]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44 #include "observer.h"
45 #include "solib.h"
46 #include "cli/cli-decode.h"
47 #include "cli/cli-setshow.h"
48 #include "target-descriptions.h"
49
50 #include <ctype.h>
51 #include <sys/time.h>
52
53 #include "event-loop.h"
54 #include "event-top.h"
55 #include "inf-loop.h"
56
57 #include <signal.h>
58 #include "serial.h"
59
60 #include "gdbcore.h" /* for exec_bfd */
61
62 #include "remote-fileio.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82
83 static void handle_remote_sigint (int);
84 static void handle_remote_sigint_twice (int);
85 static void async_remote_interrupt (gdb_client_data);
86 void async_remote_interrupt_twice (gdb_client_data);
87
88 static void build_remote_gdbarch_data (void);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (void);
93
94 static void remote_fetch_registers (int regno);
95
96 static void remote_resume (ptid_t ptid, int step,
97 enum target_signal siggnal);
98 static void remote_async_resume (ptid_t ptid, int step,
99 enum target_signal siggnal);
100 static void remote_open (char *name, int from_tty);
101 static void remote_async_open (char *name, int from_tty);
102
103 static void extended_remote_open (char *name, int from_tty);
104 static void extended_remote_async_open (char *name, int from_tty);
105
106 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
107 int async_p);
108
109 static void remote_close (int quitting);
110
111 static void remote_store_registers (int regno);
112
113 static void remote_mourn (void);
114 static void remote_async_mourn (void);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (void);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static ptid_t remote_wait (ptid_t ptid,
127 struct target_waitstatus *status);
128 static ptid_t remote_async_wait (ptid_t ptid,
129 struct target_waitstatus *status);
130
131 static void remote_kill (void);
132 static void remote_async_kill (void);
133
134 static int tohex (int nib);
135
136 static void remote_detach (char *args, int from_tty);
137
138 static void remote_interrupt (int signo);
139
140 static void remote_interrupt_twice (int signo);
141
142 static void interrupt_query (void);
143
144 static void set_thread (int, int);
145
146 static int remote_thread_alive (ptid_t);
147
148 static void get_offsets (void);
149
150 static void skip_frame (void);
151
152 static long read_frame (char **buf_p, long *sizeof_buf);
153
154 static int hexnumlen (ULONGEST num);
155
156 static void init_remote_ops (void);
157
158 static void init_extended_remote_ops (void);
159
160 static void remote_stop (void);
161
162 static int ishex (int ch, int *val);
163
164 static int stubhex (int ch);
165
166 static int hexnumstr (char *, ULONGEST);
167
168 static int hexnumnstr (char *, ULONGEST, int);
169
170 static CORE_ADDR remote_address_masked (CORE_ADDR);
171
172 static void print_packet (char *);
173
174 static unsigned long crc32 (unsigned char *, int, unsigned int);
175
176 static void compare_sections_command (char *, int);
177
178 static void packet_command (char *, int);
179
180 static int stub_unpack_int (char *buff, int fieldlength);
181
182 static ptid_t remote_current_thread (ptid_t oldptid);
183
184 static void remote_find_new_threads (void);
185
186 static void record_currthread (int currthread);
187
188 static int fromhex (int a);
189
190 static int hex2bin (const char *hex, gdb_byte *bin, int count);
191
192 static int bin2hex (const gdb_byte *bin, char *hex, int count);
193
194 static int putpkt_binary (char *buf, int cnt);
195
196 static void check_binary_download (CORE_ADDR addr);
197
198 struct packet_config;
199
200 static void show_packet_config_cmd (struct packet_config *config);
201
202 static void update_packet_config (struct packet_config *config);
203
204 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
205 struct cmd_list_element *c);
206
207 static void show_remote_protocol_packet_cmd (struct ui_file *file,
208 int from_tty,
209 struct cmd_list_element *c,
210 const char *value);
211
212 void _initialize_remote (void);
213
214 /* For "set remote" and "show remote". */
215
216 static struct cmd_list_element *remote_set_cmdlist;
217 static struct cmd_list_element *remote_show_cmdlist;
218
219 /* Description of the remote protocol state for the currently
220 connected target. This is per-target state, and independent of the
221 selected architecture. */
222
223 struct remote_state
224 {
225 /* A buffer to use for incoming packets, and its current size. The
226 buffer is grown dynamically for larger incoming packets.
227 Outgoing packets may also be constructed in this buffer.
228 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
229 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
230 packets. */
231 char *buf;
232 long buf_size;
233
234 /* If we negotiated packet size explicitly (and thus can bypass
235 heuristics for the largest packet size that will not overflow
236 a buffer in the stub), this will be set to that packet size.
237 Otherwise zero, meaning to use the guessed size. */
238 long explicit_packet_size;
239 };
240
241 /* This data could be associated with a target, but we do not always
242 have access to the current target when we need it, so for now it is
243 static. This will be fine for as long as only one target is in use
244 at a time. */
245 static struct remote_state remote_state;
246
247 static struct remote_state *
248 get_remote_state_raw (void)
249 {
250 return &remote_state;
251 }
252
253 /* Description of the remote protocol for a given architecture. */
254
255 struct packet_reg
256 {
257 long offset; /* Offset into G packet. */
258 long regnum; /* GDB's internal register number. */
259 LONGEST pnum; /* Remote protocol register number. */
260 int in_g_packet; /* Always part of G packet. */
261 /* long size in bytes; == register_size (current_gdbarch, regnum);
262 at present. */
263 /* char *name; == REGISTER_NAME (regnum); at present. */
264 };
265
266 struct remote_arch_state
267 {
268 /* Description of the remote protocol registers. */
269 long sizeof_g_packet;
270
271 /* Description of the remote protocol registers indexed by REGNUM
272 (making an array NUM_REGS in size). */
273 struct packet_reg *regs;
274
275 /* This is the size (in chars) of the first response to the ``g''
276 packet. It is used as a heuristic when determining the maximum
277 size of memory-read and memory-write packets. A target will
278 typically only reserve a buffer large enough to hold the ``g''
279 packet. The size does not include packet overhead (headers and
280 trailers). */
281 long actual_register_packet_size;
282
283 /* This is the maximum size (in chars) of a non read/write packet.
284 It is also used as a cap on the size of read/write packets. */
285 long remote_packet_size;
286 };
287
288
289 /* Handle for retreving the remote protocol data from gdbarch. */
290 static struct gdbarch_data *remote_gdbarch_data_handle;
291
292 static struct remote_arch_state *
293 get_remote_arch_state (void)
294 {
295 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
296 }
297
298 /* Fetch the global remote target state. */
299
300 static struct remote_state *
301 get_remote_state (void)
302 {
303 /* Make sure that the remote architecture state has been
304 initialized, because doing so might reallocate rs->buf. Any
305 function which calls getpkt also needs to be mindful of changes
306 to rs->buf, but this call limits the number of places which run
307 into trouble. */
308 get_remote_arch_state ();
309
310 return get_remote_state_raw ();
311 }
312
313 static int
314 compare_pnums (const void *lhs_, const void *rhs_)
315 {
316 const struct packet_reg * const *lhs = lhs_;
317 const struct packet_reg * const *rhs = rhs_;
318
319 if ((*lhs)->pnum < (*rhs)->pnum)
320 return -1;
321 else if ((*lhs)->pnum == (*rhs)->pnum)
322 return 0;
323 else
324 return 1;
325 }
326
327 static void *
328 init_remote_state (struct gdbarch *gdbarch)
329 {
330 int regnum, num_remote_regs, offset;
331 struct remote_state *rs = get_remote_state_raw ();
332 struct remote_arch_state *rsa;
333 struct packet_reg **remote_regs;
334
335 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
336
337 /* Assume a 1:1 regnum<->pnum table. */
338 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS, struct packet_reg);
339 for (regnum = 0; regnum < NUM_REGS; regnum++)
340 {
341 struct packet_reg *r = &rsa->regs[regnum];
342 r->pnum = regnum;
343 r->regnum = regnum;
344 }
345
346 /* Define the g/G packet format as the contents of each register
347 with a remote protocol number, in order of ascending protocol
348 number. */
349
350 remote_regs = alloca (NUM_REGS * sizeof (struct packet_reg *));
351 for (num_remote_regs = 0, regnum = 0; regnum < NUM_REGS; regnum++)
352 if (rsa->regs[regnum].pnum != -1)
353 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
354
355 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
356 compare_pnums);
357
358 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
359 {
360 remote_regs[regnum]->in_g_packet = 1;
361 remote_regs[regnum]->offset = offset;
362 offset += register_size (current_gdbarch, remote_regs[regnum]->regnum);
363 }
364
365 /* Record the maximum possible size of the g packet - it may turn out
366 to be smaller. */
367 rsa->sizeof_g_packet = offset;
368
369 /* Default maximum number of characters in a packet body. Many
370 remote stubs have a hardwired buffer size of 400 bytes
371 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
372 as the maximum packet-size to ensure that the packet and an extra
373 NUL character can always fit in the buffer. This stops GDB
374 trashing stubs that try to squeeze an extra NUL into what is
375 already a full buffer (As of 1999-12-04 that was most stubs). */
376 rsa->remote_packet_size = 400 - 1;
377
378 /* This one is filled in when a ``g'' packet is received. */
379 rsa->actual_register_packet_size = 0;
380
381 /* Should rsa->sizeof_g_packet needs more space than the
382 default, adjust the size accordingly. Remember that each byte is
383 encoded as two characters. 32 is the overhead for the packet
384 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
385 (``$NN:G...#NN'') is a better guess, the below has been padded a
386 little. */
387 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
388 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
389
390 /* Make sure that the packet buffer is plenty big enough for
391 this architecture. */
392 if (rs->buf_size < rsa->remote_packet_size)
393 {
394 rs->buf_size = 2 * rsa->remote_packet_size;
395 rs->buf = xrealloc (rs->buf, rs->buf_size);
396 }
397
398 return rsa;
399 }
400
401 /* Return the current allowed size of a remote packet. This is
402 inferred from the current architecture, and should be used to
403 limit the length of outgoing packets. */
404 static long
405 get_remote_packet_size (void)
406 {
407 struct remote_state *rs = get_remote_state ();
408 struct remote_arch_state *rsa = get_remote_arch_state ();
409
410 if (rs->explicit_packet_size)
411 return rs->explicit_packet_size;
412
413 return rsa->remote_packet_size;
414 }
415
416 static struct packet_reg *
417 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
418 {
419 if (regnum < 0 && regnum >= NUM_REGS)
420 return NULL;
421 else
422 {
423 struct packet_reg *r = &rsa->regs[regnum];
424 gdb_assert (r->regnum == regnum);
425 return r;
426 }
427 }
428
429 static struct packet_reg *
430 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
431 {
432 int i;
433 for (i = 0; i < NUM_REGS; i++)
434 {
435 struct packet_reg *r = &rsa->regs[i];
436 if (r->pnum == pnum)
437 return r;
438 }
439 return NULL;
440 }
441
442 /* FIXME: graces/2002-08-08: These variables should eventually be
443 bound to an instance of the target object (as in gdbarch-tdep()),
444 when such a thing exists. */
445
446 /* This is set to the data address of the access causing the target
447 to stop for a watchpoint. */
448 static CORE_ADDR remote_watch_data_address;
449
450 /* This is non-zero if target stopped for a watchpoint. */
451 static int remote_stopped_by_watchpoint_p;
452
453 static struct target_ops remote_ops;
454
455 static struct target_ops extended_remote_ops;
456
457 /* Temporary target ops. Just like the remote_ops and
458 extended_remote_ops, but with asynchronous support. */
459 static struct target_ops remote_async_ops;
460
461 static struct target_ops extended_async_remote_ops;
462
463 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
464 ``forever'' still use the normal timeout mechanism. This is
465 currently used by the ASYNC code to guarentee that target reads
466 during the initial connect always time-out. Once getpkt has been
467 modified to return a timeout indication and, in turn
468 remote_wait()/wait_for_inferior() have gained a timeout parameter
469 this can go away. */
470 static int wait_forever_enabled_p = 1;
471
472
473 /* This variable chooses whether to send a ^C or a break when the user
474 requests program interruption. Although ^C is usually what remote
475 systems expect, and that is the default here, sometimes a break is
476 preferable instead. */
477
478 static int remote_break;
479
480 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
481 remote_open knows that we don't have a file open when the program
482 starts. */
483 static struct serial *remote_desc = NULL;
484
485 /* This variable sets the number of bits in an address that are to be
486 sent in a memory ("M" or "m") packet. Normally, after stripping
487 leading zeros, the entire address would be sent. This variable
488 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
489 initial implementation of remote.c restricted the address sent in
490 memory packets to ``host::sizeof long'' bytes - (typically 32
491 bits). Consequently, for 64 bit targets, the upper 32 bits of an
492 address was never sent. Since fixing this bug may cause a break in
493 some remote targets this variable is principly provided to
494 facilitate backward compatibility. */
495
496 static int remote_address_size;
497
498 /* Tempoary to track who currently owns the terminal. See
499 target_async_terminal_* for more details. */
500
501 static int remote_async_terminal_ours_p;
502
503 \f
504 /* User configurable variables for the number of characters in a
505 memory read/write packet. MIN (rsa->remote_packet_size,
506 rsa->sizeof_g_packet) is the default. Some targets need smaller
507 values (fifo overruns, et.al.) and some users need larger values
508 (speed up transfers). The variables ``preferred_*'' (the user
509 request), ``current_*'' (what was actually set) and ``forced_*''
510 (Positive - a soft limit, negative - a hard limit). */
511
512 struct memory_packet_config
513 {
514 char *name;
515 long size;
516 int fixed_p;
517 };
518
519 /* Compute the current size of a read/write packet. Since this makes
520 use of ``actual_register_packet_size'' the computation is dynamic. */
521
522 static long
523 get_memory_packet_size (struct memory_packet_config *config)
524 {
525 struct remote_state *rs = get_remote_state ();
526 struct remote_arch_state *rsa = get_remote_arch_state ();
527
528 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
529 law?) that some hosts don't cope very well with large alloca()
530 calls. Eventually the alloca() code will be replaced by calls to
531 xmalloc() and make_cleanups() allowing this restriction to either
532 be lifted or removed. */
533 #ifndef MAX_REMOTE_PACKET_SIZE
534 #define MAX_REMOTE_PACKET_SIZE 16384
535 #endif
536 /* NOTE: 20 ensures we can write at least one byte. */
537 #ifndef MIN_REMOTE_PACKET_SIZE
538 #define MIN_REMOTE_PACKET_SIZE 20
539 #endif
540 long what_they_get;
541 if (config->fixed_p)
542 {
543 if (config->size <= 0)
544 what_they_get = MAX_REMOTE_PACKET_SIZE;
545 else
546 what_they_get = config->size;
547 }
548 else
549 {
550 what_they_get = get_remote_packet_size ();
551 /* Limit the packet to the size specified by the user. */
552 if (config->size > 0
553 && what_they_get > config->size)
554 what_they_get = config->size;
555
556 /* Limit it to the size of the targets ``g'' response unless we have
557 permission from the stub to use a larger packet size. */
558 if (rs->explicit_packet_size == 0
559 && rsa->actual_register_packet_size > 0
560 && what_they_get > rsa->actual_register_packet_size)
561 what_they_get = rsa->actual_register_packet_size;
562 }
563 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
564 what_they_get = MAX_REMOTE_PACKET_SIZE;
565 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
566 what_they_get = MIN_REMOTE_PACKET_SIZE;
567
568 /* Make sure there is room in the global buffer for this packet
569 (including its trailing NUL byte). */
570 if (rs->buf_size < what_they_get + 1)
571 {
572 rs->buf_size = 2 * what_they_get;
573 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
574 }
575
576 return what_they_get;
577 }
578
579 /* Update the size of a read/write packet. If they user wants
580 something really big then do a sanity check. */
581
582 static void
583 set_memory_packet_size (char *args, struct memory_packet_config *config)
584 {
585 int fixed_p = config->fixed_p;
586 long size = config->size;
587 if (args == NULL)
588 error (_("Argument required (integer, `fixed' or `limited')."));
589 else if (strcmp (args, "hard") == 0
590 || strcmp (args, "fixed") == 0)
591 fixed_p = 1;
592 else if (strcmp (args, "soft") == 0
593 || strcmp (args, "limit") == 0)
594 fixed_p = 0;
595 else
596 {
597 char *end;
598 size = strtoul (args, &end, 0);
599 if (args == end)
600 error (_("Invalid %s (bad syntax)."), config->name);
601 #if 0
602 /* Instead of explicitly capping the size of a packet to
603 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
604 instead allowed to set the size to something arbitrarily
605 large. */
606 if (size > MAX_REMOTE_PACKET_SIZE)
607 error (_("Invalid %s (too large)."), config->name);
608 #endif
609 }
610 /* Extra checks? */
611 if (fixed_p && !config->fixed_p)
612 {
613 if (! query (_("The target may not be able to correctly handle a %s\n"
614 "of %ld bytes. Change the packet size? "),
615 config->name, size))
616 error (_("Packet size not changed."));
617 }
618 /* Update the config. */
619 config->fixed_p = fixed_p;
620 config->size = size;
621 }
622
623 static void
624 show_memory_packet_size (struct memory_packet_config *config)
625 {
626 printf_filtered (_("The %s is %ld. "), config->name, config->size);
627 if (config->fixed_p)
628 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
629 get_memory_packet_size (config));
630 else
631 printf_filtered (_("Packets are limited to %ld bytes.\n"),
632 get_memory_packet_size (config));
633 }
634
635 static struct memory_packet_config memory_write_packet_config =
636 {
637 "memory-write-packet-size",
638 };
639
640 static void
641 set_memory_write_packet_size (char *args, int from_tty)
642 {
643 set_memory_packet_size (args, &memory_write_packet_config);
644 }
645
646 static void
647 show_memory_write_packet_size (char *args, int from_tty)
648 {
649 show_memory_packet_size (&memory_write_packet_config);
650 }
651
652 static long
653 get_memory_write_packet_size (void)
654 {
655 return get_memory_packet_size (&memory_write_packet_config);
656 }
657
658 static struct memory_packet_config memory_read_packet_config =
659 {
660 "memory-read-packet-size",
661 };
662
663 static void
664 set_memory_read_packet_size (char *args, int from_tty)
665 {
666 set_memory_packet_size (args, &memory_read_packet_config);
667 }
668
669 static void
670 show_memory_read_packet_size (char *args, int from_tty)
671 {
672 show_memory_packet_size (&memory_read_packet_config);
673 }
674
675 static long
676 get_memory_read_packet_size (void)
677 {
678 long size = get_memory_packet_size (&memory_read_packet_config);
679 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
680 extra buffer size argument before the memory read size can be
681 increased beyond this. */
682 if (size > get_remote_packet_size ())
683 size = get_remote_packet_size ();
684 return size;
685 }
686
687 \f
688 /* Generic configuration support for packets the stub optionally
689 supports. Allows the user to specify the use of the packet as well
690 as allowing GDB to auto-detect support in the remote stub. */
691
692 enum packet_support
693 {
694 PACKET_SUPPORT_UNKNOWN = 0,
695 PACKET_ENABLE,
696 PACKET_DISABLE
697 };
698
699 struct packet_config
700 {
701 const char *name;
702 const char *title;
703 enum auto_boolean detect;
704 enum packet_support support;
705 };
706
707 /* Analyze a packet's return value and update the packet config
708 accordingly. */
709
710 enum packet_result
711 {
712 PACKET_ERROR,
713 PACKET_OK,
714 PACKET_UNKNOWN
715 };
716
717 static void
718 update_packet_config (struct packet_config *config)
719 {
720 switch (config->detect)
721 {
722 case AUTO_BOOLEAN_TRUE:
723 config->support = PACKET_ENABLE;
724 break;
725 case AUTO_BOOLEAN_FALSE:
726 config->support = PACKET_DISABLE;
727 break;
728 case AUTO_BOOLEAN_AUTO:
729 config->support = PACKET_SUPPORT_UNKNOWN;
730 break;
731 }
732 }
733
734 static void
735 show_packet_config_cmd (struct packet_config *config)
736 {
737 char *support = "internal-error";
738 switch (config->support)
739 {
740 case PACKET_ENABLE:
741 support = "enabled";
742 break;
743 case PACKET_DISABLE:
744 support = "disabled";
745 break;
746 case PACKET_SUPPORT_UNKNOWN:
747 support = "unknown";
748 break;
749 }
750 switch (config->detect)
751 {
752 case AUTO_BOOLEAN_AUTO:
753 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
754 config->name, support);
755 break;
756 case AUTO_BOOLEAN_TRUE:
757 case AUTO_BOOLEAN_FALSE:
758 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
759 config->name, support);
760 break;
761 }
762 }
763
764 static void
765 add_packet_config_cmd (struct packet_config *config, const char *name,
766 const char *title, int legacy)
767 {
768 char *set_doc;
769 char *show_doc;
770 char *cmd_name;
771
772 config->name = name;
773 config->title = title;
774 config->detect = AUTO_BOOLEAN_AUTO;
775 config->support = PACKET_SUPPORT_UNKNOWN;
776 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
777 name, title);
778 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
779 name, title);
780 /* set/show TITLE-packet {auto,on,off} */
781 cmd_name = xstrprintf ("%s-packet", title);
782 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
783 &config->detect, set_doc, show_doc, NULL, /* help_doc */
784 set_remote_protocol_packet_cmd,
785 show_remote_protocol_packet_cmd,
786 &remote_set_cmdlist, &remote_show_cmdlist);
787 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
788 if (legacy)
789 {
790 char *legacy_name;
791 legacy_name = xstrprintf ("%s-packet", name);
792 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
793 &remote_set_cmdlist);
794 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
795 &remote_show_cmdlist);
796 }
797 }
798
799 static enum packet_result
800 packet_check_result (const char *buf)
801 {
802 if (buf[0] != '\0')
803 {
804 /* The stub recognized the packet request. Check that the
805 operation succeeded. */
806 if (buf[0] == 'E'
807 && isxdigit (buf[1]) && isxdigit (buf[2])
808 && buf[3] == '\0')
809 /* "Enn" - definitly an error. */
810 return PACKET_ERROR;
811
812 /* Always treat "E." as an error. This will be used for
813 more verbose error messages, such as E.memtypes. */
814 if (buf[0] == 'E' && buf[1] == '.')
