]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
* gdbarch.sh (target_gdbarch): Remove macro.
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "gdb_assert.h"
40 #include "observer.h"
41 #include "solib.h"
42 #include "cli/cli-decode.h"
43 #include "cli/cli-setshow.h"
44 #include "target-descriptions.h"
45 #include "gdb_bfd.h"
46
47 #include <ctype.h>
48 #include <sys/time.h>
49
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include "inf-loop.h"
53
54 #include <signal.h>
55 #include "serial.h"
56
57 #include "gdbcore.h" /* for exec_bfd */
58
59 #include "remote-fileio.h"
60 #include "gdb/fileio.h"
61 #include "gdb_stat.h"
62 #include "xml-support.h"
63
64 #include "memory-map.h"
65
66 #include "tracepoint.h"
67 #include "ax.h"
68 #include "ax-gdb.h"
69 #include "agent.h"
70
71 /* Temp hacks for tracepoint encoding migration. */
72 static char *target_buf;
73 static long target_buf_size;
74
75 /* The size to align memory write packets, when practical. The protocol
76 does not guarantee any alignment, and gdb will generate short
77 writes and unaligned writes, but even as a best-effort attempt this
78 can improve bulk transfers. For instance, if a write is misaligned
79 relative to the target's data bus, the stub may need to make an extra
80 round trip fetching data from the target. This doesn't make a
81 huge difference, but it's easy to do, so we try to be helpful.
82
83 The alignment chosen is arbitrary; usually data bus width is
84 important here, not the possibly larger cache line size. */
85 enum { REMOTE_ALIGN_WRITES = 16 };
86
87 /* Prototypes for local functions. */
88 static void cleanup_sigint_signal_handler (void *dummy);
89 static void initialize_sigint_signal_handler (void);
90 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
91 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
92 int forever);
93
94 static void handle_remote_sigint (int);
95 static void handle_remote_sigint_twice (int);
96 static void async_remote_interrupt (gdb_client_data);
97 void async_remote_interrupt_twice (gdb_client_data);
98
99 static void remote_files_info (struct target_ops *ignore);
100
101 static void remote_prepare_to_store (struct regcache *regcache);
102
103 static void remote_open (char *name, int from_tty);
104
105 static void extended_remote_open (char *name, int from_tty);
106
107 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
108
109 static void remote_close (int quitting);
110
111 static void remote_mourn (struct target_ops *ops);
112
113 static void extended_remote_restart (void);
114
115 static void extended_remote_mourn (struct target_ops *);
116
117 static void remote_mourn_1 (struct target_ops *);
118
119 static void remote_send (char **buf, long *sizeof_buf_p);
120
121 static int readchar (int timeout);
122
123 static void remote_kill (struct target_ops *ops);
124
125 static int tohex (int nib);
126
127 static int remote_can_async_p (void);
128
129 static int remote_is_async_p (void);
130
131 static void remote_async (void (*callback) (enum inferior_event_type event_type,
132 void *context), void *context);
133
134 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
135
136 static void remote_interrupt (int signo);
137
138 static void remote_interrupt_twice (int signo);
139
140 static void interrupt_query (void);
141
142 static void set_general_thread (struct ptid ptid);
143 static void set_continue_thread (struct ptid ptid);
144
145 static void get_offsets (void);
146
147 static void skip_frame (void);
148
149 static long read_frame (char **buf_p, long *sizeof_buf);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void remote_stop (ptid_t);
158
159 static int ishex (int ch, int *val);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (char *);
170
171 static void compare_sections_command (char *, int);
172
173 static void packet_command (char *, int);
174
175 static int stub_unpack_int (char *buff, int fieldlength);
176
177 static ptid_t remote_current_thread (ptid_t oldptid);
178
179 static void remote_find_new_threads (void);
180
181 static void record_currthread (ptid_t currthread);
182
183 static int fromhex (int a);
184
185 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
186
187 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
188
189 static int putpkt_binary (char *buf, int cnt);
190
191 static void check_binary_download (CORE_ADDR addr);
192
193 struct packet_config;
194
195 static void show_packet_config_cmd (struct packet_config *config);
196
197 static void update_packet_config (struct packet_config *config);
198
199 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
200 struct cmd_list_element *c);
201
202 static void show_remote_protocol_packet_cmd (struct ui_file *file,
203 int from_tty,
204 struct cmd_list_element *c,
205 const char *value);
206
207 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
208 static ptid_t read_ptid (char *buf, char **obuf);
209
210 static void remote_set_permissions (void);
211
212 struct remote_state;
213 static int remote_get_trace_status (struct trace_status *ts);
214
215 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
216
217 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
218
219 static void remote_query_supported (void);
220
221 static void remote_check_symbols (struct objfile *objfile);
222
223 void _initialize_remote (void);
224
225 struct stop_reply;
226 static struct stop_reply *stop_reply_xmalloc (void);
227 static void stop_reply_xfree (struct stop_reply *);
228 static void do_stop_reply_xfree (void *arg);
229 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
230 static void push_stop_reply (struct stop_reply *);
231 static void remote_get_pending_stop_replies (void);
232 static void discard_pending_stop_replies (int pid);
233 static int peek_stop_reply (ptid_t ptid);
234
235 static void remote_async_inferior_event_handler (gdb_client_data);
236 static void remote_async_get_pending_events_handler (gdb_client_data);
237
238 static void remote_terminal_ours (void);
239
240 static int remote_read_description_p (struct target_ops *target);
241
242 static void remote_console_output (char *msg);
243
244 static int remote_supports_cond_breakpoints (void);
245
246 static int remote_can_run_breakpoint_commands (void);
247
248 /* The non-stop remote protocol provisions for one pending stop reply.
249 This is where we keep it until it is acknowledged. */
250
251 static struct stop_reply *pending_stop_reply = NULL;
252
253 /* For "remote". */
254
255 static struct cmd_list_element *remote_cmdlist;
256
257 /* For "set remote" and "show remote". */
258
259 static struct cmd_list_element *remote_set_cmdlist;
260 static struct cmd_list_element *remote_show_cmdlist;
261
262 /* Description of the remote protocol state for the currently
263 connected target. This is per-target state, and independent of the
264 selected architecture. */
265
266 struct remote_state
267 {
268 /* A buffer to use for incoming packets, and its current size. The
269 buffer is grown dynamically for larger incoming packets.
270 Outgoing packets may also be constructed in this buffer.
271 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
272 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
273 packets. */
274 char *buf;
275 long buf_size;
276
277 /* True if we're going through initial connection setup (finding out
278 about the remote side's threads, relocating symbols, etc.). */
279 int starting_up;
280
281 /* If we negotiated packet size explicitly (and thus can bypass
282 heuristics for the largest packet size that will not overflow
283 a buffer in the stub), this will be set to that packet size.
284 Otherwise zero, meaning to use the guessed size. */
285 long explicit_packet_size;
286
287 /* remote_wait is normally called when the target is running and
288 waits for a stop reply packet. But sometimes we need to call it
289 when the target is already stopped. We can send a "?" packet
290 and have remote_wait read the response. Or, if we already have
291 the response, we can stash it in BUF and tell remote_wait to
292 skip calling getpkt. This flag is set when BUF contains a
293 stop reply packet and the target is not waiting. */
294 int cached_wait_status;
295
296 /* True, if in no ack mode. That is, neither GDB nor the stub will
297 expect acks from each other. The connection is assumed to be
298 reliable. */
299 int noack_mode;
300
301 /* True if we're connected in extended remote mode. */
302 int extended;
303
304 /* True if the stub reported support for multi-process
305 extensions. */
306 int multi_process_aware;
307
308 /* True if we resumed the target and we're waiting for the target to
309 stop. In the mean time, we can't start another command/query.
310 The remote server wouldn't be ready to process it, so we'd
311 timeout waiting for a reply that would never come and eventually
312 we'd close the connection. This can happen in asynchronous mode
313 because we allow GDB commands while the target is running. */
314 int waiting_for_stop_reply;
315
316 /* True if the stub reports support for non-stop mode. */
317 int non_stop_aware;
318
319 /* True if the stub reports support for vCont;t. */
320 int support_vCont_t;
321
322 /* True if the stub reports support for conditional tracepoints. */
323 int cond_tracepoints;
324
325 /* True if the stub reports support for target-side breakpoint
326 conditions. */
327 int cond_breakpoints;
328
329 /* True if the stub reports support for target-side breakpoint
330 commands. */
331 int breakpoint_commands;
332
333 /* True if the stub reports support for fast tracepoints. */
334 int fast_tracepoints;
335
336 /* True if the stub reports support for static tracepoints. */
337 int static_tracepoints;
338
339 /* True if the stub reports support for installing tracepoint while
340 tracing. */
341 int install_in_trace;
342
343 /* True if the stub can continue running a trace while GDB is
344 disconnected. */
345 int disconnected_tracing;
346
347 /* True if the stub reports support for enabling and disabling
348 tracepoints while a trace experiment is running. */
349 int enable_disable_tracepoints;
350
351 /* True if the stub can collect strings using tracenz bytecode. */
352 int string_tracing;
353
354 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
355 responded to that. */
356 int ctrlc_pending_p;
357 };
358
359 /* Private data that we'll store in (struct thread_info)->private. */
360 struct private_thread_info
361 {
362 char *extra;
363 int core;
364 };
365
366 static void
367 free_private_thread_info (struct private_thread_info *info)
368 {
369 xfree (info->extra);
370 xfree (info);
371 }
372
373 /* Returns true if the multi-process extensions are in effect. */
374 static int
375 remote_multi_process_p (struct remote_state *rs)
376 {
377 return rs->multi_process_aware;
378 }
379
380 /* This data could be associated with a target, but we do not always
381 have access to the current target when we need it, so for now it is
382 static. This will be fine for as long as only one target is in use
383 at a time. */
384 static struct remote_state remote_state;
385
386 static struct remote_state *
387 get_remote_state_raw (void)
388 {
389 return &remote_state;
390 }
391
392 /* Description of the remote protocol for a given architecture. */
393
394 struct packet_reg
395 {
396 long offset; /* Offset into G packet. */
397 long regnum; /* GDB's internal register number. */
398 LONGEST pnum; /* Remote protocol register number. */
399 int in_g_packet; /* Always part of G packet. */
400 /* long size in bytes; == register_size (target_gdbarch (), regnum);
401 at present. */
402 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
403 at present. */
404 };
405
406 struct remote_arch_state
407 {
408 /* Description of the remote protocol registers. */
409 long sizeof_g_packet;
410
411 /* Description of the remote protocol registers indexed by REGNUM
412 (making an array gdbarch_num_regs in size). */
413 struct packet_reg *regs;
414
415 /* This is the size (in chars) of the first response to the ``g''
416 packet. It is used as a heuristic when determining the maximum
417 size of memory-read and memory-write packets. A target will
418 typically only reserve a buffer large enough to hold the ``g''
419 packet. The size does not include packet overhead (headers and
420 trailers). */
421 long actual_register_packet_size;
422
423 /* This is the maximum size (in chars) of a non read/write packet.
424 It is also used as a cap on the size of read/write packets. */
425 long remote_packet_size;
426 };
427
428 long sizeof_pkt = 2000;
429
430 /* Utility: generate error from an incoming stub packet. */
431 static void
432 trace_error (char *buf)
433 {
434 if (*buf++ != 'E')
435 return; /* not an error msg */
436 switch (*buf)
437 {
438 case '1': /* malformed packet error */
439 if (*++buf == '0') /* general case: */
440 error (_("remote.c: error in outgoing packet."));
441 else
442 error (_("remote.c: error in outgoing packet at field #%ld."),
443 strtol (buf, NULL, 16));
444 case '2':
445 error (_("trace API error 0x%s."), ++buf);
446 default:
447 error (_("Target returns error code '%s'."), buf);
448 }
449 }
450
451 /* Utility: wait for reply from stub, while accepting "O" packets. */
452 static char *
453 remote_get_noisy_reply (char **buf_p,
454 long *sizeof_buf)
455 {
456 do /* Loop on reply from remote stub. */
457 {
458 char *buf;
459
460 QUIT; /* Allow user to bail out with ^C. */
461 getpkt (buf_p, sizeof_buf, 0);
462 buf = *buf_p;
463 if (buf[0] == 'E')
464 trace_error (buf);
465 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
466 {
467 ULONGEST ul;
468 CORE_ADDR from, to, org_to;
469 char *p, *pp;
470 int adjusted_size = 0;
471 volatile struct gdb_exception ex;
472
473 p = buf + strlen ("qRelocInsn:");
474 pp = unpack_varlen_hex (p, &ul);
475 if (*pp != ';')
476 error (_("invalid qRelocInsn packet: %s"), buf);
477 from = ul;
478
479 p = pp + 1;
480 unpack_varlen_hex (p, &ul);
481 to = ul;
482
483 org_to = to;
484
485 TRY_CATCH (ex, RETURN_MASK_ALL)
486 {
487 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
488 }
489 if (ex.reason >= 0)
490 {
491 adjusted_size = to - org_to;
492
493 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
494 putpkt (buf);
495 }
496 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
497 {
498 /* Propagate memory errors silently back to the target.
499 The stub may have limited the range of addresses we
500 can write to, for example. */
501 putpkt ("E01");
502 }
503 else
504 {
505 /* Something unexpectedly bad happened. Be verbose so
506 we can tell what, and propagate the error back to the
507 stub, so it doesn't get stuck waiting for a
508 response. */
509 exception_fprintf (gdb_stderr, ex,
510 _("warning: relocating instruction: "));
511 putpkt ("E01");
512 }
513 }
514 else if (buf[0] == 'O' && buf[1] != 'K')
515 remote_console_output (buf + 1); /* 'O' message from stub */
516 else
517 return buf; /* Here's the actual reply. */
518 }
519 while (1);
520 }
521
522 /* Handle for retreving the remote protocol data from gdbarch. */
523 static struct gdbarch_data *remote_gdbarch_data_handle;
524
525 static struct remote_arch_state *
526 get_remote_arch_state (void)
527 {
528 return gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle);
529 }
530
531 /* Fetch the global remote target state. */
532
533 static struct remote_state *
534 get_remote_state (void)
535 {
536 /* Make sure that the remote architecture state has been
537 initialized, because doing so might reallocate rs->buf. Any
538 function which calls getpkt also needs to be mindful of changes
539 to rs->buf, but this call limits the number of places which run
540 into trouble. */
541 get_remote_arch_state ();
542
543 return get_remote_state_raw ();
544 }
545
546 static int
547 compare_pnums (const void *lhs_, const void *rhs_)
548 {
549 const struct packet_reg * const *lhs = lhs_;
550 const struct packet_reg * const *rhs = rhs_;
551
552 if ((*lhs)->pnum < (*rhs)->pnum)
553 return -1;
554 else if ((*lhs)->pnum == (*rhs)->pnum)
555 return 0;
556 else
557 return 1;
558 }
559
560 static int
561 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
562 {
563 int regnum, num_remote_regs, offset;
564 struct packet_reg **remote_regs;
565
566 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
567 {
568 struct packet_reg *r = &regs[regnum];
569
570 if (register_size (gdbarch, regnum) == 0)
571 /* Do not try to fetch zero-sized (placeholder) registers. */
572 r->pnum = -1;
573 else
574 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
575
576 r->regnum = regnum;
577 }
578
579 /* Define the g/G packet format as the contents of each register
580 with a remote protocol number, in order of ascending protocol
581 number. */
582
583 remote_regs = alloca (gdbarch_num_regs (gdbarch)
584 * sizeof (struct packet_reg *));
585 for (num_remote_regs = 0, regnum = 0;
586 regnum < gdbarch_num_regs (gdbarch);
587 regnum++)
588 if (regs[regnum].pnum != -1)
589 remote_regs[num_remote_regs++] = &regs[regnum];
590
591 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
592 compare_pnums);
593
594 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
595 {
596 remote_regs[regnum]->in_g_packet = 1;
597 remote_regs[regnum]->offset = offset;
598 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
599 }
600
601 return offset;
602 }
603
604 /* Given the architecture described by GDBARCH, return the remote
605 protocol register's number and the register's offset in the g/G
606 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
607 If the target does not have a mapping for REGNUM, return false,
608 otherwise, return true. */
609
610 int
611 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
612 int *pnum, int *poffset)
613 {
614 int sizeof_g_packet;
615 struct packet_reg *regs;
616 struct cleanup *old_chain;
617
618 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
619
620 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
621 old_chain = make_cleanup (xfree, regs);
622
623 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
624
625 *pnum = regs[regnum].pnum;
626 *poffset = regs[regnum].offset;
627
628 do_cleanups (old_chain);
629
630 return *pnum != -1;
631 }
632
633 static void *
634 init_remote_state (struct gdbarch *gdbarch)
635 {
636 struct remote_state *rs = get_remote_state_raw ();
637 struct remote_arch_state *rsa;
638
639 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
640
641 /* Use the architecture to build a regnum<->pnum table, which will be
642 1:1 unless a feature set specifies otherwise. */
643 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
644 gdbarch_num_regs (gdbarch),
645 struct packet_reg);
646
647 /* Record the maximum possible size of the g packet - it may turn out
648 to be smaller. */
649 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
650
651 /* Default maximum number of characters in a packet body. Many
652 remote stubs have a hardwired buffer size of 400 bytes
653 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
654 as the maximum packet-size to ensure that the packet and an extra
655 NUL character can always fit in the buffer. This stops GDB
656 trashing stubs that try to squeeze an extra NUL into what is
657 already a full buffer (As of 1999-12-04 that was most stubs). */
658 rsa->remote_packet_size = 400 - 1;
659
660 /* This one is filled in when a ``g'' packet is received. */
661 rsa->actual_register_packet_size = 0;
662
663 /* Should rsa->sizeof_g_packet needs more space than the
664 default, adjust the size accordingly. Remember that each byte is
665 encoded as two characters. 32 is the overhead for the packet
666 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
667 (``$NN:G...#NN'') is a better guess, the below has been padded a
668 little. */
669 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
670 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
671
672 /* Make sure that the packet buffer is plenty big enough for
673 this architecture. */
674 if (rs->buf_size < rsa->remote_packet_size)
675 {
676 rs->buf_size = 2 * rsa->remote_packet_size;
677 rs->buf = xrealloc (rs->buf, rs->buf_size);
678 }
679
680 return rsa;
681 }
682
683 /* Return the current allowed size of a remote packet. This is
684 inferred from the current architecture, and should be used to
685 limit the length of outgoing packets. */
686 static long
687 get_remote_packet_size (void)
688 {
689 struct remote_state *rs = get_remote_state ();
690 struct remote_arch_state *rsa = get_remote_arch_state ();
691
692 if (rs->explicit_packet_size)
693 return rs->explicit_packet_size;
694
695 return rsa->remote_packet_size;
696 }
697
698 static struct packet_reg *
699 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
700 {
701 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
702 return NULL;
703 else
704 {
705 struct packet_reg *r = &rsa->regs[regnum];
706
707 gdb_assert (r->regnum == regnum);
708 return r;
709 }
710 }
711
712 static struct packet_reg *
713 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
714 {
715 int i;
716
717 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
718 {
719 struct packet_reg *r = &rsa->regs[i];
720
721 if (r->pnum == pnum)
722 return r;
723 }
724 return NULL;
725 }
726
727 /* FIXME: graces/2002-08-08: These variables should eventually be
728 bound to an instance of the target object (as in gdbarch-tdep()),
729 when such a thing exists. */
730
731 /* This is set to the data address of the access causing the target
732 to stop for a watchpoint. */
733 static CORE_ADDR remote_watch_data_address;
734
735 /* This is non-zero if target stopped for a watchpoint. */
736 static int remote_stopped_by_watchpoint_p;
737
738 static struct target_ops remote_ops;
739
740 static struct target_ops extended_remote_ops;
741
742 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
743 ``forever'' still use the normal timeout mechanism. This is
744 currently used by the ASYNC code to guarentee that target reads
745 during the initial connect always time-out. Once getpkt has been
746 modified to return a timeout indication and, in turn
747 remote_wait()/wait_for_inferior() have gained a timeout parameter
748 this can go away. */
749 static int wait_forever_enabled_p = 1;
750
751 /* Allow the user to specify what sequence to send to the remote
752 when he requests a program interruption: Although ^C is usually
753 what remote systems expect (this is the default, here), it is
754 sometimes preferable to send a break. On other systems such
755 as the Linux kernel, a break followed by g, which is Magic SysRq g
756 is required in order to interrupt the execution. */
757 const char interrupt_sequence_control_c[] = "Ctrl-C";
758 const char interrupt_sequence_break[] = "BREAK";
759 const char interrupt_sequence_break_g[] = "BREAK-g";
760 static const char *const interrupt_sequence_modes[] =
761 {
762 interrupt_sequence_control_c,
763 interrupt_sequence_break,
764 interrupt_sequence_break_g,
765 NULL
766 };
767 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
768
769 static void
770 show_interrupt_sequence (struct ui_file *file, int from_tty,
771 struct cmd_list_element *c,
772 const char *value)
773 {
774 if (interrupt_sequence_mode == interrupt_sequence_control_c)
775 fprintf_filtered (file,
776 _("Send the ASCII ETX character (Ctrl-c) "
777 "to the remote target to interrupt the "
778 "execution of the program.\n"));
779 else if (interrupt_sequence_mode == interrupt_sequence_break)
780 fprintf_filtered (file,
781 _("send a break signal to the remote target "
782 "to interrupt the execution of the program.\n"));
783 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
784 fprintf_filtered (file,
785 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
786 "the remote target to interrupt the execution "
787 "of Linux kernel.\n"));
788 else
789 internal_error (__FILE__, __LINE__,
790 _("Invalid value for interrupt_sequence_mode: %s."),
791 interrupt_sequence_mode);
792 }
793
794 /* This boolean variable specifies whether interrupt_sequence is sent
795 to the remote target when gdb connects to it.
796 This is mostly needed when you debug the Linux kernel: The Linux kernel
797 expects BREAK g which is Magic SysRq g for connecting gdb. */
798 static int interrupt_on_connect = 0;
799
800 /* This variable is used to implement the "set/show remotebreak" commands.
801 Since these commands are now deprecated in favor of "set/show remote
802 interrupt-sequence", it no longer has any effect on the code. */
803 static int remote_break;
804
805 static void
806 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
807 {
808 if (remote_break)
809 interrupt_sequence_mode = interrupt_sequence_break;
810 else
811 interrupt_sequence_mode = interrupt_sequence_control_c;
812 }
813
814 static void
815 show_remotebreak (struct ui_file *file, int from_tty,
816 struct cmd_list_element *c,
817 const char *value)
818 {
819 }
820
821 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
822 remote_open knows that we don't have a file open when the program
823 starts. */
824 static struct serial *remote_desc = NULL;
825
826 /* This variable sets the number of bits in an address that are to be
827 sent in a memory ("M" or "m") packet. Normally, after stripping
828 leading zeros, the entire address would be sent. This variable
829 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
830 initial implementation of remote.c restricted the address sent in
831 memory packets to ``host::sizeof long'' bytes - (typically 32
832 bits). Consequently, for 64 bit targets, the upper 32 bits of an
833 address was never sent. Since fixing this bug may cause a break in
834 some remote targets this variable is principly provided to
835 facilitate backward compatibility. */
836
837 static unsigned int remote_address_size;
838
839 /* Temporary to track who currently owns the terminal. See
840 remote_terminal_* for more details. */
841
842 static int remote_async_terminal_ours_p;
843
844 /* The executable file to use for "run" on the remote side. */
845
846 static char *remote_exec_file = "";
847
848 \f
849 /* User configurable variables for the number of characters in a
850 memory read/write packet. MIN (rsa->remote_packet_size,
851 rsa->sizeof_g_packet) is the default. Some targets need smaller
852 values (fifo overruns, et.al.) and some users need larger values
853 (speed up transfers). The variables ``preferred_*'' (the user
854 request), ``current_*'' (what was actually set) and ``forced_*''
855 (Positive - a soft limit, negative - a hard limit). */
856
857 struct memory_packet_config
858 {
859 char *name;
860 long size;
861 int fixed_p;
862 };
863
864 /* Compute the current size of a read/write packet. Since this makes
865 use of ``actual_register_packet_size'' the computation is dynamic. */
866
867 static long
868 get_memory_packet_size (struct memory_packet_config *config)
869 {
870 struct remote_state *rs = get_remote_state ();
871 struct remote_arch_state *rsa = get_remote_arch_state ();
872
873 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
874 law?) that some hosts don't cope very well with large alloca()
875 calls. Eventually the alloca() code will be replaced by calls to
876 xmalloc() and make_cleanups() allowing this restriction to either
877 be lifted or removed. */
878 #ifndef MAX_REMOTE_PACKET_SIZE
879 #define MAX_REMOTE_PACKET_SIZE 16384
880 #endif
881 /* NOTE: 20 ensures we can write at least one byte. */
882 #ifndef MIN_REMOTE_PACKET_SIZE
883 #define MIN_REMOTE_PACKET_SIZE 20
884 #endif
885 long what_they_get;
886 if (config->fixed_p)
887 {
888 if (config->size <= 0)
889 what_they_get = MAX_REMOTE_PACKET_SIZE;
890 else
891 what_they_get = config->size;
892 }
893 else
894 {
895 what_they_get = get_remote_packet_size ();
896 /* Limit the packet to the size specified by the user. */
897 if (config->size > 0
898 && what_they_get > config->size)
899 what_they_get = config->size;
900
901 /* Limit it to the size of the targets ``g'' response unless we have
902 permission from the stub to use a larger packet size. */
903 if (rs->explicit_packet_size == 0
904 && rsa->actual_register_packet_size > 0
905 && what_they_get > rsa->actual_register_packet_size)
906 what_they_get = rsa->actual_register_packet_size;
907 }
908 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
909 what_they_get = MAX_REMOTE_PACKET_SIZE;
910 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
911 what_they_get = MIN_REMOTE_PACKET_SIZE;
912
913 /* Make sure there is room in the global buffer for this packet
914 (including its trailing NUL byte). */
915 if (rs->buf_size < what_they_get + 1)
916 {
917 rs->buf_size = 2 * what_they_get;
918 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
919 }
920
921 return what_they_get;
922 }
923
924 /* Update the size of a read/write packet. If they user wants
925 something really big then do a sanity check. */
926
927 static void
928 set_memory_packet_size (char *args, struct memory_packet_config *config)
929 {
930 int fixed_p = config->fixed_p;
931 long size = config->size;
932
933 if (args == NULL)
934 error (_("Argument required (integer, `fixed' or `limited')."));
935 else if (strcmp (args, "hard") == 0
936 || strcmp (args, "fixed") == 0)
937 fixed_p = 1;
938 else if (strcmp (args, "soft") == 0
939 || strcmp (args, "limit") == 0)
940 fixed_p = 0;
941 else
942 {
943 char *end;
944
945 size = strtoul (args, &end, 0);
946 if (args == end)
947 error (_("Invalid %s (bad syntax)."), config->name);
948 #if 0
949 /* Instead of explicitly capping the size of a packet to
950 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
951 instead allowed to set the size to something arbitrarily
952 large. */
953 if (size > MAX_REMOTE_PACKET_SIZE)
954 error (_("Invalid %s (too large)."), config->name);
955 #endif
956 }
957 /* Extra checks? */
958 if (fixed_p && !config->fixed_p)
959 {
960 if (! query (_("The target may not be able to correctly handle a %s\n"
961 "of %ld bytes. Change the packet size? "),
962 config->name, size))
963 error (_("Packet size not changed."));
964 }
965 /* Update the config. */
966 config->fixed_p = fixed_p;
967 config->size = size;
968 }
969
970 static void
971 show_memory_packet_size (struct memory_packet_config *config)
972 {
973 printf_filtered (_("The %s is %ld. "), config->name, config->size);
974 if (config->fixed_p)
975 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
976 get_memory_packet_size (config));
977 else
978 printf_filtered (_("Packets are limited to %ld bytes.\n"),
979 get_memory_packet_size (config));
980 }
981
982 static struct memory_packet_config memory_write_packet_config =
983 {
984 "memory-write-packet-size",
985 };
986
987 static void
988 set_memory_write_packet_size (char *args, int from_tty)
989 {
990 set_memory_packet_size (args, &memory_write_packet_config);
991 }
992
993 static void
994 show_memory_write_packet_size (char *args, int from_tty)
995 {
996 show_memory_packet_size (&memory_write_packet_config);
997 }
998
999 static long
1000 get_memory_write_packet_size (void)
1001 {
1002 return get_memory_packet_size (&memory_write_packet_config);
1003 }
1004
1005 static struct memory_packet_config memory_read_packet_config =
1006 {
1007 "memory-read-packet-size",
1008 };
1009
1010 static void
1011 set_memory_read_packet_size (char *args, int from_tty)
1012 {
1013 set_memory_packet_size (args, &memory_read_packet_config);
1014 }
1015
1016 static void
1017 show_memory_read_packet_size (char *args, int from_tty)
1018 {
1019 show_memory_packet_size (&memory_read_packet_config);
1020 }
1021
1022 static long
1023 get_memory_read_packet_size (void)
1024 {
1025 long size = get_memory_packet_size (&memory_read_packet_config);
1026
1027 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1028 extra buffer size argument before the memory read size can be
1029 increased beyond this. */
1030 if (size > get_remote_packet_size ())
1031 size = get_remote_packet_size ();
1032 return size;
1033 }
1034
1035 \f
1036 /* Generic configuration support for packets the stub optionally
1037 supports. Allows the user to specify the use of the packet as well
1038 as allowing GDB to auto-detect support in the remote stub. */
1039
1040 enum packet_support
1041 {
1042 PACKET_SUPPORT_UNKNOWN = 0,
1043 PACKET_ENABLE,
1044 PACKET_DISABLE
1045 };
1046
1047 struct packet_config
1048 {
1049 const char *name;
1050 const char *title;
1051 enum auto_boolean detect;
1052 enum packet_support support;
1053 };
1054
1055 /* Analyze a packet's return value and update the packet config
1056 accordingly. */
1057
1058 enum packet_result
1059 {
1060 PACKET_ERROR,
1061 PACKET_OK,
1062 PACKET_UNKNOWN
1063 };
1064
1065 static void
1066 update_packet_config (struct packet_config *config)
1067 {
1068 switch (config->detect)
1069 {
1070 case AUTO_BOOLEAN_TRUE:
1071 config->support = PACKET_ENABLE;
1072 break;
1073 case AUTO_BOOLEAN_FALSE:
1074 config->support = PACKET_DISABLE;
1075 break;
1076 case AUTO_BOOLEAN_AUTO:
1077 config->support = PACKET_SUPPORT_UNKNOWN;
1078 break;
1079 }
1080 }
1081
1082 static void
1083 show_packet_config_cmd (struct packet_config *config)
1084 {
1085 char *support = "internal-error";
1086
1087 switch (config->support)
1088 {
1089 case PACKET_ENABLE:
1090 support = "enabled";
1091 break;
1092 case PACKET_DISABLE:
1093 support = "disabled";
1094 break;
1095 case PACKET_SUPPORT_UNKNOWN:
1096 support = "unknown";
1097 break;
1098 }
1099 switch (config->detect)
1100 {
1101 case AUTO_BOOLEAN_AUTO:
1102 printf_filtered (_("Support for the `%s' packet "
1103 "is auto-detected, currently %s.\n"),
1104 config->name, support);
1105 break;
1106 case AUTO_BOOLEAN_TRUE:
1107 case AUTO_BOOLEAN_FALSE:
1108 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1109 config->name, support);
1110 break;
1111 }
1112 }
1113
1114 static void
1115 add_packet_config_cmd (struct packet_config *config, const char *name,
1116 const char *title, int legacy)
1117 {
1118 char *set_doc;
1119 char *show_doc;
1120 char *cmd_name;
1121
1122 config->name = name;
1123 config->title = title;
1124 config->detect = AUTO_BOOLEAN_AUTO;
1125 config->support = PACKET_SUPPORT_UNKNOWN;
1126 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1127 name, title);
1128 show_doc = xstrprintf ("Show current use of remote "
1129 "protocol `%s' (%s) packet",
1130 name, title);
1131 /* set/show TITLE-packet {auto,on,off} */
1132 cmd_name = xstrprintf ("%s-packet", title);
1133 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1134 &config->detect, set_doc,
1135 show_doc, NULL, /* help_doc */
1136 set_remote_protocol_packet_cmd,
1137 show_remote_protocol_packet_cmd,
1138 &remote_set_cmdlist, &remote_show_cmdlist);
1139 /* The command code copies the documentation strings. */
1140 xfree (set_doc);
1141 xfree (show_doc);
1142 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1143 if (legacy)
1144 {
1145 char *legacy_name;
1146
1147 legacy_name = xstrprintf ("%s-packet", name);
1148 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1149 &remote_set_cmdlist);
1150 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1151 &remote_show_cmdlist);
1152 }
1153 }
1154
1155 static enum packet_result
1156 packet_check_result (const char *buf)
1157 {
1158 if (buf[0] != '\0')
1159 {
1160 /* The stub recognized the packet request. Check that the
1161 operation succeeded. */
1162 if (buf[0] == 'E'
1163 && isxdigit (buf[1]) && isxdigit (buf[2])
1164 && buf[3] == '\0')
1165 /* "Enn" - definitly an error. */
1166 return PACKET_ERROR;
1167
1168 /* Always treat "E." as an error. This will be used for
1169 more verbose error messages, such as E.memtypes. */
1170 if (buf[0] == 'E' && buf[1] == '.')
1171 return PACKET_ERROR;
1172
1173 /* The packet may or may not be OK. Just assume it is. */
1174 return PACKET_OK;
1175 }
1176 else
1177 /* The stub does not support the packet. */
1178 return PACKET_UNKNOWN;
1179 }
1180
1181 static enum packet_result
1182 packet_ok (const char *buf, struct packet_config *config)
1183 {
1184 enum packet_result result;
1185
1186 result = packet_check_result (buf);
1187 switch (result)
1188 {
1189 case PACKET_OK:
1190 case PACKET_ERROR:
1191 /* The stub recognized the packet request. */
1192 switch (config->support)
1193 {
1194 case PACKET_SUPPORT_UNKNOWN:
1195 if (remote_debug)
1196 fprintf_unfiltered (gdb_stdlog,
1197 "Packet %s (%s) is supported\n",
1198 config->name, config->title);
1199 config->support = PACKET_ENABLE;
1200 break;
1201 case PACKET_DISABLE:
1202 internal_error (__FILE__, __LINE__,
1203 _("packet_ok: attempt to use a disabled packet"));
1204 break;
1205 case PACKET_ENABLE:
1206 break;
1207 }
1208 break;
1209 case PACKET_UNKNOWN:
1210 /* The stub does not support the packet. */
1211 switch (config->support)
1212 {
1213 case PACKET_ENABLE:
1214 if (config->detect == AUTO_BOOLEAN_AUTO)
1215 /* If the stub previously indicated that the packet was
1216 supported then there is a protocol error.. */
1217 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1218 config->name, config->title);
1219 else
1220 /* The user set it wrong. */
1221 error (_("Enabled packet %s (%s) not recognized by stub"),
1222 config->name, config->title);
1223 break;
1224 case PACKET_SUPPORT_UNKNOWN:
1225 if (remote_debug)
1226 fprintf_unfiltered (gdb_stdlog,
1227 "Packet %s (%s) is NOT supported\n",
1228 config->name, config->title);
1229 config->support = PACKET_DISABLE;
1230 break;
1231 case PACKET_DISABLE:
1232 break;
1233 }
1234 break;
1235 }
1236
1237 return result;
1238 }
1239
1240 enum {
1241 PACKET_vCont = 0,
1242 PACKET_X,
1243 PACKET_qSymbol,
1244 PACKET_P,
1245 PACKET_p,
1246 PACKET_Z0,
1247 PACKET_Z1,
1248 PACKET_Z2,
1249 PACKET_Z3,
1250 PACKET_Z4,
1251 PACKET_vFile_open,
1252 PACKET_vFile_pread,
1253 PACKET_vFile_pwrite,
1254 PACKET_vFile_close,
1255 PACKET_vFile_unlink,
1256 PACKET_vFile_readlink,
1257 PACKET_qXfer_auxv,
1258 PACKET_qXfer_features,
1259 PACKET_qXfer_libraries,
1260 PACKET_qXfer_libraries_svr4,
1261 PACKET_qXfer_memory_map,
1262 PACKET_qXfer_spu_read,
1263 PACKET_qXfer_spu_write,
1264 PACKET_qXfer_osdata,
1265 PACKET_qXfer_threads,
1266 PACKET_qXfer_statictrace_read,
1267 PACKET_qXfer_traceframe_info,
1268 PACKET_qXfer_uib,
1269 PACKET_qGetTIBAddr,
1270 PACKET_qGetTLSAddr,
1271 PACKET_qSupported,
1272 PACKET_QPassSignals,
1273 PACKET_QProgramSignals,
1274 PACKET_qSearch_memory,
1275 PACKET_vAttach,
1276 PACKET_vRun,
1277 PACKET_QStartNoAckMode,
1278 PACKET_vKill,
1279 PACKET_qXfer_siginfo_read,
1280 PACKET_qXfer_siginfo_write,
1281 PACKET_qAttached,
1282 PACKET_ConditionalTracepoints,
1283 PACKET_ConditionalBreakpoints,
1284 PACKET_BreakpointCommands,
1285 PACKET_FastTracepoints,
1286 PACKET_StaticTracepoints,
1287 PACKET_InstallInTrace,
1288 PACKET_bc,
1289 PACKET_bs,
1290 PACKET_TracepointSource,
1291 PACKET_QAllow,
1292 PACKET_qXfer_fdpic,
1293 PACKET_QDisableRandomization,
1294 PACKET_QAgent,
1295 PACKET_MAX
1296 };
1297
1298 static struct packet_config remote_protocol_packets[PACKET_MAX];
1299
1300 static void
1301 set_remote_protocol_packet_cmd (char *args, int from_tty,
1302 struct cmd_list_element *c)
1303 {
1304 struct packet_config *packet;
1305
1306 for (packet = remote_protocol_packets;
1307 packet < &remote_protocol_packets[PACKET_MAX];
1308 packet++)
1309 {
1310 if (&packet->detect == c->var)
1311 {
1312 update_packet_config (packet);
1313 return;
1314 }
1315 }
1316 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1317 c->name);
1318 }
1319
1320 static void
1321 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1322 struct cmd_list_element *c,
1323 const char *value)
1324 {
1325 struct packet_config *packet;
1326
1327 for (packet = remote_protocol_packets;
1328 packet < &remote_protocol_packets[PACKET_MAX];
1329 packet++)
1330 {
1331 if (&packet->detect == c->var)
1332 {
1333 show_packet_config_cmd (packet);
1334 return;
1335 }
1336 }
1337 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1338 c->name);
1339 }
1340
1341 /* Should we try one of the 'Z' requests? */
1342
1343 enum Z_packet_type
1344 {
1345 Z_PACKET_SOFTWARE_BP,
1346 Z_PACKET_HARDWARE_BP,
1347 Z_PACKET_WRITE_WP,
1348 Z_PACKET_READ_WP,
1349 Z_PACKET_ACCESS_WP,
1350 NR_Z_PACKET_TYPES
1351 };
1352
1353 /* For compatibility with older distributions. Provide a ``set remote
1354 Z-packet ...'' command that updates all the Z packet types. */
1355
1356 static enum auto_boolean remote_Z_packet_detect;
1357
1358 static void
1359 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1360 struct cmd_list_element *c)
1361 {
1362 int i;
1363
1364 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1365 {
1366 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1367 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1368 }
1369 }
1370
1371 static void
1372 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1373 struct cmd_list_element *c,
1374 const char *value)
1375 {
1376 int i;
1377
1378 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1379 {
1380 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1381 }
1382 }
1383
1384 /* Should we try the 'ThreadInfo' query packet?
1385
1386 This variable (NOT available to the user: auto-detect only!)
1387 determines whether GDB will use the new, simpler "ThreadInfo"
1388 query or the older, more complex syntax for thread queries.
1389 This is an auto-detect variable (set to true at each connect,
1390 and set to false when the target fails to recognize it). */
1391
1392 static int use_threadinfo_query;
1393 static int use_threadextra_query;
1394
1395 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1396 static struct async_signal_handler *sigint_remote_twice_token;
1397 static struct async_signal_handler *sigint_remote_token;
1398
1399 \f
1400 /* Asynchronous signal handle registered as event loop source for
1401 when we have pending events ready to be passed to the core. */
1402
1403 static struct async_event_handler *remote_async_inferior_event_token;
1404
1405 /* Asynchronous signal handle registered as event loop source for when
1406 the remote sent us a %Stop notification. The registered callback
1407 will do a vStopped sequence to pull the rest of the events out of
1408 the remote side into our event queue. */
1409
1410 static struct async_event_handler *remote_async_get_pending_events_token;
1411 \f
1412
1413 static ptid_t magic_null_ptid;
1414 static ptid_t not_sent_ptid;
1415 static ptid_t any_thread_ptid;
1416
1417 /* These are the threads which we last sent to the remote system. The
1418 TID member will be -1 for all or -2 for not sent yet. */
1419
1420 static ptid_t general_thread;
1421 static ptid_t continue_thread;
1422
1423 /* This is the traceframe which we last selected on the remote system.
1424 It will be -1 if no traceframe is selected. */
1425 static int remote_traceframe_number = -1;
1426
1427 /* Find out if the stub attached to PID (and hence GDB should offer to
1428 detach instead of killing it when bailing out). */
1429
1430 static int
1431 remote_query_attached (int pid)
1432 {
1433 struct remote_state *rs = get_remote_state ();
1434 size_t size = get_remote_packet_size ();
1435
1436 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1437 return 0;
1438
1439 if (remote_multi_process_p (rs))
1440 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1441 else
1442 xsnprintf (rs->buf, size, "qAttached");
1443
1444 putpkt (rs->buf);
1445 getpkt (&rs->buf, &rs->buf_size, 0);
1446
1447 switch (packet_ok (rs->buf,
1448 &remote_protocol_packets[PACKET_qAttached]))
1449 {
1450 case PACKET_OK:
1451 if (strcmp (rs->buf, "1") == 0)
1452 return 1;
1453 break;
1454 case PACKET_ERROR:
1455 warning (_("Remote failure reply: %s"), rs->buf);
1456 break;
1457 case PACKET_UNKNOWN:
1458 break;
1459 }
1460
1461 return 0;
1462 }
1463
1464 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1465 has been invented by GDB, instead of reported by the target. Since
1466 we can be connected to a remote system before before knowing about
1467 any inferior, mark the target with execution when we find the first
1468 inferior. If ATTACHED is 1, then we had just attached to this
1469 inferior. If it is 0, then we just created this inferior. If it
1470 is -1, then try querying the remote stub to find out if it had
1471 attached to the inferior or not. */
1472
1473 static struct inferior *
1474 remote_add_inferior (int fake_pid_p, int pid, int attached)
1475 {
1476 struct inferior *inf;
1477
1478 /* Check whether this process we're learning about is to be
1479 considered attached, or if is to be considered to have been
1480 spawned by the stub. */
1481 if (attached == -1)
1482 attached = remote_query_attached (pid);
1483
1484 if (gdbarch_has_global_solist (target_gdbarch ()))
1485 {
1486 /* If the target shares code across all inferiors, then every
1487 attach adds a new inferior. */
1488 inf = add_inferior (pid);
1489
1490 /* ... and every inferior is bound to the same program space.
1491 However, each inferior may still have its own address
1492 space. */
1493 inf->aspace = maybe_new_address_space ();
1494 inf->pspace = current_program_space;
1495 }
1496 else
1497 {
1498 /* In the traditional debugging scenario, there's a 1-1 match
1499 between program/address spaces. We simply bind the inferior
1500 to the program space's address space. */
1501 inf = current_inferior ();
1502 inferior_appeared (inf, pid);
1503 }
1504
1505 inf->attach_flag = attached;
1506 inf->fake_pid_p = fake_pid_p;
1507
1508 return inf;
1509 }
1510
1511 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1512 according to RUNNING. */
1513
1514 static void
1515 remote_add_thread (ptid_t ptid, int running)
1516 {
1517 add_thread (ptid);
1518
1519 set_executing (ptid, running);
1520 set_running (ptid, running);
1521 }
1522
1523 /* Come here when we learn about a thread id from the remote target.
