it. */
7514
7515 if (strprefix (p, p1, "thread"))
7516 event->ptid = read_ptid (++p1, &p);
7517 else if (strprefix (p, p1, "syscall_entry"))
7518 {
7519 ULONGEST sysno;
7520
7521 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7522 p = unpack_varlen_hex (++p1, &sysno);
7523 event->ws.value.syscall_number = (int) sysno;
7524 }
7525 else if (strprefix (p, p1, "syscall_return"))
7526 {
7527 ULONGEST sysno;
7528
7529 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7530 p = unpack_varlen_hex (++p1, &sysno);
7531 event->ws.value.syscall_number = (int) sysno;
7532 }
7533 else if (strprefix (p, p1, "watch")
7534 || strprefix (p, p1, "rwatch")
7535 || strprefix (p, p1, "awatch"))
7536 {
7537 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7538 p = unpack_varlen_hex (++p1, &addr);
7539 event->watch_data_address = (CORE_ADDR) addr;
7540 }
7541 else if (strprefix (p, p1, "swbreak"))
7542 {
7543 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7544
7545 /* Make sure the stub doesn't forget to indicate support
7546 with qSupported. */
7547 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7548 error (_("Unexpected swbreak stop reason"));
7549
7550 /* The value part is documented as "must be empty",
7551 though we ignore it, in case we ever decide to make
7552 use of it in a backward compatible way. */
7553 p = strchrnul (p1 + 1, ';');
7554 }
7555 else if (strprefix (p, p1, "hwbreak"))
7556 {
7557 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7558
7559 /* Make sure the stub doesn't forget to indicate support
7560 with qSupported. */
7561 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7562 error (_("Unexpected hwbreak stop reason"));
7563
7564 /* See above. */
7565 p = strchrnul (p1 + 1, ';');
7566 }
7567 else if (strprefix (p, p1, "library"))
7568 {
7569 event->ws.kind = TARGET_WAITKIND_LOADED;
7570 p = strchrnul (p1 + 1, ';');
7571 }
7572 else if (strprefix (p, p1, "replaylog"))
7573 {
7574 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7575 /* p1 will indicate "begin" or "end", but it makes
7576 no difference for now, so ignore it. */
7577 p = strchrnul (p1 + 1, ';');
7578 }
7579 else if (strprefix (p, p1, "core"))
7580 {
7581 ULONGEST c;
7582
7583 p = unpack_varlen_hex (++p1, &c);
7584 event->core = c;
7585 }
7586 else if (strprefix (p, p1, "fork"))
7587 {
7588 event->ws.value.related_pid = read_ptid (++p1, &p);
7589 event->ws.kind = TARGET_WAITKIND_FORKED;
7590 }
7591 else if (strprefix (p, p1, "vfork"))
7592 {
7593 event->ws.value.related_pid = read_ptid (++p1, &p);
7594 event->ws.kind = TARGET_WAITKIND_VFORKED;
7595 }
7596 else if (strprefix (p, p1, "vforkdone"))
7597 {
7598 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7599 p = strchrnul (p1 + 1, ';');
7600 }
7601 else if (strprefix (p, p1, "exec"))
7602 {
7603 ULONGEST ignored;
7604 int pathlen;
7605
7606 /* Determine the length of the execd pathname. */
7607 p = unpack_varlen_hex (++p1, &ignored);
7608 pathlen = (p - p1) / 2;
7609
7610 /* Save the pathname for event reporting and for
7611 the next run command. */
7612 gdb::unique_xmalloc_ptr<char[]> pathname
7613 ((char *) xmalloc (pathlen + 1));
7614 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7615 pathname[pathlen] = '\0';
7616
7617 /* This is freed during event handling. */
7618 event->ws.value.execd_pathname = pathname.release ();
7619 event->ws.kind = TARGET_WAITKIND_EXECD;
7620
7621 /* Skip the registers included in this packet, since
7622 they may be for an architecture different from the
7623 one used by the original program. */
7624 skipregs = 1;
7625 }
7626 else if (strprefix (p, p1, "create"))
7627 {
7628 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7629 p = strchrnul (p1 + 1, ';');
7630 }
7631 else
7632 {
7633 ULONGEST pnum;
7634 const char *p_temp;
7635
7636 if (skipregs)
7637 {
7638 p = strchrnul (p1 + 1, ';');
7639 p++;
7640 continue;
7641 }
7642
7643 /* Maybe a real ``P'' register number. */
7644 p_temp = unpack_varlen_hex (p, &pnum);
7645 /* If the first invalid character is the colon, we got a
7646 register number. Otherwise, it's an unknown stop
7647 reason. */
7648 if (p_temp == p1)
7649 {
7650 /* If we haven't parsed the event's thread yet, find
7651 it now, in order to find the architecture of the
7652 reported expedited registers. */
7653 if (event->ptid == null_ptid)
7654 {
7655 /* If there is no thread-id information then leave
7656 the event->ptid as null_ptid. Later in
7657 process_stop_reply we will pick a suitable
7658 thread. */
7659 const char *thr = strstr (p1 + 1, ";thread:");
7660 if (thr != NULL)
7661 event->ptid = read_ptid (thr + strlen (";thread:"),
7662 NULL);
7663 }
7664
7665 if (rsa == NULL)
7666 {
7667 inferior *inf
7668 = (event->ptid == null_ptid
7669 ? NULL
7670 : find_inferior_ptid (this, event->ptid));
7671 /* If this is the first time we learn anything
7672 about this process, skip the registers
7673 included in this packet, since we don't yet
7674 know which architecture to use to parse them.
7675 We'll determine the architecture later when
7676 we process the stop reply and retrieve the
7677 target description, via
7678 remote_notice_new_inferior ->
7679 post_create_inferior. */
7680 if (inf == NULL)
7681 {
7682 p = strchrnul (p1 + 1, ';');
7683 p++;
7684 continue;
7685 }
7686
7687 event->arch = inf->gdbarch;
7688 rsa = event->rs->get_remote_arch_state (event->arch);
7689 }
7690
7691 packet_reg *reg
7692 = packet_reg_from_pnum (event->arch, rsa, pnum);
7693 cached_reg_t cached_reg;
7694
7695 if (reg == NULL)
7696 error (_("Remote sent bad register number %s: %s\n\
7697 Packet: '%s'\n"),
7698 hex_string (pnum), p, buf);
7699
7700 cached_reg.num = reg->regnum;
7701 cached_reg.data = (gdb_byte *)
7702 xmalloc (register_size (event->arch, reg->regnum));
7703
7704 p = p1 + 1;
7705 fieldsize = hex2bin (p, cached_reg.data,
7706 register_size (event->arch, reg->regnum));
7707 p += 2 * fieldsize;
7708 if (fieldsize < register_size (event->arch, reg->regnum))
7709 warning (_("Remote reply is too short: %s"), buf);
7710
7711 event->regcache.push_back (cached_reg);
7712 }
7713 else
7714 {
7715 /* Not a number. Silently skip unknown optional
7716 info. */
7717 p = strchrnul (p1 + 1, ';');
7718 }
7719 }
7720
7721 if (*p != ';')
7722 error (_("Remote register badly formatted: %s\nhere: %s"),
7723 buf, p);
7724 ++p;
7725 }
7726
7727 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7728 break;
7729
7730 /* fall through */
7731 case 'S': /* Old style status, just signal only. */
7732 {
7733 int sig;
7734
7735 event->ws.kind = TARGET_WAITKIND_STOPPED;
7736 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7737 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7738 event->ws.value.sig = (enum gdb_signal) sig;
7739 else
7740 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7741 }
7742 break;
7743 case 'w': /* Thread exited. */
7744 {
7745 ULONGEST value;
7746
7747 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7748 p = unpack_varlen_hex (&buf[1], &value);
7749 event->ws.value.integer = value;
7750 if (*p != ';')
7751 error (_("stop reply packet badly formatted: %s"), buf);
7752 event->ptid = read_ptid (++p, NULL);
7753 break;
7754 }
7755 case 'W': /* Target exited. */
7756 case 'X':
7757 {
7758 ULONGEST value;
7759
7760 /* GDB used to accept only 2 hex chars here. Stubs should
7761 only send more if they detect GDB supports multi-process
7762 support. */
7763 p = unpack_varlen_hex (&buf[1], &value);
7764
7765 if (buf[0] == 'W')
7766 {
7767 /* The remote process exited. */
7768 event->ws.kind = TARGET_WAITKIND_EXITED;
7769 event->ws.value.integer = value;
7770 }
7771 else
7772 {
7773 /* The remote process exited with a signal. */
7774 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7775 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7776 event->ws.value.sig = (enum gdb_signal) value;
7777 else
7778 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7779 }
7780
7781 /* If no process is specified, return null_ptid, and let the
7782 caller figure out the right process to use. */
7783 int pid = 0;
7784 if (*p == '\0')
7785 ;
7786 else if (*p == ';')
7787 {
7788 p++;
7789
7790 if (*p == '\0')
7791 ;
7792 else if (startswith (p, "process:"))
7793 {
7794 ULONGEST upid;
7795
7796 p += sizeof ("process:") - 1;
7797 unpack_varlen_hex (p, &upid);
7798 pid = upid;
7799 }
7800 else
7801 error (_("unknown stop reply packet: %s"), buf);
7802 }
7803 else
7804 error (_("unknown stop reply packet: %s"), buf);
7805 event->ptid = ptid_t (pid);
7806 }
7807 break;
7808 case 'N':
7809 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7810 event->ptid = minus_one_ptid;
7811 break;
7812 }
7813 }
7814
7815 /* When the stub wants to tell GDB about a new notification reply, it
7816 sends a notification (%Stop, for example). Those can come it at
7817 any time, hence, we have to make sure that any pending
7818 putpkt/getpkt sequence we're making is finished, before querying
7819 the stub for more events with the corresponding ack command
7820 (vStopped, for example). E.g., if we started a vStopped sequence
7821 immediately upon receiving the notification, something like this
7822 could happen:
7823
7824 1.1) --> Hg 1
7825 1.2) <-- OK
7826 1.3) --> g
7827 1.4) <-- %Stop
7828 1.5) --> vStopped
7829 1.6) <-- (registers reply to step #1.3)
7830
7831 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7832 query.
7833
7834 To solve this, whenever we parse a %Stop notification successfully,
7835 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7836 doing whatever we were doing:
7837
7838 2.1) --> Hg 1
7839 2.2) <-- OK
7840 2.3) --> g
7841 2.4) <-- %Stop
7842 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7843 2.5) <-- (registers reply to step #2.3)
7844
7845 Eventually after step #2.5, we return to the event loop, which
7846 notices there's an event on the
7847 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7848 associated callback --- the function below. At this point, we're
7849 always safe to start a vStopped sequence. :
7850
7851 2.6) --> vStopped
7852 2.7) <-- T05 thread:2
7853 2.8) --> vStopped
7854 2.9) --> OK
7855 */
7856
7857 void
7858 remote_target::remote_notif_get_pending_events (notif_client *nc)
7859 {
7860 struct remote_state *rs = get_remote_state ();
7861
7862 if (rs->notif_state->pending_event[nc->id] != NULL)
7863 {
7864 if (notif_debug)
7865 fprintf_unfiltered (gdb_stdlog,
7866 "notif: process: '%s' ack pending event\n",
7867 nc->name);
7868
7869 /* acknowledge */
7870 nc->ack (this, nc, rs->buf.data (),
7871 rs->notif_state->pending_event[nc->id]);
7872 rs->notif_state->pending_event[nc->id] = NULL;
7873
7874 while (1)
7875 {
7876 getpkt (&rs->buf, 0);
7877 if (strcmp (rs->buf.data (), "OK") == 0)
7878 break;
7879 else
7880 remote_notif_ack (this, nc, rs->buf.data ());
7881 }
7882 }
7883 else
7884 {
7885 if (notif_debug)
7886 fprintf_unfiltered (gdb_stdlog,
7887 "notif: process: '%s' no pending reply\n",
7888 nc->name);
7889 }
7890 }
7891
7892 /* Wrapper around remote_target::remote_notif_get_pending_events to
7893 avoid having to export the whole remote_target class. */
7894
7895 void
7896 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7897 {
7898 remote->remote_notif_get_pending_events (nc);
7899 }
7900
7901 /* Called from process_stop_reply when the stop packet we are responding
7902 to didn't include a process-id or thread-id. STATUS is the stop event
7903 we are responding to.
7904
7905 It is the task of this function to select a suitable thread (or process)
7906 and return its ptid, this is the thread (or process) we will assume the
7907 stop event came from.
7908
7909 In some cases there isn't really any choice about which thread (or
7910 process) is selected, a basic remote with a single process containing a
7911 single thread might choose not to send any process-id or thread-id in
7912 its stop packets, this function will select and return the one and only
7913 thread.
7914
7915 However, if a target supports multiple threads (or processes) and still
7916 doesn't include a thread-id (or process-id) in its stop packet then
7917 first, this is a badly behaving target, and second, we're going to have
7918 to select a thread (or process) at random and use that. This function
7919 will print a warning to the user if it detects that there is the
7920 possibility that GDB is guessing which thread (or process) to
7921 report.
7922
7923 Note that this is called before GDB fetches the updated thread list from the
7924 target. So it's possible for the stop reply to be ambiguous and for GDB to
7925 not realize it. For example, if there's initially one thread, the target
7926 spawns a second thread, and then sends a stop reply without an id that
7927 concerns the first thread. GDB will assume the stop reply is about the
7928 first thread - the only thread it knows about - without printing a warning.
7929 Anyway, if the remote meant for the stop reply to be about the second thread,
7930 then it would be really broken, because GDB doesn't know about that thread
7931 yet. */
7932
7933 ptid_t
7934 remote_target::select_thread_for_ambiguous_stop_reply
7935 (const struct target_waitstatus *status)
7936 {
7937 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7938
7939 /* Some stop events apply to all threads in an inferior, while others
7940 only apply to a single thread. */
7941 bool process_wide_stop
7942 = (status->kind == TARGET_WAITKIND_EXITED
7943 || status->kind == TARGET_WAITKIND_SIGNALLED);
7944
7945 remote_debug_printf ("process_wide_stop = %d", process_wide_stop);
7946
7947 thread_info *first_resumed_thread = nullptr;
7948 bool ambiguous = false;
7949
7950 /* Consider all non-exited threads of the target, find the first resumed
7951 one. */
7952 for (thread_info *thr : all_non_exited_threads (this))
7953 {
7954 remote_thread_info *remote_thr = get_remote_thread_info (thr);
7955
7956 if (remote_thr->get_resume_state () != resume_state::RESUMED)
7957 continue;
7958
7959 if (first_resumed_thread == nullptr)
7960 first_resumed_thread = thr;
7961 else if (!process_wide_stop
7962 || first_resumed_thread->ptid.pid () != thr->ptid.pid ())
7963 ambiguous = true;
7964 }
7965
7966 remote_debug_printf ("first resumed thread is %s",
7967 pid_to_str (first_resumed_thread->ptid).c_str ());
7968 remote_debug_printf ("is this guess ambiguous? = %d", ambiguous);
7969
7970 gdb_assert (first_resumed_thread != nullptr);
7971
7972 /* Warn if the remote target is sending ambiguous stop replies. */
7973 if (ambiguous)
7974 {
7975 static bool warned = false;
7976
7977 if (!warned)
7978 {
7979 /* If you are seeing this warning then the remote target has
7980 stopped without specifying a thread-id, but the target
7981 does have multiple threads (or inferiors), and so GDB is
7982 having to guess which thread stopped.
7983
7984 Examples of what might cause this are the target sending
7985 and 'S' stop packet, or a 'T' stop packet and not
7986 including a thread-id.
7987
7988 Additionally, the target might send a 'W' or 'X packet
7989 without including a process-id, when the target has
7990 multiple running inferiors. */
7991 if (process_wide_stop)
7992 warning (_("multi-inferior target stopped without "
7993 "sending a process-id, using first "
7994 "non-exited inferior"));
7995 else
7996 warning (_("multi-threaded target stopped without "
7997 "sending a thread-id, using first "
7998 "non-exited thread"));
7999 warned = true;
8000 }
8001 }
8002
8003 /* If this is a stop for all threads then don't use a particular threads
8004 ptid, instead create a new ptid where only the pid field is set. */
8005 if (process_wide_stop)
8006 return ptid_t (first_resumed_thread->ptid.pid ());
8007 else
8008 return first_resumed_thread->ptid;
8009 }
8010
8011 /* Called when it is decided that STOP_REPLY holds the info of the
8012 event that is to be returned to the core. This function always
8013 destroys STOP_REPLY. */
8014
8015 ptid_t
8016 remote_target::process_stop_reply (struct stop_reply *stop_reply,
8017 struct target_waitstatus *status)
8018 {
8019 *status = stop_reply->ws;
8020 ptid_t ptid = stop_reply->ptid;
8021
8022 /* If no thread/process was reported by the stub then select a suitable
8023 thread/process. */
8024 if (ptid == null_ptid)
8025 ptid = select_thread_for_ambiguous_stop_reply (status);
8026 gdb_assert (ptid != null_ptid);
8027
8028 if (status->kind != TARGET_WAITKIND_EXITED
8029 && status->kind != TARGET_WAITKIND_SIGNALLED
8030 && status->kind != TARGET_WAITKIND_NO_RESUMED)
8031 {
8032 /* Expedited registers. */
8033 if (!stop_reply->regcache.empty ())
8034 {
8035 struct regcache *regcache
8036 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
8037
8038 for (cached_reg_t &reg : stop_reply->regcache)
8039 {
8040 regcache->raw_supply (reg.num, reg.data);
8041 xfree (reg.data);
8042 }
8043
8044 stop_reply->regcache.clear ();
8045 }
8046
8047 remote_notice_new_inferior (ptid, false);
8048 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
8049 remote_thr->core = stop_reply->core;
8050 remote_thr->stop_reason = stop_reply->stop_reason;
8051 remote_thr->watch_data_address = stop_reply->watch_data_address;
8052
8053 if (target_is_non_stop_p ())
8054 {
8055 /* If the target works in non-stop mode, a stop-reply indicates that
8056 only this thread stopped. */
8057 remote_thr->set_not_resumed ();
8058 }
8059 else
8060 {
8061 /* If the target works in all-stop mode, a stop-reply indicates that
8062 all the target's threads stopped. */
8063 for (thread_info *tp : all_non_exited_threads (this))
8064 get_remote_thread_info (tp)->set_not_resumed ();
8065 }
8066 }
8067
8068 delete stop_reply;
8069 return ptid;
8070 }
8071
8072 /* The non-stop mode version of target_wait. */
8073
8074 ptid_t
8075 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
8076 target_wait_flags options)
8077 {
8078 struct remote_state *rs = get_remote_state ();
8079 struct stop_reply *stop_reply;
8080 int ret;
8081 int is_notif = 0;
8082
8083 /* If in non-stop mode, get out of getpkt even if a
8084 notification is received. */
8085
8086 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
8087 while (1)
8088 {
8089 if (ret != -1 && !is_notif)
8090 switch (rs->buf[0])
8091 {
8092 case 'E': /* Error of some sort. */
8093 /* We're out of sync with the target now. Did it continue
8094 or not? We can't tell which thread it was in non-stop,
8095 so just ignore this. */
8096 warning (_("Remote failure reply: %s"), rs->buf.data ());
8097 break;
8098 case 'O': /* Console output. */
8099 remote_console_output (&rs->buf[1]);
8100 break;
8101 default:
8102 warning (_("Invalid remote reply: %s"), rs->buf.data ());
8103 break;
8104 }
8105
8106 /* Acknowledge a pending stop reply that may have arrived in the
8107 mean time. */
8108 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
8109 remote_notif_get_pending_events (&notif_client_stop);
8110
8111 /* If indeed we noticed a stop reply, we're done. */
8112 stop_reply = queued_stop_reply (ptid);
8113 if (stop_reply != NULL)
8114 return process_stop_reply (stop_reply, status);
8115
8116 /* Still no event. If we're just polling for an event, then
8117 return to the event loop. */
8118 if (options & TARGET_WNOHANG)
8119 {
8120 status->kind = TARGET_WAITKIND_IGNORE;
8121 return minus_one_ptid;
8122 }
8123
8124 /* Otherwise do a blocking wait. */
8125 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
8126 }
8127 }
8128
8129 /* Return the first resumed thread. */
8130
8131 static ptid_t
8132 first_remote_resumed_thread (remote_target *target)
8133 {
8134 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
8135 if (tp->resumed)
8136 return tp->ptid;
8137 return null_ptid;
8138 }
8139
8140 /* Wait until the remote machine stops, then return, storing status in
8141 STATUS just as `wait' would. */
8142
8143 ptid_t
8144 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
8145 target_wait_flags options)
8146 {
8147 struct remote_state *rs = get_remote_state ();
8148 ptid_t event_ptid = null_ptid;
8149 char *buf;
8150 struct stop_reply *stop_reply;
8151
8152 again:
8153
8154 status->kind = TARGET_WAITKIND_IGNORE;
8155 status->value.integer = 0;
8156
8157 stop_reply = queued_stop_reply (ptid);
8158 if (stop_reply != NULL)
8159 return process_stop_reply (stop_reply, status);
8160
8161 if (rs->cached_wait_status)
8162 /* Use the cached wait status, but only once. */
8163 rs->cached_wait_status = 0;
8164 else
8165 {
8166 int ret;
8167 int is_notif;
8168 int forever = ((options & TARGET_WNOHANG) == 0
8169 && rs->wait_forever_enabled_p);
8170
8171 if (!rs->waiting_for_stop_reply)
8172 {
8173 status->kind = TARGET_WAITKIND_NO_RESUMED;
8174 return minus_one_ptid;
8175 }
8176
8177 /* FIXME: cagney/1999-09-27: If we're in async mode we should
8178 _never_ wait for ever -> test on target_is_async_p().
