]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/solib-frv.c
Update copyright year range in header of all files managed by GDB
[thirdparty/binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004-2024 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "solib.h"
23 #include "solist.h"
24 #include "frv-tdep.h"
25 #include "objfiles.h"
26 #include "symtab.h"
27 #include "elf/frv.h"
28 #include "gdb_bfd.h"
29 #include "inferior.h"
30
31 /* FR-V pointers are four bytes wide. */
32 enum { FRV_PTR_SIZE = 4 };
33
34 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
35
36 /* External versions; the size and alignment of the fields should be
37 the same as those on the target. When loaded, the placement of
38 the bits in each field will be the same as on the target. */
39 typedef gdb_byte ext_Elf32_Half[2];
40 typedef gdb_byte ext_Elf32_Addr[4];
41 typedef gdb_byte ext_Elf32_Word[4];
42
43 struct ext_elf32_fdpic_loadseg
44 {
45 /* Core address to which the segment is mapped. */
46 ext_Elf32_Addr addr;
47 /* VMA recorded in the program header. */
48 ext_Elf32_Addr p_vaddr;
49 /* Size of this segment in memory. */
50 ext_Elf32_Word p_memsz;
51 };
52
53 struct ext_elf32_fdpic_loadmap {
54 /* Protocol version number, must be zero. */
55 ext_Elf32_Half version;
56 /* Number of segments in this map. */
57 ext_Elf32_Half nsegs;
58 /* The actual memory map. */
59 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
60 };
61
62 /* Internal versions; the types are GDB types and the data in each
63 of the fields is (or will be) decoded from the external struct
64 for ease of consumption. */
65 struct int_elf32_fdpic_loadseg
66 {
67 /* Core address to which the segment is mapped. */
68 CORE_ADDR addr;
69 /* VMA recorded in the program header. */
70 CORE_ADDR p_vaddr;
71 /* Size of this segment in memory. */
72 long p_memsz;
73 };
74
75 struct int_elf32_fdpic_loadmap {
76 /* Protocol version number, must be zero. */
77 int version;
78 /* Number of segments in this map. */
79 int nsegs;
80 /* The actual memory map. */
81 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
82 };
83
84 /* Given address LDMADDR, fetch and decode the loadmap at that address.
85 Return NULL if there is a problem reading the target memory or if
86 there doesn't appear to be a loadmap at the given address. The
87 allocated space (representing the loadmap) returned by this
88 function may be freed via a single call to xfree(). */
89
90 static struct int_elf32_fdpic_loadmap *
91 fetch_loadmap (CORE_ADDR ldmaddr)
92 {
93 bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
94 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
95 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
96 struct int_elf32_fdpic_loadmap *int_ldmbuf;
97 int ext_ldmbuf_size, int_ldmbuf_size;
98 int version, seg, nsegs;
99
100 /* Fetch initial portion of the loadmap. */
101 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
102 sizeof ext_ldmbuf_partial))
103 {
104 /* Problem reading the target's memory. */
105 return NULL;
106 }
107
108 /* Extract the version. */
109 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
110 sizeof ext_ldmbuf_partial.version,
111 byte_order);
112 if (version != 0)
113 {
114 /* We only handle version 0. */
115 return NULL;
116 }
117
118 /* Extract the number of segments. */
119 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
120 sizeof ext_ldmbuf_partial.nsegs,
121 byte_order);
122
123 if (nsegs <= 0)
124 return NULL;
125
126 /* Allocate space for the complete (external) loadmap. */
127 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
128 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
129 ext_ldmbuf = (struct ext_elf32_fdpic_loadmap *) xmalloc (ext_ldmbuf_size);
130
131 /* Copy over the portion of the loadmap that's already been read. */
132 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
133
134 /* Read the rest of the loadmap from the target. */
135 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
136 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
137 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
138 {
139 /* Couldn't read rest of the loadmap. */
140 xfree (ext_ldmbuf);
141 return NULL;
142 }
143
144 /* Allocate space into which to put information extract from the
145 external loadsegs. I.e, allocate the internal loadsegs. */
146 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
147 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