1524 It may be the first time we hear about such thread, so take the
1525 opportunity to add it to GDB's thread list. In case this is the
1526 first time we're noticing its corresponding inferior, add it to
1527 GDB's inferior list as well. */
1528
1529 static void
1530 remote_notice_new_inferior (ptid_t currthread, int running)
1531 {
1532 /* If this is a new thread, add it to GDB's thread list.
1533 If we leave it up to WFI to do this, bad things will happen. */
1534
1535 if (in_thread_list (currthread) && is_exited (currthread))
1536 {
1537 /* We're seeing an event on a thread id we knew had exited.
1538 This has to be a new thread reusing the old id. Add it. */
1539 remote_add_thread (currthread, running);
1540 return;
1541 }
1542
1543 if (!in_thread_list (currthread))
1544 {
1545 struct inferior *inf = NULL;
1546 int pid = ptid_get_pid (currthread);
1547
1548 if (ptid_is_pid (inferior_ptid)
1549 && pid == ptid_get_pid (inferior_ptid))
1550 {
1551 /* inferior_ptid has no thread member yet. This can happen
1552 with the vAttach -> remote_wait,"TAAthread:" path if the
1553 stub doesn't support qC. This is the first stop reported
1554 after an attach, so this is the main thread. Update the
1555 ptid in the thread list. */
1556 if (in_thread_list (pid_to_ptid (pid)))
1557 thread_change_ptid (inferior_ptid, currthread);
1558 else
1559 {
1560 remote_add_thread (currthread, running);
1561 inferior_ptid = currthread;
1562 }
1563 return;
1564 }
1565
1566 if (ptid_equal (magic_null_ptid, inferior_ptid))
1567 {
1568 /* inferior_ptid is not set yet. This can happen with the
1569 vRun -> remote_wait,"TAAthread:" path if the stub
1570 doesn't support qC. This is the first stop reported
1571 after an attach, so this is the main thread. Update the
1572 ptid in the thread list. */
1573 thread_change_ptid (inferior_ptid, currthread);
1574 return;
1575 }
1576
1577 /* When connecting to a target remote, or to a target
1578 extended-remote which already was debugging an inferior, we
1579 may not know about it yet. Add it before adding its child
1580 thread, so notifications are emitted in a sensible order. */
1581 if (!in_inferior_list (ptid_get_pid (currthread)))
1582 {
1583 struct remote_state *rs = get_remote_state ();
1584 int fake_pid_p = !remote_multi_process_p (rs);
1585
1586 inf = remote_add_inferior (fake_pid_p,
1587 ptid_get_pid (currthread), -1);
1588 }
1589
1590 /* This is really a new thread. Add it. */
1591 remote_add_thread (currthread, running);
1592
1593 /* If we found a new inferior, let the common code do whatever
1594 it needs to with it (e.g., read shared libraries, insert
1595 breakpoints). */
1596 if (inf != NULL)
1597 notice_new_inferior (currthread, running, 0);
1598 }
1599 }
1600
1601 /* Return the private thread data, creating it if necessary. */
1602
1603 static struct private_thread_info *
1604 demand_private_info (ptid_t ptid)
1605 {
1606 struct thread_info *info = find_thread_ptid (ptid);
1607
1608 gdb_assert (info);
1609
1610 if (!info->private)
1611 {
1612 info->private = xmalloc (sizeof (*(info->private)));
1613 info->private_dtor = free_private_thread_info;
1614 info->private->core = -1;
1615 info->private->extra = 0;
1616 }
1617
1618 return info->private;
1619 }
1620
1621 /* Call this function as a result of
1622 1) A halt indication (T packet) containing a thread id
1623 2) A direct query of currthread
1624 3) Successful execution of set thread */
1625
1626 static void
1627 record_currthread (ptid_t currthread)
1628 {
1629 general_thread = currthread;
1630 }
1631
1632 static char *last_pass_packet;
1633
1634 /* If 'QPassSignals' is supported, tell the remote stub what signals
1635 it can simply pass through to the inferior without reporting. */
1636
1637 static void
1638 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1639 {
1640 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1641 {
1642 char *pass_packet, *p;
1643 int count = 0, i;
1644
1645 gdb_assert (numsigs < 256);
1646 for (i = 0; i < numsigs; i++)
1647 {
1648 if (pass_signals[i])
1649 count++;
1650 }
1651 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1652 strcpy (pass_packet, "QPassSignals:");
1653 p = pass_packet + strlen (pass_packet);
1654 for (i = 0; i < numsigs; i++)
1655 {
1656 if (pass_signals[i])
1657 {
1658 if (i >= 16)
1659 *p++ = tohex (i >> 4);
1660 *p++ = tohex (i & 15);
1661 if (count)
1662 *p++ = ';';
1663 else
1664 break;
1665 count--;
1666 }
1667 }
1668 *p = 0;
1669 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1670 {
1671 struct remote_state *rs = get_remote_state ();
1672 char *buf = rs->buf;
1673
1674 putpkt (pass_packet);
1675 getpkt (&rs->buf, &rs->buf_size, 0);
1676 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1677 if (last_pass_packet)
1678 xfree (last_pass_packet);
1679 last_pass_packet = pass_packet;
1680 }
1681 else
1682 xfree (pass_packet);
1683 }
1684 }
1685
1686 /* The last QProgramSignals packet sent to the target. We bypass
1687 sending a new program signals list down to the target if the new
1688 packet is exactly the same as the last we sent. IOW, we only let
1689 the target know about program signals list changes. */
1690
1691 static char *last_program_signals_packet;
1692
1693 /* If 'QProgramSignals' is supported, tell the remote stub what
1694 signals it should pass through to the inferior when detaching. */
1695
1696 static void
1697 remote_program_signals (int numsigs, unsigned char *signals)
1698 {
1699 if (remote_protocol_packets[PACKET_QProgramSignals].support != PACKET_DISABLE)
1700 {
1701 char *packet, *p;
1702 int count = 0, i;
1703
1704 gdb_assert (numsigs < 256);
1705 for (i = 0; i < numsigs; i++)
1706 {
1707 if (signals[i])
1708 count++;
1709 }
1710 packet = xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
1711 strcpy (packet, "QProgramSignals:");
1712 p = packet + strlen (packet);
1713 for (i = 0; i < numsigs; i++)
1714 {
1715 if (signal_pass_state (i))
1716 {
1717 if (i >= 16)
1718 *p++ = tohex (i >> 4);
1719 *p++ = tohex (i & 15);
1720 if (count)
1721 *p++ = ';';
1722 else
1723 break;
1724 count--;
1725 }
1726 }
1727 *p = 0;
1728 if (!last_program_signals_packet
1729 || strcmp (last_program_signals_packet, packet) != 0)
1730 {
1731 struct remote_state *rs = get_remote_state ();
1732 char *buf = rs->buf;
1733
1734 putpkt (packet);
1735 getpkt (&rs->buf, &rs->buf_size, 0);
1736 packet_ok (buf, &remote_protocol_packets[PACKET_QProgramSignals]);
1737 xfree (last_program_signals_packet);
1738 last_program_signals_packet = packet;
1739 }
1740 else
1741 xfree (packet);
1742 }
1743 }
1744
1745 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1746 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1747 thread. If GEN is set, set the general thread, if not, then set
1748 the step/continue thread. */
1749 static void
1750 set_thread (struct ptid ptid, int gen)
1751 {
1752 struct remote_state *rs = get_remote_state ();
1753 ptid_t state = gen ? general_thread : continue_thread;
1754 char *buf = rs->buf;
1755 char *endbuf = rs->buf + get_remote_packet_size ();
1756
1757 if (ptid_equal (state, ptid))
1758 return;
1759
1760 *buf++ = 'H';
1761 *buf++ = gen ? 'g' : 'c';
1762 if (ptid_equal (ptid, magic_null_ptid))
1763 xsnprintf (buf, endbuf - buf, "0");
1764 else if (ptid_equal (ptid, any_thread_ptid))
1765 xsnprintf (buf, endbuf - buf, "0");
1766 else if (ptid_equal (ptid, minus_one_ptid))
1767 xsnprintf (buf, endbuf - buf, "-1");
1768 else
1769 write_ptid (buf, endbuf, ptid);
1770 putpkt (rs->buf);
1771 getpkt (&rs->buf, &rs->buf_size, 0);
1772 if (gen)
1773 general_thread = ptid;
1774 else
1775 continue_thread = ptid;
1776 }
1777
1778 static void
1779 set_general_thread (struct ptid ptid)
1780 {
1781 set_thread (ptid, 1);
1782 }
1783
1784 static void
1785 set_continue_thread (struct ptid ptid)
1786 {
1787 set_thread (ptid, 0);
1788 }
1789
1790 /* Change the remote current process. Which thread within the process
1791 ends up selected isn't important, as long as it is the same process
1792 as what INFERIOR_PTID points to.
1793
1794 This comes from that fact that there is no explicit notion of
1795 "selected process" in the protocol. The selected process for
1796 general operations is the process the selected general thread
1797 belongs to. */
1798
1799 static void
1800 set_general_process (void)
1801 {
1802 struct remote_state *rs = get_remote_state ();
1803
1804 /* If the remote can't handle multiple processes, don't bother. */
1805 if (!rs->extended || !remote_multi_process_p (rs))
1806 return;
1807
1808 /* We only need to change the remote current thread if it's pointing
1809 at some other process. */
1810 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1811 set_general_thread (inferior_ptid);
1812 }
1813
1814 \f
1815 /* Return nonzero if the thread PTID is still alive on the remote
1816 system. */
1817
1818 static int
1819 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1820 {
1821 struct remote_state *rs = get_remote_state ();
1822 char *p, *endp;
1823
1824 if (ptid_equal (ptid, magic_null_ptid))
1825 /* The main thread is always alive. */
1826 return 1;
1827
1828 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1829 /* The main thread is always alive. This can happen after a
1830 vAttach, if the remote side doesn't support
1831 multi-threading. */
1832 return 1;
1833
1834 p = rs->buf;
1835 endp = rs->buf + get_remote_packet_size ();
1836
1837 *p++ = 'T';
1838 write_ptid (p, endp, ptid);
1839
1840 putpkt (rs->buf);
1841 getpkt (&rs->buf, &rs->buf_size, 0);
1842 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1843 }
1844
1845 /* About these extended threadlist and threadinfo packets. They are
1846 variable length packets but, the fields within them are often fixed
1847 length. They are redundent enough to send over UDP as is the
1848 remote protocol in general. There is a matching unit test module
1849 in libstub. */
1850
1851 #define OPAQUETHREADBYTES 8
1852
1853 /* a 64 bit opaque identifier */
1854 typedef unsigned char threadref[OPAQUETHREADBYTES];
1855
1856 /* WARNING: This threadref data structure comes from the remote O.S.,
1857 libstub protocol encoding, and remote.c. It is not particularly
1858 changable. */
1859
1860 /* Right now, the internal structure is int. We want it to be bigger.
1861 Plan to fix this. */
1862
1863 typedef int gdb_threadref; /* Internal GDB thread reference. */
1864
1865 /* gdb_ext_thread_info is an internal GDB data structure which is
1866 equivalent to the reply of the remote threadinfo packet. */
1867
1868 struct gdb_ext_thread_info
1869 {
1870 threadref threadid; /* External form of thread reference. */
1871 int active; /* Has state interesting to GDB?
1872 regs, stack. */
1873 char display[256]; /* Brief state display, name,
1874 blocked/suspended. */
1875 char shortname[32]; /* To be used to name threads. */
1876 char more_display[256]; /* Long info, statistics, queue depth,
1877 whatever. */
1878 };
1879
1880 /* The volume of remote transfers can be limited by submitting
1881 a mask containing bits specifying the desired information.
1882 Use a union of these values as the 'selection' parameter to
1883 get_thread_info. FIXME: Make these TAG names more thread specific. */
1884
1885 #define TAG_THREADID 1
1886 #define TAG_EXISTS 2
1887 #define TAG_DISPLAY 4
1888 #define TAG_THREADNAME 8
1889 #define TAG_MOREDISPLAY 16
1890
1891 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1892
1893 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1894
1895 static char *unpack_nibble (char *buf, int *val);
1896
1897 static char *pack_nibble (char *buf, int nibble);
1898
1899 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1900
1901 static char *unpack_byte (char *buf, int *value);
1902
1903 static char *pack_int (char *buf, int value);
1904
1905 static char *unpack_int (char *buf, int *value);
1906
1907 static char *unpack_string (char *src, char *dest, int length);
1908
1909 static char *pack_threadid (char *pkt, threadref *id);
1910
1911 static char *unpack_threadid (char *inbuf, threadref *id);
1912
1913 void int_to_threadref (threadref *id, int value);
1914
1915 static int threadref_to_int (threadref *ref);
1916
1917 static void copy_threadref (threadref *dest, threadref *src);
1918
1919 static int threadmatch (threadref *dest, threadref *src);
1920
1921 static char *pack_threadinfo_request (char *pkt, int mode,
1922 threadref *id);
1923
1924 static int remote_unpack_thread_info_response (char *pkt,
1925 threadref *expectedref,
1926 struct gdb_ext_thread_info
1927 *info);
1928
1929
1930 static int remote_get_threadinfo (threadref *threadid,
1931 int fieldset, /*TAG mask */
1932 struct gdb_ext_thread_info *info);
1933
1934 static char *pack_threadlist_request (char *pkt, int startflag,
1935 int threadcount,
1936 threadref *nextthread);
1937
1938 static int parse_threadlist_response (char *pkt,
1939 int result_limit,
1940 threadref *original_echo,
1941 threadref *resultlist,
1942 int *doneflag);
1943
1944 static int remote_get_threadlist (int startflag,
1945 threadref *nextthread,
1946 int result_limit,
1947 int *done,
1948 int *result_count,
1949 threadref *threadlist);
1950
1951 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1952
1953 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1954 void *context, int looplimit);
1955
1956 static int remote_newthread_step (threadref *ref, void *context);
1957
1958
1959 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1960 buffer we're allowed to write to. Returns
1961 BUF+CHARACTERS_WRITTEN. */
1962
1963 static char *
1964 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1965 {
1966 int pid, tid;
1967 struct remote_state *rs = get_remote_state ();
1968
1969 if (remote_multi_process_p (rs))
1970 {
1971 pid = ptid_get_pid (ptid);
1972 if (pid < 0)
1973 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1974 else
1975 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1976 }
1977 tid = ptid_get_tid (ptid);
1978 if (tid < 0)
1979 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1980 else
1981 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1982
1983 return buf;
1984 }
1985
1986 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1987 passed the last parsed char. Returns null_ptid on error. */
1988
1989 static ptid_t
1990 read_ptid (char *buf, char **obuf)
1991 {
1992 char *p = buf;
1993 char *pp;
1994 ULONGEST pid = 0, tid = 0;
1995
1996 if (*p == 'p')
1997 {
1998 /* Multi-process ptid. */
1999 pp = unpack_varlen_hex (p + 1, &pid);
2000 if (*pp != '.')
2001 error (_("invalid remote ptid: %s"), p);
2002
2003 p = pp;
2004 pp = unpack_varlen_hex (p + 1, &tid);
2005 if (obuf)
2006 *obuf = pp;
2007 return ptid_build (pid, 0, tid);
2008 }
2009
2010 /* No multi-process. Just a tid. */
2011 pp = unpack_varlen_hex (p, &tid);
2012
2013 /* Since the stub is not sending a process id, then default to
2014 what's in inferior_ptid, unless it's null at this point. If so,
2015 then since there's no way to know the pid of the reported
2016 threads, use the magic number. */
2017 if (ptid_equal (inferior_ptid, null_ptid))
2018 pid = ptid_get_pid (magic_null_ptid);
2019 else
2020 pid = ptid_get_pid (inferior_ptid);
2021
2022 if (obuf)
2023 *obuf = pp;
2024 return ptid_build (pid, 0, tid);
2025 }
2026
2027 /* Encode 64 bits in 16 chars of hex. */
2028
2029 static const char hexchars[] = "0123456789abcdef";
2030
2031 static int
2032 ishex (int ch, int *val)
2033 {
2034 if ((ch >= 'a') && (ch <= 'f'))
2035 {
2036 *val = ch - 'a' + 10;
2037 return 1;
2038 }
2039 if ((ch >= 'A') && (ch <= 'F'))
2040 {
2041 *val = ch - 'A' + 10;
2042 return 1;
2043 }
2044 if ((ch >= '0') && (ch <= '9'))
2045 {
2046 *val = ch - '0';
2047 return 1;
2048 }
2049 return 0;
2050 }
2051
2052 static int
2053 stubhex (int ch)
2054 {
2055 if (ch >= 'a' && ch <= 'f')
2056 return ch - 'a' + 10;
2057 if (ch >= '0' && ch <= '9')
2058 return ch - '0';
2059 if (ch >= 'A' && ch <= 'F')
2060 return ch - 'A' + 10;
2061 return -1;
2062 }
2063
2064 static int
2065 stub_unpack_int (char *buff, int fieldlength)
2066 {
2067 int nibble;
2068 int retval = 0;
2069
2070 while (fieldlength)
2071 {
2072 nibble = stubhex (*buff++);
2073 retval |= nibble;
2074 fieldlength--;
2075 if (fieldlength)
2076 retval = retval << 4;
2077 }
2078 return retval;
2079 }
2080
2081 char *
2082 unpack_varlen_hex (char *buff, /* packet to parse */
2083 ULONGEST *result)
2084 {
2085 int nibble;
2086 ULONGEST retval = 0;
2087
2088 while (ishex (*buff, &nibble))
2089 {
2090 buff++;
2091 retval = retval << 4;
2092 retval |= nibble & 0x0f;
2093 }
2094 *result = retval;
2095 return buff;
2096 }
2097
2098 static char *
2099 unpack_nibble (char *buf, int *val)
2100 {
2101 *val = fromhex (*buf++);
2102 return buf;
2103 }
2104
2105 static char *
2106 pack_nibble (char *buf, int nibble)
2107 {
2108 *buf++ = hexchars[(nibble & 0x0f)];
2109 return buf;
2110 }
2111
2112 static char *
2113 pack_hex_byte (char *pkt, int byte)
2114 {
2115 *pkt++ = hexchars[(byte >> 4) & 0xf];
2116 *pkt++ = hexchars[(byte & 0xf)];
2117 return pkt;
2118 }
2119
2120 static char *
2121 unpack_byte (char *buf, int *value)
2122 {
2123 *value = stub_unpack_int (buf, 2);
2124 return buf + 2;
2125 }
2126
2127 static char *
2128 pack_int (char *buf, int value)
2129 {
2130 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2131 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2132 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2133 buf = pack_hex_byte (buf, (value & 0xff));
2134 return buf;
2135 }
2136
2137 static char *
2138 unpack_int (char *buf, int *value)
2139 {
2140 *value = stub_unpack_int (buf, 8);
2141 return buf + 8;
2142 }
2143
2144 #if 0 /* Currently unused, uncomment when needed. */
2145 static char *pack_string (char *pkt, char *string);
2146
2147 static char *
2148 pack_string (char *pkt, char *string)
2149 {
2150 char ch;
2151 int len;
2152
2153 len = strlen (string);
2154 if (len > 200)
2155 len = 200; /* Bigger than most GDB packets, junk??? */
2156 pkt = pack_hex_byte (pkt, len);
2157 while (len-- > 0)
2158 {
2159 ch = *string++;
2160 if ((ch == '\0') || (ch == '#'))
2161 ch = '*'; /* Protect encapsulation. */
2162 *pkt++ = ch;
2163 }
2164 return pkt;
2165 }
2166 #endif /* 0 (unused) */
2167
2168 static char *
2169 unpack_string (char *src, char *dest, int length)
2170 {
2171 while (length--)
2172 *dest++ = *src++;
2173 *dest = '\0';
2174 return src;
2175 }
2176
2177 static char *
2178 pack_threadid (char *pkt, threadref *id)
2179 {
2180 char *limit;
2181 unsigned char *altid;
2182
2183 altid = (unsigned char *) id;
2184 limit = pkt + BUF_THREAD_ID_SIZE;
2185 while (pkt < limit)
2186 pkt = pack_hex_byte (pkt, *altid++);
2187 return pkt;
2188 }
2189
2190
2191 static char *
2192 unpack_threadid (char *inbuf, threadref *id)
2193 {
2194 char *altref;
2195 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2196 int x, y;
2197
2198 altref = (char *) id;
2199
2200 while (inbuf < limit)
2201 {
2202 x = stubhex (*inbuf++);
2203 y = stubhex (*inbuf++);
2204 *altref++ = (x << 4) | y;
2205 }
2206 return inbuf;
2207 }
2208
2209 /* Externally, threadrefs are 64 bits but internally, they are still
2210 ints. This is due to a mismatch of specifications. We would like
2211 to use 64bit thread references internally. This is an adapter
2212 function. */
2213
2214 void
2215 int_to_threadref (threadref *id, int value)
2216 {
2217 unsigned char *scan;
2218
2219 scan = (unsigned char *) id;
2220 {
2221 int i = 4;
2222 while (i--)
2223 *scan++ = 0;
2224 }
2225 *scan++ = (value >> 24) & 0xff;
2226 *scan++ = (value >> 16) & 0xff;
2227 *scan++ = (value >> 8) & 0xff;
2228 *scan++ = (value & 0xff);
2229 }
2230
2231 static int
2232 threadref_to_int (threadref *ref)
2233 {
2234 int i, value = 0;
2235 unsigned char *scan;
2236
2237 scan = *ref;
2238 scan += 4;
2239 i = 4;
2240 while (i-- > 0)
2241 value = (value << 8) | ((*scan++) & 0xff);
2242 return value;
2243 }
2244
2245 static void
2246 copy_threadref (threadref *dest, threadref *src)
2247 {
2248 int i;
2249 unsigned char *csrc, *cdest;
2250
2251 csrc = (unsigned char *) src;
2252 cdest = (unsigned char *) dest;
2253 i = 8;
2254 while (i--)
2255 *cdest++ = *csrc++;
2256 }
2257
2258 static int
2259 threadmatch (threadref *dest, threadref *src)
2260 {
2261 /* Things are broken right now, so just assume we got a match. */
2262 #if 0
2263 unsigned char *srcp, *destp;
2264 int i, result;
2265 srcp = (char *) src;
2266 destp = (char *) dest;
2267
2268 result = 1;
2269 while (i-- > 0)
2270 result &= (*srcp++ == *destp++) ? 1 : 0;
2271 return result;
2272 #endif
2273 return 1;
2274 }
2275
2276 /*
2277 threadid:1, # always request threadid
2278 context_exists:2,
2279 display:4,
2280 unique_name:8,
2281 more_display:16
2282 */
2283
2284 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2285
2286 static char *
2287 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2288 {
2289 *pkt++ = 'q'; /* Info Query */
2290 *pkt++ = 'P'; /* process or thread info */
2291 pkt = pack_int (pkt, mode); /* mode */
2292 pkt = pack_threadid (pkt, id); /* threadid */
2293 *pkt = '\0'; /* terminate */
2294 return pkt;
2295 }
2296
2297 /* These values tag the fields in a thread info response packet. */
2298 /* Tagging the fields allows us to request specific fields and to
2299 add more fields as time goes by. */
2300
2301 #define TAG_THREADID 1 /* Echo the thread identifier. */
2302 #define TAG_EXISTS 2 /* Is this process defined enough to
2303 fetch registers and its stack? */
2304 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2305 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2306 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2307 the process. */
2308
2309 static int
2310 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2311 struct gdb_ext_thread_info *info)
2312 {
2313 struct remote_state *rs = get_remote_state ();
2314 int mask, length;
2315 int tag;
2316 threadref ref;
2317 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2318 int retval = 1;
2319
2320 /* info->threadid = 0; FIXME: implement zero_threadref. */
2321 info->active = 0;
2322 info->display[0] = '\0';
2323 info->shortname[0] = '\0';
2324 info->more_display[0] = '\0';
2325
2326 /* Assume the characters indicating the packet type have been
2327 stripped. */
2328 pkt = unpack_int (pkt, &mask); /* arg mask */
2329 pkt = unpack_threadid (pkt, &ref);
2330
2331 if (mask == 0)
2332 warning (_("Incomplete response to threadinfo request."));
2333 if (!threadmatch (&ref, expectedref))
2334 { /* This is an answer to a different request. */
2335 warning (_("ERROR RMT Thread info mismatch."));
2336 return 0;
2337 }
2338 copy_threadref (&info->threadid, &ref);
2339
2340 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2341
2342 /* Packets are terminated with nulls. */
2343 while ((pkt < limit) && mask && *pkt)
2344 {
2345 pkt = unpack_int (pkt, &tag); /* tag */
2346 pkt = unpack_byte (pkt, &length); /* length */
2347 if (!(tag & mask)) /* Tags out of synch with mask. */
2348 {
2349 warning (_("ERROR RMT: threadinfo tag mismatch."));
2350 retval = 0;
2351 break;
2352 }
2353 if (tag == TAG_THREADID)
2354 {
2355 if (length != 16)
2356 {
2357 warning (_("ERROR RMT: length of threadid is not 16."));
2358 retval = 0;
2359 break;
2360 }
2361 pkt = unpack_threadid (pkt, &ref);
2362 mask = mask & ~TAG_THREADID;
2363 continue;
2364 }
2365 if (tag == TAG_EXISTS)
2366 {
2367 info->active = stub_unpack_int (pkt, length);
2368 pkt += length;
2369 mask = mask & ~(TAG_EXISTS);
2370 if (length > 8)
2371 {
2372 warning (_("ERROR RMT: 'exists' length too long."));
2373 retval = 0;
2374 break;
2375 }
2376 continue;
2377 }
2378 if (tag == TAG_THREADNAME)
2379 {
2380 pkt = unpack_string (pkt, &info->shortname[0], length);
2381 mask = mask & ~TAG_THREADNAME;
2382 continue;
2383 }
2384 if (tag == TAG_DISPLAY)
2385 {
2386 pkt = unpack_string (pkt, &info->display[0], length);
2387 mask = mask & ~TAG_DISPLAY;
2388 continue;
2389 }
2390 if (tag == TAG_MOREDISPLAY)
2391 {
2392 pkt = unpack_string (pkt, &info->more_display[0], length);
2393 mask = mask & ~TAG_MOREDISPLAY;
2394 continue;
2395 }
2396 warning (_("ERROR RMT: unknown thread info tag."));
2397 break; /* Not a tag we know about. */
2398 }
2399 return retval;
2400 }
2401
2402 static int
2403 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2404 struct gdb_ext_thread_info *info)
2405 {
2406 struct remote_state *rs = get_remote_state ();
2407 int result;
2408
2409 pack_threadinfo_request (rs->buf, fieldset, threadid);
2410 putpkt (rs->buf);
2411 getpkt (&rs->buf, &rs->buf_size, 0);
2412
2413 if (rs->buf[0] == '\0')
2414 return 0;
2415
2416 result = remote_unpack_thread_info_response (rs->buf + 2,
2417 threadid, info);
2418 return result;
2419 }
2420
2421 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2422
2423 static char *
2424 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2425 threadref *nextthread)
2426 {
2427 *pkt++ = 'q'; /* info query packet */
2428 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2429 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2430 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2431 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2432 *pkt = '\0';
2433 return pkt;
2434 }
2435
2436 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2437
2438 static int
2439 parse_threadlist_response (char *pkt, int result_limit,
2440 threadref *original_echo, threadref *resultlist,
2441 int *doneflag)
2442 {
2443 struct remote_state *rs = get_remote_state ();
2444 char *limit;
2445 int count, resultcount, done;
2446
2447 resultcount = 0;
2448 /* Assume the 'q' and 'M chars have been stripped. */
2449 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2450 /* done parse past here */
2451 pkt = unpack_byte (pkt, &count); /* count field */
2452 pkt = unpack_nibble (pkt, &done);
2453 /* The first threadid is the argument threadid. */
2454 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2455 while ((count-- > 0) && (pkt < limit))
2456 {
2457 pkt = unpack_threadid (pkt, resultlist++);
2458 if (resultcount++ >= result_limit)
2459 break;
2460 }
2461 if (doneflag)
2462 *doneflag = done;
2463 return resultcount;
2464 }
2465
2466 static int
2467 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2468 int *done, int *result_count, threadref *threadlist)
2469 {
2470 struct remote_state *rs = get_remote_state ();
2471 static threadref echo_nextthread;
2472 int result = 1;
2473
2474 /* Trancate result limit to be smaller than the packet size. */
2475 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2476 >= get_remote_packet_size ())
2477 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2478
2479 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2480 putpkt (rs->buf);
2481 getpkt (&rs->buf, &rs->buf_size, 0);
2482
2483 if (*rs->buf == '\0')
2484 return 0;
2485 else
2486 *result_count =
2487 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2488 threadlist, done);
2489
2490 if (!threadmatch (&echo_nextthread, nextthread))
2491 {
2492 /* FIXME: This is a good reason to drop the packet. */
2493 /* Possably, there is a duplicate response. */
2494 /* Possabilities :
2495 retransmit immediatly - race conditions
2496 retransmit after timeout - yes
2497 exit
2498 wait for packet, then exit
2499 */
2500 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2501 return 0; /* I choose simply exiting. */
2502 }
2503 if (*result_count <= 0)
2504 {
2505 if (*done != 1)
2506 {
2507 warning (_("RMT ERROR : failed to get remote thread list."));
2508 result = 0;
2509 }
2510 return result; /* break; */
2511 }
2512 if (*result_count > result_limit)
2513 {
2514 *result_count = 0;
2515 warning (_("RMT ERROR: threadlist response longer than requested."));
2516 return 0;
2517 }
2518 return result;
2519 }
2520
2521 /* This is the interface between remote and threads, remotes upper
2522 interface. */
2523
2524 /* remote_find_new_threads retrieves the thread list and for each
2525 thread in the list, looks up the thread in GDB's internal list,
2526 adding the thread if it does not already exist. This involves
2527 getting partial thread lists from the remote target so, polling the
2528 quit_flag is required. */
2529
2530
2531 /* About this many threadisds fit in a packet. */
2532
2533 #define MAXTHREADLISTRESULTS 32
2534
2535 static int
2536 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2537 int looplimit)
2538 {
2539 int done, i, result_count;
2540 int startflag = 1;
2541 int result = 1;
2542 int loopcount = 0;
2543 static threadref nextthread;
2544 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2545
2546 done = 0;
2547 while (!done)
2548 {
2549 if (loopcount++ > looplimit)
2550 {
2551 result = 0;
2552 warning (_("Remote fetch threadlist -infinite loop-."));
2553 break;
2554 }
2555 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2556 &done, &result_count, resultthreadlist))
2557 {
2558 result = 0;
2559 break;
2560 }
2561 /* Clear for later iterations. */
2562 startflag = 0;
2563 /* Setup to resume next batch of thread references, set nextthread. */
2564 if (result_count >= 1)
2565 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2566 i = 0;
2567 while (result_count--)
2568 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2569 break;
2570 }
2571 return result;
2572 }
2573
2574 static int
2575 remote_newthread_step (threadref *ref, void *context)
2576 {
2577 int pid = ptid_get_pid (inferior_ptid);
2578 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2579
2580 if (!in_thread_list (ptid))
2581 add_thread (ptid);
2582 return 1; /* continue iterator */
2583 }
2584
2585 #define CRAZY_MAX_THREADS 1000
2586
2587 static ptid_t
2588 remote_current_thread (ptid_t oldpid)
2589 {
2590 struct remote_state *rs = get_remote_state ();
2591
2592 putpkt ("qC");
2593 getpkt (&rs->buf, &rs->buf_size, 0);
2594 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2595 return read_ptid (&rs->buf[2], NULL);
2596 else
2597 return oldpid;
2598 }
2599
2600 /* Find new threads for info threads command.
2601 * Original version, using John Metzler's thread protocol.
2602 */
2603
2604 static void
2605 remote_find_new_threads (void)
2606 {
2607 remote_threadlist_iterator (remote_newthread_step, 0,
2608 CRAZY_MAX_THREADS);
2609 }
2610
2611 #if defined(HAVE_LIBEXPAT)
2612
2613 typedef struct thread_item
2614 {
2615 ptid_t ptid;
2616 char *extra;
2617 int core;
2618 } thread_item_t;
2619 DEF_VEC_O(thread_item_t);
2620
2621 struct threads_parsing_context
2622 {
2623 VEC (thread_item_t) *items;
2624 };
2625
2626 static void
2627 start_thread (struct gdb_xml_parser *parser,
2628 const struct gdb_xml_element *element,
2629 void *user_data, VEC(gdb_xml_value_s) *attributes)
2630 {
2631 struct threads_parsing_context *data = user_data;
2632
2633 struct thread_item item;
2634 char *id;
2635 struct gdb_xml_value *attr;
2636
2637 id = xml_find_attribute (attributes, "id")->value;
2638 item.ptid = read_ptid (id, NULL);
2639
2640 attr = xml_find_attribute (attributes, "core");
2641 if (attr != NULL)
2642 item.core = *(ULONGEST *) attr->value;
2643 else
2644 item.core = -1;
2645
2646 item.extra = 0;
2647
2648 VEC_safe_push (thread_item_t, data->items, &item);
2649 }
2650
2651 static void
2652 end_thread (struct gdb_xml_parser *parser,
2653 const struct gdb_xml_element *element,
2654 void *user_data, const char *body_text)
2655 {
2656 struct threads_parsing_context *data = user_data;
2657
2658 if (body_text && *body_text)
2659 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2660 }
2661
2662 const struct gdb_xml_attribute thread_attributes[] = {
2663 { "id", GDB_XML_AF_NONE, NULL, NULL },
2664 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2665 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2666 };
2667
2668 const struct gdb_xml_element thread_children[] = {
2669 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2670 };
2671
2672 const struct gdb_xml_element threads_children[] = {
2673 { "thread", thread_attributes, thread_children,
2674 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2675 start_thread, end_thread },
2676 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2677 };
2678
2679 const struct gdb_xml_element threads_elements[] = {
2680 { "threads", NULL, threads_children,
2681 GDB_XML_EF_NONE, NULL, NULL },
2682 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2683 };
2684
2685 /* Discard the contents of the constructed thread info context. */
2686
2687 static void
2688 clear_threads_parsing_context (void *p)
2689 {
2690 struct threads_parsing_context *context = p;
2691 int i;
2692 struct thread_item *item;
2693
2694 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2695 xfree (item->extra);
2696
2697 VEC_free (thread_item_t, context->items);
2698 }
2699
2700 #endif
2701
2702 /*
2703 * Find all threads for info threads command.
2704 * Uses new thread protocol contributed by Cisco.
2705 * Falls back and attempts to use the older method (above)
2706 * if the target doesn't respond to the new method.
2707 */
2708
2709 static void
2710 remote_threads_info (struct target_ops *ops)
2711 {
2712 struct remote_state *rs = get_remote_state ();
2713 char *bufp;
2714 ptid_t new_thread;
2715
2716 if (remote_desc == 0) /* paranoia */
2717 error (_("Command can only be used when connected to the remote target."));
2718
2719 #if defined(HAVE_LIBEXPAT)
2720 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2721 {
2722 char *xml = target_read_stralloc (&current_target,
2723 TARGET_OBJECT_THREADS, NULL);
2724
2725 struct cleanup *back_to = make_cleanup (xfree, xml);
2726
2727 if (xml && *xml)
2728 {
2729 struct threads_parsing_context context;
2730
2731 context.items = NULL;
2732 make_cleanup (clear_threads_parsing_context, &context);
2733
2734 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2735 threads_elements, xml, &context) == 0)
2736 {
2737 int i;
2738 struct thread_item *item;
2739
2740 for (i = 0;
2741 VEC_iterate (thread_item_t, context.items, i, item);
2742 ++i)
2743 {
2744 if (!ptid_equal (item->ptid, null_ptid))
2745 {
2746 struct private_thread_info *info;
2747 /* In non-stop mode, we assume new found threads
2748 are running until proven otherwise with a
2749 stop reply. In all-stop, we can only get
2750 here if all threads are stopped. */
2751 int running = non_stop ? 1 : 0;
2752
2753 remote_notice_new_inferior (item->ptid, running);
2754
2755 info = demand_private_info (item->ptid);
2756 info->core = item->core;
2757 info->extra = item->extra;
2758 item->extra = NULL;
2759 }
2760 }
2761 }
2762 }
2763
2764 do_cleanups (back_to);
2765 return;
2766 }
2767 #endif
2768
2769 if (use_threadinfo_query)
2770 {
2771 putpkt ("qfThreadInfo");
2772 getpkt (&rs->buf, &rs->buf_size, 0);
2773 bufp = rs->buf;
2774 if (bufp[0] != '\0') /* q packet recognized */
2775 {
2776 while (*bufp++ == 'm') /* reply contains one or more TID */
2777 {
2778 do
2779 {
2780 new_thread = read_ptid (bufp, &bufp);
2781 if (!ptid_equal (new_thread, null_ptid))
2782 {
2783 /* In non-stop mode, we assume new found threads
2784 are running until proven otherwise with a
2785 stop reply. In all-stop, we can only get
2786 here if all threads are stopped. */
2787 int running = non_stop ? 1 : 0;
2788
2789 remote_notice_new_inferior (new_thread, running);
2790 }
2791 }
2792 while (*bufp++ == ','); /* comma-separated list */
2793 putpkt ("qsThreadInfo");
2794 getpkt (&rs->buf, &rs->buf_size, 0);
2795 bufp = rs->buf;
2796 }
2797 return; /* done */
2798 }
2799 }
2800
2801 /* Only qfThreadInfo is supported in non-stop mode. */
2802 if (non_stop)
2803 return;
2804
2805 /* Else fall back to old method based on jmetzler protocol. */
2806 use_threadinfo_query = 0;
2807 remote_find_new_threads ();
2808 return;
2809 }
2810
2811 /*
2812 * Collect a descriptive string about the given thread.
2813 * The target may say anything it wants to about the thread
2814 * (typically info about its blocked / runnable state, name, etc.).
2815 * This string will appear in the info threads display.
2816 *
2817 * Optional: targets are not required to implement this function.
2818 */
2819
2820 static char *
2821 remote_threads_extra_info (struct thread_info *tp)
2822 {
2823 struct remote_state *rs = get_remote_state ();
2824 int result;
2825 int set;
2826 threadref id;
2827 struct gdb_ext_thread_info threadinfo;
2828 static char display_buf[100]; /* arbitrary... */
2829 int n = 0; /* position in display_buf */
2830
2831 if (remote_desc == 0) /* paranoia */
2832 internal_error (__FILE__, __LINE__,
2833 _("remote_threads_extra_info"));
2834
2835 if (ptid_equal (tp->ptid, magic_null_ptid)
2836 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2837 /* This is the main thread which was added by GDB. The remote
2838 server doesn't know about it. */
2839 return NULL;
2840
2841 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2842 {
2843 struct thread_info *info = find_thread_ptid (tp->ptid);
2844
2845 if (info && info->private)
2846 return info->private->extra;
2847 else
2848 return NULL;
2849 }
2850
2851 if (use_threadextra_query)
2852 {
2853 char *b = rs->buf;
2854 char *endb = rs->buf + get_remote_packet_size ();
2855
2856 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2857 b += strlen (b);
2858 write_ptid (b, endb, tp->ptid);
2859
2860 putpkt (rs->buf);
2861 getpkt (&rs->buf, &rs->buf_size, 0);
2862 if (rs->buf[0] != 0)
2863 {
2864 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2865 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2866 display_buf [result] = '\0';
2867 return display_buf;
2868 }
2869 }
2870
2871 /* If the above query fails, fall back to the old method. */
2872 use_threadextra_query = 0;
2873 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2874 | TAG_MOREDISPLAY | TAG_DISPLAY;
2875 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2876 if (remote_get_threadinfo (&id, set, &threadinfo))
2877 if (threadinfo.active)
2878 {
2879 if (*threadinfo.shortname)
2880 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2881 " Name: %s,", threadinfo.shortname);
2882 if (*threadinfo.display)
2883 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2884 " State: %s,", threadinfo.display);
2885 if (*threadinfo.more_display)
2886 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2887 " Priority: %s", threadinfo.more_display);
2888
2889 if (n > 0)
2890 {
2891 /* For purely cosmetic reasons, clear up trailing commas. */
2892 if (',' == display_buf[n-1])
2893 display_buf[n-1] = ' ';
2894 return display_buf;
2895 }
2896 }
2897 return NULL;
2898 }
2899 \f
2900
2901 static int
2902 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2903 struct static_tracepoint_marker *marker)
2904 {
2905 struct remote_state *rs = get_remote_state ();
2906 char *p = rs->buf;
2907
2908 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
2909 p += strlen (p);
2910 p += hexnumstr (p, addr);
2911 putpkt (rs->buf);
2912 getpkt (&rs->buf, &rs->buf_size, 0);
2913 p = rs->buf;
2914
2915 if (*p == 'E')
2916 error (_("Remote failure reply: %s"), p);
2917
2918 if (*p++ == 'm')
2919 {
2920 parse_static_tracepoint_marker_definition (p, &p, marker);
2921 return 1;
2922 }
2923
2924 return 0;
2925 }
2926
2927 static VEC(static_tracepoint_marker_p) *
2928 remote_static_tracepoint_markers_by_strid (const char *strid)
2929 {
2930 struct remote_state *rs = get_remote_state ();
2931 VEC(static_tracepoint_marker_p) *markers = NULL;
2932 struct static_tracepoint_marker *marker = NULL;
2933 struct cleanup *old_chain;
2934 char *p;
2935
2936 /* Ask for a first packet of static tracepoint marker
2937 definition. */
2938 putpkt ("qTfSTM");
2939 getpkt (&rs->buf, &rs->buf_size, 0);
2940 p = rs->buf;
2941 if (*p == 'E')
2942 error (_("Remote failure reply: %s"), p);
2943
2944 old_chain = make_cleanup (free_current_marker, &marker);
2945
2946 while (*p++ == 'm')
2947 {
2948 if (marker == NULL)
2949 marker = XCNEW (struct static_tracepoint_marker);
2950
2951 do
2952 {
2953 parse_static_tracepoint_marker_definition (p, &p, marker);
2954
2955 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2956 {
2957 VEC_safe_push (static_tracepoint_marker_p,
2958 markers, marker);
2959 marker = NULL;
2960 }
2961 else
2962 {
2963 release_static_tracepoint_marker (marker);
2964 memset (marker, 0, sizeof (*marker));
2965 }
2966 }
2967 while (*p++ == ','); /* comma-separated list */
2968 /* Ask for another packet of static tracepoint definition. */
2969 putpkt ("qTsSTM");
2970 getpkt (&rs->buf, &rs->buf_size, 0);
2971 p = rs->buf;
2972 }
2973
2974 do_cleanups (old_chain);
2975 return markers;
2976 }
2977
2978 \f
2979 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2980
2981 static ptid_t
2982 remote_get_ada_task_ptid (long lwp, long thread)
2983 {
2984 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2985 }
2986 \f
2987
2988 /* Restart the remote side; this is an extended protocol operation. */
2989
2990 static void
2991 extended_remote_restart (void)
2992 {
2993 struct remote_state *rs = get_remote_state ();
2994
2995 /* Send the restart command; for reasons I don't understand the
2996 remote side really expects a number after the "R". */
2997 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2998 putpkt (rs->buf);
2999
3000 remote_fileio_reset ();
3001 }
3002 \f
3003 /* Clean up connection to a remote debugger. */
3004
3005 static void
3006 remote_close (int quitting)
3007 {
3008 if (remote_desc == NULL)
3009 return; /* already closed */
3010
3011 /* Make sure we leave stdin registered in the event loop, and we
3012 don't leave the async SIGINT signal handler installed. */
3013 remote_terminal_ours ();
3014
3015 serial_close (remote_desc);
3016 remote_desc = NULL;
3017
3018 /* We don't have a connection to the remote stub anymore. Get rid
3019 of all the inferiors and their threads we were controlling.