815 return PACKET_ERROR;
816
817 /* The packet may or may not be OK. Just assume it is. */
818 return PACKET_OK;
819 }
820 else
821 /* The stub does not support the packet. */
822 return PACKET_UNKNOWN;
823 }
824
825 static enum packet_result
826 packet_ok (const char *buf, struct packet_config *config)
827 {
828 enum packet_result result;
829
830 result = packet_check_result (buf);
831 switch (result)
832 {
833 case PACKET_OK:
834 case PACKET_ERROR:
835 /* The stub recognized the packet request. */
836 switch (config->support)
837 {
838 case PACKET_SUPPORT_UNKNOWN:
839 if (remote_debug)
840 fprintf_unfiltered (gdb_stdlog,
841 "Packet %s (%s) is supported\n",
842 config->name, config->title);
843 config->support = PACKET_ENABLE;
844 break;
845 case PACKET_DISABLE:
846 internal_error (__FILE__, __LINE__,
847 _("packet_ok: attempt to use a disabled packet"));
848 break;
849 case PACKET_ENABLE:
850 break;
851 }
852 break;
853 case PACKET_UNKNOWN:
854 /* The stub does not support the packet. */
855 switch (config->support)
856 {
857 case PACKET_ENABLE:
858 if (config->detect == AUTO_BOOLEAN_AUTO)
859 /* If the stub previously indicated that the packet was
860 supported then there is a protocol error.. */
861 error (_("Protocol error: %s (%s) conflicting enabled responses."),
862 config->name, config->title);
863 else
864 /* The user set it wrong. */
865 error (_("Enabled packet %s (%s) not recognized by stub"),
866 config->name, config->title);
867 break;
868 case PACKET_SUPPORT_UNKNOWN:
869 if (remote_debug)
870 fprintf_unfiltered (gdb_stdlog,
871 "Packet %s (%s) is NOT supported\n",
872 config->name, config->title);
873 config->support = PACKET_DISABLE;
874 break;
875 case PACKET_DISABLE:
876 break;
877 }
878 break;
879 }
880
881 return result;
882 }
883
884 enum {
885 PACKET_vCont = 0,
886 PACKET_X,
887 PACKET_qSymbol,
888 PACKET_P,
889 PACKET_p,
890 PACKET_Z0,
891 PACKET_Z1,
892 PACKET_Z2,
893 PACKET_Z3,
894 PACKET_Z4,
895 PACKET_qXfer_auxv,
896 PACKET_qXfer_memory_map,
897 PACKET_qGetTLSAddr,
898 PACKET_qSupported,
899 PACKET_QPassSignals,
900 PACKET_MAX
901 };
902
903 static struct packet_config remote_protocol_packets[PACKET_MAX];
904
905 static void
906 set_remote_protocol_packet_cmd (char *args, int from_tty,
907 struct cmd_list_element *c)
908 {
909 struct packet_config *packet;
910
911 for (packet = remote_protocol_packets;
912 packet < &remote_protocol_packets[PACKET_MAX];
913 packet++)
914 {
915 if (&packet->detect == c->var)
916 {
917 update_packet_config (packet);
918 return;
919 }
920 }
921 internal_error (__FILE__, __LINE__, "Could not find config for %s",
922 c->name);
923 }
924
925 static void
926 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
927 struct cmd_list_element *c,
928 const char *value)
929 {
930 struct packet_config *packet;
931
932 for (packet = remote_protocol_packets;
933 packet < &remote_protocol_packets[PACKET_MAX];
934 packet++)
935 {
936 if (&packet->detect == c->var)
937 {
938 show_packet_config_cmd (packet);
939 return;
940 }
941 }
942 internal_error (__FILE__, __LINE__, "Could not find config for %s",
943 c->name);
944 }
945
946 /* Should we try one of the 'Z' requests? */
947
948 enum Z_packet_type
949 {
950 Z_PACKET_SOFTWARE_BP,
951 Z_PACKET_HARDWARE_BP,
952 Z_PACKET_WRITE_WP,
953 Z_PACKET_READ_WP,
954 Z_PACKET_ACCESS_WP,
955 NR_Z_PACKET_TYPES
956 };
957
958 /* For compatibility with older distributions. Provide a ``set remote
959 Z-packet ...'' command that updates all the Z packet types. */
960
961 static enum auto_boolean remote_Z_packet_detect;
962
963 static void
964 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
965 struct cmd_list_element *c)
966 {
967 int i;
968 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
969 {
970 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
971 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
972 }
973 }
974
975 static void
976 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
977 struct cmd_list_element *c,
978 const char *value)
979 {
980 int i;
981 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
982 {
983 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
984 }
985 }
986
987 /* Should we try the 'ThreadInfo' query packet?
988
989 This variable (NOT available to the user: auto-detect only!)
990 determines whether GDB will use the new, simpler "ThreadInfo"
991 query or the older, more complex syntax for thread queries.
992 This is an auto-detect variable (set to true at each connect,
993 and set to false when the target fails to recognize it). */
994
995 static int use_threadinfo_query;
996 static int use_threadextra_query;
997
998 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
999 static struct async_signal_handler *sigint_remote_twice_token;
1000 static struct async_signal_handler *sigint_remote_token;
1001
1002 /* These are pointers to hook functions that may be set in order to
1003 modify resume/wait behavior for a particular architecture. */
1004
1005 void (*deprecated_target_resume_hook) (void);
1006 void (*deprecated_target_wait_loop_hook) (void);
1007 \f
1008
1009
1010 /* These are the threads which we last sent to the remote system.
1011 -1 for all or -2 for not sent yet. */
1012 static int general_thread;
1013 static int continue_thread;
1014
1015 /* Call this function as a result of
1016 1) A halt indication (T packet) containing a thread id
1017 2) A direct query of currthread
1018 3) Successful execution of set thread
1019 */
1020
1021 static void
1022 record_currthread (int currthread)
1023 {
1024 general_thread = currthread;
1025
1026 /* If this is a new thread, add it to GDB's thread list.
1027 If we leave it up to WFI to do this, bad things will happen. */
1028 if (!in_thread_list (pid_to_ptid (currthread)))
1029 {
1030 add_thread (pid_to_ptid (currthread));
1031 ui_out_text (uiout, "[New ");
1032 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1033 ui_out_text (uiout, "]\n");
1034 }
1035 }
1036
1037 static char *last_pass_packet;
1038
1039 /* If 'QPassSignals' is supported, tell the remote stub what signals
1040 it can simply pass through to the inferior without reporting. */
1041
1042 static void
1043 remote_pass_signals (void)
1044 {
1045 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1046 {
1047 char *pass_packet, *p;
1048 int numsigs = (int) TARGET_SIGNAL_LAST;
1049 int count = 0, i;
1050
1051 gdb_assert (numsigs < 256);
1052 for (i = 0; i < numsigs; i++)
1053 {
1054 if (signal_stop_state (i) == 0
1055 && signal_print_state (i) == 0
1056 && signal_pass_state (i) == 1)
1057 count++;
1058 }
1059 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1060 strcpy (pass_packet, "QPassSignals:");
1061 p = pass_packet + strlen (pass_packet);
1062 for (i = 0; i < numsigs; i++)
1063 {
1064 if (signal_stop_state (i) == 0
1065 && signal_print_state (i) == 0
1066 && signal_pass_state (i) == 1)
1067 {
1068 if (i >= 16)
1069 *p++ = tohex (i >> 4);
1070 *p++ = tohex (i & 15);
1071 if (count)
1072 *p++ = ';';
1073 else
1074 break;
1075 count--;
1076 }
1077 }
1078 *p = 0;
1079 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1080 {
1081 struct remote_state *rs = get_remote_state ();
1082 char *buf = rs->buf;
1083
1084 putpkt (pass_packet);
1085 getpkt (&rs->buf, &rs->buf_size, 0);
1086 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1087 if (last_pass_packet)
1088 xfree (last_pass_packet);
1089 last_pass_packet = pass_packet;
1090 }
1091 else
1092 xfree (pass_packet);
1093 }
1094 }
1095
1096 #define MAGIC_NULL_PID 42000
1097
1098 static void
1099 set_thread (int th, int gen)
1100 {
1101 struct remote_state *rs = get_remote_state ();
1102 char *buf = rs->buf;
1103 int state = gen ? general_thread : continue_thread;
1104
1105 if (state == th)
1106 return;
1107
1108 buf[0] = 'H';
1109 buf[1] = gen ? 'g' : 'c';
1110 if (th == MAGIC_NULL_PID)
1111 {
1112 buf[2] = '0';
1113 buf[3] = '\0';
1114 }
1115 else if (th < 0)
1116 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1117 else
1118 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1119 putpkt (buf);
1120 getpkt (&rs->buf, &rs->buf_size, 0);
1121 if (gen)
1122 general_thread = th;
1123 else
1124 continue_thread = th;
1125 }
1126 \f
1127 /* Return nonzero if the thread TH is still alive on the remote system. */
1128
1129 static int
1130 remote_thread_alive (ptid_t ptid)
1131 {
1132 struct remote_state *rs = get_remote_state ();
1133 int tid = PIDGET (ptid);
1134
1135 if (tid < 0)
1136 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1137 else
1138 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1139 putpkt (rs->buf);
1140 getpkt (&rs->buf, &rs->buf_size, 0);
1141 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1142 }
1143
1144 /* About these extended threadlist and threadinfo packets. They are
1145 variable length packets but, the fields within them are often fixed
1146 length. They are redundent enough to send over UDP as is the
1147 remote protocol in general. There is a matching unit test module
1148 in libstub. */
1149
1150 #define OPAQUETHREADBYTES 8
1151
1152 /* a 64 bit opaque identifier */
1153 typedef unsigned char threadref[OPAQUETHREADBYTES];
1154
1155 /* WARNING: This threadref data structure comes from the remote O.S.,
1156 libstub protocol encoding, and remote.c. it is not particularly
1157 changable. */
1158
1159 /* Right now, the internal structure is int. We want it to be bigger.
1160 Plan to fix this.
1161 */
1162
1163 typedef int gdb_threadref; /* Internal GDB thread reference. */
1164
1165 /* gdb_ext_thread_info is an internal GDB data structure which is
1166 equivalent to the reply of the remote threadinfo packet. */
1167
1168 struct gdb_ext_thread_info
1169 {
1170 threadref threadid; /* External form of thread reference. */
1171 int active; /* Has state interesting to GDB?
1172 regs, stack. */
1173 char display[256]; /* Brief state display, name,
1174 blocked/suspended. */
1175 char shortname[32]; /* To be used to name threads. */
1176 char more_display[256]; /* Long info, statistics, queue depth,
1177 whatever. */
1178 };
1179
1180 /* The volume of remote transfers can be limited by submitting
1181 a mask containing bits specifying the desired information.
1182 Use a union of these values as the 'selection' parameter to
1183 get_thread_info. FIXME: Make these TAG names more thread specific.
1184 */
1185
1186 #define TAG_THREADID 1
1187 #define TAG_EXISTS 2
1188 #define TAG_DISPLAY 4
1189 #define TAG_THREADNAME 8
1190 #define TAG_MOREDISPLAY 16
1191
1192 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1193
1194 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1195
1196 static char *unpack_nibble (char *buf, int *val);
1197
1198 static char *pack_nibble (char *buf, int nibble);
1199
1200 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1201
1202 static char *unpack_byte (char *buf, int *value);
1203
1204 static char *pack_int (char *buf, int value);
1205
1206 static char *unpack_int (char *buf, int *value);
1207
1208 static char *unpack_string (char *src, char *dest, int length);
1209
1210 static char *pack_threadid (char *pkt, threadref *id);
1211
1212 static char *unpack_threadid (char *inbuf, threadref *id);
1213
1214 void int_to_threadref (threadref *id, int value);
1215
1216 static int threadref_to_int (threadref *ref);
1217
1218 static void copy_threadref (threadref *dest, threadref *src);
1219
1220 static int threadmatch (threadref *dest, threadref *src);
1221
1222 static char *pack_threadinfo_request (char *pkt, int mode,
1223 threadref *id);
1224
1225 static int remote_unpack_thread_info_response (char *pkt,
1226 threadref *expectedref,
1227 struct gdb_ext_thread_info
1228 *info);
1229
1230
1231 static int remote_get_threadinfo (threadref *threadid,
1232 int fieldset, /*TAG mask */
1233 struct gdb_ext_thread_info *info);
1234
1235 static char *pack_threadlist_request (char *pkt, int startflag,
1236 int threadcount,
1237 threadref *nextthread);
1238
1239 static int parse_threadlist_response (char *pkt,
1240 int result_limit,
1241 threadref *original_echo,
1242 threadref *resultlist,
1243 int *doneflag);
1244
1245 static int remote_get_threadlist (int startflag,
1246 threadref *nextthread,
1247 int result_limit,
1248 int *done,
1249 int *result_count,
1250 threadref *threadlist);
1251
1252 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1253
1254 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1255 void *context, int looplimit);
1256
1257 static int remote_newthread_step (threadref *ref, void *context);
1258
1259 /* Encode 64 bits in 16 chars of hex. */
1260
1261 static const char hexchars[] = "0123456789abcdef";
1262
1263 static int
1264 ishex (int ch, int *val)
1265 {
1266 if ((ch >= 'a') && (ch <= 'f'))
1267 {
1268 *val = ch - 'a' + 10;
1269 return 1;
1270 }
1271 if ((ch >= 'A') && (ch <= 'F'))
1272 {
1273 *val = ch - 'A' + 10;
1274 return 1;
1275 }
1276 if ((ch >= '0') && (ch <= '9'))
1277 {
1278 *val = ch - '0';
1279 return 1;
1280 }
1281 return 0;
1282 }
1283
1284 static int
1285 stubhex (int ch)
1286 {
1287 if (ch >= 'a' && ch <= 'f')
1288 return ch - 'a' + 10;
1289 if (ch >= '0' && ch <= '9')
1290 return ch - '0';
1291 if (ch >= 'A' && ch <= 'F')
1292 return ch - 'A' + 10;
1293 return -1;
1294 }
1295
1296 static int
1297 stub_unpack_int (char *buff, int fieldlength)
1298 {
1299 int nibble;
1300 int retval = 0;
1301
1302 while (fieldlength)
1303 {
1304 nibble = stubhex (*buff++);
1305 retval |= nibble;
1306 fieldlength--;
1307 if (fieldlength)
1308 retval = retval << 4;
1309 }
1310 return retval;
1311 }
1312
1313 char *
1314 unpack_varlen_hex (char *buff, /* packet to parse */
1315 ULONGEST *result)
1316 {
1317 int nibble;
1318 ULONGEST retval = 0;
1319
1320 while (ishex (*buff, &nibble))
1321 {
1322 buff++;
1323 retval = retval << 4;
1324 retval |= nibble & 0x0f;
1325 }
1326 *result = retval;
1327 return buff;
1328 }
1329
1330 static char *
1331 unpack_nibble (char *buf, int *val)
1332 {
1333 ishex (*buf++, val);
1334 return buf;
1335 }
1336
1337 static char *
1338 pack_nibble (char *buf, int nibble)
1339 {
1340 *buf++ = hexchars[(nibble & 0x0f)];
1341 return buf;
1342 }
1343
1344 static char *
1345 pack_hex_byte (char *pkt, int byte)
1346 {
1347 *pkt++ = hexchars[(byte >> 4) & 0xf];
1348 *pkt++ = hexchars[(byte & 0xf)];
1349 return pkt;
1350 }
1351
1352 static char *
1353 unpack_byte (char *buf, int *value)
1354 {
1355 *value = stub_unpack_int (buf, 2);
1356 return buf + 2;
1357 }
1358
1359 static char *
1360 pack_int (char *buf, int value)
1361 {
1362 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1363 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1364 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1365 buf = pack_hex_byte (buf, (value & 0xff));
1366 return buf;
1367 }
1368
1369 static char *
1370 unpack_int (char *buf, int *value)
1371 {
1372 *value = stub_unpack_int (buf, 8);
1373 return buf + 8;
1374 }
1375
1376 #if 0 /* Currently unused, uncomment when needed. */
1377 static char *pack_string (char *pkt, char *string);
1378
1379 static char *
1380 pack_string (char *pkt, char *string)
1381 {
1382 char ch;
1383 int len;
1384
1385 len = strlen (string);
1386 if (len > 200)
1387 len = 200; /* Bigger than most GDB packets, junk??? */
1388 pkt = pack_hex_byte (pkt, len);
1389 while (len-- > 0)
1390 {
1391 ch = *string++;
1392 if ((ch == '\0') || (ch == '#'))
1393 ch = '*'; /* Protect encapsulation. */
1394 *pkt++ = ch;
1395 }
1396 return pkt;
1397 }
1398 #endif /* 0 (unused) */
1399
1400 static char *
1401 unpack_string (char *src, char *dest, int length)
1402 {
1403 while (length--)
1404 *dest++ = *src++;
1405 *dest = '\0';
1406 return src;
1407 }
1408
1409 static char *
1410 pack_threadid (char *pkt, threadref *id)
1411 {
1412 char *limit;
1413 unsigned char *altid;
1414
1415 altid = (unsigned char *) id;
1416 limit = pkt + BUF_THREAD_ID_SIZE;
1417 while (pkt < limit)
1418 pkt = pack_hex_byte (pkt, *altid++);
1419 return pkt;
1420 }
1421
1422
1423 static char *
1424 unpack_threadid (char *inbuf, threadref *id)
1425 {
1426 char *altref;
1427 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1428 int x, y;
1429
1430 altref = (char *) id;
1431
1432 while (inbuf < limit)
1433 {
1434 x = stubhex (*inbuf++);
1435 y = stubhex (*inbuf++);
1436 *altref++ = (x << 4) | y;
1437 }
1438 return inbuf;
1439 }
1440
1441 /* Externally, threadrefs are 64 bits but internally, they are still
1442 ints. This is due to a mismatch of specifications. We would like
1443 to use 64bit thread references internally. This is an adapter
1444 function. */
1445
1446 void
1447 int_to_threadref (threadref *id, int value)
1448 {
1449 unsigned char *scan;
1450
1451 scan = (unsigned char *) id;
1452 {
1453 int i = 4;
1454 while (i--)
1455 *scan++ = 0;
1456 }
1457 *scan++ = (value >> 24) & 0xff;
1458 *scan++ = (value >> 16) & 0xff;
1459 *scan++ = (value >> 8) & 0xff;
1460 *scan++ = (value & 0xff);
1461 }
1462
1463 static int
1464 threadref_to_int (threadref *ref)
1465 {
1466 int i, value = 0;
1467 unsigned char *scan;
1468
1469 scan = *ref;
1470 scan += 4;
1471 i = 4;
1472 while (i-- > 0)
1473 value = (value << 8) | ((*scan++) & 0xff);
1474 return value;
1475 }
1476
1477 static void
1478 copy_threadref (threadref *dest, threadref *src)
1479 {
1480 int i;
1481 unsigned char *csrc, *cdest;
1482
1483 csrc = (unsigned char *) src;
1484 cdest = (unsigned char *) dest;
1485 i = 8;
1486 while (i--)
1487 *cdest++ = *csrc++;
1488 }
1489
1490 static int
1491 threadmatch (threadref *dest, threadref *src)
1492 {
1493 /* Things are broken right now, so just assume we got a match. */
1494 #if 0
1495 unsigned char *srcp, *destp;
1496 int i, result;
1497 srcp = (char *) src;
1498 destp = (char *) dest;
1499
1500 result = 1;
1501 while (i-- > 0)
1502 result &= (*srcp++ == *destp++) ? 1 : 0;
1503 return result;
1504 #endif
1505 return 1;
1506 }
1507
1508 /*
1509 threadid:1, # always request threadid
1510 context_exists:2,
1511 display:4,
1512 unique_name:8,
1513 more_display:16
1514 */
1515
1516 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1517
1518 static char *
1519 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1520 {
1521 *pkt++ = 'q'; /* Info Query */
1522 *pkt++ = 'P'; /* process or thread info */
1523 pkt = pack_int (pkt, mode); /* mode */
1524 pkt = pack_threadid (pkt, id); /* threadid */
1525 *pkt = '\0'; /* terminate */
1526 return pkt;
1527 }
1528
1529 /* These values tag the fields in a thread info response packet. */
1530 /* Tagging the fields allows us to request specific fields and to
1531 add more fields as time goes by. */
1532
1533 #define TAG_THREADID 1 /* Echo the thread identifier. */
1534 #define TAG_EXISTS 2 /* Is this process defined enough to
1535 fetch registers and its stack? */
1536 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1537 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1538 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1539 the process. */
1540
1541 static int
1542 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1543 struct gdb_ext_thread_info *info)
1544 {
1545 struct remote_state *rs = get_remote_state ();
1546 int mask, length;
1547 int tag;
1548 threadref ref;
1549 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1550 int retval = 1;
1551
1552 /* info->threadid = 0; FIXME: implement zero_threadref. */
1553 info->active = 0;
1554 info->display[0] = '\0';
1555 info->shortname[0] = '\0';
1556 info->more_display[0] = '\0';
1557
1558 /* Assume the characters indicating the packet type have been
1559 stripped. */
1560 pkt = unpack_int (pkt, &mask); /* arg mask */
1561 pkt = unpack_threadid (pkt, &ref);
1562
1563 if (mask == 0)
1564 warning (_("Incomplete response to threadinfo request."));
1565 if (!threadmatch (&ref, expectedref))
1566 { /* This is an answer to a different request. */
1567 warning (_("ERROR RMT Thread info mismatch."));
1568 return 0;
1569 }
1570 copy_threadref (&info->threadid, &ref);
1571
1572 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1573
1574 /* Packets are terminated with nulls. */
1575 while ((pkt < limit) && mask && *pkt)
1576 {
1577 pkt = unpack_int (pkt, &tag); /* tag */
1578 pkt = unpack_byte (pkt, &length); /* length */
1579 if (!(tag & mask)) /* Tags out of synch with mask. */
1580 {
1581 warning (_("ERROR RMT: threadinfo tag mismatch."));
1582 retval = 0;
1583 break;
1584 }
1585 if (tag == TAG_THREADID)
1586 {
1587 if (length != 16)
1588 {
1589 warning (_("ERROR RMT: length of threadid is not 16."));
1590 retval = 0;
1591 break;
1592 }
1593 pkt = unpack_threadid (pkt, &ref);
1594 mask = mask & ~TAG_THREADID;
1595 continue;
1596 }
1597 if (tag == TAG_EXISTS)
1598 {
1599 info->active = stub_unpack_int (pkt, length);
1600 pkt += length;
1601 mask = mask & ~(TAG_EXISTS);
1602 if (length > 8)
1603 {
1604 warning (_("ERROR RMT: 'exists' length too long."));
1605 retval = 0;
1606 break;
1607 }
1608 continue;
1609 }
1610 if (tag == TAG_THREADNAME)
1611 {
1612 pkt = unpack_string (pkt, &info->shortname[0], length);
1613 mask = mask & ~TAG_THREADNAME;
1614 continue;
1615 }
1616 if (tag == TAG_DISPLAY)
1617 {
1618 pkt = unpack_string (pkt, &info->display[0], length);
1619 mask = mask & ~TAG_DISPLAY;
1620 continue;
1621 }
1622 if (tag == TAG_MOREDISPLAY)
1623 {
1624 pkt = unpack_string (pkt, &info->more_display[0], length);
1625 mask = mask & ~TAG_MOREDISPLAY;
1626 continue;
1627 }
1628 warning (_("ERROR RMT: unknown thread info tag."));
1629 break; /* Not a tag we know about. */
1630 }
1631 return retval;
1632 }
1633
1634 static int
1635 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1636 struct gdb_ext_thread_info *info)
1637 {
1638 struct remote_state *rs = get_remote_state ();
1639 int result;
1640
1641 pack_threadinfo_request (rs->buf, fieldset, threadid);
1642 putpkt (rs->buf);
1643 getpkt (&rs->buf, &rs->buf_size, 0);
1644 result = remote_unpack_thread_info_response (rs->buf + 2,
1645 threadid, info);
1646 return result;
1647 }
1648
1649 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1650
1651 static char *
1652 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1653 threadref *nextthread)
1654 {
1655 *pkt++ = 'q'; /* info query packet */
1656 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1657 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1658 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1659 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1660 *pkt = '\0';
1661 return pkt;
1662 }
1663
1664 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1665
1666 static int
1667 parse_threadlist_response (char *pkt, int result_limit,
1668 threadref *original_echo, threadref *resultlist,
1669 int *doneflag)
1670 {
1671 struct remote_state *rs = get_remote_state ();
1672 char *limit;
1673 int count, resultcount, done;
1674
1675 resultcount = 0;
1676 /* Assume the 'q' and 'M chars have been stripped. */
1677 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1678 /* done parse past here */
1679 pkt = unpack_byte (pkt, &count); /* count field */
1680 pkt = unpack_nibble (pkt, &done);
1681 /* The first threadid is the argument threadid. */
1682 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1683 while ((count-- > 0) && (pkt < limit))
1684 {
1685 pkt = unpack_threadid (pkt, resultlist++);
1686 if (resultcount++ >= result_limit)
1687 break;
1688 }
1689 if (doneflag)
1690 *doneflag = done;
1691 return resultcount;
1692 }
1693
1694 static int
1695 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1696 int *done, int *result_count, threadref *threadlist)
1697 {
1698 struct remote_state *rs = get_remote_state ();
1699 static threadref echo_nextthread;
1700 int result = 1;
1701
1702 /* Trancate result limit to be smaller than the packet size. */
1703 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1704 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1705
1706 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1707 putpkt (rs->buf);
1708 getpkt (&rs->buf, &rs->buf_size, 0);
1709
1710 *result_count =
1711 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1712 threadlist, done);
1713
1714 if (!threadmatch (&echo_nextthread, nextthread))
1715 {
1716 /* FIXME: This is a good reason to drop the packet. */
1717 /* Possably, there is a duplicate response. */
1718 /* Possabilities :
1719 retransmit immediatly - race conditions
1720 retransmit after timeout - yes
1721 exit
1722 wait for packet, then exit
1723 */
1724 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1725 return 0; /* I choose simply exiting. */
1726 }
1727 if (*result_count <= 0)
1728 {
1729 if (*done != 1)
1730 {
1731 warning (_("RMT ERROR : failed to get remote thread list."));
1732 result = 0;
1733 }
1734 return result; /* break; */
1735 }
1736 if (*result_count > result_limit)
1737 {
1738 *result_count = 0;
1739 warning (_("RMT ERROR: threadlist response longer than requested."));
1740 return 0;
1741 }
1742 return result;
1743 }
1744
1745 /* This is the interface between remote and threads, remotes upper
1746 interface. */
1747
1748 /* remote_find_new_threads retrieves the thread list and for each
1749 thread in the list, looks up the thread in GDB's internal list,
1750 ading the thread if it does not already exist. This involves
1751 getting partial thread lists from the remote target so, polling the
1752 quit_flag is required. */
1753
1754
1755 /* About this many threadisds fit in a packet. */
1756
1757 #define MAXTHREADLISTRESULTS 32
1758
1759 static int
1760 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1761 int looplimit)
1762 {
1763 int done, i, result_count;
1764 int startflag = 1;
1765 int result = 1;
1766 int loopcount = 0;
1767 static threadref nextthread;
1768 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1769
1770 done = 0;
1771 while (!done)
1772 {
1773 if (loopcount++ > looplimit)
1774 {
1775 result = 0;
1776 warning (_("Remote fetch threadlist -infinite loop-."));
1777 break;
1778 }
1779 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1780 &done, &result_count, resultthreadlist))
1781 {
1782 result = 0;
1783 break;
1784 }
1785 /* Clear for later iterations. */
1786 startflag = 0;
1787 /* Setup to resume next batch of thread references, set nextthread. */
1788 if (result_count >= 1)
1789 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1790 i = 0;
1791 while (result_count--)
1792 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1793 break;
1794 }
1795 return result;
1796 }
1797
1798 static int
1799 remote_newthread_step (threadref *ref, void *context)
1800 {
1801 ptid_t ptid;
1802
1803 ptid = pid_to_ptid (threadref_to_int (ref));
1804
1805 if (!in_thread_list (ptid))
1806 add_thread (ptid);
1807 return 1; /* continue iterator */
1808 }
1809
1810 #define CRAZY_MAX_THREADS 1000
1811
1812 static ptid_t
1813 remote_current_thread (ptid_t oldpid)
1814 {
1815 struct remote_state *rs = get_remote_state ();
1816
1817 putpkt ("qC");
1818 getpkt (&rs->buf, &rs->buf_size, 0);
1819 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1820 /* Use strtoul here, so we'll correctly parse values whose highest
1821 bit is set. The protocol carries them as a simple series of
1822 hex digits; in the absence of a sign, strtol will see such
1823 values as positive numbers out of range for signed 'long', and
1824 return LONG_MAX to indicate an overflow. */
1825 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1826 else
1827 return oldpid;
1828 }
1829
1830 /* Find new threads for info threads command.