8179 However, before we do that we need to ensure that the caller
8180 knows how to take the target into/out of async mode. */
8181 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
8182
8183 /* GDB gets a notification. Return to core as this event is
8184 not interesting. */
8185 if (ret != -1 && is_notif)
8186 return minus_one_ptid;
8187
8188 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
8189 return minus_one_ptid;
8190 }
8191
8192 buf = rs->buf.data ();
8193
8194 /* Assume that the target has acknowledged Ctrl-C unless we receive
8195 an 'F' or 'O' packet. */
8196 if (buf[0] != 'F' && buf[0] != 'O')
8197 rs->ctrlc_pending_p = 0;
8198
8199 switch (buf[0])
8200 {
8201 case 'E': /* Error of some sort. */
8202 /* We're out of sync with the target now. Did it continue or
8203 not? Not is more likely, so report a stop. */
8204 rs->waiting_for_stop_reply = 0;
8205
8206 warning (_("Remote failure reply: %s"), buf);
8207 status->kind = TARGET_WAITKIND_STOPPED;
8208 status->value.sig = GDB_SIGNAL_0;
8209 break;
8210 case 'F': /* File-I/O request. */
8211 /* GDB may access the inferior memory while handling the File-I/O
8212 request, but we don't want GDB accessing memory while waiting
8213 for a stop reply. See the comments in putpkt_binary. Set
8214 waiting_for_stop_reply to 0 temporarily. */
8215 rs->waiting_for_stop_reply = 0;
8216 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
8217 rs->ctrlc_pending_p = 0;
8218 /* GDB handled the File-I/O request, and the target is running
8219 again. Keep waiting for events. */
8220 rs->waiting_for_stop_reply = 1;
8221 break;
8222 case 'N': case 'T': case 'S': case 'X': case 'W':
8223 {
8224 /* There is a stop reply to handle. */
8225 rs->waiting_for_stop_reply = 0;
8226
8227 stop_reply
8228 = (struct stop_reply *) remote_notif_parse (this,
8229 &notif_client_stop,
8230 rs->buf.data ());
8231
8232 event_ptid = process_stop_reply (stop_reply, status);
8233 break;
8234 }
8235 case 'O': /* Console output. */
8236 remote_console_output (buf + 1);
8237 break;
8238 case '\0':
8239 if (rs->last_sent_signal != GDB_SIGNAL_0)
8240 {
8241 /* Zero length reply means that we tried 'S' or 'C' and the
8242 remote system doesn't support it. */
8243 target_terminal::ours_for_output ();
8244 printf_filtered
8245 ("Can't send signals to this remote system. %s not sent.\n",
8246 gdb_signal_to_name (rs->last_sent_signal));
8247 rs->last_sent_signal = GDB_SIGNAL_0;
8248 target_terminal::inferior ();
8249
8250 strcpy (buf, rs->last_sent_step ? "s" : "c");
8251 putpkt (buf);
8252 break;
8253 }
8254 /* fallthrough */
8255 default:
8256 warning (_("Invalid remote reply: %s"), buf);
8257 break;
8258 }
8259
8260 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
8261 return minus_one_ptid;
8262 else if (status->kind == TARGET_WAITKIND_IGNORE)
8263 {
8264 /* Nothing interesting happened. If we're doing a non-blocking
8265 poll, we're done. Otherwise, go back to waiting. */
8266 if (options & TARGET_WNOHANG)
8267 return minus_one_ptid;
8268 else
8269 goto again;
8270 }
8271 else if (status->kind != TARGET_WAITKIND_EXITED
8272 && status->kind != TARGET_WAITKIND_SIGNALLED)
8273 {
8274 if (event_ptid != null_ptid)
8275 record_currthread (rs, event_ptid);
8276 else
8277 event_ptid = first_remote_resumed_thread (this);
8278 }
8279 else
8280 {
8281 /* A process exit. Invalidate our notion of current thread. */
8282 record_currthread (rs, minus_one_ptid);
8283 /* It's possible that the packet did not include a pid. */
8284 if (event_ptid == null_ptid)
8285 event_ptid = first_remote_resumed_thread (this);
8286 /* EVENT_PTID could still be NULL_PTID. Double-check. */
8287 if (event_ptid == null_ptid)
8288 event_ptid = magic_null_ptid;
8289 }
8290
8291 return event_ptid;
8292 }
8293
8294 /* Wait until the remote machine stops, then return, storing status in
8295 STATUS just as `wait' would. */
8296
8297 ptid_t
8298 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8299 target_wait_flags options)
8300 {
8301 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
8302
8303 remote_state *rs = get_remote_state ();
8304
8305 /* Start by clearing the flag that asks for our wait method to be called,
8306 we'll mark it again at the end if needed. */
8307 if (target_is_async_p ())
8308 clear_async_event_handler (rs->remote_async_inferior_event_token);
8309
8310 ptid_t event_ptid;
8311
8312 if (target_is_non_stop_p ())
8313 event_ptid = wait_ns (ptid, status, options);
8314 else
8315 event_ptid = wait_as (ptid, status, options);
8316
8317 if (target_is_async_p ())
8318 {
8319 /* If there are events left in the queue, or unacknowledged
8320 notifications, then tell the event loop to call us again. */
8321 if (!rs->stop_reply_queue.empty ()
8322 || rs->notif_state->pending_event[notif_client_stop.id] != nullptr)
8323 mark_async_event_handler (rs->remote_async_inferior_event_token);
8324 }
8325
8326 return event_ptid;
8327 }
8328
8329 /* Fetch a single register using a 'p' packet. */
8330
8331 int
8332 remote_target::fetch_register_using_p (struct regcache *regcache,
8333 packet_reg *reg)
8334 {
8335 struct gdbarch *gdbarch = regcache->arch ();
8336 struct remote_state *rs = get_remote_state ();
8337 char *buf, *p;
8338 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8339 int i;
8340
8341 if (packet_support (PACKET_p) == PACKET_DISABLE)
8342 return 0;
8343
8344 if (reg->pnum == -1)
8345 return 0;
8346
8347 p = rs->buf.data ();
8348 *p++ = 'p';
8349 p += hexnumstr (p, reg->pnum);
8350 *p++ = '\0';
8351 putpkt (rs->buf);
8352 getpkt (&rs->buf, 0);
8353
8354 buf = rs->buf.data ();
8355
8356 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8357 {
8358 case PACKET_OK:
8359 break;
8360 case PACKET_UNKNOWN:
8361 return 0;
8362 case PACKET_ERROR:
8363 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8364 gdbarch_register_name (regcache->arch (),
8365 reg->regnum),
8366 buf);
8367 }
8368
8369 /* If this register is unfetchable, tell the regcache. */
8370 if (buf[0] == 'x')
8371 {
8372 regcache->raw_supply (reg->regnum, NULL);
8373 return 1;
8374 }
8375
8376 /* Otherwise, parse and supply the value. */
8377 p = buf;
8378 i = 0;
8379 while (p[0] != 0)
8380 {
8381 if (p[1] == 0)
8382 error (_("fetch_register_using_p: early buf termination"));
8383
8384 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8385 p += 2;
8386 }
8387 regcache->raw_supply (reg->regnum, regp);
8388 return 1;
8389 }
8390
8391 /* Fetch the registers included in the target's 'g' packet. */
8392
8393 int
8394 remote_target::send_g_packet ()
8395 {
8396 struct remote_state *rs = get_remote_state ();
8397 int buf_len;
8398
8399 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8400 putpkt (rs->buf);
8401 getpkt (&rs->buf, 0);
8402 if (packet_check_result (rs->buf) == PACKET_ERROR)
8403 error (_("Could not read registers; remote failure reply '%s'"),
8404 rs->buf.data ());
8405
8406 /* We can get out of synch in various cases. If the first character
8407 in the buffer is not a hex character, assume that has happened
8408 and try to fetch another packet to read. */
8409 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8410 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8411 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8412 && rs->buf[0] != 'x') /* New: unavailable register value. */
8413 {
8414 remote_debug_printf ("Bad register packet; fetching a new packet");
8415 getpkt (&rs->buf, 0);
8416 }
8417
8418 buf_len = strlen (rs->buf.data ());
8419
8420 /* Sanity check the received packet. */
8421 if (buf_len % 2 != 0)
8422 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8423
8424 return buf_len / 2;
8425 }
8426
8427 void
8428 remote_target::process_g_packet (struct regcache *regcache)
8429 {
8430 struct gdbarch *gdbarch = regcache->arch ();
8431 struct remote_state *rs = get_remote_state ();
8432 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8433 int i, buf_len;
8434 char *p;
8435 char *regs;
8436
8437 buf_len = strlen (rs->buf.data ());
8438
8439 /* Further sanity checks, with knowledge of the architecture. */
8440 if (buf_len > 2 * rsa->sizeof_g_packet)
8441 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8442 "bytes): %s"),
8443 rsa->sizeof_g_packet, buf_len / 2,
8444 rs->buf.data ());
8445
8446 /* Save the size of the packet sent to us by the target. It is used
8447 as a heuristic when determining the max size of packets that the
8448 target can safely receive. */
8449 if (rsa->actual_register_packet_size == 0)
8450 rsa->actual_register_packet_size = buf_len;
8451
8452 /* If this is smaller than we guessed the 'g' packet would be,
8453 update our records. A 'g' reply that doesn't include a register's
8454 value implies either that the register is not available, or that
8455 the 'p' packet must be used. */
8456 if (buf_len < 2 * rsa->sizeof_g_packet)
8457 {
8458 long sizeof_g_packet = buf_len / 2;
8459
8460 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8461 {
8462 long offset = rsa->regs[i].offset;
8463 long reg_size = register_size (gdbarch, i);
8464
8465 if (rsa->regs[i].pnum == -1)
8466 continue;
8467
8468 if (offset >= sizeof_g_packet)
8469 rsa->regs[i].in_g_packet = 0;
8470 else if (offset + reg_size > sizeof_g_packet)
8471 error (_("Truncated register %d in remote 'g' packet"), i);
8472 else
8473 rsa->regs[i].in_g_packet = 1;
8474 }
8475
8476 /* Looks valid enough, we can assume this is the correct length
8477 for a 'g' packet. It's important not to adjust
8478 rsa->sizeof_g_packet if we have truncated registers otherwise
8479 this "if" won't be run the next time the method is called
8480 with a packet of the same size and one of the internal errors
8481 below will trigger instead. */
8482 rsa->sizeof_g_packet = sizeof_g_packet;
8483 }
8484
8485 regs = (char *) alloca (rsa->sizeof_g_packet);
8486
8487 /* Unimplemented registers read as all bits zero. */
8488 memset (regs, 0, rsa->sizeof_g_packet);
8489
8490 /* Reply describes registers byte by byte, each byte encoded as two
8491 hex characters. Suck them all up, then supply them to the
8492 register cacheing/storage mechanism. */
8493
8494 p = rs->buf.data ();
8495 for (i = 0; i < rsa->sizeof_g_packet; i++)
8496 {
8497 if (p[0] == 0 || p[1] == 0)
8498 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8499 internal_error (__FILE__, __LINE__,
8500 _("unexpected end of 'g' packet reply"));
8501
8502 if (p[0] == 'x' && p[1] == 'x')
8503 regs[i] = 0; /* 'x' */
8504 else
8505 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8506 p += 2;
8507 }
8508
8509 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8510 {
8511 struct packet_reg *r = &rsa->regs[i];
8512 long reg_size = register_size (gdbarch, i);
8513
8514 if (r->in_g_packet)
8515 {
8516 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8517 /* This shouldn't happen - we adjusted in_g_packet above. */
8518 internal_error (__FILE__, __LINE__,
8519 _("unexpected end of 'g' packet reply"));
8520 else if (rs->buf[r->offset * 2] == 'x')
8521 {
8522 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8523 /* The register isn't available, mark it as such (at
8524 the same time setting the value to zero). */
8525 regcache->raw_supply (r->regnum, NULL);
8526 }
8527 else
8528 regcache->raw_supply (r->regnum, regs + r->offset);
8529 }
8530 }
8531 }
8532
8533 void
8534 remote_target::fetch_registers_using_g (struct regcache *regcache)
8535 {
8536 send_g_packet ();
8537 process_g_packet (regcache);
8538 }
8539
8540 /* Make the remote selected traceframe match GDB's selected
8541 traceframe. */
8542
8543 void
8544 remote_target::set_remote_traceframe ()
8545 {
8546 int newnum;
8547 struct remote_state *rs = get_remote_state ();
8548
8549 if (rs->remote_traceframe_number == get_traceframe_number ())
8550 return;
8551
8552 /* Avoid recursion, remote_trace_find calls us again. */
8553 rs->remote_traceframe_number = get_traceframe_number ();
8554
8555 newnum = target_trace_find (tfind_number,
8556 get_traceframe_number (), 0, 0, NULL);
8557
8558 /* Should not happen. If it does, all bets are off. */
8559 if (newnum != get_traceframe_number ())
8560 warning (_("could not set remote traceframe"));
8561 }
8562
8563 void
8564 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8565 {
8566 struct gdbarch *gdbarch = regcache->arch ();
8567 struct remote_state *rs = get_remote_state ();
8568 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8569 int i;
8570
8571 set_remote_traceframe ();
8572 set_general_thread (regcache->ptid ());
8573
8574 if (regnum >= 0)
8575 {
8576 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8577
8578 gdb_assert (reg != NULL);
8579
8580 /* If this register might be in the 'g' packet, try that first -
8581 we are likely to read more than one register. If this is the
8582 first 'g' packet, we might be overly optimistic about its
8583 contents, so fall back to 'p'. */
8584 if (reg->in_g_packet)
8585 {
8586 fetch_registers_using_g (regcache);
8587 if (reg->in_g_packet)
8588 return;
8589 }
8590
8591 if (fetch_register_using_p (regcache, reg))
8592 return;
8593
8594 /* This register is not available. */
8595 regcache->raw_supply (reg->regnum, NULL);
8596
8597 return;
8598 }
8599
8600 fetch_registers_using_g (regcache);
8601
8602 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8603 if (!rsa->regs[i].in_g_packet)
8604 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8605 {
8606 /* This register is not available. */
8607 regcache->raw_supply (i, NULL);
8608 }
8609 }
8610
8611 /* Prepare to store registers. Since we may send them all (using a
8612 'G' request), we have to read out the ones we don't want to change
8613 first. */
8614
8615 void
8616 remote_target::prepare_to_store (struct regcache *regcache)
8617 {
8618 struct remote_state *rs = get_remote_state ();
8619 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8620 int i;
8621
8622 /* Make sure the entire registers array is valid. */
8623 switch (packet_support (PACKET_P))
8624 {
8625 case PACKET_DISABLE:
8626 case PACKET_SUPPORT_UNKNOWN:
8627 /* Make sure all the necessary registers are cached. */
8628 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8629 if (rsa->regs[i].in_g_packet)
8630 regcache->raw_update (rsa->regs[i].regnum);
8631 break;
8632 case PACKET_ENABLE:
8633 break;
8634 }
8635 }
8636
8637 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8638 packet was not recognized. */
8639
8640 int
8641 remote_target::store_register_using_P (const struct regcache *regcache,
8642 packet_reg *reg)
8643 {
8644 struct gdbarch *gdbarch = regcache->arch ();
8645 struct remote_state *rs = get_remote_state ();
8646 /* Try storing a single register. */
8647 char *buf = rs->buf.data ();
8648 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8649 char *p;
8650
8651 if (packet_support (PACKET_P) == PACKET_DISABLE)
8652 return 0;
8653
8654 if (reg->pnum == -1)
8655 return 0;
8656
8657 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8658 p = buf + strlen (buf);
8659 regcache->raw_collect (reg->regnum, regp);
8660 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8661 putpkt (rs->buf);
8662 getpkt (&rs->buf, 0);
8663
8664 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8665 {
8666 case PACKET_OK:
8667 return 1;
8668 case PACKET_ERROR:
8669 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8670 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8671 case PACKET_UNKNOWN:
8672 return 0;
8673 default:
8674 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8675 }
8676 }
8677
8678 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8679 contents of the register cache buffer. FIXME: ignores errors. */
8680
8681 void
8682 remote_target::store_registers_using_G (const struct regcache *regcache)
8683 {
8684 struct remote_state *rs = get_remote_state ();
8685 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8686 gdb_byte *regs;
8687 char *p;
8688
8689 /* Extract all the registers in the regcache copying them into a
8690 local buffer. */
8691 {
8692 int i;
8693
8694 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8695 memset (regs, 0, rsa->sizeof_g_packet);
8696 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8697 {
8698 struct packet_reg *r = &rsa->regs[i];
8699
8700 if (r->in_g_packet)
8701 regcache->raw_collect (r->regnum, regs + r->offset);
8702 }
8703 }
8704
8705 /* Command describes registers byte by byte,
8706 each byte encoded as two hex characters. */
8707 p = rs->buf.data ();
8708 *p++ = 'G';
8709 bin2hex (regs, p, rsa->sizeof_g_packet);
8710 putpkt (rs->buf);
8711 getpkt (&rs->buf, 0);
8712 if (packet_check_result (rs->buf) == PACKET_ERROR)
8713 error (_("Could not write registers; remote failure reply '%s'"),
8714 rs->buf.data ());
8715 }
8716
8717 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8718 of the register cache buffer. FIXME: ignores errors. */
8719
8720 void
8721 remote_target::store_registers (struct regcache *regcache, int regnum)
8722 {
8723 struct gdbarch *gdbarch = regcache->arch ();
8724 struct remote_state *rs = get_remote_state ();
8725 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8726 int i;
8727
8728 set_remote_traceframe ();
8729 set_general_thread (regcache->ptid ());
8730
8731 if (regnum >= 0)
8732 {
8733 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8734
8735 gdb_assert (reg != NULL);
8736
8737 /* Always prefer to store registers using the 'P' packet if
8738 possible; we often change only a small number of registers.
8739 Sometimes we change a larger number; we'd need help from a
8740 higher layer to know to use 'G'. */
8741 if (store_register_using_P (regcache, reg))
8742 return;
8743
8744 /* For now, don't complain if we have no way to write the
8745 register. GDB loses track of unavailable registers too
8746 easily. Some day, this may be an error. We don't have
8747 any way to read the register, either... */
8748 if (!reg->in_g_packet)
8749 return;
8750
8751 store_registers_using_G (regcache);
8752 return;
8753 }
8754
8755 store_registers_using_G (regcache);
8756
8757 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8758 if (!rsa->regs[i].in_g_packet)
8759 if (!store_register_using_P (regcache, &rsa->regs[i]))
8760 /* See above for why we do not issue an error here. */
8761 continue;
8762 }
8763 \f
8764
8765 /* Return the number of hex digits in num. */
8766
8767 static int
8768 hexnumlen (ULONGEST num)
8769 {
8770 int i;
8771
8772 for (i = 0; num != 0; i++)
8773 num >>= 4;
8774
8775 return std::max (i, 1);
8776 }
8777
8778 /* Set BUF to the minimum number of hex digits representing NUM. */
8779
8780 static int
8781 hexnumstr (char *buf, ULONGEST num)
8782 {
8783 int len = hexnumlen (num);
8784
8785 return hexnumnstr (buf, num, len);
8786 }
8787
8788
8789 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8790
8791 static int
8792 hexnumnstr (char *buf, ULONGEST num, int width)
8793 {
8794 int i;
8795
8796 buf[width] = '\0';
8797
8798 for (i = width - 1; i >= 0; i--)
8799 {
8800 buf[i] = "0123456789abcdef"[(num & 0xf)];
8801 num >>= 4;
8802 }
8803
8804 return width;
8805 }
8806
8807 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8808
8809 static CORE_ADDR
8810 remote_address_masked (CORE_ADDR addr)
8811 {
8812 unsigned int address_size = remote_address_size;
8813
8814 /* If "remoteaddresssize" was not set, default to target address size. */
8815 if (!address_size)
8816 address_size = gdbarch_addr_bit (target_gdbarch ());
8817
8818 if (address_size > 0
8819 && address_size < (sizeof (ULONGEST) * 8))
8820 {
8821 /* Only create a mask when that mask can safely be constructed
8822 in a ULONGEST variable. */
8823 ULONGEST mask = 1;
8824
8825 mask = (mask << address_size) - 1;
8826 addr &= mask;
8827 }
8828 return addr;
8829 }
8830
8831 /* Determine whether the remote target supports binary downloading.
8832 This is accomplished by sending a no-op memory write of zero length
8833 to the target at the specified address. It does not suffice to send
8834 the whole packet, since many stubs strip the eighth bit and
8835 subsequently compute a wrong checksum, which causes real havoc with
8836 remote_write_bytes.
8837
8838 NOTE: This can still lose if the serial line is not eight-bit
8839 clean. In cases like this, the user should clear "remote
8840 X-packet". */
8841
8842 void
8843 remote_target::check_binary_download (CORE_ADDR addr)
8844 {
8845 struct remote_state *rs = get_remote_state ();
8846
8847 switch (packet_support (PACKET_X))
8848 {
8849 case PACKET_DISABLE:
8850 break;
8851 case PACKET_ENABLE:
8852 break;
8853 case PACKET_SUPPORT_UNKNOWN:
8854 {
8855 char *p;
8856
8857 p = rs->buf.data ();
8858 *p++ = 'X';
8859 p += hexnumstr (p, (ULONGEST) addr);
8860 *p++ = ',';
8861 p += hexnumstr (p, (ULONGEST) 0);
8862 *p++ = ':';
8863 *p = '\0';
8864
8865 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8866 getpkt (&rs->buf, 0);
8867
8868 if (rs->buf[0] == '\0')
8869 {
8870 remote_debug_printf ("binary downloading NOT supported by target");
8871 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8872 }
8873 else
8874 {
8875 remote_debug_printf ("binary downloading supported by target");
8876 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8877 }
8878 break;
8879 }
8880 }
8881 }
8882
8883 /* Helper function to resize the payload in order to try to get a good
8884 alignment. We try to write an amount of data such that the next write will
8885 start on an address aligned on REMOTE_ALIGN_WRITES. */
8886
8887 static int
8888 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8889 {
8890 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8891 }
8892
8893 /* Write memory data directly to the remote machine.
8894 This does not inform the data cache; the data cache uses this.
8895 HEADER is the starting part of the packet.
8896 MEMADDR is the address in the remote memory space.
8897 MYADDR is the address of the buffer in our space.
8898 LEN_UNITS is the number of addressable units to write.
8899 UNIT_SIZE is the length in bytes of an addressable unit.
8900 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8901 should send data as binary ('X'), or hex-encoded ('M').
8902
8903 The function creates packet of the form
8904 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8905
8906 where encoding of <DATA> is terminated by PACKET_FORMAT.
8907
8908 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8909 are omitted.
8910
8911 Return the transferred status, error or OK (an
8912 'enum target_xfer_status' value). Save the number of addressable units
8913 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8914
8915 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8916 exchange between gdb and the stub could look like (?? in place of the
8917 checksum):
8918
8919 -> $m1000,4#??
8920 <- aaaabbbbccccdddd
8921
8922 -> $M1000,3:eeeeffffeeee#??
8923 <- OK
8924
8925 -> $m1000,4#??
8926 <- eeeeffffeeeedddd */
8927
8928 target_xfer_status
8929 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8930 const gdb_byte *myaddr,
8931 ULONGEST len_units,
8932 int unit_size,
8933 ULONGEST *xfered_len_units,
8934 char packet_format, int use_length)
8935 {
8936 struct remote_state *rs = get_remote_state ();
8937 char *p;
8938 char *plen = NULL;
8939 int plenlen = 0;
8940 int todo_units;
8941 int units_written;
8942 int payload_capacity_bytes;
8943 int payload_length_bytes;
8944
8945 if (packet_format != 'X' && packet_format != 'M')
8946 internal_error (__FILE__, __LINE__,
8947 _("remote_write_bytes_aux: bad packet format"));
8948
8949 if (len_units == 0)
8950 return TARGET_XFER_EOF;
8951
8952 payload_capacity_bytes = get_memory_write_packet_size ();
8953
8954 /* The packet buffer will be large enough for the payload;
8955 get_memory_packet_size ensures this. */
8956 rs->buf[0] = '\0';
8957
8958 /* Compute the size of the actual payload by subtracting out the
8959 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8960
8961 payload_capacity_bytes -= strlen ("$,:#NN");
8962 if (!use_length)
8963 /* The comma won't be used. */
8964 payload_capacity_bytes += 1;
8965 payload_capacity_bytes -= strlen (header);
8966 payload_capacity_bytes -= hexnumlen (memaddr);
8967
8968 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8969
8970 strcat (rs->buf.data (), header);
8971 p = rs->buf.data () + strlen (header);
8972
8973 /* Compute a best guess of the number of bytes actually transfered. */
8974 if (packet_format == 'X')
8975 {
8976 /* Best guess at number of bytes that will fit. */
8977 todo_units = std::min (len_units,
8978 (ULONGEST) payload_capacity_bytes / unit_size);
8979 if (use_length)
8980 payload_capacity_bytes -= hexnumlen (todo_units);
8981 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8982 }
8983 else
8984 {
8985 /* Number of bytes that will fit. */
8986 todo_units
8987 = std::min (len_units,
8988 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8989 if (use_length)
8990 payload_capacity_bytes -= hexnumlen (todo_units);
8991 todo_units = std::min (todo_units,
8992 (payload_capacity_bytes / unit_size) / 2);
8993 }
8994
8995 if (todo_units <= 0)
8996 internal_error (__FILE__, __LINE__,
8997 _("minimum packet size too small to write data"));
8998
8999 /* If we already need another packet, then try to align the end
9000 of this packet to a useful boundary. */
9001 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
9002 todo_units = align_for_efficient_write (todo_units, memaddr);
9003
9004 /* Append "<memaddr>". */
9005 memaddr = remote_address_masked (memaddr);
9006 p += hexnumstr (p, (ULONGEST) memaddr);
9007
9008 if (use_length)
9009 {
9010 /* Append ",". */
9011 *p++ = ',';
9012
9013 /* Append the length and retain its location and size. It may need to be
9014 adjusted once the packet body has been created. */
9015 plen = p;
9016 plenlen = hexnumstr (p, (ULONGEST) todo_units);
9017 p += plenlen;
9018 }
9019
9020 /* Append ":". */
9021 *p++ = ':';
9022 *p = '\0';
9023
9024 /* Append the packet body. */
9025 if (packet_format == 'X')
9026 {
9027 /* Binary mode. Send target system values byte by byte, in
9028 increasing byte addresses. Only escape certain critical
9029 characters. */
9030 payload_length_bytes =
9031 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
9032 &units_written, payload_capacity_bytes);
9033
9034 /* If not all TODO units fit, then we'll need another packet. Make
9035 a second try to keep the end of the packet aligned. Don't do
9036 this if the packet is tiny. */
9037 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
9038 {
9039 int new_todo_units;
9040
9041 new_todo_units = align_for_efficient_write (units_written, memaddr);
9042
9043 if (new_todo_units != units_written)
9044 payload_length_bytes =
9045 remote_escape_output (myaddr, new_todo_units, unit_size,
9046 (gdb_byte *) p, &units_written,
9047 payload_capacity_bytes);
9048 }
9049
9050 p += payload_length_bytes;
9051 if (use_length && units_written < todo_units)
9052 {
9053 /* Escape chars have filled up the buffer prematurely,
9054 and we have actually sent fewer units than planned.
9055 Fix-up the length field of the packet. Use the same
9056 number of characters as before. */
9057 plen += hexnumnstr (plen, (ULONGEST) units_written,
9058 plenlen);
9059 *plen = ':'; /* overwrite \0 from hexnumnstr() */
9060 }
9061 }
9062 else
9063 {
9064 /* Normal mode: Send target system values byte by byte, in
9065 increasing byte addresses. Each byte is encoded as a two hex
9066 value. */
9067 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
9068 units_written = todo_units;
9069 }
9070
9071 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
9072 getpkt (&rs->buf, 0);
9073
9074 if (rs->buf[0] == 'E')
9075 return TARGET_XFER_E_IO;
9076
9077 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
9078 send fewer units than we'd planned. */
9079 *xfered_len_units = (ULONGEST) units_written;
9080 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9081 }
9082
9083 /* Write memory data directly to the remote machine.
9084 This does not inform the data cache; the data cache uses this.
9085 MEMADDR is the address in the remote memory space.
9086 MYADDR is the address of the buffer in our space.
9087 LEN is the number of bytes.
9088
9089 Return the transferred status, error or OK (an
9090 'enum target_xfer_status' value). Save the number of bytes
9091 transferred in *XFERED_LEN. Only transfer a single packet. */
9092
9093 target_xfer_status
9094 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
9095 ULONGEST len, int unit_size,
9096 ULONGEST *xfered_len)
9097 {
9098 const char *packet_format = NULL;
9099
9100 /* Check whether the target supports binary download. */
9101 check_binary_download (memaddr);
9102
9103 switch (packet_support (PACKET_X))
9104 {
9105 case PACKET_ENABLE:
9106 packet_format = "X";
9107 break;
9108 case PACKET_DISABLE:
9109 packet_format = "M";
9110 break;
9111 case PACKET_SUPPORT_UNKNOWN:
9112 internal_error (__FILE__, __LINE__,
9113 _("remote_write_bytes: bad internal state"));
9114 default:
9115 internal_error (__FILE__, __LINE__, _("bad switch"));
9116 }
9117
9118 return remote_write_bytes_aux (packet_format,
9119 memaddr, myaddr, len, unit_size, xfered_len,
9120 packet_format[0], 1);
9121 }
9122
9123 /* Read memory data directly from the remote machine.
9124 This does not use the data cache; the data cache uses this.
9125 MEMADDR is the address in the remote memory space.
9126 MYADDR is the address of the buffer in our space.
9127 LEN_UNITS is the number of addressable memory units to read..
9128 UNIT_SIZE is the length in bytes of an addressable unit.
9129
9130 Return the transferred status, error or OK (an
9131 'enum target_xfer_status' value). Save the number of bytes
9132 transferred in *XFERED_LEN_UNITS.
9133
9134 See the comment of remote_write_bytes_aux for an example of
9135 memory read/write exchange between gdb and the stub. */
9136
9137 target_xfer_status
9138 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
9139 ULONGEST len_units,
9140 int unit_size, ULONGEST *xfered_len_units)
9141 {
9142 struct remote_state *rs = get_remote_state ();
9143 int buf_size_bytes; /* Max size of packet output buffer. */
9144 char *p;
9145 int todo_units;
9146 int decoded_bytes;
9147
9148 buf_size_bytes = get_memory_read_packet_size ();
9149 /* The packet buffer will be large enough for the payload;
9150 get_memory_packet_size ensures this. */
9151
9152 /* Number of units that will fit. */
9153 todo_units = std::min (len_units,
9154 (ULONGEST) (buf_size_bytes / unit_size) / 2);
9155
9156 /* Construct "m"<memaddr>","<len>". */
9157 memaddr = remote_address_masked (memaddr);
9158 p = rs->buf.data ();
9159 *p++ = 'm';
9160 p += hexnumstr (p, (ULONGEST) memaddr);
9161 *p++ = ',';
9162 p += hexnumstr (p, (ULONGEST) todo_units);
9163 *p = '\0';
9164 putpkt (rs->buf);
9165 getpkt (&rs->buf, 0);
9166 if (rs->buf[0] == 'E'
9167 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
9168 && rs->buf[3] == '\0')
9169 return TARGET_XFER_E_IO;
9170 /* Reply describes memory byte by byte, each byte encoded as two hex
9171 characters. */
9172 p = rs->buf.data ();
9173 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
9174 /* Return what we have. Let higher layers handle partial reads. */
9175 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
9176 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9177 }
9178
9179 /* Using the set of read-only target sections of remote, read live
9180 read-only memory.
9181
9182 For interface/parameters/return description see target.h,
9183 to_xfer_partial. */
9184
9185 target_xfer_status
9186 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
9187 ULONGEST memaddr,
9188 ULONGEST len,
9189 int unit_size,
9190 ULONGEST *xfered_len)
9191 {
9192 const struct target_section *secp;
9193
9194 secp = target_section_by_addr (this, memaddr);
9195 if (secp != NULL
9196 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
9197 {
9198 ULONGEST memend = memaddr + len;
9199
9200 const target_section_table *table = target_get_section_table (this);
9201 for (const target_section &p : *table)
9202 {
9203 if (memaddr >= p.addr)
9204 {
9205 if (memend <= p.endaddr)
9206 {
9207 /* Entire transfer is within this section. */
9208 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9209 xfered_len);
9210 }
9211 else if (memaddr >= p.endaddr)
9212 {
9213 /* This section ends before the transfer starts. */
9214 continue;
9215 }
9216 else
9217 {
9218 /* This section overlaps the transfer. Just do half. */
9219 len = p.endaddr - memaddr;
9220 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9221 xfered_len);
9222 }
9223 }
9224 }
9225 }
9226
9227 return TARGET_XFER_EOF;
9228 }
9229
9230 /* Similar to remote_read_bytes_1, but it reads from the remote stub
9231 first if the requested memory is unavailable in traceframe.
9232 Otherwise, fall back to remote_read_bytes_1. */
9233
9234 target_xfer_status
9235 remote_target::remote_read_bytes (CORE_ADDR memaddr,
9236 gdb_byte *myaddr, ULONGEST len, int unit_size,
9237 ULONGEST *xfered_len)
9238 {
9239 if (len == 0)
9240 return TARGET_XFER_EOF;
9241
9242 if (get_traceframe_number () != -1)
9243 {
9244 std::vector<mem_range> available;
9245
9246 /* If we fail to get the set of available memory, then the
9247 target does not support querying traceframe info, and so we
9248 attempt reading from the traceframe anyway (assuming the
9249 target implements the old QTro packet then). */
9250 if (traceframe_available_memory (&available, memaddr, len))
9251 {
9252 if (available.empty () || available[0].start != memaddr)
9253 {
9254 enum target_xfer_status res;
9255
9256 /* Don't read into the traceframe's available
9257 memory. */
9258 if (!available.empty ())
9259 {
9260 LONGEST oldlen = len;
9261
9262 len = available[0].start - memaddr;
9263 gdb_assert (len <= oldlen);
9264 }
9265
9266 /* This goes through the topmost target again. */
9267 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
9268 len, unit_size, xfered_len);
9269 if (res == TARGET_XFER_OK)
9270 return TARGET_XFER_OK;
9271 else
9272 {
9273 /* No use trying further, we know some memory starting
9274 at MEMADDR isn't available. */
9275 *xfered_len = len;
9276 return (*xfered_len != 0) ?
9277 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9278 }
9279 }
9280
9281 /* Don't try to read more than how much is available, in
9282 case the target implements the deprecated QTro packet to
9283 cater for older GDBs (the target's knowledge of read-only
9284 sections may be outdated by now). */
9285 len = available[0].length;
9286 }
9287 }
9288
9289 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9290 }
9291
9292 \f
9293
9294 /* Sends a packet with content determined by the printf format string
9295 FORMAT and the remaining arguments, then gets the reply. Returns
9296 whether the packet was a success, a failure, or unknown. */
9297
9298 packet_result
9299 remote_target::remote_send_printf (const char *format, ...)
9300 {
9301 struct remote_state *rs = get_remote_state ();
9302 int max_size = get_remote_packet_size ();
9303 va_list ap;
9304
9305 va_start (ap, format);
9306
9307 rs->buf[0] = '\0';
9308 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9309
9310 va_end (ap);
9311
9312 if (size >= max_size)
9313 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9314
9315 if (putpkt (rs->buf) < 0)
9316 error (_("Communication problem with target."));
9317
9318 rs->buf[0] = '\0';
9319 getpkt (&rs->buf, 0);
9320
9321 return packet_check_result (rs->buf);
9322 }
9323
9324 /* Flash writing can take quite some time. We'll set
9325 effectively infinite timeout for flash operations.
9326 In future, we'll need to decide on a better approach. */
9327 static const int remote_flash_timeout = 1000;
9328
9329 void
9330 remote_target::flash_erase (ULONGEST address, LONGEST length)
9331 {
9332 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9333 enum packet_result ret;
9334 scoped_restore restore_timeout
9335 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9336
9337 ret = remote_send_printf ("vFlashErase:%s,%s",
9338 phex (address, addr_size),
9339 phex (length, 4));
9340 switch (ret)
9341 {
9342 case PACKET_UNKNOWN:
9343 error (_("Remote target does not support flash erase"));
9344 case PACKET_ERROR:
9345 error (_("Error erasing flash with vFlashErase packet"));
9346 default:
9347 break;
9348 }
9349 }
9350
9351 target_xfer_status
9352 remote_target::remote_flash_write (ULONGEST address,
9353 ULONGEST length, ULONGEST *xfered_len,
9354 const gdb_byte *data)
9355 {
9356 scoped_restore restore_timeout
9357 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9358 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9359 xfered_len,'X', 0);
9360 }
9361
9362 void
9363 remote_target::flash_done ()
9364 {
9365 int ret;
9366
9367 scoped_restore restore_timeout
9368 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9369
9370 ret = remote_send_printf ("vFlashDone");
9371
9372 switch (ret)
9373 {
9374 case PACKET_UNKNOWN:
9375 error (_("Remote target does not support vFlashDone"));
9376 case PACKET_ERROR:
9377 error (_("Error finishing flash operation"));
9378 default:
9379 break;
9380 }
9381 }
9382
9383 void
9384 remote_target::files_info ()
9385 {
9386 puts_filtered ("Debugging a target over a serial line.\n");
9387 }
9388 \f
9389 /* Stuff for dealing with the packets which are part of this protocol.
9390 See comment at top of file for details. */
9391
9392 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9393 error to higher layers. Called when a serial error is detected.