3020 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3021 will be unable to find the thread corresponding to (pid, 0, 0). */
3022 inferior_ptid = null_ptid;
3023 discard_all_inferiors ();
3024
3025 /* We're no longer interested in any of these events. */
3026 discard_pending_stop_replies (-1);
3027
3028 if (remote_async_inferior_event_token)
3029 delete_async_event_handler (&remote_async_inferior_event_token);
3030 if (remote_async_get_pending_events_token)
3031 delete_async_event_handler (&remote_async_get_pending_events_token);
3032 }
3033
3034 /* Query the remote side for the text, data and bss offsets. */
3035
3036 static void
3037 get_offsets (void)
3038 {
3039 struct remote_state *rs = get_remote_state ();
3040 char *buf;
3041 char *ptr;
3042 int lose, num_segments = 0, do_sections, do_segments;
3043 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3044 struct section_offsets *offs;
3045 struct symfile_segment_data *data;
3046
3047 if (symfile_objfile == NULL)
3048 return;
3049
3050 putpkt ("qOffsets");
3051 getpkt (&rs->buf, &rs->buf_size, 0);
3052 buf = rs->buf;
3053
3054 if (buf[0] == '\000')
3055 return; /* Return silently. Stub doesn't support
3056 this command. */
3057 if (buf[0] == 'E')
3058 {
3059 warning (_("Remote failure reply: %s"), buf);
3060 return;
3061 }
3062
3063 /* Pick up each field in turn. This used to be done with scanf, but
3064 scanf will make trouble if CORE_ADDR size doesn't match
3065 conversion directives correctly. The following code will work
3066 with any size of CORE_ADDR. */
3067 text_addr = data_addr = bss_addr = 0;
3068 ptr = buf;
3069 lose = 0;
3070
3071 if (strncmp (ptr, "Text=", 5) == 0)
3072 {
3073 ptr += 5;
3074 /* Don't use strtol, could lose on big values. */
3075 while (*ptr && *ptr != ';')
3076 text_addr = (text_addr << 4) + fromhex (*ptr++);
3077
3078 if (strncmp (ptr, ";Data=", 6) == 0)
3079 {
3080 ptr += 6;
3081 while (*ptr && *ptr != ';')
3082 data_addr = (data_addr << 4) + fromhex (*ptr++);
3083 }
3084 else
3085 lose = 1;
3086
3087 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3088 {
3089 ptr += 5;
3090 while (*ptr && *ptr != ';')
3091 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3092
3093 if (bss_addr != data_addr)
3094 warning (_("Target reported unsupported offsets: %s"), buf);
3095 }
3096 else
3097 lose = 1;
3098 }
3099 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3100 {
3101 ptr += 8;
3102 /* Don't use strtol, could lose on big values. */
3103 while (*ptr && *ptr != ';')
3104 text_addr = (text_addr << 4) + fromhex (*ptr++);
3105 num_segments = 1;
3106
3107 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3108 {
3109 ptr += 9;
3110 while (*ptr && *ptr != ';')
3111 data_addr = (data_addr << 4) + fromhex (*ptr++);
3112 num_segments++;
3113 }
3114 }
3115 else
3116 lose = 1;
3117
3118 if (lose)
3119 error (_("Malformed response to offset query, %s"), buf);
3120 else if (*ptr != '\0')
3121 warning (_("Target reported unsupported offsets: %s"), buf);
3122
3123 offs = ((struct section_offsets *)
3124 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3125 memcpy (offs, symfile_objfile->section_offsets,
3126 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3127
3128 data = get_symfile_segment_data (symfile_objfile->obfd);
3129 do_segments = (data != NULL);
3130 do_sections = num_segments == 0;
3131
3132 if (num_segments > 0)
3133 {
3134 segments[0] = text_addr;
3135 segments[1] = data_addr;
3136 }
3137 /* If we have two segments, we can still try to relocate everything
3138 by assuming that the .text and .data offsets apply to the whole
3139 text and data segments. Convert the offsets given in the packet
3140 to base addresses for symfile_map_offsets_to_segments. */
3141 else if (data && data->num_segments == 2)
3142 {
3143 segments[0] = data->segment_bases[0] + text_addr;
3144 segments[1] = data->segment_bases[1] + data_addr;
3145 num_segments = 2;
3146 }
3147 /* If the object file has only one segment, assume that it is text
3148 rather than data; main programs with no writable data are rare,
3149 but programs with no code are useless. Of course the code might
3150 have ended up in the data segment... to detect that we would need
3151 the permissions here. */
3152 else if (data && data->num_segments == 1)
3153 {
3154 segments[0] = data->segment_bases[0] + text_addr;
3155 num_segments = 1;
3156 }
3157 /* There's no way to relocate by segment. */
3158 else
3159 do_segments = 0;
3160
3161 if (do_segments)
3162 {
3163 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3164 offs, num_segments, segments);
3165
3166 if (ret == 0 && !do_sections)
3167 error (_("Can not handle qOffsets TextSeg "
3168 "response with this symbol file"));
3169
3170 if (ret > 0)
3171 do_sections = 0;
3172 }
3173
3174 if (data)
3175 free_symfile_segment_data (data);
3176
3177 if (do_sections)
3178 {
3179 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3180
3181 /* This is a temporary kludge to force data and bss to use the
3182 same offsets because that's what nlmconv does now. The real
3183 solution requires changes to the stub and remote.c that I
3184 don't have time to do right now. */
3185
3186 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3187 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3188 }
3189
3190 objfile_relocate (symfile_objfile, offs);
3191 }
3192
3193 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3194 threads we know are stopped already. This is used during the
3195 initial remote connection in non-stop mode --- threads that are
3196 reported as already being stopped are left stopped. */
3197
3198 static int
3199 set_stop_requested_callback (struct thread_info *thread, void *data)
3200 {
3201 /* If we have a stop reply for this thread, it must be stopped. */
3202 if (peek_stop_reply (thread->ptid))
3203 set_stop_requested (thread->ptid, 1);
3204
3205 return 0;
3206 }
3207
3208 /* Send interrupt_sequence to remote target. */
3209 static void
3210 send_interrupt_sequence (void)
3211 {
3212 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3213 serial_write (remote_desc, "\x03", 1);
3214 else if (interrupt_sequence_mode == interrupt_sequence_break)
3215 serial_send_break (remote_desc);
3216 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3217 {
3218 serial_send_break (remote_desc);
3219 serial_write (remote_desc, "g", 1);
3220 }
3221 else
3222 internal_error (__FILE__, __LINE__,
3223 _("Invalid value for interrupt_sequence_mode: %s."),
3224 interrupt_sequence_mode);
3225 }
3226
3227 /* Query the remote target for which is the current thread/process,
3228 add it to our tables, and update INFERIOR_PTID. The caller is
3229 responsible for setting the state such that the remote end is ready
3230 to return the current thread. */
3231
3232 static void
3233 add_current_inferior_and_thread (void)
3234 {
3235 struct remote_state *rs = get_remote_state ();
3236 int fake_pid_p = 0;
3237 ptid_t ptid;
3238
3239 inferior_ptid = null_ptid;
3240
3241 /* Now, if we have thread information, update inferior_ptid. */
3242 ptid = remote_current_thread (inferior_ptid);
3243 if (!ptid_equal (ptid, null_ptid))
3244 {
3245 if (!remote_multi_process_p (rs))
3246 fake_pid_p = 1;
3247
3248 inferior_ptid = ptid;
3249 }
3250 else
3251 {
3252 /* Without this, some commands which require an active target
3253 (such as kill) won't work. This variable serves (at least)
3254 double duty as both the pid of the target process (if it has
3255 such), and as a flag indicating that a target is active. */
3256 inferior_ptid = magic_null_ptid;
3257 fake_pid_p = 1;
3258 }
3259
3260 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3261
3262 /* Add the main thread. */
3263 add_thread_silent (inferior_ptid);
3264 }
3265
3266 static void
3267 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3268 {
3269 struct remote_state *rs = get_remote_state ();
3270 struct packet_config *noack_config;
3271 char *wait_status = NULL;
3272
3273 immediate_quit++; /* Allow user to interrupt it. */
3274 QUIT;
3275
3276 if (interrupt_on_connect)
3277 send_interrupt_sequence ();
3278
3279 /* Ack any packet which the remote side has already sent. */
3280 serial_write (remote_desc, "+", 1);
3281
3282 /* Signal other parts that we're going through the initial setup,
3283 and so things may not be stable yet. */
3284 rs->starting_up = 1;
3285
3286 /* The first packet we send to the target is the optional "supported
3287 packets" request. If the target can answer this, it will tell us
3288 which later probes to skip. */
3289 remote_query_supported ();
3290
3291 /* If the stub wants to get a QAllow, compose one and send it. */
3292 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3293 remote_set_permissions ();
3294
3295 /* Next, we possibly activate noack mode.
3296
3297 If the QStartNoAckMode packet configuration is set to AUTO,
3298 enable noack mode if the stub reported a wish for it with
3299 qSupported.
3300
3301 If set to TRUE, then enable noack mode even if the stub didn't
3302 report it in qSupported. If the stub doesn't reply OK, the
3303 session ends with an error.
3304
3305 If FALSE, then don't activate noack mode, regardless of what the
3306 stub claimed should be the default with qSupported. */
3307
3308 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3309
3310 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3311 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3312 && noack_config->support == PACKET_ENABLE))
3313 {
3314 putpkt ("QStartNoAckMode");
3315 getpkt (&rs->buf, &rs->buf_size, 0);
3316 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3317 rs->noack_mode = 1;
3318 }
3319
3320 if (extended_p)
3321 {
3322 /* Tell the remote that we are using the extended protocol. */
3323 putpkt ("!");
3324 getpkt (&rs->buf, &rs->buf_size, 0);
3325 }
3326
3327 /* Let the target know which signals it is allowed to pass down to
3328 the program. */
3329 update_signals_program_target ();
3330
3331 /* Next, if the target can specify a description, read it. We do
3332 this before anything involving memory or registers. */
3333 target_find_description ();
3334
3335 /* Next, now that we know something about the target, update the
3336 address spaces in the program spaces. */
3337 update_address_spaces ();
3338
3339 /* On OSs where the list of libraries is global to all
3340 processes, we fetch them early. */
3341 if (gdbarch_has_global_solist (target_gdbarch ()))
3342 solib_add (NULL, from_tty, target, auto_solib_add);
3343
3344 if (non_stop)
3345 {
3346 if (!rs->non_stop_aware)
3347 error (_("Non-stop mode requested, but remote "
3348 "does not support non-stop"));
3349
3350 putpkt ("QNonStop:1");
3351 getpkt (&rs->buf, &rs->buf_size, 0);
3352
3353 if (strcmp (rs->buf, "OK") != 0)
3354 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3355
3356 /* Find about threads and processes the stub is already
3357 controlling. We default to adding them in the running state.
3358 The '?' query below will then tell us about which threads are
3359 stopped. */
3360 remote_threads_info (target);
3361 }
3362 else if (rs->non_stop_aware)
3363 {
3364 /* Don't assume that the stub can operate in all-stop mode.
3365 Request it explicitely. */
3366 putpkt ("QNonStop:0");
3367 getpkt (&rs->buf, &rs->buf_size, 0);
3368
3369 if (strcmp (rs->buf, "OK") != 0)
3370 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3371 }
3372
3373 /* Check whether the target is running now. */
3374 putpkt ("?");
3375 getpkt (&rs->buf, &rs->buf_size, 0);
3376
3377 if (!non_stop)
3378 {
3379 ptid_t ptid;
3380 int fake_pid_p = 0;
3381 struct inferior *inf;
3382
3383 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3384 {
3385 if (!extended_p)
3386 error (_("The target is not running (try extended-remote?)"));
3387
3388 /* We're connected, but not running. Drop out before we
3389 call start_remote. */
3390 rs->starting_up = 0;
3391 return;
3392 }
3393 else
3394 {
3395 /* Save the reply for later. */
3396 wait_status = alloca (strlen (rs->buf) + 1);
3397 strcpy (wait_status, rs->buf);
3398 }
3399
3400 /* Let the stub know that we want it to return the thread. */
3401 set_continue_thread (minus_one_ptid);
3402
3403 add_current_inferior_and_thread ();
3404
3405 /* init_wait_for_inferior should be called before get_offsets in order
3406 to manage `inserted' flag in bp loc in a correct state.
3407 breakpoint_init_inferior, called from init_wait_for_inferior, set
3408 `inserted' flag to 0, while before breakpoint_re_set, called from
3409 start_remote, set `inserted' flag to 1. In the initialization of
3410 inferior, breakpoint_init_inferior should be called first, and then
3411 breakpoint_re_set can be called. If this order is broken, state of
3412 `inserted' flag is wrong, and cause some problems on breakpoint
3413 manipulation. */
3414 init_wait_for_inferior ();
3415
3416 get_offsets (); /* Get text, data & bss offsets. */
3417
3418 /* If we could not find a description using qXfer, and we know
3419 how to do it some other way, try again. This is not
3420 supported for non-stop; it could be, but it is tricky if
3421 there are no stopped threads when we connect. */
3422 if (remote_read_description_p (target)
3423 && gdbarch_target_desc (target_gdbarch ()) == NULL)
3424 {
3425 target_clear_description ();
3426 target_find_description ();
3427 }
3428
3429 /* Use the previously fetched status. */
3430 gdb_assert (wait_status != NULL);
3431 strcpy (rs->buf, wait_status);
3432 rs->cached_wait_status = 1;
3433
3434 immediate_quit--;
3435 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3436 }
3437 else
3438 {
3439 /* Clear WFI global state. Do this before finding about new
3440 threads and inferiors, and setting the current inferior.
3441 Otherwise we would clear the proceed status of the current
3442 inferior when we want its stop_soon state to be preserved
3443 (see notice_new_inferior). */
3444 init_wait_for_inferior ();
3445
3446 /* In non-stop, we will either get an "OK", meaning that there
3447 are no stopped threads at this time; or, a regular stop
3448 reply. In the latter case, there may be more than one thread
3449 stopped --- we pull them all out using the vStopped
3450 mechanism. */
3451 if (strcmp (rs->buf, "OK") != 0)
3452 {
3453 struct stop_reply *stop_reply;
3454 struct cleanup *old_chain;
3455
3456 stop_reply = stop_reply_xmalloc ();
3457 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3458
3459 remote_parse_stop_reply (rs->buf, stop_reply);
3460 discard_cleanups (old_chain);
3461
3462 /* get_pending_stop_replies acks this one, and gets the rest
3463 out. */
3464 pending_stop_reply = stop_reply;
3465 remote_get_pending_stop_replies ();
3466
3467 /* Make sure that threads that were stopped remain
3468 stopped. */
3469 iterate_over_threads (set_stop_requested_callback, NULL);
3470 }
3471
3472 if (target_can_async_p ())
3473 target_async (inferior_event_handler, 0);
3474
3475 if (thread_count () == 0)
3476 {
3477 if (!extended_p)
3478 error (_("The target is not running (try extended-remote?)"));
3479
3480 /* We're connected, but not running. Drop out before we
3481 call start_remote. */
3482 rs->starting_up = 0;
3483 return;
3484 }
3485
3486 /* Let the stub know that we want it to return the thread. */
3487
3488 /* Force the stub to choose a thread. */
3489 set_general_thread (null_ptid);
3490
3491 /* Query it. */
3492 inferior_ptid = remote_current_thread (minus_one_ptid);
3493 if (ptid_equal (inferior_ptid, minus_one_ptid))
3494 error (_("remote didn't report the current thread in non-stop mode"));
3495
3496 get_offsets (); /* Get text, data & bss offsets. */
3497
3498 /* In non-stop mode, any cached wait status will be stored in
3499 the stop reply queue. */
3500 gdb_assert (wait_status == NULL);
3501
3502 /* Report all signals during attach/startup. */
3503 remote_pass_signals (0, NULL);
3504 }
3505
3506 /* If we connected to a live target, do some additional setup. */
3507 if (target_has_execution)
3508 {
3509 if (exec_bfd) /* No use without an exec file. */
3510 remote_check_symbols (symfile_objfile);
3511 }
3512
3513 /* Possibly the target has been engaged in a trace run started
3514 previously; find out where things are at. */
3515 if (remote_get_trace_status (current_trace_status ()) != -1)
3516 {
3517 struct uploaded_tp *uploaded_tps = NULL;
3518 struct uploaded_tsv *uploaded_tsvs = NULL;
3519
3520 if (current_trace_status ()->running)
3521 printf_filtered (_("Trace is already running on the target.\n"));
3522
3523 /* Get trace state variables first, they may be checked when
3524 parsing uploaded commands. */
3525
3526 remote_upload_trace_state_variables (&uploaded_tsvs);
3527
3528 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3529
3530 remote_upload_tracepoints (&uploaded_tps);
3531
3532 merge_uploaded_tracepoints (&uploaded_tps);
3533 }
3534
3535 /* The thread and inferior lists are now synchronized with the
3536 target, our symbols have been relocated, and we're merged the
3537 target's tracepoints with ours. We're done with basic start
3538 up. */
3539 rs->starting_up = 0;
3540
3541 /* If breakpoints are global, insert them now. */
3542 if (gdbarch_has_global_breakpoints (target_gdbarch ())
3543 && breakpoints_always_inserted_mode ())
3544 insert_breakpoints ();
3545 }
3546
3547 /* Open a connection to a remote debugger.
3548 NAME is the filename used for communication. */
3549
3550 static void
3551 remote_open (char *name, int from_tty)
3552 {
3553 remote_open_1 (name, from_tty, &remote_ops, 0);
3554 }
3555
3556 /* Open a connection to a remote debugger using the extended
3557 remote gdb protocol. NAME is the filename used for communication. */
3558
3559 static void
3560 extended_remote_open (char *name, int from_tty)
3561 {
3562 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3563 }
3564
3565 /* Generic code for opening a connection to a remote target. */
3566
3567 static void
3568 init_all_packet_configs (void)
3569 {
3570 int i;
3571
3572 for (i = 0; i < PACKET_MAX; i++)
3573 update_packet_config (&remote_protocol_packets[i]);
3574 }
3575
3576 /* Symbol look-up. */
3577
3578 static void
3579 remote_check_symbols (struct objfile *objfile)
3580 {
3581 struct remote_state *rs = get_remote_state ();
3582 char *msg, *reply, *tmp;
3583 struct minimal_symbol *sym;
3584 int end;
3585
3586 /* The remote side has no concept of inferiors that aren't running
3587 yet, it only knows about running processes. If we're connected
3588 but our current inferior is not running, we should not invite the
3589 remote target to request symbol lookups related to its
3590 (unrelated) current process. */
3591 if (!target_has_execution)
3592 return;
3593
3594 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3595 return;
3596
3597 /* Make sure the remote is pointing at the right process. Note
3598 there's no way to select "no process". */
3599 set_general_process ();
3600
3601 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3602 because we need both at the same time. */
3603 msg = alloca (get_remote_packet_size ());
3604
3605 /* Invite target to request symbol lookups. */
3606
3607 putpkt ("qSymbol::");
3608 getpkt (&rs->buf, &rs->buf_size, 0);
3609 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3610 reply = rs->buf;
3611
3612 while (strncmp (reply, "qSymbol:", 8) == 0)
3613 {
3614 tmp = &reply[8];
3615 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3616 msg[end] = '\0';
3617 sym = lookup_minimal_symbol (msg, NULL, NULL);
3618 if (sym == NULL)
3619 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3620 else
3621 {
3622 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
3623 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3624
3625 /* If this is a function address, return the start of code
3626 instead of any data function descriptor. */
3627 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3628 sym_addr,
3629 &current_target);
3630
3631 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3632 phex_nz (sym_addr, addr_size), &reply[8]);
3633 }
3634
3635 putpkt (msg);
3636 getpkt (&rs->buf, &rs->buf_size, 0);
3637 reply = rs->buf;
3638 }
3639 }
3640
3641 static struct serial *
3642 remote_serial_open (char *name)
3643 {
3644 static int udp_warning = 0;
3645
3646 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3647 of in ser-tcp.c, because it is the remote protocol assuming that the
3648 serial connection is reliable and not the serial connection promising
3649 to be. */
3650 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3651 {
3652 warning (_("The remote protocol may be unreliable over UDP.\n"
3653 "Some events may be lost, rendering further debugging "
3654 "impossible."));
3655 udp_warning = 1;
3656 }
3657
3658 return serial_open (name);
3659 }
3660
3661 /* Inform the target of our permission settings. The permission flags
3662 work without this, but if the target knows the settings, it can do
3663 a couple things. First, it can add its own check, to catch cases
3664 that somehow manage to get by the permissions checks in target
3665 methods. Second, if the target is wired to disallow particular
3666 settings (for instance, a system in the field that is not set up to
3667 be able to stop at a breakpoint), it can object to any unavailable
3668 permissions. */
3669
3670 void
3671 remote_set_permissions (void)
3672 {
3673 struct remote_state *rs = get_remote_state ();
3674
3675 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
3676 "WriteReg:%x;WriteMem:%x;"
3677 "InsertBreak:%x;InsertTrace:%x;"
3678 "InsertFastTrace:%x;Stop:%x",
3679 may_write_registers, may_write_memory,
3680 may_insert_breakpoints, may_insert_tracepoints,
3681 may_insert_fast_tracepoints, may_stop);
3682 putpkt (rs->buf);
3683 getpkt (&rs->buf, &rs->buf_size, 0);
3684
3685 /* If the target didn't like the packet, warn the user. Do not try
3686 to undo the user's settings, that would just be maddening. */
3687 if (strcmp (rs->buf, "OK") != 0)
3688 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3689 }
3690
3691 /* This type describes each known response to the qSupported
3692 packet. */
3693 struct protocol_feature
3694 {
3695 /* The name of this protocol feature. */
3696 const char *name;
3697
3698 /* The default for this protocol feature. */
3699 enum packet_support default_support;
3700
3701 /* The function to call when this feature is reported, or after
3702 qSupported processing if the feature is not supported.
3703 The first argument points to this structure. The second
3704 argument indicates whether the packet requested support be
3705 enabled, disabled, or probed (or the default, if this function
3706 is being called at the end of processing and this feature was
3707 not reported). The third argument may be NULL; if not NULL, it
3708 is a NUL-terminated string taken from the packet following
3709 this feature's name and an equals sign. */
3710 void (*func) (const struct protocol_feature *, enum packet_support,
3711 const char *);
3712
3713 /* The corresponding packet for this feature. Only used if
3714 FUNC is remote_supported_packet. */
3715 int packet;
3716 };
3717
3718 static void
3719 remote_supported_packet (const struct protocol_feature *feature,
3720 enum packet_support support,
3721 const char *argument)
3722 {
3723 if (argument)
3724 {
3725 warning (_("Remote qSupported response supplied an unexpected value for"
3726 " \"%s\"."), feature->name);
3727 return;
3728 }
3729
3730 if (remote_protocol_packets[feature->packet].support
3731 == PACKET_SUPPORT_UNKNOWN)
3732 remote_protocol_packets[feature->packet].support = support;
3733 }
3734
3735 static void
3736 remote_packet_size (const struct protocol_feature *feature,
3737 enum packet_support support, const char *value)
3738 {
3739 struct remote_state *rs = get_remote_state ();
3740
3741 int packet_size;
3742 char *value_end;
3743
3744 if (support != PACKET_ENABLE)
3745 return;
3746
3747 if (value == NULL || *value == '\0')
3748 {
3749 warning (_("Remote target reported \"%s\" without a size."),
3750 feature->name);
3751 return;
3752 }
3753
3754 errno = 0;
3755 packet_size = strtol (value, &value_end, 16);
3756 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3757 {
3758 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3759 feature->name, value);
3760 return;
3761 }
3762
3763 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3764 {
3765 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3766 packet_size, MAX_REMOTE_PACKET_SIZE);
3767 packet_size = MAX_REMOTE_PACKET_SIZE;
3768 }
3769
3770 /* Record the new maximum packet size. */
3771 rs->explicit_packet_size = packet_size;
3772 }
3773
3774 static void
3775 remote_multi_process_feature (const struct protocol_feature *feature,
3776 enum packet_support support, const char *value)
3777 {
3778 struct remote_state *rs = get_remote_state ();
3779
3780 rs->multi_process_aware = (support == PACKET_ENABLE);
3781 }
3782
3783 static void
3784 remote_non_stop_feature (const struct protocol_feature *feature,
3785 enum packet_support support, const char *value)
3786 {
3787 struct remote_state *rs = get_remote_state ();
3788
3789 rs->non_stop_aware = (support == PACKET_ENABLE);
3790 }
3791
3792 static void
3793 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3794 enum packet_support support,
3795 const char *value)
3796 {
3797 struct remote_state *rs = get_remote_state ();
3798
3799 rs->cond_tracepoints = (support == PACKET_ENABLE);
3800 }
3801
3802 static void
3803 remote_cond_breakpoint_feature (const struct protocol_feature *feature,
3804 enum packet_support support,
3805 const char *value)
3806 {
3807 struct remote_state *rs = get_remote_state ();
3808
3809 rs->cond_breakpoints = (support == PACKET_ENABLE);
3810 }
3811
3812 static void
3813 remote_breakpoint_commands_feature (const struct protocol_feature *feature,
3814 enum packet_support support,
3815 const char *value)
3816 {
3817 struct remote_state *rs = get_remote_state ();
3818
3819 rs->breakpoint_commands = (support == PACKET_ENABLE);
3820 }
3821
3822 static void
3823 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3824 enum packet_support support,
3825 const char *value)
3826 {
3827 struct remote_state *rs = get_remote_state ();
3828
3829 rs->fast_tracepoints = (support == PACKET_ENABLE);
3830 }
3831
3832 static void
3833 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3834 enum packet_support support,
3835 const char *value)
3836 {
3837 struct remote_state *rs = get_remote_state ();
3838
3839 rs->static_tracepoints = (support == PACKET_ENABLE);
3840 }
3841
3842 static void
3843 remote_install_in_trace_feature (const struct protocol_feature *feature,
3844 enum packet_support support,
3845 const char *value)
3846 {
3847 struct remote_state *rs = get_remote_state ();
3848
3849 rs->install_in_trace = (support == PACKET_ENABLE);
3850 }
3851
3852 static void
3853 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3854 enum packet_support support,
3855 const char *value)
3856 {
3857 struct remote_state *rs = get_remote_state ();
3858
3859 rs->disconnected_tracing = (support == PACKET_ENABLE);
3860 }
3861
3862 static void
3863 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3864 enum packet_support support,
3865 const char *value)
3866 {
3867 struct remote_state *rs = get_remote_state ();
3868
3869 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3870 }
3871
3872 static void
3873 remote_string_tracing_feature (const struct protocol_feature *feature,
3874 enum packet_support support,
3875 const char *value)
3876 {
3877 struct remote_state *rs = get_remote_state ();
3878
3879 rs->string_tracing = (support == PACKET_ENABLE);
3880 }
3881
3882 static struct protocol_feature remote_protocol_features[] = {
3883 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3884 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3885 PACKET_qXfer_auxv },
3886 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3887 PACKET_qXfer_features },
3888 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3889 PACKET_qXfer_libraries },
3890 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
3891 PACKET_qXfer_libraries_svr4 },
3892 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3893 PACKET_qXfer_memory_map },
3894 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3895 PACKET_qXfer_spu_read },
3896 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3897 PACKET_qXfer_spu_write },
3898 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3899 PACKET_qXfer_osdata },
3900 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3901 PACKET_qXfer_threads },
3902 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
3903 PACKET_qXfer_traceframe_info },
3904 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3905 PACKET_QPassSignals },
3906 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
3907 PACKET_QProgramSignals },
3908 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3909 PACKET_QStartNoAckMode },
3910 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3911 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3912 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3913 PACKET_qXfer_siginfo_read },
3914 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3915 PACKET_qXfer_siginfo_write },
3916 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3917 PACKET_ConditionalTracepoints },
3918 { "ConditionalBreakpoints", PACKET_DISABLE, remote_cond_breakpoint_feature,
3919 PACKET_ConditionalBreakpoints },
3920 { "BreakpointCommands", PACKET_DISABLE, remote_breakpoint_commands_feature,
3921 PACKET_BreakpointCommands },
3922 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3923 PACKET_FastTracepoints },
3924 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3925 PACKET_StaticTracepoints },
3926 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
3927 PACKET_InstallInTrace},
3928 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3929 -1 },
3930 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3931 PACKET_bc },
3932 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3933 PACKET_bs },
3934 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3935 PACKET_TracepointSource },
3936 { "QAllow", PACKET_DISABLE, remote_supported_packet,
3937 PACKET_QAllow },
3938 { "EnableDisableTracepoints", PACKET_DISABLE,
3939 remote_enable_disable_tracepoint_feature, -1 },
3940 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
3941 PACKET_qXfer_fdpic },
3942 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
3943 PACKET_qXfer_uib },
3944 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
3945 PACKET_QDisableRandomization },
3946 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
3947 { "tracenz", PACKET_DISABLE,
3948 remote_string_tracing_feature, -1 },
3949 };
3950
3951 static char *remote_support_xml;
3952
3953 /* Register string appended to "xmlRegisters=" in qSupported query. */
3954
3955 void
3956 register_remote_support_xml (const char *xml)
3957 {
3958 #if defined(HAVE_LIBEXPAT)
3959 if (remote_support_xml == NULL)
3960 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
3961 else
3962 {
3963 char *copy = xstrdup (remote_support_xml + 13);
3964 char *p = strtok (copy, ",");
3965
3966 do
3967 {
3968 if (strcmp (p, xml) == 0)
3969 {
3970 /* already there */
3971 xfree (copy);
3972 return;
3973 }
3974 }
3975 while ((p = strtok (NULL, ",")) != NULL);
3976 xfree (copy);
3977
3978 remote_support_xml = reconcat (remote_support_xml,
3979 remote_support_xml, ",", xml,
3980 (char *) NULL);
3981 }
3982 #endif
3983 }
3984
3985 static char *
3986 remote_query_supported_append (char *msg, const char *append)
3987 {
3988 if (msg)
3989 return reconcat (msg, msg, ";", append, (char *) NULL);
3990 else
3991 return xstrdup (append);
3992 }
3993
3994 static void
3995 remote_query_supported (void)
3996 {
3997 struct remote_state *rs = get_remote_state ();
3998 char *next;
3999 int i;
4000 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4001
4002 /* The packet support flags are handled differently for this packet
4003 than for most others. We treat an error, a disabled packet, and
4004 an empty response identically: any features which must be reported
4005 to be used will be automatically disabled. An empty buffer
4006 accomplishes this, since that is also the representation for a list
4007 containing no features. */
4008
4009 rs->buf[0] = 0;
4010 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
4011 {
4012 char *q = NULL;
4013 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4014
4015 q = remote_query_supported_append (q, "multiprocess+");
4016
4017 if (remote_support_xml)
4018 q = remote_query_supported_append (q, remote_support_xml);
4019
4020 q = remote_query_supported_append (q, "qRelocInsn+");
4021
4022 q = reconcat (q, "qSupported:", q, (char *) NULL);
4023 putpkt (q);
4024
4025 do_cleanups (old_chain);
4026
4027 getpkt (&rs->buf, &rs->buf_size, 0);
4028
4029 /* If an error occured, warn, but do not return - just reset the
4030 buffer to empty and go on to disable features. */
4031 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4032 == PACKET_ERROR)
4033 {
4034 warning (_("Remote failure reply: %s"), rs->buf);
4035 rs->buf[0] = 0;
4036 }
4037 }
4038
4039 memset (seen, 0, sizeof (seen));
4040
4041 next = rs->buf;
4042 while (*next)
4043 {
4044 enum packet_support is_supported;
4045 char *p, *end, *name_end, *value;
4046
4047 /* First separate out this item from the rest of the packet. If
4048 there's another item after this, we overwrite the separator
4049 (terminated strings are much easier to work with). */
4050 p = next;
4051 end = strchr (p, ';');
4052 if (end == NULL)
4053 {
4054 end = p + strlen (p);
4055 next = end;
4056 }
4057 else
4058 {
4059 *end = '\0';
4060 next = end + 1;
4061
4062 if (end == p)
4063 {
4064 warning (_("empty item in \"qSupported\" response"));
4065 continue;
4066 }
4067 }
4068
4069 name_end = strchr (p, '=');
4070 if (name_end)
4071 {
4072 /* This is a name=value entry. */
4073 is_supported = PACKET_ENABLE;
4074 value = name_end + 1;
4075 *name_end = '\0';
4076 }
4077 else
4078 {
4079 value = NULL;
4080 switch (end[-1])
4081 {
4082 case '+':
4083 is_supported = PACKET_ENABLE;
4084 break;
4085
4086 case '-':
4087 is_supported = PACKET_DISABLE;
4088 break;
4089
4090 case '?':
4091 is_supported = PACKET_SUPPORT_UNKNOWN;
4092 break;
4093
4094 default:
4095 warning (_("unrecognized item \"%s\" "
4096 "in \"qSupported\" response"), p);
4097 continue;
4098 }
4099 end[-1] = '\0';
4100 }
4101
4102 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4103 if (strcmp (remote_protocol_features[i].name, p) == 0)
4104 {
4105 const struct protocol_feature *feature;
4106
4107 seen[i] = 1;
4108 feature = &remote_protocol_features[i];
4109 feature->func (feature, is_supported, value);
4110 break;
4111 }
4112 }
4113
4114 /* If we increased the packet size, make sure to increase the global
4115 buffer size also. We delay this until after parsing the entire
4116 qSupported packet, because this is the same buffer we were
4117 parsing. */
4118 if (rs->buf_size < rs->explicit_packet_size)
4119 {
4120 rs->buf_size = rs->explicit_packet_size;
4121 rs->buf = xrealloc (rs->buf, rs->buf_size);
4122 }
4123
4124 /* Handle the defaults for unmentioned features. */
4125 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4126 if (!seen[i])
4127 {
4128 const struct protocol_feature *feature;
4129
4130 feature = &remote_protocol_features[i];
4131 feature->func (feature, feature->default_support, NULL);
4132 }
4133 }
4134
4135
4136 static void
4137 remote_open_1 (char *name, int from_tty,
4138 struct target_ops *target, int extended_p)
4139 {
4140 struct remote_state *rs = get_remote_state ();
4141
4142 if (name == 0)
4143 error (_("To open a remote debug connection, you need to specify what\n"
4144 "serial device is attached to the remote system\n"
4145 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4146
4147 /* See FIXME above. */
4148 if (!target_async_permitted)
4149 wait_forever_enabled_p = 1;
4150
4151 /* If we're connected to a running target, target_preopen will kill it.
4152 But if we're connected to a target system with no running process,
4153 then we will still be connected when it returns. Ask this question
4154 first, before target_preopen has a chance to kill anything. */
4155 if (remote_desc != NULL && !have_inferiors ())
4156 {
4157 if (!from_tty
4158 || query (_("Already connected to a remote target. Disconnect? ")))
4159 pop_target ();
4160 else
4161 error (_("Still connected."));
4162 }
4163
4164 target_preopen (from_tty);
4165
4166 unpush_target (target);
4167
4168 /* This time without a query. If we were connected to an
4169 extended-remote target and target_preopen killed the running
4170 process, we may still be connected. If we are starting "target
4171 remote" now, the extended-remote target will not have been
4172 removed by unpush_target. */
4173 if (remote_desc != NULL && !have_inferiors ())
4174 pop_target ();
4175
4176 /* Make sure we send the passed signals list the next time we resume. */
4177 xfree (last_pass_packet);
4178 last_pass_packet = NULL;
4179
4180 /* Make sure we send the program signals list the next time we
4181 resume. */
4182 xfree (last_program_signals_packet);
4183 last_program_signals_packet = NULL;
4184
4185 remote_fileio_reset ();
4186 reopen_exec_file ();
4187 reread_symbols ();
4188
4189 remote_desc = remote_serial_open (name);
4190 if (!remote_desc)
4191 perror_with_name (name);
4192
4193 if (baud_rate != -1)
4194 {
4195 if (serial_setbaudrate (remote_desc, baud_rate))
4196 {
4197 /* The requested speed could not be set. Error out to
4198 top level after closing remote_desc. Take care to
4199 set remote_desc to NULL to avoid closing remote_desc
4200 more than once. */
4201 serial_close (remote_desc);
4202 remote_desc = NULL;
4203 perror_with_name (name);
4204 }
4205 }
4206
4207 serial_raw (remote_desc);
4208
4209 /* If there is something sitting in the buffer we might take it as a
4210 response to a command, which would be bad. */
4211 serial_flush_input (remote_desc);
4212
4213 if (from_tty)
4214 {
4215 puts_filtered ("Remote debugging using ");
4216 puts_filtered (name);
4217 puts_filtered ("\n");
4218 }
4219 push_target (target); /* Switch to using remote target now. */
4220
4221 /* Register extra event sources in the event loop. */
4222 remote_async_inferior_event_token
4223 = create_async_event_handler (remote_async_inferior_event_handler,
4224 NULL);
4225 remote_async_get_pending_events_token
4226 = create_async_event_handler (remote_async_get_pending_events_handler,
4227 NULL);
4228
4229 /* Reset the target state; these things will be queried either by
4230 remote_query_supported or as they are needed. */
4231 init_all_packet_configs ();
4232 rs->cached_wait_status = 0;
4233 rs->explicit_packet_size = 0;
4234 rs->noack_mode = 0;
4235 rs->multi_process_aware = 0;
4236 rs->extended = extended_p;
4237 rs->non_stop_aware = 0;
4238 rs->waiting_for_stop_reply = 0;
4239 rs->ctrlc_pending_p = 0;
4240
4241 general_thread = not_sent_ptid;
4242 continue_thread = not_sent_ptid;
4243 remote_traceframe_number = -1;
4244
4245 /* Probe for ability to use "ThreadInfo" query, as required. */
4246 use_threadinfo_query = 1;
4247 use_threadextra_query = 1;
4248
4249 if (target_async_permitted)
4250 {
4251 /* With this target we start out by owning the terminal. */
4252 remote_async_terminal_ours_p = 1;
4253
4254 /* FIXME: cagney/1999-09-23: During the initial connection it is
4255 assumed that the target is already ready and able to respond to
4256 requests. Unfortunately remote_start_remote() eventually calls
4257 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4258 around this. Eventually a mechanism that allows
4259 wait_for_inferior() to expect/get timeouts will be
4260 implemented. */
4261 wait_forever_enabled_p = 0;
4262 }
4263
4264 /* First delete any symbols previously loaded from shared libraries. */
4265 no_shared_libraries (NULL, 0);
4266
4267 /* Start afresh. */
4268 init_thread_list ();
4269
4270 /* Start the remote connection. If error() or QUIT, discard this
4271 target (we'd otherwise be in an inconsistent state) and then
4272 propogate the error on up the exception chain. This ensures that
4273 the caller doesn't stumble along blindly assuming that the
4274 function succeeded. The CLI doesn't have this problem but other
4275 UI's, such as MI do.
4276
4277 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4278 this function should return an error indication letting the
4279 caller restore the previous state. Unfortunately the command
4280 ``target remote'' is directly wired to this function making that
4281 impossible. On a positive note, the CLI side of this problem has
4282 been fixed - the function set_cmd_context() makes it possible for
4283 all the ``target ....'' commands to share a common callback
4284 function. See cli-dump.c. */
4285 {
4286 volatile struct gdb_exception ex;
4287
4288 TRY_CATCH (ex, RETURN_MASK_ALL)
4289 {
4290 remote_start_remote (from_tty, target, extended_p);
4291 }
4292 if (ex.reason < 0)
4293 {
4294 /* Pop the partially set up target - unless something else did
4295 already before throwing the exception. */
4296 if (remote_desc != NULL)
4297 pop_target ();
4298 if (target_async_permitted)
4299 wait_forever_enabled_p = 1;
4300 throw_exception (ex);
4301 }
4302 }
4303
4304 if (target_async_permitted)
4305 wait_forever_enabled_p = 1;
4306 }
4307
4308 /* This takes a program previously attached to and detaches it. After
4309 this is done, GDB can be used to debug some other program. We
4310 better not have left any breakpoints in the target program or it'll
4311 die when it hits one. */
4312
4313 static void
4314 remote_detach_1 (char *args, int from_tty, int extended)
4315 {
4316 int pid = ptid_get_pid (inferior_ptid);
4317 struct remote_state *rs = get_remote_state ();
4318
4319 if (args)
4320 error (_("Argument given to \"detach\" when remotely debugging."));
4321
4322 if (!target_has_execution)
4323 error (_("No process to detach from."));
4324
4325 if (from_tty)
4326 {
4327 char *exec_file = get_exec_file (0);
4328 if (exec_file == NULL)
4329 exec_file = "";
4330 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4331 target_pid_to_str (pid_to_ptid (pid)));
4332 gdb_flush (gdb_stdout);
4333 }
4334
4335 /* Tell the remote target to detach. */
4336 if (remote_multi_process_p (rs))
4337 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
4338 else
4339 strcpy (rs->buf, "D");
4340
4341 putpkt (rs->buf);
4342 getpkt (&rs->buf, &rs->buf_size, 0);
4343
4344 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4345 ;
4346 else if (rs->buf[0] == '\0')
4347 error (_("Remote doesn't know how to detach"));
4348 else
4349 error (_("Can't detach process."));
4350
4351 if (from_tty && !extended)
4352 puts_filtered (_("Ending remote debugging.\n"));
4353
4354 discard_pending_stop_replies (pid);
4355 target_mourn_inferior ();
4356 }
4357
4358 static void
4359 remote_detach (struct target_ops *ops, char *args, int from_tty)
4360 {
4361 remote_detach_1 (args, from_tty, 0);
4362 }
4363
4364 static void
4365 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4366 {
4367 remote_detach_1 (args, from_tty, 1);
4368 }
4369
4370 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4371
4372 static void
4373 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4374 {
4375 if (args)
4376 error (_("Argument given to \"disconnect\" when remotely debugging."));
4377
4378 /* Make sure we unpush even the extended remote targets; mourn
4379 won't do it. So call remote_mourn_1 directly instead of
4380 target_mourn_inferior. */
4381 remote_mourn_1 (target);
4382
4383 if (from_tty)
4384 puts_filtered ("Ending remote debugging.\n");
4385 }
4386
4387 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4388 be chatty about it. */
4389
4390 static void
4391 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4392 {
4393 struct remote_state *rs = get_remote_state ();
4394 int pid;
4395 char *wait_status = NULL;
4396
4397 pid = parse_pid_to_attach (args);
4398
4399 /* Remote PID can be freely equal to getpid, do not check it here the same
4400 way as in other targets. */
4401
4402 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4403 error (_("This target does not support attaching to a process"));
4404
4405 if (from_tty)
4406 {
4407 char *exec_file = get_exec_file (0);
4408
4409 if (exec_file)
4410 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4411 target_pid_to_str (pid_to_ptid (pid)));
4412 else
4413 printf_unfiltered (_("Attaching to %s\n"),
4414 target_pid_to_str (pid_to_ptid (pid)));
4415
4416 gdb_flush (gdb_stdout);
4417 }
4418
4419 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
4420 putpkt (rs->buf);
4421 getpkt (&rs->buf, &rs->buf_size, 0);
4422
4423 if (packet_ok (rs->buf,
4424 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4425 {
4426 if (!non_stop)
4427 {
4428 /* Save the reply for later. */
4429 wait_status = alloca (strlen (rs->buf) + 1);
4430 strcpy (wait_status, rs->buf);
4431 }
4432 else if (strcmp (rs->buf, "OK") != 0)
4433 error (_("Attaching to %s failed with: %s"),
4434 target_pid_to_str (pid_to_ptid (pid)),
4435 rs->buf);
4436 }
4437 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4438 error (_("This target does not support attaching to a process"));
4439 else
4440 error (_("Attaching to %s failed"),
4441 target_pid_to_str (pid_to_ptid (pid)));
4442
4443 set_current_inferior (remote_add_inferior (0, pid, 1));
4444
4445 inferior_ptid = pid_to_ptid (pid);
4446
4447 if (non_stop)
4448 {
4449 struct thread_info *thread;
4450
4451 /* Get list of threads. */
4452 remote_threads_info (target);
4453
4454 thread = first_thread_of_process (pid);
4455 if (thread)
4456 inferior_ptid = thread->ptid;
4457 else
4458 inferior_ptid = pid_to_ptid (pid);
4459
4460 /* Invalidate our notion of the remote current thread. */
4461 record_currthread (minus_one_ptid);
4462 }
4463 else
4464 {
4465 /* Now, if we have thread information, update inferior_ptid. */
4466 inferior_ptid = remote_current_thread (inferior_ptid);
4467
4468 /* Add the main thread to the thread list. */
4469 add_thread_silent (inferior_ptid);
4470 }
4471
4472 /* Next, if the target can specify a description, read it. We do
4473 this before anything involving memory or registers. */
4474 target_find_description ();
4475
4476 if (!non_stop)
4477 {
4478 /* Use the previously fetched status. */
4479 gdb_assert (wait_status != NULL);
4480
4481 if (target_can_async_p ())
4482 {
4483 struct stop_reply *stop_reply;
4484 struct cleanup *old_chain;
4485
4486 stop_reply = stop_reply_xmalloc ();
4487 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4488 remote_parse_stop_reply (wait_status, stop_reply);
4489 discard_cleanups (old_chain);
4490 push_stop_reply (stop_reply);
4491
4492 target_async (inferior_event_handler, 0);
4493 }
4494 else
4495 {
4496 gdb_assert (wait_status != NULL);
4497 strcpy (rs->buf, wait_status);
4498 rs->cached_wait_status = 1;
4499 }
4500 }
4501 else
4502 gdb_assert (wait_status == NULL);
4503 }
4504
4505 static void
4506 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4507 {
4508 extended_remote_attach_1 (ops, args, from_tty);
4509 }
4510
4511 /* Convert hex digit A to a number. */
4512
4513 static int
4514 fromhex (int a)
4515 {
4516 if (a >= '0' && a <= '9')
4517 return a - '0';
4518 else if (a >= 'a' && a <= 'f')
4519 return a - 'a' + 10;
4520 else if (a >= 'A' && a <= 'F')
4521 return a - 'A' + 10;
4522 else
4523 error (_("Reply contains invalid hex digit %d"), a);
4524 }
4525
4526 int
4527 hex2bin (const char *hex, gdb_byte *bin, int count)
4528 {
4529 int i;
4530
4531 for (i = 0; i < count; i++)
4532 {
4533 if (hex[0] == 0 || hex[1] == 0)
4534 {
4535 /* Hex string is short, or of uneven length.