1831 * Original version, using John Metzler's thread protocol.
1832 */
1833
1834 static void
1835 remote_find_new_threads (void)
1836 {
1837 remote_threadlist_iterator (remote_newthread_step, 0,
1838 CRAZY_MAX_THREADS);
1839 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1840 inferior_ptid = remote_current_thread (inferior_ptid);
1841 }
1842
1843 /*
1844 * Find all threads for info threads command.
1845 * Uses new thread protocol contributed by Cisco.
1846 * Falls back and attempts to use the older method (above)
1847 * if the target doesn't respond to the new method.
1848 */
1849
1850 static void
1851 remote_threads_info (void)
1852 {
1853 struct remote_state *rs = get_remote_state ();
1854 char *bufp;
1855 int tid;
1856
1857 if (remote_desc == 0) /* paranoia */
1858 error (_("Command can only be used when connected to the remote target."));
1859
1860 if (use_threadinfo_query)
1861 {
1862 putpkt ("qfThreadInfo");
1863 getpkt (&rs->buf, &rs->buf_size, 0);
1864 bufp = rs->buf;
1865 if (bufp[0] != '\0') /* q packet recognized */
1866 {
1867 while (*bufp++ == 'm') /* reply contains one or more TID */
1868 {
1869 do
1870 {
1871 /* Use strtoul here, so we'll correctly parse values
1872 whose highest bit is set. The protocol carries
1873 them as a simple series of hex digits; in the
1874 absence of a sign, strtol will see such values as
1875 positive numbers out of range for signed 'long',
1876 and return LONG_MAX to indicate an overflow. */
1877 tid = strtoul (bufp, &bufp, 16);
1878 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1879 add_thread (pid_to_ptid (tid));
1880 }
1881 while (*bufp++ == ','); /* comma-separated list */
1882 putpkt ("qsThreadInfo");
1883 getpkt (&rs->buf, &rs->buf_size, 0);
1884 bufp = rs->buf;
1885 }
1886 return; /* done */
1887 }
1888 }
1889
1890 /* Else fall back to old method based on jmetzler protocol. */
1891 use_threadinfo_query = 0;
1892 remote_find_new_threads ();
1893 return;
1894 }
1895
1896 /*
1897 * Collect a descriptive string about the given thread.
1898 * The target may say anything it wants to about the thread
1899 * (typically info about its blocked / runnable state, name, etc.).
1900 * This string will appear in the info threads display.
1901 *
1902 * Optional: targets are not required to implement this function.
1903 */
1904
1905 static char *
1906 remote_threads_extra_info (struct thread_info *tp)
1907 {
1908 struct remote_state *rs = get_remote_state ();
1909 int result;
1910 int set;
1911 threadref id;
1912 struct gdb_ext_thread_info threadinfo;
1913 static char display_buf[100]; /* arbitrary... */
1914 int n = 0; /* position in display_buf */
1915
1916 if (remote_desc == 0) /* paranoia */
1917 internal_error (__FILE__, __LINE__,
1918 _("remote_threads_extra_info"));
1919
1920 if (use_threadextra_query)
1921 {
1922 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1923 PIDGET (tp->ptid));
1924 putpkt (rs->buf);
1925 getpkt (&rs->buf, &rs->buf_size, 0);
1926 if (rs->buf[0] != 0)
1927 {
1928 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1929 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1930 display_buf [result] = '\0';
1931 return display_buf;
1932 }
1933 }
1934
1935 /* If the above query fails, fall back to the old method. */
1936 use_threadextra_query = 0;
1937 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1938 | TAG_MOREDISPLAY | TAG_DISPLAY;
1939 int_to_threadref (&id, PIDGET (tp->ptid));
1940 if (remote_get_threadinfo (&id, set, &threadinfo))
1941 if (threadinfo.active)
1942 {
1943 if (*threadinfo.shortname)
1944 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1945 " Name: %s,", threadinfo.shortname);
1946 if (*threadinfo.display)
1947 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1948 " State: %s,", threadinfo.display);
1949 if (*threadinfo.more_display)
1950 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1951 " Priority: %s", threadinfo.more_display);
1952
1953 if (n > 0)
1954 {
1955 /* For purely cosmetic reasons, clear up trailing commas. */
1956 if (',' == display_buf[n-1])
1957 display_buf[n-1] = ' ';
1958 return display_buf;
1959 }
1960 }
1961 return NULL;
1962 }
1963 \f
1964
1965 /* Restart the remote side; this is an extended protocol operation. */
1966
1967 static void
1968 extended_remote_restart (void)
1969 {
1970 struct remote_state *rs = get_remote_state ();
1971
1972 /* Send the restart command; for reasons I don't understand the
1973 remote side really expects a number after the "R". */
1974 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1975 putpkt (rs->buf);
1976
1977 remote_fileio_reset ();
1978
1979 /* Now query for status so this looks just like we restarted
1980 gdbserver from scratch. */
1981 putpkt ("?");
1982 getpkt (&rs->buf, &rs->buf_size, 0);
1983 }
1984 \f
1985 /* Clean up connection to a remote debugger. */
1986
1987 static void
1988 remote_close (int quitting)
1989 {
1990 if (remote_desc)
1991 serial_close (remote_desc);
1992 remote_desc = NULL;
1993 }
1994
1995 /* Query the remote side for the text, data and bss offsets. */
1996
1997 static void
1998 get_offsets (void)
1999 {
2000 struct remote_state *rs = get_remote_state ();
2001 char *buf;
2002 char *ptr;
2003 int lose;
2004 CORE_ADDR text_addr, data_addr, bss_addr;
2005 struct section_offsets *offs;
2006
2007 putpkt ("qOffsets");
2008 getpkt (&rs->buf, &rs->buf_size, 0);
2009 buf = rs->buf;
2010
2011 if (buf[0] == '\000')
2012 return; /* Return silently. Stub doesn't support
2013 this command. */
2014 if (buf[0] == 'E')
2015 {
2016 warning (_("Remote failure reply: %s"), buf);
2017 return;
2018 }
2019
2020 /* Pick up each field in turn. This used to be done with scanf, but
2021 scanf will make trouble if CORE_ADDR size doesn't match
2022 conversion directives correctly. The following code will work
2023 with any size of CORE_ADDR. */
2024 text_addr = data_addr = bss_addr = 0;
2025 ptr = buf;
2026 lose = 0;
2027
2028 if (strncmp (ptr, "Text=", 5) == 0)
2029 {
2030 ptr += 5;
2031 /* Don't use strtol, could lose on big values. */
2032 while (*ptr && *ptr != ';')
2033 text_addr = (text_addr << 4) + fromhex (*ptr++);
2034 }
2035 else
2036 lose = 1;
2037
2038 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
2039 {
2040 ptr += 6;
2041 while (*ptr && *ptr != ';')
2042 data_addr = (data_addr << 4) + fromhex (*ptr++);
2043 }
2044 else
2045 lose = 1;
2046
2047 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2048 {
2049 ptr += 5;
2050 while (*ptr && *ptr != ';')
2051 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2052 }
2053 else
2054 lose = 1;
2055
2056 if (lose)
2057 error (_("Malformed response to offset query, %s"), buf);
2058
2059 if (symfile_objfile == NULL)
2060 return;
2061
2062 offs = ((struct section_offsets *)
2063 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2064 memcpy (offs, symfile_objfile->section_offsets,
2065 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2066
2067 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2068
2069 /* This is a temporary kludge to force data and bss to use the same offsets
2070 because that's what nlmconv does now. The real solution requires changes
2071 to the stub and remote.c that I don't have time to do right now. */
2072
2073 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2074 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2075
2076 objfile_relocate (symfile_objfile, offs);
2077 }
2078
2079 /* Stub for catch_exception. */
2080
2081 static void
2082 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2083 {
2084 int from_tty = * (int *) from_tty_p;
2085
2086 immediate_quit++; /* Allow user to interrupt it. */
2087
2088 /* Ack any packet which the remote side has already sent. */
2089 serial_write (remote_desc, "+", 1);
2090
2091 /* Let the stub know that we want it to return the thread. */
2092 set_thread (-1, 0);
2093
2094 inferior_ptid = remote_current_thread (inferior_ptid);
2095
2096 get_offsets (); /* Get text, data & bss offsets. */
2097
2098 putpkt ("?"); /* Initiate a query from remote machine. */
2099 immediate_quit--;
2100
2101 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2102 }
2103
2104 /* Open a connection to a remote debugger.
2105 NAME is the filename used for communication. */
2106
2107 static void
2108 remote_open (char *name, int from_tty)
2109 {
2110 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2111 }
2112
2113 /* Just like remote_open, but with asynchronous support. */
2114 static void
2115 remote_async_open (char *name, int from_tty)
2116 {
2117 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2118 }
2119
2120 /* Open a connection to a remote debugger using the extended
2121 remote gdb protocol. NAME is the filename used for communication. */
2122
2123 static void
2124 extended_remote_open (char *name, int from_tty)
2125 {
2126 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2127 0 /* async_p */);
2128 }
2129
2130 /* Just like extended_remote_open, but with asynchronous support. */
2131 static void
2132 extended_remote_async_open (char *name, int from_tty)
2133 {
2134 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2135 1 /*extended_p */, 1 /* async_p */);
2136 }
2137
2138 /* Generic code for opening a connection to a remote target. */
2139
2140 static void
2141 init_all_packet_configs (void)
2142 {
2143 int i;
2144 for (i = 0; i < PACKET_MAX; i++)
2145 update_packet_config (&remote_protocol_packets[i]);
2146 }
2147
2148 /* Symbol look-up. */
2149
2150 static void
2151 remote_check_symbols (struct objfile *objfile)
2152 {
2153 struct remote_state *rs = get_remote_state ();
2154 char *msg, *reply, *tmp;
2155 struct minimal_symbol *sym;
2156 int end;
2157
2158 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2159 return;
2160
2161 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2162 because we need both at the same time. */
2163 msg = alloca (get_remote_packet_size ());
2164
2165 /* Invite target to request symbol lookups. */
2166
2167 putpkt ("qSymbol::");
2168 getpkt (&rs->buf, &rs->buf_size, 0);
2169 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2170 reply = rs->buf;
2171
2172 while (strncmp (reply, "qSymbol:", 8) == 0)
2173 {
2174 tmp = &reply[8];
2175 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2176 msg[end] = '\0';
2177 sym = lookup_minimal_symbol (msg, NULL, NULL);
2178 if (sym == NULL)
2179 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2180 else
2181 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2182 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2183 &reply[8]);
2184 putpkt (msg);
2185 getpkt (&rs->buf, &rs->buf_size, 0);
2186 reply = rs->buf;
2187 }
2188 }
2189
2190 static struct serial *
2191 remote_serial_open (char *name)
2192 {
2193 static int udp_warning = 0;
2194
2195 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2196 of in ser-tcp.c, because it is the remote protocol assuming that the
2197 serial connection is reliable and not the serial connection promising
2198 to be. */
2199 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2200 {
2201 warning (_("\
2202 The remote protocol may be unreliable over UDP.\n\
2203 Some events may be lost, rendering further debugging impossible."));
2204 udp_warning = 1;
2205 }
2206
2207 return serial_open (name);
2208 }
2209
2210 /* This type describes each known response to the qSupported
2211 packet. */
2212 struct protocol_feature
2213 {
2214 /* The name of this protocol feature. */
2215 const char *name;
2216
2217 /* The default for this protocol feature. */
2218 enum packet_support default_support;
2219
2220 /* The function to call when this feature is reported, or after
2221 qSupported processing if the feature is not supported.
2222 The first argument points to this structure. The second
2223 argument indicates whether the packet requested support be
2224 enabled, disabled, or probed (or the default, if this function
2225 is being called at the end of processing and this feature was
2226 not reported). The third argument may be NULL; if not NULL, it
2227 is a NUL-terminated string taken from the packet following
2228 this feature's name and an equals sign. */
2229 void (*func) (const struct protocol_feature *, enum packet_support,
2230 const char *);
2231
2232 /* The corresponding packet for this feature. Only used if
2233 FUNC is remote_supported_packet. */
2234 int packet;
2235 };
2236
2237 static void
2238 remote_supported_packet (const struct protocol_feature *feature,
2239 enum packet_support support,
2240 const char *argument)
2241 {
2242 if (argument)
2243 {
2244 warning (_("Remote qSupported response supplied an unexpected value for"
2245 " \"%s\"."), feature->name);
2246 return;
2247 }
2248
2249 if (remote_protocol_packets[feature->packet].support
2250 == PACKET_SUPPORT_UNKNOWN)
2251 remote_protocol_packets[feature->packet].support = support;
2252 }
2253
2254 static void
2255 remote_packet_size (const struct protocol_feature *feature,
2256 enum packet_support support, const char *value)
2257 {
2258 struct remote_state *rs = get_remote_state ();
2259
2260 int packet_size;
2261 char *value_end;
2262
2263 if (support != PACKET_ENABLE)
2264 return;
2265
2266 if (value == NULL || *value == '\0')
2267 {
2268 warning (_("Remote target reported \"%s\" without a size."),
2269 feature->name);
2270 return;
2271 }
2272
2273 errno = 0;
2274 packet_size = strtol (value, &value_end, 16);
2275 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2276 {
2277 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2278 feature->name, value);
2279 return;
2280 }
2281
2282 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2283 {
2284 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2285 packet_size, MAX_REMOTE_PACKET_SIZE);
2286 packet_size = MAX_REMOTE_PACKET_SIZE;
2287 }
2288
2289 /* Record the new maximum packet size. */
2290 rs->explicit_packet_size = packet_size;
2291 }
2292
2293 static struct protocol_feature remote_protocol_features[] = {
2294 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2295 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2296 PACKET_qXfer_auxv },
2297 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2298 PACKET_qXfer_memory_map },
2299 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2300 PACKET_QPassSignals },
2301 };
2302
2303 static void
2304 remote_query_supported (void)
2305 {
2306 struct remote_state *rs = get_remote_state ();
2307 char *next;
2308 int i;
2309 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2310
2311 /* The packet support flags are handled differently for this packet
2312 than for most others. We treat an error, a disabled packet, and
2313 an empty response identically: any features which must be reported
2314 to be used will be automatically disabled. An empty buffer
2315 accomplishes this, since that is also the representation for a list
2316 containing no features. */
2317
2318 rs->buf[0] = 0;
2319 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2320 {
2321 putpkt ("qSupported");
2322 getpkt (&rs->buf, &rs->buf_size, 0);
2323
2324 /* If an error occured, warn, but do not return - just reset the
2325 buffer to empty and go on to disable features. */
2326 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2327 == PACKET_ERROR)
2328 {
2329 warning (_("Remote failure reply: %s"), rs->buf);
2330 rs->buf[0] = 0;
2331 }
2332 }
2333
2334 memset (seen, 0, sizeof (seen));
2335
2336 next = rs->buf;
2337 while (*next)
2338 {
2339 enum packet_support is_supported;
2340 char *p, *end, *name_end, *value;
2341
2342 /* First separate out this item from the rest of the packet. If
2343 there's another item after this, we overwrite the separator
2344 (terminated strings are much easier to work with). */
2345 p = next;
2346 end = strchr (p, ';');
2347 if (end == NULL)
2348 {
2349 end = p + strlen (p);
2350 next = end;
2351 }
2352 else
2353 {
2354 *end = '\0';
2355 next = end + 1;
2356
2357 if (end == p)
2358 {
2359 warning (_("empty item in \"qSupported\" response"));
2360 continue;
2361 }
2362 }
2363
2364 name_end = strchr (p, '=');
2365 if (name_end)
2366 {
2367 /* This is a name=value entry. */
2368 is_supported = PACKET_ENABLE;
2369 value = name_end + 1;
2370 *name_end = '\0';
2371 }
2372 else
2373 {
2374 value = NULL;
2375 switch (end[-1])
2376 {
2377 case '+':
2378 is_supported = PACKET_ENABLE;
2379 break;
2380
2381 case '-':
2382 is_supported = PACKET_DISABLE;
2383 break;
2384
2385 case '?':
2386 is_supported = PACKET_SUPPORT_UNKNOWN;
2387 break;
2388
2389 default:
2390 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2391 continue;
2392 }
2393 end[-1] = '\0';
2394 }
2395
2396 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2397 if (strcmp (remote_protocol_features[i].name, p) == 0)
2398 {
2399 const struct protocol_feature *feature;
2400
2401 seen[i] = 1;
2402 feature = &remote_protocol_features[i];
2403 feature->func (feature, is_supported, value);
2404 break;
2405 }
2406 }
2407
2408 /* If we increased the packet size, make sure to increase the global
2409 buffer size also. We delay this until after parsing the entire
2410 qSupported packet, because this is the same buffer we were
2411 parsing. */
2412 if (rs->buf_size < rs->explicit_packet_size)
2413 {
2414 rs->buf_size = rs->explicit_packet_size;
2415 rs->buf = xrealloc (rs->buf, rs->buf_size);
2416 }
2417
2418 /* Handle the defaults for unmentioned features. */
2419 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2420 if (!seen[i])
2421 {
2422 const struct protocol_feature *feature;
2423
2424 feature = &remote_protocol_features[i];
2425 feature->func (feature, feature->default_support, NULL);
2426 }
2427 }
2428
2429
2430 static void
2431 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2432 int extended_p, int async_p)
2433 {
2434 struct remote_state *rs = get_remote_state ();
2435 if (name == 0)
2436 error (_("To open a remote debug connection, you need to specify what\n"
2437 "serial device is attached to the remote system\n"
2438 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2439
2440 /* See FIXME above. */
2441 if (!async_p)
2442 wait_forever_enabled_p = 1;
2443
2444 target_preopen (from_tty);
2445
2446 unpush_target (target);
2447
2448 /* Make sure we send the passed signals list the next time we resume. */
2449 xfree (last_pass_packet);
2450 last_pass_packet = NULL;
2451
2452 remote_fileio_reset ();
2453 reopen_exec_file ();
2454 reread_symbols ();
2455
2456 remote_desc = remote_serial_open (name);
2457 if (!remote_desc)
2458 perror_with_name (name);
2459
2460 if (baud_rate != -1)
2461 {
2462 if (serial_setbaudrate (remote_desc, baud_rate))
2463 {
2464 /* The requested speed could not be set. Error out to
2465 top level after closing remote_desc. Take care to
2466 set remote_desc to NULL to avoid closing remote_desc
2467 more than once. */
2468 serial_close (remote_desc);
2469 remote_desc = NULL;
2470 perror_with_name (name);
2471 }
2472 }
2473
2474 serial_raw (remote_desc);
2475
2476 /* If there is something sitting in the buffer we might take it as a
2477 response to a command, which would be bad. */
2478 serial_flush_input (remote_desc);
2479
2480 if (from_tty)
2481 {
2482 puts_filtered ("Remote debugging using ");
2483 puts_filtered (name);
2484 puts_filtered ("\n");
2485 }
2486 push_target (target); /* Switch to using remote target now. */
2487
2488 /* Reset the target state; these things will be queried either by
2489 remote_query_supported or as they are needed. */
2490 init_all_packet_configs ();
2491 rs->explicit_packet_size = 0;
2492
2493 general_thread = -2;
2494 continue_thread = -2;
2495
2496 /* Probe for ability to use "ThreadInfo" query, as required. */
2497 use_threadinfo_query = 1;
2498 use_threadextra_query = 1;
2499
2500 /* The first packet we send to the target is the optional "supported
2501 packets" request. If the target can answer this, it will tell us
2502 which later probes to skip. */
2503 remote_query_supported ();
2504
2505 /* Next, if the target can specify a description, read it. We do
2506 this before anything involving memory or registers. */
2507 target_find_description ();
2508
2509 /* Without this, some commands which require an active target (such
2510 as kill) won't work. This variable serves (at least) double duty
2511 as both the pid of the target process (if it has such), and as a
2512 flag indicating that a target is active. These functions should
2513 be split out into seperate variables, especially since GDB will
2514 someday have a notion of debugging several processes. */
2515
2516 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2517
2518 if (async_p)
2519 {
2520 /* With this target we start out by owning the terminal. */
2521 remote_async_terminal_ours_p = 1;
2522
2523 /* FIXME: cagney/1999-09-23: During the initial connection it is
2524 assumed that the target is already ready and able to respond to
2525 requests. Unfortunately remote_start_remote() eventually calls
2526 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2527 around this. Eventually a mechanism that allows
2528 wait_for_inferior() to expect/get timeouts will be
2529 implemented. */
2530 wait_forever_enabled_p = 0;
2531 }
2532
2533 /* First delete any symbols previously loaded from shared libraries. */
2534 no_shared_libraries (NULL, 0);
2535
2536 /* Start the remote connection. If error() or QUIT, discard this
2537 target (we'd otherwise be in an inconsistent state) and then
2538 propogate the error on up the exception chain. This ensures that
2539 the caller doesn't stumble along blindly assuming that the
2540 function succeeded. The CLI doesn't have this problem but other
2541 UI's, such as MI do.
2542
2543 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2544 this function should return an error indication letting the
2545 caller restore the previous state. Unfortunately the command
2546 ``target remote'' is directly wired to this function making that
2547 impossible. On a positive note, the CLI side of this problem has
2548 been fixed - the function set_cmd_context() makes it possible for
2549 all the ``target ....'' commands to share a common callback
2550 function. See cli-dump.c. */
2551 {
2552 struct gdb_exception ex
2553 = catch_exception (uiout, remote_start_remote, &from_tty,
2554 RETURN_MASK_ALL);
2555 if (ex.reason < 0)
2556 {
2557 pop_target ();
2558 if (async_p)
2559 wait_forever_enabled_p = 1;
2560 throw_exception (ex);
2561 }
2562 }
2563
2564 if (async_p)
2565 wait_forever_enabled_p = 1;
2566
2567 if (extended_p)
2568 {
2569 /* Tell the remote that we are using the extended protocol. */
2570 putpkt ("!");
2571 getpkt (&rs->buf, &rs->buf_size, 0);
2572 }
2573
2574 if (exec_bfd) /* No use without an exec file. */
2575 remote_check_symbols (symfile_objfile);
2576 }
2577
2578 /* This takes a program previously attached to and detaches it. After
2579 this is done, GDB can be used to debug some other program. We
2580 better not have left any breakpoints in the target program or it'll
2581 die when it hits one. */
2582
2583 static void
2584 remote_detach (char *args, int from_tty)
2585 {
2586 struct remote_state *rs = get_remote_state ();
2587
2588 if (args)
2589 error (_("Argument given to \"detach\" when remotely debugging."));
2590
2591 /* Tell the remote target to detach. */
2592 strcpy (rs->buf, "D");
2593 remote_send (&rs->buf, &rs->buf_size);
2594
2595 /* Unregister the file descriptor from the event loop. */
2596 if (target_is_async_p ())
2597 serial_async (remote_desc, NULL, 0);
2598
2599 target_mourn_inferior ();
2600 if (from_tty)
2601 puts_filtered ("Ending remote debugging.\n");
2602 }
2603
2604 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2605
2606 static void
2607 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2608 {
2609 if (args)
2610 error (_("Argument given to \"detach\" when remotely debugging."));
2611
2612 /* Unregister the file descriptor from the event loop. */
2613 if (target_is_async_p ())
2614 serial_async (remote_desc, NULL, 0);
2615
2616 target_mourn_inferior ();
2617 if (from_tty)
2618 puts_filtered ("Ending remote debugging.\n");
2619 }
2620
2621 /* Convert hex digit A to a number. */
2622
2623 static int
2624 fromhex (int a)
2625 {
2626 if (a >= '0' && a <= '9')
2627 return a - '0';
2628 else if (a >= 'a' && a <= 'f')
2629 return a - 'a' + 10;
2630 else if (a >= 'A' && a <= 'F')
2631 return a - 'A' + 10;
2632 else
2633 error (_("Reply contains invalid hex digit %d"), a);
2634 }
2635
2636 static int
2637 hex2bin (const char *hex, gdb_byte *bin, int count)
2638 {
2639 int i;
2640
2641 for (i = 0; i < count; i++)
2642 {
2643 if (hex[0] == 0 || hex[1] == 0)
2644 {
2645 /* Hex string is short, or of uneven length.