9394 The exception message is STRING, followed by a colon and a blank,
9395 the system error message for errno at function entry and final dot
9396 for output compatibility with throw_perror_with_name. */
9397
9398 static void
9399 unpush_and_perror (remote_target *target, const char *string)
9400 {
9401 int saved_errno = errno;
9402
9403 remote_unpush_target (target);
9404 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9405 safe_strerror (saved_errno));
9406 }
9407
9408 /* Read a single character from the remote end. The current quit
9409 handler is overridden to avoid quitting in the middle of packet
9410 sequence, as that would break communication with the remote server.
9411 See remote_serial_quit_handler for more detail. */
9412
9413 int
9414 remote_target::readchar (int timeout)
9415 {
9416 int ch;
9417 struct remote_state *rs = get_remote_state ();
9418
9419 {
9420 scoped_restore restore_quit_target
9421 = make_scoped_restore (&curr_quit_handler_target, this);
9422 scoped_restore restore_quit
9423 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9424
9425 rs->got_ctrlc_during_io = 0;
9426
9427 ch = serial_readchar (rs->remote_desc, timeout);
9428
9429 if (rs->got_ctrlc_during_io)
9430 set_quit_flag ();
9431 }
9432
9433 if (ch >= 0)
9434 return ch;
9435
9436 switch ((enum serial_rc) ch)
9437 {
9438 case SERIAL_EOF:
9439 remote_unpush_target (this);
9440 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9441 /* no return */
9442 case SERIAL_ERROR:
9443 unpush_and_perror (this, _("Remote communication error. "
9444 "Target disconnected."));
9445 /* no return */
9446 case SERIAL_TIMEOUT:
9447 break;
9448 }
9449 return ch;
9450 }
9451
9452 /* Wrapper for serial_write that closes the target and throws if
9453 writing fails. The current quit handler is overridden to avoid
9454 quitting in the middle of packet sequence, as that would break
9455 communication with the remote server. See
9456 remote_serial_quit_handler for more detail. */
9457
9458 void
9459 remote_target::remote_serial_write (const char *str, int len)
9460 {
9461 struct remote_state *rs = get_remote_state ();
9462
9463 scoped_restore restore_quit_target
9464 = make_scoped_restore (&curr_quit_handler_target, this);
9465 scoped_restore restore_quit
9466 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9467
9468 rs->got_ctrlc_during_io = 0;
9469
9470 if (serial_write (rs->remote_desc, str, len))
9471 {
9472 unpush_and_perror (this, _("Remote communication error. "
9473 "Target disconnected."));
9474 }
9475
9476 if (rs->got_ctrlc_during_io)
9477 set_quit_flag ();
9478 }
9479
9480 /* Return a string representing an escaped version of BUF, of len N.
9481 E.g. \n is converted to \\n, \t to \\t, etc. */
9482
9483 static std::string
9484 escape_buffer (const char *buf, int n)
9485 {
9486 string_file stb;
9487
9488 stb.putstrn (buf, n, '\\');
9489 return std::move (stb.string ());
9490 }
9491
9492 /* Display a null-terminated packet on stdout, for debugging, using C
9493 string notation. */
9494
9495 static void
9496 print_packet (const char *buf)
9497 {
9498 puts_filtered ("\"");
9499 fputstr_filtered (buf, '"', gdb_stdout);
9500 puts_filtered ("\"");
9501 }
9502
9503 int
9504 remote_target::putpkt (const char *buf)
9505 {
9506 return putpkt_binary (buf, strlen (buf));
9507 }
9508
9509 /* Wrapper around remote_target::putpkt to avoid exporting
9510 remote_target. */
9511
9512 int
9513 putpkt (remote_target *remote, const char *buf)
9514 {
9515 return remote->putpkt (buf);
9516 }
9517
9518 /* Send a packet to the remote machine, with error checking. The data
9519 of the packet is in BUF. The string in BUF can be at most
9520 get_remote_packet_size () - 5 to account for the $, # and checksum,
9521 and for a possible /0 if we are debugging (remote_debug) and want
9522 to print the sent packet as a string. */
9523
9524 int
9525 remote_target::putpkt_binary (const char *buf, int cnt)
9526 {
9527 struct remote_state *rs = get_remote_state ();
9528 int i;
9529 unsigned char csum = 0;
9530 gdb::def_vector<char> data (cnt + 6);
9531 char *buf2 = data.data ();
9532
9533 int ch;
9534 int tcount = 0;
9535 char *p;
9536
9537 /* Catch cases like trying to read memory or listing threads while
9538 we're waiting for a stop reply. The remote server wouldn't be
9539 ready to handle this request, so we'd hang and timeout. We don't
9540 have to worry about this in synchronous mode, because in that
9541 case it's not possible to issue a command while the target is
9542 running. This is not a problem in non-stop mode, because in that
9543 case, the stub is always ready to process serial input. */
9544 if (!target_is_non_stop_p ()
9545 && target_is_async_p ()
9546 && rs->waiting_for_stop_reply)
9547 {
9548 error (_("Cannot execute this command while the target is running.\n"
9549 "Use the \"interrupt\" command to stop the target\n"
9550 "and then try again."));
9551 }
9552
9553 /* We're sending out a new packet. Make sure we don't look at a
9554 stale cached response. */
9555 rs->cached_wait_status = 0;
9556
9557 /* Copy the packet into buffer BUF2, encapsulating it
9558 and giving it a checksum. */
9559
9560 p = buf2;
9561 *p++ = '$';
9562
9563 for (i = 0; i < cnt; i++)
9564 {
9565 csum += buf[i];
9566 *p++ = buf[i];
9567 }
9568 *p++ = '#';
9569 *p++ = tohex ((csum >> 4) & 0xf);
9570 *p++ = tohex (csum & 0xf);
9571
9572 /* Send it over and over until we get a positive ack. */
9573
9574 while (1)
9575 {
9576 if (remote_debug)
9577 {
9578 *p = '\0';
9579
9580 int len = (int) (p - buf2);
9581 int max_chars;
9582
9583 if (remote_packet_max_chars < 0)
9584 max_chars = len;
9585 else
9586 max_chars = remote_packet_max_chars;
9587
9588 std::string str
9589 = escape_buffer (buf2, std::min (len, max_chars));
9590
9591 if (len > max_chars)
9592 remote_debug_printf_nofunc
9593 ("Sending packet: %s [%d bytes omitted]", str.c_str (),
9594 len - max_chars);
9595 else
9596 remote_debug_printf_nofunc ("Sending packet: %s", str.c_str ());
9597 }
9598 remote_serial_write (buf2, p - buf2);
9599
9600 /* If this is a no acks version of the remote protocol, send the
9601 packet and move on. */
9602 if (rs->noack_mode)
9603 break;
9604
9605 /* Read until either a timeout occurs (-2) or '+' is read.
9606 Handle any notification that arrives in the mean time. */
9607 while (1)
9608 {
9609 ch = readchar (remote_timeout);
9610
9611 switch (ch)
9612 {
9613 case '+':
9614 remote_debug_printf_nofunc ("Received Ack");
9615 return 1;
9616 case '-':
9617 remote_debug_printf_nofunc ("Received Nak");
9618 /* FALLTHROUGH */
9619 case SERIAL_TIMEOUT:
9620 tcount++;
9621 if (tcount > 3)
9622 return 0;
9623 break; /* Retransmit buffer. */
9624 case '$':
9625 {
9626 remote_debug_printf ("Packet instead of Ack, ignoring it");
9627 /* It's probably an old response sent because an ACK
9628 was lost. Gobble up the packet and ack it so it
9629 doesn't get retransmitted when we resend this
9630 packet. */
9631 skip_frame ();
9632 remote_serial_write ("+", 1);
9633 continue; /* Now, go look for +. */
9634 }
9635
9636 case '%':
9637 {
9638 int val;
9639
9640 /* If we got a notification, handle it, and go back to looking
9641 for an ack. */
9642 /* We've found the start of a notification. Now
9643 collect the data. */
9644 val = read_frame (&rs->buf);
9645 if (val >= 0)
9646 {
9647 remote_debug_printf_nofunc
9648 (" Notification received: %s",
9649 escape_buffer (rs->buf.data (), val).c_str ());
9650
9651 handle_notification (rs->notif_state, rs->buf.data ());
9652 /* We're in sync now, rewait for the ack. */
9653 tcount = 0;
9654 }
9655 else
9656 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9657 rs->buf.data ());
9658 continue;
9659 }
9660 /* fall-through */
9661 default:
9662 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9663 rs->buf.data ());
9664 continue;
9665 }
9666 break; /* Here to retransmit. */
9667 }
9668
9669 #if 0
9670 /* This is wrong. If doing a long backtrace, the user should be
9671 able to get out next time we call QUIT, without anything as
9672 violent as interrupt_query. If we want to provide a way out of
9673 here without getting to the next QUIT, it should be based on
9674 hitting ^C twice as in remote_wait. */
9675 if (quit_flag)
9676 {
9677 quit_flag = 0;
9678 interrupt_query ();
9679 }
9680 #endif
9681 }
9682
9683 return 0;
9684 }
9685
9686 /* Come here after finding the start of a frame when we expected an
9687 ack. Do our best to discard the rest of this packet. */
9688
9689 void
9690 remote_target::skip_frame ()
9691 {
9692 int c;
9693
9694 while (1)
9695 {
9696 c = readchar (remote_timeout);
9697 switch (c)
9698 {
9699 case SERIAL_TIMEOUT:
9700 /* Nothing we can do. */
9701 return;
9702 case '#':
9703 /* Discard the two bytes of checksum and stop. */
9704 c = readchar (remote_timeout);
9705 if (c >= 0)
9706 c = readchar (remote_timeout);
9707
9708 return;
9709 case '*': /* Run length encoding. */
9710 /* Discard the repeat count. */
9711 c = readchar (remote_timeout);
9712 if (c < 0)
9713 return;
9714 break;
9715 default:
9716 /* A regular character. */
9717 break;
9718 }
9719 }
9720 }
9721
9722 /* Come here after finding the start of the frame. Collect the rest
9723 into *BUF, verifying the checksum, length, and handling run-length
9724 compression. NUL terminate the buffer. If there is not enough room,
9725 expand *BUF.
9726
9727 Returns -1 on error, number of characters in buffer (ignoring the
9728 trailing NULL) on success. (could be extended to return one of the
9729 SERIAL status indications). */
9730
9731 long
9732 remote_target::read_frame (gdb::char_vector *buf_p)
9733 {
9734 unsigned char csum;
9735 long bc;
9736 int c;
9737 char *buf = buf_p->data ();
9738 struct remote_state *rs = get_remote_state ();
9739
9740 csum = 0;
9741 bc = 0;
9742
9743 while (1)
9744 {
9745 c = readchar (remote_timeout);
9746 switch (c)
9747 {
9748 case SERIAL_TIMEOUT:
9749 remote_debug_printf ("Timeout in mid-packet, retrying");
9750 return -1;
9751
9752 case '$':
9753 remote_debug_printf ("Saw new packet start in middle of old one");
9754 return -1; /* Start a new packet, count retries. */
9755
9756 case '#':
9757 {
9758 unsigned char pktcsum;
9759 int check_0 = 0;
9760 int check_1 = 0;
9761
9762 buf[bc] = '\0';
9763
9764 check_0 = readchar (remote_timeout);
9765 if (check_0 >= 0)
9766 check_1 = readchar (remote_timeout);
9767
9768 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9769 {
9770 remote_debug_printf ("Timeout in checksum, retrying");
9771 return -1;
9772 }
9773 else if (check_0 < 0 || check_1 < 0)
9774 {
9775 remote_debug_printf ("Communication error in checksum");
9776 return -1;
9777 }
9778
9779 /* Don't recompute the checksum; with no ack packets we
9780 don't have any way to indicate a packet retransmission
9781 is necessary. */
9782 if (rs->noack_mode)
9783 return bc;
9784
9785 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9786 if (csum == pktcsum)
9787 return bc;
9788
9789 remote_debug_printf
9790 ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s",
9791 pktcsum, csum, escape_buffer (buf, bc).c_str ());
9792
9793 /* Number of characters in buffer ignoring trailing
9794 NULL. */
9795 return -1;
9796 }
9797 case '*': /* Run length encoding. */
9798 {
9799 int repeat;
9800
9801 csum += c;
9802 c = readchar (remote_timeout);
9803 csum += c;
9804 repeat = c - ' ' + 3; /* Compute repeat count. */
9805
9806 /* The character before ``*'' is repeated. */
9807
9808 if (repeat > 0 && repeat <= 255 && bc > 0)
9809 {
9810 if (bc + repeat - 1 >= buf_p->size () - 1)
9811 {
9812 /* Make some more room in the buffer. */
9813 buf_p->resize (buf_p->size () + repeat);
9814 buf = buf_p->data ();
9815 }
9816
9817 memset (&buf[bc], buf[bc - 1], repeat);
9818 bc += repeat;
9819 continue;
9820 }
9821
9822 buf[bc] = '\0';
9823 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9824 return -1;
9825 }
9826 default:
9827 if (bc >= buf_p->size () - 1)
9828 {
9829 /* Make some more room in the buffer. */
9830 buf_p->resize (buf_p->size () * 2);
9831 buf = buf_p->data ();
9832 }
9833
9834 buf[bc++] = c;
9835 csum += c;
9836 continue;
9837 }
9838 }
9839 }
9840
9841 /* Set this to the maximum number of seconds to wait instead of waiting forever
9842 in target_wait(). If this timer times out, then it generates an error and
9843 the command is aborted. This replaces most of the need for timeouts in the
9844 GDB test suite, and makes it possible to distinguish between a hung target
9845 and one with slow communications. */
9846
9847 static int watchdog = 0;
9848 static void
9849 show_watchdog (struct ui_file *file, int from_tty,
9850 struct cmd_list_element *c, const char *value)
9851 {
9852 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9853 }
9854
9855 /* Read a packet from the remote machine, with error checking, and
9856 store it in *BUF. Resize *BUF if necessary to hold the result. If
9857 FOREVER, wait forever rather than timing out; this is used (in
9858 synchronous mode) to wait for a target that is is executing user
9859 code to stop. */
9860 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9861 don't have to change all the calls to getpkt to deal with the
9862 return value, because at the moment I don't know what the right
9863 thing to do it for those. */
9864
9865 void
9866 remote_target::getpkt (gdb::char_vector *buf, int forever)
9867 {
9868 getpkt_sane (buf, forever);
9869 }
9870
9871
9872 /* Read a packet from the remote machine, with error checking, and
9873 store it in *BUF. Resize *BUF if necessary to hold the result. If
9874 FOREVER, wait forever rather than timing out; this is used (in
9875 synchronous mode) to wait for a target that is is executing user
9876 code to stop. If FOREVER == 0, this function is allowed to time
9877 out gracefully and return an indication of this to the caller.
9878 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9879 consider receiving a notification enough reason to return to the
9880 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9881 holds a notification or not (a regular packet). */
9882
9883 int
9884 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9885 int forever, int expecting_notif,
9886 int *is_notif)
9887 {
9888 struct remote_state *rs = get_remote_state ();
9889 int c;
9890 int tries;
9891 int timeout;
9892 int val = -1;
9893
9894 /* We're reading a new response. Make sure we don't look at a
9895 previously cached response. */
9896 rs->cached_wait_status = 0;
9897
9898 strcpy (buf->data (), "timeout");
9899
9900 if (forever)
9901 timeout = watchdog > 0 ? watchdog : -1;
9902 else if (expecting_notif)
9903 timeout = 0; /* There should already be a char in the buffer. If
9904 not, bail out. */
9905 else
9906 timeout = remote_timeout;
9907
9908 #define MAX_TRIES 3
9909
9910 /* Process any number of notifications, and then return when
9911 we get a packet. */
9912 for (;;)
9913 {
9914 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9915 times. */
9916 for (tries = 1; tries <= MAX_TRIES; tries++)
9917 {
9918 /* This can loop forever if the remote side sends us
9919 characters continuously, but if it pauses, we'll get
9920 SERIAL_TIMEOUT from readchar because of timeout. Then
9921 we'll count that as a retry.
9922
9923 Note that even when forever is set, we will only wait
9924 forever prior to the start of a packet. After that, we
9925 expect characters to arrive at a brisk pace. They should
9926 show up within remote_timeout intervals. */
9927 do
9928 c = readchar (timeout);
9929 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9930
9931 if (c == SERIAL_TIMEOUT)
9932 {
9933 if (expecting_notif)
9934 return -1; /* Don't complain, it's normal to not get
9935 anything in this case. */
9936
9937 if (forever) /* Watchdog went off? Kill the target. */
9938 {
9939 remote_unpush_target (this);
9940 throw_error (TARGET_CLOSE_ERROR,
9941 _("Watchdog timeout has expired. "
9942 "Target detached."));
9943 }
9944
9945 remote_debug_printf ("Timed out.");
9946 }
9947 else
9948 {
9949 /* We've found the start of a packet or notification.
9950 Now collect the data. */
9951 val = read_frame (buf);
9952 if (val >= 0)
9953 break;
9954 }
9955
9956 remote_serial_write ("-", 1);
9957 }
9958
9959 if (tries > MAX_TRIES)
9960 {
9961 /* We have tried hard enough, and just can't receive the
9962 packet/notification. Give up. */
9963 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9964
9965 /* Skip the ack char if we're in no-ack mode. */
9966 if (!rs->noack_mode)
9967 remote_serial_write ("+", 1);
9968 return -1;
9969 }
9970
9971 /* If we got an ordinary packet, return that to our caller. */
9972 if (c == '$')
9973 {
9974 if (remote_debug)
9975 {
9976 int max_chars;
9977
9978 if (remote_packet_max_chars < 0)
9979 max_chars = val;
9980 else
9981 max_chars = remote_packet_max_chars;
9982
9983 std::string str
9984 = escape_buffer (buf->data (),
9985 std::min (val, max_chars));
9986
9987 if (val > max_chars)
9988 remote_debug_printf_nofunc
9989 ("Packet received: %s [%d bytes omitted]", str.c_str (),
9990 val - max_chars);
9991 else
9992 remote_debug_printf_nofunc ("Packet received: %s",
9993 str.c_str ());
9994 }
9995
9996 /* Skip the ack char if we're in no-ack mode. */
9997 if (!rs->noack_mode)
9998 remote_serial_write ("+", 1);
9999 if (is_notif != NULL)
10000 *is_notif = 0;
10001 return val;
10002 }
10003
10004 /* If we got a notification, handle it, and go back to looking
10005 for a packet. */
10006 else
10007 {
10008 gdb_assert (c == '%');
10009
10010 remote_debug_printf_nofunc
10011 (" Notification received: %s",
10012 escape_buffer (buf->data (), val).c_str ());
10013
10014 if (is_notif != NULL)
10015 *is_notif = 1;
10016
10017 handle_notification (rs->notif_state, buf->data ());
10018
10019 /* Notifications require no acknowledgement. */
10020
10021 if (expecting_notif)
10022 return val;
10023 }
10024 }
10025 }
10026
10027 int
10028 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
10029 {
10030 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
10031 }
10032
10033 int
10034 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
10035 int *is_notif)
10036 {
10037 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
10038 }
10039
10040 /* Kill any new fork children of process PID that haven't been
10041 processed by follow_fork. */
10042
10043 void
10044 remote_target::kill_new_fork_children (int pid)
10045 {
10046 remote_state *rs = get_remote_state ();
10047 struct notif_client *notif = &notif_client_stop;
10048
10049 /* Kill the fork child threads of any threads in process PID
10050 that are stopped at a fork event. */
10051 for (thread_info *thread : all_non_exited_threads (this))
10052 {
10053 struct target_waitstatus *ws = &thread->pending_follow;
10054
10055 if (is_pending_fork_parent (ws, pid, thread->ptid))
10056 {
10057 int child_pid = ws->value.related_pid.pid ();
10058 int res;
10059
10060 res = remote_vkill (child_pid);
10061 if (res != 0)
10062 error (_("Can't kill fork child process %d"), child_pid);
10063 }
10064 }
10065
10066 /* Check for any pending fork events (not reported or processed yet)
10067 in process PID and kill those fork child threads as well. */
10068 remote_notif_get_pending_events (notif);
10069 for (auto &event : rs->stop_reply_queue)
10070 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
10071 {
10072 int child_pid = event->ws.value.related_pid.pid ();
10073 int res;
10074
10075 res = remote_vkill (child_pid);
10076 if (res != 0)
10077 error (_("Can't kill fork child process %d"), child_pid);
10078 }
10079 }
10080
10081 \f
10082 /* Target hook to kill the current inferior. */
10083
10084 void
10085 remote_target::kill ()
10086 {
10087 int res = -1;
10088 int pid = inferior_ptid.pid ();
10089 struct remote_state *rs = get_remote_state ();
10090
10091 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
10092 {
10093 /* If we're stopped while forking and we haven't followed yet,
10094 kill the child task. We need to do this before killing the
10095 parent task because if this is a vfork then the parent will
10096 be sleeping. */
10097 kill_new_fork_children (pid);
10098
10099 res = remote_vkill (pid);
10100 if (res == 0)
10101 {
10102 target_mourn_inferior (inferior_ptid);
10103 return;
10104 }
10105 }
10106
10107 /* If we are in 'target remote' mode and we are killing the only
10108 inferior, then we will tell gdbserver to exit and unpush the
10109 target. */
10110 if (res == -1 && !remote_multi_process_p (rs)
10111 && number_of_live_inferiors (this) == 1)
10112 {
10113 remote_kill_k ();
10114
10115 /* We've killed the remote end, we get to mourn it. If we are
10116 not in extended mode, mourning the inferior also unpushes
10117 remote_ops from the target stack, which closes the remote
10118 connection. */
10119 target_mourn_inferior (inferior_ptid);
10120
10121 return;
10122 }
10123
10124 error (_("Can't kill process"));
10125 }
10126
10127 /* Send a kill request to the target using the 'vKill' packet. */
10128
10129 int
10130 remote_target::remote_vkill (int pid)
10131 {
10132 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
10133 return -1;
10134
10135 remote_state *rs = get_remote_state ();
10136
10137 /* Tell the remote target to detach. */
10138 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
10139 putpkt (rs->buf);
10140 getpkt (&rs->buf, 0);
10141
10142 switch (packet_ok (rs->buf,
10143 &remote_protocol_packets[PACKET_vKill]))
10144 {
10145 case PACKET_OK:
10146 return 0;
10147 case PACKET_ERROR:
10148 return 1;
10149 case PACKET_UNKNOWN:
10150 return -1;
10151 default:
10152 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
10153 }
10154 }
10155
10156 /* Send a kill request to the target using the 'k' packet. */
10157
10158 void
10159 remote_target::remote_kill_k ()
10160 {
10161 /* Catch errors so the user can quit from gdb even when we
10162 aren't on speaking terms with the remote system. */
10163 try
10164 {
10165 putpkt ("k");
10166 }
10167 catch (const gdb_exception_error &ex)
10168 {
10169 if (ex.error == TARGET_CLOSE_ERROR)
10170 {
10171 /* If we got an (EOF) error that caused the target
10172 to go away, then we're done, that's what we wanted.
10173 "k" is susceptible to cause a premature EOF, given
10174 that the remote server isn't actually required to
10175 reply to "k", and it can happen that it doesn't
10176 even get to reply ACK to the "k". */
10177 return;
10178 }
10179
10180 /* Otherwise, something went wrong. We didn't actually kill
10181 the target. Just propagate the exception, and let the
10182 user or higher layers decide what to do. */
10183 throw;
10184 }
10185 }
10186
10187 void
10188 remote_target::mourn_inferior ()
10189 {
10190 struct remote_state *rs = get_remote_state ();
10191
10192 /* We're no longer interested in notification events of an inferior
10193 that exited or was killed/detached. */
10194 discard_pending_stop_replies (current_inferior ());
10195
10196 /* In 'target remote' mode with one inferior, we close the connection. */
10197 if (!rs->extended && number_of_live_inferiors (this) <= 1)
10198 {
10199 remote_unpush_target (this);
10200 return;
10201 }
10202
10203 /* In case we got here due to an error, but we're going to stay
10204 connected. */
10205 rs->waiting_for_stop_reply = 0;
10206
10207 /* If the current general thread belonged to the process we just
10208 detached from or has exited, the remote side current general
10209 thread becomes undefined. Considering a case like this:
10210
10211 - We just got here due to a detach.
10212 - The process that we're detaching from happens to immediately
10213 report a global breakpoint being hit in non-stop mode, in the
10214 same thread we had selected before.
10215 - GDB attaches to this process again.
10216 - This event happens to be the next event we handle.
10217
10218 GDB would consider that the current general thread didn't need to
10219 be set on the stub side (with Hg), since for all it knew,
10220 GENERAL_THREAD hadn't changed.
10221
10222 Notice that although in all-stop mode, the remote server always
10223 sets the current thread to the thread reporting the stop event,
10224 that doesn't happen in non-stop mode; in non-stop, the stub *must
10225 not* change the current thread when reporting a breakpoint hit,
10226 due to the decoupling of event reporting and event handling.