4536 Return the count that has been converted so far. */
4537 return i;
4538 }
4539 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4540 hex += 2;
4541 }
4542 return i;
4543 }
4544
4545 /* Convert number NIB to a hex digit. */
4546
4547 static int
4548 tohex (int nib)
4549 {
4550 if (nib < 10)
4551 return '0' + nib;
4552 else
4553 return 'a' + nib - 10;
4554 }
4555
4556 int
4557 bin2hex (const gdb_byte *bin, char *hex, int count)
4558 {
4559 int i;
4560
4561 /* May use a length, or a nul-terminated string as input. */
4562 if (count == 0)
4563 count = strlen ((char *) bin);
4564
4565 for (i = 0; i < count; i++)
4566 {
4567 *hex++ = tohex ((*bin >> 4) & 0xf);
4568 *hex++ = tohex (*bin++ & 0xf);
4569 }
4570 *hex = 0;
4571 return i;
4572 }
4573 \f
4574 /* Check for the availability of vCont. This function should also check
4575 the response. */
4576
4577 static void
4578 remote_vcont_probe (struct remote_state *rs)
4579 {
4580 char *buf;
4581
4582 strcpy (rs->buf, "vCont?");
4583 putpkt (rs->buf);
4584 getpkt (&rs->buf, &rs->buf_size, 0);
4585 buf = rs->buf;
4586
4587 /* Make sure that the features we assume are supported. */
4588 if (strncmp (buf, "vCont", 5) == 0)
4589 {
4590 char *p = &buf[5];
4591 int support_s, support_S, support_c, support_C;
4592
4593 support_s = 0;
4594 support_S = 0;
4595 support_c = 0;
4596 support_C = 0;
4597 rs->support_vCont_t = 0;
4598 while (p && *p == ';')
4599 {
4600 p++;
4601 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4602 support_s = 1;
4603 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4604 support_S = 1;
4605 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4606 support_c = 1;
4607 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4608 support_C = 1;
4609 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4610 rs->support_vCont_t = 1;
4611
4612 p = strchr (p, ';');
4613 }
4614
4615 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4616 BUF will make packet_ok disable the packet. */
4617 if (!support_s || !support_S || !support_c || !support_C)
4618 buf[0] = 0;
4619 }
4620
4621 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4622 }
4623
4624 /* Helper function for building "vCont" resumptions. Write a
4625 resumption to P. ENDP points to one-passed-the-end of the buffer
4626 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4627 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4628 resumed thread should be single-stepped and/or signalled. If PTID
4629 equals minus_one_ptid, then all threads are resumed; if PTID
4630 represents a process, then all threads of the process are resumed;
4631 the thread to be stepped and/or signalled is given in the global
4632 INFERIOR_PTID. */
4633
4634 static char *
4635 append_resumption (char *p, char *endp,
4636 ptid_t ptid, int step, enum gdb_signal siggnal)
4637 {
4638 struct remote_state *rs = get_remote_state ();
4639
4640 if (step && siggnal != GDB_SIGNAL_0)
4641 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4642 else if (step)
4643 p += xsnprintf (p, endp - p, ";s");
4644 else if (siggnal != GDB_SIGNAL_0)
4645 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4646 else
4647 p += xsnprintf (p, endp - p, ";c");
4648
4649 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4650 {
4651 ptid_t nptid;
4652
4653 /* All (-1) threads of process. */
4654 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4655
4656 p += xsnprintf (p, endp - p, ":");
4657 p = write_ptid (p, endp, nptid);
4658 }
4659 else if (!ptid_equal (ptid, minus_one_ptid))
4660 {
4661 p += xsnprintf (p, endp - p, ":");
4662 p = write_ptid (p, endp, ptid);
4663 }
4664
4665 return p;
4666 }
4667
4668 /* Append a vCont continue-with-signal action for threads that have a
4669 non-zero stop signal. */
4670
4671 static char *
4672 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
4673 {
4674 struct thread_info *thread;
4675
4676 ALL_THREADS (thread)
4677 if (ptid_match (thread->ptid, ptid)
4678 && !ptid_equal (inferior_ptid, thread->ptid)
4679 && thread->suspend.stop_signal != GDB_SIGNAL_0
4680 && signal_pass_state (thread->suspend.stop_signal))
4681 {
4682 p = append_resumption (p, endp, thread->ptid,
4683 0, thread->suspend.stop_signal);
4684 thread->suspend.stop_signal = GDB_SIGNAL_0;
4685 }
4686
4687 return p;
4688 }
4689
4690 /* Resume the remote inferior by using a "vCont" packet. The thread
4691 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4692 resumed thread should be single-stepped and/or signalled. If PTID
4693 equals minus_one_ptid, then all threads are resumed; the thread to
4694 be stepped and/or signalled is given in the global INFERIOR_PTID.
4695 This function returns non-zero iff it resumes the inferior.
4696
4697 This function issues a strict subset of all possible vCont commands at the
4698 moment. */
4699
4700 static int
4701 remote_vcont_resume (ptid_t ptid, int step, enum gdb_signal siggnal)
4702 {
4703 struct remote_state *rs = get_remote_state ();
4704 char *p;
4705 char *endp;
4706
4707 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4708 remote_vcont_probe (rs);
4709
4710 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4711 return 0;
4712
4713 p = rs->buf;
4714 endp = rs->buf + get_remote_packet_size ();
4715
4716 /* If we could generate a wider range of packets, we'd have to worry
4717 about overflowing BUF. Should there be a generic
4718 "multi-part-packet" packet? */
4719
4720 p += xsnprintf (p, endp - p, "vCont");
4721
4722 if (ptid_equal (ptid, magic_null_ptid))
4723 {
4724 /* MAGIC_NULL_PTID means that we don't have any active threads,
4725 so we don't have any TID numbers the inferior will
4726 understand. Make sure to only send forms that do not specify
4727 a TID. */
4728 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4729 }
4730 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4731 {
4732 /* Resume all threads (of all processes, or of a single
4733 process), with preference for INFERIOR_PTID. This assumes
4734 inferior_ptid belongs to the set of all threads we are about
4735 to resume. */
4736 if (step || siggnal != GDB_SIGNAL_0)
4737 {
4738 /* Step inferior_ptid, with or without signal. */
4739 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4740 }
4741
4742 /* Also pass down any pending signaled resumption for other
4743 threads not the current. */
4744 p = append_pending_thread_resumptions (p, endp, ptid);
4745
4746 /* And continue others without a signal. */
4747 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
4748 }
4749 else
4750 {
4751 /* Scheduler locking; resume only PTID. */
4752 append_resumption (p, endp, ptid, step, siggnal);
4753 }
4754
4755 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4756 putpkt (rs->buf);
4757
4758 if (non_stop)
4759 {
4760 /* In non-stop, the stub replies to vCont with "OK". The stop
4761 reply will be reported asynchronously by means of a `%Stop'
4762 notification. */
4763 getpkt (&rs->buf, &rs->buf_size, 0);
4764 if (strcmp (rs->buf, "OK") != 0)
4765 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4766 }
4767
4768 return 1;
4769 }
4770
4771 /* Tell the remote machine to resume. */
4772
4773 static enum gdb_signal last_sent_signal = GDB_SIGNAL_0;
4774
4775 static int last_sent_step;
4776
4777 static void
4778 remote_resume (struct target_ops *ops,
4779 ptid_t ptid, int step, enum gdb_signal siggnal)
4780 {
4781 struct remote_state *rs = get_remote_state ();
4782 char *buf;
4783
4784 last_sent_signal = siggnal;
4785 last_sent_step = step;
4786
4787 /* The vCont packet doesn't need to specify threads via Hc. */
4788 /* No reverse support (yet) for vCont. */
4789 if (execution_direction != EXEC_REVERSE)
4790 if (remote_vcont_resume (ptid, step, siggnal))
4791 goto done;
4792
4793 /* All other supported resume packets do use Hc, so set the continue
4794 thread. */
4795 if (ptid_equal (ptid, minus_one_ptid))
4796 set_continue_thread (any_thread_ptid);
4797 else
4798 set_continue_thread (ptid);
4799
4800 buf = rs->buf;
4801 if (execution_direction == EXEC_REVERSE)
4802 {
4803 /* We don't pass signals to the target in reverse exec mode. */
4804 if (info_verbose && siggnal != GDB_SIGNAL_0)
4805 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4806 siggnal);
4807
4808 if (step
4809 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4810 error (_("Remote reverse-step not supported."));
4811 if (!step
4812 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4813 error (_("Remote reverse-continue not supported."));
4814
4815 strcpy (buf, step ? "bs" : "bc");
4816 }
4817 else if (siggnal != GDB_SIGNAL_0)
4818 {
4819 buf[0] = step ? 'S' : 'C';
4820 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4821 buf[2] = tohex (((int) siggnal) & 0xf);
4822 buf[3] = '\0';
4823 }
4824 else
4825 strcpy (buf, step ? "s" : "c");
4826
4827 putpkt (buf);
4828
4829 done:
4830 /* We are about to start executing the inferior, let's register it
4831 with the event loop. NOTE: this is the one place where all the
4832 execution commands end up. We could alternatively do this in each
4833 of the execution commands in infcmd.c. */
4834 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4835 into infcmd.c in order to allow inferior function calls to work
4836 NOT asynchronously. */
4837 if (target_can_async_p ())
4838 target_async (inferior_event_handler, 0);
4839
4840 /* We've just told the target to resume. The remote server will
4841 wait for the inferior to stop, and then send a stop reply. In
4842 the mean time, we can't start another command/query ourselves
4843 because the stub wouldn't be ready to process it. This applies
4844 only to the base all-stop protocol, however. In non-stop (which
4845 only supports vCont), the stub replies with an "OK", and is
4846 immediate able to process further serial input. */
4847 if (!non_stop)
4848 rs->waiting_for_stop_reply = 1;
4849 }
4850 \f
4851
4852 /* Set up the signal handler for SIGINT, while the target is
4853 executing, ovewriting the 'regular' SIGINT signal handler. */
4854 static void
4855 initialize_sigint_signal_handler (void)
4856 {
4857 signal (SIGINT, handle_remote_sigint);
4858 }
4859
4860 /* Signal handler for SIGINT, while the target is executing. */
4861 static void
4862 handle_remote_sigint (int sig)
4863 {
4864 signal (sig, handle_remote_sigint_twice);
4865 mark_async_signal_handler (sigint_remote_token);
4866 }
4867
4868 /* Signal handler for SIGINT, installed after SIGINT has already been
4869 sent once. It will take effect the second time that the user sends
4870 a ^C. */
4871 static void
4872 handle_remote_sigint_twice (int sig)
4873 {
4874 signal (sig, handle_remote_sigint);
4875 mark_async_signal_handler (sigint_remote_twice_token);
4876 }
4877
4878 /* Perform the real interruption of the target execution, in response
4879 to a ^C. */
4880 static void
4881 async_remote_interrupt (gdb_client_data arg)
4882 {
4883 if (remote_debug)
4884 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n");
4885
4886 target_stop (inferior_ptid);
4887 }
4888
4889 /* Perform interrupt, if the first attempt did not succeed. Just give
4890 up on the target alltogether. */
4891 void
4892 async_remote_interrupt_twice (gdb_client_data arg)
4893 {
4894 if (remote_debug)
4895 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n");
4896
4897 interrupt_query ();
4898 }
4899
4900 /* Reinstall the usual SIGINT handlers, after the target has
4901 stopped. */
4902 static void
4903 cleanup_sigint_signal_handler (void *dummy)
4904 {
4905 signal (SIGINT, handle_sigint);
4906 }
4907
4908 /* Send ^C to target to halt it. Target will respond, and send us a
4909 packet. */
4910 static void (*ofunc) (int);
4911
4912 /* The command line interface's stop routine. This function is installed
4913 as a signal handler for SIGINT. The first time a user requests a
4914 stop, we call remote_stop to send a break or ^C. If there is no
4915 response from the target (it didn't stop when the user requested it),
4916 we ask the user if he'd like to detach from the target. */
4917 static void
4918 remote_interrupt (int signo)
4919 {
4920 /* If this doesn't work, try more severe steps. */
4921 signal (signo, remote_interrupt_twice);
4922
4923 gdb_call_async_signal_handler (sigint_remote_token, 1);
4924 }
4925
4926 /* The user typed ^C twice. */
4927
4928 static void
4929 remote_interrupt_twice (int signo)
4930 {
4931 signal (signo, ofunc);
4932 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4933 signal (signo, remote_interrupt);
4934 }
4935
4936 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4937 thread, all threads of a remote process, or all threads of all
4938 processes. */
4939
4940 static void
4941 remote_stop_ns (ptid_t ptid)
4942 {
4943 struct remote_state *rs = get_remote_state ();
4944 char *p = rs->buf;
4945 char *endp = rs->buf + get_remote_packet_size ();
4946
4947 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4948 remote_vcont_probe (rs);
4949
4950 if (!rs->support_vCont_t)
4951 error (_("Remote server does not support stopping threads"));
4952
4953 if (ptid_equal (ptid, minus_one_ptid)
4954 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4955 p += xsnprintf (p, endp - p, "vCont;t");
4956 else
4957 {
4958 ptid_t nptid;
4959
4960 p += xsnprintf (p, endp - p, "vCont;t:");
4961
4962 if (ptid_is_pid (ptid))
4963 /* All (-1) threads of process. */
4964 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4965 else
4966 {
4967 /* Small optimization: if we already have a stop reply for
4968 this thread, no use in telling the stub we want this
4969 stopped. */
4970 if (peek_stop_reply (ptid))
4971 return;
4972
4973 nptid = ptid;
4974 }
4975
4976 write_ptid (p, endp, nptid);
4977 }
4978
4979 /* In non-stop, we get an immediate OK reply. The stop reply will
4980 come in asynchronously by notification. */
4981 putpkt (rs->buf);
4982 getpkt (&rs->buf, &rs->buf_size, 0);
4983 if (strcmp (rs->buf, "OK") != 0)
4984 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4985 }
4986
4987 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4988 remote target. It is undefined which thread of which process
4989 reports the stop. */
4990
4991 static void
4992 remote_stop_as (ptid_t ptid)
4993 {
4994 struct remote_state *rs = get_remote_state ();
4995
4996 rs->ctrlc_pending_p = 1;
4997
4998 /* If the inferior is stopped already, but the core didn't know
4999 about it yet, just ignore the request. The cached wait status
5000 will be collected in remote_wait. */
5001 if (rs->cached_wait_status)
5002 return;
5003
5004 /* Send interrupt_sequence to remote target. */
5005 send_interrupt_sequence ();
5006 }
5007
5008 /* This is the generic stop called via the target vector. When a target
5009 interrupt is requested, either by the command line or the GUI, we
5010 will eventually end up here. */
5011
5012 static void
5013 remote_stop (ptid_t ptid)
5014 {
5015 if (remote_debug)
5016 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
5017
5018 if (non_stop)
5019 remote_stop_ns (ptid);
5020 else
5021 remote_stop_as (ptid);
5022 }
5023
5024 /* Ask the user what to do when an interrupt is received. */
5025
5026 static void
5027 interrupt_query (void)
5028 {
5029 target_terminal_ours ();
5030
5031 if (target_can_async_p ())
5032 {
5033 signal (SIGINT, handle_sigint);
5034 deprecated_throw_reason (RETURN_QUIT);
5035 }
5036 else
5037 {
5038 if (query (_("Interrupted while waiting for the program.\n\
5039 Give up (and stop debugging it)? ")))
5040 {
5041 pop_target ();
5042 deprecated_throw_reason (RETURN_QUIT);
5043 }
5044 }
5045
5046 target_terminal_inferior ();
5047 }
5048
5049 /* Enable/disable target terminal ownership. Most targets can use
5050 terminal groups to control terminal ownership. Remote targets are
5051 different in that explicit transfer of ownership to/from GDB/target
5052 is required. */
5053
5054 static void
5055 remote_terminal_inferior (void)
5056 {
5057 if (!target_async_permitted)
5058 /* Nothing to do. */
5059 return;
5060
5061 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
5062 idempotent. The event-loop GDB talking to an asynchronous target
5063 with a synchronous command calls this function from both
5064 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
5065 transfer the terminal to the target when it shouldn't this guard
5066 can go away. */
5067 if (!remote_async_terminal_ours_p)
5068 return;
5069 delete_file_handler (input_fd);
5070 remote_async_terminal_ours_p = 0;
5071 initialize_sigint_signal_handler ();
5072 /* NOTE: At this point we could also register our selves as the
5073 recipient of all input. Any characters typed could then be
5074 passed on down to the target. */
5075 }
5076
5077 static void
5078 remote_terminal_ours (void)
5079 {
5080 if (!target_async_permitted)
5081 /* Nothing to do. */
5082 return;
5083
5084 /* See FIXME in remote_terminal_inferior. */
5085 if (remote_async_terminal_ours_p)
5086 return;
5087 cleanup_sigint_signal_handler (NULL);
5088 add_file_handler (input_fd, stdin_event_handler, 0);
5089 remote_async_terminal_ours_p = 1;
5090 }
5091
5092 static void
5093 remote_console_output (char *msg)
5094 {
5095 char *p;
5096
5097 for (p = msg; p[0] && p[1]; p += 2)
5098 {
5099 char tb[2];
5100 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
5101
5102 tb[0] = c;
5103 tb[1] = 0;
5104 fputs_unfiltered (tb, gdb_stdtarg);
5105 }
5106 gdb_flush (gdb_stdtarg);
5107 }
5108
5109 typedef struct cached_reg
5110 {
5111 int num;
5112 gdb_byte data[MAX_REGISTER_SIZE];
5113 } cached_reg_t;
5114
5115 DEF_VEC_O(cached_reg_t);
5116
5117 struct stop_reply
5118 {
5119 struct stop_reply *next;
5120
5121 ptid_t ptid;
5122
5123 struct target_waitstatus ws;
5124
5125 /* Expedited registers. This makes remote debugging a bit more
5126 efficient for those targets that provide critical registers as
5127 part of their normal status mechanism (as another roundtrip to
5128 fetch them is avoided). */
5129 VEC(cached_reg_t) *regcache;
5130
5131 int stopped_by_watchpoint_p;
5132 CORE_ADDR watch_data_address;
5133
5134 int solibs_changed;
5135 int replay_event;
5136
5137 int core;
5138 };
5139
5140 /* The list of already fetched and acknowledged stop events. */
5141 static struct stop_reply *stop_reply_queue;
5142
5143 static struct stop_reply *
5144 stop_reply_xmalloc (void)
5145 {
5146 struct stop_reply *r = XMALLOC (struct stop_reply);
5147
5148 r->next = NULL;
5149 return r;
5150 }
5151
5152 static void
5153 stop_reply_xfree (struct stop_reply *r)
5154 {
5155 if (r != NULL)
5156 {
5157 VEC_free (cached_reg_t, r->regcache);
5158 xfree (r);
5159 }
5160 }
5161
5162 /* Discard all pending stop replies of inferior PID. If PID is -1,
5163 discard everything. */
5164
5165 static void
5166 discard_pending_stop_replies (int pid)
5167 {
5168 struct stop_reply *prev = NULL, *reply, *next;
5169
5170 /* Discard the in-flight notification. */
5171 if (pending_stop_reply != NULL
5172 && (pid == -1
5173 || ptid_get_pid (pending_stop_reply->ptid) == pid))
5174 {
5175 stop_reply_xfree (pending_stop_reply);
5176 pending_stop_reply = NULL;
5177 }
5178
5179 /* Discard the stop replies we have already pulled with
5180 vStopped. */
5181 for (reply = stop_reply_queue; reply; reply = next)
5182 {
5183 next = reply->next;
5184 if (pid == -1
5185 || ptid_get_pid (reply->ptid) == pid)
5186 {
5187 if (reply == stop_reply_queue)
5188 stop_reply_queue = reply->next;
5189 else
5190 prev->next = reply->next;
5191
5192 stop_reply_xfree (reply);
5193 }
5194 else
5195 prev = reply;
5196 }
5197 }
5198
5199 /* Cleanup wrapper. */
5200
5201 static void
5202 do_stop_reply_xfree (void *arg)
5203 {
5204 struct stop_reply *r = arg;
5205
5206 stop_reply_xfree (r);
5207 }
5208
5209 /* Look for a queued stop reply belonging to PTID. If one is found,
5210 remove it from the queue, and return it. Returns NULL if none is
5211 found. If there are still queued events left to process, tell the
5212 event loop to get back to target_wait soon. */
5213
5214 static struct stop_reply *
5215 queued_stop_reply (ptid_t ptid)
5216 {
5217 struct stop_reply *it;
5218 struct stop_reply **it_link;
5219
5220 it = stop_reply_queue;
5221 it_link = &stop_reply_queue;
5222 while (it)
5223 {
5224 if (ptid_match (it->ptid, ptid))
5225 {
5226 *it_link = it->next;
5227 it->next = NULL;
5228 break;
5229 }
5230
5231 it_link = &it->next;
5232 it = *it_link;
5233 }
5234
5235 if (stop_reply_queue)
5236 /* There's still at least an event left. */
5237 mark_async_event_handler (remote_async_inferior_event_token);
5238
5239 return it;
5240 }
5241
5242 /* Push a fully parsed stop reply in the stop reply queue. Since we
5243 know that we now have at least one queued event left to pass to the
5244 core side, tell the event loop to get back to target_wait soon. */
5245
5246 static void
5247 push_stop_reply (struct stop_reply *new_event)
5248 {
5249 struct stop_reply *event;
5250
5251 if (stop_reply_queue)
5252 {
5253 for (event = stop_reply_queue;
5254 event && event->next;
5255 event = event->next)
5256 ;
5257
5258 event->next = new_event;
5259 }
5260 else
5261 stop_reply_queue = new_event;
5262
5263 mark_async_event_handler (remote_async_inferior_event_token);
5264 }
5265
5266 /* Returns true if we have a stop reply for PTID. */
5267
5268 static int
5269 peek_stop_reply (ptid_t ptid)
5270 {
5271 struct stop_reply *it;
5272
5273 for (it = stop_reply_queue; it; it = it->next)
5274 if (ptid_equal (ptid, it->ptid))
5275 {
5276 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
5277 return 1;
5278 }
5279
5280 return 0;
5281 }
5282
5283 /* Parse the stop reply in BUF. Either the function succeeds, and the
5284 result is stored in EVENT, or throws an error. */
5285
5286 static void
5287 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5288 {
5289 struct remote_arch_state *rsa = get_remote_arch_state ();
5290 ULONGEST addr;
5291 char *p;
5292
5293 event->ptid = null_ptid;
5294 event->ws.kind = TARGET_WAITKIND_IGNORE;
5295 event->ws.value.integer = 0;
5296 event->solibs_changed = 0;
5297 event->replay_event = 0;
5298 event->stopped_by_watchpoint_p = 0;
5299 event->regcache = NULL;
5300 event->core = -1;
5301
5302 switch (buf[0])
5303 {
5304 case 'T': /* Status with PC, SP, FP, ... */
5305 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5306 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5307 ss = signal number
5308 n... = register number
5309 r... = register contents
5310 */
5311
5312 p = &buf[3]; /* after Txx */
5313 while (*p)
5314 {
5315 char *p1;
5316 char *p_temp;
5317 int fieldsize;
5318 LONGEST pnum = 0;
5319
5320 /* If the packet contains a register number, save it in
5321 pnum and set p1 to point to the character following it.
5322 Otherwise p1 points to p. */
5323
5324 /* If this packet is an awatch packet, don't parse the 'a'
5325 as a register number. */
5326
5327 if (strncmp (p, "awatch", strlen("awatch")) != 0
5328 && strncmp (p, "core", strlen ("core") != 0))
5329 {
5330 /* Read the ``P'' register number. */
5331 pnum = strtol (p, &p_temp, 16);
5332 p1 = p_temp;
5333 }
5334 else
5335 p1 = p;
5336
5337 if (p1 == p) /* No register number present here. */
5338 {
5339 p1 = strchr (p, ':');
5340 if (p1 == NULL)
5341 error (_("Malformed packet(a) (missing colon): %s\n\
5342 Packet: '%s'\n"),
5343 p, buf);
5344 if (strncmp (p, "thread", p1 - p) == 0)
5345 event->ptid = read_ptid (++p1, &p);
5346 else if ((strncmp (p, "watch", p1 - p) == 0)
5347 || (strncmp (p, "rwatch", p1 - p) == 0)
5348 || (strncmp (p, "awatch", p1 - p) == 0))
5349 {
5350 event->stopped_by_watchpoint_p = 1;
5351 p = unpack_varlen_hex (++p1, &addr);
5352 event->watch_data_address = (CORE_ADDR) addr;
5353 }
5354 else if (strncmp (p, "library", p1 - p) == 0)
5355 {
5356 p1++;
5357 p_temp = p1;
5358 while (*p_temp && *p_temp != ';')
5359 p_temp++;
5360
5361 event->solibs_changed = 1;
5362 p = p_temp;
5363 }
5364 else if (strncmp (p, "replaylog", p1 - p) == 0)
5365 {
5366 /* NO_HISTORY event.
5367 p1 will indicate "begin" or "end", but
5368 it makes no difference for now, so ignore it. */
5369 event->replay_event = 1;
5370 p_temp = strchr (p1 + 1, ';');
5371 if (p_temp)
5372 p = p_temp;
5373 }
5374 else if (strncmp (p, "core", p1 - p) == 0)
5375 {
5376 ULONGEST c;
5377
5378 p = unpack_varlen_hex (++p1, &c);
5379 event->core = c;
5380 }
5381 else
5382 {
5383 /* Silently skip unknown optional info. */
5384 p_temp = strchr (p1 + 1, ';');
5385 if (p_temp)
5386 p = p_temp;
5387 }
5388 }
5389 else
5390 {
5391 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5392 cached_reg_t cached_reg;
5393
5394 p = p1;
5395
5396 if (*p != ':')
5397 error (_("Malformed packet(b) (missing colon): %s\n\
5398 Packet: '%s'\n"),
5399 p, buf);
5400 ++p;
5401
5402 if (reg == NULL)
5403 error (_("Remote sent bad register number %s: %s\n\
5404 Packet: '%s'\n"),
5405 hex_string (pnum), p, buf);
5406
5407 cached_reg.num = reg->regnum;
5408
5409 fieldsize = hex2bin (p, cached_reg.data,
5410 register_size (target_gdbarch (),
5411 reg->regnum));
5412 p += 2 * fieldsize;
5413 if (fieldsize < register_size (target_gdbarch (),
5414 reg->regnum))
5415 warning (_("Remote reply is too short: %s"), buf);
5416
5417 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5418 }
5419
5420 if (*p != ';')
5421 error (_("Remote register badly formatted: %s\nhere: %s"),
5422 buf, p);
5423 ++p;
5424 }
5425 /* fall through */
5426 case 'S': /* Old style status, just signal only. */
5427 if (event->solibs_changed)
5428 event->ws.kind = TARGET_WAITKIND_LOADED;
5429 else if (event->replay_event)
5430 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5431 else
5432 {
5433 event->ws.kind = TARGET_WAITKIND_STOPPED;
5434 event->ws.value.sig = (enum gdb_signal)
5435 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5436 }
5437 break;
5438 case 'W': /* Target exited. */
5439 case 'X':
5440 {
5441 char *p;
5442 int pid;
5443 ULONGEST value;
5444
5445 /* GDB used to accept only 2 hex chars here. Stubs should
5446 only send more if they detect GDB supports multi-process
5447 support. */
5448 p = unpack_varlen_hex (&buf[1], &value);
5449
5450 if (buf[0] == 'W')
5451 {
5452 /* The remote process exited. */
5453 event->ws.kind = TARGET_WAITKIND_EXITED;
5454 event->ws.value.integer = value;
5455 }
5456 else
5457 {
5458 /* The remote process exited with a signal. */
5459 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5460 event->ws.value.sig = (enum gdb_signal) value;
5461 }
5462
5463 /* If no process is specified, assume inferior_ptid. */
5464 pid = ptid_get_pid (inferior_ptid);
5465 if (*p == '\0')
5466 ;
5467 else if (*p == ';')
5468 {
5469 p++;
5470
5471 if (p == '\0')
5472 ;
5473 else if (strncmp (p,
5474 "process:", sizeof ("process:") - 1) == 0)
5475 {
5476 ULONGEST upid;
5477
5478 p += sizeof ("process:") - 1;
5479 unpack_varlen_hex (p, &upid);
5480 pid = upid;
5481 }
5482 else
5483 error (_("unknown stop reply packet: %s"), buf);
5484 }
5485 else
5486 error (_("unknown stop reply packet: %s"), buf);
5487 event->ptid = pid_to_ptid (pid);
5488 }
5489 break;
5490 }
5491
5492 if (non_stop && ptid_equal (event->ptid, null_ptid))
5493 error (_("No process or thread specified in stop reply: %s"), buf);
5494 }
5495
5496 /* When the stub wants to tell GDB about a new stop reply, it sends a
5497 stop notification (%Stop). Those can come it at any time, hence,
5498 we have to make sure that any pending putpkt/getpkt sequence we're
5499 making is finished, before querying the stub for more events with
5500 vStopped. E.g., if we started a vStopped sequence immediatelly
5501 upon receiving the %Stop notification, something like this could
5502 happen:
5503
5504 1.1) --> Hg 1
5505 1.2) <-- OK
5506 1.3) --> g
5507 1.4) <-- %Stop
5508 1.5) --> vStopped
5509 1.6) <-- (registers reply to step #1.3)
5510
5511 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5512 query.
5513
5514 To solve this, whenever we parse a %Stop notification sucessfully,
5515 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5516 doing whatever we were doing:
5517
5518 2.1) --> Hg 1
5519 2.2) <-- OK
5520 2.3) --> g
5521 2.4) <-- %Stop
5522 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5523 2.5) <-- (registers reply to step #2.3)
5524
5525 Eventualy after step #2.5, we return to the event loop, which
5526 notices there's an event on the
5527 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5528 associated callback --- the function below. At this point, we're
5529 always safe to start a vStopped sequence. :
5530
5531 2.6) --> vStopped
5532 2.7) <-- T05 thread:2
5533 2.8) --> vStopped
5534 2.9) --> OK
5535 */
5536
5537 static void
5538 remote_get_pending_stop_replies (void)
5539 {
5540 struct remote_state *rs = get_remote_state ();
5541
5542 if (pending_stop_reply)
5543 {
5544 /* acknowledge */
5545 putpkt ("vStopped");
5546
5547 /* Now we can rely on it. */
5548 push_stop_reply (pending_stop_reply);
5549 pending_stop_reply = NULL;
5550
5551 while (1)
5552 {
5553 getpkt (&rs->buf, &rs->buf_size, 0);
5554 if (strcmp (rs->buf, "OK") == 0)
5555 break;
5556 else
5557 {
5558 struct cleanup *old_chain;
5559 struct stop_reply *stop_reply = stop_reply_xmalloc ();
5560
5561 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5562 remote_parse_stop_reply (rs->buf, stop_reply);
5563
5564 /* acknowledge */
5565 putpkt ("vStopped");
5566
5567 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
5568 {
5569 /* Now we can rely on it. */
5570 discard_cleanups (old_chain);
5571 push_stop_reply (stop_reply);
5572 }
5573 else
5574 /* We got an unknown stop reply. */
5575 do_cleanups (old_chain);
5576 }
5577 }
5578 }
5579 }
5580
5581
5582 /* Called when it is decided that STOP_REPLY holds the info of the
5583 event that is to be returned to the core. This function always
5584 destroys STOP_REPLY. */
5585
5586 static ptid_t
5587 process_stop_reply (struct stop_reply *stop_reply,
5588 struct target_waitstatus *status)
5589 {
5590 ptid_t ptid;
5591
5592 *status = stop_reply->ws;
5593 ptid = stop_reply->ptid;
5594
5595 /* If no thread/process was reported by the stub, assume the current
5596 inferior. */
5597 if (ptid_equal (ptid, null_ptid))
5598 ptid = inferior_ptid;
5599
5600 if (status->kind != TARGET_WAITKIND_EXITED
5601 && status->kind != TARGET_WAITKIND_SIGNALLED)
5602 {
5603 /* Expedited registers. */
5604 if (stop_reply->regcache)
5605 {
5606 struct regcache *regcache
5607 = get_thread_arch_regcache (ptid, target_gdbarch ());
5608 cached_reg_t *reg;
5609 int ix;
5610
5611 for (ix = 0;
5612 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5613 ix++)
5614 regcache_raw_supply (regcache, reg->num, reg->data);
5615 VEC_free (cached_reg_t, stop_reply->regcache);
5616 }
5617
5618 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5619 remote_watch_data_address = stop_reply->watch_data_address;
5620
5621 remote_notice_new_inferior (ptid, 0);
5622 demand_private_info (ptid)->core = stop_reply->core;
5623 }
5624
5625 stop_reply_xfree (stop_reply);
5626 return ptid;
5627 }
5628
5629 /* The non-stop mode version of target_wait. */
5630
5631 static ptid_t
5632 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5633 {
5634 struct remote_state *rs = get_remote_state ();
5635 struct stop_reply *stop_reply;
5636 int ret;
5637
5638 /* If in non-stop mode, get out of getpkt even if a
5639 notification is received. */
5640
5641 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5642 0 /* forever */);
5643 while (1)
5644 {
5645 if (ret != -1)
5646 switch (rs->buf[0])
5647 {
5648 case 'E': /* Error of some sort. */
5649 /* We're out of sync with the target now. Did it continue
5650 or not? We can't tell which thread it was in non-stop,
5651 so just ignore this. */
5652 warning (_("Remote failure reply: %s"), rs->buf);
5653 break;
5654 case 'O': /* Console output. */
5655 remote_console_output (rs->buf + 1);
5656 break;
5657 default:
5658 warning (_("Invalid remote reply: %s"), rs->buf);
5659 break;
5660 }
5661
5662 /* Acknowledge a pending stop reply that may have arrived in the
5663 mean time. */
5664 if (pending_stop_reply != NULL)
5665 remote_get_pending_stop_replies ();
5666
5667 /* If indeed we noticed a stop reply, we're done. */
5668 stop_reply = queued_stop_reply (ptid);
5669 if (stop_reply != NULL)
5670 return process_stop_reply (stop_reply, status);
5671
5672 /* Still no event. If we're just polling for an event, then
5673 return to the event loop. */
5674 if (options & TARGET_WNOHANG)
5675 {
5676 status->kind = TARGET_WAITKIND_IGNORE;
5677 return minus_one_ptid;
5678 }
5679
5680 /* Otherwise do a blocking wait. */
5681 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5682 1 /* forever */);
5683 }
5684 }
5685
5686 /* Wait until the remote machine stops, then return, storing status in
5687 STATUS just as `wait' would. */
5688
5689 static ptid_t
5690 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5691 {
5692 struct remote_state *rs = get_remote_state ();
5693 ptid_t event_ptid = null_ptid;
5694 char *buf;
5695 struct stop_reply *stop_reply;
5696
5697 again:
5698
5699 status->kind = TARGET_WAITKIND_IGNORE;
5700 status->value.integer = 0;
5701
5702 stop_reply = queued_stop_reply (ptid);
5703 if (stop_reply != NULL)
5704 return process_stop_reply (stop_reply, status);
5705
5706 if (rs->cached_wait_status)
5707 /* Use the cached wait status, but only once. */
5708 rs->cached_wait_status = 0;
5709 else
5710 {
5711 int ret;
5712
5713 if (!target_is_async_p ())
5714 {
5715 ofunc = signal (SIGINT, remote_interrupt);
5716 /* If the user hit C-c before this packet, or between packets,
5717 pretend that it was hit right here. */
5718 if (check_quit_flag ())
5719 {
5720 clear_quit_flag ();
5721 remote_interrupt (SIGINT);
5722 }
5723 }
5724
5725 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5726 _never_ wait for ever -> test on target_is_async_p().