2646 Return the count that has been converted so far. */
2647 return i;
2648 }
2649 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2650 hex += 2;
2651 }
2652 return i;
2653 }
2654
2655 /* Convert number NIB to a hex digit. */
2656
2657 static int
2658 tohex (int nib)
2659 {
2660 if (nib < 10)
2661 return '0' + nib;
2662 else
2663 return 'a' + nib - 10;
2664 }
2665
2666 static int
2667 bin2hex (const gdb_byte *bin, char *hex, int count)
2668 {
2669 int i;
2670 /* May use a length, or a nul-terminated string as input. */
2671 if (count == 0)
2672 count = strlen ((char *) bin);
2673
2674 for (i = 0; i < count; i++)
2675 {
2676 *hex++ = tohex ((*bin >> 4) & 0xf);
2677 *hex++ = tohex (*bin++ & 0xf);
2678 }
2679 *hex = 0;
2680 return i;
2681 }
2682 \f
2683 /* Check for the availability of vCont. This function should also check
2684 the response. */
2685
2686 static void
2687 remote_vcont_probe (struct remote_state *rs)
2688 {
2689 char *buf;
2690
2691 strcpy (rs->buf, "vCont?");
2692 putpkt (rs->buf);
2693 getpkt (&rs->buf, &rs->buf_size, 0);
2694 buf = rs->buf;
2695
2696 /* Make sure that the features we assume are supported. */
2697 if (strncmp (buf, "vCont", 5) == 0)
2698 {
2699 char *p = &buf[5];
2700 int support_s, support_S, support_c, support_C;
2701
2702 support_s = 0;
2703 support_S = 0;
2704 support_c = 0;
2705 support_C = 0;
2706 while (p && *p == ';')
2707 {
2708 p++;
2709 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2710 support_s = 1;
2711 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2712 support_S = 1;
2713 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2714 support_c = 1;
2715 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2716 support_C = 1;
2717
2718 p = strchr (p, ';');
2719 }
2720
2721 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2722 BUF will make packet_ok disable the packet. */
2723 if (!support_s || !support_S || !support_c || !support_C)
2724 buf[0] = 0;
2725 }
2726
2727 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2728 }
2729
2730 /* Resume the remote inferior by using a "vCont" packet. The thread
2731 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2732 resumed thread should be single-stepped and/or signalled. If PTID's
2733 PID is -1, then all threads are resumed; the thread to be stepped and/or
2734 signalled is given in the global INFERIOR_PTID. This function returns
2735 non-zero iff it resumes the inferior.
2736
2737 This function issues a strict subset of all possible vCont commands at the
2738 moment. */
2739
2740 static int
2741 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2742 {
2743 struct remote_state *rs = get_remote_state ();
2744 int pid = PIDGET (ptid);
2745 char *buf = NULL, *outbuf;
2746 struct cleanup *old_cleanup;
2747
2748 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2749 remote_vcont_probe (rs);
2750
2751 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2752 return 0;
2753
2754 /* If we could generate a wider range of packets, we'd have to worry
2755 about overflowing BUF. Should there be a generic
2756 "multi-part-packet" packet? */
2757
2758 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2759 {
2760 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2761 don't have any PID numbers the inferior will understand. Make sure
2762 to only send forms that do not specify a PID. */
2763 if (step && siggnal != TARGET_SIGNAL_0)
2764 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2765 else if (step)
2766 outbuf = xstrprintf ("vCont;s");
2767 else if (siggnal != TARGET_SIGNAL_0)
2768 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2769 else
2770 outbuf = xstrprintf ("vCont;c");
2771 }
2772 else if (pid == -1)
2773 {
2774 /* Resume all threads, with preference for INFERIOR_PTID. */
2775 if (step && siggnal != TARGET_SIGNAL_0)
2776 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2777 PIDGET (inferior_ptid));
2778 else if (step)
2779 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2780 else if (siggnal != TARGET_SIGNAL_0)
2781 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2782 PIDGET (inferior_ptid));
2783 else
2784 outbuf = xstrprintf ("vCont;c");
2785 }
2786 else
2787 {
2788 /* Scheduler locking; resume only PTID. */
2789 if (step && siggnal != TARGET_SIGNAL_0)
2790 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2791 else if (step)
2792 outbuf = xstrprintf ("vCont;s:%x", pid);
2793 else if (siggnal != TARGET_SIGNAL_0)
2794 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2795 else
2796 outbuf = xstrprintf ("vCont;c:%x", pid);
2797 }
2798
2799 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2800 old_cleanup = make_cleanup (xfree, outbuf);
2801
2802 putpkt (outbuf);
2803
2804 do_cleanups (old_cleanup);
2805
2806 return 1;
2807 }
2808
2809 /* Tell the remote machine to resume. */
2810
2811 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2812
2813 static int last_sent_step;
2814
2815 static void
2816 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2817 {
2818 struct remote_state *rs = get_remote_state ();
2819 char *buf;
2820 int pid = PIDGET (ptid);
2821
2822 last_sent_signal = siggnal;
2823 last_sent_step = step;
2824
2825 /* A hook for when we need to do something at the last moment before
2826 resumption. */
2827 if (deprecated_target_resume_hook)
2828 (*deprecated_target_resume_hook) ();
2829
2830 /* Update the inferior on signals to silently pass, if they've changed. */
2831 remote_pass_signals ();
2832
2833 /* The vCont packet doesn't need to specify threads via Hc. */
2834 if (remote_vcont_resume (ptid, step, siggnal))
2835 return;
2836
2837 /* All other supported resume packets do use Hc, so call set_thread. */
2838 if (pid == -1)
2839 set_thread (0, 0); /* Run any thread. */
2840 else
2841 set_thread (pid, 0); /* Run this thread. */
2842
2843 buf = rs->buf;
2844 if (siggnal != TARGET_SIGNAL_0)
2845 {
2846 buf[0] = step ? 'S' : 'C';
2847 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2848 buf[2] = tohex (((int) siggnal) & 0xf);
2849 buf[3] = '\0';
2850 }
2851 else
2852 strcpy (buf, step ? "s" : "c");
2853
2854 putpkt (buf);
2855 }
2856
2857 /* Same as remote_resume, but with async support. */
2858 static void
2859 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2860 {
2861 remote_resume (ptid, step, siggnal);
2862
2863 /* We are about to start executing the inferior, let's register it
2864 with the event loop. NOTE: this is the one place where all the
2865 execution commands end up. We could alternatively do this in each
2866 of the execution commands in infcmd.c. */
2867 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2868 into infcmd.c in order to allow inferior function calls to work
2869 NOT asynchronously. */
2870 if (target_can_async_p ())
2871 target_async (inferior_event_handler, 0);
2872 /* Tell the world that the target is now executing. */
2873 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2874 this? Instead, should the client of target just assume (for
2875 async targets) that the target is going to start executing? Is
2876 this information already found in the continuation block? */
2877 if (target_is_async_p ())
2878 target_executing = 1;
2879 }
2880 \f
2881
2882 /* Set up the signal handler for SIGINT, while the target is
2883 executing, ovewriting the 'regular' SIGINT signal handler. */
2884 static void
2885 initialize_sigint_signal_handler (void)
2886 {
2887 sigint_remote_token =
2888 create_async_signal_handler (async_remote_interrupt, NULL);
2889 signal (SIGINT, handle_remote_sigint);
2890 }
2891
2892 /* Signal handler for SIGINT, while the target is executing. */
2893 static void
2894 handle_remote_sigint (int sig)
2895 {
2896 signal (sig, handle_remote_sigint_twice);
2897 sigint_remote_twice_token =
2898 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2899 mark_async_signal_handler_wrapper (sigint_remote_token);
2900 }
2901
2902 /* Signal handler for SIGINT, installed after SIGINT has already been
2903 sent once. It will take effect the second time that the user sends
2904 a ^C. */
2905 static void
2906 handle_remote_sigint_twice (int sig)
2907 {
2908 signal (sig, handle_sigint);
2909 sigint_remote_twice_token =
2910 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2911 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2912 }
2913
2914 /* Perform the real interruption of the target execution, in response
2915 to a ^C. */
2916 static void
2917 async_remote_interrupt (gdb_client_data arg)
2918 {
2919 if (remote_debug)
2920 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2921
2922 target_stop ();
2923 }
2924
2925 /* Perform interrupt, if the first attempt did not succeed. Just give
2926 up on the target alltogether. */
2927 void
2928 async_remote_interrupt_twice (gdb_client_data arg)
2929 {
2930 if (remote_debug)
2931 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2932 /* Do something only if the target was not killed by the previous
2933 cntl-C. */
2934 if (target_executing)
2935 {
2936 interrupt_query ();
2937 signal (SIGINT, handle_remote_sigint);
2938 }
2939 }
2940
2941 /* Reinstall the usual SIGINT handlers, after the target has
2942 stopped. */
2943 static void
2944 cleanup_sigint_signal_handler (void *dummy)
2945 {
2946 signal (SIGINT, handle_sigint);
2947 if (sigint_remote_twice_token)
2948 delete_async_signal_handler (&sigint_remote_twice_token);
2949 if (sigint_remote_token)
2950 delete_async_signal_handler (&sigint_remote_token);
2951 }
2952
2953 /* Send ^C to target to halt it. Target will respond, and send us a
2954 packet. */
2955 static void (*ofunc) (int);
2956
2957 /* The command line interface's stop routine. This function is installed
2958 as a signal handler for SIGINT. The first time a user requests a
2959 stop, we call remote_stop to send a break or ^C. If there is no
2960 response from the target (it didn't stop when the user requested it),
2961 we ask the user if he'd like to detach from the target. */
2962 static void
2963 remote_interrupt (int signo)
2964 {
2965 /* If this doesn't work, try more severe steps. */
2966 signal (signo, remote_interrupt_twice);
2967
2968 if (remote_debug)
2969 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2970
2971 target_stop ();
2972 }
2973
2974 /* The user typed ^C twice. */
2975
2976 static void
2977 remote_interrupt_twice (int signo)
2978 {
2979 signal (signo, ofunc);
2980 interrupt_query ();
2981 signal (signo, remote_interrupt);
2982 }
2983
2984 /* This is the generic stop called via the target vector. When a target
2985 interrupt is requested, either by the command line or the GUI, we
2986 will eventually end up here. */
2987 static void
2988 remote_stop (void)
2989 {
2990 /* Send a break or a ^C, depending on user preference. */
2991 if (remote_debug)
2992 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2993
2994 if (remote_break)
2995 serial_send_break (remote_desc);
2996 else
2997 serial_write (remote_desc, "\003", 1);
2998 }
2999
3000 /* Ask the user what to do when an interrupt is received. */
3001
3002 static void
3003 interrupt_query (void)
3004 {
3005 target_terminal_ours ();
3006
3007 if (query ("Interrupted while waiting for the program.\n\
3008 Give up (and stop debugging it)? "))
3009 {
3010 target_mourn_inferior ();
3011 deprecated_throw_reason (RETURN_QUIT);
3012 }
3013
3014 target_terminal_inferior ();
3015 }
3016
3017 /* Enable/disable target terminal ownership. Most targets can use
3018 terminal groups to control terminal ownership. Remote targets are
3019 different in that explicit transfer of ownership to/from GDB/target
3020 is required. */
3021
3022 static void
3023 remote_async_terminal_inferior (void)
3024 {
3025 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3026 sync_execution here. This function should only be called when
3027 GDB is resuming the inferior in the forground. A background
3028 resume (``run&'') should leave GDB in control of the terminal and
3029 consequently should not call this code. */
3030 if (!sync_execution)
3031 return;
3032 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3033 calls target_terminal_*() idenpotent. The event-loop GDB talking
3034 to an asynchronous target with a synchronous command calls this
3035 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3036 stops trying to transfer the terminal to the target when it
3037 shouldn't this guard can go away. */
3038 if (!remote_async_terminal_ours_p)
3039 return;
3040 delete_file_handler (input_fd);
3041 remote_async_terminal_ours_p = 0;
3042 initialize_sigint_signal_handler ();
3043 /* NOTE: At this point we could also register our selves as the
3044 recipient of all input. Any characters typed could then be
3045 passed on down to the target. */
3046 }
3047
3048 static void
3049 remote_async_terminal_ours (void)
3050 {
3051 /* See FIXME in remote_async_terminal_inferior. */
3052 if (!sync_execution)
3053 return;
3054 /* See FIXME in remote_async_terminal_inferior. */
3055 if (remote_async_terminal_ours_p)
3056 return;
3057 cleanup_sigint_signal_handler (NULL);
3058 add_file_handler (input_fd, stdin_event_handler, 0);
3059 remote_async_terminal_ours_p = 1;
3060 }
3061
3062 /* If nonzero, ignore the next kill. */
3063
3064 int kill_kludge;
3065
3066 void
3067 remote_console_output (char *msg)
3068 {
3069 char *p;
3070
3071 for (p = msg; p[0] && p[1]; p += 2)
3072 {
3073 char tb[2];
3074 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3075 tb[0] = c;
3076 tb[1] = 0;
3077 fputs_unfiltered (tb, gdb_stdtarg);
3078 }
3079 gdb_flush (gdb_stdtarg);
3080 }
3081
3082 /* Wait until the remote machine stops, then return,
3083 storing status in STATUS just as `wait' would.
3084 Returns "pid", which in the case of a multi-threaded
3085 remote OS, is the thread-id. */
3086
3087 static ptid_t
3088 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3089 {
3090 struct remote_state *rs = get_remote_state ();
3091 struct remote_arch_state *rsa = get_remote_arch_state ();
3092 ULONGEST thread_num = -1;
3093 ULONGEST addr;
3094
3095 status->kind = TARGET_WAITKIND_EXITED;
3096 status->value.integer = 0;
3097
3098 while (1)
3099 {
3100 char *buf, *p;
3101
3102 ofunc = signal (SIGINT, remote_interrupt);
3103 getpkt (&rs->buf, &rs->buf_size, 1);
3104 signal (SIGINT, ofunc);
3105
3106 buf = rs->buf;
3107
3108 /* This is a hook for when we need to do something (perhaps the
3109 collection of trace data) every time the target stops. */
3110 if (deprecated_target_wait_loop_hook)
3111 (*deprecated_target_wait_loop_hook) ();
3112
3113 remote_stopped_by_watchpoint_p = 0;
3114
3115 switch (buf[0])
3116 {
3117 case 'E': /* Error of some sort. */
3118 warning (_("Remote failure reply: %s"), buf);
3119 continue;
3120 case 'F': /* File-I/O request. */
3121 remote_fileio_request (buf);
3122 continue;
3123 case 'T': /* Status with PC, SP, FP, ... */
3124 {
3125 gdb_byte regs[MAX_REGISTER_SIZE];
3126
3127 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3128 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3129 ss = signal number
3130 n... = register number
3131 r... = register contents
3132 */
3133 p = &buf[3]; /* after Txx */
3134
3135 while (*p)
3136 {
3137 char *p1;
3138 char *p_temp;
3139 int fieldsize;
3140 LONGEST pnum = 0;
3141
3142 /* If the packet contains a register number save it in
3143 pnum and set p1 to point to the character following
3144 it. Otherwise p1 points to p. */
3145
3146 /* If this packet is an awatch packet, don't parse the
3147 'a' as a register number. */
3148
3149 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3150 {
3151 /* Read the ``P'' register number. */
3152 pnum = strtol (p, &p_temp, 16);
3153 p1 = p_temp;
3154 }
3155 else
3156 p1 = p;
3157
3158 if (p1 == p) /* No register number present here. */
3159 {
3160 p1 = strchr (p, ':');
3161 if (p1 == NULL)
3162 error (_("Malformed packet(a) (missing colon): %s\n\
3163 Packet: '%s'\n"),
3164 p, buf);
3165 if (strncmp (p, "thread", p1 - p) == 0)
3166 {
3167 p_temp = unpack_varlen_hex (++p1, &thread_num);
3168 record_currthread (thread_num);
3169 p = p_temp;
3170 }
3171 else if ((strncmp (p, "watch", p1 - p) == 0)
3172 || (strncmp (p, "rwatch", p1 - p) == 0)
3173 || (strncmp (p, "awatch", p1 - p) == 0))
3174 {
3175 remote_stopped_by_watchpoint_p = 1;
3176 p = unpack_varlen_hex (++p1, &addr);
3177 remote_watch_data_address = (CORE_ADDR)addr;
3178 }
3179 else
3180 {
3181 /* Silently skip unknown optional info. */
3182 p_temp = strchr (p1 + 1, ';');
3183 if (p_temp)
3184 p = p_temp;
3185 }
3186 }
3187 else
3188 {
3189 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3190 p = p1;
3191
3192 if (*p++ != ':')
3193 error (_("Malformed packet(b) (missing colon): %s\n\
3194 Packet: '%s'\n"),
3195 p, buf);
3196
3197 if (reg == NULL)
3198 error (_("Remote sent bad register number %s: %s\n\
3199 Packet: '%s'\n"),
3200 phex_nz (pnum, 0), p, buf);
3201
3202 fieldsize = hex2bin (p, regs,
3203 register_size (current_gdbarch,
3204 reg->regnum));
3205 p += 2 * fieldsize;
3206 if (fieldsize < register_size (current_gdbarch,
3207 reg->regnum))
3208 warning (_("Remote reply is too short: %s"), buf);
3209 regcache_raw_supply (current_regcache,
3210 reg->regnum, regs);
3211 }
3212
3213 if (*p++ != ';')
3214 error (_("Remote register badly formatted: %s\nhere: %s"),
3215 buf, p);
3216 }
3217 }
3218 /* fall through */
3219 case 'S': /* Old style status, just signal only. */
3220 status->kind = TARGET_WAITKIND_STOPPED;
3221 status->value.sig = (enum target_signal)
3222 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3223
3224 if (buf[3] == 'p')
3225 {
3226 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3227 record_currthread (thread_num);
3228 }
3229 goto got_status;
3230 case 'W': /* Target exited. */
3231 {
3232 /* The remote process exited. */
3233 status->kind = TARGET_WAITKIND_EXITED;
3234 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3235 goto got_status;
3236 }
3237 case 'X':
3238 status->kind = TARGET_WAITKIND_SIGNALLED;
3239 status->value.sig = (enum target_signal)
3240 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3241 kill_kludge = 1;
3242
3243 goto got_status;
3244 case 'O': /* Console output. */
3245 remote_console_output (buf + 1);
3246 continue;
3247 case '\0':
3248 if (last_sent_signal != TARGET_SIGNAL_0)
3249 {
3250 /* Zero length reply means that we tried 'S' or 'C' and
3251 the remote system doesn't support it. */
3252 target_terminal_ours_for_output ();
3253 printf_filtered
3254 ("Can't send signals to this remote system. %s not sent.\n",
3255 target_signal_to_name (last_sent_signal));
3256 last_sent_signal = TARGET_SIGNAL_0;
3257 target_terminal_inferior ();
3258
3259 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3260 putpkt ((char *) buf);
3261 continue;
3262 }
3263 /* else fallthrough */
3264 default:
3265 warning (_("Invalid remote reply: %s"), buf);
3266 continue;
3267 }
3268 }
3269 got_status:
3270 if (thread_num != -1)
3271 {
3272 return pid_to_ptid (thread_num);
3273 }
3274 return inferior_ptid;
3275 }
3276
3277 /* Async version of remote_wait. */
3278 static ptid_t
3279 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3280 {
3281 struct remote_state *rs = get_remote_state ();
3282 struct remote_arch_state *rsa = get_remote_arch_state ();
3283 ULONGEST thread_num = -1;
3284 ULONGEST addr;
3285
3286 status->kind = TARGET_WAITKIND_EXITED;
3287 status->value.integer = 0;
3288
3289 remote_stopped_by_watchpoint_p = 0;
3290
3291 while (1)
3292 {
3293 char *buf, *p;
3294
3295 if (!target_is_async_p ())
3296 ofunc = signal (SIGINT, remote_interrupt);
3297 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3298 _never_ wait for ever -> test on target_is_async_p().