10227
10228 To keep things simple, we always invalidate our notion of the
10229 current thread. */
10230 record_currthread (rs, minus_one_ptid);
10231
10232 /* Call common code to mark the inferior as not running. */
10233 generic_mourn_inferior ();
10234 }
10235
10236 bool
10237 extended_remote_target::supports_disable_randomization ()
10238 {
10239 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10240 }
10241
10242 void
10243 remote_target::extended_remote_disable_randomization (int val)
10244 {
10245 struct remote_state *rs = get_remote_state ();
10246 char *reply;
10247
10248 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10249 "QDisableRandomization:%x", val);
10250 putpkt (rs->buf);
10251 reply = remote_get_noisy_reply ();
10252 if (*reply == '\0')
10253 error (_("Target does not support QDisableRandomization."));
10254 if (strcmp (reply, "OK") != 0)
10255 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10256 }
10257
10258 int
10259 remote_target::extended_remote_run (const std::string &args)
10260 {
10261 struct remote_state *rs = get_remote_state ();
10262 int len;
10263 const char *remote_exec_file = get_remote_exec_file ();
10264
10265 /* If the user has disabled vRun support, or we have detected that
10266 support is not available, do not try it. */
10267 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10268 return -1;
10269
10270 strcpy (rs->buf.data (), "vRun;");
10271 len = strlen (rs->buf.data ());
10272
10273 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10274 error (_("Remote file name too long for run packet"));
10275 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10276 strlen (remote_exec_file));
10277
10278 if (!args.empty ())
10279 {
10280 int i;
10281
10282 gdb_argv argv (args.c_str ());
10283 for (i = 0; argv[i] != NULL; i++)
10284 {
10285 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10286 error (_("Argument list too long for run packet"));
10287 rs->buf[len++] = ';';
10288 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10289 strlen (argv[i]));
10290 }
10291 }
10292
10293 rs->buf[len++] = '\0';
10294
10295 putpkt (rs->buf);
10296 getpkt (&rs->buf, 0);
10297
10298 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10299 {
10300 case PACKET_OK:
10301 /* We have a wait response. All is well. */
10302 return 0;
10303 case PACKET_UNKNOWN:
10304 return -1;
10305 case PACKET_ERROR:
10306 if (remote_exec_file[0] == '\0')
10307 error (_("Running the default executable on the remote target failed; "
10308 "try \"set remote exec-file\"?"));
10309 else
10310 error (_("Running \"%s\" on the remote target failed"),
10311 remote_exec_file);
10312 default:
10313 gdb_assert_not_reached (_("bad switch"));
10314 }
10315 }
10316
10317 /* Helper function to send set/unset environment packets. ACTION is
10318 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10319 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10320 sent. */
10321
10322 void
10323 remote_target::send_environment_packet (const char *action,
10324 const char *packet,
10325 const char *value)
10326 {
10327 remote_state *rs = get_remote_state ();
10328
10329 /* Convert the environment variable to an hex string, which
10330 is the best format to be transmitted over the wire. */
10331 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10332 strlen (value));
10333
10334 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10335 "%s:%s", packet, encoded_value.c_str ());
10336
10337 putpkt (rs->buf);
10338 getpkt (&rs->buf, 0);
10339 if (strcmp (rs->buf.data (), "OK") != 0)
10340 warning (_("Unable to %s environment variable '%s' on remote."),
10341 action, value);
10342 }
10343
10344 /* Helper function to handle the QEnvironment* packets. */
10345
10346 void
10347 remote_target::extended_remote_environment_support ()
10348 {
10349 remote_state *rs = get_remote_state ();
10350
10351 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10352 {
10353 putpkt ("QEnvironmentReset");
10354 getpkt (&rs->buf, 0);
10355 if (strcmp (rs->buf.data (), "OK") != 0)
10356 warning (_("Unable to reset environment on remote."));
10357 }
10358
10359 gdb_environ *e = &current_inferior ()->environment;
10360
10361 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10362 for (const std::string &el : e->user_set_env ())
10363 send_environment_packet ("set", "QEnvironmentHexEncoded",
10364 el.c_str ());
10365
10366 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10367 for (const std::string &el : e->user_unset_env ())
10368 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10369 }
10370
10371 /* Helper function to set the current working directory for the
10372 inferior in the remote target. */
10373
10374 void
10375 remote_target::extended_remote_set_inferior_cwd ()
10376 {
10377 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10378 {
10379 const char *inferior_cwd = get_inferior_cwd ();
10380 remote_state *rs = get_remote_state ();
10381
10382 if (inferior_cwd != NULL)
10383 {
10384 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10385 strlen (inferior_cwd));
10386
10387 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10388 "QSetWorkingDir:%s", hexpath.c_str ());
10389 }
10390 else
10391 {
10392 /* An empty inferior_cwd means that the user wants us to
10393 reset the remote server's inferior's cwd. */
10394 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10395 "QSetWorkingDir:");
10396 }
10397
10398 putpkt (rs->buf);
10399 getpkt (&rs->buf, 0);
10400 if (packet_ok (rs->buf,
10401 &remote_protocol_packets[PACKET_QSetWorkingDir])
10402 != PACKET_OK)
10403 error (_("\
10404 Remote replied unexpectedly while setting the inferior's working\n\
10405 directory: %s"),
10406 rs->buf.data ());
10407
10408 }
10409 }
10410
10411 /* In the extended protocol we want to be able to do things like
10412 "run" and have them basically work as expected. So we need
10413 a special create_inferior function. We support changing the
10414 executable file and the command line arguments, but not the
10415 environment. */
10416
10417 void
10418 extended_remote_target::create_inferior (const char *exec_file,
10419 const std::string &args,
10420 char **env, int from_tty)
10421 {
10422 int run_worked;
10423 char *stop_reply;
10424 struct remote_state *rs = get_remote_state ();
10425 const char *remote_exec_file = get_remote_exec_file ();
10426
10427 /* If running asynchronously, register the target file descriptor
10428 with the event loop. */
10429 if (target_can_async_p ())
10430 target_async (1);
10431
10432 /* Disable address space randomization if requested (and supported). */
10433 if (supports_disable_randomization ())
10434 extended_remote_disable_randomization (disable_randomization);
10435
10436 /* If startup-with-shell is on, we inform gdbserver to start the
10437 remote inferior using a shell. */
10438 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10439 {
10440 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10441 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10442 putpkt (rs->buf);
10443 getpkt (&rs->buf, 0);
10444 if (strcmp (rs->buf.data (), "OK") != 0)
10445 error (_("\
10446 Remote replied unexpectedly while setting startup-with-shell: %s"),
10447 rs->buf.data ());
10448 }
10449
10450 extended_remote_environment_support ();
10451
10452 extended_remote_set_inferior_cwd ();
10453
10454 /* Now restart the remote server. */
10455 run_worked = extended_remote_run (args) != -1;
10456 if (!run_worked)
10457 {
10458 /* vRun was not supported. Fail if we need it to do what the
10459 user requested. */
10460 if (remote_exec_file[0])
10461 error (_("Remote target does not support \"set remote exec-file\""));
10462 if (!args.empty ())
10463 error (_("Remote target does not support \"set args\" or run ARGS"));
10464
10465 /* Fall back to "R". */
10466 extended_remote_restart ();
10467 }
10468
10469 /* vRun's success return is a stop reply. */
10470 stop_reply = run_worked ? rs->buf.data () : NULL;
10471 add_current_inferior_and_thread (stop_reply);
10472
10473 /* Get updated offsets, if the stub uses qOffsets. */
10474 get_offsets ();
10475 }
10476 \f
10477
10478 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10479 the list of conditions (in agent expression bytecode format), if any, the
10480 target needs to evaluate. The output is placed into the packet buffer
10481 started from BUF and ended at BUF_END. */
10482
10483 static int
10484 remote_add_target_side_condition (struct gdbarch *gdbarch,
10485 struct bp_target_info *bp_tgt, char *buf,
10486 char *buf_end)
10487 {
10488 if (bp_tgt->conditions.empty ())
10489 return 0;
10490
10491 buf += strlen (buf);
10492 xsnprintf (buf, buf_end - buf, "%s", ";");
10493 buf++;
10494
10495 /* Send conditions to the target. */
10496 for (agent_expr *aexpr : bp_tgt->conditions)
10497 {
10498 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10499 buf += strlen (buf);
10500 for (int i = 0; i < aexpr->len; ++i)
10501 buf = pack_hex_byte (buf, aexpr->buf[i]);
10502 *buf = '\0';
10503 }
10504 return 0;
10505 }
10506
10507 static void
10508 remote_add_target_side_commands (struct gdbarch *gdbarch,
10509 struct bp_target_info *bp_tgt, char *buf)
10510 {
10511 if (bp_tgt->tcommands.empty ())
10512 return;
10513
10514 buf += strlen (buf);
10515
10516 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10517 buf += strlen (buf);
10518
10519 /* Concatenate all the agent expressions that are commands into the
10520 cmds parameter. */
10521 for (agent_expr *aexpr : bp_tgt->tcommands)
10522 {
10523 sprintf (buf, "X%x,", aexpr->len);
10524 buf += strlen (buf);
10525 for (int i = 0; i < aexpr->len; ++i)
10526 buf = pack_hex_byte (buf, aexpr->buf[i]);
10527 *buf = '\0';
10528 }
10529 }
10530
10531 /* Insert a breakpoint. On targets that have software breakpoint
10532 support, we ask the remote target to do the work; on targets
10533 which don't, we insert a traditional memory breakpoint. */
10534
10535 int
10536 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10537 struct bp_target_info *bp_tgt)
10538 {
10539 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10540 If it succeeds, then set the support to PACKET_ENABLE. If it
10541 fails, and the user has explicitly requested the Z support then
10542 report an error, otherwise, mark it disabled and go on. */
10543
10544 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10545 {
10546 CORE_ADDR addr = bp_tgt->reqstd_address;
10547 struct remote_state *rs;
10548 char *p, *endbuf;
10549
10550 /* Make sure the remote is pointing at the right process, if
10551 necessary. */
10552 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10553 set_general_process ();
10554
10555 rs = get_remote_state ();
10556 p = rs->buf.data ();
10557 endbuf = p + get_remote_packet_size ();
10558
10559 *(p++) = 'Z';
10560 *(p++) = '0';
10561 *(p++) = ',';
10562 addr = (ULONGEST) remote_address_masked (addr);
10563 p += hexnumstr (p, addr);
10564 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10565
10566 if (supports_evaluation_of_breakpoint_conditions ())
10567 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10568
10569 if (can_run_breakpoint_commands ())
10570 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10571
10572 putpkt (rs->buf);
10573 getpkt (&rs->buf, 0);
10574
10575 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10576 {
10577 case PACKET_ERROR:
10578 return -1;
10579 case PACKET_OK:
10580 return 0;
10581 case PACKET_UNKNOWN:
10582 break;
10583 }
10584 }
10585
10586 /* If this breakpoint has target-side commands but this stub doesn't
10587 support Z0 packets, throw error. */
10588 if (!bp_tgt->tcommands.empty ())
10589 throw_error (NOT_SUPPORTED_ERROR, _("\
10590 Target doesn't support breakpoints that have target side commands."));
10591
10592 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10593 }
10594
10595 int
10596 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10597 struct bp_target_info *bp_tgt,
10598 enum remove_bp_reason reason)
10599 {
10600 CORE_ADDR addr = bp_tgt->placed_address;
10601 struct remote_state *rs = get_remote_state ();
10602
10603 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10604 {
10605 char *p = rs->buf.data ();
10606 char *endbuf = p + get_remote_packet_size ();
10607
10608 /* Make sure the remote is pointing at the right process, if
10609 necessary. */
10610 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10611 set_general_process ();
10612
10613 *(p++) = 'z';
10614 *(p++) = '0';
10615 *(p++) = ',';
10616
10617 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10618 p += hexnumstr (p, addr);
10619 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10620
10621 putpkt (rs->buf);
10622 getpkt (&rs->buf, 0);
10623
10624 return (rs->buf[0] == 'E');
10625 }
10626
10627 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10628 }
10629
10630 static enum Z_packet_type
10631 watchpoint_to_Z_packet (int type)
10632 {
10633 switch (type)
10634 {
10635 case hw_write:
10636 return Z_PACKET_WRITE_WP;
10637 break;
10638 case hw_read:
10639 return Z_PACKET_READ_WP;
10640 break;
10641 case hw_access:
10642 return Z_PACKET_ACCESS_WP;
10643 break;
10644 default:
10645 internal_error (__FILE__, __LINE__,
10646 _("hw_bp_to_z: bad watchpoint type %d"), type);
10647 }
10648 }
10649
10650 int
10651 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10652 enum target_hw_bp_type type, struct expression *cond)
10653 {
10654 struct remote_state *rs = get_remote_state ();
10655 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10656 char *p;
10657 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10658
10659 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10660 return 1;
10661
10662 /* Make sure the remote is pointing at the right process, if
10663 necessary. */
10664 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10665 set_general_process ();
10666
10667 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10668 p = strchr (rs->buf.data (), '\0');
10669 addr = remote_address_masked (addr);
10670 p += hexnumstr (p, (ULONGEST) addr);
10671 xsnprintf (p, endbuf - p, ",%x", len);
10672
10673 putpkt (rs->buf);
10674 getpkt (&rs->buf, 0);
10675
10676 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10677 {
10678 case PACKET_ERROR:
10679 return -1;
10680 case PACKET_UNKNOWN:
10681 return 1;
10682 case PACKET_OK:
10683 return 0;
10684 }
10685 internal_error (__FILE__, __LINE__,
10686 _("remote_insert_watchpoint: reached end of function"));
10687 }
10688
10689 bool
10690 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10691 CORE_ADDR start, int length)
10692 {
10693 CORE_ADDR diff = remote_address_masked (addr - start);
10694
10695 return diff < length;
10696 }
10697
10698
10699 int
10700 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10701 enum target_hw_bp_type type, struct expression *cond)
10702 {
10703 struct remote_state *rs = get_remote_state ();
10704 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10705 char *p;
10706 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10707
10708 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10709 return -1;
10710
10711 /* Make sure the remote is pointing at the right process, if
10712 necessary. */
10713 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10714 set_general_process ();
10715
10716 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10717 p = strchr (rs->buf.data (), '\0');
10718 addr = remote_address_masked (addr);
10719 p += hexnumstr (p, (ULONGEST) addr);
10720 xsnprintf (p, endbuf - p, ",%x", len);
10721 putpkt (rs->buf);
10722 getpkt (&rs->buf, 0);
10723
10724 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10725 {
10726 case PACKET_ERROR:
10727 case PACKET_UNKNOWN:
10728 return -1;
10729 case PACKET_OK:
10730 return 0;
10731 }
10732 internal_error (__FILE__, __LINE__,
10733 _("remote_remove_watchpoint: reached end of function"));
10734 }
10735
10736
10737 static int remote_hw_watchpoint_limit = -1;
10738 static int remote_hw_watchpoint_length_limit = -1;
10739 static int remote_hw_breakpoint_limit = -1;
10740
10741 int
10742 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10743 {
10744 if (remote_hw_watchpoint_length_limit == 0)
10745 return 0;
10746 else if (remote_hw_watchpoint_length_limit < 0)
10747 return 1;
10748 else if (len <= remote_hw_watchpoint_length_limit)
10749 return 1;
10750 else
10751 return 0;
10752 }
10753
10754 int
10755 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10756 {
10757 if (type == bp_hardware_breakpoint)
10758 {
10759 if (remote_hw_breakpoint_limit == 0)
10760 return 0;
10761 else if (remote_hw_breakpoint_limit < 0)
10762 return 1;
10763 else if (cnt <= remote_hw_breakpoint_limit)
10764 return 1;
10765 }
10766 else
10767 {
10768 if (remote_hw_watchpoint_limit == 0)
10769 return 0;
10770 else if (remote_hw_watchpoint_limit < 0)
10771 return 1;
10772 else if (ot)
10773 return -1;
10774 else if (cnt <= remote_hw_watchpoint_limit)
10775 return 1;
10776 }
10777 return -1;
10778 }
10779
10780 /* The to_stopped_by_sw_breakpoint method of target remote. */
10781
10782 bool
10783 remote_target::stopped_by_sw_breakpoint ()
10784 {
10785 struct thread_info *thread = inferior_thread ();
10786
10787 return (thread->priv != NULL
10788 && (get_remote_thread_info (thread)->stop_reason
10789 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10790 }
10791
10792 /* The to_supports_stopped_by_sw_breakpoint method of target
10793 remote. */
10794
10795 bool
10796 remote_target::supports_stopped_by_sw_breakpoint ()
10797 {
10798 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10799 }
10800
10801 /* The to_stopped_by_hw_breakpoint method of target remote. */
10802
10803 bool
10804 remote_target::stopped_by_hw_breakpoint ()
10805 {
10806 struct thread_info *thread = inferior_thread ();
10807
10808 return (thread->priv != NULL
10809 && (get_remote_thread_info (thread)->stop_reason
10810 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10811 }
10812
10813 /* The to_supports_stopped_by_hw_breakpoint method of target
10814 remote. */
10815
10816 bool
10817 remote_target::supports_stopped_by_hw_breakpoint ()
10818 {
10819 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10820 }
10821
10822 bool
10823 remote_target::stopped_by_watchpoint ()
10824 {
10825 struct thread_info *thread = inferior_thread ();
10826
10827 return (thread->priv != NULL
10828 && (get_remote_thread_info (thread)->stop_reason
10829 == TARGET_STOPPED_BY_WATCHPOINT));
10830 }
10831
10832 bool
10833 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10834 {
10835 struct thread_info *thread = inferior_thread ();
10836
10837 if (thread->priv != NULL
10838 && (get_remote_thread_info (thread)->stop_reason
10839 == TARGET_STOPPED_BY_WATCHPOINT))
10840 {
10841 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10842 return true;
10843 }
10844
10845 return false;
10846 }
10847
10848
10849 int
10850 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10851 struct bp_target_info *bp_tgt)
10852 {
10853 CORE_ADDR addr = bp_tgt->reqstd_address;
10854 struct remote_state *rs;
10855 char *p, *endbuf;
10856 char *message;
10857
10858 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10859 return -1;
10860
10861 /* Make sure the remote is pointing at the right process, if
10862 necessary. */
10863 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10864 set_general_process ();
10865
10866 rs = get_remote_state ();
10867 p = rs->buf.data ();
10868 endbuf = p + get_remote_packet_size ();
10869
10870 *(p++) = 'Z';
10871 *(p++) = '1';
10872 *(p++) = ',';
10873
10874 addr = remote_address_masked (addr);
10875 p += hexnumstr (p, (ULONGEST) addr);
10876 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10877
10878 if (supports_evaluation_of_breakpoint_conditions ())
10879 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10880
10881 if (can_run_breakpoint_commands ())
10882 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10883
10884 putpkt (rs->buf);
10885 getpkt (&rs->buf, 0);
10886
10887 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10888 {
10889 case PACKET_ERROR:
10890 if (rs->buf[1] == '.')
10891 {
10892 message = strchr (&rs->buf[2], '.');
10893 if (message)
10894 error (_("Remote failure reply: %s"), message + 1);
10895 }
10896 return -1;
10897 case PACKET_UNKNOWN:
10898 return -1;
10899 case PACKET_OK:
10900 return 0;
10901 }
10902 internal_error (__FILE__, __LINE__,
10903 _("remote_insert_hw_breakpoint: reached end of function"));
10904 }
10905
10906
10907 int
10908 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10909 struct bp_target_info *bp_tgt)
10910 {
10911 CORE_ADDR addr;
10912 struct remote_state *rs = get_remote_state ();
10913 char *p = rs->buf.data ();
10914 char *endbuf = p + get_remote_packet_size ();
10915
10916 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10917 return -1;
10918
10919 /* Make sure the remote is pointing at the right process, if
10920 necessary. */
10921 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10922 set_general_process ();
10923
10924 *(p++) = 'z';
10925 *(p++) = '1';
10926 *(p++) = ',';
10927
10928 addr = remote_address_masked (bp_tgt->placed_address);
10929 p += hexnumstr (p, (ULONGEST) addr);
10930 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10931
10932 putpkt (rs->buf);
10933 getpkt (&rs->buf, 0);
10934
10935 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10936 {
10937 case PACKET_ERROR:
10938 case PACKET_UNKNOWN:
10939 return -1;
10940 case PACKET_OK:
10941 return 0;
10942 }
10943 internal_error (__FILE__, __LINE__,
10944 _("remote_remove_hw_breakpoint: reached end of function"));
10945 }
10946
10947 /* Verify memory using the "qCRC:" request. */
10948
10949 int
10950 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10951 {
10952 struct remote_state *rs = get_remote_state ();
10953 unsigned long host_crc, target_crc;
10954 char *tmp;
10955
10956 /* It doesn't make sense to use qCRC if the remote target is
10957 connected but not running. */
10958 if (target_has_execution ()
10959 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10960 {
10961 enum packet_result result;
10962
10963 /* Make sure the remote is pointing at the right process. */
10964 set_general_process ();
10965
10966 /* FIXME: assumes lma can fit into long. */
10967 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10968 (long) lma, (long) size);
10969 putpkt (rs->buf);
10970
10971 /* Be clever; compute the host_crc before waiting for target
10972 reply. */
10973 host_crc = xcrc32 (data, size, 0xffffffff);
10974
10975 getpkt (&rs->buf, 0);
10976
10977 result = packet_ok (rs->buf,
10978 &remote_protocol_packets[PACKET_qCRC]);
10979 if (result == PACKET_ERROR)
10980 return -1;
10981 else if (result == PACKET_OK)
10982 {
10983 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10984 target_crc = target_crc * 16 + fromhex (*tmp);
10985
10986 return (host_crc == target_crc);
10987 }
10988 }
10989
10990 return simple_verify_memory (this, data, lma, size);
10991 }
10992
10993 /* compare-sections command
10994
10995 With no arguments, compares each loadable section in the exec bfd
10996 with the same memory range on the target, and reports mismatches.
10997 Useful for verifying the image on the target against the exec file. */
10998
10999 static void
11000 compare_sections_command (const char *args, int from_tty)
11001 {
11002 asection *s;
11003 const char *sectname;
11004 bfd_size_type size;
11005 bfd_vma lma;
11006 int matched = 0;
11007 int mismatched = 0;
11008 int res;
11009 int read_only = 0;
11010
11011 if (!current_program_space->exec_bfd ())
11012 error (_("command cannot be used without an exec file"));
11013
11014 if (args != NULL && strcmp (args, "-r") == 0)
11015 {
11016 read_only = 1;
11017 args = NULL;
11018 }
11019
11020 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
11021 {
11022 if (!(s->flags & SEC_LOAD))
11023 continue; /* Skip non-loadable section. */
11024
11025 if (read_only && (s->flags & SEC_READONLY) == 0)
11026 continue; /* Skip writeable sections */
11027
11028 size = bfd_section_size (s);
11029 if (size == 0)
11030 continue; /* Skip zero-length section. */
11031
11032 sectname = bfd_section_name (s);
11033 if (args && strcmp (args, sectname) != 0)
11034 continue; /* Not the section selected by user. */
11035
11036 matched = 1; /* Do this section. */
11037 lma = s->lma;
11038
11039 gdb::byte_vector sectdata (size);
11040 bfd_get_section_contents (current_program_space->exec_bfd (), s,
11041 sectdata.data (), 0, size);
11042
11043 res = target_verify_memory (sectdata.data (), lma, size);
11044
11045 if (res == -1)
11046 error (_("target memory fault, section %s, range %s -- %s"), sectname,
11047 paddress (target_gdbarch (), lma),
11048 paddress (target_gdbarch (), lma + size));
11049
11050 printf_filtered ("Section %s, range %s -- %s: ", sectname,
11051 paddress (target_gdbarch (), lma),
11052 paddress (target_gdbarch (), lma + size));
11053 if (res)
11054 printf_filtered ("matched.\n");
11055 else
11056 {
11057 printf_filtered ("MIS-MATCHED!\n");
11058 mismatched++;
11059 }
11060 }
11061 if (mismatched > 0)
11062 warning (_("One or more sections of the target image does not match\n\
11063 the loaded file\n"));
11064 if (args && !matched)
11065 printf_filtered (_("No loaded section named '%s'.\n"), args);
11066 }
11067
11068 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
11069 into remote target. The number of bytes written to the remote
11070 target is returned, or -1 for error. */
11071
11072 target_xfer_status
11073 remote_target::remote_write_qxfer (const char *object_name,
11074 const char *annex, const gdb_byte *writebuf,
11075 ULONGEST offset, LONGEST len,
11076 ULONGEST *xfered_len,
11077 struct packet_config *packet)
11078 {
11079 int i, buf_len;
11080 ULONGEST n;
11081 struct remote_state *rs = get_remote_state ();
11082 int max_size = get_memory_write_packet_size ();
11083
11084 if (packet_config_support (packet) == PACKET_DISABLE)
11085 return TARGET_XFER_E_IO;
11086
11087 /* Insert header. */
11088 i = snprintf (rs->buf.data (), max_size,
11089 "qXfer:%s:write:%s:%s:",
11090 object_name, annex ? annex : "",
11091 phex_nz (offset, sizeof offset));
11092 max_size -= (i + 1);
11093
11094 /* Escape as much data as fits into rs->buf. */
11095 buf_len = remote_escape_output
11096 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
11097
11098 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
11099 || getpkt_sane (&rs->buf, 0) < 0
11100 || packet_ok (rs->buf, packet) != PACKET_OK)
11101 return TARGET_XFER_E_IO;
11102
11103 unpack_varlen_hex (rs->buf.data (), &n);
11104
11105 *xfered_len = n;
11106 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11107 }
11108
11109 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
11110 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
11111 number of bytes read is returned, or 0 for EOF, or -1 for error.
11112 The number of bytes read may be less than LEN without indicating an
11113 EOF. PACKET is checked and updated to indicate whether the remote
11114 target supports this object. */
11115
11116 target_xfer_status
11117 remote_target::remote_read_qxfer (const char *object_name,
11118 const char *annex,
11119 gdb_byte *readbuf, ULONGEST offset,
11120 LONGEST len,
11121 ULONGEST *xfered_len,
11122 struct packet_config *packet)
11123 {
11124 struct remote_state *rs = get_remote_state ();
11125 LONGEST i, n, packet_len;
11126
11127 if (packet_config_support (packet) == PACKET_DISABLE)
11128 return TARGET_XFER_E_IO;
11129
11130 /* Check whether we've cached an end-of-object packet that matches
11131 this request. */
11132 if (rs->finished_object)
11133 {
11134 if (strcmp (object_name, rs->finished_object) == 0
11135 && strcmp (annex ? annex : "", rs->finished_annex) == 0
11136 && offset == rs->finished_offset)
11137 return TARGET_XFER_EOF;
11138
11139
11140 /* Otherwise, we're now reading something different. Discard
11141 the cache. */
11142 xfree (rs->finished_object);
11143 xfree (rs->finished_annex);
11144 rs->finished_object = NULL;
11145 rs->finished_annex = NULL;
11146 }
11147
11148 /* Request only enough to fit in a single packet. The actual data
11149 may not, since we don't know how much of it will need to be escaped;
11150 the target is free to respond with slightly less data. We subtract
11151 five to account for the response type and the protocol frame. */
11152 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
11153 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
11154 "qXfer:%s:read:%s:%s,%s",
11155 object_name, annex ? annex : "",
11156 phex_nz (offset, sizeof offset),
11157 phex_nz (n, sizeof n));
11158 i = putpkt (rs->buf);
11159 if (i < 0)
11160 return TARGET_XFER_E_IO;
11161
11162 rs->buf[0] = '\0';
11163 packet_len = getpkt_sane (&rs->buf, 0);
11164 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
11165 return TARGET_XFER_E_IO;
11166
11167 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
11168 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
11169
11170 /* 'm' means there is (or at least might be) more data after this
11171 batch. That does not make sense unless there's at least one byte
11172 of data in this reply. */
11173 if (rs->buf[0] == 'm' && packet_len == 1)
11174 error (_("Remote qXfer reply contained no data."));
11175
11176 /* Got some data. */
11177 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
11178 packet_len - 1, readbuf, n);
11179
11180 /* 'l' is an EOF marker, possibly including a final block of data,
11181 or possibly empty. If we have the final block of a non-empty
11182 object, record this fact to bypass a subsequent partial read. */
11183 if (rs->buf[0] == 'l' && offset + i > 0)
11184 {
11185 rs->finished_object = xstrdup (object_name);
11186 rs->finished_annex = xstrdup (annex ? annex : "");
11187 rs->finished_offset = offset + i;
11188 }
11189
11190 if (i == 0)
11191 return TARGET_XFER_EOF;
11192 else
11193 {
11194 *xfered_len = i;
11195 return TARGET_XFER_OK;
11196 }
11197 }
11198
11199 enum target_xfer_status
11200 remote_target::xfer_partial (enum target_object object,
11201 const char *annex, gdb_byte *readbuf,
11202 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11203 ULONGEST *xfered_len)
11204 {
11205 struct remote_state *rs;
11206 int i;
11207 char *p2;
11208 char query_type;
11209 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11210
11211 set_remote_traceframe ();
11212 set_general_thread (inferior_ptid);
11213
11214 rs = get_remote_state ();
11215
11216 /* Handle memory using the standard memory routines. */
11217 if (object == TARGET_OBJECT_MEMORY)
11218 {
11219 /* If the remote target is connected but not running, we should
11220 pass this request down to a lower stratum (e.g. the executable
11221 file). */
11222 if (!target_has_execution ())
11223 return TARGET_XFER_EOF;
11224
11225 if (writebuf != NULL)
11226 return remote_write_bytes (offset, writebuf, len, unit_size,
11227 xfered_len);
11228 else
11229 return remote_read_bytes (offset, readbuf, len, unit_size,
11230 xfered_len);
11231 }
11232
11233 /* Handle extra signal info using qxfer packets. */
11234 if (object == TARGET_OBJECT_SIGNAL_INFO)
11235 {
11236 if (readbuf)
11237 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11238 xfered_len, &remote_protocol_packets
11239 [PACKET_qXfer_siginfo_read]);
11240 else
11241 return remote_write_qxfer ("siginfo", annex,
11242 writebuf, offset, len, xfered_len,
11243 &remote_protocol_packets
11244 [PACKET_qXfer_siginfo_write]);
11245 }
11246
11247 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11248 {
11249 if (readbuf)
11250 return remote_read_qxfer ("statictrace", annex,
11251 readbuf, offset, len, xfered_len,
11252 &remote_protocol_packets
11253 [PACKET_qXfer_statictrace_read]);
11254 else
11255 return TARGET_XFER_E_IO;
11256 }
11257
11258 /* Only handle flash writes. */
11259 if (writebuf != NULL)
11260 {
11261 switch (object)
11262 {
11263 case TARGET_OBJECT_FLASH:
11264 return remote_flash_write (offset, len, xfered_len,
11265 writebuf);
11266
11267 default:
11268 return TARGET_XFER_E_IO;
11269 }
11270 }
11271
11272 /* Map pre-existing objects onto letters. DO NOT do this for new
11273 objects!!! Instead specify new query packets. */
11274 switch (object)
11275 {
11276 case TARGET_OBJECT_AVR:
11277 query_type = 'R';
11278 break;
11279
11280 case TARGET_OBJECT_AUXV:
11281 gdb_assert (annex == NULL);
11282 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11283 xfered_len,
11284 &remote_protocol_packets[PACKET_qXfer_auxv]);
11285
11286 case TARGET_OBJECT_AVAILABLE_FEATURES:
11287 return remote_read_qxfer
11288 ("features", annex, readbuf, offset, len, xfered_len,
11289 &remote_protocol_packets[PACKET_qXfer_features]);
11290
11291 case TARGET_OBJECT_LIBRARIES:
11292 return remote_read_qxfer
11293 ("libraries", annex, readbuf, offset, len, xfered_len,
11294 &remote_protocol_packets[PACKET_qXfer_libraries]);
11295
11296 case TARGET_OBJECT_LIBRARIES_SVR4:
11297 return remote_read_qxfer
11298 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11299 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11300
11301 case TARGET_OBJECT_MEMORY_MAP:
11302 gdb_assert (annex == NULL);
11303 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11304 xfered_len,
11305 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11306
11307 case TARGET_OBJECT_OSDATA:
11308 /* Should only get here if we're connected. */
11309 gdb_assert (rs->remote_desc);
11310 return remote_read_qxfer
11311 ("osdata", annex, readbuf, offset, len, xfered_len,
11312 &remote_protocol_packets[PACKET_qXfer_osdata]);
11313
11314 case TARGET_OBJECT_THREADS:
11315 gdb_assert (annex == NULL);
11316 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11317 xfered_len,
11318 &remote_protocol_packets[PACKET_qXfer_threads]);
11319
11320 case TARGET_OBJECT_TRACEFRAME_INFO:
11321 gdb_assert (annex == NULL);
11322 return remote_read_qxfer
11323 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11324 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11325
11326 case TARGET_OBJECT_FDPIC:
11327 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11328 xfered_len,
11329 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11330
11331 case TARGET_OBJECT_OPENVMS_UIB:
11332 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11333 xfered_len,
11334 &remote_protocol_packets[PACKET_qXfer_uib]);
11335
11336 case TARGET_OBJECT_BTRACE:
11337 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11338 xfered_len,
11339 &remote_protocol_packets[PACKET_qXfer_btrace]);
11340
11341 case TARGET_OBJECT_BTRACE_CONF:
11342 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11343 len, xfered_len,
11344 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11345
11346 case TARGET_OBJECT_EXEC_FILE:
11347 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11348 len, xfered_len,
11349 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11350
11351 default:
11352 return TARGET_XFER_E_IO;
11353 }
11354
11355 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11356 large enough let the caller deal with it. */
11357 if (len < get_remote_packet_size ())
11358 return TARGET_XFER_E_IO;
11359 len = get_remote_packet_size ();
11360
11361 /* Except for querying the minimum buffer size, target must be open. */
11362 if (!rs->remote_desc)
11363 error (_("remote query is only available after target open"));
11364
11365 gdb_assert (annex != NULL);
11366 gdb_assert (readbuf != NULL);
11367
11368 p2 = rs->buf.data ();
11369 *p2++ = 'q';
11370 *p2++ = query_type;
11371
11372 /* We used one buffer char for the remote protocol q command and
11373 another for the query type. As the remote protocol encapsulation
11374 uses 4 chars plus one extra in case we are debugging
11375 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11376 string. */
11377 i = 0;
11378 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11379 {
11380 /* Bad caller may have sent forbidden characters. */
11381 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11382 *p2++ = annex[i];
11383 i++;
11384 }
11385 *p2 = '\0';
11386 gdb_assert (annex[i] == '\0');
11387
11388 i = putpkt (rs->buf);
11389 if (i < 0)
11390 return TARGET_XFER_E_IO;
11391
11392 getpkt (&rs->buf, 0);
11393 strcpy ((char *) readbuf, rs->buf.data ());
11394
11395 *xfered_len = strlen ((char *) readbuf);
11396 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11397 }
11398
11399 /* Implementation of to_get_memory_xfer_limit. */
11400
11401 ULONGEST
11402 remote_target::get_memory_xfer_limit ()
11403 {
11404 return get_memory_write_packet_size ();
11405 }
11406
11407 int
11408 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11409 const gdb_byte *pattern, ULONGEST pattern_len,
11410 CORE_ADDR *found_addrp)
11411 {
11412 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11413 struct remote_state *rs = get_remote_state ();
11414 int max_size = get_memory_write_packet_size ();
11415 struct packet_config *packet =
11416 &remote_protocol_packets[PACKET_qSearch_memory];
11417 /* Number of packet bytes used to encode the pattern;
11418 this could be more than PATTERN_LEN due to escape characters. */
11419 int escaped_pattern_len;
11420 /* Amount of pattern that was encodable in the packet. */
11421 int used_pattern_len;
11422 int i;
11423 int found;
11424 ULONGEST found_addr;
11425
11426 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11427 {
11428 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11429 == len);
11430 };
11431
11432 /* Don't go to the target if we don't have to. This is done before
11433 checking packet_config_support to avoid the possibility that a
11434 success for this edge case means the facility works in
11435 general. */
11436 if (pattern_len > search_space_len)
11437 return 0;
11438 if (pattern_len == 0)
11439 {
11440 *found_addrp = start_addr;
11441 return 1;
11442 }
11443
11444 /* If we already know the packet isn't supported, fall back to the simple
11445 way of searching memory. */
11446
11447 if (packet_config_support (packet) == PACKET_DISABLE)
11448 {
11449 /* Target doesn't provided special support, fall back and use the
11450 standard support (copy memory and do the search here). */
11451 return simple_search_memory (read_memory, start_addr, search_space_len,
11452 pattern, pattern_len, found_addrp);
11453 }
11454
11455 /* Make sure the remote is pointing at the right process. */
11456 set_general_process ();
11457
11458 /* Insert header. */
11459 i = snprintf (rs->buf.data (), max_size,
11460 "qSearch:memory:%s;%s;",
11461 phex_nz (start_addr, addr_size),
11462 phex_nz (search_space_len, sizeof (search_space_len)));
11463 max_size -= (i + 1);
11464
11465 /* Escape as much data as fits into rs->buf. */
11466 escaped_pattern_len =
11467 remote_escape_output (pattern, pattern_len, 1,
11468 (gdb_byte *) rs->buf.data () + i,
11469 &used_pattern_len, max_size);
11470
11471 /* Bail if the pattern is too large. */
11472 if (used_pattern_len != pattern_len)
11473 error (_("Pattern is too large to transmit to remote target."));
11474
11475 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11476 || getpkt_sane (&rs->buf, 0) < 0
11477 || packet_ok (rs->buf, packet) != PACKET_OK)
11478 {
11479 /* The request may not have worked because the command is not
11480 supported. If so, fall back to the simple way. */
11481 if (packet_config_support (packet) == PACKET_DISABLE)
11482 {
11483 return simple_search_memory (read_memory, start_addr, search_space_len,
11484 pattern, pattern_len, found_addrp);
11485 }
11486 return -1;
11487 }
11488
11489 if (rs->buf[0] == '0')
11490 found = 0;
11491 else if (rs->buf[0] == '1')
11492 {
11493 found = 1;
11494 if (rs->buf[1] != ',')
11495 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11496 unpack_varlen_hex (&rs->buf[2], &found_addr);
11497 *found_addrp = found_addr;
11498 }
11499 else
11500 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11501
11502 return found;
11503 }
11504
11505 void
11506 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11507 {
11508 struct remote_state *rs = get_remote_state ();
11509 char *p = rs->buf.data ();
11510
11511 if (!rs->remote_desc)
11512 error (_("remote rcmd is only available after target open"));
11513
11514 /* Send a NULL command across as an empty command. */
11515 if (command == NULL)
11516 command = "";
11517
11518 /* The query prefix. */
11519 strcpy (rs->buf.data (), "qRcmd,");
11520 p = strchr (rs->buf.data (), '\0');
11521
11522 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11523 > get_remote_packet_size ())
11524 error (_("\"monitor\" command ``%s'' is too long."), command);
11525
11526 /* Encode the actual command. */
11527 bin2hex ((const gdb_byte *) command, p, strlen (command));
11528
11529 if (putpkt (rs->buf) < 0)
11530 error (_("Communication problem with target."));
11531
11532 /* get/display the response */
11533 while (1)
11534 {
11535 char *buf;
11536
11537 /* XXX - see also remote_get_noisy_reply(). */
11538 QUIT; /* Allow user to bail out with ^C. */
11539 rs->buf[0] = '\0';
11540 if (getpkt_sane (&rs->buf, 0) == -1)
11541 {
11542 /* Timeout. Continue to (try to) read responses.