5727 However, before we do that we need to ensure that the caller
5728 knows how to take the target into/out of async mode. */
5729 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5730 if (!target_is_async_p ())
5731 signal (SIGINT, ofunc);
5732 }
5733
5734 buf = rs->buf;
5735
5736 remote_stopped_by_watchpoint_p = 0;
5737
5738 /* We got something. */
5739 rs->waiting_for_stop_reply = 0;
5740
5741 /* Assume that the target has acknowledged Ctrl-C unless we receive
5742 an 'F' or 'O' packet. */
5743 if (buf[0] != 'F' && buf[0] != 'O')
5744 rs->ctrlc_pending_p = 0;
5745
5746 switch (buf[0])
5747 {
5748 case 'E': /* Error of some sort. */
5749 /* We're out of sync with the target now. Did it continue or
5750 not? Not is more likely, so report a stop. */
5751 warning (_("Remote failure reply: %s"), buf);
5752 status->kind = TARGET_WAITKIND_STOPPED;
5753 status->value.sig = GDB_SIGNAL_0;
5754 break;
5755 case 'F': /* File-I/O request. */
5756 remote_fileio_request (buf, rs->ctrlc_pending_p);
5757 rs->ctrlc_pending_p = 0;
5758 break;
5759 case 'T': case 'S': case 'X': case 'W':
5760 {
5761 struct stop_reply *stop_reply;
5762 struct cleanup *old_chain;
5763
5764 stop_reply = stop_reply_xmalloc ();
5765 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5766 remote_parse_stop_reply (buf, stop_reply);
5767 discard_cleanups (old_chain);
5768 event_ptid = process_stop_reply (stop_reply, status);
5769 break;
5770 }
5771 case 'O': /* Console output. */
5772 remote_console_output (buf + 1);
5773
5774 /* The target didn't really stop; keep waiting. */
5775 rs->waiting_for_stop_reply = 1;
5776
5777 break;
5778 case '\0':
5779 if (last_sent_signal != GDB_SIGNAL_0)
5780 {
5781 /* Zero length reply means that we tried 'S' or 'C' and the
5782 remote system doesn't support it. */
5783 target_terminal_ours_for_output ();
5784 printf_filtered
5785 ("Can't send signals to this remote system. %s not sent.\n",
5786 gdb_signal_to_name (last_sent_signal));
5787 last_sent_signal = GDB_SIGNAL_0;
5788 target_terminal_inferior ();
5789
5790 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5791 putpkt ((char *) buf);
5792
5793 /* We just told the target to resume, so a stop reply is in
5794 order. */
5795 rs->waiting_for_stop_reply = 1;
5796 break;
5797 }
5798 /* else fallthrough */
5799 default:
5800 warning (_("Invalid remote reply: %s"), buf);
5801 /* Keep waiting. */
5802 rs->waiting_for_stop_reply = 1;
5803 break;
5804 }
5805
5806 if (status->kind == TARGET_WAITKIND_IGNORE)
5807 {
5808 /* Nothing interesting happened. If we're doing a non-blocking
5809 poll, we're done. Otherwise, go back to waiting. */
5810 if (options & TARGET_WNOHANG)
5811 return minus_one_ptid;
5812 else
5813 goto again;
5814 }
5815 else if (status->kind != TARGET_WAITKIND_EXITED
5816 && status->kind != TARGET_WAITKIND_SIGNALLED)
5817 {
5818 if (!ptid_equal (event_ptid, null_ptid))
5819 record_currthread (event_ptid);
5820 else
5821 event_ptid = inferior_ptid;
5822 }
5823 else
5824 /* A process exit. Invalidate our notion of current thread. */
5825 record_currthread (minus_one_ptid);
5826
5827 return event_ptid;
5828 }
5829
5830 /* Wait until the remote machine stops, then return, storing status in
5831 STATUS just as `wait' would. */
5832
5833 static ptid_t
5834 remote_wait (struct target_ops *ops,
5835 ptid_t ptid, struct target_waitstatus *status, int options)
5836 {
5837 ptid_t event_ptid;
5838
5839 if (non_stop)
5840 event_ptid = remote_wait_ns (ptid, status, options);
5841 else
5842 event_ptid = remote_wait_as (ptid, status, options);
5843
5844 if (target_can_async_p ())
5845 {
5846 /* If there are are events left in the queue tell the event loop
5847 to return here. */
5848 if (stop_reply_queue)
5849 mark_async_event_handler (remote_async_inferior_event_token);
5850 }
5851
5852 return event_ptid;
5853 }
5854
5855 /* Fetch a single register using a 'p' packet. */
5856
5857 static int
5858 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5859 {
5860 struct remote_state *rs = get_remote_state ();
5861 char *buf, *p;
5862 char regp[MAX_REGISTER_SIZE];
5863 int i;
5864
5865 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5866 return 0;
5867
5868 if (reg->pnum == -1)
5869 return 0;
5870
5871 p = rs->buf;
5872 *p++ = 'p';
5873 p += hexnumstr (p, reg->pnum);
5874 *p++ = '\0';
5875 putpkt (rs->buf);
5876 getpkt (&rs->buf, &rs->buf_size, 0);
5877
5878 buf = rs->buf;
5879
5880 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5881 {
5882 case PACKET_OK:
5883 break;
5884 case PACKET_UNKNOWN:
5885 return 0;
5886 case PACKET_ERROR:
5887 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5888 gdbarch_register_name (get_regcache_arch (regcache),
5889 reg->regnum),
5890 buf);
5891 }
5892
5893 /* If this register is unfetchable, tell the regcache. */
5894 if (buf[0] == 'x')
5895 {
5896 regcache_raw_supply (regcache, reg->regnum, NULL);
5897 return 1;
5898 }
5899
5900 /* Otherwise, parse and supply the value. */
5901 p = buf;
5902 i = 0;
5903 while (p[0] != 0)
5904 {
5905 if (p[1] == 0)
5906 error (_("fetch_register_using_p: early buf termination"));
5907
5908 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5909 p += 2;
5910 }
5911 regcache_raw_supply (regcache, reg->regnum, regp);
5912 return 1;
5913 }
5914
5915 /* Fetch the registers included in the target's 'g' packet. */
5916
5917 static int
5918 send_g_packet (void)
5919 {
5920 struct remote_state *rs = get_remote_state ();
5921 int buf_len;
5922
5923 xsnprintf (rs->buf, get_remote_packet_size (), "g");
5924 remote_send (&rs->buf, &rs->buf_size);
5925
5926 /* We can get out of synch in various cases. If the first character
5927 in the buffer is not a hex character, assume that has happened
5928 and try to fetch another packet to read. */
5929 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5930 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5931 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5932 && rs->buf[0] != 'x') /* New: unavailable register value. */
5933 {
5934 if (remote_debug)
5935 fprintf_unfiltered (gdb_stdlog,
5936 "Bad register packet; fetching a new packet\n");
5937 getpkt (&rs->buf, &rs->buf_size, 0);
5938 }
5939
5940 buf_len = strlen (rs->buf);
5941
5942 /* Sanity check the received packet. */
5943 if (buf_len % 2 != 0)
5944 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5945
5946 return buf_len / 2;
5947 }
5948
5949 static void
5950 process_g_packet (struct regcache *regcache)
5951 {
5952 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5953 struct remote_state *rs = get_remote_state ();
5954 struct remote_arch_state *rsa = get_remote_arch_state ();
5955 int i, buf_len;
5956 char *p;
5957 char *regs;
5958
5959 buf_len = strlen (rs->buf);
5960
5961 /* Further sanity checks, with knowledge of the architecture. */
5962 if (buf_len > 2 * rsa->sizeof_g_packet)
5963 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5964
5965 /* Save the size of the packet sent to us by the target. It is used
5966 as a heuristic when determining the max size of packets that the
5967 target can safely receive. */
5968 if (rsa->actual_register_packet_size == 0)
5969 rsa->actual_register_packet_size = buf_len;
5970
5971 /* If this is smaller than we guessed the 'g' packet would be,
5972 update our records. A 'g' reply that doesn't include a register's
5973 value implies either that the register is not available, or that
5974 the 'p' packet must be used. */
5975 if (buf_len < 2 * rsa->sizeof_g_packet)
5976 {
5977 rsa->sizeof_g_packet = buf_len / 2;
5978
5979 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5980 {
5981 if (rsa->regs[i].pnum == -1)
5982 continue;
5983
5984 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5985 rsa->regs[i].in_g_packet = 0;
5986 else
5987 rsa->regs[i].in_g_packet = 1;
5988 }
5989 }
5990
5991 regs = alloca (rsa->sizeof_g_packet);
5992
5993 /* Unimplemented registers read as all bits zero. */
5994 memset (regs, 0, rsa->sizeof_g_packet);
5995
5996 /* Reply describes registers byte by byte, each byte encoded as two
5997 hex characters. Suck them all up, then supply them to the
5998 register cacheing/storage mechanism. */
5999
6000 p = rs->buf;
6001 for (i = 0; i < rsa->sizeof_g_packet; i++)
6002 {
6003 if (p[0] == 0 || p[1] == 0)
6004 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
6005 internal_error (__FILE__, __LINE__,
6006 _("unexpected end of 'g' packet reply"));
6007
6008 if (p[0] == 'x' && p[1] == 'x')
6009 regs[i] = 0; /* 'x' */
6010 else
6011 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
6012 p += 2;
6013 }
6014
6015 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6016 {
6017 struct packet_reg *r = &rsa->regs[i];
6018
6019 if (r->in_g_packet)
6020 {
6021 if (r->offset * 2 >= strlen (rs->buf))
6022 /* This shouldn't happen - we adjusted in_g_packet above. */
6023 internal_error (__FILE__, __LINE__,
6024 _("unexpected end of 'g' packet reply"));
6025 else if (rs->buf[r->offset * 2] == 'x')
6026 {
6027 gdb_assert (r->offset * 2 < strlen (rs->buf));
6028 /* The register isn't available, mark it as such (at
6029 the same time setting the value to zero). */
6030 regcache_raw_supply (regcache, r->regnum, NULL);
6031 }
6032 else
6033 regcache_raw_supply (regcache, r->regnum,
6034 regs + r->offset);
6035 }
6036 }
6037 }
6038
6039 static void
6040 fetch_registers_using_g (struct regcache *regcache)
6041 {
6042 send_g_packet ();
6043 process_g_packet (regcache);
6044 }
6045
6046 /* Make the remote selected traceframe match GDB's selected
6047 traceframe. */
6048
6049 static void
6050 set_remote_traceframe (void)
6051 {
6052 int newnum;
6053
6054 if (remote_traceframe_number == get_traceframe_number ())
6055 return;
6056
6057 /* Avoid recursion, remote_trace_find calls us again. */
6058 remote_traceframe_number = get_traceframe_number ();
6059
6060 newnum = target_trace_find (tfind_number,
6061 get_traceframe_number (), 0, 0, NULL);
6062
6063 /* Should not happen. If it does, all bets are off. */
6064 if (newnum != get_traceframe_number ())
6065 warning (_("could not set remote traceframe"));
6066 }
6067
6068 static void
6069 remote_fetch_registers (struct target_ops *ops,
6070 struct regcache *regcache, int regnum)
6071 {
6072 struct remote_arch_state *rsa = get_remote_arch_state ();
6073 int i;
6074
6075 set_remote_traceframe ();
6076 set_general_thread (inferior_ptid);
6077
6078 if (regnum >= 0)
6079 {
6080 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6081
6082 gdb_assert (reg != NULL);
6083
6084 /* If this register might be in the 'g' packet, try that first -
6085 we are likely to read more than one register. If this is the
6086 first 'g' packet, we might be overly optimistic about its
6087 contents, so fall back to 'p'. */
6088 if (reg->in_g_packet)
6089 {
6090 fetch_registers_using_g (regcache);
6091 if (reg->in_g_packet)
6092 return;
6093 }
6094
6095 if (fetch_register_using_p (regcache, reg))
6096 return;
6097
6098 /* This register is not available. */
6099 regcache_raw_supply (regcache, reg->regnum, NULL);
6100
6101 return;
6102 }
6103
6104 fetch_registers_using_g (regcache);
6105
6106 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6107 if (!rsa->regs[i].in_g_packet)
6108 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
6109 {
6110 /* This register is not available. */
6111 regcache_raw_supply (regcache, i, NULL);
6112 }
6113 }
6114
6115 /* Prepare to store registers. Since we may send them all (using a
6116 'G' request), we have to read out the ones we don't want to change
6117 first. */
6118
6119 static void
6120 remote_prepare_to_store (struct regcache *regcache)
6121 {
6122 struct remote_arch_state *rsa = get_remote_arch_state ();
6123 int i;
6124 gdb_byte buf[MAX_REGISTER_SIZE];
6125
6126 /* Make sure the entire registers array is valid. */
6127 switch (remote_protocol_packets[PACKET_P].support)
6128 {
6129 case PACKET_DISABLE:
6130 case PACKET_SUPPORT_UNKNOWN:
6131 /* Make sure all the necessary registers are cached. */
6132 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6133 if (rsa->regs[i].in_g_packet)
6134 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6135 break;
6136 case PACKET_ENABLE:
6137 break;
6138 }
6139 }
6140
6141 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6142 packet was not recognized. */
6143
6144 static int
6145 store_register_using_P (const struct regcache *regcache,
6146 struct packet_reg *reg)
6147 {
6148 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6149 struct remote_state *rs = get_remote_state ();
6150 /* Try storing a single register. */
6151 char *buf = rs->buf;
6152 gdb_byte regp[MAX_REGISTER_SIZE];
6153 char *p;
6154
6155 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6156 return 0;
6157
6158 if (reg->pnum == -1)
6159 return 0;
6160
6161 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6162 p = buf + strlen (buf);
6163 regcache_raw_collect (regcache, reg->regnum, regp);
6164 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6165 putpkt (rs->buf);
6166 getpkt (&rs->buf, &rs->buf_size, 0);
6167
6168 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6169 {
6170 case PACKET_OK:
6171 return 1;
6172 case PACKET_ERROR:
6173 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6174 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6175 case PACKET_UNKNOWN:
6176 return 0;
6177 default:
6178 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6179 }
6180 }
6181
6182 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6183 contents of the register cache buffer. FIXME: ignores errors. */
6184
6185 static void
6186 store_registers_using_G (const struct regcache *regcache)
6187 {
6188 struct remote_state *rs = get_remote_state ();
6189 struct remote_arch_state *rsa = get_remote_arch_state ();
6190 gdb_byte *regs;
6191 char *p;
6192
6193 /* Extract all the registers in the regcache copying them into a
6194 local buffer. */
6195 {
6196 int i;
6197
6198 regs = alloca (rsa->sizeof_g_packet);
6199 memset (regs, 0, rsa->sizeof_g_packet);
6200 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6201 {
6202 struct packet_reg *r = &rsa->regs[i];
6203
6204 if (r->in_g_packet)
6205 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6206 }
6207 }
6208
6209 /* Command describes registers byte by byte,
6210 each byte encoded as two hex characters. */
6211 p = rs->buf;
6212 *p++ = 'G';
6213 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6214 updated. */
6215 bin2hex (regs, p, rsa->sizeof_g_packet);
6216 putpkt (rs->buf);
6217 getpkt (&rs->buf, &rs->buf_size, 0);
6218 if (packet_check_result (rs->buf) == PACKET_ERROR)
6219 error (_("Could not write registers; remote failure reply '%s'"),
6220 rs->buf);
6221 }
6222
6223 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6224 of the register cache buffer. FIXME: ignores errors. */
6225
6226 static void
6227 remote_store_registers (struct target_ops *ops,
6228 struct regcache *regcache, int regnum)
6229 {
6230 struct remote_arch_state *rsa = get_remote_arch_state ();
6231 int i;
6232
6233 set_remote_traceframe ();
6234 set_general_thread (inferior_ptid);
6235
6236 if (regnum >= 0)
6237 {
6238 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6239
6240 gdb_assert (reg != NULL);
6241
6242 /* Always prefer to store registers using the 'P' packet if
6243 possible; we often change only a small number of registers.
6244 Sometimes we change a larger number; we'd need help from a
6245 higher layer to know to use 'G'. */
6246 if (store_register_using_P (regcache, reg))
6247 return;
6248
6249 /* For now, don't complain if we have no way to write the
6250 register. GDB loses track of unavailable registers too
6251 easily. Some day, this may be an error. We don't have
6252 any way to read the register, either... */
6253 if (!reg->in_g_packet)
6254 return;
6255
6256 store_registers_using_G (regcache);
6257 return;
6258 }
6259
6260 store_registers_using_G (regcache);
6261
6262 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6263 if (!rsa->regs[i].in_g_packet)
6264 if (!store_register_using_P (regcache, &rsa->regs[i]))
6265 /* See above for why we do not issue an error here. */
6266 continue;
6267 }
6268 \f
6269
6270 /* Return the number of hex digits in num. */
6271
6272 static int
6273 hexnumlen (ULONGEST num)
6274 {
6275 int i;
6276
6277 for (i = 0; num != 0; i++)
6278 num >>= 4;
6279
6280 return max (i, 1);
6281 }
6282
6283 /* Set BUF to the minimum number of hex digits representing NUM. */
6284
6285 static int
6286 hexnumstr (char *buf, ULONGEST num)
6287 {
6288 int len = hexnumlen (num);
6289
6290 return hexnumnstr (buf, num, len);
6291 }
6292
6293
6294 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6295
6296 static int
6297 hexnumnstr (char *buf, ULONGEST num, int width)
6298 {
6299 int i;
6300
6301 buf[width] = '\0';
6302
6303 for (i = width - 1; i >= 0; i--)
6304 {
6305 buf[i] = "0123456789abcdef"[(num & 0xf)];
6306 num >>= 4;
6307 }
6308
6309 return width;
6310 }
6311
6312 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6313
6314 static CORE_ADDR
6315 remote_address_masked (CORE_ADDR addr)
6316 {
6317 unsigned int address_size = remote_address_size;
6318
6319 /* If "remoteaddresssize" was not set, default to target address size. */
6320 if (!address_size)
6321 address_size = gdbarch_addr_bit (target_gdbarch ());
6322
6323 if (address_size > 0
6324 && address_size < (sizeof (ULONGEST) * 8))
6325 {
6326 /* Only create a mask when that mask can safely be constructed
6327 in a ULONGEST variable. */
6328 ULONGEST mask = 1;
6329
6330 mask = (mask << address_size) - 1;
6331 addr &= mask;
6332 }
6333 return addr;
6334 }
6335
6336 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6337 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6338 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6339 (which may be more than *OUT_LEN due to escape characters). The
6340 total number of bytes in the output buffer will be at most
6341 OUT_MAXLEN. */
6342
6343 static int
6344 remote_escape_output (const gdb_byte *buffer, int len,
6345 gdb_byte *out_buf, int *out_len,
6346 int out_maxlen)
6347 {
6348 int input_index, output_index;
6349
6350 output_index = 0;
6351 for (input_index = 0; input_index < len; input_index++)
6352 {
6353 gdb_byte b = buffer[input_index];
6354
6355 if (b == '$' || b == '#' || b == '}')
6356 {
6357 /* These must be escaped. */
6358 if (output_index + 2 > out_maxlen)
6359 break;
6360 out_buf[output_index++] = '}';
6361 out_buf[output_index++] = b ^ 0x20;
6362 }
6363 else
6364 {
6365 if (output_index + 1 > out_maxlen)
6366 break;
6367 out_buf[output_index++] = b;
6368 }
6369 }
6370
6371 *out_len = input_index;
6372 return output_index;
6373 }
6374
6375 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6376 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6377 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6378
6379 This function reverses remote_escape_output. It allows more
6380 escaped characters than that function does, in particular because
6381 '*' must be escaped to avoid the run-length encoding processing
6382 in reading packets. */
6383
6384 static int
6385 remote_unescape_input (const gdb_byte *buffer, int len,
6386 gdb_byte *out_buf, int out_maxlen)
6387 {
6388 int input_index, output_index;
6389 int escaped;
6390
6391 output_index = 0;
6392 escaped = 0;
6393 for (input_index = 0; input_index < len; input_index++)
6394 {
6395 gdb_byte b = buffer[input_index];
6396
6397 if (output_index + 1 > out_maxlen)
6398 {
6399 warning (_("Received too much data from remote target;"
6400 " ignoring overflow."));
6401 return output_index;
6402 }
6403
6404 if (escaped)
6405 {
6406 out_buf[output_index++] = b ^ 0x20;
6407 escaped = 0;
6408 }
6409 else if (b == '}')
6410 escaped = 1;
6411 else
6412 out_buf[output_index++] = b;
6413 }
6414
6415 if (escaped)
6416 error (_("Unmatched escape character in target response."));
6417
6418 return output_index;
6419 }
6420
6421 /* Determine whether the remote target supports binary downloading.
6422 This is accomplished by sending a no-op memory write of zero length
6423 to the target at the specified address. It does not suffice to send
6424 the whole packet, since many stubs strip the eighth bit and
6425 subsequently compute a wrong checksum, which causes real havoc with
6426 remote_write_bytes.
6427
6428 NOTE: This can still lose if the serial line is not eight-bit
6429 clean. In cases like this, the user should clear "remote
6430 X-packet". */
6431
6432 static void
6433 check_binary_download (CORE_ADDR addr)
6434 {
6435 struct remote_state *rs = get_remote_state ();
6436
6437 switch (remote_protocol_packets[PACKET_X].support)
6438 {
6439 case PACKET_DISABLE:
6440 break;
6441 case PACKET_ENABLE:
6442 break;
6443 case PACKET_SUPPORT_UNKNOWN:
6444 {
6445 char *p;
6446
6447 p = rs->buf;
6448 *p++ = 'X';
6449 p += hexnumstr (p, (ULONGEST) addr);
6450 *p++ = ',';
6451 p += hexnumstr (p, (ULONGEST) 0);
6452 *p++ = ':';
6453 *p = '\0';
6454
6455 putpkt_binary (rs->buf, (int) (p - rs->buf));
6456 getpkt (&rs->buf, &rs->buf_size, 0);
6457
6458 if (rs->buf[0] == '\0')
6459 {
6460 if (remote_debug)
6461 fprintf_unfiltered (gdb_stdlog,
6462 "binary downloading NOT "
6463 "supported by target\n");
6464 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6465 }
6466 else
6467 {
6468 if (remote_debug)
6469 fprintf_unfiltered (gdb_stdlog,
6470 "binary downloading supported by target\n");
6471 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6472 }
6473 break;
6474 }
6475 }
6476 }
6477
6478 /* Write memory data directly to the remote machine.
6479 This does not inform the data cache; the data cache uses this.
6480 HEADER is the starting part of the packet.
6481 MEMADDR is the address in the remote memory space.
6482 MYADDR is the address of the buffer in our space.
6483 LEN is the number of bytes.
6484 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6485 should send data as binary ('X'), or hex-encoded ('M').
6486
6487 The function creates packet of the form
6488 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6489
6490 where encoding of <DATA> is termined by PACKET_FORMAT.
6491
6492 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6493 are omitted.
6494
6495 Returns the number of bytes transferred, or 0 (setting errno) for
6496 error. Only transfer a single packet. */
6497
6498 static int
6499 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6500 const gdb_byte *myaddr, ssize_t len,
6501 char packet_format, int use_length)
6502 {
6503 struct remote_state *rs = get_remote_state ();
6504 char *p;
6505 char *plen = NULL;
6506 int plenlen = 0;
6507 int todo;
6508 int nr_bytes;
6509 int payload_size;
6510 int payload_length;
6511 int header_length;
6512
6513 if (packet_format != 'X' && packet_format != 'M')
6514 internal_error (__FILE__, __LINE__,
6515 _("remote_write_bytes_aux: bad packet format"));
6516
6517 if (len <= 0)
6518 return 0;
6519
6520 payload_size = get_memory_write_packet_size ();
6521
6522 /* The packet buffer will be large enough for the payload;
6523 get_memory_packet_size ensures this. */
6524 rs->buf[0] = '\0';
6525
6526 /* Compute the size of the actual payload by subtracting out the
6527 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6528
6529 payload_size -= strlen ("$,:#NN");
6530 if (!use_length)
6531 /* The comma won't be used. */
6532 payload_size += 1;
6533 header_length = strlen (header);
6534 payload_size -= header_length;
6535 payload_size -= hexnumlen (memaddr);
6536
6537 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6538
6539 strcat (rs->buf, header);
6540 p = rs->buf + strlen (header);
6541
6542 /* Compute a best guess of the number of bytes actually transfered. */
6543 if (packet_format == 'X')
6544 {
6545 /* Best guess at number of bytes that will fit. */
6546 todo = min (len, payload_size);
6547 if (use_length)
6548 payload_size -= hexnumlen (todo);
6549 todo = min (todo, payload_size);
6550 }
6551 else
6552 {
6553 /* Num bytes that will fit. */
6554 todo = min (len, payload_size / 2);
6555 if (use_length)
6556 payload_size -= hexnumlen (todo);
6557 todo = min (todo, payload_size / 2);
6558 }
6559
6560 if (todo <= 0)
6561 internal_error (__FILE__, __LINE__,
6562 _("minimum packet size too small to write data"));
6563
6564 /* If we already need another packet, then try to align the end
6565 of this packet to a useful boundary. */
6566 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6567 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6568
6569 /* Append "<memaddr>". */
6570 memaddr = remote_address_masked (memaddr);
6571 p += hexnumstr (p, (ULONGEST) memaddr);
6572
6573 if (use_length)
6574 {
6575 /* Append ",". */
6576 *p++ = ',';
6577
6578 /* Append <len>. Retain the location/size of <len>. It may need to
6579 be adjusted once the packet body has been created. */
6580 plen = p;
6581 plenlen = hexnumstr (p, (ULONGEST) todo);
6582 p += plenlen;
6583 }
6584
6585 /* Append ":". */
6586 *p++ = ':';
6587 *p = '\0';
6588
6589 /* Append the packet body. */
6590 if (packet_format == 'X')
6591 {
6592 /* Binary mode. Send target system values byte by byte, in
6593 increasing byte addresses. Only escape certain critical
6594 characters. */
6595 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6596 payload_size);
6597
6598 /* If not all TODO bytes fit, then we'll need another packet. Make
6599 a second try to keep the end of the packet aligned. Don't do
6600 this if the packet is tiny. */
6601 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6602 {
6603 int new_nr_bytes;
6604
6605 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6606 - memaddr);
6607 if (new_nr_bytes != nr_bytes)
6608 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6609 p, &nr_bytes,
6610 payload_size);
6611 }
6612
6613 p += payload_length;
6614 if (use_length && nr_bytes < todo)
6615 {
6616 /* Escape chars have filled up the buffer prematurely,
6617 and we have actually sent fewer bytes than planned.
6618 Fix-up the length field of the packet. Use the same
6619 number of characters as before. */
6620 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6621 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6622 }
6623 }
6624 else
6625 {
6626 /* Normal mode: Send target system values byte by byte, in
6627 increasing byte addresses. Each byte is encoded as a two hex
6628 value. */
6629 nr_bytes = bin2hex (myaddr, p, todo);
6630 p += 2 * nr_bytes;
6631 }
6632
6633 putpkt_binary (rs->buf, (int) (p - rs->buf));
6634 getpkt (&rs->buf, &rs->buf_size, 0);
6635
6636 if (rs->buf[0] == 'E')
6637 {
6638 /* There is no correspondance between what the remote protocol
6639 uses for errors and errno codes. We would like a cleaner way
6640 of representing errors (big enough to include errno codes,
6641 bfd_error codes, and others). But for now just return EIO. */
6642 errno = EIO;
6643 return 0;
6644 }
6645
6646 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6647 fewer bytes than we'd planned. */
6648 return nr_bytes;
6649 }
6650
6651 /* Write memory data directly to the remote machine.
6652 This does not inform the data cache; the data cache uses this.
6653 MEMADDR is the address in the remote memory space.
6654 MYADDR is the address of the buffer in our space.
6655 LEN is the number of bytes.
6656
6657 Returns number of bytes transferred, or 0 (setting errno) for
6658 error. Only transfer a single packet. */
6659
6660 static int
6661 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
6662 {
6663 char *packet_format = 0;
6664
6665 /* Check whether the target supports binary download. */
6666 check_binary_download (memaddr);
6667
6668 switch (remote_protocol_packets[PACKET_X].support)
6669 {
6670 case PACKET_ENABLE:
6671 packet_format = "X";
6672 break;
6673 case PACKET_DISABLE:
6674 packet_format = "M";
6675 break;
6676 case PACKET_SUPPORT_UNKNOWN:
6677 internal_error (__FILE__, __LINE__,
6678 _("remote_write_bytes: bad internal state"));
6679 default:
6680 internal_error (__FILE__, __LINE__, _("bad switch"));
6681 }
6682
6683 return remote_write_bytes_aux (packet_format,
6684 memaddr, myaddr, len, packet_format[0], 1);
6685 }
6686
6687 /* Read memory data directly from the remote machine.
6688 This does not use the data cache; the data cache uses this.
6689 MEMADDR is the address in the remote memory space.
6690 MYADDR is the address of the buffer in our space.
6691 LEN is the number of bytes.
6692
6693 Returns number of bytes transferred, or 0 for error. */
6694
6695 static int
6696 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6697 {
6698 struct remote_state *rs = get_remote_state ();
6699 int max_buf_size; /* Max size of packet output buffer. */
6700 char *p;
6701 int todo;
6702 int i;
6703
6704 if (len <= 0)
6705 return 0;
6706
6707 max_buf_size = get_memory_read_packet_size ();
6708 /* The packet buffer will be large enough for the payload;
6709 get_memory_packet_size ensures this. */
6710
6711 /* Number if bytes that will fit. */
6712 todo = min (len, max_buf_size / 2);
6713
6714 /* Construct "m"<memaddr>","<len>". */
6715 memaddr = remote_address_masked (memaddr);
6716 p = rs->buf;
6717 *p++ = 'm';
6718 p += hexnumstr (p, (ULONGEST) memaddr);
6719 *p++ = ',';
6720 p += hexnumstr (p, (ULONGEST) todo);
6721 *p = '\0';
6722 putpkt (rs->buf);
6723 getpkt (&rs->buf, &rs->buf_size, 0);
6724 if (rs->buf[0] == 'E'
6725 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6726 && rs->buf[3] == '\0')
6727 {
6728 /* There is no correspondance between what the remote protocol
6729 uses for errors and errno codes. We would like a cleaner way
6730 of representing errors (big enough to include errno codes,
6731 bfd_error codes, and others). But for now just return
6732 EIO. */
6733 errno = EIO;
6734 return 0;
6735 }
6736 /* Reply describes memory byte by byte, each byte encoded as two hex
6737 characters. */
6738 p = rs->buf;
6739 i = hex2bin (p, myaddr, todo);
6740 /* Return what we have. Let higher layers handle partial reads. */
6741 return i;
6742 }
6743 \f
6744
6745 /* Remote notification handler. */
6746
6747 static void
6748 handle_notification (char *buf)
6749 {
6750 if (strncmp (buf, "Stop:", 5) == 0)
6751 {
6752 if (pending_stop_reply)
6753 {
6754 /* We've already parsed the in-flight stop-reply, but the
6755 stub for some reason thought we didn't, possibly due to
6756 timeout on its side. Just ignore it. */
6757 if (remote_debug)
6758 fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6759 }
6760 else
6761 {
6762 struct cleanup *old_chain;
6763 struct stop_reply *reply = stop_reply_xmalloc ();
6764
6765 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6766
6767 remote_parse_stop_reply (buf + 5, reply);
6768
6769 discard_cleanups (old_chain);
6770
6771 /* Be careful to only set it after parsing, since an error
6772 may be thrown then. */
6773 pending_stop_reply = reply;
6774
6775 /* Notify the event loop there's a stop reply to acknowledge
6776 and that there may be more events to fetch. */
6777 mark_async_event_handler (remote_async_get_pending_events_token);
6778
6779 if (remote_debug)
6780 fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6781 }
6782 }
6783 else
6784 {
6785 /* We ignore notifications we don't recognize, for compatibility
6786 with newer stubs. */
6787 }
6788 }
6789
6790 \f
6791 /* Read or write LEN bytes from inferior memory at MEMADDR,
6792 transferring to or from debugger address BUFFER. Write to inferior
6793 if SHOULD_WRITE is nonzero. Returns length of data written or
6794 read; 0 for error. TARGET is unused. */
6795
6796 static int
6797 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6798 int should_write, struct mem_attrib *attrib,
6799 struct target_ops *target)
6800 {
6801 int res;
6802
6803 set_remote_traceframe ();
6804 set_general_thread (inferior_ptid);
6805
6806 if (should_write)
6807 res = remote_write_bytes (mem_addr, buffer, mem_len);
6808 else
6809 res = remote_read_bytes (mem_addr, buffer, mem_len);
6810
6811 return res;
6812 }
6813
6814 /* Sends a packet with content determined by the printf format string
6815 FORMAT and the remaining arguments, then gets the reply. Returns
6816 whether the packet was a success, a failure, or unknown. */
6817
6818 static enum packet_result
6819 remote_send_printf (const char *format, ...)
6820 {
6821 struct remote_state *rs = get_remote_state ();
6822 int max_size = get_remote_packet_size ();
6823 va_list ap;
6824
6825 va_start (ap, format);
6826
6827 rs->buf[0] = '\0';
6828 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6829 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
6830
6831 if (putpkt (rs->buf) < 0)
6832 error (_("Communication problem with target."));
6833
6834 rs->buf[0] = '\0';
6835 getpkt (&rs->buf, &rs->buf_size, 0);
6836
6837 return packet_check_result (rs->buf);
6838 }
6839
6840 static void
6841 restore_remote_timeout (void *p)
6842 {
6843 int value = *(int *)p;
6844
6845 remote_timeout = value;
6846 }
6847
6848 /* Flash writing can take quite some time. We'll set
6849 effectively infinite timeout for flash operations.
6850 In future, we'll need to decide on a better approach. */
6851 static const int remote_flash_timeout = 1000;
6852
6853 static void
6854 remote_flash_erase (struct target_ops *ops,
6855 ULONGEST address, LONGEST length)
6856 {
6857 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6858 int saved_remote_timeout = remote_timeout;
6859 enum packet_result ret;
6860 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6861 &saved_remote_timeout);
6862
6863 remote_timeout = remote_flash_timeout;
6864
6865 ret = remote_send_printf ("vFlashErase:%s,%s",
6866 phex (address, addr_size),
6867 phex (length, 4));
6868 switch (ret)
6869 {
6870 case PACKET_UNKNOWN:
6871 error (_("Remote target does not support flash erase"));
6872 case PACKET_ERROR:
6873 error (_("Error erasing flash with vFlashErase packet"));
6874 default:
6875 break;
6876 }
6877
6878 do_cleanups (back_to);
6879 }
6880
6881 static LONGEST
6882 remote_flash_write (struct target_ops *ops,
6883 ULONGEST address, LONGEST length,
6884 const gdb_byte *data)
6885 {
6886 int saved_remote_timeout = remote_timeout;
6887 int ret;
6888 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6889 &saved_remote_timeout);
6890
6891 remote_timeout = remote_flash_timeout;
6892 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6893 do_cleanups (back_to);
6894
6895 return ret;
6896 }
6897
6898 static void
6899 remote_flash_done (struct target_ops *ops)
6900 {
6901 int saved_remote_timeout = remote_timeout;
6902 int ret;
6903 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6904 &saved_remote_timeout);
6905
6906 remote_timeout = remote_flash_timeout;
6907 ret = remote_send_printf ("vFlashDone");
6908 do_cleanups (back_to);
6909
6910 switch (ret)
6911 {
6912 case PACKET_UNKNOWN:
6913 error (_("Remote target does not support vFlashDone"));
6914 case PACKET_ERROR:
6915 error (_("Error finishing flash operation"));
6916 default:
6917 break;
6918 }
6919 }
6920
6921 static void
6922 remote_files_info (struct target_ops *ignore)
6923 {
6924 puts_filtered ("Debugging a target over a serial line.\n");
6925 }
6926 \f
6927 /* Stuff for dealing with the packets which are part of this protocol.
6928 See comment at top of file for details. */
6929
6930 /* Read a single character from the remote end. */
6931
6932 static int
6933 readchar (int timeout)
6934 {
6935 int ch;
6936
6937 ch = serial_readchar (remote_desc, timeout);
6938
6939 if (ch >= 0)
6940 return ch;
6941
6942 switch ((enum serial_rc) ch)
6943 {
6944 case SERIAL_EOF:
6945 pop_target ();
6946 error (_("Remote connection closed"));
6947 /* no return */
6948 case SERIAL_ERROR:
6949 pop_target ();
6950 perror_with_name (_("Remote communication error. "
6951 "Target disconnected."));
6952 /* no return */
6953 case SERIAL_TIMEOUT:
6954 break;
6955 }
6956 return ch;
6957 }
6958
6959 /* Send the command in *BUF to the remote machine, and read the reply
6960 into *BUF. Report an error if we get an error reply. Resize
6961 *BUF using xrealloc if necessary to hold the result, and update
6962 *SIZEOF_BUF. */
6963
6964 static void
6965 remote_send (char **buf,
6966 long *sizeof_buf)
6967 {
6968 putpkt (*buf);
6969 getpkt (buf, sizeof_buf, 0);
6970
6971 if ((*buf)[0] == 'E')
6972 error (_("Remote failure reply: %s"), *buf);
6973 }
6974
6975 /* Return a pointer to an xmalloc'ed string representing an escaped
6976 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6977 etc. The caller is responsible for releasing the returned
6978 memory. */
6979
6980 static char *
6981 escape_buffer (const char *buf, int n)
6982 {
6983 struct cleanup *old_chain;
6984 struct ui_file *stb;
6985 char *str;
6986
6987 stb = mem_fileopen ();
6988 old_chain = make_cleanup_ui_file_delete (stb);
6989
6990 fputstrn_unfiltered (buf, n, 0, stb);
6991 str = ui_file_xstrdup (stb, NULL);
6992 do_cleanups (old_chain);
6993 return str;
6994 }
6995
6996 /* Display a null-terminated packet on stdout, for debugging, using C
6997 string notation. */
6998
6999 static void
7000 print_packet (char *buf)
7001 {
7002 puts_filtered ("\"");
7003 fputstr_filtered (buf, '"', gdb_stdout);
7004 puts_filtered ("\"");
7005 }
7006
7007 int
7008 putpkt (char *buf)
7009 {
7010 return putpkt_binary (buf, strlen (buf));
7011 }
7012
7013 /* Send a packet to the remote machine, with error checking. The data
7014 of the packet is in BUF. The string in BUF can be at most
7015 get_remote_packet_size () - 5 to account for the $, # and checksum,
7016 and for a possible /0 if we are debugging (remote_debug) and want
7017 to print the sent packet as a string. */
7018
7019 static int
7020 putpkt_binary (char *buf, int cnt)
7021 {
7022 struct remote_state *rs = get_remote_state ();
7023 int i;
7024 unsigned char csum = 0;
7025 char *buf2 = alloca (cnt + 6);
7026
7027 int ch;
7028 int tcount = 0;
7029 char *p;
7030 char *message;
7031
7032 /* Catch cases like trying to read memory or listing threads while
7033 we're waiting for a stop reply. The remote server wouldn't be
7034 ready to handle this request, so we'd hang and timeout. We don't
7035 have to worry about this in synchronous mode, because in that
7036 case it's not possible to issue a command while the target is
7037 running. This is not a problem in non-stop mode, because in that
7038 case, the stub is always ready to process serial input. */
7039 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
7040 error (_("Cannot execute this command while the target is running."));
7041
7042 /* We're sending out a new packet. Make sure we don't look at a
7043 stale cached response. */
7044 rs->cached_wait_status = 0;
7045
7046 /* Copy the packet into buffer BUF2, encapsulating it
7047 and giving it a checksum. */
7048
7049 p = buf2;
7050 *p++ = '$';
7051
7052 for (i = 0; i < cnt; i++)
7053 {
7054 csum += buf[i];
7055 *p++ = buf[i];
7056 }
7057 *p++ = '#';
7058 *p++ = tohex ((csum >> 4) & 0xf);
7059 *p++ = tohex (csum & 0xf);
7060
7061 /* Send it over and over until we get a positive ack. */
7062
7063 while (1)
7064 {
7065 int started_error_output = 0;
7066
7067 if (remote_debug)
7068 {
7069 struct cleanup *old_chain;
7070 char *str;
7071
7072 *p = '\0';
7073 str = escape_buffer (buf2, p - buf2);
7074 old_chain = make_cleanup (xfree, str);
7075 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
7076 gdb_flush (gdb_stdlog);
7077 do_cleanups (old_chain);
7078 }
7079 if (serial_write (remote_desc, buf2, p - buf2))
7080 perror_with_name (_("putpkt: write failed"));
7081
7082 /* If this is a no acks version of the remote protocol, send the
7083 packet and move on. */
7084 if (rs->noack_mode)
7085 break;
7086
7087 /* Read until either a timeout occurs (-2) or '+' is read.
7088 Handle any notification that arrives in the mean time. */
7089 while (1)
7090 {
7091 ch = readchar (remote_timeout);
7092
7093 if (remote_debug)
7094 {
7095 switch (ch)
7096 {
7097 case '+':
7098 case '-':
7099 case SERIAL_TIMEOUT:
7100 case '$':
7101 case '%':
7102 if (started_error_output)
7103 {
7104 putchar_unfiltered ('\n');
7105 started_error_output = 0;
7106 }
7107 }
7108 }
7109
7110 switch (ch)
7111 {
7112 case '+':
7113 if (remote_debug)
7114 fprintf_unfiltered (gdb_stdlog, "Ack\n");
7115 return 1;
7116 case '-':
7117 if (remote_debug)
7118 fprintf_unfiltered (gdb_stdlog, "Nak\n");
7119 /* FALLTHROUGH */
7120 case SERIAL_TIMEOUT:
7121 tcount++;
7122 if (tcount > 3)
7123 return 0;
7124 break; /* Retransmit buffer. */
7125 case '$':
7126 {
7127 if (remote_debug)
7128 fprintf_unfiltered (gdb_stdlog,
7129 "Packet instead of Ack, ignoring it\n");
7130 /* It's probably an old response sent because an ACK
7131 was lost. Gobble up the packet and ack it so it
7132 doesn't get retransmitted when we resend this
7133 packet. */
7134 skip_frame ();
7135 serial_write (remote_desc, "+", 1);
7136 continue; /* Now, go look for +. */
7137 }
7138
7139 case '%':
7140 {
7141 int val;
7142
7143 /* If we got a notification, handle it, and go back to looking
7144 for an ack. */
7145 /* We've found the start of a notification. Now
7146 collect the data. */
7147 val = read_frame (&rs->buf, &rs->buf_size);
7148 if (val >= 0)
7149 {
7150 if (remote_debug)
7151 {
7152 struct cleanup *old_chain;
7153 char *str;
7154
7155 str = escape_buffer (rs->buf, val);
7156 old_chain = make_cleanup (xfree, str);
7157 fprintf_unfiltered (gdb_stdlog,
7158 " Notification received: %s\n",
7159 str);
7160 do_cleanups (old_chain);
7161 }
7162 handle_notification (rs->buf);
7163 /* We're in sync now, rewait for the ack. */
7164 tcount = 0;
7165 }
7166 else
7167 {
7168 if (remote_debug)
7169 {
7170 if (!started_error_output)
7171 {
7172 started_error_output = 1;
7173 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7174 }
7175 fputc_unfiltered (ch & 0177, gdb_stdlog);
7176 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7177 }
7178 }
7179 continue;
7180 }
7181 /* fall-through */
7182 default:
7183 if (remote_debug)
7184 {
7185 if (!started_error_output)
7186 {
7187 started_error_output = 1;
7188 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7189 }
7190 fputc_unfiltered (ch & 0177, gdb_stdlog);
7191 }
7192 continue;
7193 }
7194 break; /* Here to retransmit. */
7195 }
7196
7197 #if 0
7198 /* This is wrong. If doing a long backtrace, the user should be
7199 able to get out next time we call QUIT, without anything as
7200 violent as interrupt_query. If we want to provide a way out of
7201 here without getting to the next QUIT, it should be based on
7202 hitting ^C twice as in remote_wait. */
7203 if (quit_flag)
7204 {
7205 quit_flag = 0;
7206 interrupt_query ();
7207 }
7208 #endif
7209 }
7210 return 0;
7211 }
7212
7213 /* Come here after finding the start of a frame when we expected an
7214 ack. Do our best to discard the rest of this packet. */
7215
7216 static void
7217 skip_frame (void)
7218 {
7219 int c;
7220
7221 while (1)
7222 {
7223 c = readchar (remote_timeout);
7224 switch (c)
7225 {
7226 case SERIAL_TIMEOUT:
7227 /* Nothing we can do. */
7228 return;
7229 case '#':
7230 /* Discard the two bytes of checksum and stop. */
7231 c = readchar (remote_timeout);
7232 if (c >= 0)
7233 c = readchar (remote_timeout);
7234
7235 return;
7236 case '*': /* Run length encoding. */
7237 /* Discard the repeat count. */
7238 c = readchar (remote_timeout);
7239 if (c < 0)
7240 return;
7241 break;
7242 default:
7243 /* A regular character. */
7244 break;
7245 }
7246 }
7247 }
7248
7249 /* Come here after finding the start of the frame. Collect the rest
7250 into *BUF, verifying the checksum, length, and handling run-length
7251 compression. NUL terminate the buffer. If there is not enough room,
7252 expand *BUF using xrealloc.
7253
7254 Returns -1 on error, number of characters in buffer (ignoring the
7255 trailing NULL) on success. (could be extended to return one of the
7256 SERIAL status indications). */
7257
7258 static long
7259 read_frame (char **buf_p,
7260 long *sizeof_buf)
7261 {
7262 unsigned char csum;
7263 long bc;
7264 int c;
7265 char *buf = *buf_p;
7266 struct remote_state *rs = get_remote_state ();
7267
7268 csum = 0;
7269 bc = 0;
7270
7271 while (1)
7272 {
7273 c = readchar (remote_timeout);
7274 switch (c)
7275 {
7276 case SERIAL_TIMEOUT:
7277 if (remote_debug)
7278 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7279 return -1;
7280 case '$':
7281 if (remote_debug)
7282 fputs_filtered ("Saw new packet start in middle of old one\n",
7283 gdb_stdlog);
7284 return -1; /* Start a new packet, count retries. */
7285 case '#':
7286 {
7287 unsigned char pktcsum;
7288 int check_0 = 0;
7289 int check_1 = 0;
7290
7291 buf[bc] = '\0';
7292
7293 check_0 = readchar (remote_timeout);
7294 if (check_0 >= 0)
7295 check_1 = readchar (remote_timeout);
7296
7297 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7298 {
7299 if (remote_debug)
7300 fputs_filtered ("Timeout in checksum, retrying\n",
7301 gdb_stdlog);
7302 return -1;
7303 }
7304 else if (check_0 < 0 || check_1 < 0)
7305 {
7306 if (remote_debug)
7307 fputs_filtered ("Communication error in checksum\n",
7308 gdb_stdlog);
7309 return -1;
7310 }
7311
7312 /* Don't recompute the checksum; with no ack packets we
7313 don't have any way to indicate a packet retransmission
7314 is necessary. */
7315 if (rs->noack_mode)
7316 return bc;
7317
7318 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7319 if (csum == pktcsum)
7320 return bc;
7321
7322 if (remote_debug)
7323 {
7324 struct cleanup *old_chain;
7325 char *str;
7326
7327 str = escape_buffer (buf, bc);
7328 old_chain = make_cleanup (xfree, str);
7329 fprintf_unfiltered (gdb_stdlog,
7330 "Bad checksum, sentsum=0x%x, "
7331 "csum=0x%x, buf=%s\n",
7332 pktcsum, csum, str);
7333 do_cleanups (old_chain);
7334 }
7335 /* Number of characters in buffer ignoring trailing
7336 NULL. */
7337 return -1;
7338 }
7339 case '*': /* Run length encoding. */
7340 {
7341 int repeat;
7342
7343 csum += c;
7344 c = readchar (remote_timeout);
7345 csum += c;
7346 repeat = c - ' ' + 3; /* Compute repeat count. */
7347
7348 /* The character before ``*'' is repeated. */
7349
7350 if (repeat > 0 && repeat <= 255 && bc > 0)
7351 {
7352 if (bc + repeat - 1 >= *sizeof_buf - 1)
7353 {
7354 /* Make some more room in the buffer. */
7355 *sizeof_buf += repeat;
7356 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7357 buf = *buf_p;
7358 }
7359
7360 memset (&buf[bc], buf[bc - 1], repeat);
7361 bc += repeat;
7362 continue;
7363 }
7364
7365 buf[bc] = '\0';
7366 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7367 return -1;
7368 }
7369 default:
7370 if (bc >= *sizeof_buf - 1)
7371 {
7372 /* Make some more room in the buffer. */
7373 *sizeof_buf *= 2;
7374 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7375 buf = *buf_p;
7376 }
7377
7378 buf[bc++] = c;
7379 csum += c;
7380 continue;
7381 }
7382 }
7383 }
7384
7385 /* Read a packet from the remote machine, with error checking, and
7386 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7387 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7388 rather than timing out; this is used (in synchronous mode) to wait
7389 for a target that is is executing user code to stop. */
7390 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7391 don't have to change all the calls to getpkt to deal with the
7392 return value, because at the moment I don't know what the right
7393 thing to do it for those. */
7394 void
7395 getpkt (char **buf,
7396 long *sizeof_buf,
7397 int forever)
7398 {
7399 int timed_out;
7400
7401 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7402 }
7403
7404
7405 /* Read a packet from the remote machine, with error checking, and
7406 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7407 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7408 rather than timing out; this is used (in synchronous mode) to wait
7409 for a target that is is executing user code to stop. If FOREVER ==
7410 0, this function is allowed to time out gracefully and return an
7411 indication of this to the caller. Otherwise return the number of
7412 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7413 enough reason to return to the caller. */
7414
7415 static int
7416 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7417 int expecting_notif)
7418 {
7419 struct remote_state *rs = get_remote_state ();
7420 int c;
7421 int tries;
7422 int timeout;
7423 int val = -1;
7424
7425 /* We're reading a new response. Make sure we don't look at a
7426 previously cached response. */
7427 rs->cached_wait_status = 0;
7428
7429 strcpy (*buf, "timeout");
7430
7431 if (forever)
7432 timeout = watchdog > 0 ? watchdog : -1;
7433 else if (expecting_notif)
7434 timeout = 0; /* There should already be a char in the buffer. If
7435 not, bail out. */
7436 else
7437 timeout = remote_timeout;
7438
7439 #define MAX_TRIES 3
7440
7441 /* Process any number of notifications, and then return when
7442 we get a packet. */
7443 for (;;)
7444 {
7445 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7446 times. */
7447 for (tries = 1; tries <= MAX_TRIES; tries++)
7448 {
7449 /* This can loop forever if the remote side sends us
7450 characters continuously, but if it pauses, we'll get
7451 SERIAL_TIMEOUT from readchar because of timeout. Then
7452 we'll count that as a retry.