3299 However, before we do that we need to ensure that the caller
3300 knows how to take the target into/out of async mode. */
3301 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3302 if (!target_is_async_p ())
3303 signal (SIGINT, ofunc);
3304
3305 buf = rs->buf;
3306
3307 /* This is a hook for when we need to do something (perhaps the
3308 collection of trace data) every time the target stops. */
3309 if (deprecated_target_wait_loop_hook)
3310 (*deprecated_target_wait_loop_hook) ();
3311
3312 switch (buf[0])
3313 {
3314 case 'E': /* Error of some sort. */
3315 warning (_("Remote failure reply: %s"), buf);
3316 continue;
3317 case 'F': /* File-I/O request. */
3318 remote_fileio_request (buf);
3319 continue;
3320 case 'T': /* Status with PC, SP, FP, ... */
3321 {
3322 gdb_byte regs[MAX_REGISTER_SIZE];
3323
3324 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3325 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3326 ss = signal number
3327 n... = register number
3328 r... = register contents
3329 */
3330 p = &buf[3]; /* after Txx */
3331
3332 while (*p)
3333 {
3334 char *p1;
3335 char *p_temp;
3336 int fieldsize;
3337 long pnum = 0;
3338
3339 /* If the packet contains a register number, save it
3340 in pnum and set p1 to point to the character
3341 following it. Otherwise p1 points to p. */
3342
3343 /* If this packet is an awatch packet, don't parse the 'a'
3344 as a register number. */
3345
3346 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3347 {
3348 /* Read the register number. */
3349 pnum = strtol (p, &p_temp, 16);
3350 p1 = p_temp;
3351 }
3352 else
3353 p1 = p;
3354
3355 if (p1 == p) /* No register number present here. */
3356 {
3357 p1 = strchr (p, ':');
3358 if (p1 == NULL)
3359 error (_("Malformed packet(a) (missing colon): %s\n\
3360 Packet: '%s'\n"),
3361 p, buf);
3362 if (strncmp (p, "thread", p1 - p) == 0)
3363 {
3364 p_temp = unpack_varlen_hex (++p1, &thread_num);
3365 record_currthread (thread_num);
3366 p = p_temp;
3367 }
3368 else if ((strncmp (p, "watch", p1 - p) == 0)
3369 || (strncmp (p, "rwatch", p1 - p) == 0)
3370 || (strncmp (p, "awatch", p1 - p) == 0))
3371 {
3372 remote_stopped_by_watchpoint_p = 1;
3373 p = unpack_varlen_hex (++p1, &addr);
3374 remote_watch_data_address = (CORE_ADDR)addr;
3375 }
3376 else
3377 {
3378 /* Silently skip unknown optional info. */
3379 p_temp = strchr (p1 + 1, ';');
3380 if (p_temp)
3381 p = p_temp;
3382 }
3383 }
3384
3385 else
3386 {
3387 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3388 p = p1;
3389 if (*p++ != ':')
3390 error (_("Malformed packet(b) (missing colon): %s\n\
3391 Packet: '%s'\n"),
3392 p, buf);
3393
3394 if (reg == NULL)
3395 error (_("Remote sent bad register number %ld: %s\n\
3396 Packet: '%s'\n"),
3397 pnum, p, buf);
3398
3399 fieldsize = hex2bin (p, regs,
3400 register_size (current_gdbarch,
3401 reg->regnum));
3402 p += 2 * fieldsize;
3403 if (fieldsize < register_size (current_gdbarch,
3404 reg->regnum))
3405 warning (_("Remote reply is too short: %s"), buf);
3406 regcache_raw_supply (current_regcache, reg->regnum, regs);
3407 }
3408
3409 if (*p++ != ';')
3410 error (_("Remote register badly formatted: %s\nhere: %s"),
3411 buf, p);
3412 }
3413 }
3414 /* fall through */
3415 case 'S': /* Old style status, just signal only. */
3416 status->kind = TARGET_WAITKIND_STOPPED;
3417 status->value.sig = (enum target_signal)
3418 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3419
3420 if (buf[3] == 'p')
3421 {
3422 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3423 record_currthread (thread_num);
3424 }
3425 goto got_status;
3426 case 'W': /* Target exited. */
3427 {
3428 /* The remote process exited. */
3429 status->kind = TARGET_WAITKIND_EXITED;
3430 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3431 goto got_status;
3432 }
3433 case 'X':
3434 status->kind = TARGET_WAITKIND_SIGNALLED;
3435 status->value.sig = (enum target_signal)
3436 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3437 kill_kludge = 1;
3438
3439 goto got_status;
3440 case 'O': /* Console output. */
3441 remote_console_output (buf + 1);
3442 /* Return immediately to the event loop. The event loop will
3443 still be waiting on the inferior afterwards. */
3444 status->kind = TARGET_WAITKIND_IGNORE;
3445 goto got_status;
3446 case '\0':
3447 if (last_sent_signal != TARGET_SIGNAL_0)
3448 {
3449 /* Zero length reply means that we tried 'S' or 'C' and
3450 the remote system doesn't support it. */
3451 target_terminal_ours_for_output ();
3452 printf_filtered
3453 ("Can't send signals to this remote system. %s not sent.\n",
3454 target_signal_to_name (last_sent_signal));
3455 last_sent_signal = TARGET_SIGNAL_0;
3456 target_terminal_inferior ();
3457
3458 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3459 putpkt ((char *) buf);
3460 continue;
3461 }
3462 /* else fallthrough */
3463 default:
3464 warning (_("Invalid remote reply: %s"), buf);
3465 continue;
3466 }
3467 }
3468 got_status:
3469 if (thread_num != -1)
3470 {
3471 return pid_to_ptid (thread_num);
3472 }
3473 return inferior_ptid;
3474 }
3475
3476 /* Fetch a single register using a 'p' packet. */
3477
3478 static int
3479 fetch_register_using_p (struct packet_reg *reg)
3480 {
3481 struct remote_state *rs = get_remote_state ();
3482 char *buf, *p;
3483 char regp[MAX_REGISTER_SIZE];
3484 int i;
3485
3486 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3487 return 0;
3488
3489 if (reg->pnum == -1)
3490 return 0;
3491
3492 p = rs->buf;
3493 *p++ = 'p';
3494 p += hexnumstr (p, reg->pnum);
3495 *p++ = '\0';
3496 remote_send (&rs->buf, &rs->buf_size);
3497
3498 buf = rs->buf;
3499
3500 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3501 {
3502 case PACKET_OK:
3503 break;
3504 case PACKET_UNKNOWN:
3505 return 0;
3506 case PACKET_ERROR:
3507 error (_("Could not fetch register \"%s\""),
3508 gdbarch_register_name (current_gdbarch, reg->regnum));
3509 }
3510
3511 /* If this register is unfetchable, tell the regcache. */
3512 if (buf[0] == 'x')
3513 {
3514 regcache_raw_supply (current_regcache, reg->regnum, NULL);
3515 set_register_cached (reg->regnum, -1);
3516 return 1;
3517 }
3518
3519 /* Otherwise, parse and supply the value. */
3520 p = buf;
3521 i = 0;
3522 while (p[0] != 0)
3523 {
3524 if (p[1] == 0)
3525 error (_("fetch_register_using_p: early buf termination"));
3526
3527 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3528 p += 2;
3529 }
3530 regcache_raw_supply (current_regcache, reg->regnum, regp);
3531 return 1;
3532 }
3533
3534 /* Fetch the registers included in the target's 'g' packet. */
3535
3536 static int
3537 send_g_packet (void)
3538 {
3539 struct remote_state *rs = get_remote_state ();
3540 int i, buf_len;
3541 char *p;
3542 char *regs;
3543
3544 sprintf (rs->buf, "g");
3545 remote_send (&rs->buf, &rs->buf_size);
3546
3547 /* We can get out of synch in various cases. If the first character
3548 in the buffer is not a hex character, assume that has happened
3549 and try to fetch another packet to read. */
3550 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3551 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3552 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3553 && rs->buf[0] != 'x') /* New: unavailable register value. */
3554 {
3555 if (remote_debug)
3556 fprintf_unfiltered (gdb_stdlog,
3557 "Bad register packet; fetching a new packet\n");
3558 getpkt (&rs->buf, &rs->buf_size, 0);
3559 }
3560
3561 buf_len = strlen (rs->buf);
3562
3563 /* Sanity check the received packet. */
3564 if (buf_len % 2 != 0)
3565 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3566
3567 return buf_len / 2;
3568 }
3569
3570 static void
3571 process_g_packet (void)
3572 {
3573 struct remote_state *rs = get_remote_state ();
3574 struct remote_arch_state *rsa = get_remote_arch_state ();
3575 int i, buf_len;
3576 char *p;
3577 char *regs;
3578
3579 buf_len = strlen (rs->buf);
3580
3581 /* Further sanity checks, with knowledge of the architecture. */
3582 if (REGISTER_BYTES_OK_P () && !REGISTER_BYTES_OK (buf_len / 2))
3583 error (_("Remote 'g' packet reply is wrong length: %s"), rs->buf);
3584 if (buf_len > 2 * rsa->sizeof_g_packet)
3585 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3586
3587 /* Save the size of the packet sent to us by the target. It is used
3588 as a heuristic when determining the max size of packets that the
3589 target can safely receive. */
3590 if (rsa->actual_register_packet_size == 0)
3591 rsa->actual_register_packet_size = buf_len;
3592
3593 /* If this is smaller than we guessed the 'g' packet would be,
3594 update our records. A 'g' reply that doesn't include a register's
3595 value implies either that the register is not available, or that
3596 the 'p' packet must be used. */
3597 if (buf_len < 2 * rsa->sizeof_g_packet)
3598 {
3599 rsa->sizeof_g_packet = buf_len / 2;
3600
3601 for (i = 0; i < NUM_REGS; i++)
3602 {
3603 if (rsa->regs[i].pnum == -1)
3604 continue;
3605
3606 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3607 rsa->regs[i].in_g_packet = 0;
3608 else
3609 rsa->regs[i].in_g_packet = 1;
3610 }
3611 }
3612
3613 regs = alloca (rsa->sizeof_g_packet);
3614
3615 /* Unimplemented registers read as all bits zero. */
3616 memset (regs, 0, rsa->sizeof_g_packet);
3617
3618 /* Reply describes registers byte by byte, each byte encoded as two
3619 hex characters. Suck them all up, then supply them to the
3620 register cacheing/storage mechanism. */
3621
3622 p = rs->buf;
3623 for (i = 0; i < rsa->sizeof_g_packet; i++)
3624 {
3625 if (p[0] == 0 || p[1] == 0)
3626 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3627 internal_error (__FILE__, __LINE__,
3628 "unexpected end of 'g' packet reply");
3629
3630 if (p[0] == 'x' && p[1] == 'x')
3631 regs[i] = 0; /* 'x' */
3632 else
3633 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3634 p += 2;
3635 }
3636
3637 {
3638 int i;
3639 for (i = 0; i < NUM_REGS; i++)
3640 {
3641 struct packet_reg *r = &rsa->regs[i];
3642 if (r->in_g_packet)
3643 {
3644 if (r->offset * 2 >= strlen (rs->buf))
3645 /* This shouldn't happen - we adjusted in_g_packet above. */
3646 internal_error (__FILE__, __LINE__,
3647 "unexpected end of 'g' packet reply");
3648 else if (rs->buf[r->offset * 2] == 'x')
3649 {
3650 gdb_assert (r->offset * 2 < strlen (rs->buf));
3651 /* The register isn't available, mark it as such (at
3652 the same time setting the value to zero). */
3653 regcache_raw_supply (current_regcache, r->regnum, NULL);
3654 set_register_cached (i, -1);
3655 }
3656 else
3657 regcache_raw_supply (current_regcache, r->regnum,
3658 regs + r->offset);
3659 }
3660 }
3661 }
3662 }
3663
3664 static void
3665 fetch_registers_using_g (void)
3666 {
3667 send_g_packet ();
3668 process_g_packet ();
3669 }
3670
3671 static void
3672 remote_fetch_registers (int regnum)
3673 {
3674 struct remote_state *rs = get_remote_state ();
3675 struct remote_arch_state *rsa = get_remote_arch_state ();
3676 int i;
3677
3678 set_thread (PIDGET (inferior_ptid), 1);
3679
3680 if (regnum >= 0)
3681 {
3682 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3683 gdb_assert (reg != NULL);
3684
3685 /* If this register might be in the 'g' packet, try that first -
3686 we are likely to read more than one register. If this is the
3687 first 'g' packet, we might be overly optimistic about its
3688 contents, so fall back to 'p'. */
3689 if (reg->in_g_packet)
3690 {
3691 fetch_registers_using_g ();
3692 if (reg->in_g_packet)
3693 return;
3694 }
3695
3696 if (fetch_register_using_p (reg))
3697 return;
3698
3699 /* This register is not available. */
3700 regcache_raw_supply (current_regcache, reg->regnum, NULL);
3701 set_register_cached (reg->regnum, -1);
3702
3703 return;
3704 }
3705
3706 fetch_registers_using_g ();
3707
3708 for (i = 0; i < NUM_REGS; i++)
3709 if (!rsa->regs[i].in_g_packet)
3710 if (!fetch_register_using_p (&rsa->regs[i]))
3711 {
3712 /* This register is not available. */
3713 regcache_raw_supply (current_regcache, i, NULL);
3714 set_register_cached (i, -1);
3715 }
3716 }
3717
3718 /* Prepare to store registers. Since we may send them all (using a
3719 'G' request), we have to read out the ones we don't want to change
3720 first. */
3721
3722 static void
3723 remote_prepare_to_store (void)
3724 {
3725 struct remote_arch_state *rsa = get_remote_arch_state ();
3726 int i;
3727 gdb_byte buf[MAX_REGISTER_SIZE];
3728
3729 /* Make sure the entire registers array is valid. */
3730 switch (remote_protocol_packets[PACKET_P].support)
3731 {
3732 case PACKET_DISABLE:
3733 case PACKET_SUPPORT_UNKNOWN:
3734 /* Make sure all the necessary registers are cached. */
3735 for (i = 0; i < NUM_REGS; i++)
3736 if (rsa->regs[i].in_g_packet)
3737 regcache_raw_read (current_regcache, rsa->regs[i].regnum, buf);
3738 break;
3739 case PACKET_ENABLE:
3740 break;
3741 }
3742 }
3743
3744 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3745 packet was not recognized. */
3746
3747 static int
3748 store_register_using_P (struct packet_reg *reg)
3749 {
3750 struct remote_state *rs = get_remote_state ();
3751 struct remote_arch_state *rsa = get_remote_arch_state ();
3752 /* Try storing a single register. */
3753 char *buf = rs->buf;
3754 gdb_byte regp[MAX_REGISTER_SIZE];
3755 char *p;
3756
3757 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3758 return 0;
3759
3760 if (reg->pnum == -1)
3761 return 0;
3762
3763 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3764 p = buf + strlen (buf);
3765 regcache_raw_collect (current_regcache, reg->regnum, regp);
3766 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3767 remote_send (&rs->buf, &rs->buf_size);
3768
3769 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3770 {
3771 case PACKET_OK:
3772 return 1;
3773 case PACKET_ERROR:
3774 error (_("Could not write register \"%s\""),
3775 gdbarch_register_name (current_gdbarch, reg->regnum));
3776 case PACKET_UNKNOWN:
3777 return 0;
3778 default:
3779 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3780 }
3781 }
3782
3783 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3784 contents of the register cache buffer. FIXME: ignores errors. */
3785
3786 static void
3787 store_registers_using_G (void)
3788 {
3789 struct remote_state *rs = get_remote_state ();
3790 struct remote_arch_state *rsa = get_remote_arch_state ();
3791 gdb_byte *regs;
3792 char *p;
3793
3794 /* Extract all the registers in the regcache copying them into a
3795 local buffer. */
3796 {
3797 int i;
3798 regs = alloca (rsa->sizeof_g_packet);
3799 memset (regs, 0, rsa->sizeof_g_packet);
3800 for (i = 0; i < NUM_REGS; i++)
3801 {
3802 struct packet_reg *r = &rsa->regs[i];
3803 if (r->in_g_packet)
3804 regcache_raw_collect (current_regcache, r->regnum, regs + r->offset);
3805 }
3806 }
3807
3808 /* Command describes registers byte by byte,
3809 each byte encoded as two hex characters. */
3810 p = rs->buf;
3811 *p++ = 'G';
3812 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3813 updated. */
3814 bin2hex (regs, p, rsa->sizeof_g_packet);
3815 remote_send (&rs->buf, &rs->buf_size);
3816 }
3817
3818 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3819 of the register cache buffer. FIXME: ignores errors. */
3820
3821 static void
3822 remote_store_registers (int regnum)
3823 {
3824 struct remote_state *rs = get_remote_state ();
3825 struct remote_arch_state *rsa = get_remote_arch_state ();
3826 int i;
3827
3828 set_thread (PIDGET (inferior_ptid), 1);
3829
3830 if (regnum >= 0)
3831 {
3832 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3833 gdb_assert (reg != NULL);
3834
3835 /* Always prefer to store registers using the 'P' packet if
3836 possible; we often change only a small number of registers.
3837 Sometimes we change a larger number; we'd need help from a
3838 higher layer to know to use 'G'. */
3839 if (store_register_using_P (reg))
3840 return;
3841
3842 /* For now, don't complain if we have no way to write the
3843 register. GDB loses track of unavailable registers too
3844 easily. Some day, this may be an error. We don't have
3845 any way to read the register, either... */
3846 if (!reg->in_g_packet)
3847 return;
3848
3849 store_registers_using_G ();
3850 return;
3851 }
3852
3853 store_registers_using_G ();
3854
3855 for (i = 0; i < NUM_REGS; i++)
3856 if (!rsa->regs[i].in_g_packet)
3857 if (!store_register_using_P (&rsa->regs[i]))
3858 /* See above for why we do not issue an error here. */
3859 continue;
3860 }
3861 \f
3862
3863 /* Return the number of hex digits in num. */
3864
3865 static int
3866 hexnumlen (ULONGEST num)
3867 {
3868 int i;
3869
3870 for (i = 0; num != 0; i++)
3871 num >>= 4;
3872
3873 return max (i, 1);
3874 }
3875
3876 /* Set BUF to the minimum number of hex digits representing NUM. */
3877
3878 static int
3879 hexnumstr (char *buf, ULONGEST num)
3880 {
3881 int len = hexnumlen (num);
3882 return hexnumnstr (buf, num, len);
3883 }
3884
3885
3886 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3887
3888 static int
3889 hexnumnstr (char *buf, ULONGEST num, int width)
3890 {
3891 int i;
3892
3893 buf[width] = '\0';
3894
3895 for (i = width - 1; i >= 0; i--)
3896 {
3897 buf[i] = "0123456789abcdef"[(num & 0xf)];
3898 num >>= 4;
3899 }
3900
3901 return width;
3902 }
3903
3904 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3905
3906 static CORE_ADDR
3907 remote_address_masked (CORE_ADDR addr)
3908 {
3909 if (remote_address_size > 0
3910 && remote_address_size < (sizeof (ULONGEST) * 8))
3911 {
3912 /* Only create a mask when that mask can safely be constructed
3913 in a ULONGEST variable. */
3914 ULONGEST mask = 1;
3915 mask = (mask << remote_address_size) - 1;
3916 addr &= mask;
3917 }
3918 return addr;
3919 }
3920
3921 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
3922 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
3923 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
3924 (which may be more than *OUT_LEN due to escape characters). The
3925 total number of bytes in the output buffer will be at most
3926 OUT_MAXLEN. */
3927
3928 static int
3929 remote_escape_output (const gdb_byte *buffer, int len,
3930 gdb_byte *out_buf, int *out_len,
3931 int out_maxlen)
3932 {
3933 int input_index, output_index;
3934
3935 output_index = 0;
3936 for (input_index = 0; input_index < len; input_index++)
3937 {
3938 gdb_byte b = buffer[input_index];
3939
3940 if (b == '$' || b == '#' || b == '}')
3941 {
3942 /* These must be escaped. */
3943 if (output_index + 2 > out_maxlen)
3944 break;
3945 out_buf[output_index++] = '}';
3946 out_buf[output_index++] = b ^ 0x20;
3947 }
3948 else
3949 {
3950 if (output_index + 1 > out_maxlen)
3951 break;
3952 out_buf[output_index++] = b;
3953 }
3954 }
3955
3956 *out_len = input_index;
3957 return output_index;
3958 }
3959
3960 /* Convert BUFFER, escaped data LEN bytes long, into binary data
3961 in OUT_BUF. Return the number of bytes written to OUT_BUF.
3962 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
3963
3964 This function reverses remote_escape_output. It allows more
3965 escaped characters than that function does, in particular because
3966 '*' must be escaped to avoid the run-length encoding processing
3967 in reading packets. */
3968
3969 static int
3970 remote_unescape_input (const gdb_byte *buffer, int len,
3971 gdb_byte *out_buf, int out_maxlen)
3972 {
3973 int input_index, output_index;
3974 int escaped;
3975
3976 output_index = 0;
3977 escaped = 0;
3978 for (input_index = 0; input_index < len; input_index++)
3979 {
3980 gdb_byte b = buffer[input_index];
3981
3982 if (output_index + 1 > out_maxlen)
3983 {
3984 warning (_("Received too much data from remote target;"
3985 " ignoring overflow."));
3986 return output_index;
3987 }
3988
3989 if (escaped)
3990 {
3991 out_buf[output_index++] = b ^ 0x20;
3992 escaped = 0;
3993 }
3994 else if (b == '}')
3995 escaped = 1;
3996 else
3997 out_buf[output_index++] = b;
3998 }
3999
4000 if (escaped)
4001 error (_("Unmatched escape character in target response."));
4002
4003 return output_index;
4004 }
4005
4006 /* Determine whether the remote target supports binary downloading.
4007 This is accomplished by sending a no-op memory write of zero length
4008 to the target at the specified address. It does not suffice to send
4009 the whole packet, since many stubs strip the eighth bit and
4010 subsequently compute a wrong checksum, which causes real havoc with
4011 remote_write_bytes.
4012
4013 NOTE: This can still lose if the serial line is not eight-bit
4014 clean. In cases like this, the user should clear "remote
4015 X-packet". */
4016
4017 static void
4018 check_binary_download (CORE_ADDR addr)
4019 {
4020 struct remote_state *rs = get_remote_state ();
4021
4022 switch (remote_protocol_packets[PACKET_X].support)
4023 {
4024 case PACKET_DISABLE:
4025 break;
4026 case PACKET_ENABLE:
4027 break;
4028 case PACKET_SUPPORT_UNKNOWN:
4029 {
4030 char *p;
4031
4032 p = rs->buf;
4033 *p++ = 'X';
4034 p += hexnumstr (p, (ULONGEST) addr);
4035 *p++ = ',';
4036 p += hexnumstr (p, (ULONGEST) 0);
4037 *p++ = ':';
4038 *p = '\0';
4039
4040 putpkt_binary (rs->buf, (int) (p - rs->buf));
4041 getpkt (&rs->buf, &rs->buf_size, 0);
4042
4043 if (rs->buf[0] == '\0')
4044 {
4045 if (remote_debug)
4046 fprintf_unfiltered (gdb_stdlog,
4047 "binary downloading NOT suppported by target\n");
4048 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4049 }
4050 else
4051 {
4052 if (remote_debug)
4053 fprintf_unfiltered (gdb_stdlog,
4054 "binary downloading suppported by target\n");
4055 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4056 }
4057 break;
4058 }
4059 }
4060 }
4061
4062 /* Write memory data directly to the remote machine.
4063 This does not inform the data cache; the data cache uses this.
4064 HEADER is the starting part of the packet.
4065 MEMADDR is the address in the remote memory space.
4066 MYADDR is the address of the buffer in our space.
4067 LEN is the number of bytes.
4068 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4069 should send data as binary ('X'), or hex-encoded ('M').
4070
4071 The function creates packet of the form
4072 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4073
4074 where encoding of <DATA> is termined by PACKET_FORMAT.
4075
4076 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4077 are omitted.
4078
4079 Returns the number of bytes transferred, or 0 (setting errno) for
4080 error. Only transfer a single packet. */
4081
4082 static int
4083 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4084 const gdb_byte *myaddr, int len,
4085 char packet_format, int use_length)
4086 {
4087 struct remote_state *rs = get_remote_state ();
4088 char *p;
4089 char *plen = NULL;
4090 int plenlen = 0;
4091 int todo;
4092 int nr_bytes;
4093 int payload_size;
4094 int payload_length;
4095 int header_length;
4096
4097 if (packet_format != 'X' && packet_format != 'M')
4098 internal_error (__FILE__, __LINE__,
4099 "remote_write_bytes_aux: bad packet format");
4100
4101 /* Should this be the selected frame? */
4102 gdbarch_remote_translate_xfer_address (current_gdbarch,
4103 current_regcache,
4104 memaddr, len,
4105 &memaddr, &len);
4106
4107 if (len <= 0)
4108 return 0;
4109
4110 payload_size = get_memory_write_packet_size ();
4111
4112 /* The packet buffer will be large enough for the payload;
4113 get_memory_packet_size ensures this. */
4114 rs->buf[0] = '\0';
4115
4116 /* Compute the size of the actual payload by subtracting out the
4117 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4118 */
4119 payload_size -= strlen ("$,:#NN");
4120 if (!use_length)
4121 /* The comma won't be used. */
4122 payload_size += 1;
4123 header_length = strlen (header);
4124 payload_size -= header_length;
4125 payload_size -= hexnumlen (memaddr);
4126
4127 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4128
4129 strcat (rs->buf, header);
4130 p = rs->buf + strlen (header);
4131
4132 /* Compute a best guess of the number of bytes actually transfered. */
4133 if (packet_format == 'X')
4134 {
4135 /* Best guess at number of bytes that will fit. */
4136 todo = min (len, payload_size);
4137 if (use_length)
4138 payload_size -= hexnumlen (todo);
4139 todo = min (todo, payload_size);
4140 }
4141 else
4142 {
4143 /* Num bytes that will fit. */
4144 todo = min (len, payload_size / 2);
4145 if (use_length)
4146 payload_size -= hexnumlen (todo);
4147 todo = min (todo, payload_size / 2);
4148 }
4149
4150 if (todo <= 0)
4151 internal_error (__FILE__, __LINE__,
4152 _("minumum packet size too small to write data"));
4153
4154 /* If we already need another packet, then try to align the end
4155 of this packet to a useful boundary. */
4156 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4157 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4158
4159 /* Append "<memaddr>". */
4160 memaddr = remote_address_masked (memaddr);
4161 p += hexnumstr (p, (ULONGEST) memaddr);
4162
4163 if (use_length)
4164 {
4165 /* Append ",". */
4166 *p++ = ',';
4167
4168 /* Append <len>. Retain the location/size of <len>. It may need to
4169 be adjusted once the packet body has been created. */
4170 plen = p;
4171 plenlen = hexnumstr (p, (ULONGEST) todo);
4172 p += plenlen;
4173 }
4174
4175 /* Append ":". */
4176 *p++ = ':';
4177 *p = '\0';
4178
4179 /* Append the packet body. */
4180 if (packet_format == 'X')
4181 {
4182 /* Binary mode. Send target system values byte by byte, in
4183 increasing byte addresses. Only escape certain critical
4184 characters. */
4185 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4186 payload_size);
4187
4188 /* If not all TODO bytes fit, then we'll need another packet. Make
4189 a second try to keep the end of the packet aligned. Don't do
4190 this if the packet is tiny. */
4191 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4192 {
4193 int new_nr_bytes;
4194
4195 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4196 - memaddr);
4197 if (new_nr_bytes != nr_bytes)
4198 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4199 p, &nr_bytes,
4200 payload_size);
4201 }
4202
4203 p += payload_length;
4204 if (use_length && nr_bytes < todo)
4205 {
4206 /* Escape chars have filled up the buffer prematurely,
4207 and we have actually sent fewer bytes than planned.