11543 This is better than stopping with an error, assuming the stub
11544 is still executing the (long) monitor command.
11545 If needed, the user can interrupt gdb using C-c, obtaining
11546 an effect similar to stop on timeout. */
11547 continue;
11548 }
11549 buf = rs->buf.data ();
11550 if (buf[0] == '\0')
11551 error (_("Target does not support this command."));
11552 if (buf[0] == 'O' && buf[1] != 'K')
11553 {
11554 remote_console_output (buf + 1); /* 'O' message from stub. */
11555 continue;
11556 }
11557 if (strcmp (buf, "OK") == 0)
11558 break;
11559 if (strlen (buf) == 3 && buf[0] == 'E'
11560 && isdigit (buf[1]) && isdigit (buf[2]))
11561 {
11562 error (_("Protocol error with Rcmd"));
11563 }
11564 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11565 {
11566 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11567
11568 fputc_unfiltered (c, outbuf);
11569 }
11570 break;
11571 }
11572 }
11573
11574 std::vector<mem_region>
11575 remote_target::memory_map ()
11576 {
11577 std::vector<mem_region> result;
11578 gdb::optional<gdb::char_vector> text
11579 = target_read_stralloc (current_inferior ()->top_target (),
11580 TARGET_OBJECT_MEMORY_MAP, NULL);
11581
11582 if (text)
11583 result = parse_memory_map (text->data ());
11584
11585 return result;
11586 }
11587
11588 static void
11589 packet_command (const char *args, int from_tty)
11590 {
11591 remote_target *remote = get_current_remote_target ();
11592
11593 if (remote == nullptr)
11594 error (_("command can only be used with remote target"));
11595
11596 remote->packet_command (args, from_tty);
11597 }
11598
11599 void
11600 remote_target::packet_command (const char *args, int from_tty)
11601 {
11602 if (!args)
11603 error (_("remote-packet command requires packet text as argument"));
11604
11605 puts_filtered ("sending: ");
11606 print_packet (args);
11607 puts_filtered ("\n");
11608 putpkt (args);
11609
11610 remote_state *rs = get_remote_state ();
11611
11612 getpkt (&rs->buf, 0);
11613 puts_filtered ("received: ");
11614 print_packet (rs->buf.data ());
11615 puts_filtered ("\n");
11616 }
11617
11618 #if 0
11619 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11620
11621 static void display_thread_info (struct gdb_ext_thread_info *info);
11622
11623 static void threadset_test_cmd (char *cmd, int tty);
11624
11625 static void threadalive_test (char *cmd, int tty);
11626
11627 static void threadlist_test_cmd (char *cmd, int tty);
11628
11629 int get_and_display_threadinfo (threadref *ref);
11630
11631 static void threadinfo_test_cmd (char *cmd, int tty);
11632
11633 static int thread_display_step (threadref *ref, void *context);
11634
11635 static void threadlist_update_test_cmd (char *cmd, int tty);
11636
11637 static void init_remote_threadtests (void);
11638
11639 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11640
11641 static void
11642 threadset_test_cmd (const char *cmd, int tty)
11643 {
11644 int sample_thread = SAMPLE_THREAD;
11645
11646 printf_filtered (_("Remote threadset test\n"));
11647 set_general_thread (sample_thread);
11648 }
11649
11650
11651 static void
11652 threadalive_test (const char *cmd, int tty)
11653 {
11654 int sample_thread = SAMPLE_THREAD;
11655 int pid = inferior_ptid.pid ();
11656 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11657
11658 if (remote_thread_alive (ptid))
11659 printf_filtered ("PASS: Thread alive test\n");
11660 else
11661 printf_filtered ("FAIL: Thread alive test\n");
11662 }
11663
11664 void output_threadid (char *title, threadref *ref);
11665
11666 void
11667 output_threadid (char *title, threadref *ref)
11668 {
11669 char hexid[20];
11670
11671 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11672 hexid[16] = 0;
11673 printf_filtered ("%s %s\n", title, (&hexid[0]));
11674 }
11675
11676 static void
11677 threadlist_test_cmd (const char *cmd, int tty)
11678 {
11679 int startflag = 1;
11680 threadref nextthread;
11681 int done, result_count;
11682 threadref threadlist[3];
11683
11684 printf_filtered ("Remote Threadlist test\n");
11685 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11686 &result_count, &threadlist[0]))
11687 printf_filtered ("FAIL: threadlist test\n");
11688 else
11689 {
11690 threadref *scan = threadlist;
11691 threadref *limit = scan + result_count;
11692
11693 while (scan < limit)
11694 output_threadid (" thread ", scan++);
11695 }
11696 }
11697
11698 void
11699 display_thread_info (struct gdb_ext_thread_info *info)
11700 {
11701 output_threadid ("Threadid: ", &info->threadid);
11702 printf_filtered ("Name: %s\n ", info->shortname);
11703 printf_filtered ("State: %s\n", info->display);
11704 printf_filtered ("other: %s\n\n", info->more_display);
11705 }
11706
11707 int
11708 get_and_display_threadinfo (threadref *ref)
11709 {
11710 int result;
11711 int set;
11712 struct gdb_ext_thread_info threadinfo;
11713
11714 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11715 | TAG_MOREDISPLAY | TAG_DISPLAY;
11716 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11717 display_thread_info (&threadinfo);
11718 return result;
11719 }
11720
11721 static void
11722 threadinfo_test_cmd (const char *cmd, int tty)
11723 {
11724 int athread = SAMPLE_THREAD;
11725 threadref thread;
11726 int set;
11727
11728 int_to_threadref (&thread, athread);
11729 printf_filtered ("Remote Threadinfo test\n");
11730 if (!get_and_display_threadinfo (&thread))
11731 printf_filtered ("FAIL cannot get thread info\n");
11732 }
11733
11734 static int
11735 thread_display_step (threadref *ref, void *context)
11736 {
11737 /* output_threadid(" threadstep ",ref); *//* simple test */
11738 return get_and_display_threadinfo (ref);
11739 }
11740
11741 static void
11742 threadlist_update_test_cmd (const char *cmd, int tty)
11743 {
11744 printf_filtered ("Remote Threadlist update test\n");
11745 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11746 }
11747
11748 static void
11749 init_remote_threadtests (void)
11750 {
11751 add_com ("tlist", class_obscure, threadlist_test_cmd,
11752 _("Fetch and print the remote list of "
11753 "thread identifiers, one pkt only."));
11754 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11755 _("Fetch and display info about one thread."));
11756 add_com ("tset", class_obscure, threadset_test_cmd,
11757 _("Test setting to a different thread."));
11758 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11759 _("Iterate through updating all remote thread info."));
11760 add_com ("talive", class_obscure, threadalive_test,
11761 _("Remote thread alive test."));
11762 }
11763
11764 #endif /* 0 */
11765
11766 /* Convert a thread ID to a string. */
11767
11768 std::string
11769 remote_target::pid_to_str (ptid_t ptid)
11770 {
11771 struct remote_state *rs = get_remote_state ();
11772
11773 if (ptid == null_ptid)
11774 return normal_pid_to_str (ptid);
11775 else if (ptid.is_pid ())
11776 {
11777 /* Printing an inferior target id. */
11778
11779 /* When multi-process extensions are off, there's no way in the
11780 remote protocol to know the remote process id, if there's any
11781 at all. There's one exception --- when we're connected with
11782 target extended-remote, and we manually attached to a process
11783 with "attach PID". We don't record anywhere a flag that
11784 allows us to distinguish that case from the case of
11785 connecting with extended-remote and the stub already being
11786 attached to a process, and reporting yes to qAttached, hence
11787 no smart special casing here. */
11788 if (!remote_multi_process_p (rs))
11789 return "Remote target";
11790
11791 return normal_pid_to_str (ptid);
11792 }
11793 else
11794 {
11795 if (magic_null_ptid == ptid)
11796 return "Thread <main>";
11797 else if (remote_multi_process_p (rs))
11798 if (ptid.lwp () == 0)
11799 return normal_pid_to_str (ptid);
11800 else
11801 return string_printf ("Thread %d.%ld",
11802 ptid.pid (), ptid.lwp ());
11803 else
11804 return string_printf ("Thread %ld", ptid.lwp ());
11805 }
11806 }
11807
11808 /* Get the address of the thread local variable in OBJFILE which is
11809 stored at OFFSET within the thread local storage for thread PTID. */
11810
11811 CORE_ADDR
11812 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11813 CORE_ADDR offset)
11814 {
11815 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11816 {
11817 struct remote_state *rs = get_remote_state ();
11818 char *p = rs->buf.data ();
11819 char *endp = p + get_remote_packet_size ();
11820 enum packet_result result;
11821
11822 strcpy (p, "qGetTLSAddr:");
11823 p += strlen (p);
11824 p = write_ptid (p, endp, ptid);
11825 *p++ = ',';
11826 p += hexnumstr (p, offset);
11827 *p++ = ',';
11828 p += hexnumstr (p, lm);
11829 *p++ = '\0';
11830
11831 putpkt (rs->buf);
11832 getpkt (&rs->buf, 0);
11833 result = packet_ok (rs->buf,
11834 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11835 if (result == PACKET_OK)
11836 {
11837 ULONGEST addr;
11838
11839 unpack_varlen_hex (rs->buf.data (), &addr);
11840 return addr;
11841 }
11842 else if (result == PACKET_UNKNOWN)
11843 throw_error (TLS_GENERIC_ERROR,
11844 _("Remote target doesn't support qGetTLSAddr packet"));
11845 else
11846 throw_error (TLS_GENERIC_ERROR,
11847 _("Remote target failed to process qGetTLSAddr request"));
11848 }
11849 else
11850 throw_error (TLS_GENERIC_ERROR,
11851 _("TLS not supported or disabled on this target"));
11852 /* Not reached. */
11853 return 0;
11854 }
11855
11856 /* Provide thread local base, i.e. Thread Information Block address.
11857 Returns 1 if ptid is found and thread_local_base is non zero. */
11858
11859 bool
11860 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11861 {
11862 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11863 {
11864 struct remote_state *rs = get_remote_state ();
11865 char *p = rs->buf.data ();
11866 char *endp = p + get_remote_packet_size ();
11867 enum packet_result result;
11868
11869 strcpy (p, "qGetTIBAddr:");
11870 p += strlen (p);
11871 p = write_ptid (p, endp, ptid);
11872 *p++ = '\0';
11873
11874 putpkt (rs->buf);
11875 getpkt (&rs->buf, 0);
11876 result = packet_ok (rs->buf,
11877 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11878 if (result == PACKET_OK)
11879 {
11880 ULONGEST val;
11881 unpack_varlen_hex (rs->buf.data (), &val);
11882 if (addr)
11883 *addr = (CORE_ADDR) val;
11884 return true;
11885 }
11886 else if (result == PACKET_UNKNOWN)
11887 error (_("Remote target doesn't support qGetTIBAddr packet"));
11888 else
11889 error (_("Remote target failed to process qGetTIBAddr request"));
11890 }
11891 else
11892 error (_("qGetTIBAddr not supported or disabled on this target"));
11893 /* Not reached. */
11894 return false;
11895 }
11896
11897 /* Support for inferring a target description based on the current
11898 architecture and the size of a 'g' packet. While the 'g' packet
11899 can have any size (since optional registers can be left off the
11900 end), some sizes are easily recognizable given knowledge of the
11901 approximate architecture. */
11902
11903 struct remote_g_packet_guess
11904 {
11905 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11906 : bytes (bytes_),
11907 tdesc (tdesc_)
11908 {
11909 }
11910
11911 int bytes;
11912 const struct target_desc *tdesc;
11913 };
11914
11915 struct remote_g_packet_data : public allocate_on_obstack
11916 {
11917 std::vector<remote_g_packet_guess> guesses;
11918 };
11919
11920 static struct gdbarch_data *remote_g_packet_data_handle;
11921
11922 static void *
11923 remote_g_packet_data_init (struct obstack *obstack)
11924 {
11925 return new (obstack) remote_g_packet_data;
11926 }
11927
11928 void
11929 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11930 const struct target_desc *tdesc)
11931 {
11932 struct remote_g_packet_data *data
11933 = ((struct remote_g_packet_data *)
11934 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11935
11936 gdb_assert (tdesc != NULL);
11937
11938 for (const remote_g_packet_guess &guess : data->guesses)
11939 if (guess.bytes == bytes)
11940 internal_error (__FILE__, __LINE__,
11941 _("Duplicate g packet description added for size %d"),
11942 bytes);
11943
11944 data->guesses.emplace_back (bytes, tdesc);
11945 }
11946
11947 /* Return true if remote_read_description would do anything on this target
11948 and architecture, false otherwise. */
11949
11950 static bool
11951 remote_read_description_p (struct target_ops *target)
11952 {
11953 struct remote_g_packet_data *data
11954 = ((struct remote_g_packet_data *)
11955 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11956
11957 return !data->guesses.empty ();
11958 }
11959
11960 const struct target_desc *
11961 remote_target::read_description ()
11962 {
11963 struct remote_g_packet_data *data
11964 = ((struct remote_g_packet_data *)
11965 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11966
11967 /* Do not try this during initial connection, when we do not know
11968 whether there is a running but stopped thread. */
11969 if (!target_has_execution () || inferior_ptid == null_ptid)
11970 return beneath ()->read_description ();
11971
11972 if (!data->guesses.empty ())
11973 {
11974 int bytes = send_g_packet ();
11975
11976 for (const remote_g_packet_guess &guess : data->guesses)
11977 if (guess.bytes == bytes)
11978 return guess.tdesc;
11979
11980 /* We discard the g packet. A minor optimization would be to
11981 hold on to it, and fill the register cache once we have selected
11982 an architecture, but it's too tricky to do safely. */
11983 }
11984
11985 return beneath ()->read_description ();
11986 }
11987
11988 /* Remote file transfer support. This is host-initiated I/O, not
11989 target-initiated; for target-initiated, see remote-fileio.c. */
11990
11991 /* If *LEFT is at least the length of STRING, copy STRING to
11992 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11993 decrease *LEFT. Otherwise raise an error. */
11994
11995 static void
11996 remote_buffer_add_string (char **buffer, int *left, const char *string)
11997 {
11998 int len = strlen (string);
11999
12000 if (len > *left)
12001 error (_("Packet too long for target."));
12002
12003 memcpy (*buffer, string, len);
12004 *buffer += len;
12005 *left -= len;
12006
12007 /* NUL-terminate the buffer as a convenience, if there is
12008 room. */
12009 if (*left)
12010 **buffer = '\0';
12011 }
12012
12013 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
12014 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12015 decrease *LEFT. Otherwise raise an error. */
12016
12017 static void
12018 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
12019 int len)
12020 {
12021 if (2 * len > *left)
12022 error (_("Packet too long for target."));
12023
12024 bin2hex (bytes, *buffer, len);
12025 *buffer += 2 * len;
12026 *left -= 2 * len;
12027
12028 /* NUL-terminate the buffer as a convenience, if there is
12029 room. */
12030 if (*left)
12031 **buffer = '\0';
12032 }
12033
12034 /* If *LEFT is large enough, convert VALUE to hex and add it to
12035 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12036 decrease *LEFT. Otherwise raise an error. */
12037
12038 static void
12039 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
12040 {
12041 int len = hexnumlen (value);
12042
12043 if (len > *left)
12044 error (_("Packet too long for target."));
12045
12046 hexnumstr (*buffer, value);
12047 *buffer += len;
12048 *left -= len;
12049
12050 /* NUL-terminate the buffer as a convenience, if there is
12051 room. */
12052 if (*left)
12053 **buffer = '\0';
12054 }
12055
12056 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
12057 value, *REMOTE_ERRNO to the remote error number or zero if none
12058 was included, and *ATTACHMENT to point to the start of the annex
12059 if any. The length of the packet isn't needed here; there may
12060 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
12061
12062 Return 0 if the packet could be parsed, -1 if it could not. If
12063 -1 is returned, the other variables may not be initialized. */
12064
12065 static int
12066 remote_hostio_parse_result (const char *buffer, int *retcode,
12067 int *remote_errno, const char **attachment)
12068 {
12069 char *p, *p2;
12070
12071 *remote_errno = 0;
12072 *attachment = NULL;
12073
12074 if (buffer[0] != 'F')
12075 return -1;
12076
12077 errno = 0;
12078 *retcode = strtol (&buffer[1], &p, 16);
12079 if (errno != 0 || p == &buffer[1])
12080 return -1;
12081
12082 /* Check for ",errno". */
12083 if (*p == ',')
12084 {
12085 errno = 0;
12086 *remote_errno = strtol (p + 1, &p2, 16);
12087 if (errno != 0 || p + 1 == p2)
12088 return -1;
12089 p = p2;
12090 }
12091
12092 /* Check for ";attachment". If there is no attachment, the
12093 packet should end here. */
12094 if (*p == ';')
12095 {
12096 *attachment = p + 1;
12097 return 0;
12098 }
12099 else if (*p == '\0')
12100 return 0;
12101 else
12102 return -1;
12103 }
12104
12105 /* Send a prepared I/O packet to the target and read its response.
12106 The prepared packet is in the global RS->BUF before this function
12107 is called, and the answer is there when we return.
12108
12109 COMMAND_BYTES is the length of the request to send, which may include
12110 binary data. WHICH_PACKET is the packet configuration to check
12111 before attempting a packet. If an error occurs, *REMOTE_ERRNO
12112 is set to the error number and -1 is returned. Otherwise the value
12113 returned by the function is returned.
12114
12115 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
12116 attachment is expected; an error will be reported if there's a
12117 mismatch. If one is found, *ATTACHMENT will be set to point into
12118 the packet buffer and *ATTACHMENT_LEN will be set to the
12119 attachment's length. */
12120
12121 int
12122 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
12123 int *remote_errno, const char **attachment,
12124 int *attachment_len)
12125 {
12126 struct remote_state *rs = get_remote_state ();
12127 int ret, bytes_read;
12128 const char *attachment_tmp;
12129
12130 if (packet_support (which_packet) == PACKET_DISABLE)
12131 {
12132 *remote_errno = FILEIO_ENOSYS;
12133 return -1;
12134 }
12135
12136 putpkt_binary (rs->buf.data (), command_bytes);
12137 bytes_read = getpkt_sane (&rs->buf, 0);
12138
12139 /* If it timed out, something is wrong. Don't try to parse the
12140 buffer. */
12141 if (bytes_read < 0)
12142 {
12143 *remote_errno = FILEIO_EINVAL;
12144 return -1;
12145 }
12146
12147 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
12148 {
12149 case PACKET_ERROR:
12150 *remote_errno = FILEIO_EINVAL;
12151 return -1;
12152 case PACKET_UNKNOWN:
12153 *remote_errno = FILEIO_ENOSYS;
12154 return -1;
12155 case PACKET_OK:
12156 break;
12157 }
12158
12159 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
12160 &attachment_tmp))
12161 {
12162 *remote_errno = FILEIO_EINVAL;
12163 return -1;
12164 }
12165
12166 /* Make sure we saw an attachment if and only if we expected one. */
12167 if ((attachment_tmp == NULL && attachment != NULL)
12168 || (attachment_tmp != NULL && attachment == NULL))
12169 {
12170 *remote_errno = FILEIO_EINVAL;
12171 return -1;
12172 }
12173
12174 /* If an attachment was found, it must point into the packet buffer;
12175 work out how many bytes there were. */
12176 if (attachment_tmp != NULL)
12177 {
12178 *attachment = attachment_tmp;
12179 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
12180 }
12181
12182 return ret;
12183 }
12184
12185 /* See declaration.h. */
12186
12187 void
12188 readahead_cache::invalidate ()
12189 {
12190 this->fd = -1;
12191 }
12192
12193 /* See declaration.h. */
12194
12195 void
12196 readahead_cache::invalidate_fd (int fd)
12197 {
12198 if (this->fd == fd)
12199 this->fd = -1;
12200 }
12201
12202 /* Set the filesystem remote_hostio functions that take FILENAME
12203 arguments will use. Return 0 on success, or -1 if an error
12204 occurs (and set *REMOTE_ERRNO). */
12205
12206 int
12207 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12208 int *remote_errno)
12209 {
12210 struct remote_state *rs = get_remote_state ();
12211 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12212 char *p = rs->buf.data ();
12213 int left = get_remote_packet_size () - 1;
12214 char arg[9];
12215 int ret;
12216
12217 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12218 return 0;
12219
12220 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12221 return 0;
12222
12223 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12224
12225 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12226 remote_buffer_add_string (&p, &left, arg);
12227
12228 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
12229 remote_errno, NULL, NULL);
12230
12231 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12232 return 0;
12233
12234 if (ret == 0)
12235 rs->fs_pid = required_pid;
12236
12237 return ret;
12238 }
12239
12240 /* Implementation of to_fileio_open. */
12241
12242 int
12243 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12244 int flags, int mode, int warn_if_slow,
12245 int *remote_errno)
12246 {
12247 struct remote_state *rs = get_remote_state ();
12248 char *p = rs->buf.data ();
12249 int left = get_remote_packet_size () - 1;
12250
12251 if (warn_if_slow)
12252 {
12253 static int warning_issued = 0;
12254
12255 printf_unfiltered (_("Reading %s from remote target...\n"),
12256 filename);
12257
12258 if (!warning_issued)
12259 {
12260 warning (_("File transfers from remote targets can be slow."