7453
7454 Note that even when forever is set, we will only wait
7455 forever prior to the start of a packet. After that, we
7456 expect characters to arrive at a brisk pace. They should
7457 show up within remote_timeout intervals. */
7458 do
7459 c = readchar (timeout);
7460 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7461
7462 if (c == SERIAL_TIMEOUT)
7463 {
7464 if (expecting_notif)
7465 return -1; /* Don't complain, it's normal to not get
7466 anything in this case. */
7467
7468 if (forever) /* Watchdog went off? Kill the target. */
7469 {
7470 QUIT;
7471 pop_target ();
7472 error (_("Watchdog timeout has expired. Target detached."));
7473 }
7474 if (remote_debug)
7475 fputs_filtered ("Timed out.\n", gdb_stdlog);
7476 }
7477 else
7478 {
7479 /* We've found the start of a packet or notification.
7480 Now collect the data. */
7481 val = read_frame (buf, sizeof_buf);
7482 if (val >= 0)
7483 break;
7484 }
7485
7486 serial_write (remote_desc, "-", 1);
7487 }
7488
7489 if (tries > MAX_TRIES)
7490 {
7491 /* We have tried hard enough, and just can't receive the
7492 packet/notification. Give up. */
7493 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7494
7495 /* Skip the ack char if we're in no-ack mode. */
7496 if (!rs->noack_mode)
7497 serial_write (remote_desc, "+", 1);
7498 return -1;
7499 }
7500
7501 /* If we got an ordinary packet, return that to our caller. */
7502 if (c == '$')
7503 {
7504 if (remote_debug)
7505 {
7506 struct cleanup *old_chain;
7507 char *str;
7508
7509 str = escape_buffer (*buf, val);
7510 old_chain = make_cleanup (xfree, str);
7511 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7512 do_cleanups (old_chain);
7513 }
7514
7515 /* Skip the ack char if we're in no-ack mode. */
7516 if (!rs->noack_mode)
7517 serial_write (remote_desc, "+", 1);
7518 return val;
7519 }
7520
7521 /* If we got a notification, handle it, and go back to looking
7522 for a packet. */
7523 else
7524 {
7525 gdb_assert (c == '%');
7526
7527 if (remote_debug)
7528 {
7529 struct cleanup *old_chain;
7530 char *str;
7531
7532 str = escape_buffer (*buf, val);
7533 old_chain = make_cleanup (xfree, str);
7534 fprintf_unfiltered (gdb_stdlog,
7535 " Notification received: %s\n",
7536 str);
7537 do_cleanups (old_chain);
7538 }
7539
7540 handle_notification (*buf);
7541
7542 /* Notifications require no acknowledgement. */
7543
7544 if (expecting_notif)
7545 return -1;
7546 }
7547 }
7548 }
7549
7550 static int
7551 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7552 {
7553 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
7554 }
7555
7556 static int
7557 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
7558 {
7559 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
7560 }
7561
7562 \f
7563 /* A helper function that just calls putpkt; for type correctness. */
7564
7565 static int
7566 putpkt_for_catch_errors (void *arg)
7567 {
7568 return putpkt (arg);
7569 }
7570
7571 static void
7572 remote_kill (struct target_ops *ops)
7573 {
7574 /* Use catch_errors so the user can quit from gdb even when we
7575 aren't on speaking terms with the remote system. */
7576 catch_errors (putpkt_for_catch_errors, "k", "", RETURN_MASK_ERROR);
7577
7578 /* Don't wait for it to die. I'm not really sure it matters whether
7579 we do or not. For the existing stubs, kill is a noop. */
7580 target_mourn_inferior ();
7581 }
7582
7583 static int
7584 remote_vkill (int pid, struct remote_state *rs)
7585 {
7586 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7587 return -1;
7588
7589 /* Tell the remote target to detach. */
7590 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
7591 putpkt (rs->buf);
7592 getpkt (&rs->buf, &rs->buf_size, 0);
7593
7594 if (packet_ok (rs->buf,
7595 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7596 return 0;
7597 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7598 return -1;
7599 else
7600 return 1;
7601 }
7602
7603 static void
7604 extended_remote_kill (struct target_ops *ops)
7605 {
7606 int res;
7607 int pid = ptid_get_pid (inferior_ptid);
7608 struct remote_state *rs = get_remote_state ();
7609
7610 res = remote_vkill (pid, rs);
7611 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7612 {
7613 /* Don't try 'k' on a multi-process aware stub -- it has no way
7614 to specify the pid. */
7615
7616 putpkt ("k");
7617 #if 0
7618 getpkt (&rs->buf, &rs->buf_size, 0);
7619 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7620 res = 1;
7621 #else
7622 /* Don't wait for it to die. I'm not really sure it matters whether
7623 we do or not. For the existing stubs, kill is a noop. */
7624 res = 0;
7625 #endif
7626 }
7627
7628 if (res != 0)
7629 error (_("Can't kill process"));
7630
7631 target_mourn_inferior ();
7632 }
7633
7634 static void
7635 remote_mourn (struct target_ops *ops)
7636 {
7637 remote_mourn_1 (ops);
7638 }
7639
7640 /* Worker function for remote_mourn. */
7641 static void
7642 remote_mourn_1 (struct target_ops *target)
7643 {
7644 unpush_target (target);
7645
7646 /* remote_close takes care of doing most of the clean up. */
7647 generic_mourn_inferior ();
7648 }
7649
7650 static void
7651 extended_remote_mourn_1 (struct target_ops *target)
7652 {
7653 struct remote_state *rs = get_remote_state ();
7654
7655 /* In case we got here due to an error, but we're going to stay
7656 connected. */
7657 rs->waiting_for_stop_reply = 0;
7658
7659 /* We're no longer interested in these events. */
7660 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7661
7662 /* If the current general thread belonged to the process we just
7663 detached from or has exited, the remote side current general
7664 thread becomes undefined. Considering a case like this:
7665
7666 - We just got here due to a detach.
7667 - The process that we're detaching from happens to immediately
7668 report a global breakpoint being hit in non-stop mode, in the
7669 same thread we had selected before.
7670 - GDB attaches to this process again.
7671 - This event happens to be the next event we handle.
7672
7673 GDB would consider that the current general thread didn't need to
7674 be set on the stub side (with Hg), since for all it knew,
7675 GENERAL_THREAD hadn't changed.
7676
7677 Notice that although in all-stop mode, the remote server always
7678 sets the current thread to the thread reporting the stop event,
7679 that doesn't happen in non-stop mode; in non-stop, the stub *must
7680 not* change the current thread when reporting a breakpoint hit,
7681 due to the decoupling of event reporting and event handling.
7682
7683 To keep things simple, we always invalidate our notion of the
7684 current thread. */
7685 record_currthread (minus_one_ptid);
7686
7687 /* Unlike "target remote", we do not want to unpush the target; then
7688 the next time the user says "run", we won't be connected. */
7689
7690 /* Call common code to mark the inferior as not running. */
7691 generic_mourn_inferior ();
7692
7693 if (!have_inferiors ())
7694 {
7695 if (!remote_multi_process_p (rs))
7696 {
7697 /* Check whether the target is running now - some remote stubs
7698 automatically restart after kill. */
7699 putpkt ("?");
7700 getpkt (&rs->buf, &rs->buf_size, 0);
7701
7702 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7703 {
7704 /* Assume that the target has been restarted. Set
7705 inferior_ptid so that bits of core GDB realizes
7706 there's something here, e.g., so that the user can
7707 say "kill" again. */
7708 inferior_ptid = magic_null_ptid;
7709 }
7710 }
7711 }
7712 }
7713
7714 static void
7715 extended_remote_mourn (struct target_ops *ops)
7716 {
7717 extended_remote_mourn_1 (ops);
7718 }
7719
7720 static int
7721 extended_remote_supports_disable_randomization (void)
7722 {
7723 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7724 == PACKET_ENABLE);
7725 }
7726
7727 static void
7728 extended_remote_disable_randomization (int val)
7729 {
7730 struct remote_state *rs = get_remote_state ();
7731 char *reply;
7732
7733 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
7734 val);
7735 putpkt (rs->buf);
7736 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
7737 if (*reply == '\0')
7738 error (_("Target does not support QDisableRandomization."));
7739 if (strcmp (reply, "OK") != 0)
7740 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
7741 }
7742
7743 static int
7744 extended_remote_run (char *args)
7745 {
7746 struct remote_state *rs = get_remote_state ();
7747 int len;
7748
7749 /* If the user has disabled vRun support, or we have detected that
7750 support is not available, do not try it. */
7751 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7752 return -1;
7753
7754 strcpy (rs->buf, "vRun;");
7755 len = strlen (rs->buf);
7756
7757 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7758 error (_("Remote file name too long for run packet"));
7759 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7760
7761 gdb_assert (args != NULL);
7762 if (*args)
7763 {
7764 struct cleanup *back_to;
7765 int i;
7766 char **argv;
7767
7768 argv = gdb_buildargv (args);
7769 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7770 for (i = 0; argv[i] != NULL; i++)
7771 {
7772 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7773 error (_("Argument list too long for run packet"));
7774 rs->buf[len++] = ';';
7775 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7776 }
7777 do_cleanups (back_to);
7778 }
7779
7780 rs->buf[len++] = '\0';
7781
7782 putpkt (rs->buf);
7783 getpkt (&rs->buf, &rs->buf_size, 0);
7784
7785 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7786 {
7787 /* We have a wait response; we don't need it, though. All is well. */
7788 return 0;
7789 }
7790 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7791 /* It wasn't disabled before, but it is now. */
7792 return -1;
7793 else
7794 {
7795 if (remote_exec_file[0] == '\0')
7796 error (_("Running the default executable on the remote target failed; "
7797 "try \"set remote exec-file\"?"));
7798 else
7799 error (_("Running \"%s\" on the remote target failed"),
7800 remote_exec_file);
7801 }
7802 }
7803
7804 /* In the extended protocol we want to be able to do things like
7805 "run" and have them basically work as expected. So we need
7806 a special create_inferior function. We support changing the
7807 executable file and the command line arguments, but not the
7808 environment. */
7809
7810 static void
7811 extended_remote_create_inferior_1 (char *exec_file, char *args,
7812 char **env, int from_tty)
7813 {
7814 /* If running asynchronously, register the target file descriptor
7815 with the event loop. */
7816 if (target_can_async_p ())
7817 target_async (inferior_event_handler, 0);
7818
7819 /* Disable address space randomization if requested (and supported). */
7820 if (extended_remote_supports_disable_randomization ())
7821 extended_remote_disable_randomization (disable_randomization);
7822
7823 /* Now restart the remote server. */
7824 if (extended_remote_run (args) == -1)
7825 {
7826 /* vRun was not supported. Fail if we need it to do what the
7827 user requested. */
7828 if (remote_exec_file[0])
7829 error (_("Remote target does not support \"set remote exec-file\""));
7830 if (args[0])
7831 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7832
7833 /* Fall back to "R". */
7834 extended_remote_restart ();
7835 }
7836
7837 if (!have_inferiors ())
7838 {
7839 /* Clean up from the last time we ran, before we mark the target
7840 running again. This will mark breakpoints uninserted, and
7841 get_offsets may insert breakpoints. */
7842 init_thread_list ();
7843 init_wait_for_inferior ();
7844 }
7845
7846 add_current_inferior_and_thread ();
7847
7848 /* Get updated offsets, if the stub uses qOffsets. */
7849 get_offsets ();
7850 }
7851
7852 static void
7853 extended_remote_create_inferior (struct target_ops *ops,
7854 char *exec_file, char *args,
7855 char **env, int from_tty)
7856 {
7857 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7858 }
7859 \f
7860
7861 /* Given a location's target info BP_TGT and the packet buffer BUF, output
7862 the list of conditions (in agent expression bytecode format), if any, the
7863 target needs to evaluate. The output is placed into the packet buffer
7864 started from BUF and ended at BUF_END. */
7865
7866 static int
7867 remote_add_target_side_condition (struct gdbarch *gdbarch,
7868 struct bp_target_info *bp_tgt, char *buf,
7869 char *buf_end)
7870 {
7871 struct agent_expr *aexpr = NULL;
7872 int i, ix;
7873 char *pkt;
7874 char *buf_start = buf;
7875
7876 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
7877 return 0;
7878
7879 buf += strlen (buf);
7880 xsnprintf (buf, buf_end - buf, "%s", ";");
7881 buf++;
7882
7883 /* Send conditions to the target and free the vector. */
7884 for (ix = 0;
7885 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
7886 ix++)
7887 {
7888 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
7889 buf += strlen (buf);
7890 for (i = 0; i < aexpr->len; ++i)
7891 buf = pack_hex_byte (buf, aexpr->buf[i]);
7892 *buf = '\0';
7893 }
7894
7895 VEC_free (agent_expr_p, bp_tgt->conditions);
7896 return 0;
7897 }
7898
7899 static void
7900 remote_add_target_side_commands (struct gdbarch *gdbarch,
7901 struct bp_target_info *bp_tgt, char *buf)
7902 {
7903 struct agent_expr *aexpr = NULL;
7904 int i, ix;
7905
7906 if (VEC_empty (agent_expr_p, bp_tgt->tcommands))
7907 return;
7908
7909 buf += strlen (buf);
7910
7911 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
7912 buf += strlen (buf);
7913
7914 /* Concatenate all the agent expressions that are commands into the
7915 cmds parameter. */
7916 for (ix = 0;
7917 VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr);
7918 ix++)
7919 {
7920 sprintf (buf, "X%x,", aexpr->len);
7921 buf += strlen (buf);
7922 for (i = 0; i < aexpr->len; ++i)
7923 buf = pack_hex_byte (buf, aexpr->buf[i]);
7924 *buf = '\0';
7925 }
7926
7927 VEC_free (agent_expr_p, bp_tgt->tcommands);
7928 }
7929
7930 /* Insert a breakpoint. On targets that have software breakpoint
7931 support, we ask the remote target to do the work; on targets
7932 which don't, we insert a traditional memory breakpoint. */
7933
7934 static int
7935 remote_insert_breakpoint (struct gdbarch *gdbarch,
7936 struct bp_target_info *bp_tgt)
7937 {
7938 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7939 If it succeeds, then set the support to PACKET_ENABLE. If it
7940 fails, and the user has explicitly requested the Z support then
7941 report an error, otherwise, mark it disabled and go on. */
7942
7943 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7944 {
7945 CORE_ADDR addr = bp_tgt->placed_address;
7946 struct remote_state *rs;
7947 char *p, *endbuf;
7948 int bpsize;
7949 struct condition_list *cond = NULL;
7950
7951 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7952
7953 rs = get_remote_state ();
7954 p = rs->buf;
7955 endbuf = rs->buf + get_remote_packet_size ();
7956
7957 *(p++) = 'Z';
7958 *(p++) = '0';
7959 *(p++) = ',';
7960 addr = (ULONGEST) remote_address_masked (addr);
7961 p += hexnumstr (p, addr);
7962 xsnprintf (p, endbuf - p, ",%d", bpsize);
7963
7964 if (remote_supports_cond_breakpoints ())
7965 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
7966
7967 if (remote_can_run_breakpoint_commands ())
7968 remote_add_target_side_commands (gdbarch, bp_tgt, p);
7969
7970 putpkt (rs->buf);
7971 getpkt (&rs->buf, &rs->buf_size, 0);
7972
7973 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7974 {
7975 case PACKET_ERROR:
7976 return -1;
7977 case PACKET_OK:
7978 bp_tgt->placed_address = addr;
7979 bp_tgt->placed_size = bpsize;
7980 return 0;
7981 case PACKET_UNKNOWN:
7982 break;
7983 }
7984 }
7985
7986 return memory_insert_breakpoint (gdbarch, bp_tgt);
7987 }
7988
7989 static int
7990 remote_remove_breakpoint (struct gdbarch *gdbarch,
7991 struct bp_target_info *bp_tgt)
7992 {
7993 CORE_ADDR addr = bp_tgt->placed_address;
7994 struct remote_state *rs = get_remote_state ();
7995
7996 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7997 {
7998 char *p = rs->buf;
7999 char *endbuf = rs->buf + get_remote_packet_size ();
8000
8001 *(p++) = 'z';
8002 *(p++) = '0';
8003 *(p++) = ',';
8004
8005 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
8006 p += hexnumstr (p, addr);
8007 xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size);
8008
8009 putpkt (rs->buf);
8010 getpkt (&rs->buf, &rs->buf_size, 0);
8011
8012 return (rs->buf[0] == 'E');
8013 }
8014
8015 return memory_remove_breakpoint (gdbarch, bp_tgt);
8016 }
8017
8018 static int
8019 watchpoint_to_Z_packet (int type)
8020 {
8021 switch (type)
8022 {
8023 case hw_write:
8024 return Z_PACKET_WRITE_WP;
8025 break;
8026 case hw_read:
8027 return Z_PACKET_READ_WP;
8028 break;
8029 case hw_access:
8030 return Z_PACKET_ACCESS_WP;
8031 break;
8032 default:
8033 internal_error (__FILE__, __LINE__,
8034 _("hw_bp_to_z: bad watchpoint type %d"), type);
8035 }
8036 }
8037
8038 static int
8039 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
8040 struct expression *cond)
8041 {
8042 struct remote_state *rs = get_remote_state ();
8043 char *endbuf = rs->buf + get_remote_packet_size ();
8044 char *p;
8045 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8046
8047 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8048 return 1;
8049
8050 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
8051 p = strchr (rs->buf, '\0');
8052 addr = remote_address_masked (addr);
8053 p += hexnumstr (p, (ULONGEST) addr);
8054 xsnprintf (p, endbuf - p, ",%x", len);
8055
8056 putpkt (rs->buf);
8057 getpkt (&rs->buf, &rs->buf_size, 0);
8058
8059 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8060 {
8061 case PACKET_ERROR:
8062 return -1;
8063 case PACKET_UNKNOWN:
8064 return 1;
8065 case PACKET_OK:
8066 return 0;
8067 }
8068 internal_error (__FILE__, __LINE__,
8069 _("remote_insert_watchpoint: reached end of function"));
8070 }
8071
8072 static int
8073 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
8074 CORE_ADDR start, int length)
8075 {
8076 CORE_ADDR diff = remote_address_masked (addr - start);
8077
8078 return diff < length;
8079 }
8080
8081
8082 static int
8083 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
8084 struct expression *cond)
8085 {
8086 struct remote_state *rs = get_remote_state ();
8087 char *endbuf = rs->buf + get_remote_packet_size ();
8088 char *p;
8089 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8090
8091 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8092 return -1;
8093
8094 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
8095 p = strchr (rs->buf, '\0');
8096 addr = remote_address_masked (addr);
8097 p += hexnumstr (p, (ULONGEST) addr);
8098 xsnprintf (p, endbuf - p, ",%x", len);
8099 putpkt (rs->buf);
8100 getpkt (&rs->buf, &rs->buf_size, 0);
8101
8102 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8103 {
8104 case PACKET_ERROR:
8105 case PACKET_UNKNOWN:
8106 return -1;
8107 case PACKET_OK:
8108 return 0;
8109 }
8110 internal_error (__FILE__, __LINE__,
8111 _("remote_remove_watchpoint: reached end of function"));
8112 }
8113
8114
8115 int remote_hw_watchpoint_limit = -1;
8116 int remote_hw_watchpoint_length_limit = -1;
8117 int remote_hw_breakpoint_limit = -1;
8118
8119 static int
8120 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
8121 {
8122 if (remote_hw_watchpoint_length_limit == 0)
8123 return 0;
8124 else if (remote_hw_watchpoint_length_limit < 0)
8125 return 1;
8126 else if (len <= remote_hw_watchpoint_length_limit)
8127 return 1;
8128 else
8129 return 0;
8130 }
8131
8132 static int
8133 remote_check_watch_resources (int type, int cnt, int ot)
8134 {
8135 if (type == bp_hardware_breakpoint)
8136 {
8137 if (remote_hw_breakpoint_limit == 0)
8138 return 0;
8139 else if (remote_hw_breakpoint_limit < 0)
8140 return 1;
8141 else if (cnt <= remote_hw_breakpoint_limit)
8142 return 1;
8143 }
8144 else
8145 {
8146 if (remote_hw_watchpoint_limit == 0)
8147 return 0;
8148 else if (remote_hw_watchpoint_limit < 0)
8149 return 1;
8150 else if (ot)
8151 return -1;
8152 else if (cnt <= remote_hw_watchpoint_limit)
8153 return 1;
8154 }
8155 return -1;
8156 }
8157
8158 static int
8159 remote_stopped_by_watchpoint (void)
8160 {
8161 return remote_stopped_by_watchpoint_p;
8162 }
8163
8164 static int
8165 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
8166 {
8167 int rc = 0;
8168
8169 if (remote_stopped_by_watchpoint ())
8170 {
8171 *addr_p = remote_watch_data_address;
8172 rc = 1;
8173 }
8174
8175 return rc;
8176 }
8177
8178
8179 static int
8180 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
8181 struct bp_target_info *bp_tgt)
8182 {
8183 CORE_ADDR addr;
8184 struct remote_state *rs;
8185 char *p, *endbuf;
8186 char *message;
8187
8188 /* The length field should be set to the size of a breakpoint
8189 instruction, even though we aren't inserting one ourselves. */
8190
8191 gdbarch_remote_breakpoint_from_pc
8192 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
8193
8194 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8195 return -1;
8196
8197 rs = get_remote_state ();
8198 p = rs->buf;
8199 endbuf = rs->buf + get_remote_packet_size ();
8200
8201 *(p++) = 'Z';
8202 *(p++) = '1';
8203 *(p++) = ',';
8204
8205 addr = remote_address_masked (bp_tgt->placed_address);
8206 p += hexnumstr (p, (ULONGEST) addr);
8207 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8208
8209 if (remote_supports_cond_breakpoints ())
8210 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8211
8212 if (remote_can_run_breakpoint_commands ())
8213 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8214
8215 putpkt (rs->buf);
8216 getpkt (&rs->buf, &rs->buf_size, 0);
8217
8218 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8219 {
8220 case PACKET_ERROR:
8221 if (rs->buf[1] == '.')
8222 {
8223 message = strchr (rs->buf + 2, '.');
8224 if (message)
8225 error (_("Remote failure reply: %s"), message + 1);
8226 }
8227 return -1;
8228 case PACKET_UNKNOWN:
8229 return -1;
8230 case PACKET_OK:
8231 return 0;
8232 }
8233 internal_error (__FILE__, __LINE__,
8234 _("remote_insert_hw_breakpoint: reached end of function"));
8235 }
8236
8237
8238 static int
8239 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
8240 struct bp_target_info *bp_tgt)
8241 {
8242 CORE_ADDR addr;
8243 struct remote_state *rs = get_remote_state ();
8244 char *p = rs->buf;
8245 char *endbuf = rs->buf + get_remote_packet_size ();
8246
8247 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8248 return -1;
8249
8250 *(p++) = 'z';
8251 *(p++) = '1';
8252 *(p++) = ',';
8253
8254 addr = remote_address_masked (bp_tgt->placed_address);
8255 p += hexnumstr (p, (ULONGEST) addr);
8256 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8257
8258 putpkt (rs->buf);
8259 getpkt (&rs->buf, &rs->buf_size, 0);
8260
8261 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8262 {
8263 case PACKET_ERROR:
8264 case PACKET_UNKNOWN:
8265 return -1;
8266 case PACKET_OK:
8267 return 0;
8268 }
8269 internal_error (__FILE__, __LINE__,
8270 _("remote_remove_hw_breakpoint: reached end of function"));
8271 }
8272
8273 /* Table used by the crc32 function to calcuate the checksum. */
8274
8275 static unsigned long crc32_table[256] =
8276 {0, 0};
8277
8278 static unsigned long
8279 crc32 (const unsigned char *buf, int len, unsigned int crc)
8280 {
8281 if (!crc32_table[1])
8282 {
8283 /* Initialize the CRC table and the decoding table. */
8284 int i, j;
8285 unsigned int c;
8286
8287 for (i = 0; i < 256; i++)
8288 {
8289 for (c = i << 24, j = 8; j > 0; --j)
8290 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
8291 crc32_table[i] = c;
8292 }
8293 }
8294
8295 while (len--)
8296 {
8297 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
8298 buf++;
8299 }
8300 return crc;
8301 }
8302
8303 /* Verify memory using the "qCRC:" request. */
8304
8305 static int
8306 remote_verify_memory (struct target_ops *ops,
8307 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8308 {
8309 struct remote_state *rs = get_remote_state ();
8310 unsigned long host_crc, target_crc;
8311 char *tmp;
8312
8313 /* FIXME: assumes lma can fit into long. */
8314 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8315 (long) lma, (long) size);
8316 putpkt (rs->buf);
8317
8318 /* Be clever; compute the host_crc before waiting for target
8319 reply. */
8320 host_crc = crc32 (data, size, 0xffffffff);
8321
8322 getpkt (&rs->buf, &rs->buf_size, 0);
8323 if (rs->buf[0] == 'E')
8324 return -1;
8325
8326 if (rs->buf[0] != 'C')
8327 error (_("remote target does not support this operation"));
8328
8329 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8330 target_crc = target_crc * 16 + fromhex (*tmp);
8331
8332 return (host_crc == target_crc);
8333 }
8334
8335 /* compare-sections command
8336
8337 With no arguments, compares each loadable section in the exec bfd
8338 with the same memory range on the target, and reports mismatches.
8339 Useful for verifying the image on the target against the exec file. */
8340
8341 static void
8342 compare_sections_command (char *args, int from_tty)
8343 {
8344 asection *s;
8345 struct cleanup *old_chain;
8346 char *sectdata;
8347 const char *sectname;
8348 bfd_size_type size;
8349 bfd_vma lma;
8350 int matched = 0;
8351 int mismatched = 0;
8352 int res;
8353
8354 if (!exec_bfd)
8355 error (_("command cannot be used without an exec file"));
8356
8357 for (s = exec_bfd->sections; s; s = s->next)
8358 {
8359 if (!(s->flags & SEC_LOAD))
8360 continue; /* Skip non-loadable section. */
8361
8362 size = bfd_get_section_size (s);
8363 if (size == 0)
8364 continue; /* Skip zero-length section. */
8365
8366 sectname = bfd_get_section_name (exec_bfd, s);
8367 if (args && strcmp (args, sectname) != 0)
8368 continue; /* Not the section selected by user. */
8369
8370 matched = 1; /* Do this section. */
8371 lma = s->lma;
8372
8373 sectdata = xmalloc (size);
8374 old_chain = make_cleanup (xfree, sectdata);
8375 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8376
8377 res = target_verify_memory (sectdata, lma, size);
8378
8379 if (res == -1)
8380 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8381 paddress (target_gdbarch (), lma),
8382 paddress (target_gdbarch (), lma + size));
8383
8384 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8385 paddress (target_gdbarch (), lma),
8386 paddress (target_gdbarch (), lma + size));
8387 if (res)
8388 printf_filtered ("matched.\n");
8389 else
8390 {
8391 printf_filtered ("MIS-MATCHED!\n");
8392 mismatched++;
8393 }
8394
8395 do_cleanups (old_chain);
8396 }
8397 if (mismatched > 0)
8398 warning (_("One or more sections of the remote executable does not match\n\
8399 the loaded file\n"));
8400 if (args && !matched)
8401 printf_filtered (_("No loaded section named '%s'.\n"), args);
8402 }
8403
8404 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8405 into remote target. The number of bytes written to the remote
8406 target is returned, or -1 for error. */
8407
8408 static LONGEST
8409 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8410 const char *annex, const gdb_byte *writebuf,
8411 ULONGEST offset, LONGEST len,
8412 struct packet_config *packet)
8413 {
8414 int i, buf_len;
8415 ULONGEST n;
8416 struct remote_state *rs = get_remote_state ();
8417 int max_size = get_memory_write_packet_size ();
8418
8419 if (packet->support == PACKET_DISABLE)
8420 return -1;
8421
8422 /* Insert header. */
8423 i = snprintf (rs->buf, max_size,
8424 "qXfer:%s:write:%s:%s:",
8425 object_name, annex ? annex : "",
8426 phex_nz (offset, sizeof offset));
8427 max_size -= (i + 1);
8428
8429 /* Escape as much data as fits into rs->buf. */
8430 buf_len = remote_escape_output
8431 (writebuf, len, (rs->buf + i), &max_size, max_size);
8432
8433 if (putpkt_binary (rs->buf, i + buf_len) < 0
8434 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8435 || packet_ok (rs->buf, packet) != PACKET_OK)
8436 return -1;
8437
8438 unpack_varlen_hex (rs->buf, &n);
8439 return n;
8440 }
8441
8442 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8443 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8444 number of bytes read is returned, or 0 for EOF, or -1 for error.
8445 The number of bytes read may be less than LEN without indicating an
8446 EOF. PACKET is checked and updated to indicate whether the remote
8447 target supports this object. */
8448
8449 static LONGEST
8450 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8451 const char *annex,
8452 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8453 struct packet_config *packet)
8454 {
8455 static char *finished_object;
8456 static char *finished_annex;
8457 static ULONGEST finished_offset;
8458
8459 struct remote_state *rs = get_remote_state ();
8460 LONGEST i, n, packet_len;
8461
8462 if (packet->support == PACKET_DISABLE)
8463 return -1;
8464
8465 /* Check whether we've cached an end-of-object packet that matches
8466 this request. */
8467 if (finished_object)
8468 {
8469 if (strcmp (object_name, finished_object) == 0
8470 && strcmp (annex ? annex : "", finished_annex) == 0
8471 && offset == finished_offset)
8472 return 0;
8473
8474 /* Otherwise, we're now reading something different. Discard
8475 the cache. */
8476 xfree (finished_object);
8477 xfree (finished_annex);
8478 finished_object = NULL;
8479 finished_annex = NULL;
8480 }
8481
8482 /* Request only enough to fit in a single packet. The actual data
8483 may not, since we don't know how much of it will need to be escaped;
8484 the target is free to respond with slightly less data. We subtract
8485 five to account for the response type and the protocol frame. */
8486 n = min (get_remote_packet_size () - 5, len);
8487 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8488 object_name, annex ? annex : "",
8489 phex_nz (offset, sizeof offset),
8490 phex_nz (n, sizeof n));
8491 i = putpkt (rs->buf);
8492 if (i < 0)
8493 return -1;
8494
8495 rs->buf[0] = '\0';
8496 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8497 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8498 return -1;
8499
8500 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8501 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8502
8503 /* 'm' means there is (or at least might be) more data after this
8504 batch. That does not make sense unless there's at least one byte
8505 of data in this reply. */
8506 if (rs->buf[0] == 'm' && packet_len == 1)
8507 error (_("Remote qXfer reply contained no data."));
8508
8509 /* Got some data. */
8510 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8511
8512 /* 'l' is an EOF marker, possibly including a final block of data,
8513 or possibly empty. If we have the final block of a non-empty
8514 object, record this fact to bypass a subsequent partial read. */
8515 if (rs->buf[0] == 'l' && offset + i > 0)
8516 {
8517 finished_object = xstrdup (object_name);
8518 finished_annex = xstrdup (annex ? annex : "");
8519 finished_offset = offset + i;
8520 }
8521
8522 return i;
8523 }
8524
8525 static LONGEST
8526 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8527 const char *annex, gdb_byte *readbuf,
8528 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8529 {
8530 struct remote_state *rs;
8531 int i;
8532 char *p2;
8533 char query_type;
8534
8535 set_remote_traceframe ();
8536 set_general_thread (inferior_ptid);
8537
8538 rs = get_remote_state ();
8539
8540 /* Handle memory using the standard memory routines. */
8541 if (object == TARGET_OBJECT_MEMORY)
8542 {
8543 int xfered;
8544
8545 errno = 0;
8546
8547 /* If the remote target is connected but not running, we should
8548 pass this request down to a lower stratum (e.g. the executable
8549 file). */
8550 if (!target_has_execution)
8551 return 0;
8552
8553 if (writebuf != NULL)
8554 xfered = remote_write_bytes (offset, writebuf, len);
8555 else
8556 xfered = remote_read_bytes (offset, readbuf, len);
8557
8558 if (xfered > 0)
8559 return xfered;
8560 else if (xfered == 0 && errno == 0)
8561 return 0;
8562 else
8563 return -1;
8564 }
8565
8566 /* Handle SPU memory using qxfer packets. */
8567 if (object == TARGET_OBJECT_SPU)
8568 {
8569 if (readbuf)
8570 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8571 &remote_protocol_packets
8572 [PACKET_qXfer_spu_read]);
8573 else
8574 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8575 &remote_protocol_packets
8576 [PACKET_qXfer_spu_write]);
8577 }
8578
8579 /* Handle extra signal info using qxfer packets. */
8580 if (object == TARGET_OBJECT_SIGNAL_INFO)
8581 {
8582 if (readbuf)
8583 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8584 &remote_protocol_packets
8585 [PACKET_qXfer_siginfo_read]);
8586 else
8587 return remote_write_qxfer (ops, "siginfo", annex,
8588 writebuf, offset, len,
8589 &remote_protocol_packets
8590 [PACKET_qXfer_siginfo_write]);
8591 }
8592
8593 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8594 {
8595 if (readbuf)
8596 return remote_read_qxfer (ops, "statictrace", annex,
8597 readbuf, offset, len,
8598 &remote_protocol_packets
8599 [PACKET_qXfer_statictrace_read]);
8600 else
8601 return -1;
8602 }
8603
8604 /* Only handle flash writes. */
8605 if (writebuf != NULL)
8606 {
8607 LONGEST xfered;
8608
8609 switch (object)
8610 {
8611 case TARGET_OBJECT_FLASH:
8612 xfered = remote_flash_write (ops, offset, len, writebuf);
8613
8614 if (xfered > 0)
8615 return xfered;
8616 else if (xfered == 0 && errno == 0)
8617 return 0;
8618 else
8619 return -1;
8620
8621 default:
8622 return -1;
8623 }
8624 }
8625
8626 /* Map pre-existing objects onto letters. DO NOT do this for new
8627 objects!!! Instead specify new query packets. */
8628 switch (object)
8629 {
8630 case TARGET_OBJECT_AVR:
8631 query_type = 'R';
8632 break;
8633
8634 case TARGET_OBJECT_AUXV:
8635 gdb_assert (annex == NULL);
8636 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8637 &remote_protocol_packets[PACKET_qXfer_auxv]);
8638
8639 case TARGET_OBJECT_AVAILABLE_FEATURES:
8640 return remote_read_qxfer
8641 (ops, "features", annex, readbuf, offset, len,
8642 &remote_protocol_packets[PACKET_qXfer_features]);
8643
8644 case TARGET_OBJECT_LIBRARIES:
8645 return remote_read_qxfer
8646 (ops, "libraries", annex, readbuf, offset, len,
8647 &remote_protocol_packets[PACKET_qXfer_libraries]);
8648
8649 case TARGET_OBJECT_LIBRARIES_SVR4:
8650 return remote_read_qxfer
8651 (ops, "libraries-svr4", annex, readbuf, offset, len,
8652 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8653
8654 case TARGET_OBJECT_MEMORY_MAP:
8655 gdb_assert (annex == NULL);
8656 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8657 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8658
8659 case TARGET_OBJECT_OSDATA:
8660 /* Should only get here if we're connected. */
8661 gdb_assert (remote_desc);
8662 return remote_read_qxfer
8663 (ops, "osdata", annex, readbuf, offset, len,
8664 &remote_protocol_packets[PACKET_qXfer_osdata]);
8665
8666 case TARGET_OBJECT_THREADS:
8667 gdb_assert (annex == NULL);
8668 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8669 &remote_protocol_packets[PACKET_qXfer_threads]);
8670
8671 case TARGET_OBJECT_TRACEFRAME_INFO:
8672 gdb_assert (annex == NULL);
8673 return remote_read_qxfer
8674 (ops, "traceframe-info", annex, readbuf, offset, len,
8675 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8676
8677 case TARGET_OBJECT_FDPIC:
8678 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8679 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8680
8681 case TARGET_OBJECT_OPENVMS_UIB:
8682 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
8683 &remote_protocol_packets[PACKET_qXfer_uib]);
8684
8685 default:
8686 return -1;
8687 }
8688
8689 /* Note: a zero OFFSET and LEN can be used to query the minimum
8690 buffer size. */
8691 if (offset == 0 && len == 0)
8692 return (get_remote_packet_size ());
8693 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8694 large enough let the caller deal with it. */
8695 if (len < get_remote_packet_size ())
8696 return -1;
8697 len = get_remote_packet_size ();
8698
8699 /* Except for querying the minimum buffer size, target must be open. */
8700 if (!remote_desc)
8701 error (_("remote query is only available after target open"));
8702
8703 gdb_assert (annex != NULL);
8704 gdb_assert (readbuf != NULL);
8705
8706 p2 = rs->buf;
8707 *p2++ = 'q';
8708 *p2++ = query_type;
8709
8710 /* We used one buffer char for the remote protocol q command and
8711 another for the query type. As the remote protocol encapsulation
8712 uses 4 chars plus one extra in case we are debugging
8713 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8714 string. */
8715 i = 0;
8716 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8717 {
8718 /* Bad caller may have sent forbidden characters. */
8719 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8720 *p2++ = annex[i];
8721 i++;
8722 }
8723 *p2 = '\0';
8724 gdb_assert (annex[i] == '\0');
8725
8726 i = putpkt (rs->buf);
8727 if (i < 0)
8728 return i;
8729
8730 getpkt (&rs->buf, &rs->buf_size, 0);
8731 strcpy ((char *) readbuf, rs->buf);
8732
8733 return strlen ((char *) readbuf);
8734 }
8735
8736 static int
8737 remote_search_memory (struct target_ops* ops,
8738 CORE_ADDR start_addr, ULONGEST search_space_len,
8739 const gdb_byte *pattern, ULONGEST pattern_len,
8740 CORE_ADDR *found_addrp)
8741 {
8742 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8743 struct remote_state *rs = get_remote_state ();
8744 int max_size = get_memory_write_packet_size ();
8745 struct packet_config *packet =
8746 &remote_protocol_packets[PACKET_qSearch_memory];
8747 /* Number of packet bytes used to encode the pattern;
8748 this could be more than PATTERN_LEN due to escape characters. */
8749 int escaped_pattern_len;
8750 /* Amount of pattern that was encodable in the packet. */
8751 int used_pattern_len;
8752 int i;
8753 int found;
8754 ULONGEST found_addr;
8755
8756 /* Don't go to the target if we don't have to.
8757 This is done before checking packet->support to avoid the possibility that
8758 a success for this edge case means the facility works in general. */
8759 if (pattern_len > search_space_len)
8760 return 0;
8761 if (pattern_len == 0)
8762 {
8763 *found_addrp = start_addr;
8764 return 1;
8765 }
8766
8767 /* If we already know the packet isn't supported, fall back to the simple
8768 way of searching memory. */
8769
8770 if (packet->support == PACKET_DISABLE)
8771 {
8772 /* Target doesn't provided special support, fall back and use the
8773 standard support (copy memory and do the search here). */
8774 return simple_search_memory (ops, start_addr, search_space_len,
8775 pattern, pattern_len, found_addrp);
8776 }
8777
8778 /* Insert header. */
8779 i = snprintf (rs->buf, max_size,
8780 "qSearch:memory:%s;%s;",
8781 phex_nz (start_addr, addr_size),
8782 phex_nz (search_space_len, sizeof (search_space_len)));
8783 max_size -= (i + 1);
8784
8785 /* Escape as much data as fits into rs->buf. */
8786 escaped_pattern_len =
8787 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8788 &used_pattern_len, max_size);
8789
8790 /* Bail if the pattern is too large. */
8791 if (used_pattern_len != pattern_len)
8792 error (_("Pattern is too large to transmit to remote target."));
8793
8794 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8795 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8796 || packet_ok (rs->buf, packet) != PACKET_OK)
8797 {
8798 /* The request may not have worked because the command is not
8799 supported. If so, fall back to the simple way. */
8800 if (packet->support == PACKET_DISABLE)
8801 {
8802 return simple_search_memory (ops, start_addr, search_space_len,
8803 pattern, pattern_len, found_addrp);
8804 }
8805 return -1;
8806 }
8807
8808 if (rs->buf[0] == '0')
8809 found = 0;
8810 else if (rs->buf[0] == '1')
8811 {
8812 found = 1;
8813 if (rs->buf[1] != ',')
8814 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8815 unpack_varlen_hex (rs->buf + 2, &found_addr);
8816 *found_addrp = found_addr;
8817 }
8818 else
8819 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8820
8821 return found;
8822 }
8823
8824 static void
8825 remote_rcmd (char *command,
8826 struct ui_file *outbuf)
8827 {
8828 struct remote_state *rs = get_remote_state ();
8829 char *p = rs->buf;
8830
8831 if (!remote_desc)
8832 error (_("remote rcmd is only available after target open"));
8833
8834 /* Send a NULL command across as an empty command. */
8835 if (command == NULL)
8836 command = "";
8837
8838 /* The query prefix. */
8839 strcpy (rs->buf, "qRcmd,");
8840 p = strchr (rs->buf, '\0');
8841
8842 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
8843 > get_remote_packet_size ())
8844 error (_("\"monitor\" command ``%s'' is too long."), command);
8845
8846 /* Encode the actual command. */
8847 bin2hex ((gdb_byte *) command, p, 0);
8848
8849 if (putpkt (rs->buf) < 0)
8850 error (_("Communication problem with target."));
8851
8852 /* get/display the response */
8853 while (1)
8854 {
8855 char *buf;
8856
8857 /* XXX - see also remote_get_noisy_reply(). */
8858 QUIT; /* Allow user to bail out with ^C. */
8859 rs->buf[0] = '\0';
8860 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
8861 {
8862 /* Timeout. Continue to (try to) read responses.