4208 Fix-up the length field of the packet. Use the same
4209 number of characters as before. */
4210 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4211 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4212 }
4213 }
4214 else
4215 {
4216 /* Normal mode: Send target system values byte by byte, in
4217 increasing byte addresses. Each byte is encoded as a two hex
4218 value. */
4219 nr_bytes = bin2hex (myaddr, p, todo);
4220 p += 2 * nr_bytes;
4221 }
4222
4223 putpkt_binary (rs->buf, (int) (p - rs->buf));
4224 getpkt (&rs->buf, &rs->buf_size, 0);
4225
4226 if (rs->buf[0] == 'E')
4227 {
4228 /* There is no correspondance between what the remote protocol
4229 uses for errors and errno codes. We would like a cleaner way
4230 of representing errors (big enough to include errno codes,
4231 bfd_error codes, and others). But for now just return EIO. */
4232 errno = EIO;
4233 return 0;
4234 }
4235
4236 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4237 fewer bytes than we'd planned. */
4238 return nr_bytes;
4239 }
4240
4241 /* Write memory data directly to the remote machine.
4242 This does not inform the data cache; the data cache uses this.
4243 MEMADDR is the address in the remote memory space.
4244 MYADDR is the address of the buffer in our space.
4245 LEN is the number of bytes.
4246
4247 Returns number of bytes transferred, or 0 (setting errno) for
4248 error. Only transfer a single packet. */
4249
4250 int
4251 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4252 {
4253 char *packet_format = 0;
4254
4255 /* Check whether the target supports binary download. */
4256 check_binary_download (memaddr);
4257
4258 switch (remote_protocol_packets[PACKET_X].support)
4259 {
4260 case PACKET_ENABLE:
4261 packet_format = "X";
4262 break;
4263 case PACKET_DISABLE:
4264 packet_format = "M";
4265 break;
4266 case PACKET_SUPPORT_UNKNOWN:
4267 internal_error (__FILE__, __LINE__,
4268 _("remote_write_bytes: bad internal state"));
4269 default:
4270 internal_error (__FILE__, __LINE__, _("bad switch"));
4271 }
4272
4273 return remote_write_bytes_aux (packet_format,
4274 memaddr, myaddr, len, packet_format[0], 1);
4275 }
4276
4277 /* Read memory data directly from the remote machine.
4278 This does not use the data cache; the data cache uses this.
4279 MEMADDR is the address in the remote memory space.
4280 MYADDR is the address of the buffer in our space.
4281 LEN is the number of bytes.
4282
4283 Returns number of bytes transferred, or 0 for error. */
4284
4285 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4286 remote targets) shouldn't attempt to read the entire buffer.
4287 Instead it should read a single packet worth of data and then
4288 return the byte size of that packet to the caller. The caller (its
4289 caller and its callers caller ;-) already contains code for
4290 handling partial reads. */
4291
4292 int
4293 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4294 {
4295 struct remote_state *rs = get_remote_state ();
4296 int max_buf_size; /* Max size of packet output buffer. */
4297 int origlen;
4298
4299 /* Should this be the selected frame? */
4300 gdbarch_remote_translate_xfer_address (current_gdbarch,
4301 current_regcache,
4302 memaddr, len,
4303 &memaddr, &len);
4304
4305 if (len <= 0)
4306 return 0;
4307
4308 max_buf_size = get_memory_read_packet_size ();
4309 /* The packet buffer will be large enough for the payload;
4310 get_memory_packet_size ensures this. */
4311
4312 origlen = len;
4313 while (len > 0)
4314 {
4315 char *p;
4316 int todo;
4317 int i;
4318
4319 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4320
4321 /* construct "m"<memaddr>","<len>" */
4322 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4323 memaddr = remote_address_masked (memaddr);
4324 p = rs->buf;
4325 *p++ = 'm';
4326 p += hexnumstr (p, (ULONGEST) memaddr);
4327 *p++ = ',';
4328 p += hexnumstr (p, (ULONGEST) todo);
4329 *p = '\0';
4330
4331 putpkt (rs->buf);
4332 getpkt (&rs->buf, &rs->buf_size, 0);
4333
4334 if (rs->buf[0] == 'E'
4335 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4336 && rs->buf[3] == '\0')
4337 {
4338 /* There is no correspondance between what the remote
4339 protocol uses for errors and errno codes. We would like
4340 a cleaner way of representing errors (big enough to
4341 include errno codes, bfd_error codes, and others). But
4342 for now just return EIO. */
4343 errno = EIO;
4344 return 0;
4345 }
4346
4347 /* Reply describes memory byte by byte,
4348 each byte encoded as two hex characters. */
4349
4350 p = rs->buf;
4351 if ((i = hex2bin (p, myaddr, todo)) < todo)
4352 {
4353 /* Reply is short. This means that we were able to read
4354 only part of what we wanted to. */
4355 return i + (origlen - len);
4356 }
4357 myaddr += todo;
4358 memaddr += todo;
4359 len -= todo;
4360 }
4361 return origlen;
4362 }
4363 \f
4364 /* Read or write LEN bytes from inferior memory at MEMADDR,
4365 transferring to or from debugger address BUFFER. Write to inferior
4366 if SHOULD_WRITE is nonzero. Returns length of data written or
4367 read; 0 for error. TARGET is unused. */
4368
4369 static int
4370 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4371 int should_write, struct mem_attrib *attrib,
4372 struct target_ops *target)
4373 {
4374 int res;
4375
4376 if (should_write)
4377 res = remote_write_bytes (mem_addr, buffer, mem_len);
4378 else
4379 res = remote_read_bytes (mem_addr, buffer, mem_len);
4380
4381 return res;
4382 }
4383
4384 /* Sends a packet with content determined by the printf format string
4385 FORMAT and the remaining arguments, then gets the reply. Returns
4386 whether the packet was a success, a failure, or unknown. */
4387
4388 enum packet_result
4389 remote_send_printf (const char *format, ...)
4390 {
4391 struct remote_state *rs = get_remote_state ();
4392 int max_size = get_remote_packet_size ();
4393
4394 va_list ap;
4395 va_start (ap, format);
4396
4397 rs->buf[0] = '\0';
4398 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4399 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4400
4401 if (putpkt (rs->buf) < 0)
4402 error (_("Communication problem with target."));
4403
4404 rs->buf[0] = '\0';
4405 getpkt (&rs->buf, &rs->buf_size, 0);
4406
4407 return packet_check_result (rs->buf);
4408 }
4409
4410 static void
4411 restore_remote_timeout (void *p)
4412 {
4413 int value = *(int *)p;
4414 remote_timeout = value;
4415 }
4416
4417 /* Flash writing can take quite some time. We'll set
4418 effectively infinite timeout for flash operations.
4419 In future, we'll need to decide on a better approach. */
4420 static const int remote_flash_timeout = 1000;
4421
4422 static void
4423 remote_flash_erase (struct target_ops *ops,
4424 ULONGEST address, LONGEST length)
4425 {
4426 int saved_remote_timeout = remote_timeout;
4427 enum packet_result ret;
4428
4429 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4430 &saved_remote_timeout);
4431 remote_timeout = remote_flash_timeout;
4432
4433 ret = remote_send_printf ("vFlashErase:%s,%s",
4434 paddr (address),
4435 phex (length, 4));
4436 switch (ret)
4437 {
4438 case PACKET_UNKNOWN:
4439 error (_("Remote target does not support flash erase"));
4440 case PACKET_ERROR:
4441 error (_("Error erasing flash with vFlashErase packet"));
4442 default:
4443 break;
4444 }
4445
4446 do_cleanups (back_to);
4447 }
4448
4449 static LONGEST
4450 remote_flash_write (struct target_ops *ops,
4451 ULONGEST address, LONGEST length,
4452 const gdb_byte *data)
4453 {
4454 int saved_remote_timeout = remote_timeout;
4455 int ret;
4456 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4457 &saved_remote_timeout);
4458
4459 remote_timeout = remote_flash_timeout;
4460 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4461 do_cleanups (back_to);
4462
4463 return ret;
4464 }
4465
4466 static void
4467 remote_flash_done (struct target_ops *ops)
4468 {
4469 int saved_remote_timeout = remote_timeout;
4470 int ret;
4471 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4472 &saved_remote_timeout);
4473
4474 remote_timeout = remote_flash_timeout;
4475 ret = remote_send_printf ("vFlashDone");
4476 do_cleanups (back_to);
4477
4478 switch (ret)
4479 {
4480 case PACKET_UNKNOWN:
4481 error (_("Remote target does not support vFlashDone"));
4482 case PACKET_ERROR:
4483 error (_("Error finishing flash operation"));
4484 default:
4485 break;
4486 }
4487 }
4488
4489 static void
4490 remote_files_info (struct target_ops *ignore)
4491 {
4492 puts_filtered ("Debugging a target over a serial line.\n");
4493 }
4494 \f
4495 /* Stuff for dealing with the packets which are part of this protocol.
4496 See comment at top of file for details. */
4497
4498 /* Read a single character from the remote end. */
4499
4500 static int
4501 readchar (int timeout)
4502 {
4503 int ch;
4504
4505 ch = serial_readchar (remote_desc, timeout);
4506
4507 if (ch >= 0)
4508 return ch;
4509
4510 switch ((enum serial_rc) ch)
4511 {
4512 case SERIAL_EOF:
4513 target_mourn_inferior ();
4514 error (_("Remote connection closed"));
4515 /* no return */
4516 case SERIAL_ERROR:
4517 perror_with_name (_("Remote communication error"));
4518 /* no return */
4519 case SERIAL_TIMEOUT:
4520 break;
4521 }
4522 return ch;
4523 }
4524
4525 /* Send the command in *BUF to the remote machine, and read the reply
4526 into *BUF. Report an error if we get an error reply. Resize
4527 *BUF using xrealloc if necessary to hold the result, and update
4528 *SIZEOF_BUF. */
4529
4530 static void
4531 remote_send (char **buf,
4532 long *sizeof_buf)
4533 {
4534 putpkt (*buf);
4535 getpkt (buf, sizeof_buf, 0);
4536
4537 if ((*buf)[0] == 'E')
4538 error (_("Remote failure reply: %s"), *buf);
4539 }
4540
4541 /* Display a null-terminated packet on stdout, for debugging, using C
4542 string notation. */
4543
4544 static void
4545 print_packet (char *buf)
4546 {
4547 puts_filtered ("\"");
4548 fputstr_filtered (buf, '"', gdb_stdout);
4549 puts_filtered ("\"");
4550 }
4551
4552 int
4553 putpkt (char *buf)
4554 {
4555 return putpkt_binary (buf, strlen (buf));
4556 }
4557
4558 /* Send a packet to the remote machine, with error checking. The data
4559 of the packet is in BUF. The string in BUF can be at most
4560 get_remote_packet_size () - 5 to account for the $, # and checksum,
4561 and for a possible /0 if we are debugging (remote_debug) and want
4562 to print the sent packet as a string. */
4563
4564 static int
4565 putpkt_binary (char *buf, int cnt)
4566 {
4567 int i;
4568 unsigned char csum = 0;
4569 char *buf2 = alloca (cnt + 6);
4570
4571 int ch;
4572 int tcount = 0;
4573 char *p;
4574
4575 /* Copy the packet into buffer BUF2, encapsulating it
4576 and giving it a checksum. */
4577
4578 p = buf2;
4579 *p++ = '$';
4580
4581 for (i = 0; i < cnt; i++)
4582 {
4583 csum += buf[i];
4584 *p++ = buf[i];
4585 }
4586 *p++ = '#';
4587 *p++ = tohex ((csum >> 4) & 0xf);
4588 *p++ = tohex (csum & 0xf);
4589
4590 /* Send it over and over until we get a positive ack. */
4591
4592 while (1)
4593 {
4594 int started_error_output = 0;
4595
4596 if (remote_debug)
4597 {
4598 *p = '\0';
4599 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4600 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4601 fprintf_unfiltered (gdb_stdlog, "...");
4602 gdb_flush (gdb_stdlog);
4603 }
4604 if (serial_write (remote_desc, buf2, p - buf2))
4605 perror_with_name (_("putpkt: write failed"));
4606
4607 /* Read until either a timeout occurs (-2) or '+' is read. */
4608 while (1)
4609 {
4610 ch = readchar (remote_timeout);
4611
4612 if (remote_debug)
4613 {
4614 switch (ch)
4615 {
4616 case '+':
4617 case '-':
4618 case SERIAL_TIMEOUT:
4619 case '$':
4620 if (started_error_output)
4621 {
4622 putchar_unfiltered ('\n');
4623 started_error_output = 0;
4624 }
4625 }
4626 }
4627
4628 switch (ch)
4629 {
4630 case '+':
4631 if (remote_debug)
4632 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4633 return 1;
4634 case '-':
4635 if (remote_debug)
4636 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4637 case SERIAL_TIMEOUT:
4638 tcount++;
4639 if (tcount > 3)
4640 return 0;
4641 break; /* Retransmit buffer. */
4642 case '$':
4643 {
4644 if (remote_debug)
4645 fprintf_unfiltered (gdb_stdlog,
4646 "Packet instead of Ack, ignoring it\n");
4647 /* It's probably an old response sent because an ACK
4648 was lost. Gobble up the packet and ack it so it
4649 doesn't get retransmitted when we resend this
4650 packet. */
4651 skip_frame ();
4652 serial_write (remote_desc, "+", 1);
4653 continue; /* Now, go look for +. */
4654 }
4655 default:
4656 if (remote_debug)
4657 {
4658 if (!started_error_output)
4659 {
4660 started_error_output = 1;
4661 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4662 }
4663 fputc_unfiltered (ch & 0177, gdb_stdlog);
4664 }
4665 continue;
4666 }
4667 break; /* Here to retransmit. */
4668 }
4669
4670 #if 0
4671 /* This is wrong. If doing a long backtrace, the user should be
4672 able to get out next time we call QUIT, without anything as
4673 violent as interrupt_query. If we want to provide a way out of
4674 here without getting to the next QUIT, it should be based on
4675 hitting ^C twice as in remote_wait. */
4676 if (quit_flag)
4677 {
4678 quit_flag = 0;
4679 interrupt_query ();
4680 }
4681 #endif
4682 }
4683 }
4684
4685 /* Come here after finding the start of a frame when we expected an
4686 ack. Do our best to discard the rest of this packet. */
4687
4688 static void
4689 skip_frame (void)
4690 {
4691 int c;
4692
4693 while (1)
4694 {
4695 c = readchar (remote_timeout);
4696 switch (c)
4697 {
4698 case SERIAL_TIMEOUT:
4699 /* Nothing we can do. */
4700 return;
4701 case '#':
4702 /* Discard the two bytes of checksum and stop. */
4703 c = readchar (remote_timeout);
4704 if (c >= 0)
4705 c = readchar (remote_timeout);
4706
4707 return;
4708 case '*': /* Run length encoding. */
4709 /* Discard the repeat count. */
4710 c = readchar (remote_timeout);
4711 if (c < 0)
4712 return;
4713 break;
4714 default:
4715 /* A regular character. */
4716 break;
4717 }
4718 }
4719 }
4720
4721 /* Come here after finding the start of the frame. Collect the rest
4722 into *BUF, verifying the checksum, length, and handling run-length
4723 compression. NUL terminate the buffer. If there is not enough room,
4724 expand *BUF using xrealloc.
4725
4726 Returns -1 on error, number of characters in buffer (ignoring the
4727 trailing NULL) on success. (could be extended to return one of the
4728 SERIAL status indications). */
4729
4730 static long
4731 read_frame (char **buf_p,
4732 long *sizeof_buf)
4733 {
4734 unsigned char csum;
4735 long bc;
4736 int c;
4737 char *buf = *buf_p;
4738
4739 csum = 0;
4740 bc = 0;
4741
4742 while (1)
4743 {
4744 c = readchar (remote_timeout);
4745 switch (c)
4746 {
4747 case SERIAL_TIMEOUT:
4748 if (remote_debug)
4749 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4750 return -1;
4751 case '$':
4752 if (remote_debug)
4753 fputs_filtered ("Saw new packet start in middle of old one\n",
4754 gdb_stdlog);
4755 return -1; /* Start a new packet, count retries. */
4756 case '#':
4757 {
4758 unsigned char pktcsum;
4759 int check_0 = 0;
4760 int check_1 = 0;
4761
4762 buf[bc] = '\0';
4763
4764 check_0 = readchar (remote_timeout);
4765 if (check_0 >= 0)
4766 check_1 = readchar (remote_timeout);
4767
4768 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4769 {
4770 if (remote_debug)
4771 fputs_filtered ("Timeout in checksum, retrying\n",
4772 gdb_stdlog);
4773 return -1;
4774 }
4775 else if (check_0 < 0 || check_1 < 0)
4776 {
4777 if (remote_debug)
4778 fputs_filtered ("Communication error in checksum\n",
4779 gdb_stdlog);
4780 return -1;
4781 }
4782
4783 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4784 if (csum == pktcsum)
4785 return bc;
4786
4787 if (remote_debug)
4788 {
4789 fprintf_filtered (gdb_stdlog,
4790 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4791 pktcsum, csum);
4792 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4793 fputs_filtered ("\n", gdb_stdlog);
4794 }
4795 /* Number of characters in buffer ignoring trailing
4796 NULL. */
4797 return -1;
4798 }
4799 case '*': /* Run length encoding. */
4800 {
4801 int repeat;
4802 csum += c;
4803
4804 c = readchar (remote_timeout);
4805 csum += c;
4806 repeat = c - ' ' + 3; /* Compute repeat count. */
4807
4808 /* The character before ``*'' is repeated. */
4809
4810 if (repeat > 0 && repeat <= 255 && bc > 0)
4811 {
4812 if (bc + repeat - 1 >= *sizeof_buf - 1)
4813 {
4814 /* Make some more room in the buffer. */
4815 *sizeof_buf += repeat;
4816 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4817 buf = *buf_p;
4818 }
4819
4820 memset (&buf[bc], buf[bc - 1], repeat);
4821 bc += repeat;
4822 continue;
4823 }
4824
4825 buf[bc] = '\0';
4826 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4827 return -1;
4828 }
4829 default:
4830 if (bc >= *sizeof_buf - 1)
4831 {
4832 /* Make some more room in the buffer. */
4833 *sizeof_buf *= 2;
4834 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4835 buf = *buf_p;
4836 }
4837
4838 buf[bc++] = c;
4839 csum += c;
4840 continue;
4841 }
4842 }
4843 }
4844
4845 /* Read a packet from the remote machine, with error checking, and
4846 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4847 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4848 rather than timing out; this is used (in synchronous mode) to wait
4849 for a target that is is executing user code to stop. */
4850 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4851 don't have to change all the calls to getpkt to deal with the
4852 return value, because at the moment I don't know what the right
4853 thing to do it for those. */
4854 void
4855 getpkt (char **buf,
4856 long *sizeof_buf,
4857 int forever)
4858 {
4859 int timed_out;
4860
4861 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4862 }
4863
4864
4865 /* Read a packet from the remote machine, with error checking, and
4866 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4867 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4868 rather than timing out; this is used (in synchronous mode) to wait
4869 for a target that is is executing user code to stop. If FOREVER ==
4870 0, this function is allowed to time out gracefully and return an
4871 indication of this to the caller. Otherwise return the number
4872 of bytes read. */
4873 static int
4874 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4875 {
4876 int c;
4877 int tries;
4878 int timeout;
4879 int val;
4880
4881 strcpy (*buf, "timeout");
4882
4883 if (forever)
4884 {
4885 timeout = watchdog > 0 ? watchdog : -1;
4886 }
4887
4888 else
4889 timeout = remote_timeout;
4890
4891 #define MAX_TRIES 3
4892
4893 for (tries = 1; tries <= MAX_TRIES; tries++)
4894 {
4895 /* This can loop forever if the remote side sends us characters
4896 continuously, but if it pauses, we'll get a zero from
4897 readchar because of timeout. Then we'll count that as a
4898 retry. */
4899
4900 /* Note that we will only wait forever prior to the start of a
4901 packet. After that, we expect characters to arrive at a
4902 brisk pace. They should show up within remote_timeout
4903 intervals. */
4904
4905 do
4906 {
4907 c = readchar (timeout);
4908
4909 if (c == SERIAL_TIMEOUT)
4910 {
4911 if (forever) /* Watchdog went off? Kill the target. */
4912 {
4913 QUIT;
4914 target_mourn_inferior ();
4915 error (_("Watchdog has expired. Target detached."));
4916 }
4917 if (remote_debug)
4918 fputs_filtered ("Timed out.\n", gdb_stdlog);
4919 goto retry;
4920 }
4921 }
4922 while (c != '$');
4923
4924 /* We've found the start of a packet, now collect the data. */
4925
4926 val = read_frame (buf, sizeof_buf);
4927
4928 if (val >= 0)
4929 {
4930 if (remote_debug)
4931 {
4932 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4933 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
4934 fprintf_unfiltered (gdb_stdlog, "\n");
4935 }
4936 serial_write (remote_desc, "+", 1);
4937 return val;
4938 }
4939
4940 /* Try the whole thing again. */
4941 retry:
4942 serial_write (remote_desc, "-", 1);
4943 }
4944
4945 /* We have tried hard enough, and just can't receive the packet.
4946 Give up. */
4947
4948 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
4949 serial_write (remote_desc, "+", 1);
4950 return -1;
4951 }
4952 \f
4953 static void
4954 remote_kill (void)
4955 {
4956 /* For some mysterious reason, wait_for_inferior calls kill instead of
4957 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4958 if (kill_kludge)
4959 {
4960 kill_kludge = 0;
4961 target_mourn_inferior ();
4962 return;
4963 }
4964
4965 /* Use catch_errors so the user can quit from gdb even when we aren't on
4966 speaking terms with the remote system. */
4967 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4968
4969 /* Don't wait for it to die. I'm not really sure it matters whether
4970 we do or not. For the existing stubs, kill is a noop. */
4971 target_mourn_inferior ();
4972 }
4973
4974 /* Async version of remote_kill. */
4975 static void
4976 remote_async_kill (void)
4977 {
4978 /* Unregister the file descriptor from the event loop. */
4979 if (target_is_async_p ())
4980 serial_async (remote_desc, NULL, 0);
4981
4982 /* For some mysterious reason, wait_for_inferior calls kill instead of
4983 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4984 if (kill_kludge)
4985 {
4986 kill_kludge = 0;
4987 target_mourn_inferior ();
4988 return;
4989 }
4990
4991 /* Use catch_errors so the user can quit from gdb even when we
4992 aren't on speaking terms with the remote system. */
4993 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4994
4995 /* Don't wait for it to die. I'm not really sure it matters whether
4996 we do or not. For the existing stubs, kill is a noop. */
4997 target_mourn_inferior ();
4998 }
4999
5000 static void
5001 remote_mourn (void)
5002 {
5003 remote_mourn_1 (&remote_ops);
5004 }
5005
5006 static void
5007 remote_async_mourn (void)
5008 {
5009 remote_mourn_1 (&remote_async_ops);
5010 }
5011
5012 static void
5013 extended_remote_mourn (void)
5014 {
5015 /* We do _not_ want to mourn the target like this; this will
5016 remove the extended remote target from the target stack,
5017 and the next time the user says "run" it'll fail.
5018
5019 FIXME: What is the right thing to do here? */
5020 #if 0
5021 remote_mourn_1 (&extended_remote_ops);
5022 #endif
5023 }
5024
5025 /* Worker function for remote_mourn. */
5026 static void
5027 remote_mourn_1 (struct target_ops *target)
5028 {
5029 unpush_target (target);
5030 generic_mourn_inferior ();
5031 }
5032
5033 /* In the extended protocol we want to be able to do things like
5034 "run" and have them basically work as expected. So we need
5035 a special create_inferior function.