12261 " Use \"set sysroot\" to access files locally"
12262 " instead."));
12263 warning_issued = 1;
12264 }
12265 }
12266
12267 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12268 return -1;
12269
12270 remote_buffer_add_string (&p, &left, "vFile:open:");
12271
12272 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12273 strlen (filename));
12274 remote_buffer_add_string (&p, &left, ",");
12275
12276 remote_buffer_add_int (&p, &left, flags);
12277 remote_buffer_add_string (&p, &left, ",");
12278
12279 remote_buffer_add_int (&p, &left, mode);
12280
12281 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12282 remote_errno, NULL, NULL);
12283 }
12284
12285 int
12286 remote_target::fileio_open (struct inferior *inf, const char *filename,
12287 int flags, int mode, int warn_if_slow,
12288 int *remote_errno)
12289 {
12290 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12291 remote_errno);
12292 }
12293
12294 /* Implementation of to_fileio_pwrite. */
12295
12296 int
12297 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12298 ULONGEST offset, int *remote_errno)
12299 {
12300 struct remote_state *rs = get_remote_state ();
12301 char *p = rs->buf.data ();
12302 int left = get_remote_packet_size ();
12303 int out_len;
12304
12305 rs->readahead_cache.invalidate_fd (fd);
12306
12307 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12308
12309 remote_buffer_add_int (&p, &left, fd);
12310 remote_buffer_add_string (&p, &left, ",");
12311
12312 remote_buffer_add_int (&p, &left, offset);
12313 remote_buffer_add_string (&p, &left, ",");
12314
12315 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12316 (get_remote_packet_size ()
12317 - (p - rs->buf.data ())));
12318
12319 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12320 remote_errno, NULL, NULL);
12321 }
12322
12323 int
12324 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12325 ULONGEST offset, int *remote_errno)
12326 {
12327 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12328 }
12329
12330 /* Helper for the implementation of to_fileio_pread. Read the file
12331 from the remote side with vFile:pread. */
12332
12333 int
12334 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12335 ULONGEST offset, int *remote_errno)
12336 {
12337 struct remote_state *rs = get_remote_state ();
12338 char *p = rs->buf.data ();
12339 const char *attachment;
12340 int left = get_remote_packet_size ();
12341 int ret, attachment_len;
12342 int read_len;
12343
12344 remote_buffer_add_string (&p, &left, "vFile:pread:");
12345
12346 remote_buffer_add_int (&p, &left, fd);
12347 remote_buffer_add_string (&p, &left, ",");
12348
12349 remote_buffer_add_int (&p, &left, len);
12350 remote_buffer_add_string (&p, &left, ",");
12351
12352 remote_buffer_add_int (&p, &left, offset);
12353
12354 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12355 remote_errno, &attachment,
12356 &attachment_len);
12357
12358 if (ret < 0)
12359 return ret;
12360
12361 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12362 read_buf, len);
12363 if (read_len != ret)
12364 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12365
12366 return ret;
12367 }
12368
12369 /* See declaration.h. */
12370
12371 int
12372 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12373 ULONGEST offset)
12374 {
12375 if (this->fd == fd
12376 && this->offset <= offset
12377 && offset < this->offset + this->bufsize)
12378 {
12379 ULONGEST max = this->offset + this->bufsize;
12380
12381 if (offset + len > max)
12382 len = max - offset;
12383
12384 memcpy (read_buf, this->buf + offset - this->offset, len);
12385 return len;
12386 }
12387
12388 return 0;
12389 }
12390
12391 /* Implementation of to_fileio_pread. */
12392
12393 int
12394 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12395 ULONGEST offset, int *remote_errno)
12396 {
12397 int ret;
12398 struct remote_state *rs = get_remote_state ();
12399 readahead_cache *cache = &rs->readahead_cache;
12400
12401 ret = cache->pread (fd, read_buf, len, offset);
12402 if (ret > 0)
12403 {
12404 cache->hit_count++;
12405
12406 remote_debug_printf ("readahead cache hit %s",
12407 pulongest (cache->hit_count));
12408 return ret;
12409 }
12410
12411 cache->miss_count++;
12412
12413 remote_debug_printf ("readahead cache miss %s",
12414 pulongest (cache->miss_count));
12415
12416 cache->fd = fd;
12417 cache->offset = offset;
12418 cache->bufsize = get_remote_packet_size ();
12419 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12420
12421 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12422 cache->offset, remote_errno);
12423 if (ret <= 0)
12424 {
12425 cache->invalidate_fd (fd);
12426 return ret;
12427 }
12428
12429 cache->bufsize = ret;
12430 return cache->pread (fd, read_buf, len, offset);
12431 }
12432
12433 int
12434 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12435 ULONGEST offset, int *remote_errno)
12436 {
12437 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12438 }
12439
12440 /* Implementation of to_fileio_close. */
12441
12442 int
12443 remote_target::remote_hostio_close (int fd, int *remote_errno)
12444 {
12445 struct remote_state *rs = get_remote_state ();
12446 char *p = rs->buf.data ();
12447 int left = get_remote_packet_size () - 1;
12448
12449 rs->readahead_cache.invalidate_fd (fd);
12450
12451 remote_buffer_add_string (&p, &left, "vFile:close:");
12452
12453 remote_buffer_add_int (&p, &left, fd);
12454
12455 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12456 remote_errno, NULL, NULL);
12457 }
12458
12459 int
12460 remote_target::fileio_close (int fd, int *remote_errno)
12461 {
12462 return remote_hostio_close (fd, remote_errno);
12463 }
12464
12465 /* Implementation of to_fileio_unlink. */
12466
12467 int
12468 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12469 int *remote_errno)
12470 {
12471 struct remote_state *rs = get_remote_state ();
12472 char *p = rs->buf.data ();
12473 int left = get_remote_packet_size () - 1;
12474
12475 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12476 return -1;
12477
12478 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12479
12480 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12481 strlen (filename));
12482
12483 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12484 remote_errno, NULL, NULL);
12485 }
12486
12487 int
12488 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12489 int *remote_errno)
12490 {
12491 return remote_hostio_unlink (inf, filename, remote_errno);
12492 }
12493
12494 /* Implementation of to_fileio_readlink. */
12495
12496 gdb::optional<std::string>
12497 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12498 int *remote_errno)
12499 {
12500 struct remote_state *rs = get_remote_state ();
12501 char *p = rs->buf.data ();
12502 const char *attachment;
12503 int left = get_remote_packet_size ();
12504 int len, attachment_len;
12505 int read_len;
12506
12507 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12508 return {};
12509
12510 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12511
12512 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12513 strlen (filename));
12514
12515 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12516 remote_errno, &attachment,
12517 &attachment_len);
12518
12519 if (len < 0)
12520 return {};
12521
12522 std::string ret (len, '\0');
12523
12524 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12525 (gdb_byte *) &ret[0], len);
12526 if (read_len != len)
12527 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12528
12529 return ret;
12530 }
12531
12532 /* Implementation of to_fileio_fstat. */
12533
12534 int
12535 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12536 {
12537 struct remote_state *rs = get_remote_state ();
12538 char *p = rs->buf.data ();
12539 int left = get_remote_packet_size ();
12540 int attachment_len, ret;
12541 const char *attachment;
12542 struct fio_stat fst;
12543 int read_len;
12544
12545 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12546
12547 remote_buffer_add_int (&p, &left, fd);
12548
12549 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12550 remote_errno, &attachment,
12551 &attachment_len);
12552 if (ret < 0)
12553 {
12554 if (*remote_errno != FILEIO_ENOSYS)
12555 return ret;
12556
12557 /* Strictly we should return -1, ENOSYS here, but when
12558 "set sysroot remote:" was implemented in August 2008
12559 BFD's need for a stat function was sidestepped with
12560 this hack. This was not remedied until March 2015
12561 so we retain the previous behavior to avoid breaking
12562 compatibility.
12563
12564 Note that the memset is a March 2015 addition; older
12565 GDBs set st_size *and nothing else* so the structure
12566 would have garbage in all other fields. This might
12567 break something but retaining the previous behavior
12568 here would be just too wrong. */
12569
12570 memset (st, 0, sizeof (struct stat));
12571 st->st_size = INT_MAX;
12572 return 0;
12573 }
12574
12575 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12576 (gdb_byte *) &fst, sizeof (fst));
12577
12578 if (read_len != ret)
12579 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12580
12581 if (read_len != sizeof (fst))
12582 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12583 read_len, (int) sizeof (fst));
12584
12585 remote_fileio_to_host_stat (&fst, st);
12586
12587 return 0;
12588 }
12589
12590 /* Implementation of to_filesystem_is_local. */
12591
12592 bool
12593 remote_target::filesystem_is_local ()
12594 {
12595 /* Valgrind GDB presents itself as a remote target but works
12596 on the local filesystem: it does not implement remote get
12597 and users are not expected to set a sysroot. To handle
12598 this case we treat the remote filesystem as local if the
12599 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12600 does not support vFile:open. */
12601 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12602 {
12603 enum packet_support ps = packet_support (PACKET_vFile_open);
12604
12605 if (ps == PACKET_SUPPORT_UNKNOWN)
12606 {
12607 int fd, remote_errno;
12608
12609 /* Try opening a file to probe support. The supplied
12610 filename is irrelevant, we only care about whether
12611 the stub recognizes the packet or not. */
12612 fd = remote_hostio_open (NULL, "just probing",
12613 FILEIO_O_RDONLY, 0700, 0,
12614 &remote_errno);
12615
12616 if (fd >= 0)
12617 remote_hostio_close (fd, &remote_errno);
12618
12619 ps = packet_support (PACKET_vFile_open);
12620 }
12621
12622 if (ps == PACKET_DISABLE)
12623 {
12624 static int warning_issued = 0;
12625
12626 if (!warning_issued)
12627 {
12628 warning (_("remote target does not support file"
12629 " transfer, attempting to access files"
12630 " from local filesystem."));
12631 warning_issued = 1;
12632 }
12633
12634 return true;
12635 }
12636 }
12637
12638 return false;
12639 }
12640
12641 static int
12642 remote_fileio_errno_to_host (int errnum)
12643 {
12644 switch (errnum)
12645 {
12646 case FILEIO_EPERM:
12647 return EPERM;
12648 case FILEIO_ENOENT:
12649 return ENOENT;
12650 case FILEIO_EINTR:
12651 return EINTR;
12652 case FILEIO_EIO:
12653 return EIO;
12654 case FILEIO_EBADF:
12655 return EBADF;
12656 case FILEIO_EACCES:
12657 return EACCES;
12658 case FILEIO_EFAULT:
12659 return EFAULT;
12660 case FILEIO_EBUSY:
12661 return EBUSY;
12662 case FILEIO_EEXIST:
12663 return EEXIST;
12664 case FILEIO_ENODEV:
12665 return ENODEV;
12666 case FILEIO_ENOTDIR:
12667 return ENOTDIR;
12668 case FILEIO_EISDIR:
12669 return EISDIR;
12670 case FILEIO_EINVAL:
12671 return EINVAL;
12672 case FILEIO_ENFILE:
12673 return ENFILE;
12674 case FILEIO_EMFILE:
12675 return EMFILE;
12676 case FILEIO_EFBIG:
12677 return EFBIG;
12678 case FILEIO_ENOSPC:
12679 return ENOSPC;
12680 case FILEIO_ESPIPE:
12681 return ESPIPE;
12682 case FILEIO_EROFS:
12683 return EROFS;
12684 case FILEIO_ENOSYS:
12685 return ENOSYS;
12686 case FILEIO_ENAMETOOLONG:
12687 return ENAMETOOLONG;
12688 }
12689 return -1;
12690 }
12691
12692 static char *
12693 remote_hostio_error (int errnum)
12694 {
12695 int host_error = remote_fileio_errno_to_host (errnum);
12696
12697 if (host_error == -1)
12698 error (_("Unknown remote I/O error %d"), errnum);
12699 else
12700 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12701 }
12702
12703 /* A RAII wrapper around a remote file descriptor. */
12704
12705 class scoped_remote_fd
12706 {
12707 public:
12708 scoped_remote_fd (remote_target *remote, int fd)
12709 : m_remote (remote), m_fd (fd)
12710 {
12711 }
12712
12713 ~scoped_remote_fd ()
12714 {
12715 if (m_fd != -1)
12716 {
12717 try
12718 {
12719 int remote_errno;
12720 m_remote->remote_hostio_close (m_fd, &remote_errno);
12721 }
12722 catch (...)
12723 {
12724 /* Swallow exception before it escapes the dtor. If
12725 something goes wrong, likely the connection is gone,
12726 and there's nothing else that can be done. */
12727 }
12728 }
12729 }
12730
12731 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12732
12733 /* Release ownership of the file descriptor, and return it. */
12734 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12735 {
12736 int fd = m_fd;
12737 m_fd = -1;
12738 return fd;
12739 }
12740
12741 /* Return the owned file descriptor. */
12742 int get () const noexcept
12743 {
12744 return m_fd;
12745 }
12746
12747 private:
12748 /* The remote target. */
12749 remote_target *m_remote;
12750
12751 /* The owned remote I/O file descriptor. */
12752 int m_fd;
12753 };
12754
12755 void
12756 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12757 {
12758 remote_target *remote = get_current_remote_target ();
12759
12760 if (remote == nullptr)
12761 error (_("command can only be used with remote target"));
12762
12763 remote->remote_file_put (local_file, remote_file, from_tty);
12764 }
12765
12766 void
12767 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12768 int from_tty)
12769 {
12770 int retcode, remote_errno, bytes, io_size;
12771 int bytes_in_buffer;
12772 int saw_eof;
12773 ULONGEST offset;
12774
12775 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12776 if (file == NULL)
12777 perror_with_name (local_file);
12778
12779 scoped_remote_fd fd
12780 (this, remote_hostio_open (NULL,
12781 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12782 | FILEIO_O_TRUNC),
12783 0700, 0, &remote_errno));
12784 if (fd.get () == -1)
12785 remote_hostio_error (remote_errno);
12786
12787 /* Send up to this many bytes at once. They won't all fit in the
12788 remote packet limit, so we'll transfer slightly fewer. */
12789 io_size = get_remote_packet_size ();
12790 gdb::byte_vector buffer (io_size);
12791
12792 bytes_in_buffer = 0;
12793 saw_eof = 0;
12794 offset = 0;
12795 while (bytes_in_buffer || !saw_eof)
12796 {
12797 if (!saw_eof)
12798 {
12799 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12800 io_size - bytes_in_buffer,
12801 file.get ());
12802 if (bytes == 0)
12803 {
12804 if (ferror (file.get ()))
12805 error (_("Error reading %s."), local_file);
12806 else
12807 {
12808 /* EOF. Unless there is something still in the
12809 buffer from the last iteration, we are done. */
12810 saw_eof = 1;
12811 if (bytes_in_buffer == 0)
12812 break;
12813 }
12814 }
12815 }
12816 else
12817 bytes = 0;
12818
12819 bytes += bytes_in_buffer;
12820 bytes_in_buffer = 0;
12821
12822 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12823 offset, &remote_errno);
12824
12825 if (retcode < 0)
12826 remote_hostio_error (remote_errno);
12827 else if (retcode == 0)
12828 error (_("Remote write of %d bytes returned 0!"), bytes);
12829 else if (retcode < bytes)
12830 {
12831 /* Short write. Save the rest of the read data for the next
12832 write. */
12833 bytes_in_buffer = bytes - retcode;
12834 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12835 }
12836
12837 offset += retcode;
12838 }
12839
12840 if (remote_hostio_close (fd.release (), &remote_errno))
12841 remote_hostio_error (remote_errno);
12842
12843 if (from_tty)
12844 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12845 }
12846
12847 void
12848 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12849 {
12850 remote_target *remote = get_current_remote_target ();
12851
12852 if (remote == nullptr)
12853 error (_("command can only be used with remote target"));
12854
12855 remote->remote_file_get (remote_file, local_file, from_tty);
12856 }
12857
12858 void
12859 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12860 int from_tty)
12861 {
12862 int remote_errno, bytes, io_size;
12863 ULONGEST offset;
12864
12865 scoped_remote_fd fd
12866 (this, remote_hostio_open (NULL,
12867 remote_file, FILEIO_O_RDONLY, 0, 0,
12868 &remote_errno));
12869 if (fd.get () == -1)
12870 remote_hostio_error (remote_errno);
12871
12872 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12873 if (file == NULL)
12874 perror_with_name (local_file);
12875
12876 /* Send up to this many bytes at once. They won't all fit in the
12877 remote packet limit, so we'll transfer slightly fewer. */
12878 io_size = get_remote_packet_size ();
12879 gdb::byte_vector buffer (io_size);
12880
12881 offset = 0;
12882 while (1)
12883 {
12884 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12885 &remote_errno);
12886 if (bytes == 0)
12887 /* Success, but no bytes, means end-of-file. */
12888 break;
12889 if (bytes == -1)
12890 remote_hostio_error (remote_errno);
12891
12892 offset += bytes;
12893
12894 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12895 if (bytes == 0)
12896 perror_with_name (local_file);
12897 }
12898
12899 if (remote_hostio_close (fd.release (), &remote_errno))
12900 remote_hostio_error (remote_errno);
12901
12902 if (from_tty)
12903 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12904 }
12905
12906 void
12907 remote_file_delete (const char *remote_file, int from_tty)
12908 {
12909 remote_target *remote = get_current_remote_target ();
12910
12911 if (remote == nullptr)
12912 error (_("command can only be used with remote target"));
12913
12914 remote->remote_file_delete (remote_file, from_tty);
12915 }
12916
12917 void
12918 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12919 {
12920 int retcode, remote_errno;
12921
12922 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12923 if (retcode == -1)
12924 remote_hostio_error (remote_errno);
12925
12926 if (from_tty)
12927 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12928 }
12929
12930 static void
12931 remote_put_command (const char *args, int from_tty)
12932 {
12933 if (args == NULL)
12934 error_no_arg (_("file to put"));
12935
12936 gdb_argv argv (args);
12937 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12938 error (_("Invalid parameters to remote put"));
12939
12940 remote_file_put (argv[0], argv[1], from_tty);
12941 }
12942
12943 static void
12944 remote_get_command (const char *args, int from_tty)
12945 {
12946 if (args == NULL)
12947 error_no_arg (_("file to get"));
12948
12949 gdb_argv argv (args);
12950 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12951 error (_("Invalid parameters to remote get"));
12952
12953 remote_file_get (argv[0], argv[1], from_tty);
12954 }
12955
12956 static void
12957 remote_delete_command (const char *args, int from_tty)
12958 {
12959 if (args == NULL)
12960 error_no_arg (_("file to delete"));
12961
12962 gdb_argv argv (args);
12963 if (argv[0] == NULL || argv[1] != NULL)
12964 error (_("Invalid parameters to remote delete"));
12965
12966 remote_file_delete (argv[0], from_tty);
12967 }
12968
12969 bool
12970 remote_target::can_execute_reverse ()
12971 {
12972 if (packet_support (PACKET_bs) == PACKET_ENABLE
12973 || packet_support (PACKET_bc) == PACKET_ENABLE)
12974 return true;
12975 else
12976 return false;
12977 }
12978
12979 bool
12980 remote_target::supports_non_stop ()
12981 {
12982 return true;
12983 }
12984
12985 bool
12986 remote_target::supports_disable_randomization ()
12987 {
12988 /* Only supported in extended mode. */
12989 return false;
12990 }
12991
12992 bool
12993 remote_target::supports_multi_process ()
12994 {
12995 struct remote_state *rs = get_remote_state ();
12996
12997 return remote_multi_process_p (rs);
12998 }
12999
13000 static int
13001 remote_supports_cond_tracepoints ()
13002 {
13003 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
13004 }
13005
13006 bool
13007 remote_target::supports_evaluation_of_breakpoint_conditions ()
13008 {
13009 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
13010 }
13011
13012 static int
13013 remote_supports_fast_tracepoints ()
13014 {
13015 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
13016 }
13017
13018 static int
13019 remote_supports_static_tracepoints ()
13020 {
13021 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
13022 }
13023
13024 static int
13025 remote_supports_install_in_trace ()
13026 {
13027 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
13028 }
13029
13030 bool
13031 remote_target::supports_enable_disable_tracepoint ()
13032 {
13033 return (packet_support (PACKET_EnableDisableTracepoints_feature)
13034 == PACKET_ENABLE);
13035 }
13036
13037 bool
13038 remote_target::supports_string_tracing ()
13039 {
13040 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
13041 }
13042
13043 bool
13044 remote_target::can_run_breakpoint_commands ()
13045 {
13046 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
13047 }
13048
13049 void
13050 remote_target::trace_init ()
13051 {
13052 struct remote_state *rs = get_remote_state ();
13053
13054 putpkt ("QTinit");
13055 remote_get_noisy_reply ();
13056 if (strcmp (rs->buf.data (), "OK") != 0)
13057 error (_("Target does not support this command."));
13058 }
13059
13060 /* Recursive routine to walk through command list including loops, and
13061 download packets for each command. */
13062
13063 void
13064 remote_target::remote_download_command_source (int num, ULONGEST addr,
13065 struct command_line *cmds)
13066 {
13067 struct remote_state *rs = get_remote_state ();
13068 struct command_line *cmd;
13069
13070 for (cmd = cmds; cmd; cmd = cmd->next)
13071 {
13072 QUIT; /* Allow user to bail out with ^C. */
13073 strcpy (rs->buf.data (), "QTDPsrc:");
13074 encode_source_string (num, addr, "cmd", cmd->line,
13075 rs->buf.data () + strlen (rs->buf.data ()),
13076 rs->buf.size () - strlen (rs->buf.data ()));
13077 putpkt (rs->buf);
13078 remote_get_noisy_reply ();
13079 if (strcmp (rs->buf.data (), "OK"))
13080 warning (_("Target does not support source download."));
13081
13082 if (cmd->control_type == while_control
13083 || cmd->control_type == while_stepping_control)
13084 {
13085 remote_download_command_source (num, addr, cmd->body_list_0.get ());
13086
13087 QUIT; /* Allow user to bail out with ^C. */
13088 strcpy (rs->buf.data (), "QTDPsrc:");
13089 encode_source_string (num, addr, "cmd", "end",
13090 rs->buf.data () + strlen (rs->buf.data ()),
13091 rs->buf.size () - strlen (rs->buf.data ()));
13092 putpkt (rs->buf);
13093 remote_get_noisy_reply ();
13094 if (strcmp (rs->buf.data (), "OK"))
13095 warning (_("Target does not support source download."));
13096 }
13097 }
13098 }
13099
13100 void
13101 remote_target::download_tracepoint (struct bp_location *loc)
13102 {
13103 CORE_ADDR tpaddr;
13104 char addrbuf[40];
13105 std::vector<std::string> tdp_actions;
13106 std::vector<std::string> stepping_actions;
13107 char *pkt;
13108 struct breakpoint *b = loc->owner;
13109 struct tracepoint *t = (struct tracepoint *) b;
13110 struct remote_state *rs = get_remote_state ();
13111 int ret;
13112 const char *err_msg = _("Tracepoint packet too large for target.");
13113 size_t size_left;
13114
13115 /* We use a buffer other than rs->buf because we'll build strings
13116 across multiple statements, and other statements in between could
13117 modify rs->buf. */
13118 gdb::char_vector buf (get_remote_packet_size ());
13119
13120 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
13121
13122 tpaddr = loc->address;
13123 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
13124 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
13125 b->number, addrbuf, /* address */
13126 (b->enable_state == bp_enabled ? 'E' : 'D'),
13127 t->step_count, t->pass_count);
13128
13129 if (ret < 0 || ret >= buf.size ())
13130 error ("%s", err_msg);
13131
13132 /* Fast tracepoints are mostly handled by the target, but we can
13133 tell the target how big of an instruction block should be moved
13134 around. */
13135 if (b->type == bp_fast_tracepoint)
13136 {
13137 /* Only test for support at download time; we may not know
13138 target capabilities at definition time. */
13139 if (remote_supports_fast_tracepoints ())
13140 {
13141 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
13142 NULL))
13143 {
13144 size_left = buf.size () - strlen (buf.data ());
13145 ret = snprintf (buf.data () + strlen (buf.data ()),
13146 size_left, ":F%x",
13147 gdb_insn_length (loc->gdbarch, tpaddr));
13148
13149 if (ret < 0 || ret >= size_left)
13150 error ("%s", err_msg);
13151 }
13152 else
13153 /* If it passed validation at definition but fails now,
13154 something is very wrong. */
13155 internal_error (__FILE__, __LINE__,
13156 _("Fast tracepoint not "
13157 "valid during download"));
13158 }
13159 else
13160 /* Fast tracepoints are functionally identical to regular
13161 tracepoints, so don't take lack of support as a reason to
13162 give up on the trace run. */
13163 warning (_("Target does not support fast tracepoints, "
13164 "downloading %d as regular tracepoint"), b->number);
13165 }
13166 else if (b->type == bp_static_tracepoint)
13167 {
13168 /* Only test for support at download time; we may not know
13169 target capabilities at definition time. */
13170 if (remote_supports_static_tracepoints ())
13171 {
13172 struct static_tracepoint_marker marker;
13173
13174 if (target_static_tracepoint_marker_at (tpaddr, &marker))
13175 {
13176 size_left = buf.size () - strlen (buf.data ());
13177 ret = snprintf (buf.data () + strlen (buf.data ()),
13178 size_left, ":S");
13179
13180 if (ret < 0 || ret >= size_left)
13181 error ("%s", err_msg);
13182 }
13183 else
13184 error (_("Static tracepoint not valid during download"));
13185 }
13186 else
13187 /* Fast tracepoints are functionally identical to regular
13188 tracepoints, so don't take lack of support as a reason
13189 to give up on the trace run. */
13190 error (_("Target does not support static tracepoints"));
13191 }
13192 /* If the tracepoint has a conditional, make it into an agent
13193 expression and append to the definition. */
13194 if (loc->cond)
13195 {
13196 /* Only test support at download time, we may not know target
13197 capabilities at definition time. */
13198 if (remote_supports_cond_tracepoints ())
13199 {
13200 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
13201 loc->cond.get ());
13202
13203 size_left = buf.size () - strlen (buf.data ());
13204
13205 ret = snprintf (buf.data () + strlen (buf.data ()),
13206 size_left, ":X%x,", aexpr->len);
13207
13208 if (ret < 0 || ret >= size_left)
13209 error ("%s", err_msg);
13210
13211 size_left = buf.size () - strlen (buf.data ());
13212
13213 /* Two bytes to encode each aexpr byte, plus the terminating
13214 null byte. */
13215 if (aexpr->len * 2 + 1 > size_left)
13216 error ("%s", err_msg);
13217
13218 pkt = buf.data () + strlen (buf.data ());
13219
13220 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13221 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13222 *pkt = '\0';
13223 }
13224 else
13225 warning (_("Target does not support conditional tracepoints, "
13226 "ignoring tp %d cond"), b->number);
13227 }
13228
13229 if (b->commands || *default_collect)
13230 {
13231 size_left = buf.size () - strlen (buf.data ());
13232
13233 ret = snprintf (buf.data () + strlen (buf.data ()),
13234 size_left, "-");
13235
13236 if (ret < 0 || ret >= size_left)
13237 error ("%s", err_msg);
13238 }
13239
13240 putpkt (buf.data ());
13241 remote_get_noisy_reply ();
13242 if (strcmp (rs->buf.data (), "OK"))
13243 error (_("Target does not support tracepoints."));
13244
13245 /* do_single_steps (t); */
13246 for (auto action_it = tdp_actions.begin ();
13247 action_it != tdp_actions.end (); action_it++)
13248 {
13249 QUIT; /* Allow user to bail out with ^C. */
13250
13251 bool has_more = ((action_it + 1) != tdp_actions.end ()
13252 || !stepping_actions.empty ());
13253
13254 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13255 b->number, addrbuf, /* address */
13256 action_it->c_str (),
13257 has_more ? '-' : 0);
13258
13259 if (ret < 0 || ret >= buf.size ())
13260 error ("%s", err_msg);
13261
13262 putpkt (buf.data ());
13263 remote_get_noisy_reply ();
13264 if (strcmp (rs->buf.data (), "OK"))
13265 error (_("Error on target while setting tracepoints."));
13266 }
13267
13268 for (auto action_it = stepping_actions.begin ();
13269 action_it != stepping_actions.end (); action_it++)
13270 {
13271 QUIT; /* Allow user to bail out with ^C. */
13272
13273 bool is_first = action_it == stepping_actions.begin ();
13274 bool has_more = (action_it + 1) != stepping_actions.end ();
13275
13276 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13277 b->number, addrbuf, /* address */
13278 is_first ? "S" : "",
13279 action_it->c_str (),
13280 has_more ? "-" : "");
13281
13282 if (ret < 0 || ret >= buf.size ())
13283 error ("%s", err_msg);
13284
13285 putpkt (buf.data ());
13286 remote_get_noisy_reply ();
13287 if (strcmp (rs->buf.data (), "OK"))
13288 error (_("Error on target while setting tracepoints."));
13289 }
13290
13291 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13292 {
13293 if (b->location != NULL)
13294 {
13295 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13296
13297 if (ret < 0 || ret >= buf.size ())
13298 error ("%s", err_msg);
13299
13300 encode_source_string (b->number, loc->address, "at",
13301 event_location_to_string (b->location.get ()),
13302 buf.data () + strlen (buf.data ()),
13303 buf.size () - strlen (buf.data ()));
13304 putpkt (buf.data ());
13305 remote_get_noisy_reply ();
13306 if (strcmp (rs->buf.data (), "OK"))
13307 warning (_("Target does not support source download."));
13308 }
13309 if (b->cond_string)
13310 {
13311 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13312
13313 if (ret < 0 || ret >= buf.size ())
13314 error ("%s", err_msg);
13315
13316 encode_source_string (b->number, loc->address,
13317 "cond", b->cond_string,
13318 buf.data () + strlen (buf.data ()),
13319 buf.size () - strlen (buf.data ()));
13320 putpkt (buf.data ());
13321 remote_get_noisy_reply ();
13322 if (strcmp (rs->buf.data (), "OK"))
13323 warning (_("Target does not support source download."));
13324 }
13325 remote_download_command_source (b->number, loc->address,
13326 breakpoint_commands (b));
13327 }
13328 }
13329
13330 bool
13331 remote_target::can_download_tracepoint ()
13332 {
13333 struct remote_state *rs = get_remote_state ();
13334 struct trace_status *ts;
13335 int status;
13336
13337 /* Don't try to install tracepoints until we've relocated our
13338 symbols, and fetched and merged the target's tracepoint list with
13339 ours. */
13340 if (rs->starting_up)
13341 return false;
13342
13343 ts = current_trace_status ();
13344 status = get_trace_status (ts);
13345
13346 if (status == -1 || !ts->running_known || !ts->running)
13347 return false;
13348
13349 /* If we are in a tracing experiment, but remote stub doesn't support
13350 installing tracepoint in trace, we have to return. */
13351 if (!remote_supports_install_in_trace ())
13352 return false;
13353
13354 return true;
13355 }
13356
13357
13358 void
13359 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13360 {
13361 struct remote_state *rs = get_remote_state ();
13362 char *p;
13363
13364 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13365 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13366 tsv.builtin);
13367 p = rs->buf.data () + strlen (rs->buf.data ());
13368 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13369 >= get_remote_packet_size ())
13370 error (_("Trace state variable name too long for tsv definition packet"));
13371 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13372 *p++ = '\0';
13373 putpkt (rs->buf);
13374 remote_get_noisy_reply ();
13375 if (rs->buf[0] == '\0')
13376 error (_("Target does not support this command."));
13377 if (strcmp (rs->buf.data (), "OK") != 0)
13378 error (_("Error on target while downloading trace state variable."));
13379 }
13380
13381 void
13382 remote_target::enable_tracepoint (struct bp_location *location)
13383 {
13384 struct remote_state *rs = get_remote_state ();
13385
13386 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13387 location->owner->number,
13388 phex (location->address, sizeof (CORE_ADDR)));
13389 putpkt (rs->buf);
13390 remote_get_noisy_reply ();
13391 if (rs->buf[0] == '\0')
13392 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13393 if (strcmp (rs->buf.data (), "OK") != 0)
13394 error (_("Error on target while enabling tracepoint."));
13395 }
13396
13397 void
13398 remote_target::disable_tracepoint (struct bp_location *location)
13399 {
13400 struct remote_state *rs = get_remote_state ();
13401
13402 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13403 location->owner->number,
13404 phex (location->address, sizeof (CORE_ADDR)));
13405 putpkt (rs->buf);
13406 remote_get_noisy_reply ();