8863 This is better than stopping with an error, assuming the stub
8864 is still executing the (long) monitor command.
8865 If needed, the user can interrupt gdb using C-c, obtaining
8866 an effect similar to stop on timeout. */
8867 continue;
8868 }
8869 buf = rs->buf;
8870 if (buf[0] == '\0')
8871 error (_("Target does not support this command."));
8872 if (buf[0] == 'O' && buf[1] != 'K')
8873 {
8874 remote_console_output (buf + 1); /* 'O' message from stub. */
8875 continue;
8876 }
8877 if (strcmp (buf, "OK") == 0)
8878 break;
8879 if (strlen (buf) == 3 && buf[0] == 'E'
8880 && isdigit (buf[1]) && isdigit (buf[2]))
8881 {
8882 error (_("Protocol error with Rcmd"));
8883 }
8884 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8885 {
8886 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8887
8888 fputc_unfiltered (c, outbuf);
8889 }
8890 break;
8891 }
8892 }
8893
8894 static VEC(mem_region_s) *
8895 remote_memory_map (struct target_ops *ops)
8896 {
8897 VEC(mem_region_s) *result = NULL;
8898 char *text = target_read_stralloc (&current_target,
8899 TARGET_OBJECT_MEMORY_MAP, NULL);
8900
8901 if (text)
8902 {
8903 struct cleanup *back_to = make_cleanup (xfree, text);
8904
8905 result = parse_memory_map (text);
8906 do_cleanups (back_to);
8907 }
8908
8909 return result;
8910 }
8911
8912 static void
8913 packet_command (char *args, int from_tty)
8914 {
8915 struct remote_state *rs = get_remote_state ();
8916
8917 if (!remote_desc)
8918 error (_("command can only be used with remote target"));
8919
8920 if (!args)
8921 error (_("remote-packet command requires packet text as argument"));
8922
8923 puts_filtered ("sending: ");
8924 print_packet (args);
8925 puts_filtered ("\n");
8926 putpkt (args);
8927
8928 getpkt (&rs->buf, &rs->buf_size, 0);
8929 puts_filtered ("received: ");
8930 print_packet (rs->buf);
8931 puts_filtered ("\n");
8932 }
8933
8934 #if 0
8935 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8936
8937 static void display_thread_info (struct gdb_ext_thread_info *info);
8938
8939 static void threadset_test_cmd (char *cmd, int tty);
8940
8941 static void threadalive_test (char *cmd, int tty);
8942
8943 static void threadlist_test_cmd (char *cmd, int tty);
8944
8945 int get_and_display_threadinfo (threadref *ref);
8946
8947 static void threadinfo_test_cmd (char *cmd, int tty);
8948
8949 static int thread_display_step (threadref *ref, void *context);
8950
8951 static void threadlist_update_test_cmd (char *cmd, int tty);
8952
8953 static void init_remote_threadtests (void);
8954
8955 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8956
8957 static void
8958 threadset_test_cmd (char *cmd, int tty)
8959 {
8960 int sample_thread = SAMPLE_THREAD;
8961
8962 printf_filtered (_("Remote threadset test\n"));
8963 set_general_thread (sample_thread);
8964 }
8965
8966
8967 static void
8968 threadalive_test (char *cmd, int tty)
8969 {
8970 int sample_thread = SAMPLE_THREAD;
8971 int pid = ptid_get_pid (inferior_ptid);
8972 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8973
8974 if (remote_thread_alive (ptid))
8975 printf_filtered ("PASS: Thread alive test\n");
8976 else
8977 printf_filtered ("FAIL: Thread alive test\n");
8978 }
8979
8980 void output_threadid (char *title, threadref *ref);
8981
8982 void
8983 output_threadid (char *title, threadref *ref)
8984 {
8985 char hexid[20];
8986
8987 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8988 hexid[16] = 0;
8989 printf_filtered ("%s %s\n", title, (&hexid[0]));
8990 }
8991
8992 static void
8993 threadlist_test_cmd (char *cmd, int tty)
8994 {
8995 int startflag = 1;
8996 threadref nextthread;
8997 int done, result_count;
8998 threadref threadlist[3];
8999
9000 printf_filtered ("Remote Threadlist test\n");
9001 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
9002 &result_count, &threadlist[0]))
9003 printf_filtered ("FAIL: threadlist test\n");
9004 else
9005 {
9006 threadref *scan = threadlist;
9007 threadref *limit = scan + result_count;
9008
9009 while (scan < limit)
9010 output_threadid (" thread ", scan++);
9011 }
9012 }
9013
9014 void
9015 display_thread_info (struct gdb_ext_thread_info *info)
9016 {
9017 output_threadid ("Threadid: ", &info->threadid);
9018 printf_filtered ("Name: %s\n ", info->shortname);
9019 printf_filtered ("State: %s\n", info->display);
9020 printf_filtered ("other: %s\n\n", info->more_display);
9021 }
9022
9023 int
9024 get_and_display_threadinfo (threadref *ref)
9025 {
9026 int result;
9027 int set;
9028 struct gdb_ext_thread_info threadinfo;
9029
9030 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
9031 | TAG_MOREDISPLAY | TAG_DISPLAY;
9032 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
9033 display_thread_info (&threadinfo);
9034 return result;
9035 }
9036
9037 static void
9038 threadinfo_test_cmd (char *cmd, int tty)
9039 {
9040 int athread = SAMPLE_THREAD;
9041 threadref thread;
9042 int set;
9043
9044 int_to_threadref (&thread, athread);
9045 printf_filtered ("Remote Threadinfo test\n");
9046 if (!get_and_display_threadinfo (&thread))
9047 printf_filtered ("FAIL cannot get thread info\n");
9048 }
9049
9050 static int
9051 thread_display_step (threadref *ref, void *context)
9052 {
9053 /* output_threadid(" threadstep ",ref); *//* simple test */
9054 return get_and_display_threadinfo (ref);
9055 }
9056
9057 static void
9058 threadlist_update_test_cmd (char *cmd, int tty)
9059 {
9060 printf_filtered ("Remote Threadlist update test\n");
9061 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
9062 }
9063
9064 static void
9065 init_remote_threadtests (void)
9066 {
9067 add_com ("tlist", class_obscure, threadlist_test_cmd,
9068 _("Fetch and print the remote list of "
9069 "thread identifiers, one pkt only"));
9070 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
9071 _("Fetch and display info about one thread"));
9072 add_com ("tset", class_obscure, threadset_test_cmd,
9073 _("Test setting to a different thread"));
9074 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
9075 _("Iterate through updating all remote thread info"));
9076 add_com ("talive", class_obscure, threadalive_test,
9077 _(" Remote thread alive test "));
9078 }
9079
9080 #endif /* 0 */
9081
9082 /* Convert a thread ID to a string. Returns the string in a static
9083 buffer. */
9084
9085 static char *
9086 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
9087 {
9088 static char buf[64];
9089 struct remote_state *rs = get_remote_state ();
9090
9091 if (ptid_equal (ptid, null_ptid))
9092 return normal_pid_to_str (ptid);
9093 else if (ptid_is_pid (ptid))
9094 {
9095 /* Printing an inferior target id. */
9096
9097 /* When multi-process extensions are off, there's no way in the
9098 remote protocol to know the remote process id, if there's any
9099 at all. There's one exception --- when we're connected with
9100 target extended-remote, and we manually attached to a process
9101 with "attach PID". We don't record anywhere a flag that
9102 allows us to distinguish that case from the case of
9103 connecting with extended-remote and the stub already being
9104 attached to a process, and reporting yes to qAttached, hence
9105 no smart special casing here. */
9106 if (!remote_multi_process_p (rs))
9107 {
9108 xsnprintf (buf, sizeof buf, "Remote target");
9109 return buf;
9110 }
9111
9112 return normal_pid_to_str (ptid);
9113 }
9114 else
9115 {
9116 if (ptid_equal (magic_null_ptid, ptid))
9117 xsnprintf (buf, sizeof buf, "Thread <main>");
9118 else if (rs->extended && remote_multi_process_p (rs))
9119 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
9120 ptid_get_pid (ptid), ptid_get_tid (ptid));
9121 else
9122 xsnprintf (buf, sizeof buf, "Thread %ld",
9123 ptid_get_tid (ptid));
9124 return buf;
9125 }
9126 }
9127
9128 /* Get the address of the thread local variable in OBJFILE which is
9129 stored at OFFSET within the thread local storage for thread PTID. */
9130
9131 static CORE_ADDR
9132 remote_get_thread_local_address (struct target_ops *ops,
9133 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
9134 {
9135 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
9136 {
9137 struct remote_state *rs = get_remote_state ();
9138 char *p = rs->buf;
9139 char *endp = rs->buf + get_remote_packet_size ();
9140 enum packet_result result;
9141
9142 strcpy (p, "qGetTLSAddr:");
9143 p += strlen (p);
9144 p = write_ptid (p, endp, ptid);
9145 *p++ = ',';
9146 p += hexnumstr (p, offset);
9147 *p++ = ',';
9148 p += hexnumstr (p, lm);
9149 *p++ = '\0';
9150
9151 putpkt (rs->buf);
9152 getpkt (&rs->buf, &rs->buf_size, 0);
9153 result = packet_ok (rs->buf,
9154 &remote_protocol_packets[PACKET_qGetTLSAddr]);
9155 if (result == PACKET_OK)
9156 {
9157 ULONGEST result;
9158
9159 unpack_varlen_hex (rs->buf, &result);
9160 return result;
9161 }
9162 else if (result == PACKET_UNKNOWN)
9163 throw_error (TLS_GENERIC_ERROR,
9164 _("Remote target doesn't support qGetTLSAddr packet"));
9165 else
9166 throw_error (TLS_GENERIC_ERROR,
9167 _("Remote target failed to process qGetTLSAddr request"));
9168 }
9169 else
9170 throw_error (TLS_GENERIC_ERROR,
9171 _("TLS not supported or disabled on this target"));
9172 /* Not reached. */
9173 return 0;
9174 }
9175
9176 /* Provide thread local base, i.e. Thread Information Block address.
9177 Returns 1 if ptid is found and thread_local_base is non zero. */
9178
9179 static int
9180 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
9181 {
9182 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
9183 {
9184 struct remote_state *rs = get_remote_state ();
9185 char *p = rs->buf;
9186 char *endp = rs->buf + get_remote_packet_size ();
9187 enum packet_result result;
9188
9189 strcpy (p, "qGetTIBAddr:");
9190 p += strlen (p);
9191 p = write_ptid (p, endp, ptid);
9192 *p++ = '\0';
9193
9194 putpkt (rs->buf);
9195 getpkt (&rs->buf, &rs->buf_size, 0);
9196 result = packet_ok (rs->buf,
9197 &remote_protocol_packets[PACKET_qGetTIBAddr]);
9198 if (result == PACKET_OK)
9199 {
9200 ULONGEST result;
9201
9202 unpack_varlen_hex (rs->buf, &result);
9203 if (addr)
9204 *addr = (CORE_ADDR) result;
9205 return 1;
9206 }
9207 else if (result == PACKET_UNKNOWN)
9208 error (_("Remote target doesn't support qGetTIBAddr packet"));
9209 else
9210 error (_("Remote target failed to process qGetTIBAddr request"));
9211 }
9212 else
9213 error (_("qGetTIBAddr not supported or disabled on this target"));
9214 /* Not reached. */
9215 return 0;
9216 }
9217
9218 /* Support for inferring a target description based on the current
9219 architecture and the size of a 'g' packet. While the 'g' packet
9220 can have any size (since optional registers can be left off the
9221 end), some sizes are easily recognizable given knowledge of the
9222 approximate architecture. */
9223
9224 struct remote_g_packet_guess
9225 {
9226 int bytes;
9227 const struct target_desc *tdesc;
9228 };
9229 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
9230 DEF_VEC_O(remote_g_packet_guess_s);
9231
9232 struct remote_g_packet_data
9233 {
9234 VEC(remote_g_packet_guess_s) *guesses;
9235 };
9236
9237 static struct gdbarch_data *remote_g_packet_data_handle;
9238
9239 static void *
9240 remote_g_packet_data_init (struct obstack *obstack)
9241 {
9242 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
9243 }
9244
9245 void
9246 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
9247 const struct target_desc *tdesc)
9248 {
9249 struct remote_g_packet_data *data
9250 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
9251 struct remote_g_packet_guess new_guess, *guess;
9252 int ix;
9253
9254 gdb_assert (tdesc != NULL);
9255
9256 for (ix = 0;
9257 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9258 ix++)
9259 if (guess->bytes == bytes)
9260 internal_error (__FILE__, __LINE__,
9261 _("Duplicate g packet description added for size %d"),
9262 bytes);
9263
9264 new_guess.bytes = bytes;
9265 new_guess.tdesc = tdesc;
9266 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9267 }
9268
9269 /* Return 1 if remote_read_description would do anything on this target
9270 and architecture, 0 otherwise. */
9271
9272 static int
9273 remote_read_description_p (struct target_ops *target)
9274 {
9275 struct remote_g_packet_data *data
9276 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9277
9278 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9279 return 1;
9280
9281 return 0;
9282 }
9283
9284 static const struct target_desc *
9285 remote_read_description (struct target_ops *target)
9286 {
9287 struct remote_g_packet_data *data
9288 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9289
9290 /* Do not try this during initial connection, when we do not know
9291 whether there is a running but stopped thread. */
9292 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9293 return NULL;
9294
9295 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9296 {
9297 struct remote_g_packet_guess *guess;
9298 int ix;
9299 int bytes = send_g_packet ();
9300
9301 for (ix = 0;
9302 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9303 ix++)
9304 if (guess->bytes == bytes)
9305 return guess->tdesc;
9306
9307 /* We discard the g packet. A minor optimization would be to
9308 hold on to it, and fill the register cache once we have selected
9309 an architecture, but it's too tricky to do safely. */
9310 }
9311
9312 return NULL;
9313 }
9314
9315 /* Remote file transfer support. This is host-initiated I/O, not
9316 target-initiated; for target-initiated, see remote-fileio.c. */
9317
9318 /* If *LEFT is at least the length of STRING, copy STRING to
9319 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9320 decrease *LEFT. Otherwise raise an error. */
9321
9322 static void
9323 remote_buffer_add_string (char **buffer, int *left, char *string)
9324 {
9325 int len = strlen (string);
9326
9327 if (len > *left)
9328 error (_("Packet too long for target."));
9329
9330 memcpy (*buffer, string, len);
9331 *buffer += len;
9332 *left -= len;
9333
9334 /* NUL-terminate the buffer as a convenience, if there is
9335 room. */
9336 if (*left)
9337 **buffer = '\0';
9338 }
9339
9340 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9341 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9342 decrease *LEFT. Otherwise raise an error. */
9343
9344 static void
9345 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9346 int len)
9347 {
9348 if (2 * len > *left)
9349 error (_("Packet too long for target."));
9350
9351 bin2hex (bytes, *buffer, len);
9352 *buffer += 2 * len;
9353 *left -= 2 * len;
9354
9355 /* NUL-terminate the buffer as a convenience, if there is
9356 room. */
9357 if (*left)
9358 **buffer = '\0';
9359 }
9360
9361 /* If *LEFT is large enough, convert VALUE to hex and add it to
9362 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9363 decrease *LEFT. Otherwise raise an error. */
9364
9365 static void
9366 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9367 {
9368 int len = hexnumlen (value);
9369
9370 if (len > *left)
9371 error (_("Packet too long for target."));
9372
9373 hexnumstr (*buffer, value);
9374 *buffer += len;
9375 *left -= len;
9376
9377 /* NUL-terminate the buffer as a convenience, if there is
9378 room. */
9379 if (*left)
9380 **buffer = '\0';
9381 }
9382
9383 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9384 value, *REMOTE_ERRNO to the remote error number or zero if none
9385 was included, and *ATTACHMENT to point to the start of the annex
9386 if any. The length of the packet isn't needed here; there may
9387 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9388
9389 Return 0 if the packet could be parsed, -1 if it could not. If
9390 -1 is returned, the other variables may not be initialized. */
9391
9392 static int
9393 remote_hostio_parse_result (char *buffer, int *retcode,
9394 int *remote_errno, char **attachment)
9395 {
9396 char *p, *p2;
9397
9398 *remote_errno = 0;
9399 *attachment = NULL;
9400
9401 if (buffer[0] != 'F')
9402 return -1;
9403
9404 errno = 0;
9405 *retcode = strtol (&buffer[1], &p, 16);
9406 if (errno != 0 || p == &buffer[1])
9407 return -1;
9408
9409 /* Check for ",errno". */
9410 if (*p == ',')
9411 {
9412 errno = 0;
9413 *remote_errno = strtol (p + 1, &p2, 16);
9414 if (errno != 0 || p + 1 == p2)
9415 return -1;
9416 p = p2;
9417 }
9418
9419 /* Check for ";attachment". If there is no attachment, the
9420 packet should end here. */
9421 if (*p == ';')
9422 {
9423 *attachment = p + 1;
9424 return 0;
9425 }
9426 else if (*p == '\0')
9427 return 0;
9428 else
9429 return -1;
9430 }
9431
9432 /* Send a prepared I/O packet to the target and read its response.
9433 The prepared packet is in the global RS->BUF before this function
9434 is called, and the answer is there when we return.
9435
9436 COMMAND_BYTES is the length of the request to send, which may include
9437 binary data. WHICH_PACKET is the packet configuration to check
9438 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9439 is set to the error number and -1 is returned. Otherwise the value
9440 returned by the function is returned.
9441
9442 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9443 attachment is expected; an error will be reported if there's a
9444 mismatch. If one is found, *ATTACHMENT will be set to point into
9445 the packet buffer and *ATTACHMENT_LEN will be set to the
9446 attachment's length. */
9447
9448 static int
9449 remote_hostio_send_command (int command_bytes, int which_packet,
9450 int *remote_errno, char **attachment,
9451 int *attachment_len)
9452 {
9453 struct remote_state *rs = get_remote_state ();
9454 int ret, bytes_read;
9455 char *attachment_tmp;
9456
9457 if (!remote_desc
9458 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9459 {
9460 *remote_errno = FILEIO_ENOSYS;
9461 return -1;
9462 }
9463
9464 putpkt_binary (rs->buf, command_bytes);
9465 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9466
9467 /* If it timed out, something is wrong. Don't try to parse the
9468 buffer. */
9469 if (bytes_read < 0)
9470 {
9471 *remote_errno = FILEIO_EINVAL;
9472 return -1;
9473 }
9474
9475 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9476 {
9477 case PACKET_ERROR:
9478 *remote_errno = FILEIO_EINVAL;
9479 return -1;
9480 case PACKET_UNKNOWN:
9481 *remote_errno = FILEIO_ENOSYS;
9482 return -1;
9483 case PACKET_OK:
9484 break;
9485 }
9486
9487 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9488 &attachment_tmp))
9489 {
9490 *remote_errno = FILEIO_EINVAL;
9491 return -1;
9492 }
9493
9494 /* Make sure we saw an attachment if and only if we expected one. */
9495 if ((attachment_tmp == NULL && attachment != NULL)
9496 || (attachment_tmp != NULL && attachment == NULL))
9497 {
9498 *remote_errno = FILEIO_EINVAL;
9499 return -1;
9500 }
9501
9502 /* If an attachment was found, it must point into the packet buffer;
9503 work out how many bytes there were. */
9504 if (attachment_tmp != NULL)
9505 {
9506 *attachment = attachment_tmp;
9507 *attachment_len = bytes_read - (*attachment - rs->buf);
9508 }
9509
9510 return ret;
9511 }
9512
9513 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9514 remote file descriptor, or -1 if an error occurs (and set
9515 *REMOTE_ERRNO). */
9516
9517 static int
9518 remote_hostio_open (const char *filename, int flags, int mode,
9519 int *remote_errno)
9520 {
9521 struct remote_state *rs = get_remote_state ();
9522 char *p = rs->buf;
9523 int left = get_remote_packet_size () - 1;
9524
9525 remote_buffer_add_string (&p, &left, "vFile:open:");
9526
9527 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9528 strlen (filename));
9529 remote_buffer_add_string (&p, &left, ",");
9530
9531 remote_buffer_add_int (&p, &left, flags);
9532 remote_buffer_add_string (&p, &left, ",");
9533
9534 remote_buffer_add_int (&p, &left, mode);
9535
9536 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9537 remote_errno, NULL, NULL);
9538 }
9539
9540 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9541 Return the number of bytes written, or -1 if an error occurs (and
9542 set *REMOTE_ERRNO). */
9543
9544 static int
9545 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9546 ULONGEST offset, int *remote_errno)
9547 {
9548 struct remote_state *rs = get_remote_state ();
9549 char *p = rs->buf;
9550 int left = get_remote_packet_size ();
9551 int out_len;
9552
9553 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9554
9555 remote_buffer_add_int (&p, &left, fd);
9556 remote_buffer_add_string (&p, &left, ",");
9557
9558 remote_buffer_add_int (&p, &left, offset);
9559 remote_buffer_add_string (&p, &left, ",");
9560
9561 p += remote_escape_output (write_buf, len, p, &out_len,
9562 get_remote_packet_size () - (p - rs->buf));
9563
9564 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9565 remote_errno, NULL, NULL);
9566 }
9567
9568 /* Read up to LEN bytes FD on the remote target into READ_BUF
9569 Return the number of bytes read, or -1 if an error occurs (and
9570 set *REMOTE_ERRNO). */
9571
9572 static int
9573 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9574 ULONGEST offset, int *remote_errno)
9575 {
9576 struct remote_state *rs = get_remote_state ();
9577 char *p = rs->buf;
9578 char *attachment;
9579 int left = get_remote_packet_size ();
9580 int ret, attachment_len;
9581 int read_len;
9582
9583 remote_buffer_add_string (&p, &left, "vFile:pread:");
9584
9585 remote_buffer_add_int (&p, &left, fd);
9586 remote_buffer_add_string (&p, &left, ",");
9587
9588 remote_buffer_add_int (&p, &left, len);
9589 remote_buffer_add_string (&p, &left, ",");
9590
9591 remote_buffer_add_int (&p, &left, offset);
9592
9593 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9594 remote_errno, &attachment,
9595 &attachment_len);
9596
9597 if (ret < 0)
9598 return ret;
9599
9600 read_len = remote_unescape_input (attachment, attachment_len,
9601 read_buf, len);
9602 if (read_len != ret)
9603 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9604
9605 return ret;
9606 }
9607
9608 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9609 (and set *REMOTE_ERRNO). */
9610
9611 static int
9612 remote_hostio_close (int fd, int *remote_errno)
9613 {
9614 struct remote_state *rs = get_remote_state ();
9615 char *p = rs->buf;
9616 int left = get_remote_packet_size () - 1;
9617
9618 remote_buffer_add_string (&p, &left, "vFile:close:");
9619
9620 remote_buffer_add_int (&p, &left, fd);
9621
9622 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9623 remote_errno, NULL, NULL);
9624 }
9625
9626 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9627 occurs (and set *REMOTE_ERRNO). */
9628
9629 static int
9630 remote_hostio_unlink (const char *filename, int *remote_errno)
9631 {
9632 struct remote_state *rs = get_remote_state ();
9633 char *p = rs->buf;
9634 int left = get_remote_packet_size () - 1;
9635
9636 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9637
9638 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9639 strlen (filename));
9640
9641 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9642 remote_errno, NULL, NULL);
9643 }
9644
9645 /* Read value of symbolic link FILENAME on the remote target. Return
9646 a null-terminated string allocated via xmalloc, or NULL if an error
9647 occurs (and set *REMOTE_ERRNO). */
9648
9649 static char *
9650 remote_hostio_readlink (const char *filename, int *remote_errno)
9651 {
9652 struct remote_state *rs = get_remote_state ();
9653 char *p = rs->buf;
9654 char *attachment;
9655 int left = get_remote_packet_size ();
9656 int len, attachment_len;
9657 int read_len;
9658 char *ret;
9659
9660 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9661
9662 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9663 strlen (filename));
9664
9665 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9666 remote_errno, &attachment,
9667 &attachment_len);
9668
9669 if (len < 0)
9670 return NULL;
9671
9672 ret = xmalloc (len + 1);
9673
9674 read_len = remote_unescape_input (attachment, attachment_len,
9675 ret, len);
9676 if (read_len != len)
9677 error (_("Readlink returned %d, but %d bytes."), len, read_len);
9678
9679 ret[len] = '\0';
9680 return ret;
9681 }
9682
9683 static int
9684 remote_fileio_errno_to_host (int errnum)
9685 {
9686 switch (errnum)
9687 {
9688 case FILEIO_EPERM:
9689 return EPERM;
9690 case FILEIO_ENOENT:
9691 return ENOENT;
9692 case FILEIO_EINTR:
9693 return EINTR;
9694 case FILEIO_EIO:
9695 return EIO;
9696 case FILEIO_EBADF:
9697 return EBADF;
9698 case FILEIO_EACCES:
9699 return EACCES;
9700 case FILEIO_EFAULT:
9701 return EFAULT;
9702 case FILEIO_EBUSY:
9703 return EBUSY;
9704 case FILEIO_EEXIST:
9705 return EEXIST;
9706 case FILEIO_ENODEV:
9707 return ENODEV;
9708 case FILEIO_ENOTDIR:
9709 return ENOTDIR;
9710 case FILEIO_EISDIR:
9711 return EISDIR;
9712 case FILEIO_EINVAL:
9713 return EINVAL;
9714 case FILEIO_ENFILE:
9715 return ENFILE;
9716 case FILEIO_EMFILE:
9717 return EMFILE;
9718 case FILEIO_EFBIG:
9719 return EFBIG;
9720 case FILEIO_ENOSPC:
9721 return ENOSPC;
9722 case FILEIO_ESPIPE:
9723 return ESPIPE;
9724 case FILEIO_EROFS:
9725 return EROFS;
9726 case FILEIO_ENOSYS:
9727 return ENOSYS;
9728 case FILEIO_ENAMETOOLONG:
9729 return ENAMETOOLONG;
9730 }
9731 return -1;
9732 }
9733
9734 static char *
9735 remote_hostio_error (int errnum)
9736 {
9737 int host_error = remote_fileio_errno_to_host (errnum);
9738
9739 if (host_error == -1)
9740 error (_("Unknown remote I/O error %d"), errnum);
9741 else
9742 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9743 }
9744
9745 static void
9746 remote_hostio_close_cleanup (void *opaque)
9747 {
9748 int fd = *(int *) opaque;
9749 int remote_errno;
9750
9751 remote_hostio_close (fd, &remote_errno);
9752 }
9753
9754
9755 static void *
9756 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9757 {
9758 const char *filename = bfd_get_filename (abfd);
9759 int fd, remote_errno;
9760 int *stream;
9761
9762 gdb_assert (remote_filename_p (filename));
9763
9764 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9765 if (fd == -1)
9766 {
9767 errno = remote_fileio_errno_to_host (remote_errno);
9768 bfd_set_error (bfd_error_system_call);
9769 return NULL;
9770 }
9771
9772 stream = xmalloc (sizeof (int));
9773 *stream = fd;
9774 return stream;
9775 }
9776
9777 static int
9778 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9779 {
9780 int fd = *(int *)stream;
9781 int remote_errno;
9782
9783 xfree (stream);
9784
9785 /* Ignore errors on close; these may happen if the remote
9786 connection was already torn down. */
9787 remote_hostio_close (fd, &remote_errno);
9788
9789 return 1;
9790 }
9791
9792 static file_ptr
9793 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9794 file_ptr nbytes, file_ptr offset)
9795 {
9796 int fd = *(int *)stream;
9797 int remote_errno;
9798 file_ptr pos, bytes;
9799
9800 pos = 0;
9801 while (nbytes > pos)
9802 {
9803 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9804 offset + pos, &remote_errno);
9805 if (bytes == 0)
9806 /* Success, but no bytes, means end-of-file. */
9807 break;
9808 if (bytes == -1)
9809 {
9810 errno = remote_fileio_errno_to_host (remote_errno);
9811 bfd_set_error (bfd_error_system_call);
9812 return -1;
9813 }
9814
9815 pos += bytes;
9816 }
9817
9818 return pos;
9819 }
9820
9821 static int
9822 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9823 {
9824 /* FIXME: We should probably implement remote_hostio_stat. */
9825 sb->st_size = INT_MAX;
9826 return 0;
9827 }
9828
9829 int
9830 remote_filename_p (const char *filename)
9831 {
9832 return strncmp (filename, "remote:", 7) == 0;
9833 }
9834
9835 bfd *
9836 remote_bfd_open (const char *remote_file, const char *target)
9837 {
9838 bfd *abfd = gdb_bfd_openr_iovec (remote_file, target,
9839 remote_bfd_iovec_open, NULL,
9840 remote_bfd_iovec_pread,
9841 remote_bfd_iovec_close,
9842 remote_bfd_iovec_stat);
9843
9844 return abfd;
9845 }
9846
9847 void
9848 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9849 {
9850 struct cleanup *back_to, *close_cleanup;
9851 int retcode, fd, remote_errno, bytes, io_size;
9852 FILE *file;
9853 gdb_byte *buffer;
9854 int bytes_in_buffer;
9855 int saw_eof;
9856 ULONGEST offset;
9857
9858 if (!remote_desc)
9859 error (_("command can only be used with remote target"));
9860
9861 file = fopen (local_file, "rb");
9862 if (file == NULL)
9863 perror_with_name (local_file);
9864 back_to = make_cleanup_fclose (file);
9865
9866 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9867 | FILEIO_O_TRUNC),
9868 0700, &remote_errno);
9869 if (fd == -1)
9870 remote_hostio_error (remote_errno);
9871
9872 /* Send up to this many bytes at once. They won't all fit in the
9873 remote packet limit, so we'll transfer slightly fewer. */
9874 io_size = get_remote_packet_size ();
9875 buffer = xmalloc (io_size);
9876 make_cleanup (xfree, buffer);
9877
9878 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9879
9880 bytes_in_buffer = 0;
9881 saw_eof = 0;
9882 offset = 0;
9883 while (bytes_in_buffer || !saw_eof)
9884 {
9885 if (!saw_eof)
9886 {
9887 bytes = fread (buffer + bytes_in_buffer, 1,
9888 io_size - bytes_in_buffer,
9889 file);
9890 if (bytes == 0)
9891 {
9892 if (ferror (file))
9893 error (_("Error reading %s."), local_file);
9894 else
9895 {
9896 /* EOF. Unless there is something still in the
9897 buffer from the last iteration, we are done. */
9898 saw_eof = 1;
9899 if (bytes_in_buffer == 0)
9900 break;
9901 }
9902 }
9903 }
9904 else
9905 bytes = 0;
9906
9907 bytes += bytes_in_buffer;
9908 bytes_in_buffer = 0;
9909
9910 retcode = remote_hostio_pwrite (fd, buffer, bytes,
9911 offset, &remote_errno);
9912
9913 if (retcode < 0)
9914 remote_hostio_error (remote_errno);
9915 else if (retcode == 0)
9916 error (_("Remote write of %d bytes returned 0!"), bytes);
9917 else if (retcode < bytes)
9918 {
9919 /* Short write. Save the rest of the read data for the next
9920 write. */
9921 bytes_in_buffer = bytes - retcode;
9922 memmove (buffer, buffer + retcode, bytes_in_buffer);
9923 }
9924
9925 offset += retcode;
9926 }
9927
9928 discard_cleanups (close_cleanup);
9929 if (remote_hostio_close (fd, &remote_errno))
9930 remote_hostio_error (remote_errno);
9931
9932 if (from_tty)
9933 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9934 do_cleanups (back_to);
9935 }
9936
9937 void
9938 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9939 {
9940 struct cleanup *back_to, *close_cleanup;
9941 int fd, remote_errno, bytes, io_size;
9942 FILE *file;
9943 gdb_byte *buffer;
9944 ULONGEST offset;
9945
9946 if (!remote_desc)
9947 error (_("command can only be used with remote target"));
9948
9949 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9950 if (fd == -1)
9951 remote_hostio_error (remote_errno);
9952
9953 file = fopen (local_file, "wb");
9954 if (file == NULL)
9955 perror_with_name (local_file);
9956 back_to = make_cleanup_fclose (file);
9957
9958 /* Send up to this many bytes at once. They won't all fit in the
9959 remote packet limit, so we'll transfer slightly fewer. */
9960 io_size = get_remote_packet_size ();
9961 buffer = xmalloc (io_size);
9962 make_cleanup (xfree, buffer);
9963
9964 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9965
9966 offset = 0;
9967 while (1)
9968 {
9969 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9970 if (bytes == 0)
9971 /* Success, but no bytes, means end-of-file. */
9972 break;
9973 if (bytes == -1)
9974 remote_hostio_error (remote_errno);
9975
9976 offset += bytes;
9977
9978 bytes = fwrite (buffer, 1, bytes, file);
9979 if (bytes == 0)
9980 perror_with_name (local_file);
9981 }
9982
9983 discard_cleanups (close_cleanup);
9984 if (remote_hostio_close (fd, &remote_errno))
9985 remote_hostio_error (remote_errno);
9986
9987 if (from_tty)
9988 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9989 do_cleanups (back_to);
9990 }
9991
9992 void
9993 remote_file_delete (const char *remote_file, int from_tty)
9994 {
9995 int retcode, remote_errno;
9996
9997 if (!remote_desc)
9998 error (_("command can only be used with remote target"));
9999
10000 retcode = remote_hostio_unlink (remote_file, &remote_errno);
10001 if (retcode == -1)
10002 remote_hostio_error (remote_errno);
10003
10004 if (from_tty)
10005 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
10006 }
10007
10008 static void
10009 remote_put_command (char *args, int from_tty)
10010 {
10011 struct cleanup *back_to;
10012 char **argv;
10013
10014 if (args == NULL)
10015 error_no_arg (_("file to put"));
10016
10017 argv = gdb_buildargv (args);
10018 back_to = make_cleanup_freeargv (argv);
10019 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10020 error (_("Invalid parameters to remote put"));
10021
10022 remote_file_put (argv[0], argv[1], from_tty);
10023
10024 do_cleanups (back_to);
10025 }
10026
10027 static void
10028 remote_get_command (char *args, int from_tty)
10029 {
10030 struct cleanup *back_to;
10031 char **argv;
10032
10033 if (args == NULL)
10034 error_no_arg (_("file to get"));
10035
10036 argv = gdb_buildargv (args);
10037 back_to = make_cleanup_freeargv (argv);
10038 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10039 error (_("Invalid parameters to remote get"));
10040
10041 remote_file_get (argv[0], argv[1], from_tty);
10042
10043 do_cleanups (back_to);
10044 }
10045
10046 static void
10047 remote_delete_command (char *args, int from_tty)
10048 {
10049 struct cleanup *back_to;
10050 char **argv;
10051
10052 if (args == NULL)
10053 error_no_arg (_("file to delete"));
10054
10055 argv = gdb_buildargv (args);
10056 back_to = make_cleanup_freeargv (argv);
10057 if (argv[0] == NULL || argv[1] != NULL)
10058 error (_("Invalid parameters to remote delete"));
10059
10060 remote_file_delete (argv[0], from_tty);
10061
10062 do_cleanups (back_to);
10063 }
10064
10065 static void
10066 remote_command (char *args, int from_tty)
10067 {
10068 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
10069 }
10070
10071 static int
10072 remote_can_execute_reverse (void)
10073 {
10074 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
10075 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
10076 return 1;
10077 else
10078 return 0;
10079 }
10080
10081 static int
10082 remote_supports_non_stop (void)
10083 {
10084 return 1;
10085 }
10086
10087 static int
10088 remote_supports_disable_randomization (void)
10089 {
10090 /* Only supported in extended mode. */
10091 return 0;
10092 }
10093
10094 static int
10095 remote_supports_multi_process (void)
10096 {
10097 struct remote_state *rs = get_remote_state ();
10098
10099 /* Only extended-remote handles being attached to multiple
10100 processes, even though plain remote can use the multi-process
10101 thread id extensions, so that GDB knows the target process's
10102 PID. */
10103 return rs->extended && remote_multi_process_p (rs);
10104 }
10105
10106 static int
10107 remote_supports_cond_tracepoints (void)
10108 {
10109 struct remote_state *rs = get_remote_state ();
10110
10111 return rs->cond_tracepoints;
10112 }
10113
10114 static int
10115 remote_supports_cond_breakpoints (void)
10116 {
10117 struct remote_state *rs = get_remote_state ();
10118
10119 return rs->cond_breakpoints;
10120 }
10121
10122 static int
10123 remote_supports_fast_tracepoints (void)
10124 {
10125 struct remote_state *rs = get_remote_state ();
10126
10127 return rs->fast_tracepoints;
10128 }
10129
10130 static int
10131 remote_supports_static_tracepoints (void)
10132 {
10133 struct remote_state *rs = get_remote_state ();
10134
10135 return rs->static_tracepoints;
10136 }
10137
10138 static int
10139 remote_supports_install_in_trace (void)
10140 {
10141 struct remote_state *rs = get_remote_state ();
10142
10143 return rs->install_in_trace;
10144 }
10145
10146 static int
10147 remote_supports_enable_disable_tracepoint (void)
10148 {
10149 struct remote_state *rs = get_remote_state ();
10150
10151 return rs->enable_disable_tracepoints;
10152 }
10153
10154 static int
10155 remote_supports_string_tracing (void)
10156 {
10157 struct remote_state *rs = get_remote_state ();
10158
10159 return rs->string_tracing;
10160 }
10161
10162 static int
10163 remote_can_run_breakpoint_commands (void)
10164 {
10165 struct remote_state *rs = get_remote_state ();
10166
10167 return rs->breakpoint_commands;
10168 }
10169
10170 static void
10171 remote_trace_init (void)
10172 {
10173 putpkt ("QTinit");
10174 remote_get_noisy_reply (&target_buf, &target_buf_size);
10175 if (strcmp (target_buf, "OK") != 0)
10176 error (_("Target does not support this command."));
10177 }
10178
10179 static void free_actions_list (char **actions_list);
10180 static void free_actions_list_cleanup_wrapper (void *);
10181 static void
10182 free_actions_list_cleanup_wrapper (void *al)
10183 {
10184 free_actions_list (al);
10185 }
10186
10187 static void
10188 free_actions_list (char **actions_list)
10189 {
10190 int ndx;
10191
10192 if (actions_list == 0)
10193 return;
10194
10195 for (ndx = 0; actions_list[ndx]; ndx++)
10196 xfree (actions_list[ndx]);
10197
10198 xfree (actions_list);
10199 }
10200
10201 /* Recursive routine to walk through command list including loops, and
10202 download packets for each command. */
10203
10204 static void
10205 remote_download_command_source (int num, ULONGEST addr,
10206 struct command_line *cmds)
10207 {
10208 struct remote_state *rs = get_remote_state ();
10209 struct command_line *cmd;
10210
10211 for (cmd = cmds; cmd; cmd = cmd->next)
10212 {
10213 QUIT; /* Allow user to bail out with ^C. */
10214 strcpy (rs->buf, "QTDPsrc:");
10215 encode_source_string (num, addr, "cmd", cmd->line,
10216 rs->buf + strlen (rs->buf),
10217 rs->buf_size - strlen (rs->buf));
10218 putpkt (rs->buf);
10219 remote_get_noisy_reply (&target_buf, &target_buf_size);
10220 if (strcmp (target_buf, "OK"))
10221 warning (_("Target does not support source download."));
10222
10223 if (cmd->control_type == while_control
10224 || cmd->control_type == while_stepping_control)
10225 {
10226 remote_download_command_source (num, addr, *cmd->body_list);
10227
10228 QUIT; /* Allow user to bail out with ^C. */
10229 strcpy (rs->buf, "QTDPsrc:");
10230 encode_source_string (num, addr, "cmd", "end",
10231 rs->buf + strlen (rs->buf),
10232 rs->buf_size - strlen (rs->buf));
10233 putpkt (rs->buf);
10234 remote_get_noisy_reply (&target_buf, &target_buf_size);
10235 if (strcmp (target_buf, "OK"))
10236 warning (_("Target does not support source download."));
10237 }
10238 }
10239 }
10240
10241 static void
10242 remote_download_tracepoint (struct bp_location *loc)
10243 {
10244 #define BUF_SIZE 2048
10245
10246 CORE_ADDR tpaddr;
10247 char addrbuf[40];
10248 char buf[BUF_SIZE];
10249 char **tdp_actions;
10250 char **stepping_actions;
10251 int ndx;
10252 struct cleanup *old_chain = NULL;
10253 struct agent_expr *aexpr;
10254 struct cleanup *aexpr_chain = NULL;
10255 char *pkt;
10256 struct breakpoint *b = loc->owner;
10257 struct tracepoint *t = (struct tracepoint *) b;
10258
10259 encode_actions (loc->owner, loc, &tdp_actions, &stepping_actions);
10260 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
10261 tdp_actions);
10262 (void) make_cleanup (free_actions_list_cleanup_wrapper,
10263 stepping_actions);
10264
10265 tpaddr = loc->address;
10266 sprintf_vma (addrbuf, tpaddr);
10267 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
10268 addrbuf, /* address */
10269 (b->enable_state == bp_enabled ? 'E' : 'D'),
10270 t->step_count, t->pass_count);
10271 /* Fast tracepoints are mostly handled by the target, but we can
10272 tell the target how big of an instruction block should be moved
10273 around. */
10274 if (b->type == bp_fast_tracepoint)
10275 {
10276 /* Only test for support at download time; we may not know
10277 target capabilities at definition time. */
10278 if (remote_supports_fast_tracepoints ())
10279 {
10280 int isize;
10281
10282 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch (),
10283 tpaddr, &isize, NULL))
10284 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
10285 isize);
10286 else
10287 /* If it passed validation at definition but fails now,
10288 something is very wrong. */
10289 internal_error (__FILE__, __LINE__,
10290 _("Fast tracepoint not "
10291 "valid during download"));
10292 }
10293 else
10294 /* Fast tracepoints are functionally identical to regular
10295 tracepoints, so don't take lack of support as a reason to
10296 give up on the trace run. */
10297 warning (_("Target does not support fast tracepoints, "
10298 "downloading %d as regular tracepoint"), b->number);
10299 }
10300 else if (b->type == bp_static_tracepoint)
10301 {
10302 /* Only test for support at download time; we may not know
10303 target capabilities at definition time. */
10304 if (remote_supports_static_tracepoints ())
10305 {
10306 struct static_tracepoint_marker marker;
10307
10308 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10309 strcat (buf, ":S");
10310 else
10311 error (_("Static tracepoint not valid during download"));
10312 }
10313 else
10314 /* Fast tracepoints are functionally identical to regular
10315 tracepoints, so don't take lack of support as a reason
10316 to give up on the trace run. */
10317 error (_("Target does not support static tracepoints"));
10318 }
10319 /* If the tracepoint has a conditional, make it into an agent
10320 expression and append to the definition. */
10321 if (loc->cond)
10322 {
10323 /* Only test support at download time, we may not know target
10324 capabilities at definition time. */
10325 if (remote_supports_cond_tracepoints ())
10326 {
10327 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10328 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10329 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
10330 aexpr->len);
10331 pkt = buf + strlen (buf);
10332 for (ndx = 0; ndx < aexpr->len; ++ndx)
10333 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10334 *pkt = '\0';
10335 do_cleanups (aexpr_chain);
10336 }
10337 else
10338 warning (_("Target does not support conditional tracepoints, "
10339 "ignoring tp %d cond"), b->number);
10340 }
10341
10342 if (b->commands || *default_collect)
10343 strcat (buf, "-");
10344 putpkt (buf);
10345 remote_get_noisy_reply (&target_buf, &target_buf_size);
10346 if (strcmp (target_buf, "OK"))
10347 error (_("Target does not support tracepoints."));
10348
10349 /* do_single_steps (t); */
10350 if (tdp_actions)
10351 {
10352 for (ndx = 0; tdp_actions[ndx]; ndx++)
10353 {
10354 QUIT; /* Allow user to bail out with ^C. */
10355 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
10356 b->number, addrbuf, /* address */
10357 tdp_actions[ndx],
10358 ((tdp_actions[ndx + 1] || stepping_actions)
10359 ? '-' : 0));
10360 putpkt (buf);
10361 remote_get_noisy_reply (&target_buf,
10362 &target_buf_size);
10363 if (strcmp (target_buf, "OK"))
10364 error (_("Error on target while setting tracepoints."));
10365 }
10366 }
10367 if (stepping_actions)
10368 {
10369 for (ndx = 0; stepping_actions[ndx]; ndx++)
10370 {
10371 QUIT; /* Allow user to bail out with ^C. */
10372 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
10373 b->number, addrbuf, /* address */
10374 ((ndx == 0) ? "S" : ""),
10375 stepping_actions[ndx],
10376 (stepping_actions[ndx + 1] ? "-" : ""));
10377 putpkt (buf);
10378 remote_get_noisy_reply (&target_buf,
10379 &target_buf_size);
10380 if (strcmp (target_buf, "OK"))
10381 error (_("Error on target while setting tracepoints."));
10382 }
10383 }
10384
10385 if (remote_protocol_packets[PACKET_TracepointSource].support
10386 == PACKET_ENABLE)
10387 {
10388 if (b->addr_string)
10389 {
10390 strcpy (buf, "QTDPsrc:");
10391 encode_source_string (b->number, loc->address,
10392 "at", b->addr_string, buf + strlen (buf),
10393 2048 - strlen (buf));
10394
10395 putpkt (buf);
10396 remote_get_noisy_reply (&target_buf, &target_buf_size);
10397 if (strcmp (target_buf, "OK"))
10398 warning (_("Target does not support source download."));
10399 }
10400 if (b->cond_string)
10401 {
10402 strcpy (buf, "QTDPsrc:");
10403 encode_source_string (b->number, loc->address,
10404 "cond", b->cond_string, buf + strlen (buf),
10405 2048 - strlen (buf));
10406 putpkt (buf);
10407 remote_get_noisy_reply (&target_buf, &target_buf_size);
10408 if (strcmp (target_buf, "OK"))
10409 warning (_("Target does not support source download."));
10410 }
10411 remote_download_command_source (b->number, loc->address,
10412 breakpoint_commands (b));
10413 }
10414
10415 do_cleanups (old_chain);
10416 }
10417
10418 static int
10419 remote_can_download_tracepoint (void)
10420 {
10421 struct remote_state *rs = get_remote_state ();
10422 struct trace_status *ts;
10423 int status;
10424
10425 /* Don't try to install tracepoints until we've relocated our
10426 symbols, and fetched and merged the target's tracepoint list with
10427 ours. */
10428 if (rs->starting_up)