5036
5037 FIXME: One day add support for changing the exec file
5038 we're debugging, arguments and an environment. */
5039
5040 static void
5041 extended_remote_create_inferior (char *exec_file, char *args,
5042 char **env, int from_tty)
5043 {
5044 /* Rip out the breakpoints; we'll reinsert them after restarting
5045 the remote server. */
5046 remove_breakpoints ();
5047
5048 /* Now restart the remote server. */
5049 extended_remote_restart ();
5050
5051 /* NOTE: We don't need to recheck for a target description here; but
5052 if we gain the ability to switch the remote executable we may
5053 need to, if for instance we are running a process which requested
5054 different emulated hardware from the operating system. A
5055 concrete example of this is ARM GNU/Linux, where some binaries
5056 will have a legacy FPA coprocessor emulated and others may have
5057 access to a hardware VFP unit. */
5058
5059 /* Now put the breakpoints back in. This way we're safe if the
5060 restart function works via a unix fork on the remote side. */
5061 insert_breakpoints ();
5062
5063 /* Clean up from the last time we were running. */
5064 clear_proceed_status ();
5065 }
5066
5067 /* Async version of extended_remote_create_inferior. */
5068 static void
5069 extended_remote_async_create_inferior (char *exec_file, char *args,
5070 char **env, int from_tty)
5071 {
5072 /* Rip out the breakpoints; we'll reinsert them after restarting
5073 the remote server. */
5074 remove_breakpoints ();
5075
5076 /* If running asynchronously, register the target file descriptor
5077 with the event loop. */
5078 if (target_can_async_p ())
5079 target_async (inferior_event_handler, 0);
5080
5081 /* Now restart the remote server. */
5082 extended_remote_restart ();
5083
5084 /* NOTE: We don't need to recheck for a target description here; but
5085 if we gain the ability to switch the remote executable we may
5086 need to, if for instance we are running a process which requested
5087 different emulated hardware from the operating system. A
5088 concrete example of this is ARM GNU/Linux, where some binaries
5089 will have a legacy FPA coprocessor emulated and others may have
5090 access to a hardware VFP unit. */
5091
5092 /* Now put the breakpoints back in. This way we're safe if the
5093 restart function works via a unix fork on the remote side. */
5094 insert_breakpoints ();
5095
5096 /* Clean up from the last time we were running. */
5097 clear_proceed_status ();
5098 }
5099 \f
5100
5101 /* On some machines, e.g. 68k, we may use a different breakpoint
5102 instruction than other targets; in those use
5103 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
5104 Also, bi-endian targets may define
5105 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
5106 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
5107 just call the standard routines that are in mem-break.c. */
5108
5109 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
5110 target should use an identical BREAKPOINT_FROM_PC. As for native,
5111 the ARCH-OS-tdep.c code can override the default. */
5112
5113 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
5114 #define DEPRECATED_REMOTE_BREAKPOINT
5115 #endif
5116
5117 #ifdef DEPRECATED_REMOTE_BREAKPOINT
5118
5119 /* If the target isn't bi-endian, just pretend it is. */
5120 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
5121 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
5122 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
5123 #endif
5124
5125 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
5126 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
5127
5128 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
5129
5130 /* Insert a breakpoint. On targets that have software breakpoint
5131 support, we ask the remote target to do the work; on targets
5132 which don't, we insert a traditional memory breakpoint. */
5133
5134 static int
5135 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5136 {
5137 CORE_ADDR addr = bp_tgt->placed_address;
5138 struct remote_state *rs = get_remote_state ();
5139 #ifdef DEPRECATED_REMOTE_BREAKPOINT
5140 int val;
5141 #endif
5142
5143 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5144 If it succeeds, then set the support to PACKET_ENABLE. If it
5145 fails, and the user has explicitly requested the Z support then
5146 report an error, otherwise, mark it disabled and go on. */
5147
5148 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5149 {
5150 char *p = rs->buf;
5151
5152 *(p++) = 'Z';
5153 *(p++) = '0';
5154 *(p++) = ',';
5155 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
5156 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5157 p += hexnumstr (p, addr);
5158 sprintf (p, ",%d", bp_tgt->placed_size);
5159
5160 putpkt (rs->buf);
5161 getpkt (&rs->buf, &rs->buf_size, 0);
5162
5163 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5164 {
5165 case PACKET_ERROR:
5166 return -1;
5167 case PACKET_OK:
5168 return 0;
5169 case PACKET_UNKNOWN:
5170 break;
5171 }
5172 }
5173
5174 #ifdef DEPRECATED_REMOTE_BREAKPOINT
5175 bp_tgt->placed_size = bp_tgt->shadow_len = sizeof big_break_insn;
5176 val = target_read_memory (addr, bp_tgt->shadow_contents, bp_tgt->shadow_len);
5177
5178 if (val == 0)
5179 {
5180 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5181 val = target_write_memory (addr, (char *) big_break_insn,
5182 sizeof big_break_insn);
5183 else
5184 val = target_write_memory (addr, (char *) little_break_insn,
5185 sizeof little_break_insn);
5186 }
5187
5188 return val;
5189 #else
5190 return memory_insert_breakpoint (bp_tgt);
5191 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
5192 }
5193
5194 static int
5195 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5196 {
5197 CORE_ADDR addr = bp_tgt->placed_address;
5198 struct remote_state *rs = get_remote_state ();
5199 int bp_size;
5200
5201 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5202 {
5203 char *p = rs->buf;
5204
5205 *(p++) = 'z';
5206 *(p++) = '0';
5207 *(p++) = ',';
5208
5209 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5210 p += hexnumstr (p, addr);
5211 sprintf (p, ",%d", bp_tgt->placed_size);
5212
5213 putpkt (rs->buf);
5214 getpkt (&rs->buf, &rs->buf_size, 0);
5215
5216 return (rs->buf[0] == 'E');
5217 }
5218
5219 #ifdef DEPRECATED_REMOTE_BREAKPOINT
5220 return target_write_memory (bp_tgt->placed_address, bp_tgt->shadow_contents,
5221 bp_tgt->shadow_len);
5222 #else
5223 return memory_remove_breakpoint (bp_tgt);
5224 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
5225 }
5226
5227 static int
5228 watchpoint_to_Z_packet (int type)
5229 {
5230 switch (type)
5231 {
5232 case hw_write:
5233 return Z_PACKET_WRITE_WP;
5234 break;
5235 case hw_read:
5236 return Z_PACKET_READ_WP;
5237 break;
5238 case hw_access:
5239 return Z_PACKET_ACCESS_WP;
5240 break;
5241 default:
5242 internal_error (__FILE__, __LINE__,
5243 _("hw_bp_to_z: bad watchpoint type %d"), type);
5244 }
5245 }
5246
5247 static int
5248 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5249 {
5250 struct remote_state *rs = get_remote_state ();
5251 char *p;
5252 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5253
5254 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5255 return -1;
5256
5257 sprintf (rs->buf, "Z%x,", packet);
5258 p = strchr (rs->buf, '\0');
5259 addr = remote_address_masked (addr);
5260 p += hexnumstr (p, (ULONGEST) addr);
5261 sprintf (p, ",%x", len);
5262
5263 putpkt (rs->buf);
5264 getpkt (&rs->buf, &rs->buf_size, 0);
5265
5266 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5267 {
5268 case PACKET_ERROR:
5269 case PACKET_UNKNOWN:
5270 return -1;
5271 case PACKET_OK:
5272 return 0;
5273 }
5274 internal_error (__FILE__, __LINE__,
5275 _("remote_insert_watchpoint: reached end of function"));
5276 }
5277
5278
5279 static int
5280 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5281 {
5282 struct remote_state *rs = get_remote_state ();
5283 char *p;
5284 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5285
5286 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5287 return -1;
5288
5289 sprintf (rs->buf, "z%x,", packet);
5290 p = strchr (rs->buf, '\0');
5291 addr = remote_address_masked (addr);
5292 p += hexnumstr (p, (ULONGEST) addr);
5293 sprintf (p, ",%x", len);
5294 putpkt (rs->buf);
5295 getpkt (&rs->buf, &rs->buf_size, 0);
5296
5297 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5298 {
5299 case PACKET_ERROR:
5300 case PACKET_UNKNOWN:
5301 return -1;
5302 case PACKET_OK:
5303 return 0;
5304 }
5305 internal_error (__FILE__, __LINE__,
5306 _("remote_remove_watchpoint: reached end of function"));
5307 }
5308
5309
5310 int remote_hw_watchpoint_limit = -1;
5311 int remote_hw_breakpoint_limit = -1;
5312
5313 static int
5314 remote_check_watch_resources (int type, int cnt, int ot)
5315 {
5316 if (type == bp_hardware_breakpoint)
5317 {
5318 if (remote_hw_breakpoint_limit == 0)
5319 return 0;
5320 else if (remote_hw_breakpoint_limit < 0)
5321 return 1;
5322 else if (cnt <= remote_hw_breakpoint_limit)
5323 return 1;
5324 }
5325 else
5326 {
5327 if (remote_hw_watchpoint_limit == 0)
5328 return 0;
5329 else if (remote_hw_watchpoint_limit < 0)
5330 return 1;
5331 else if (ot)
5332 return -1;
5333 else if (cnt <= remote_hw_watchpoint_limit)
5334 return 1;
5335 }
5336 return -1;
5337 }
5338
5339 static int
5340 remote_stopped_by_watchpoint (void)
5341 {
5342 return remote_stopped_by_watchpoint_p;
5343 }
5344
5345 extern int stepped_after_stopped_by_watchpoint;
5346
5347 static int
5348 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5349 {
5350 int rc = 0;
5351 if (remote_stopped_by_watchpoint ()
5352 || stepped_after_stopped_by_watchpoint)
5353 {
5354 *addr_p = remote_watch_data_address;
5355 rc = 1;
5356 }
5357
5358 return rc;
5359 }
5360
5361
5362 static int
5363 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5364 {
5365 CORE_ADDR addr;
5366 struct remote_state *rs = get_remote_state ();
5367 char *p = rs->buf;
5368
5369 /* The length field should be set to the size of a breakpoint
5370 instruction, even though we aren't inserting one ourselves. */
5371
5372 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
5373
5374 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5375 return -1;
5376
5377 *(p++) = 'Z';
5378 *(p++) = '1';
5379 *(p++) = ',';
5380
5381 addr = remote_address_masked (bp_tgt->placed_address);
5382 p += hexnumstr (p, (ULONGEST) addr);
5383 sprintf (p, ",%x", bp_tgt->placed_size);
5384
5385 putpkt (rs->buf);
5386 getpkt (&rs->buf, &rs->buf_size, 0);
5387
5388 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5389 {
5390 case PACKET_ERROR:
5391 case PACKET_UNKNOWN:
5392 return -1;
5393 case PACKET_OK:
5394 return 0;
5395 }
5396 internal_error (__FILE__, __LINE__,
5397 _("remote_insert_hw_breakpoint: reached end of function"));
5398 }
5399
5400
5401 static int
5402 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5403 {
5404 CORE_ADDR addr;
5405 struct remote_state *rs = get_remote_state ();
5406 char *p = rs->buf;
5407
5408 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5409 return -1;
5410
5411 *(p++) = 'z';
5412 *(p++) = '1';
5413 *(p++) = ',';
5414
5415 addr = remote_address_masked (bp_tgt->placed_address);
5416 p += hexnumstr (p, (ULONGEST) addr);
5417 sprintf (p, ",%x", bp_tgt->placed_size);
5418
5419 putpkt (rs->buf);
5420 getpkt (&rs->buf, &rs->buf_size, 0);
5421
5422 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5423 {
5424 case PACKET_ERROR:
5425 case PACKET_UNKNOWN:
5426 return -1;
5427 case PACKET_OK:
5428 return 0;
5429 }
5430 internal_error (__FILE__, __LINE__,
5431 _("remote_remove_hw_breakpoint: reached end of function"));
5432 }
5433
5434 /* Some targets are only capable of doing downloads, and afterwards
5435 they switch to the remote serial protocol. This function provides
5436 a clean way to get from the download target to the remote target.
5437 It's basically just a wrapper so that we don't have to expose any
5438 of the internal workings of remote.c.
5439
5440 Prior to calling this routine, you should shutdown the current
5441 target code, else you will get the "A program is being debugged
5442 already..." message. Usually a call to pop_target() suffices. */
5443
5444 void
5445 push_remote_target (char *name, int from_tty)
5446 {
5447 printf_filtered (_("Switching to remote protocol\n"));
5448 remote_open (name, from_tty);
5449 }
5450
5451 /* Table used by the crc32 function to calcuate the checksum. */
5452
5453 static unsigned long crc32_table[256] =
5454 {0, 0};
5455
5456 static unsigned long
5457 crc32 (unsigned char *buf, int len, unsigned int crc)
5458 {
5459 if (!crc32_table[1])
5460 {
5461 /* Initialize the CRC table and the decoding table. */
5462 int i, j;
5463 unsigned int c;
5464
5465 for (i = 0; i < 256; i++)
5466 {
5467 for (c = i << 24, j = 8; j > 0; --j)
5468 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5469 crc32_table[i] = c;
5470 }
5471 }
5472
5473 while (len--)
5474 {
5475 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5476 buf++;
5477 }
5478 return crc;
5479 }
5480
5481 /* compare-sections command
5482
5483 With no arguments, compares each loadable section in the exec bfd
5484 with the same memory range on the target, and reports mismatches.
5485 Useful for verifying the image on the target against the exec file.
5486 Depends on the target understanding the new "qCRC:" request. */
5487
5488 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5489 target method (target verify memory) and generic version of the
5490 actual command. This will allow other high-level code (especially
5491 generic_load()) to make use of this target functionality. */
5492
5493 static void
5494 compare_sections_command (char *args, int from_tty)
5495 {
5496 struct remote_state *rs = get_remote_state ();
5497 asection *s;
5498 unsigned long host_crc, target_crc;
5499 extern bfd *exec_bfd;
5500 struct cleanup *old_chain;
5501 char *tmp;
5502 char *sectdata;
5503 const char *sectname;
5504 bfd_size_type size;
5505 bfd_vma lma;
5506 int matched = 0;
5507 int mismatched = 0;
5508
5509 if (!exec_bfd)
5510 error (_("command cannot be used without an exec file"));
5511 if (!current_target.to_shortname ||
5512 strcmp (current_target.to_shortname, "remote") != 0)
5513 error (_("command can only be used with remote target"));
5514
5515 for (s = exec_bfd->sections; s; s = s->next)
5516 {
5517 if (!(s->flags & SEC_LOAD))
5518 continue; /* skip non-loadable section */
5519
5520 size = bfd_get_section_size (s);
5521 if (size == 0)
5522 continue; /* skip zero-length section */
5523
5524 sectname = bfd_get_section_name (exec_bfd, s);
5525 if (args && strcmp (args, sectname) != 0)
5526 continue; /* not the section selected by user */
5527
5528 matched = 1; /* do this section */
5529 lma = s->lma;
5530 /* FIXME: assumes lma can fit into long. */
5531 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5532 (long) lma, (long) size);
5533 putpkt (rs->buf);
5534
5535 /* Be clever; compute the host_crc before waiting for target
5536 reply. */
5537 sectdata = xmalloc (size);
5538 old_chain = make_cleanup (xfree, sectdata);
5539 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5540 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5541
5542 getpkt (&rs->buf, &rs->buf_size, 0);
5543 if (rs->buf[0] == 'E')
5544 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5545 sectname, paddr (lma), paddr (lma + size));
5546 if (rs->buf[0] != 'C')
5547 error (_("remote target does not support this operation"));
5548
5549 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5550 target_crc = target_crc * 16 + fromhex (*tmp);
5551
5552 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5553 sectname, paddr (lma), paddr (lma + size));
5554 if (host_crc == target_crc)
5555 printf_filtered ("matched.\n");
5556 else
5557 {
5558 printf_filtered ("MIS-MATCHED!\n");
5559 mismatched++;
5560 }
5561
5562 do_cleanups (old_chain);
5563 }
5564 if (mismatched > 0)
5565 warning (_("One or more sections of the remote executable does not match\n\
5566 the loaded file\n"));
5567 if (args && !matched)
5568 printf_filtered (_("No loaded section named '%s'.\n"), args);
5569 }
5570
5571 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5572 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5573 number of bytes read is returned, or 0 for EOF, or -1 for error.
5574 The number of bytes read may be less than LEN without indicating an
5575 EOF. PACKET is checked and updated to indicate whether the remote
5576 target supports this object. */
5577
5578 static LONGEST
5579 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5580 const char *annex,
5581 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5582 struct packet_config *packet)
5583 {
5584 static char *finished_object;
5585 static char *finished_annex;
5586 static ULONGEST finished_offset;
5587
5588 struct remote_state *rs = get_remote_state ();
5589 unsigned int total = 0;
5590 LONGEST i, n, packet_len;
5591
5592 if (packet->support == PACKET_DISABLE)
5593 return -1;
5594
5595 /* Check whether we've cached an end-of-object packet that matches
5596 this request. */
5597 if (finished_object)
5598 {
5599 if (strcmp (object_name, finished_object) == 0
5600 && strcmp (annex ? annex : "", finished_annex) == 0
5601 && offset == finished_offset)
5602 return 0;
5603
5604 /* Otherwise, we're now reading something different. Discard
5605 the cache. */
5606 xfree (finished_object);
5607 xfree (finished_annex);
5608 finished_object = NULL;
5609 finished_annex = NULL;
5610 }
5611
5612 /* Request only enough to fit in a single packet. The actual data
5613 may not, since we don't know how much of it will need to be escaped;
5614 the target is free to respond with slightly less data. We subtract
5615 five to account for the response type and the protocol frame. */
5616 n = min (get_remote_packet_size () - 5, len);
5617 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5618 object_name, annex ? annex : "",
5619 phex_nz (offset, sizeof offset),
5620 phex_nz (n, sizeof n));
5621 i = putpkt (rs->buf);
5622 if (i < 0)
5623 return -1;
5624
5625 rs->buf[0] = '\0';
5626 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5627 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5628 return -1;
5629
5630 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5631 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5632
5633 /* 'm' means there is (or at least might be) more data after this
5634 batch. That does not make sense unless there's at least one byte
5635 of data in this reply. */
5636 if (rs->buf[0] == 'm' && packet_len == 1)
5637 error (_("Remote qXfer reply contained no data."));
5638
5639 /* Got some data. */
5640 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5641
5642 /* 'l' is an EOF marker, possibly including a final block of data,
5643 or possibly empty. Record it to bypass the next read, if one is
5644 issued. */
5645 if (rs->buf[0] == 'l')
5646 {
5647 finished_object = xstrdup (object_name);
5648 finished_annex = xstrdup (annex ? annex : "");
5649 finished_offset = offset + i;
5650 }
5651
5652 return i;
5653 }
5654
5655 static LONGEST
5656 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5657 const char *annex, gdb_byte *readbuf,
5658 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5659 {
5660 struct remote_state *rs = get_remote_state ();
5661 int i;
5662 char *p2;
5663 char query_type;
5664
5665 /* Handle memory using the standard memory routines. */
5666 if (object == TARGET_OBJECT_MEMORY)
5667 {
5668 int xfered;
5669 errno = 0;
5670
5671 if (writebuf != NULL)
5672 xfered = remote_write_bytes (offset, writebuf, len);
5673 else
5674 xfered = remote_read_bytes (offset, readbuf, len);
5675
5676 if (xfered > 0)
5677 return xfered;
5678 else if (xfered == 0 && errno == 0)
5679 return 0;
5680 else
5681 return -1;
5682 }
5683
5684 /* Only handle flash writes. */
5685 if (writebuf != NULL)
5686 {
5687 LONGEST xfered;
5688
5689 switch (object)
5690 {
5691 case TARGET_OBJECT_FLASH:
5692 xfered = remote_flash_write (ops, offset, len, writebuf);
5693
5694 if (xfered > 0)
5695 return xfered;
5696 else if (xfered == 0 && errno == 0)
5697 return 0;
5698 else
5699 return -1;
5700
5701 default:
5702 return -1;
5703 }
5704 }
5705
5706 /* Map pre-existing objects onto letters. DO NOT do this for new
5707 objects!!! Instead specify new query packets. */
5708 switch (object)
5709 {
5710 case TARGET_OBJECT_AVR:
5711 query_type = 'R';
5712 break;
5713
5714 case TARGET_OBJECT_AUXV:
5715 gdb_assert (annex == NULL);
5716 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5717 &remote_protocol_packets[PACKET_qXfer_auxv]);
5718
5719 case TARGET_OBJECT_MEMORY_MAP:
5720 gdb_assert (annex == NULL);
5721 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5722 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5723
5724 default:
5725 return -1;
5726 }
5727
5728 /* Note: a zero OFFSET and LEN can be used to query the minimum
5729 buffer size. */
5730 if (offset == 0 && len == 0)
5731 return (get_remote_packet_size ());
5732 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5733 large enough let the caller deal with it. */
5734 if (len < get_remote_packet_size ())
5735 return -1;
5736 len = get_remote_packet_size ();
5737
5738 /* Except for querying the minimum buffer size, target must be open. */
5739 if (!remote_desc)
5740 error (_("remote query is only available after target open"));
5741
5742 gdb_assert (annex != NULL);
5743 gdb_assert (readbuf != NULL);
5744
5745 p2 = rs->buf;
5746 *p2++ = 'q';
5747 *p2++ = query_type;
5748
5749 /* We used one buffer char for the remote protocol q command and
5750 another for the query type. As the remote protocol encapsulation
5751 uses 4 chars plus one extra in case we are debugging
5752 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5753 string. */
5754 i = 0;
5755 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5756 {
5757 /* Bad caller may have sent forbidden characters. */
5758 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5759 *p2++ = annex[i];
5760 i++;
5761 }
5762 *p2 = '\0';
5763 gdb_assert (annex[i] == '\0');
5764
5765 i = putpkt (rs->buf);
5766 if (i < 0)
5767 return i;
5768
5769 getpkt (&rs->buf, &rs->buf_size, 0);
5770 strcpy ((char *) readbuf, rs->buf);
5771
5772 return strlen ((char *) readbuf);
5773 }
5774
5775 static void
5776 remote_rcmd (char *command,
5777 struct ui_file *outbuf)
5778 {
5779 struct remote_state *rs = get_remote_state ();
5780 char *p = rs->buf;
5781
5782 if (!remote_desc)
5783 error (_("remote rcmd is only available after target open"));
5784
5785 /* Send a NULL command across as an empty command. */
5786 if (command == NULL)
5787 command = "";
5788
5789 /* The query prefix. */
5790 strcpy (rs->buf, "qRcmd,");
5791 p = strchr (rs->buf, '\0');
5792
5793 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5794 error (_("\"monitor\" command ``%s'' is too long."), command);
5795
5796 /* Encode the actual command. */
5797 bin2hex ((gdb_byte *) command, p, 0);
5798
5799 if (putpkt (rs->buf) < 0)
5800 error (_("Communication problem with target."));
5801
5802 /* get/display the response */
5803 while (1)
5804 {
5805 char *buf;
5806
5807 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5808 rs->buf[0] = '\0';
5809 getpkt (&rs->buf, &rs->buf_size, 0);
5810 buf = rs->buf;
5811 if (buf[0] == '\0')
5812 error (_("Target does not support this command."));
5813 if (buf[0] == 'O' && buf[1] != 'K')
5814 {
5815 remote_console_output (buf + 1); /* 'O' message from stub. */
5816 continue;
5817 }
5818 if (strcmp (buf, "OK") == 0)
5819 break;
5820 if (strlen (buf) == 3 && buf[0] == 'E'
5821 && isdigit (buf[1]) && isdigit (buf[2]))
5822 {
5823 error (_("Protocol error with Rcmd"));
5824 }
5825 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5826 {
5827 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5828 fputc_unfiltered (c, outbuf);
5829 }
5830 break;
5831 }
5832 }
5833
5834 static VEC(mem_region_s) *
5835 remote_memory_map (struct target_ops *ops)
5836 {
5837 VEC(mem_region_s) *result = NULL;
5838 char *text = target_read_stralloc (&current_target,
5839 TARGET_OBJECT_MEMORY_MAP, NULL);
5840
5841 if (text)
5842 {
5843 struct cleanup *back_to = make_cleanup (xfree, text);
5844 result = parse_memory_map (text);
5845 do_cleanups (back_to);
5846 }
5847
5848 return result;
5849 }
5850
5851 static void
5852 packet_command (char *args, int from_tty)
5853 {
5854 struct remote_state *rs = get_remote_state ();
5855
5856 if (!remote_desc)
5857 error (_("command can only be used with remote target"));
5858
5859 if (!args)
5860 error (_("remote-packet command requires packet text as argument"));
5861
5862 puts_filtered ("sending: ");
5863 print_packet (args);
5864 puts_filtered ("\n");
5865 putpkt (args);
5866
5867 getpkt (&rs->buf, &rs->buf_size, 0);
5868 puts_filtered ("received: ");
5869 print_packet (rs->buf);
5870 puts_filtered ("\n");
5871 }
5872
5873 #if 0
5874 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
5875
5876 static void display_thread_info (struct gdb_ext_thread_info *info);
5877
5878 static void threadset_test_cmd (char *cmd, int tty);
5879
5880 static void threadalive_test (char *cmd, int tty);
5881
5882 static void threadlist_test_cmd (char *cmd, int tty);
5883
5884 int get_and_display_threadinfo (threadref *ref);
5885
5886 static void threadinfo_test_cmd (char *cmd, int tty);
5887
5888 static int thread_display_step (threadref *ref, void *context);
5889
5890 static void threadlist_update_test_cmd (char *cmd, int tty);
5891
5892 static void init_remote_threadtests (void);
5893
5894 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
5895
5896 static void
5897 threadset_test_cmd (char *cmd, int tty)
5898 {
5899 int sample_thread = SAMPLE_THREAD;
5900
5901 printf_filtered (_("Remote threadset test\n"));
5902 set_thread (sample_thread, 1);
5903 }
5904
5905
5906 static void
5907 threadalive_test (char *cmd, int tty)