13407 if (rs->buf[0] == '\0')
13408 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13409 if (strcmp (rs->buf.data (), "OK") != 0)
13410 error (_("Error on target while disabling tracepoint."));
13411 }
13412
13413 void
13414 remote_target::trace_set_readonly_regions ()
13415 {
13416 asection *s;
13417 bfd_size_type size;
13418 bfd_vma vma;
13419 int anysecs = 0;
13420 int offset = 0;
13421
13422 if (!current_program_space->exec_bfd ())
13423 return; /* No information to give. */
13424
13425 struct remote_state *rs = get_remote_state ();
13426
13427 strcpy (rs->buf.data (), "QTro");
13428 offset = strlen (rs->buf.data ());
13429 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13430 {
13431 char tmp1[40], tmp2[40];
13432 int sec_length;
13433
13434 if ((s->flags & SEC_LOAD) == 0 ||
13435 /* (s->flags & SEC_CODE) == 0 || */
13436 (s->flags & SEC_READONLY) == 0)
13437 continue;
13438
13439 anysecs = 1;
13440 vma = bfd_section_vma (s);
13441 size = bfd_section_size (s);
13442 sprintf_vma (tmp1, vma);
13443 sprintf_vma (tmp2, vma + size);
13444 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13445 if (offset + sec_length + 1 > rs->buf.size ())
13446 {
13447 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13448 warning (_("\
13449 Too many sections for read-only sections definition packet."));
13450 break;
13451 }
13452 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13453 tmp1, tmp2);
13454 offset += sec_length;
13455 }
13456 if (anysecs)
13457 {
13458 putpkt (rs->buf);
13459 getpkt (&rs->buf, 0);
13460 }
13461 }
13462
13463 void
13464 remote_target::trace_start ()
13465 {
13466 struct remote_state *rs = get_remote_state ();
13467
13468 putpkt ("QTStart");
13469 remote_get_noisy_reply ();
13470 if (rs->buf[0] == '\0')
13471 error (_("Target does not support this command."));
13472 if (strcmp (rs->buf.data (), "OK") != 0)
13473 error (_("Bogus reply from target: %s"), rs->buf.data ());
13474 }
13475
13476 int
13477 remote_target::get_trace_status (struct trace_status *ts)
13478 {
13479 /* Initialize it just to avoid a GCC false warning. */
13480 char *p = NULL;
13481 enum packet_result result;
13482 struct remote_state *rs = get_remote_state ();
13483
13484 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13485 return -1;
13486
13487 /* FIXME we need to get register block size some other way. */
13488 trace_regblock_size
13489 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13490
13491 putpkt ("qTStatus");
13492
13493 try
13494 {
13495 p = remote_get_noisy_reply ();
13496 }
13497 catch (const gdb_exception_error &ex)
13498 {
13499 if (ex.error != TARGET_CLOSE_ERROR)
13500 {
13501 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13502 return -1;
13503 }
13504 throw;
13505 }
13506
13507 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13508
13509 /* If the remote target doesn't do tracing, flag it. */
13510 if (result == PACKET_UNKNOWN)
13511 return -1;
13512
13513 /* We're working with a live target. */
13514 ts->filename = NULL;
13515
13516 if (*p++ != 'T')
13517 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13518
13519 /* Function 'parse_trace_status' sets default value of each field of
13520 'ts' at first, so we don't have to do it here. */
13521 parse_trace_status (p, ts);
13522
13523 return ts->running;
13524 }
13525
13526 void
13527 remote_target::get_tracepoint_status (struct breakpoint *bp,
13528 struct uploaded_tp *utp)
13529 {
13530 struct remote_state *rs = get_remote_state ();
13531 char *reply;
13532 struct tracepoint *tp = (struct tracepoint *) bp;
13533 size_t size = get_remote_packet_size ();
13534
13535 if (tp)
13536 {
13537 tp->hit_count = 0;
13538 tp->traceframe_usage = 0;
13539 for (bp_location *loc : tp->locations ())
13540 {
13541 /* If the tracepoint was never downloaded, don't go asking for
13542 any status. */
13543 if (tp->number_on_target == 0)
13544 continue;
13545 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13546 phex_nz (loc->address, 0));
13547 putpkt (rs->buf);
13548 reply = remote_get_noisy_reply ();
13549 if (reply && *reply)
13550 {
13551 if (*reply == 'V')
13552 parse_tracepoint_status (reply + 1, bp, utp);
13553 }
13554 }
13555 }
13556 else if (utp)
13557 {
13558 utp->hit_count = 0;
13559 utp->traceframe_usage = 0;
13560 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13561 phex_nz (utp->addr, 0));
13562 putpkt (rs->buf);
13563 reply = remote_get_noisy_reply ();
13564 if (reply && *reply)
13565 {
13566 if (*reply == 'V')
13567 parse_tracepoint_status (reply + 1, bp, utp);
13568 }
13569 }
13570 }
13571
13572 void
13573 remote_target::trace_stop ()
13574 {
13575 struct remote_state *rs = get_remote_state ();
13576
13577 putpkt ("QTStop");
13578 remote_get_noisy_reply ();
13579 if (rs->buf[0] == '\0')
13580 error (_("Target does not support this command."));
13581 if (strcmp (rs->buf.data (), "OK") != 0)
13582 error (_("Bogus reply from target: %s"), rs->buf.data ());
13583 }
13584
13585 int
13586 remote_target::trace_find (enum trace_find_type type, int num,
13587 CORE_ADDR addr1, CORE_ADDR addr2,
13588 int *tpp)
13589 {
13590 struct remote_state *rs = get_remote_state ();
13591 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13592 char *p, *reply;
13593 int target_frameno = -1, target_tracept = -1;
13594
13595 /* Lookups other than by absolute frame number depend on the current
13596 trace selected, so make sure it is correct on the remote end
13597 first. */
13598 if (type != tfind_number)
13599 set_remote_traceframe ();
13600
13601 p = rs->buf.data ();
13602 strcpy (p, "QTFrame:");
13603 p = strchr (p, '\0');
13604 switch (type)
13605 {
13606 case tfind_number:
13607 xsnprintf (p, endbuf - p, "%x", num);
13608 break;
13609 case tfind_pc:
13610 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13611 break;
13612 case tfind_tp:
13613 xsnprintf (p, endbuf - p, "tdp:%x", num);
13614 break;
13615 case tfind_range:
13616 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13617 phex_nz (addr2, 0));
13618 break;
13619 case tfind_outside:
13620 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13621 phex_nz (addr2, 0));
13622 break;
13623 default:
13624 error (_("Unknown trace find type %d"), type);
13625 }
13626
13627 putpkt (rs->buf);
13628 reply = remote_get_noisy_reply ();
13629 if (*reply == '\0')
13630 error (_("Target does not support this command."));
13631
13632 while (reply && *reply)
13633 switch (*reply)
13634 {
13635 case 'F':
13636 p = ++reply;
13637 target_frameno = (int) strtol (p, &reply, 16);
13638 if (reply == p)
13639 error (_("Unable to parse trace frame number"));
13640 /* Don't update our remote traceframe number cache on failure
13641 to select a remote traceframe. */
13642 if (target_frameno == -1)
13643 return -1;
13644 break;
13645 case 'T':
13646 p = ++reply;
13647 target_tracept = (int) strtol (p, &reply, 16);
13648 if (reply == p)
13649 error (_("Unable to parse tracepoint number"));
13650 break;
13651 case 'O': /* "OK"? */
13652 if (reply[1] == 'K' && reply[2] == '\0')
13653 reply += 2;
13654 else
13655 error (_("Bogus reply from target: %s"), reply);
13656 break;
13657 default:
13658 error (_("Bogus reply from target: %s"), reply);
13659 }
13660 if (tpp)
13661 *tpp = target_tracept;
13662
13663 rs->remote_traceframe_number = target_frameno;
13664 return target_frameno;
13665 }
13666
13667 bool
13668 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13669 {
13670 struct remote_state *rs = get_remote_state ();
13671 char *reply;
13672 ULONGEST uval;
13673
13674 set_remote_traceframe ();
13675
13676 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13677 putpkt (rs->buf);
13678 reply = remote_get_noisy_reply ();
13679 if (reply && *reply)
13680 {
13681 if (*reply == 'V')
13682 {
13683 unpack_varlen_hex (reply + 1, &uval);
13684 *val = (LONGEST) uval;
13685 return true;
13686 }
13687 }
13688 return false;
13689 }
13690
13691 int
13692 remote_target::save_trace_data (const char *filename)
13693 {
13694 struct remote_state *rs = get_remote_state ();
13695 char *p, *reply;
13696
13697 p = rs->buf.data ();
13698 strcpy (p, "QTSave:");
13699 p += strlen (p);
13700 if ((p - rs->buf.data ()) + strlen (filename) * 2
13701 >= get_remote_packet_size ())
13702 error (_("Remote file name too long for trace save packet"));
13703 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13704 *p++ = '\0';
13705 putpkt (rs->buf);
13706 reply = remote_get_noisy_reply ();
13707 if (*reply == '\0')
13708 error (_("Target does not support this command."));
13709 if (strcmp (reply, "OK") != 0)
13710 error (_("Bogus reply from target: %s"), reply);
13711 return 0;
13712 }
13713
13714 /* This is basically a memory transfer, but needs to be its own packet
13715 because we don't know how the target actually organizes its trace
13716 memory, plus we want to be able to ask for as much as possible, but
13717 not be unhappy if we don't get as much as we ask for. */
13718
13719 LONGEST
13720 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13721 {
13722 struct remote_state *rs = get_remote_state ();
13723 char *reply;
13724 char *p;
13725 int rslt;
13726
13727 p = rs->buf.data ();
13728 strcpy (p, "qTBuffer:");
13729 p += strlen (p);
13730 p += hexnumstr (p, offset);
13731 *p++ = ',';
13732 p += hexnumstr (p, len);
13733 *p++ = '\0';
13734
13735 putpkt (rs->buf);
13736 reply = remote_get_noisy_reply ();
13737 if (reply && *reply)
13738 {
13739 /* 'l' by itself means we're at the end of the buffer and
13740 there is nothing more to get. */
13741 if (*reply == 'l')
13742 return 0;
13743
13744 /* Convert the reply into binary. Limit the number of bytes to
13745 convert according to our passed-in buffer size, rather than
13746 what was returned in the packet; if the target is
13747 unexpectedly generous and gives us a bigger reply than we
13748 asked for, we don't want to crash. */
13749 rslt = hex2bin (reply, buf, len);
13750 return rslt;
13751 }
13752
13753 /* Something went wrong, flag as an error. */
13754 return -1;
13755 }
13756
13757 void
13758 remote_target::set_disconnected_tracing (int val)
13759 {
13760 struct remote_state *rs = get_remote_state ();
13761
13762 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13763 {
13764 char *reply;
13765
13766 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13767 "QTDisconnected:%x", val);
13768 putpkt (rs->buf);
13769 reply = remote_get_noisy_reply ();
13770 if (*reply == '\0')
13771 error (_("Target does not support this command."));
13772 if (strcmp (reply, "OK") != 0)
13773 error (_("Bogus reply from target: %s"), reply);
13774 }
13775 else if (val)
13776 warning (_("Target does not support disconnected tracing."));
13777 }
13778
13779 int
13780 remote_target::core_of_thread (ptid_t ptid)
13781 {
13782 thread_info *info = find_thread_ptid (this, ptid);
13783
13784 if (info != NULL && info->priv != NULL)
13785 return get_remote_thread_info (info)->core;
13786
13787 return -1;
13788 }
13789
13790 void
13791 remote_target::set_circular_trace_buffer (int val)
13792 {
13793 struct remote_state *rs = get_remote_state ();
13794 char *reply;
13795
13796 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13797 "QTBuffer:circular:%x", val);
13798 putpkt (rs->buf);
13799 reply = remote_get_noisy_reply ();
13800 if (*reply == '\0')
13801 error (_("Target does not support this command."));
13802 if (strcmp (reply, "OK") != 0)
13803 error (_("Bogus reply from target: %s"), reply);
13804 }
13805
13806 traceframe_info_up
13807 remote_target::traceframe_info ()
13808 {
13809 gdb::optional<gdb::char_vector> text
13810 = target_read_stralloc (current_inferior ()->top_target (),
13811 TARGET_OBJECT_TRACEFRAME_INFO,
13812 NULL);
13813 if (text)
13814 return parse_traceframe_info (text->data ());
13815
13816 return NULL;
13817 }
13818
13819 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13820 instruction on which a fast tracepoint may be placed. Returns -1
13821 if the packet is not supported, and 0 if the minimum instruction
13822 length is unknown. */
13823
13824 int
13825 remote_target::get_min_fast_tracepoint_insn_len ()
13826 {
13827 struct remote_state *rs = get_remote_state ();
13828 char *reply;
13829
13830 /* If we're not debugging a process yet, the IPA can't be
13831 loaded. */
13832 if (!target_has_execution ())
13833 return 0;
13834
13835 /* Make sure the remote is pointing at the right process. */
13836 set_general_process ();
13837
13838 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13839 putpkt (rs->buf);
13840 reply = remote_get_noisy_reply ();
13841 if (*reply == '\0')
13842 return -1;
13843 else
13844 {
13845 ULONGEST min_insn_len;
13846
13847 unpack_varlen_hex (reply, &min_insn_len);
13848
13849 return (int) min_insn_len;
13850 }
13851 }
13852
13853 void
13854 remote_target::set_trace_buffer_size (LONGEST val)
13855 {
13856 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13857 {
13858 struct remote_state *rs = get_remote_state ();
13859 char *buf = rs->buf.data ();
13860 char *endbuf = buf + get_remote_packet_size ();
13861 enum packet_result result;
13862
13863 gdb_assert (val >= 0 || val == -1);
13864 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13865 /* Send -1 as literal "-1" to avoid host size dependency. */
13866 if (val < 0)
13867 {
13868 *buf++ = '-';
13869 buf += hexnumstr (buf, (ULONGEST) -val);
13870 }
13871 else
13872 buf += hexnumstr (buf, (ULONGEST) val);
13873
13874 putpkt (rs->buf);
13875 remote_get_noisy_reply ();
13876 result = packet_ok (rs->buf,
13877 &remote_protocol_packets[PACKET_QTBuffer_size]);
13878
13879 if (result != PACKET_OK)
13880 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13881 }
13882 }
13883
13884 bool
13885 remote_target::set_trace_notes (const char *user, const char *notes,
13886 const char *stop_notes)
13887 {
13888 struct remote_state *rs = get_remote_state ();
13889 char *reply;
13890 char *buf = rs->buf.data ();
13891 char *endbuf = buf + get_remote_packet_size ();
13892 int nbytes;
13893
13894 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13895 if (user)
13896 {
13897 buf += xsnprintf (buf, endbuf - buf, "user:");
13898 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13899 buf += 2 * nbytes;
13900 *buf++ = ';';
13901 }
13902 if (notes)
13903 {
13904 buf += xsnprintf (buf, endbuf - buf, "notes:");
13905 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13906 buf += 2 * nbytes;
13907 *buf++ = ';';
13908 }
13909 if (stop_notes)
13910 {
13911 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13912 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13913 buf += 2 * nbytes;
13914 *buf++ = ';';
13915 }
13916 /* Ensure the buffer is terminated. */
13917 *buf = '\0';
13918
13919 putpkt (rs->buf);
13920 reply = remote_get_noisy_reply ();
13921 if (*reply == '\0')
13922 return false;
13923
13924 if (strcmp (reply, "OK") != 0)
13925 error (_("Bogus reply from target: %s"), reply);
13926
13927 return true;
13928 }
13929
13930 bool
13931 remote_target::use_agent (bool use)
13932 {
13933 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13934 {
13935 struct remote_state *rs = get_remote_state ();
13936
13937 /* If the stub supports QAgent. */
13938 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13939 putpkt (rs->buf);
13940 getpkt (&rs->buf, 0);
13941
13942 if (strcmp (rs->buf.data (), "OK") == 0)
13943 {
13944 ::use_agent = use;
13945 return true;
13946 }
13947 }
13948
13949 return false;
13950 }
13951
13952 bool
13953 remote_target::can_use_agent ()
13954 {
13955 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13956 }
13957
13958 struct btrace_target_info
13959 {
13960 /* The ptid of the traced thread. */
13961 ptid_t ptid;
13962
13963 /* The obtained branch trace configuration. */
13964 struct btrace_config conf;
13965 };
13966
13967 /* Reset our idea of our target's btrace configuration. */
13968
13969 static void
13970 remote_btrace_reset (remote_state *rs)
13971 {
13972 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13973 }
13974
13975 /* Synchronize the configuration with the target. */
13976
13977 void
13978 remote_target::btrace_sync_conf (const btrace_config *conf)
13979 {
13980 struct packet_config *packet;
13981 struct remote_state *rs;
13982 char *buf, *pos, *endbuf;
13983
13984 rs = get_remote_state ();
13985 buf = rs->buf.data ();
13986 endbuf = buf + get_remote_packet_size ();
13987
13988 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13989 if (packet_config_support (packet) == PACKET_ENABLE
13990 && conf->bts.size != rs->btrace_config.bts.size)
13991 {
13992 pos = buf;
13993 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13994 conf->bts.size);
13995
13996 putpkt (buf);
13997 getpkt (&rs->buf, 0);
13998
13999 if (packet_ok (buf, packet) == PACKET_ERROR)
14000 {
14001 if (buf[0] == 'E' && buf[1] == '.')
14002 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
14003 else
14004 error (_("Failed to configure the BTS buffer size."));
14005 }
14006
14007 rs->btrace_config.bts.size = conf->bts.size;
14008 }
14009
14010 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
14011 if (packet_config_support (packet) == PACKET_ENABLE
14012 && conf->pt.size != rs->btrace_config.pt.size)
14013 {
14014 pos = buf;
14015 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14016 conf->pt.size);
14017
14018 putpkt (buf);
14019 getpkt (&rs->buf, 0);
14020
14021 if (packet_ok (buf, packet) == PACKET_ERROR)
14022 {
14023 if (buf[0] == 'E' && buf[1] == '.')
14024 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
14025 else
14026 error (_("Failed to configure the trace buffer size."));
14027 }
14028
14029 rs->btrace_config.pt.size = conf->pt.size;
14030 }
14031 }
14032
14033 /* Read the current thread's btrace configuration from the target and
14034 store it into CONF. */
14035
14036 static void
14037 btrace_read_config (struct btrace_config *conf)
14038 {
14039 gdb::optional<gdb::char_vector> xml
14040 = target_read_stralloc (current_inferior ()->top_target (),
14041 TARGET_OBJECT_BTRACE_CONF, "");
14042 if (xml)
14043 parse_xml_btrace_conf (conf, xml->data ());
14044 }
14045
14046 /* Maybe reopen target btrace. */
14047
14048 void
14049 remote_target::remote_btrace_maybe_reopen ()
14050 {
14051 struct remote_state *rs = get_remote_state ();
14052 int btrace_target_pushed = 0;
14053 #if !defined (HAVE_LIBIPT)
14054 int warned = 0;
14055 #endif
14056
14057 /* Don't bother walking the entirety of the remote thread list when
14058 we know the feature isn't supported by the remote. */
14059 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
14060 return;
14061
14062 scoped_restore_current_thread restore_thread;
14063
14064 for (thread_info *tp : all_non_exited_threads (this))
14065 {
14066 set_general_thread (tp->ptid);
14067
14068 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
14069 btrace_read_config (&rs->btrace_config);
14070
14071 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
14072 continue;
14073
14074 #if !defined (HAVE_LIBIPT)
14075 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
14076 {
14077 if (!warned)
14078 {
14079 warned = 1;
14080 warning (_("Target is recording using Intel Processor Trace "
14081 "but support was disabled at compile time."));
14082 }
14083
14084 continue;
14085 }
14086 #endif /* !defined (HAVE_LIBIPT) */
14087
14088 /* Push target, once, but before anything else happens. This way our
14089 changes to the threads will be cleaned up by unpushing the target
14090 in case btrace_read_config () throws. */
14091 if (!btrace_target_pushed)
14092 {
14093 btrace_target_pushed = 1;
14094 record_btrace_push_target ();
14095 printf_filtered (_("Target is recording using %s.\n"),
14096 btrace_format_string (rs->btrace_config.format));
14097 }
14098
14099 tp->btrace.target = XCNEW (struct btrace_target_info);
14100 tp->btrace.target->ptid = tp->ptid;
14101 tp->btrace.target->conf = rs->btrace_config;
14102 }
14103 }
14104
14105 /* Enable branch tracing. */
14106
14107 struct btrace_target_info *
14108 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
14109 {
14110 struct btrace_target_info *tinfo = NULL;
14111 struct packet_config *packet = NULL;
14112 struct remote_state *rs = get_remote_state ();
14113 char *buf = rs->buf.data ();
14114 char *endbuf = buf + get_remote_packet_size ();
14115
14116 switch (conf->format)
14117 {
14118 case BTRACE_FORMAT_BTS:
14119 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
14120 break;
14121
14122 case BTRACE_FORMAT_PT:
14123 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
14124 break;
14125 }
14126
14127 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
14128 error (_("Target does not support branch tracing."));
14129
14130 btrace_sync_conf (conf);
14131
14132 set_general_thread (ptid);
14133
14134 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14135 putpkt (rs->buf);
14136 getpkt (&rs->buf, 0);
14137
14138 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14139 {
14140 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14141 error (_("Could not enable branch tracing for %s: %s"),
14142 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
14143 else
14144 error (_("Could not enable branch tracing for %s."),
14145 target_pid_to_str (ptid).c_str ());
14146 }
14147
14148 tinfo = XCNEW (struct btrace_target_info);
14149 tinfo->ptid = ptid;
14150
14151 /* If we fail to read the configuration, we lose some information, but the
14152 tracing itself is not impacted. */
14153 try
14154 {
14155 btrace_read_config (&tinfo->conf);
14156 }
14157 catch (const gdb_exception_error &err)
14158 {
14159 if (err.message != NULL)
14160 warning ("%s", err.what ());
14161 }
14162
14163 return tinfo;
14164 }
14165
14166 /* Disable branch tracing. */
14167
14168 void
14169 remote_target::disable_btrace (struct btrace_target_info *tinfo)
14170 {
14171 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
14172 struct remote_state *rs = get_remote_state ();
14173 char *buf = rs->buf.data ();
14174 char *endbuf = buf + get_remote_packet_size ();
14175
14176 if (packet_config_support (packet) != PACKET_ENABLE)
14177 error (_("Target does not support branch tracing."));
14178
14179 set_general_thread (tinfo->ptid);
14180
14181 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14182 putpkt (rs->buf);
14183 getpkt (&rs->buf, 0);
14184
14185 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14186 {
14187 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14188 error (_("Could not disable branch tracing for %s: %s"),
14189 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
14190 else
14191 error (_("Could not disable branch tracing for %s."),
14192 target_pid_to_str (tinfo->ptid).c_str ());
14193 }
14194
14195 xfree (tinfo);
14196 }
14197
14198 /* Teardown branch tracing. */
14199
14200 void
14201 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
14202 {
14203 /* We must not talk to the target during teardown. */
14204 xfree (tinfo);
14205 }
14206
14207 /* Read the branch trace. */
14208
14209 enum btrace_error
14210 remote_target::read_btrace (struct btrace_data *btrace,
14211 struct btrace_target_info *tinfo,
14212 enum btrace_read_type type)
14213 {
14214 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
14215 const char *annex;
14216
14217 if (packet_config_support (packet) != PACKET_ENABLE)
14218 error (_("Target does not support branch tracing."));
14219
14220 #if !defined(HAVE_LIBEXPAT)
14221 error (_("Cannot process branch tracing result. XML parsing not supported."));
14222 #endif
14223
14224 switch (type)
14225 {
14226 case BTRACE_READ_ALL:
14227 annex = "all";
14228 break;
14229 case BTRACE_READ_NEW:
14230 annex = "new";
14231 break;
14232 case BTRACE_READ_DELTA:
14233 annex = "delta";
14234 break;
14235 default:
14236 internal_error (__FILE__, __LINE__,
14237 _("Bad branch tracing read type: %u."),
14238 (unsigned int) type);
14239 }
14240
14241 gdb::optional<gdb::char_vector> xml
14242 = target_read_stralloc (current_inferior ()->top_target (),
14243 TARGET_OBJECT_BTRACE, annex);
14244 if (!xml)
14245 return BTRACE_ERR_UNKNOWN;
14246
14247 parse_xml_btrace (btrace, xml->data ());
14248
14249 return BTRACE_ERR_NONE;
14250 }
14251
14252 const struct btrace_config *
14253 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14254 {
14255 return &tinfo->conf;
14256 }
14257
14258 bool
14259 remote_target::augmented_libraries_svr4_read ()
14260 {
14261 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14262 == PACKET_ENABLE);
14263 }
14264
14265 /* Implementation of to_load. */
14266
14267 void
14268 remote_target::load (const char *name, int from_tty)
14269 {
14270 generic_load (name, from_tty);
14271 }
14272
14273 /* Accepts an integer PID; returns a string representing a file that
14274 can be opened on the remote side to get the symbols for the child
14275 process. Returns NULL if the operation is not supported. */
14276
14277 char *
14278 remote_target::pid_to_exec_file (int pid)
14279 {
14280 static gdb::optional<gdb::char_vector> filename;
14281 char *annex = NULL;
14282
14283 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14284 return NULL;
14285
14286 inferior *inf = find_inferior_pid (this, pid);
14287 if (inf == NULL)
14288 internal_error (__FILE__, __LINE__,
14289 _("not currently attached to process %d"), pid);
14290
14291 if (!inf->fake_pid_p)
14292 {
14293 const int annex_size = 9;
14294
14295 annex = (char *) alloca (annex_size);
14296 xsnprintf (annex, annex_size, "%x", pid);
14297 }
14298
14299 filename = target_read_stralloc (current_inferior ()->top_target (),
14300 TARGET_OBJECT_EXEC_FILE, annex);
14301
14302 return filename ? filename->data () : nullptr;
14303 }
14304
14305 /* Implement the to_can_do_single_step target_ops method. */
14306
14307 int
14308 remote_target::can_do_single_step ()
14309 {
14310 /* We can only tell whether target supports single step or not by
14311 supported s and S vCont actions if the stub supports vContSupported
14312 feature. If the stub doesn't support vContSupported feature,
14313 we have conservatively to think target doesn't supports single
14314 step. */
14315 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14316 {
14317 struct remote_state *rs = get_remote_state ();
14318
14319 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14320 remote_vcont_probe ();
14321
14322 return rs->supports_vCont.s && rs->supports_vCont.S;
14323 }
14324 else
14325 return 0;
14326 }
14327
14328 /* Implementation of the to_execution_direction method for the remote
14329 target. */
14330
14331 enum exec_direction_kind
14332 remote_target::execution_direction ()
14333 {
14334 struct remote_state *rs = get_remote_state ();
14335
14336 return rs->last_resume_exec_dir;
14337 }
14338
14339 /* Return pointer to the thread_info struct which corresponds to
14340 THREAD_HANDLE (having length HANDLE_LEN). */
14341
14342 thread_info *
14343 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14344 int handle_len,
14345 inferior *inf)
14346 {
14347 for (thread_info *tp : all_non_exited_threads (this))
14348 {
14349 remote_thread_info *priv = get_remote_thread_info (tp);
14350
14351 if (tp->inf == inf && priv != NULL)
14352 {
14353 if (handle_len != priv->thread_handle.size ())
14354 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14355 handle_len, priv->thread_handle.size ());
14356 if (memcmp (thread_handle, priv->thread_handle.data (),
14357 handle_len) == 0)
14358 return tp;
14359 }
14360 }
14361
14362 return NULL;
14363 }
14364
14365 gdb::byte_vector
14366 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14367 {
14368 remote_thread_info *priv = get_remote_thread_info (tp);
14369 return priv->thread_handle;
14370 }
14371
14372 bool
14373 remote_target::can_async_p ()
14374 {
14375 struct remote_state *rs = get_remote_state ();
14376
14377 /* We don't go async if the user has explicitly prevented it with the
14378 "maint set target-async" command. */
14379 if (!target_async_permitted)
14380 return false;
14381
14382 /* We're async whenever the serial device is. */
14383 return serial_can_async_p (rs->remote_desc);
14384 }
14385
14386 bool
14387 remote_target::is_async_p ()
14388 {
14389 struct remote_state *rs = get_remote_state ();
14390
14391 if (!target_async_permitted)
14392 /* We only enable async when the user specifically asks for it. */
14393 return false;
14394
14395 /* We're async whenever the serial device is. */
14396 return serial_is_async_p (rs->remote_desc);
14397 }
14398
14399 /* Pass the SERIAL event on and up to the client. One day this code
14400 will be able to delay notifying the client of an event until the
14401 point where an entire packet has been received. */
14402
14403 static serial_event_ftype remote_async_serial_handler;
14404
14405 static void
14406 remote_async_serial_handler (struct serial *scb, void *context)
14407 {
14408 /* Don't propogate error information up to the client. Instead let
14409 the client find out about the error by querying the target. */
14410 inferior_event_handler (INF_REG_EVENT);
14411 }
14412
14413 static void
14414 remote_async_inferior_event_handler (gdb_client_data data)
14415 {
14416 inferior_event_handler (INF_REG_EVENT);
14417 }
14418
14419 int
14420 remote_target::async_wait_fd ()
14421 {
14422 struct remote_state *rs = get_remote_state ();
14423 return rs->remote_desc->fd;
14424 }
14425
14426 void
14427 remote_target::async (int enable)
14428 {
14429 struct remote_state *rs = get_remote_state ();
14430
14431 if (enable)
14432 {
14433 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14434
14435 /* If there are pending events in the stop reply queue tell the
14436 event loop to process them. */
14437 if (!rs->stop_reply_queue.empty ())
14438 mark_async_event_handler (rs->remote_async_inferior_event_token);
14439 /* For simplicity, below we clear the pending events token
14440 without remembering whether it is marked, so here we always
14441 mark it. If there's actually no pending notification to
14442 process, this ends up being a no-op (other than a spurious
14443 event-loop wakeup). */
14444 if (target_is_non_stop_p ())
14445 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14446 }
14447 else
14448 {
14449 serial_async (rs->remote_desc, NULL, NULL);
14450 /* If the core is disabling async, it doesn't want to be
14451 disturbed with target events. Clear all async event sources
14452 too. */
14453 clear_async_event_handler (rs->remote_async_inferior_event_token);
14454 if (target_is_non_stop_p ())
14455 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14456 }
14457 }
14458
14459 /* Implementation of the to_thread_events method. */
14460
14461 void
14462 remote_target::thread_events (int enable)
14463 {
14464 struct remote_state *rs = get_remote_state ();
14465 size_t size = get_remote_packet_size ();
14466
14467 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14468 return;
14469
14470 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14471 putpkt (rs->buf);
14472 getpkt (&rs->buf, 0);
14473
14474 switch (packet_ok (rs->buf,
14475 &remote_protocol_packets[PACKET_QThreadEvents]))
14476 {
14477 case PACKET_OK:
14478 if (strcmp (rs->buf.data (), "OK") != 0)
14479 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14480 break;
14481 case PACKET_ERROR:
14482 warning (_("Remote failure reply: %s"), rs->buf.data ());
14483 break;
14484 case PACKET_UNKNOWN:
14485 break;
14486 }
14487 }
14488
14489 static void
14490 show_remote_cmd (const char *args, int from_tty)
14491 {
14492 /* We can't just use cmd_show_list here, because we want to skip
14493 the redundant "show remote Z-packet" and the legacy aliases. */
14494 struct cmd_list_element *list = remote_show_cmdlist;
14495 struct ui_out *uiout = current_uiout;
14496
14497 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14498 for (; list != NULL; list = list->next)
14499 if (strcmp (list->name, "Z-packet") == 0)
14500 continue;
14501 else if (list->type == not_set_cmd)
14502 /* Alias commands are exactly like the original, except they
14503 don't have the normal type. */
14504 continue;
14505 else
14506 {
14507 ui_out_emit_tuple option_emitter (uiout, "option");
14508
14509 uiout->field_string ("name", list->name);
14510 uiout->text (": ");
14511 if (list->type == show_cmd)
14512 do_show_command (NULL, from_tty, list);
14513 else
14514 cmd_func (list, NULL, from_tty);
14515 }
14516 }
14517
14518
14519 /* Function to be called whenever a new objfile (shlib) is detected. */
14520 static void
14521 remote_new_objfile (struct objfile *objfile)
14522 {
14523 remote_target *remote = get_current_remote_target ();
14524
14525 /* First, check whether the current inferior's process target is a remote
14526 target. */
14527 if (remote == nullptr)
14528 return;
14529
14530 /* When we are attaching or handling a fork child and the shared library
14531 subsystem reads the list of loaded libraries, we receive new objfile
14532 events in between each found library. The libraries are read in an
14533 undefined order, so if we gave the remote side a chance to look up
14534 symbols between each objfile, we might give it an inconsistent picture
14535 of the inferior. It could appear that a library A appears loaded but
14536 a library B does not, even though library A requires library B. That
14537 would present a state that couldn't normally exist in the inferior.