10429 return 0;
10430
10431 ts = current_trace_status ();
10432 status = remote_get_trace_status (ts);
10433
10434 if (status == -1 || !ts->running_known || !ts->running)
10435 return 0;
10436
10437 /* If we are in a tracing experiment, but remote stub doesn't support
10438 installing tracepoint in trace, we have to return. */
10439 if (!remote_supports_install_in_trace ())
10440 return 0;
10441
10442 return 1;
10443 }
10444
10445
10446 static void
10447 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10448 {
10449 struct remote_state *rs = get_remote_state ();
10450 char *p;
10451
10452 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
10453 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
10454 tsv->builtin);
10455 p = rs->buf + strlen (rs->buf);
10456 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10457 error (_("Trace state variable name too long for tsv definition packet"));
10458 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10459 *p++ = '\0';
10460 putpkt (rs->buf);
10461 remote_get_noisy_reply (&target_buf, &target_buf_size);
10462 if (*target_buf == '\0')
10463 error (_("Target does not support this command."));
10464 if (strcmp (target_buf, "OK") != 0)
10465 error (_("Error on target while downloading trace state variable."));
10466 }
10467
10468 static void
10469 remote_enable_tracepoint (struct bp_location *location)
10470 {
10471 struct remote_state *rs = get_remote_state ();
10472 char addr_buf[40];
10473
10474 sprintf_vma (addr_buf, location->address);
10475 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
10476 location->owner->number, addr_buf);
10477 putpkt (rs->buf);
10478 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10479 if (*rs->buf == '\0')
10480 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10481 if (strcmp (rs->buf, "OK") != 0)
10482 error (_("Error on target while enabling tracepoint."));
10483 }
10484
10485 static void
10486 remote_disable_tracepoint (struct bp_location *location)
10487 {
10488 struct remote_state *rs = get_remote_state ();
10489 char addr_buf[40];
10490
10491 sprintf_vma (addr_buf, location->address);
10492 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
10493 location->owner->number, addr_buf);
10494 putpkt (rs->buf);
10495 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10496 if (*rs->buf == '\0')
10497 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10498 if (strcmp (rs->buf, "OK") != 0)
10499 error (_("Error on target while disabling tracepoint."));
10500 }
10501
10502 static void
10503 remote_trace_set_readonly_regions (void)
10504 {
10505 asection *s;
10506 bfd *abfd = NULL;
10507 bfd_size_type size;
10508 bfd_vma vma;
10509 int anysecs = 0;
10510 int offset = 0;
10511
10512 if (!exec_bfd)
10513 return; /* No information to give. */
10514
10515 strcpy (target_buf, "QTro");
10516 for (s = exec_bfd->sections; s; s = s->next)
10517 {
10518 char tmp1[40], tmp2[40];
10519 int sec_length;
10520
10521 if ((s->flags & SEC_LOAD) == 0 ||
10522 /* (s->flags & SEC_CODE) == 0 || */
10523 (s->flags & SEC_READONLY) == 0)
10524 continue;
10525
10526 anysecs = 1;
10527 vma = bfd_get_section_vma (abfd, s);
10528 size = bfd_get_section_size (s);
10529 sprintf_vma (tmp1, vma);
10530 sprintf_vma (tmp2, vma + size);
10531 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10532 if (offset + sec_length + 1 > target_buf_size)
10533 {
10534 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10535 != PACKET_ENABLE)
10536 warning (_("\
10537 Too many sections for read-only sections definition packet."));
10538 break;
10539 }
10540 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
10541 tmp1, tmp2);
10542 offset += sec_length;
10543 }
10544 if (anysecs)
10545 {
10546 putpkt (target_buf);
10547 getpkt (&target_buf, &target_buf_size, 0);
10548 }
10549 }
10550
10551 static void
10552 remote_trace_start (void)
10553 {
10554 putpkt ("QTStart");
10555 remote_get_noisy_reply (&target_buf, &target_buf_size);
10556 if (*target_buf == '\0')
10557 error (_("Target does not support this command."));
10558 if (strcmp (target_buf, "OK") != 0)
10559 error (_("Bogus reply from target: %s"), target_buf);
10560 }
10561
10562 static int
10563 remote_get_trace_status (struct trace_status *ts)
10564 {
10565 /* Initialize it just to avoid a GCC false warning. */
10566 char *p = NULL;
10567 /* FIXME we need to get register block size some other way. */
10568 extern int trace_regblock_size;
10569 volatile struct gdb_exception ex;
10570
10571 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10572
10573 putpkt ("qTStatus");
10574
10575 TRY_CATCH (ex, RETURN_MASK_ERROR)
10576 {
10577 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10578 }
10579 if (ex.reason < 0)
10580 {
10581 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10582 return -1;
10583 }
10584
10585 /* If the remote target doesn't do tracing, flag it. */
10586 if (*p == '\0')
10587 return -1;
10588
10589 /* We're working with a live target. */
10590 ts->from_file = 0;
10591
10592 if (*p++ != 'T')
10593 error (_("Bogus trace status reply from target: %s"), target_buf);
10594
10595 /* Function 'parse_trace_status' sets default value of each field of
10596 'ts' at first, so we don't have to do it here. */
10597 parse_trace_status (p, ts);
10598
10599 return ts->running;
10600 }
10601
10602 static void
10603 remote_get_tracepoint_status (struct breakpoint *bp,
10604 struct uploaded_tp *utp)
10605 {
10606 struct remote_state *rs = get_remote_state ();
10607 char *reply;
10608 struct bp_location *loc;
10609 struct tracepoint *tp = (struct tracepoint *) bp;
10610 size_t size = get_remote_packet_size ();
10611
10612 if (tp)
10613 {
10614 tp->base.hit_count = 0;
10615 tp->traceframe_usage = 0;
10616 for (loc = tp->base.loc; loc; loc = loc->next)
10617 {
10618 /* If the tracepoint was never downloaded, don't go asking for
10619 any status. */
10620 if (tp->number_on_target == 0)
10621 continue;
10622 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
10623 phex_nz (loc->address, 0));
10624 putpkt (rs->buf);
10625 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10626 if (reply && *reply)
10627 {
10628 if (*reply == 'V')
10629 parse_tracepoint_status (reply + 1, bp, utp);
10630 }
10631 }
10632 }
10633 else if (utp)
10634 {
10635 utp->hit_count = 0;
10636 utp->traceframe_usage = 0;
10637 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
10638 phex_nz (utp->addr, 0));
10639 putpkt (rs->buf);
10640 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10641 if (reply && *reply)
10642 {
10643 if (*reply == 'V')
10644 parse_tracepoint_status (reply + 1, bp, utp);
10645 }
10646 }
10647 }
10648
10649 static void
10650 remote_trace_stop (void)
10651 {
10652 putpkt ("QTStop");
10653 remote_get_noisy_reply (&target_buf, &target_buf_size);
10654 if (*target_buf == '\0')
10655 error (_("Target does not support this command."));
10656 if (strcmp (target_buf, "OK") != 0)
10657 error (_("Bogus reply from target: %s"), target_buf);
10658 }
10659
10660 static int
10661 remote_trace_find (enum trace_find_type type, int num,
10662 ULONGEST addr1, ULONGEST addr2,
10663 int *tpp)
10664 {
10665 struct remote_state *rs = get_remote_state ();
10666 char *endbuf = rs->buf + get_remote_packet_size ();
10667 char *p, *reply;
10668 int target_frameno = -1, target_tracept = -1;
10669
10670 /* Lookups other than by absolute frame number depend on the current
10671 trace selected, so make sure it is correct on the remote end
10672 first. */
10673 if (type != tfind_number)
10674 set_remote_traceframe ();
10675
10676 p = rs->buf;
10677 strcpy (p, "QTFrame:");
10678 p = strchr (p, '\0');
10679 switch (type)
10680 {
10681 case tfind_number:
10682 xsnprintf (p, endbuf - p, "%x", num);
10683 break;
10684 case tfind_pc:
10685 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
10686 break;
10687 case tfind_tp:
10688 xsnprintf (p, endbuf - p, "tdp:%x", num);
10689 break;
10690 case tfind_range:
10691 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
10692 phex_nz (addr2, 0));
10693 break;
10694 case tfind_outside:
10695 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
10696 phex_nz (addr2, 0));
10697 break;
10698 default:
10699 error (_("Unknown trace find type %d"), type);
10700 }
10701
10702 putpkt (rs->buf);
10703 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10704 if (*reply == '\0')
10705 error (_("Target does not support this command."));
10706
10707 while (reply && *reply)
10708 switch (*reply)
10709 {
10710 case 'F':
10711 p = ++reply;
10712 target_frameno = (int) strtol (p, &reply, 16);
10713 if (reply == p)
10714 error (_("Unable to parse trace frame number"));
10715 /* Don't update our remote traceframe number cache on failure
10716 to select a remote traceframe. */
10717 if (target_frameno == -1)
10718 return -1;
10719 break;
10720 case 'T':
10721 p = ++reply;
10722 target_tracept = (int) strtol (p, &reply, 16);
10723 if (reply == p)
10724 error (_("Unable to parse tracepoint number"));
10725 break;
10726 case 'O': /* "OK"? */
10727 if (reply[1] == 'K' && reply[2] == '\0')
10728 reply += 2;
10729 else
10730 error (_("Bogus reply from target: %s"), reply);
10731 break;
10732 default:
10733 error (_("Bogus reply from target: %s"), reply);
10734 }
10735 if (tpp)
10736 *tpp = target_tracept;
10737
10738 remote_traceframe_number = target_frameno;
10739 return target_frameno;
10740 }
10741
10742 static int
10743 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10744 {
10745 struct remote_state *rs = get_remote_state ();
10746 char *reply;
10747 ULONGEST uval;
10748
10749 set_remote_traceframe ();
10750
10751 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
10752 putpkt (rs->buf);
10753 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10754 if (reply && *reply)
10755 {
10756 if (*reply == 'V')
10757 {
10758 unpack_varlen_hex (reply + 1, &uval);
10759 *val = (LONGEST) uval;
10760 return 1;
10761 }
10762 }
10763 return 0;
10764 }
10765
10766 static int
10767 remote_save_trace_data (const char *filename)
10768 {
10769 struct remote_state *rs = get_remote_state ();
10770 char *p, *reply;
10771
10772 p = rs->buf;
10773 strcpy (p, "QTSave:");
10774 p += strlen (p);
10775 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10776 error (_("Remote file name too long for trace save packet"));
10777 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10778 *p++ = '\0';
10779 putpkt (rs->buf);
10780 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10781 if (*reply == '\0')
10782 error (_("Target does not support this command."));
10783 if (strcmp (reply, "OK") != 0)
10784 error (_("Bogus reply from target: %s"), reply);
10785 return 0;
10786 }
10787
10788 /* This is basically a memory transfer, but needs to be its own packet
10789 because we don't know how the target actually organizes its trace
10790 memory, plus we want to be able to ask for as much as possible, but
10791 not be unhappy if we don't get as much as we ask for. */
10792
10793 static LONGEST
10794 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10795 {
10796 struct remote_state *rs = get_remote_state ();
10797 char *reply;
10798 char *p;
10799 int rslt;
10800
10801 p = rs->buf;
10802 strcpy (p, "qTBuffer:");
10803 p += strlen (p);
10804 p += hexnumstr (p, offset);
10805 *p++ = ',';
10806 p += hexnumstr (p, len);
10807 *p++ = '\0';
10808
10809 putpkt (rs->buf);
10810 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10811 if (reply && *reply)
10812 {
10813 /* 'l' by itself means we're at the end of the buffer and
10814 there is nothing more to get. */
10815 if (*reply == 'l')
10816 return 0;
10817
10818 /* Convert the reply into binary. Limit the number of bytes to
10819 convert according to our passed-in buffer size, rather than
10820 what was returned in the packet; if the target is
10821 unexpectedly generous and gives us a bigger reply than we
10822 asked for, we don't want to crash. */
10823 rslt = hex2bin (target_buf, buf, len);
10824 return rslt;
10825 }
10826
10827 /* Something went wrong, flag as an error. */
10828 return -1;
10829 }
10830
10831 static void
10832 remote_set_disconnected_tracing (int val)
10833 {
10834 struct remote_state *rs = get_remote_state ();
10835
10836 if (rs->disconnected_tracing)
10837 {
10838 char *reply;
10839
10840 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
10841 putpkt (rs->buf);
10842 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10843 if (*reply == '\0')
10844 error (_("Target does not support this command."));
10845 if (strcmp (reply, "OK") != 0)
10846 error (_("Bogus reply from target: %s"), reply);
10847 }
10848 else if (val)
10849 warning (_("Target does not support disconnected tracing."));
10850 }
10851
10852 static int
10853 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10854 {
10855 struct thread_info *info = find_thread_ptid (ptid);
10856
10857 if (info && info->private)
10858 return info->private->core;
10859 return -1;
10860 }
10861
10862 static void
10863 remote_set_circular_trace_buffer (int val)
10864 {
10865 struct remote_state *rs = get_remote_state ();
10866 char *reply;
10867
10868 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
10869 putpkt (rs->buf);
10870 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10871 if (*reply == '\0')
10872 error (_("Target does not support this command."));
10873 if (strcmp (reply, "OK") != 0)
10874 error (_("Bogus reply from target: %s"), reply);
10875 }
10876
10877 static struct traceframe_info *
10878 remote_traceframe_info (void)
10879 {
10880 char *text;
10881
10882 text = target_read_stralloc (&current_target,
10883 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
10884 if (text != NULL)
10885 {
10886 struct traceframe_info *info;
10887 struct cleanup *back_to = make_cleanup (xfree, text);
10888
10889 info = parse_traceframe_info (text);
10890 do_cleanups (back_to);
10891 return info;
10892 }
10893
10894 return NULL;
10895 }
10896
10897 /* Handle the qTMinFTPILen packet. Returns the minimum length of
10898 instruction on which a fast tracepoint may be placed. Returns -1
10899 if the packet is not supported, and 0 if the minimum instruction
10900 length is unknown. */
10901
10902 static int
10903 remote_get_min_fast_tracepoint_insn_len (void)
10904 {
10905 struct remote_state *rs = get_remote_state ();
10906 char *reply;
10907
10908 /* If we're not debugging a process yet, the IPA can't be
10909 loaded. */
10910 if (!target_has_execution)
10911 return 0;
10912
10913 /* Make sure the remote is pointing at the right process. */
10914 set_general_process ();
10915
10916 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
10917 putpkt (rs->buf);
10918 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10919 if (*reply == '\0')
10920 return -1;
10921 else
10922 {
10923 ULONGEST min_insn_len;
10924
10925 unpack_varlen_hex (reply, &min_insn_len);
10926
10927 return (int) min_insn_len;
10928 }
10929 }
10930
10931 static int
10932 remote_set_trace_notes (char *user, char *notes, char *stop_notes)
10933 {
10934 struct remote_state *rs = get_remote_state ();
10935 char *reply;
10936 char *buf = rs->buf;
10937 char *endbuf = rs->buf + get_remote_packet_size ();
10938 int nbytes;
10939
10940 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
10941 if (user)
10942 {
10943 buf += xsnprintf (buf, endbuf - buf, "user:");
10944 nbytes = bin2hex (user, buf, 0);
10945 buf += 2 * nbytes;
10946 *buf++ = ';';
10947 }
10948 if (notes)
10949 {
10950 buf += xsnprintf (buf, endbuf - buf, "notes:");
10951 nbytes = bin2hex (notes, buf, 0);
10952 buf += 2 * nbytes;
10953 *buf++ = ';';
10954 }
10955 if (stop_notes)
10956 {
10957 buf += xsnprintf (buf, endbuf - buf, "tstop:");
10958 nbytes = bin2hex (stop_notes, buf, 0);
10959 buf += 2 * nbytes;
10960 *buf++ = ';';
10961 }
10962 /* Ensure the buffer is terminated. */
10963 *buf = '\0';
10964
10965 putpkt (rs->buf);
10966 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10967 if (*reply == '\0')
10968 return 0;
10969
10970 if (strcmp (reply, "OK") != 0)
10971 error (_("Bogus reply from target: %s"), reply);
10972
10973 return 1;
10974 }
10975
10976 static int
10977 remote_use_agent (int use)
10978 {
10979 if (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE)
10980 {
10981 struct remote_state *rs = get_remote_state ();
10982
10983 /* If the stub supports QAgent. */
10984 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
10985 putpkt (rs->buf);
10986 getpkt (&rs->buf, &rs->buf_size, 0);
10987
10988 if (strcmp (rs->buf, "OK") == 0)
10989 {
10990 use_agent = use;
10991 return 1;
10992 }
10993 }
10994
10995 return 0;
10996 }
10997
10998 static int
10999 remote_can_use_agent (void)
11000 {
11001 return (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE);
11002 }
11003
11004 static void
11005 init_remote_ops (void)
11006 {
11007 remote_ops.to_shortname = "remote";
11008 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
11009 remote_ops.to_doc =
11010 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11011 Specify the serial device it is connected to\n\
11012 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
11013 remote_ops.to_open = remote_open;
11014 remote_ops.to_close = remote_close;
11015 remote_ops.to_detach = remote_detach;
11016 remote_ops.to_disconnect = remote_disconnect;
11017 remote_ops.to_resume = remote_resume;
11018 remote_ops.to_wait = remote_wait;
11019 remote_ops.to_fetch_registers = remote_fetch_registers;
11020 remote_ops.to_store_registers = remote_store_registers;
11021 remote_ops.to_prepare_to_store = remote_prepare_to_store;
11022 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
11023 remote_ops.to_files_info = remote_files_info;
11024 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
11025 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
11026 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
11027 remote_ops.to_stopped_data_address = remote_stopped_data_address;
11028 remote_ops.to_watchpoint_addr_within_range =
11029 remote_watchpoint_addr_within_range;
11030 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
11031 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
11032 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
11033 remote_ops.to_region_ok_for_hw_watchpoint
11034 = remote_region_ok_for_hw_watchpoint;
11035 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
11036 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
11037 remote_ops.to_kill = remote_kill;
11038 remote_ops.to_load = generic_load;
11039 remote_ops.to_mourn_inferior = remote_mourn;
11040 remote_ops.to_pass_signals = remote_pass_signals;
11041 remote_ops.to_program_signals = remote_program_signals;
11042 remote_ops.to_thread_alive = remote_thread_alive;
11043 remote_ops.to_find_new_threads = remote_threads_info;
11044 remote_ops.to_pid_to_str = remote_pid_to_str;
11045 remote_ops.to_extra_thread_info = remote_threads_extra_info;
11046 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
11047 remote_ops.to_stop = remote_stop;
11048 remote_ops.to_xfer_partial = remote_xfer_partial;
11049 remote_ops.to_rcmd = remote_rcmd;
11050 remote_ops.to_log_command = serial_log_command;
11051 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
11052 remote_ops.to_stratum = process_stratum;
11053 remote_ops.to_has_all_memory = default_child_has_all_memory;
11054 remote_ops.to_has_memory = default_child_has_memory;
11055 remote_ops.to_has_stack = default_child_has_stack;
11056 remote_ops.to_has_registers = default_child_has_registers;
11057 remote_ops.to_has_execution = default_child_has_execution;
11058 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
11059 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
11060 remote_ops.to_magic = OPS_MAGIC;
11061 remote_ops.to_memory_map = remote_memory_map;
11062 remote_ops.to_flash_erase = remote_flash_erase;
11063 remote_ops.to_flash_done = remote_flash_done;
11064 remote_ops.to_read_description = remote_read_description;
11065 remote_ops.to_search_memory = remote_search_memory;
11066 remote_ops.to_can_async_p = remote_can_async_p;
11067 remote_ops.to_is_async_p = remote_is_async_p;
11068 remote_ops.to_async = remote_async;
11069 remote_ops.to_terminal_inferior = remote_terminal_inferior;
11070 remote_ops.to_terminal_ours = remote_terminal_ours;
11071 remote_ops.to_supports_non_stop = remote_supports_non_stop;
11072 remote_ops.to_supports_multi_process = remote_supports_multi_process;
11073 remote_ops.to_supports_disable_randomization
11074 = remote_supports_disable_randomization;
11075 remote_ops.to_fileio_open = remote_hostio_open;
11076 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
11077 remote_ops.to_fileio_pread = remote_hostio_pread;
11078 remote_ops.to_fileio_close = remote_hostio_close;
11079 remote_ops.to_fileio_unlink = remote_hostio_unlink;
11080 remote_ops.to_fileio_readlink = remote_hostio_readlink;
11081 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
11082 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
11083 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
11084 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
11085 remote_ops.to_trace_init = remote_trace_init;
11086 remote_ops.to_download_tracepoint = remote_download_tracepoint;
11087 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
11088 remote_ops.to_download_trace_state_variable
11089 = remote_download_trace_state_variable;
11090 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
11091 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
11092 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
11093 remote_ops.to_trace_start = remote_trace_start;
11094 remote_ops.to_get_trace_status = remote_get_trace_status;
11095 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
11096 remote_ops.to_trace_stop = remote_trace_stop;
11097 remote_ops.to_trace_find = remote_trace_find;
11098 remote_ops.to_get_trace_state_variable_value
11099 = remote_get_trace_state_variable_value;
11100 remote_ops.to_save_trace_data = remote_save_trace_data;
11101 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
11102 remote_ops.to_upload_trace_state_variables
11103 = remote_upload_trace_state_variables;
11104 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
11105 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
11106 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
11107 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
11108 remote_ops.to_set_trace_notes = remote_set_trace_notes;
11109 remote_ops.to_core_of_thread = remote_core_of_thread;
11110 remote_ops.to_verify_memory = remote_verify_memory;
11111 remote_ops.to_get_tib_address = remote_get_tib_address;
11112 remote_ops.to_set_permissions = remote_set_permissions;
11113 remote_ops.to_static_tracepoint_marker_at
11114 = remote_static_tracepoint_marker_at;
11115 remote_ops.to_static_tracepoint_markers_by_strid
11116 = remote_static_tracepoint_markers_by_strid;
11117 remote_ops.to_traceframe_info = remote_traceframe_info;
11118 remote_ops.to_use_agent = remote_use_agent;
11119 remote_ops.to_can_use_agent = remote_can_use_agent;
11120 }
11121
11122 /* Set up the extended remote vector by making a copy of the standard
11123 remote vector and adding to it. */
11124
11125 static void
11126 init_extended_remote_ops (void)
11127 {
11128 extended_remote_ops = remote_ops;
11129
11130 extended_remote_ops.to_shortname = "extended-remote";
11131 extended_remote_ops.to_longname =
11132 "Extended remote serial target in gdb-specific protocol";
11133 extended_remote_ops.to_doc =
11134 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11135 Specify the serial device it is connected to (e.g. /dev/ttya).";
11136 extended_remote_ops.to_open = extended_remote_open;
11137 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
11138 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
11139 extended_remote_ops.to_detach = extended_remote_detach;
11140 extended_remote_ops.to_attach = extended_remote_attach;
11141 extended_remote_ops.to_kill = extended_remote_kill;
11142 extended_remote_ops.to_supports_disable_randomization
11143 = extended_remote_supports_disable_randomization;
11144 }
11145
11146 static int
11147 remote_can_async_p (void)
11148 {
11149 if (!target_async_permitted)
11150 /* We only enable async when the user specifically asks for it. */
11151 return 0;
11152
11153 /* We're async whenever the serial device is. */
11154 return serial_can_async_p (remote_desc);
11155 }
11156
11157 static int
11158 remote_is_async_p (void)
11159 {
11160 if (!target_async_permitted)
11161 /* We only enable async when the user specifically asks for it. */
11162 return 0;
11163
11164 /* We're async whenever the serial device is. */
11165 return serial_is_async_p (remote_desc);
11166 }
11167
11168 /* Pass the SERIAL event on and up to the client. One day this code
11169 will be able to delay notifying the client of an event until the
11170 point where an entire packet has been received. */
11171
11172 static void (*async_client_callback) (enum inferior_event_type event_type,
11173 void *context);
11174 static void *async_client_context;
11175 static serial_event_ftype remote_async_serial_handler;
11176
11177 static void
11178 remote_async_serial_handler (struct serial *scb, void *context)
11179 {
11180 /* Don't propogate error information up to the client. Instead let
11181 the client find out about the error by querying the target. */
11182 async_client_callback (INF_REG_EVENT, async_client_context);
11183 }
11184
11185 static void
11186 remote_async_inferior_event_handler (gdb_client_data data)
11187 {
11188 inferior_event_handler (INF_REG_EVENT, NULL);
11189 }
11190
11191 static void
11192 remote_async_get_pending_events_handler (gdb_client_data data)
11193 {
11194 remote_get_pending_stop_replies ();
11195 }
11196
11197 static void
11198 remote_async (void (*callback) (enum inferior_event_type event_type,
11199 void *context), void *context)
11200 {
11201 if (callback != NULL)
11202 {
11203 serial_async (remote_desc, remote_async_serial_handler, NULL);
11204 async_client_callback = callback;
11205 async_client_context = context;
11206 }
11207 else
11208 serial_async (remote_desc, NULL, NULL);
11209 }
11210
11211 static void
11212 set_remote_cmd (char *args, int from_tty)
11213 {
11214 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
11215 }
11216
11217 static void
11218 show_remote_cmd (char *args, int from_tty)
11219 {
11220 /* We can't just use cmd_show_list here, because we want to skip
11221 the redundant "show remote Z-packet" and the legacy aliases. */
11222 struct cleanup *showlist_chain;
11223 struct cmd_list_element *list = remote_show_cmdlist;
11224 struct ui_out *uiout = current_uiout;
11225
11226 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
11227 for (; list != NULL; list = list->next)
11228 if (strcmp (list->name, "Z-packet") == 0)
11229 continue;
11230 else if (list->type == not_set_cmd)
11231 /* Alias commands are exactly like the original, except they
11232 don't have the normal type. */
11233 continue;
11234 else
11235 {
11236 struct cleanup *option_chain
11237 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
11238
11239 ui_out_field_string (uiout, "name", list->name);
11240 ui_out_text (uiout, ": ");
11241 if (list->type == show_cmd)
11242 do_show_command ((char *) NULL, from_tty, list);
11243 else
11244 cmd_func (list, NULL, from_tty);
11245 /* Close the tuple. */
11246 do_cleanups (option_chain);
11247 }
11248
11249 /* Close the tuple. */
11250 do_cleanups (showlist_chain);
11251 }
11252
11253
11254 /* Function to be called whenever a new objfile (shlib) is detected. */
11255 static void
11256 remote_new_objfile (struct objfile *objfile)
11257 {
11258 if (remote_desc != 0) /* Have a remote connection. */
11259 remote_check_symbols (objfile);
11260 }
11261
11262 /* Pull all the tracepoints defined on the target and create local
11263 data structures representing them. We don't want to create real
11264 tracepoints yet, we don't want to mess up the user's existing
11265 collection. */
11266
11267 static int
11268 remote_upload_tracepoints (struct uploaded_tp **utpp)
11269 {
11270 struct remote_state *rs = get_remote_state ();
11271 char *p;
11272
11273 /* Ask for a first packet of tracepoint definition. */
11274 putpkt ("qTfP");
11275 getpkt (&rs->buf, &rs->buf_size, 0);
11276 p = rs->buf;
11277 while (*p && *p != 'l')
11278 {
11279 parse_tracepoint_definition (p, utpp);
11280 /* Ask for another packet of tracepoint definition. */
11281 putpkt ("qTsP");
11282 getpkt (&rs->buf, &rs->buf_size, 0);
11283 p = rs->buf;
11284 }
11285 return 0;
11286 }
11287
11288 static int
11289 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
11290 {
11291 struct remote_state *rs = get_remote_state ();
11292 char *p;
11293
11294 /* Ask for a first packet of variable definition. */
11295 putpkt ("qTfV");
11296 getpkt (&rs->buf, &rs->buf_size, 0);
11297 p = rs->buf;
11298 while (*p && *p != 'l')
11299 {
11300 parse_tsv_definition (p, utsvp);
11301 /* Ask for another packet of variable definition. */
11302 putpkt ("qTsV");
11303 getpkt (&rs->buf, &rs->buf_size, 0);
11304 p = rs->buf;
11305 }
11306 return 0;
11307 }
11308
11309 void
11310 _initialize_remote (void)
11311 {
11312 struct remote_state *rs;
11313 struct cmd_list_element *cmd;
11314 char *cmd_name;
11315
11316 /* architecture specific data */
11317 remote_gdbarch_data_handle =
11318 gdbarch_data_register_post_init (init_remote_state);
11319 remote_g_packet_data_handle =
11320 gdbarch_data_register_pre_init (remote_g_packet_data_init);
11321
11322 /* Initialize the per-target state. At the moment there is only one
11323 of these, not one per target. Only one target is active at a
11324 time. The default buffer size is unimportant; it will be expanded
11325 whenever a larger buffer is needed. */
11326 rs = get_remote_state_raw ();
11327 rs->buf_size = 400;
11328 rs->buf = xmalloc (rs->buf_size);
11329
11330 init_remote_ops ();
11331 add_target (&remote_ops);
11332
11333 init_extended_remote_ops ();
11334 add_target (&extended_remote_ops);
11335
11336 /* Hook into new objfile notification. */
11337 observer_attach_new_objfile (remote_new_objfile);
11338
11339 /* Set up signal handlers. */
11340 sigint_remote_token =
11341 create_async_signal_handler (async_remote_interrupt, NULL);
11342 sigint_remote_twice_token =
11343 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11344
11345 #if 0
11346 init_remote_threadtests ();
11347 #endif
11348
11349 /* set/show remote ... */
11350
11351 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11352 Remote protocol specific variables\n\
11353 Configure various remote-protocol specific variables such as\n\
11354 the packets being used"),
11355 &remote_set_cmdlist, "set remote ",
11356 0 /* allow-unknown */, &setlist);
11357 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11358 Remote protocol specific variables\n\
11359 Configure various remote-protocol specific variables such as\n\
11360 the packets being used"),
11361 &remote_show_cmdlist, "show remote ",
11362 0 /* allow-unknown */, &showlist);
11363
11364 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11365 Compare section data on target to the exec file.\n\
11366 Argument is a single section name (default: all loaded sections)."),
11367 &cmdlist);
11368
11369 add_cmd ("packet", class_maintenance, packet_command, _("\
11370 Send an arbitrary packet to a remote target.\n\
11371 maintenance packet TEXT\n\
11372 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11373 this command sends the string TEXT to the inferior, and displays the\n\
11374 response packet. GDB supplies the initial `$' character, and the\n\
11375 terminating `#' character and checksum."),
11376 &maintenancelist);
11377
11378 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11379 Set whether to send break if interrupted."), _("\
11380 Show whether to send break if interrupted."), _("\
11381 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11382 set_remotebreak, show_remotebreak,
11383 &setlist, &showlist);
11384 cmd_name = "remotebreak";
11385 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11386 deprecate_cmd (cmd, "set remote interrupt-sequence");
11387 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11388 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11389 deprecate_cmd (cmd, "show remote interrupt-sequence");
11390
11391 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11392 interrupt_sequence_modes, &interrupt_sequence_mode,
11393 _("\
11394 Set interrupt sequence to remote target."), _("\
11395 Show interrupt sequence to remote target."), _("\
11396 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11397 NULL, show_interrupt_sequence,
11398 &remote_set_cmdlist,
11399 &remote_show_cmdlist);
11400
11401 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11402 &interrupt_on_connect, _("\
11403 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11404 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11405 If set, interrupt sequence is sent to remote target."),
11406 NULL, NULL,
11407 &remote_set_cmdlist, &remote_show_cmdlist);
11408
11409 /* Install commands for configuring memory read/write packets. */
11410
11411 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11412 Set the maximum number of bytes per memory write packet (deprecated)."),
11413 &setlist);
11414 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
11415 Show the maximum number of bytes per memory write packet (deprecated)."),
11416 &showlist);
11417 add_cmd ("memory-write-packet-size", no_class,
11418 set_memory_write_packet_size, _("\
11419 Set the maximum number of bytes per memory-write packet.\n\
11420 Specify the number of bytes in a packet or 0 (zero) for the\n\
11421 default packet size. The actual limit is further reduced\n\
11422 dependent on the target. Specify ``fixed'' to disable the\n\
11423 further restriction and ``limit'' to enable that restriction."),
11424 &remote_set_cmdlist);
11425 add_cmd ("memory-read-packet-size", no_class,
11426 set_memory_read_packet_size, _("\
11427 Set the maximum number of bytes per memory-read packet.\n\
11428 Specify the number of bytes in a packet or 0 (zero) for the\n\
11429 default packet size. The actual limit is further reduced\n\
11430 dependent on the target. Specify ``fixed'' to disable the\n\
11431 further restriction and ``limit'' to enable that restriction."),
11432 &remote_set_cmdlist);
11433 add_cmd ("memory-write-packet-size", no_class,
11434 show_memory_write_packet_size,
11435 _("Show the maximum number of bytes per memory-write packet."),
11436 &remote_show_cmdlist);
11437 add_cmd ("memory-read-packet-size", no_class,
11438 show_memory_read_packet_size,
11439 _("Show the maximum number of bytes per memory-read packet."),
11440 &remote_show_cmdlist);
11441
11442 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
11443 &remote_hw_watchpoint_limit, _("\
11444 Set the maximum number of target hardware watchpoints."), _("\
11445 Show the maximum number of target hardware watchpoints."), _("\
11446 Specify a negative limit for unlimited."),
11447 NULL, NULL, /* FIXME: i18n: The maximum
11448 number of target hardware
11449 watchpoints is %s. */
11450 &remote_set_cmdlist, &remote_show_cmdlist);
11451 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
11452 &remote_hw_watchpoint_length_limit, _("\
11453 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
11454 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
11455 Specify a negative limit for unlimited."),
11456 NULL, NULL, /* FIXME: i18n: The maximum
11457 length (in bytes) of a target
11458 hardware watchpoint is %s. */
11459 &remote_set_cmdlist, &remote_show_cmdlist);
11460 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
11461 &remote_hw_breakpoint_limit, _("\
11462 Set the maximum number of target hardware breakpoints."), _("\
11463 Show the maximum number of target hardware breakpoints."), _("\
11464 Specify a negative limit for unlimited."),
11465 NULL, NULL, /* FIXME: i18n: The maximum
11466 number of target hardware
11467 breakpoints is %s. */
11468 &remote_set_cmdlist, &remote_show_cmdlist);
11469
11470 add_setshow_uinteger_cmd ("remoteaddresssize", class_obscure,
11471 &remote_address_size, _("\
11472 Set the maximum size of the address (in bits) in a memory packet."), _("\
11473 Show the maximum size of the address (in bits) in a memory packet."), NULL,
11474 NULL,
11475 NULL, /* FIXME: i18n: */
11476 &setlist, &showlist);
11477
11478 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
11479 "X", "binary-download", 1);
11480
11481 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
11482 "vCont", "verbose-resume", 0);
11483
11484 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
11485 "QPassSignals", "pass-signals", 0);
11486
11487 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
11488 "QProgramSignals", "program-signals", 0);
11489
11490 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
11491 "qSymbol", "symbol-lookup", 0);
11492
11493 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
11494 "P", "set-register", 1);
11495
11496 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
11497 "p", "fetch-register", 1);
11498
11499 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
11500 "Z0", "software-breakpoint", 0);
11501
11502 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
11503 "Z1", "hardware-breakpoint", 0);
11504
11505 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
11506 "Z2", "write-watchpoint", 0);
11507
11508 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
11509 "Z3", "read-watchpoint", 0);
11510
11511 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
11512 "Z4", "access-watchpoint", 0);
11513
11514 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
11515 "qXfer:auxv:read", "read-aux-vector", 0);
11516
11517 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
11518 "qXfer:features:read", "target-features", 0);
11519
11520 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
11521 "qXfer:libraries:read", "library-info", 0);
11522
11523 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
11524 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
11525
11526 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
11527 "qXfer:memory-map:read", "memory-map", 0);
11528
11529 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
11530 "qXfer:spu:read", "read-spu-object", 0);
11531
11532 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
11533 "qXfer:spu:write", "write-spu-object", 0);
11534
11535 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
11536 "qXfer:osdata:read", "osdata", 0);
11537
11538 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
11539 "qXfer:threads:read", "threads", 0);
11540
11541 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
11542 "qXfer:siginfo:read", "read-siginfo-object", 0);
11543
11544 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
11545 "qXfer:siginfo:write", "write-siginfo-object", 0);
11546
11547 add_packet_config_cmd
11548 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
11549 "qXfer:trace-frame-info:read", "traceframe-info", 0);
11550
11551 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
11552 "qXfer:uib:read", "unwind-info-block", 0);
11553
11554 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
11555 "qGetTLSAddr", "get-thread-local-storage-address",
11556 0);
11557
11558 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
11559 "qGetTIBAddr", "get-thread-information-block-address",
11560 0);
11561
11562 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
11563 "bc", "reverse-continue", 0);
11564
11565 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
11566 "bs", "reverse-step", 0);
11567
11568 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
11569 "qSupported", "supported-packets", 0);
11570
11571 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
11572 "qSearch:memory", "search-memory", 0);
11573
11574 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
11575 "vFile:open", "hostio-open", 0);
11576
11577 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
11578 "vFile:pread", "hostio-pread", 0);
11579
11580 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
11581 "vFile:pwrite", "hostio-pwrite", 0);
11582
11583 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
11584 "vFile:close", "hostio-close", 0);
11585
11586 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
11587 "vFile:unlink", "hostio-unlink", 0);
11588
11589 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
11590 "vFile:readlink", "hostio-readlink", 0);
11591
11592 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
11593 "vAttach", "attach", 0);
11594
11595 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
11596 "vRun", "run", 0);
11597
11598 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
11599 "QStartNoAckMode", "noack", 0);
11600
11601 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
11602 "vKill", "kill", 0);
11603
11604 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
11605 "qAttached", "query-attached", 0);
11606
11607 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
11608 "ConditionalTracepoints",
11609 "conditional-tracepoints", 0);
11610
11611 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
11612 "ConditionalBreakpoints",
11613 "conditional-breakpoints", 0);
11614
11615 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
11616 "BreakpointCommands",
11617 "breakpoint-commands", 0);
11618
11619 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
11620 "FastTracepoints", "fast-tracepoints", 0);
11621
11622 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
11623 "TracepointSource", "TracepointSource", 0);
11624
11625 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
11626 "QAllow", "allow", 0);
11627
11628 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
11629 "StaticTracepoints", "static-tracepoints", 0);
11630
11631 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
11632 "InstallInTrace", "install-in-trace", 0);
11633
11634 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
11635 "qXfer:statictrace:read", "read-sdata-object", 0);
11636
11637 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
11638 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
11639
11640 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
11641 "QDisableRandomization", "disable-randomization", 0);
11642
11643 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
11644 "QAgent", "agent", 0);
11645
11646 /* Keep the old ``set remote Z-packet ...'' working. Each individual
11647 Z sub-packet has its own set and show commands, but users may
11648 have sets to this variable in their .gdbinit files (or in their
11649 documentation). */
11650 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
11651 &remote_Z_packet_detect, _("\
11652 Set use of remote protocol `Z' packets"), _("\
11653 Show use of remote protocol `Z' packets "), _("\
11654 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
11655 packets."),
11656 set_remote_protocol_Z_packet_cmd,
11657 show_remote_protocol_Z_packet_cmd,
11658 /* FIXME: i18n: Use of remote protocol
11659 `Z' packets is %s. */
11660 &remote_set_cmdlist, &remote_show_cmdlist);
11661
11662 add_prefix_cmd ("remote", class_files, remote_command, _("\
11663 Manipulate files on the remote system\n\
11664 Transfer files to and from the remote target system."),
11665 &remote_cmdlist, "remote ",
11666 0 /* allow-unknown */, &cmdlist);
11667
11668 add_cmd ("put", class_files, remote_put_command,
11669 _("Copy a local file to the remote system."),
11670 &remote_cmdlist);
11671
11672 add_cmd ("get", class_files, remote_get_command,
11673 _("Copy a remote file to the local system."),
11674 &remote_cmdlist);
11675
11676 add_cmd ("delete", class_files, remote_delete_command,
11677 _("Delete a remote file."),
11678 &remote_cmdlist);
11679
11680 remote_exec_file = xstrdup ("");
11681 add_setshow_string_noescape_cmd ("exec-file", class_files,
11682 &remote_exec_file, _("\
11683 Set the remote pathname for \"run\""), _("\
11684 Show the remote pathname for \"run\""), NULL, NULL, NULL,
11685 &remote_set_cmdlist, &remote_show_cmdlist);
11686
11687 /* Eventually initialize fileio. See fileio.c */
11688 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
11689
11690 /* Take advantage of the fact that the LWP field is not used, to tag
11691 special ptids with it set to != 0. */
11692 magic_null_ptid = ptid_build (42000, 1, -1);
11693 not_sent_ptid = ptid_build (42000, 1, -2);
11694 any_thread_ptid = ptid_build (42000, 1, 0);
11695
11696 target_buf_size = 2048;
11697 target_buf = xmalloc (target_buf_size);
11698 }
11699