5908 {
5909 int sample_thread = SAMPLE_THREAD;
5910
5911 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5912 printf_filtered ("PASS: Thread alive test\n");
5913 else
5914 printf_filtered ("FAIL: Thread alive test\n");
5915 }
5916
5917 void output_threadid (char *title, threadref *ref);
5918
5919 void
5920 output_threadid (char *title, threadref *ref)
5921 {
5922 char hexid[20];
5923
5924 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
5925 hexid[16] = 0;
5926 printf_filtered ("%s %s\n", title, (&hexid[0]));
5927 }
5928
5929 static void
5930 threadlist_test_cmd (char *cmd, int tty)
5931 {
5932 int startflag = 1;
5933 threadref nextthread;
5934 int done, result_count;
5935 threadref threadlist[3];
5936
5937 printf_filtered ("Remote Threadlist test\n");
5938 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5939 &result_count, &threadlist[0]))
5940 printf_filtered ("FAIL: threadlist test\n");
5941 else
5942 {
5943 threadref *scan = threadlist;
5944 threadref *limit = scan + result_count;
5945
5946 while (scan < limit)
5947 output_threadid (" thread ", scan++);
5948 }
5949 }
5950
5951 void
5952 display_thread_info (struct gdb_ext_thread_info *info)
5953 {
5954 output_threadid ("Threadid: ", &info->threadid);
5955 printf_filtered ("Name: %s\n ", info->shortname);
5956 printf_filtered ("State: %s\n", info->display);
5957 printf_filtered ("other: %s\n\n", info->more_display);
5958 }
5959
5960 int
5961 get_and_display_threadinfo (threadref *ref)
5962 {
5963 int result;
5964 int set;
5965 struct gdb_ext_thread_info threadinfo;
5966
5967 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5968 | TAG_MOREDISPLAY | TAG_DISPLAY;
5969 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5970 display_thread_info (&threadinfo);
5971 return result;
5972 }
5973
5974 static void
5975 threadinfo_test_cmd (char *cmd, int tty)
5976 {
5977 int athread = SAMPLE_THREAD;
5978 threadref thread;
5979 int set;
5980
5981 int_to_threadref (&thread, athread);
5982 printf_filtered ("Remote Threadinfo test\n");
5983 if (!get_and_display_threadinfo (&thread))
5984 printf_filtered ("FAIL cannot get thread info\n");
5985 }
5986
5987 static int
5988 thread_display_step (threadref *ref, void *context)
5989 {
5990 /* output_threadid(" threadstep ",ref); *//* simple test */
5991 return get_and_display_threadinfo (ref);
5992 }
5993
5994 static void
5995 threadlist_update_test_cmd (char *cmd, int tty)
5996 {
5997 printf_filtered ("Remote Threadlist update test\n");
5998 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5999 }
6000
6001 static void
6002 init_remote_threadtests (void)
6003 {
6004 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6005 Fetch and print the remote list of thread identifiers, one pkt only"));
6006 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6007 _("Fetch and display info about one thread"));
6008 add_com ("tset", class_obscure, threadset_test_cmd,
6009 _("Test setting to a different thread"));
6010 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6011 _("Iterate through updating all remote thread info"));
6012 add_com ("talive", class_obscure, threadalive_test,
6013 _(" Remote thread alive test "));
6014 }
6015
6016 #endif /* 0 */
6017
6018 /* Convert a thread ID to a string. Returns the string in a static
6019 buffer. */
6020
6021 static char *
6022 remote_pid_to_str (ptid_t ptid)
6023 {
6024 static char buf[32];
6025
6026 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6027 return buf;
6028 }
6029
6030 /* Get the address of the thread local variable in OBJFILE which is
6031 stored at OFFSET within the thread local storage for thread PTID. */
6032
6033 static CORE_ADDR
6034 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6035 {
6036 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6037 {
6038 struct remote_state *rs = get_remote_state ();
6039 char *p = rs->buf;
6040 enum packet_result result;
6041
6042 strcpy (p, "qGetTLSAddr:");
6043 p += strlen (p);
6044 p += hexnumstr (p, PIDGET (ptid));
6045 *p++ = ',';
6046 p += hexnumstr (p, offset);
6047 *p++ = ',';
6048 p += hexnumstr (p, lm);
6049 *p++ = '\0';
6050
6051 putpkt (rs->buf);
6052 getpkt (&rs->buf, &rs->buf_size, 0);
6053 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6054 if (result == PACKET_OK)
6055 {
6056 ULONGEST result;
6057
6058 unpack_varlen_hex (rs->buf, &result);
6059 return result;
6060 }
6061 else if (result == PACKET_UNKNOWN)
6062 throw_error (TLS_GENERIC_ERROR,
6063 _("Remote target doesn't support qGetTLSAddr packet"));
6064 else
6065 throw_error (TLS_GENERIC_ERROR,
6066 _("Remote target failed to process qGetTLSAddr request"));
6067 }
6068 else
6069 throw_error (TLS_GENERIC_ERROR,
6070 _("TLS not supported or disabled on this target"));
6071 /* Not reached. */
6072 return 0;
6073 }
6074
6075 /* Support for inferring a target description based on the current
6076 architecture and the size of a 'g' packet. While the 'g' packet
6077 can have any size (since optional registers can be left off the
6078 end), some sizes are easily recognizable given knowledge of the
6079 approximate architecture. */
6080
6081 struct remote_g_packet_guess
6082 {
6083 int bytes;
6084 const struct target_desc *tdesc;
6085 };
6086 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6087 DEF_VEC_O(remote_g_packet_guess_s);
6088
6089 struct remote_g_packet_data
6090 {
6091 VEC(remote_g_packet_guess_s) *guesses;
6092 };
6093
6094 static struct gdbarch_data *remote_g_packet_data_handle;
6095
6096 static void *
6097 remote_g_packet_data_init (struct obstack *obstack)
6098 {
6099 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6100 }
6101
6102 void
6103 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6104 const struct target_desc *tdesc)
6105 {
6106 struct remote_g_packet_data *data
6107 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6108 struct remote_g_packet_guess new_guess, *guess;
6109 int ix;
6110
6111 gdb_assert (tdesc != NULL);
6112
6113 for (ix = 0;
6114 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6115 ix++)
6116 if (guess->bytes == bytes)
6117 internal_error (__FILE__, __LINE__,
6118 "Duplicate g packet description added for size %d",
6119 bytes);
6120
6121 new_guess.bytes = bytes;
6122 new_guess.tdesc = tdesc;
6123 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6124 }
6125
6126 static const struct target_desc *
6127 remote_read_description (struct target_ops *target)
6128 {
6129 struct remote_g_packet_data *data
6130 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6131
6132 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6133 {
6134 struct remote_g_packet_guess *guess;
6135 int ix;
6136 int bytes = send_g_packet ();
6137
6138 for (ix = 0;
6139 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6140 ix++)
6141 if (guess->bytes == bytes)
6142 return guess->tdesc;
6143
6144 /* We discard the g packet. A minor optimization would be to
6145 hold on to it, and fill the register cache once we have selected
6146 an architecture, but it's too tricky to do safely. */
6147 }
6148
6149 return NULL;
6150 }
6151
6152 static void
6153 init_remote_ops (void)
6154 {
6155 remote_ops.to_shortname = "remote";
6156 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6157 remote_ops.to_doc =
6158 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6159 Specify the serial device it is connected to\n\
6160 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6161 remote_ops.to_open = remote_open;
6162 remote_ops.to_close = remote_close;
6163 remote_ops.to_detach = remote_detach;
6164 remote_ops.to_disconnect = remote_disconnect;
6165 remote_ops.to_resume = remote_resume;
6166 remote_ops.to_wait = remote_wait;
6167 remote_ops.to_fetch_registers = remote_fetch_registers;
6168 remote_ops.to_store_registers = remote_store_registers;
6169 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6170 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6171 remote_ops.to_files_info = remote_files_info;
6172 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6173 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6174 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6175 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6176 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6177 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6178 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6179 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6180 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6181 remote_ops.to_kill = remote_kill;
6182 remote_ops.to_load = generic_load;
6183 remote_ops.to_mourn_inferior = remote_mourn;
6184 remote_ops.to_thread_alive = remote_thread_alive;
6185 remote_ops.to_find_new_threads = remote_threads_info;
6186 remote_ops.to_pid_to_str = remote_pid_to_str;
6187 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6188 remote_ops.to_stop = remote_stop;
6189 remote_ops.to_xfer_partial = remote_xfer_partial;
6190 remote_ops.to_rcmd = remote_rcmd;
6191 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6192 remote_ops.to_stratum = process_stratum;
6193 remote_ops.to_has_all_memory = 1;
6194 remote_ops.to_has_memory = 1;
6195 remote_ops.to_has_stack = 1;
6196 remote_ops.to_has_registers = 1;
6197 remote_ops.to_has_execution = 1;
6198 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6199 remote_ops.to_magic = OPS_MAGIC;
6200 remote_ops.to_memory_map = remote_memory_map;
6201 remote_ops.to_flash_erase = remote_flash_erase;
6202 remote_ops.to_flash_done = remote_flash_done;
6203 remote_ops.to_read_description = remote_read_description;
6204 }
6205
6206 /* Set up the extended remote vector by making a copy of the standard
6207 remote vector and adding to it. */
6208
6209 static void
6210 init_extended_remote_ops (void)
6211 {
6212 extended_remote_ops = remote_ops;
6213
6214 extended_remote_ops.to_shortname = "extended-remote";
6215 extended_remote_ops.to_longname =
6216 "Extended remote serial target in gdb-specific protocol";
6217 extended_remote_ops.to_doc =
6218 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6219 Specify the serial device it is connected to (e.g. /dev/ttya).",
6220 extended_remote_ops.to_open = extended_remote_open;
6221 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6222 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6223 }
6224
6225 static int
6226 remote_can_async_p (void)
6227 {
6228 /* We're async whenever the serial device is. */
6229 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
6230 }
6231
6232 static int
6233 remote_is_async_p (void)
6234 {
6235 /* We're async whenever the serial device is. */
6236 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
6237 }
6238
6239 /* Pass the SERIAL event on and up to the client. One day this code
6240 will be able to delay notifying the client of an event until the
6241 point where an entire packet has been received. */
6242
6243 static void (*async_client_callback) (enum inferior_event_type event_type,
6244 void *context);
6245 static void *async_client_context;
6246 static serial_event_ftype remote_async_serial_handler;
6247
6248 static void
6249 remote_async_serial_handler (struct serial *scb, void *context)
6250 {
6251 /* Don't propogate error information up to the client. Instead let
6252 the client find out about the error by querying the target. */
6253 async_client_callback (INF_REG_EVENT, async_client_context);
6254 }
6255
6256 static void
6257 remote_async (void (*callback) (enum inferior_event_type event_type,
6258 void *context), void *context)
6259 {
6260 if (current_target.to_async_mask_value == 0)
6261 internal_error (__FILE__, __LINE__,
6262 _("Calling remote_async when async is masked"));
6263
6264 if (callback != NULL)
6265 {
6266 serial_async (remote_desc, remote_async_serial_handler, NULL);
6267 async_client_callback = callback;
6268 async_client_context = context;
6269 }
6270 else
6271 serial_async (remote_desc, NULL, NULL);
6272 }
6273
6274 /* Target async and target extended-async.
6275
6276 This are temporary targets, until it is all tested. Eventually
6277 async support will be incorporated int the usual 'remote'
6278 target. */
6279
6280 static void
6281 init_remote_async_ops (void)
6282 {
6283 remote_async_ops.to_shortname = "async";
6284 remote_async_ops.to_longname =
6285 "Remote serial target in async version of the gdb-specific protocol";
6286 remote_async_ops.to_doc =
6287 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6288 Specify the serial device it is connected to (e.g. /dev/ttya).";
6289 remote_async_ops.to_open = remote_async_open;
6290 remote_async_ops.to_close = remote_close;
6291 remote_async_ops.to_detach = remote_detach;
6292 remote_async_ops.to_disconnect = remote_disconnect;
6293 remote_async_ops.to_resume = remote_async_resume;
6294 remote_async_ops.to_wait = remote_async_wait;
6295 remote_async_ops.to_fetch_registers = remote_fetch_registers;
6296 remote_async_ops.to_store_registers = remote_store_registers;
6297 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
6298 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
6299 remote_async_ops.to_files_info = remote_files_info;
6300 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
6301 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
6302 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6303 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6304 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6305 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
6306 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
6307 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6308 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
6309 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
6310 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
6311 remote_async_ops.to_kill = remote_async_kill;
6312 remote_async_ops.to_load = generic_load;
6313 remote_async_ops.to_mourn_inferior = remote_async_mourn;
6314 remote_async_ops.to_thread_alive = remote_thread_alive;
6315 remote_async_ops.to_find_new_threads = remote_threads_info;
6316 remote_async_ops.to_pid_to_str = remote_pid_to_str;
6317 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
6318 remote_async_ops.to_stop = remote_stop;
6319 remote_async_ops.to_xfer_partial = remote_xfer_partial;
6320 remote_async_ops.to_rcmd = remote_rcmd;
6321 remote_async_ops.to_stratum = process_stratum;
6322 remote_async_ops.to_has_all_memory = 1;
6323 remote_async_ops.to_has_memory = 1;
6324 remote_async_ops.to_has_stack = 1;
6325 remote_async_ops.to_has_registers = 1;
6326 remote_async_ops.to_has_execution = 1;
6327 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6328 remote_async_ops.to_can_async_p = remote_can_async_p;
6329 remote_async_ops.to_is_async_p = remote_is_async_p;
6330 remote_async_ops.to_async = remote_async;
6331 remote_async_ops.to_async_mask_value = 1;
6332 remote_async_ops.to_magic = OPS_MAGIC;
6333 remote_async_ops.to_memory_map = remote_memory_map;
6334 remote_async_ops.to_flash_erase = remote_flash_erase;
6335 remote_async_ops.to_flash_done = remote_flash_done;
6336 remote_ops.to_read_description = remote_read_description;
6337 }
6338
6339 /* Set up the async extended remote vector by making a copy of the standard
6340 remote vector and adding to it. */
6341
6342 static void
6343 init_extended_async_remote_ops (void)
6344 {
6345 extended_async_remote_ops = remote_async_ops;
6346
6347 extended_async_remote_ops.to_shortname = "extended-async";
6348 extended_async_remote_ops.to_longname =
6349 "Extended remote serial target in async gdb-specific protocol";
6350 extended_async_remote_ops.to_doc =
6351 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6352 Specify the serial device it is connected to (e.g. /dev/ttya).",
6353 extended_async_remote_ops.to_open = extended_remote_async_open;
6354 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6355 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6356 }
6357
6358 static void
6359 set_remote_cmd (char *args, int from_tty)
6360 {
6361 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
6362 }
6363
6364 static void
6365 show_remote_cmd (char *args, int from_tty)
6366 {
6367 /* We can't just use cmd_show_list here, because we want to skip
6368 the redundant "show remote Z-packet" and the legacy aliases. */
6369 struct cleanup *showlist_chain;
6370 struct cmd_list_element *list = remote_show_cmdlist;
6371
6372 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
6373 for (; list != NULL; list = list->next)
6374 if (strcmp (list->name, "Z-packet") == 0)
6375 continue;
6376 else if (list->type == not_set_cmd)
6377 /* Alias commands are exactly like the original, except they
6378 don't have the normal type. */
6379 continue;
6380 else
6381 {
6382 struct cleanup *option_chain
6383 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
6384 ui_out_field_string (uiout, "name", list->name);
6385 ui_out_text (uiout, ": ");
6386 if (list->type == show_cmd)
6387 do_setshow_command ((char *) NULL, from_tty, list);
6388 else
6389 cmd_func (list, NULL, from_tty);
6390 /* Close the tuple. */
6391 do_cleanups (option_chain);
6392 }
6393
6394 /* Close the tuple. */
6395 do_cleanups (showlist_chain);
6396 }
6397
6398 static void
6399 build_remote_gdbarch_data (void)
6400 {
6401 remote_address_size = TARGET_ADDR_BIT;
6402 }
6403
6404 /* Saved pointer to previous owner of the new_objfile event. */
6405 static void (*remote_new_objfile_chain) (struct objfile *);
6406
6407 /* Function to be called whenever a new objfile (shlib) is detected. */
6408 static void
6409 remote_new_objfile (struct objfile *objfile)
6410 {
6411 if (remote_desc != 0) /* Have a remote connection. */
6412 {
6413 remote_check_symbols (objfile);
6414 }
6415 /* Call predecessor on chain, if any. */
6416 if (remote_new_objfile_chain)
6417 remote_new_objfile_chain (objfile);
6418 }
6419
6420 void
6421 _initialize_remote (void)
6422 {
6423 struct remote_state *rs;
6424
6425 /* architecture specific data */
6426 remote_gdbarch_data_handle =
6427 gdbarch_data_register_post_init (init_remote_state);
6428 remote_g_packet_data_handle =
6429 gdbarch_data_register_pre_init (remote_g_packet_data_init);
6430
6431 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6432 that the remote protocol has been initialized. */
6433 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
6434 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6435
6436 /* Initialize the per-target state. At the moment there is only one
6437 of these, not one per target. Only one target is active at a
6438 time. The default buffer size is unimportant; it will be expanded
6439 whenever a larger buffer is needed. */
6440 rs = get_remote_state_raw ();
6441 rs->buf_size = 400;
6442 rs->buf = xmalloc (rs->buf_size);
6443
6444 init_remote_ops ();
6445 add_target (&remote_ops);
6446
6447 init_extended_remote_ops ();
6448 add_target (&extended_remote_ops);
6449
6450 init_remote_async_ops ();
6451 add_target (&remote_async_ops);
6452
6453 init_extended_async_remote_ops ();
6454 add_target (&extended_async_remote_ops);
6455
6456 /* Hook into new objfile notification. */
6457 remote_new_objfile_chain = deprecated_target_new_objfile_hook;
6458 deprecated_target_new_objfile_hook = remote_new_objfile;
6459
6460 #if 0
6461 init_remote_threadtests ();
6462 #endif
6463
6464 /* set/show remote ... */
6465
6466 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
6467 Remote protocol specific variables\n\
6468 Configure various remote-protocol specific variables such as\n\
6469 the packets being used"),
6470 &remote_set_cmdlist, "set remote ",
6471 0 /* allow-unknown */, &setlist);
6472 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
6473 Remote protocol specific variables\n\
6474 Configure various remote-protocol specific variables such as\n\
6475 the packets being used"),
6476 &remote_show_cmdlist, "show remote ",
6477 0 /* allow-unknown */, &showlist);
6478
6479 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
6480 Compare section data on target to the exec file.\n\
6481 Argument is a single section name (default: all loaded sections)."),
6482 &cmdlist);
6483
6484 add_cmd ("packet", class_maintenance, packet_command, _("\
6485 Send an arbitrary packet to a remote target.\n\
6486 maintenance packet TEXT\n\
6487 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6488 this command sends the string TEXT to the inferior, and displays the\n\
6489 response packet. GDB supplies the initial `$' character, and the\n\
6490 terminating `#' character and checksum."),
6491 &maintenancelist);
6492
6493 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
6494 Set whether to send break if interrupted."), _("\
6495 Show whether to send break if interrupted."), _("\
6496 If set, a break, instead of a cntrl-c, is sent to the remote target."),
6497 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
6498 &setlist, &showlist);
6499
6500 /* Install commands for configuring memory read/write packets. */
6501
6502 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
6503 Set the maximum number of bytes per memory write packet (deprecated)."),
6504 &setlist);
6505 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
6506 Show the maximum number of bytes per memory write packet (deprecated)."),
6507 &showlist);
6508 add_cmd ("memory-write-packet-size", no_class,
6509 set_memory_write_packet_size, _("\
6510 Set the maximum number of bytes per memory-write packet.\n\
6511 Specify the number of bytes in a packet or 0 (zero) for the\n\
6512 default packet size. The actual limit is further reduced\n\
6513 dependent on the target. Specify ``fixed'' to disable the\n\
6514 further restriction and ``limit'' to enable that restriction."),
6515 &remote_set_cmdlist);
6516 add_cmd ("memory-read-packet-size", no_class,
6517 set_memory_read_packet_size, _("\
6518 Set the maximum number of bytes per memory-read packet.\n\
6519 Specify the number of bytes in a packet or 0 (zero) for the\n\
6520 default packet size. The actual limit is further reduced\n\
6521 dependent on the target. Specify ``fixed'' to disable the\n\
6522 further restriction and ``limit'' to enable that restriction."),
6523 &remote_set_cmdlist);
6524 add_cmd ("memory-write-packet-size", no_class,
6525 show_memory_write_packet_size,
6526 _("Show the maximum number of bytes per memory-write packet."),
6527 &remote_show_cmdlist);
6528 add_cmd ("memory-read-packet-size", no_class,
6529 show_memory_read_packet_size,
6530 _("Show the maximum number of bytes per memory-read packet."),
6531 &remote_show_cmdlist);
6532
6533 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6534 &remote_hw_watchpoint_limit, _("\
6535 Set the maximum number of target hardware watchpoints."), _("\
6536 Show the maximum number of target hardware watchpoints."), _("\
6537 Specify a negative limit for unlimited."),
6538 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6539 &remote_set_cmdlist, &remote_show_cmdlist);
6540 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6541 &remote_hw_breakpoint_limit, _("\
6542 Set the maximum number of target hardware breakpoints."), _("\
6543 Show the maximum number of target hardware breakpoints."), _("\
6544 Specify a negative limit for unlimited."),
6545 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6546 &remote_set_cmdlist, &remote_show_cmdlist);
6547
6548 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6549 &remote_address_size, _("\
6550 Set the maximum size of the address (in bits) in a memory packet."), _("\
6551 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6552 NULL,
6553 NULL, /* FIXME: i18n: */
6554 &setlist, &showlist);
6555
6556 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6557 "X", "binary-download", 1);
6558
6559 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6560 "vCont", "verbose-resume", 0);
6561
6562 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
6563 "QPassSignals", "pass-signals", 0);
6564
6565 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6566 "qSymbol", "symbol-lookup", 0);
6567
6568 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6569 "P", "set-register", 1);
6570
6571 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6572 "p", "fetch-register", 1);
6573
6574 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6575 "Z0", "software-breakpoint", 0);
6576
6577 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6578 "Z1", "hardware-breakpoint", 0);
6579
6580 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6581 "Z2", "write-watchpoint", 0);
6582
6583 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6584 "Z3", "read-watchpoint", 0);
6585
6586 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6587 "Z4", "access-watchpoint", 0);
6588
6589 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6590 "qXfer:auxv:read", "read-aux-vector", 0);
6591
6592 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
6593 "qXfer:memory-map:read", "memory-map", 0);
6594
6595 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6596 "qGetTLSAddr", "get-thread-local-storage-address",
6597 0);
6598
6599 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6600 "qSupported", "supported-packets", 0);
6601
6602 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6603 Z sub-packet has its own set and show commands, but users may
6604 have sets to this variable in their .gdbinit files (or in their
6605 documentation). */
6606 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6607 &remote_Z_packet_detect, _("\
6608 Set use of remote protocol `Z' packets"), _("\
6609 Show use of remote protocol `Z' packets "), _("\
6610 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6611 packets."),
6612 set_remote_protocol_Z_packet_cmd,
6613 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6614 &remote_set_cmdlist, &remote_show_cmdlist);
6615
6616 /* Eventually initialize fileio. See fileio.c */
6617 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6618 }