14538
14539 So, skip these events, we'll give the remote a chance to look up symbols
14540 once all the loaded libraries and their symbols are known to GDB. */
14541 if (current_inferior ()->in_initial_library_scan)
14542 return;
14543
14544 remote->remote_check_symbols ();
14545 }
14546
14547 /* Pull all the tracepoints defined on the target and create local
14548 data structures representing them. We don't want to create real
14549 tracepoints yet, we don't want to mess up the user's existing
14550 collection. */
14551
14552 int
14553 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14554 {
14555 struct remote_state *rs = get_remote_state ();
14556 char *p;
14557
14558 /* Ask for a first packet of tracepoint definition. */
14559 putpkt ("qTfP");
14560 getpkt (&rs->buf, 0);
14561 p = rs->buf.data ();
14562 while (*p && *p != 'l')
14563 {
14564 parse_tracepoint_definition (p, utpp);
14565 /* Ask for another packet of tracepoint definition. */
14566 putpkt ("qTsP");
14567 getpkt (&rs->buf, 0);
14568 p = rs->buf.data ();
14569 }
14570 return 0;
14571 }
14572
14573 int
14574 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14575 {
14576 struct remote_state *rs = get_remote_state ();
14577 char *p;
14578
14579 /* Ask for a first packet of variable definition. */
14580 putpkt ("qTfV");
14581 getpkt (&rs->buf, 0);
14582 p = rs->buf.data ();
14583 while (*p && *p != 'l')
14584 {
14585 parse_tsv_definition (p, utsvp);
14586 /* Ask for another packet of variable definition. */
14587 putpkt ("qTsV");
14588 getpkt (&rs->buf, 0);
14589 p = rs->buf.data ();
14590 }
14591 return 0;
14592 }
14593
14594 /* The "set/show range-stepping" show hook. */
14595
14596 static void
14597 show_range_stepping (struct ui_file *file, int from_tty,
14598 struct cmd_list_element *c,
14599 const char *value)
14600 {
14601 fprintf_filtered (file,
14602 _("Debugger's willingness to use range stepping "
14603 "is %s.\n"), value);
14604 }
14605
14606 /* Return true if the vCont;r action is supported by the remote
14607 stub. */
14608
14609 bool
14610 remote_target::vcont_r_supported ()
14611 {
14612 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14613 remote_vcont_probe ();
14614
14615 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14616 && get_remote_state ()->supports_vCont.r);
14617 }
14618
14619 /* The "set/show range-stepping" set hook. */
14620
14621 static void
14622 set_range_stepping (const char *ignore_args, int from_tty,
14623 struct cmd_list_element *c)
14624 {
14625 /* When enabling, check whether range stepping is actually supported
14626 by the target, and warn if not. */
14627 if (use_range_stepping)
14628 {
14629 remote_target *remote = get_current_remote_target ();
14630 if (remote == NULL
14631 || !remote->vcont_r_supported ())
14632 warning (_("Range stepping is not supported by the current target"));
14633 }
14634 }
14635
14636 static void
14637 show_remote_debug (struct ui_file *file, int from_tty,
14638 struct cmd_list_element *c, const char *value)
14639 {
14640 fprintf_filtered (file, _("Debugging of remote protocol is %s.\n"),
14641 value);
14642 }
14643
14644 static void
14645 show_remote_timeout (struct ui_file *file, int from_tty,
14646 struct cmd_list_element *c, const char *value)
14647 {
14648 fprintf_filtered (file,
14649 _("Timeout limit to wait for target to respond is %s.\n"),
14650 value);
14651 }
14652
14653 /* Implement the "supports_memory_tagging" target_ops method. */
14654
14655 bool
14656 remote_target::supports_memory_tagging ()
14657 {
14658 return remote_memory_tagging_p ();
14659 }
14660
14661 /* Create the qMemTags packet given ADDRESS, LEN and TYPE. */
14662
14663 static void
14664 create_fetch_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14665 size_t len, int type)
14666 {
14667 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14668
14669 std::string request = string_printf ("qMemTags:%s,%s:%s",
14670 phex_nz (address, addr_size),
14671 phex_nz (len, sizeof (len)),
14672 phex_nz (type, sizeof (type)));
14673
14674 strcpy (packet.data (), request.c_str ());
14675 }
14676
14677 /* Parse the qMemTags packet reply into TAGS.
14678
14679 Return true if successful, false otherwise. */
14680
14681 static bool
14682 parse_fetch_memtags_reply (const gdb::char_vector &reply,
14683 gdb::byte_vector &tags)
14684 {
14685 if (reply.empty () || reply[0] == 'E' || reply[0] != 'm')
14686 return false;
14687
14688 /* Copy the tag data. */
14689 tags = hex2bin (reply.data () + 1);
14690
14691 return true;
14692 }
14693
14694 /* Create the QMemTags packet given ADDRESS, LEN, TYPE and TAGS. */
14695
14696 static void
14697 create_store_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14698 size_t len, int type,
14699 const gdb::byte_vector &tags)
14700 {
14701 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14702
14703 /* Put together the main packet, address and length. */
14704 std::string request = string_printf ("QMemTags:%s,%s:%s:",
14705 phex_nz (address, addr_size),
14706 phex_nz (len, sizeof (len)),
14707 phex_nz (type, sizeof (type)));
14708 request += bin2hex (tags.data (), tags.size ());
14709
14710 /* Check if we have exceeded the maximum packet size. */
14711 if (packet.size () < request.length ())
14712 error (_("Contents too big for packet QMemTags."));
14713
14714 strcpy (packet.data (), request.c_str ());
14715 }
14716
14717 /* Implement the "fetch_memtags" target_ops method. */
14718
14719 bool
14720 remote_target::fetch_memtags (CORE_ADDR address, size_t len,
14721 gdb::byte_vector &tags, int type)
14722 {
14723 /* Make sure the qMemTags packet is supported. */
14724 if (!remote_memory_tagging_p ())
14725 gdb_assert_not_reached ("remote fetch_memtags called with packet disabled");
14726
14727 struct remote_state *rs = get_remote_state ();
14728
14729 create_fetch_memtags_request (rs->buf, address, len, type);
14730
14731 putpkt (rs->buf);
14732 getpkt (&rs->buf, 0);
14733
14734 return parse_fetch_memtags_reply (rs->buf, tags);
14735 }
14736
14737 /* Implement the "store_memtags" target_ops method. */
14738
14739 bool
14740 remote_target::store_memtags (CORE_ADDR address, size_t len,
14741 const gdb::byte_vector &tags, int type)
14742 {
14743 /* Make sure the QMemTags packet is supported. */
14744 if (!remote_memory_tagging_p ())
14745 gdb_assert_not_reached ("remote store_memtags called with packet disabled");
14746
14747 struct remote_state *rs = get_remote_state ();
14748
14749 create_store_memtags_request (rs->buf, address, len, type, tags);
14750
14751 putpkt (rs->buf);
14752 getpkt (&rs->buf, 0);
14753
14754 /* Verify if the request was successful. */
14755 return packet_check_result (rs->buf.data ()) == PACKET_OK;
14756 }
14757
14758 /* Return true if remote target T is non-stop. */
14759
14760 bool
14761 remote_target_is_non_stop_p (remote_target *t)
14762 {
14763 scoped_restore_current_thread restore_thread;
14764 switch_to_target_no_thread (t);
14765
14766 return target_is_non_stop_p ();
14767 }
14768
14769 #if GDB_SELF_TEST
14770
14771 namespace selftests {
14772
14773 static void
14774 test_memory_tagging_functions ()
14775 {
14776 remote_target remote;
14777
14778 struct packet_config *config
14779 = &remote_protocol_packets[PACKET_memory_tagging_feature];
14780
14781 scoped_restore restore_memtag_support_
14782 = make_scoped_restore (&config->support);
14783
14784 /* Test memory tagging packet support. */
14785 config->support = PACKET_SUPPORT_UNKNOWN;
14786 SELF_CHECK (remote.supports_memory_tagging () == false);
14787 config->support = PACKET_DISABLE;
14788 SELF_CHECK (remote.supports_memory_tagging () == false);
14789 config->support = PACKET_ENABLE;
14790 SELF_CHECK (remote.supports_memory_tagging () == true);
14791
14792 /* Setup testing. */
14793 gdb::char_vector packet;
14794 gdb::byte_vector tags, bv;
14795 std::string expected, reply;
14796 packet.resize (32000);
14797
14798 /* Test creating a qMemTags request. */
14799
14800 expected = "qMemTags:0,0:0";
14801 create_fetch_memtags_request (packet, 0x0, 0x0, 0);
14802 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14803
14804 expected = "qMemTags:deadbeef,10:1";
14805 create_fetch_memtags_request (packet, 0xdeadbeef, 16, 1);
14806 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14807
14808 /* Test parsing a qMemTags reply. */
14809
14810 /* Error reply, tags vector unmodified. */
14811 reply = "E00";
14812 strcpy (packet.data (), reply.c_str ());
14813 tags.resize (0);
14814 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == false);
14815 SELF_CHECK (tags.size () == 0);
14816
14817 /* Valid reply, tags vector updated. */
14818 tags.resize (0);
14819 bv.resize (0);
14820
14821 for (int i = 0; i < 5; i++)
14822 bv.push_back (i);
14823
14824 reply = "m" + bin2hex (bv.data (), bv.size ());
14825 strcpy (packet.data (), reply.c_str ());
14826
14827 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == true);
14828 SELF_CHECK (tags.size () == 5);
14829
14830 for (int i = 0; i < 5; i++)
14831 SELF_CHECK (tags[i] == i);
14832
14833 /* Test creating a QMemTags request. */
14834
14835 /* Empty tag data. */
14836 tags.resize (0);
14837 expected = "QMemTags:0,0:0:";
14838 create_store_memtags_request (packet, 0x0, 0x0, 0, tags);
14839 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14840 expected.length ()) == 0);
14841
14842 /* Non-empty tag data. */
14843 tags.resize (0);
14844 for (int i = 0; i < 5; i++)
14845 tags.push_back (i);
14846 expected = "QMemTags:deadbeef,ff:1:0001020304";
14847 create_store_memtags_request (packet, 0xdeadbeef, 255, 1, tags);
14848 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14849 expected.length ()) == 0);
14850 }
14851
14852 } // namespace selftests
14853 #endif /* GDB_SELF_TEST */
14854
14855 void _initialize_remote ();
14856 void
14857 _initialize_remote ()
14858 {
14859 /* architecture specific data */
14860 remote_g_packet_data_handle =
14861 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14862
14863 add_target (remote_target_info, remote_target::open);
14864 add_target (extended_remote_target_info, extended_remote_target::open);
14865
14866 /* Hook into new objfile notification. */
14867 gdb::observers::new_objfile.attach (remote_new_objfile, "remote");
14868
14869 #if 0
14870 init_remote_threadtests ();
14871 #endif
14872
14873 /* set/show remote ... */
14874
14875 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14876 Remote protocol specific variables.\n\
14877 Configure various remote-protocol specific variables such as\n\
14878 the packets being used."),
14879 &remote_set_cmdlist,
14880 0 /* allow-unknown */, &setlist);
14881 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14882 Remote protocol specific variables.\n\
14883 Configure various remote-protocol specific variables such as\n\
14884 the packets being used."),
14885 &remote_show_cmdlist,
14886 0 /* allow-unknown */, &showlist);
14887
14888 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14889 Compare section data on target to the exec file.\n\
14890 Argument is a single section name (default: all loaded sections).\n\
14891 To compare only read-only loaded sections, specify the -r option."),
14892 &cmdlist);
14893
14894 add_cmd ("packet", class_maintenance, packet_command, _("\
14895 Send an arbitrary packet to a remote target.\n\
14896 maintenance packet TEXT\n\
14897 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14898 this command sends the string TEXT to the inferior, and displays the\n\
14899 response packet. GDB supplies the initial `$' character, and the\n\
14900 terminating `#' character and checksum."),
14901 &maintenancelist);
14902
14903 set_show_commands remotebreak_cmds
14904 = add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14905 Set whether to send break if interrupted."), _("\
14906 Show whether to send break if interrupted."), _("\
14907 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14908 set_remotebreak, show_remotebreak,
14909 &setlist, &showlist);
14910 deprecate_cmd (remotebreak_cmds.set, "set remote interrupt-sequence");
14911 deprecate_cmd (remotebreak_cmds.show, "show remote interrupt-sequence");
14912
14913 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14914 interrupt_sequence_modes, &interrupt_sequence_mode,
14915 _("\
14916 Set interrupt sequence to remote target."), _("\
14917 Show interrupt sequence to remote target."), _("\
14918 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14919 NULL, show_interrupt_sequence,
14920 &remote_set_cmdlist,
14921 &remote_show_cmdlist);
14922
14923 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14924 &interrupt_on_connect, _("\
14925 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14926 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14927 If set, interrupt sequence is sent to remote target."),
14928 NULL, NULL,
14929 &remote_set_cmdlist, &remote_show_cmdlist);
14930
14931 /* Install commands for configuring memory read/write packets. */
14932
14933 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14934 Set the maximum number of bytes per memory write packet (deprecated)."),
14935 &setlist);
14936 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14937 Show the maximum number of bytes per memory write packet (deprecated)."),
14938 &showlist);
14939 add_cmd ("memory-write-packet-size", no_class,
14940 set_memory_write_packet_size, _("\
14941 Set the maximum number of bytes per memory-write packet.\n\
14942 Specify the number of bytes in a packet or 0 (zero) for the\n\
14943 default packet size. The actual limit is further reduced\n\
14944 dependent on the target. Specify ``fixed'' to disable the\n\
14945 further restriction and ``limit'' to enable that restriction."),
14946 &remote_set_cmdlist);
14947 add_cmd ("memory-read-packet-size", no_class,
14948 set_memory_read_packet_size, _("\
14949 Set the maximum number of bytes per memory-read packet.\n\
14950 Specify the number of bytes in a packet or 0 (zero) for the\n\
14951 default packet size. The actual limit is further reduced\n\
14952 dependent on the target. Specify ``fixed'' to disable the\n\
14953 further restriction and ``limit'' to enable that restriction."),
14954 &remote_set_cmdlist);
14955 add_cmd ("memory-write-packet-size", no_class,
14956 show_memory_write_packet_size,
14957 _("Show the maximum number of bytes per memory-write packet."),
14958 &remote_show_cmdlist);
14959 add_cmd ("memory-read-packet-size", no_class,
14960 show_memory_read_packet_size,
14961 _("Show the maximum number of bytes per memory-read packet."),
14962 &remote_show_cmdlist);
14963
14964 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14965 &remote_hw_watchpoint_limit, _("\
14966 Set the maximum number of target hardware watchpoints."), _("\
14967 Show the maximum number of target hardware watchpoints."), _("\
14968 Specify \"unlimited\" for unlimited hardware watchpoints."),
14969 NULL, show_hardware_watchpoint_limit,
14970 &remote_set_cmdlist,
14971 &remote_show_cmdlist);
14972 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14973 no_class,
14974 &remote_hw_watchpoint_length_limit, _("\
14975 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14976 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14977 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14978 NULL, show_hardware_watchpoint_length_limit,
14979 &remote_set_cmdlist, &remote_show_cmdlist);
14980 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14981 &remote_hw_breakpoint_limit, _("\
14982 Set the maximum number of target hardware breakpoints."), _("\
14983 Show the maximum number of target hardware breakpoints."), _("\
14984 Specify \"unlimited\" for unlimited hardware breakpoints."),
14985 NULL, show_hardware_breakpoint_limit,
14986 &remote_set_cmdlist, &remote_show_cmdlist);
14987
14988 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14989 &remote_address_size, _("\
14990 Set the maximum size of the address (in bits) in a memory packet."), _("\
14991 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14992 NULL,
14993 NULL, /* FIXME: i18n: */
14994 &setlist, &showlist);
14995
14996 init_all_packet_configs ();
14997
14998 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14999 "X", "binary-download", 1);
15000
15001 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
15002 "vCont", "verbose-resume", 0);
15003
15004 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
15005 "QPassSignals", "pass-signals", 0);
15006
15007 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
15008 "QCatchSyscalls", "catch-syscalls", 0);
15009
15010 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
15011 "QProgramSignals", "program-signals", 0);
15012
15013 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
15014 "QSetWorkingDir", "set-working-dir", 0);
15015
15016 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
15017 "QStartupWithShell", "startup-with-shell", 0);
15018
15019 add_packet_config_cmd (&remote_protocol_packets
15020 [PACKET_QEnvironmentHexEncoded],
15021 "QEnvironmentHexEncoded", "environment-hex-encoded",
15022 0);
15023
15024 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
15025 "QEnvironmentReset", "environment-reset",
15026 0);
15027
15028 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
15029 "QEnvironmentUnset", "environment-unset",
15030 0);
15031
15032 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
15033 "qSymbol", "symbol-lookup", 0);
15034
15035 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
15036 "P", "set-register", 1);
15037
15038 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
15039 "p", "fetch-register", 1);
15040
15041 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
15042 "Z0", "software-breakpoint", 0);
15043
15044 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
15045 "Z1", "hardware-breakpoint", 0);
15046
15047 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
15048 "Z2", "write-watchpoint", 0);
15049
15050 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
15051 "Z3", "read-watchpoint", 0);
15052
15053 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
15054 "Z4", "access-watchpoint", 0);
15055
15056 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
15057 "qXfer:auxv:read", "read-aux-vector", 0);
15058
15059 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
15060 "qXfer:exec-file:read", "pid-to-exec-file", 0);
15061
15062 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
15063 "qXfer:features:read", "target-features", 0);
15064
15065 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
15066 "qXfer:libraries:read", "library-info", 0);
15067
15068 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
15069 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
15070
15071 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
15072 "qXfer:memory-map:read", "memory-map", 0);
15073
15074 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
15075 "qXfer:osdata:read", "osdata", 0);
15076
15077 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
15078 "qXfer:threads:read", "threads", 0);
15079
15080 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
15081 "qXfer:siginfo:read", "read-siginfo-object", 0);
15082
15083 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
15084 "qXfer:siginfo:write", "write-siginfo-object", 0);
15085
15086 add_packet_config_cmd
15087 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
15088 "qXfer:traceframe-info:read", "traceframe-info", 0);
15089
15090 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
15091 "qXfer:uib:read", "unwind-info-block", 0);
15092
15093 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
15094 "qGetTLSAddr", "get-thread-local-storage-address",
15095 0);
15096
15097 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
15098 "qGetTIBAddr", "get-thread-information-block-address",
15099 0);
15100
15101 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
15102 "bc", "reverse-continue", 0);
15103
15104 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
15105 "bs", "reverse-step", 0);
15106
15107 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
15108 "qSupported", "supported-packets", 0);
15109
15110 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
15111 "qSearch:memory", "search-memory", 0);
15112
15113 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
15114 "qTStatus", "trace-status", 0);
15115
15116 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
15117 "vFile:setfs", "hostio-setfs", 0);
15118
15119 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
15120 "vFile:open", "hostio-open", 0);
15121
15122 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
15123 "vFile:pread", "hostio-pread", 0);
15124
15125 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
15126 "vFile:pwrite", "hostio-pwrite", 0);
15127
15128 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
15129 "vFile:close", "hostio-close", 0);
15130
15131 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
15132 "vFile:unlink", "hostio-unlink", 0);
15133
15134 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
15135 "vFile:readlink", "hostio-readlink", 0);
15136
15137 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
15138 "vFile:fstat", "hostio-fstat", 0);
15139
15140 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
15141 "vAttach", "attach", 0);
15142
15143 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
15144 "vRun", "run", 0);
15145
15146 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
15147 "QStartNoAckMode", "noack", 0);
15148
15149 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
15150 "vKill", "kill", 0);
15151
15152 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
15153 "qAttached", "query-attached", 0);
15154
15155 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
15156 "ConditionalTracepoints",
15157 "conditional-tracepoints", 0);
15158
15159 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
15160 "ConditionalBreakpoints",
15161 "conditional-breakpoints", 0);
15162
15163 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
15164 "BreakpointCommands",
15165 "breakpoint-commands", 0);
15166
15167 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
15168 "FastTracepoints", "fast-tracepoints", 0);
15169
15170 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
15171 "TracepointSource", "TracepointSource", 0);
15172
15173 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
15174 "QAllow", "allow", 0);
15175
15176 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
15177 "StaticTracepoints", "static-tracepoints", 0);
15178
15179 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
15180 "InstallInTrace", "install-in-trace", 0);
15181
15182 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
15183 "qXfer:statictrace:read", "read-sdata-object", 0);
15184
15185 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
15186 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
15187
15188 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
15189 "QDisableRandomization", "disable-randomization", 0);
15190
15191 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
15192 "QAgent", "agent", 0);
15193
15194 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
15195 "QTBuffer:size", "trace-buffer-size", 0);
15196
15197 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
15198 "Qbtrace:off", "disable-btrace", 0);
15199
15200 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
15201 "Qbtrace:bts", "enable-btrace-bts", 0);
15202
15203 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
15204 "Qbtrace:pt", "enable-btrace-pt", 0);
15205
15206 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
15207 "qXfer:btrace", "read-btrace", 0);
15208
15209 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
15210 "qXfer:btrace-conf", "read-btrace-conf", 0);
15211
15212 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
15213 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
15214
15215 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
15216 "multiprocess-feature", "multiprocess-feature", 0);
15217
15218 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
15219 "swbreak-feature", "swbreak-feature", 0);
15220
15221 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
15222 "hwbreak-feature", "hwbreak-feature", 0);
15223
15224 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
15225 "fork-event-feature", "fork-event-feature", 0);
15226
15227 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
15228 "vfork-event-feature", "vfork-event-feature", 0);
15229
15230 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
15231 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
15232
15233 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
15234 "vContSupported", "verbose-resume-supported", 0);
15235
15236 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
15237 "exec-event-feature", "exec-event-feature", 0);
15238
15239 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
15240 "vCtrlC", "ctrl-c", 0);
15241
15242 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
15243 "QThreadEvents", "thread-events", 0);
15244
15245 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
15246 "N stop reply", "no-resumed-stop-reply", 0);
15247
15248 add_packet_config_cmd (&remote_protocol_packets[PACKET_memory_tagging_feature],
15249 "memory-tagging-feature", "memory-tagging-feature", 0);
15250
15251 /* Assert that we've registered "set remote foo-packet" commands
15252 for all packet configs. */
15253 {
15254 int i;
15255
15256 for (i = 0; i < PACKET_MAX; i++)
15257 {
15258 /* Ideally all configs would have a command associated. Some
15259 still don't though. */
15260 int excepted;
15261
15262 switch (i)
15263 {
15264 case PACKET_QNonStop:
15265 case PACKET_EnableDisableTracepoints_feature:
15266 case PACKET_tracenz_feature:
15267 case PACKET_DisconnectedTracing_feature:
15268 case PACKET_augmented_libraries_svr4_read_feature:
15269 case PACKET_qCRC:
15270 /* Additions to this list need to be well justified:
15271 pre-existing packets are OK; new packets are not. */
15272 excepted = 1;
15273 break;
15274 default:
15275 excepted = 0;
15276 break;
15277 }
15278
15279 /* This catches both forgetting to add a config command, and
15280 forgetting to remove a packet from the exception list. */
15281 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
15282 }
15283 }
15284
15285 /* Keep the old ``set remote Z-packet ...'' working. Each individual
15286 Z sub-packet has its own set and show commands, but users may
15287 have sets to this variable in their .gdbinit files (or in their
15288 documentation). */
15289 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
15290 &remote_Z_packet_detect, _("\
15291 Set use of remote protocol `Z' packets."), _("\
15292 Show use of remote protocol `Z' packets."), _("\
15293 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
15294 packets."),
15295 set_remote_protocol_Z_packet_cmd,
15296 show_remote_protocol_Z_packet_cmd,
15297 /* FIXME: i18n: Use of remote protocol
15298 `Z' packets is %s. */
15299 &remote_set_cmdlist, &remote_show_cmdlist);
15300
15301 add_basic_prefix_cmd ("remote", class_files, _("\
15302 Manipulate files on the remote system.\n\
15303 Transfer files to and from the remote target system."),
15304 &remote_cmdlist,
15305 0 /* allow-unknown */, &cmdlist);
15306
15307 add_cmd ("put", class_files, remote_put_command,
15308 _("Copy a local file to the remote system."),
15309 &remote_cmdlist);
15310
15311 add_cmd ("get", class_files, remote_get_command,
15312 _("Copy a remote file to the local system."),
15313 &remote_cmdlist);
15314
15315 add_cmd ("delete", class_files, remote_delete_command,
15316 _("Delete a remote file."),
15317 &remote_cmdlist);
15318
15319 add_setshow_string_noescape_cmd ("exec-file", class_files,
15320 &remote_exec_file_var, _("\
15321 Set the remote pathname for \"run\"."), _("\
15322 Show the remote pathname for \"run\"."), NULL,
15323 set_remote_exec_file,
15324 show_remote_exec_file,
15325 &remote_set_cmdlist,
15326 &remote_show_cmdlist);
15327
15328 add_setshow_boolean_cmd ("range-stepping", class_run,
15329 &use_range_stepping, _("\
15330 Enable or disable range stepping."), _("\
15331 Show whether target-assisted range stepping is enabled."), _("\
15332 If on, and the target supports it, when stepping a source line, GDB\n\
15333 tells the target to step the corresponding range of addresses itself instead\n\
15334 of issuing multiple single-steps. This speeds up source level\n\
15335 stepping. If off, GDB always issues single-steps, even if range\n\
15336 stepping is supported by the target. The default is on."),
15337 set_range_stepping,
15338 show_range_stepping,
15339 &setlist,
15340 &showlist);
15341
15342 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
15343 Set watchdog timer."), _("\
15344 Show watchdog timer."), _("\
15345 When non-zero, this timeout is used instead of waiting forever for a target\n\
15346 to finish a low-level step or continue operation. If the specified amount\n\
15347 of time passes without a response from the target, an error occurs."),
15348 NULL,
15349 show_watchdog,
15350 &setlist, &showlist);
15351
15352 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
15353 &remote_packet_max_chars, _("\
15354 Set the maximum number of characters to display for each remote packet."), _("\
15355 Show the maximum number of characters to display for each remote packet."), _("\
15356 Specify \"unlimited\" to display all the characters."),
15357 NULL, show_remote_packet_max_chars,
15358 &setdebuglist, &showdebuglist);
15359
15360 add_setshow_boolean_cmd ("remote", no_class, &remote_debug,
15361 _("Set debugging of remote protocol."),
15362 _("Show debugging of remote protocol."),
15363 _("\
15364 When enabled, each packet sent or received with the remote target\n\
15365 is displayed."),
15366 NULL,
15367 show_remote_debug,
15368 &setdebuglist, &showdebuglist);
15369
15370 add_setshow_zuinteger_unlimited_cmd ("remotetimeout", no_class,
15371 &remote_timeout, _("\
15372 Set timeout limit to wait for target to respond."), _("\
15373 Show timeout limit to wait for target to respond."), _("\
15374 This value is used to set the time limit for gdb to wait for a response\n\
15375 from the target."),
15376 NULL,
15377 show_remote_timeout,
15378 &setlist, &showlist);
15379
15380 /* Eventually initialize fileio. See fileio.c */
15381 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
15382
15383 #if GDB_SELF_TEST
15384 selftests::register_test ("remote_memory_tagging",
15385 selftests::test_memory_tagging_functions);
15386 #endif
15387 }