148 int_ldmbuf = (struct int_elf32_fdpic_loadmap *) xmalloc (int_ldmbuf_size);
149
150 /* Place extracted information in internal structs. */
151 int_ldmbuf->version = version;
152 int_ldmbuf->nsegs = nsegs;
153 for (seg = 0; seg < nsegs; seg++)
154 {
155 int_ldmbuf->segs[seg].addr
156 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
157 sizeof (ext_ldmbuf->segs[seg].addr),
158 byte_order);
159 int_ldmbuf->segs[seg].p_vaddr
160 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
161 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
162 byte_order);
163 int_ldmbuf->segs[seg].p_memsz
164 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
165 sizeof (ext_ldmbuf->segs[seg].p_memsz),
166 byte_order);
167 }
168
169 xfree (ext_ldmbuf);
170 return int_ldmbuf;
171 }
172
173 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
174
175 typedef gdb_byte ext_ptr[4];
176
177 struct ext_elf32_fdpic_loadaddr
178 {
179 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
180 ext_ptr got_value; /* void *got_value; */
181 };
182
183 struct ext_link_map
184 {
185 struct ext_elf32_fdpic_loadaddr l_addr;
186
187 /* Absolute file name object was found in. */
188 ext_ptr l_name; /* char *l_name; */
189
190 /* Dynamic section of the shared object. */
191 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
192
193 /* Chain of loaded objects. */
194 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
195 };
196
197 /* Link map info to include in an allocated so_list entry. */
198
199 struct lm_info_frv final : public lm_info
200 {
201 ~lm_info_frv ()
202 {
203 xfree (this->map);
204 xfree (this->dyn_syms);
205 xfree (this->dyn_relocs);
206 }
207
208 /* The loadmap, digested into an easier to use form. */
209 int_elf32_fdpic_loadmap *map = NULL;
210 /* The GOT address for this link map entry. */
211 CORE_ADDR got_value = 0;
212 /* The link map address, needed for frv_fetch_objfile_link_map(). */
213 CORE_ADDR lm_addr = 0;
214
215 /* Cached dynamic symbol table and dynamic relocs initialized and
216 used only by find_canonical_descriptor_in_load_object().
217
218 Note: kevinb/2004-02-26: It appears that calls to
219 bfd_canonicalize_dynamic_reloc() will use the same symbols as
220 those supplied to the first call to this function. Therefore,
221 it's important to NOT free the asymbol ** data structure
222 supplied to the first call. Thus the caching of the dynamic
223 symbols (dyn_syms) is critical for correct operation. The
224 caching of the dynamic relocations could be dispensed with. */
225 asymbol **dyn_syms = NULL;
226 arelent **dyn_relocs = NULL;
227 int dyn_reloc_count = 0; /* Number of dynamic relocs. */
228 };
229
230 /* The load map, got value, etc. are not available from the chain
231 of loaded shared objects. ``main_executable_lm_info'' provides
232 a way to get at this information so that it doesn't need to be
233 frequently recomputed. Initialized by frv_relocate_main_executable(). */
234 static lm_info_frv *main_executable_lm_info;
235
236 static void frv_relocate_main_executable (void);
237 static CORE_ADDR main_got (void);
238 static int enable_break2 (void);
239
240 /* Implement the "open_symbol_file_object" target_so_ops method. */
241
242 static int
243 open_symbol_file_object (int from_tty)
244 {
245 /* Unimplemented. */
246 return 0;
247 }
248
249 /* Cached value for lm_base(), below. */
250 static CORE_ADDR lm_base_cache = 0;
251
252 /* Link map address for main module. */
253 static CORE_ADDR main_lm_addr = 0;
254
255 /* Return the address from which the link map chain may be found. On
256 the FR-V, this may be found in a number of ways. Assuming that the
257 main executable has already been relocated, the easiest way to find
258 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
259 pointer to the start of the link map will be located at the word found
260 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
261 reserve area mandated by the ABI.) */
262
263 static CORE_ADDR
264 lm_base (void)
265 {
266 bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
267 struct bound_minimal_symbol got_sym;
268 CORE_ADDR addr;
269 gdb_byte buf[FRV_PTR_SIZE];
270
271 /* One of our assumptions is that the main executable has been relocated.
272 Bail out if this has not happened. (Note that post_create_inferior()
273 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
274 If we allow this to happen, lm_base_cache will be initialized with
275 a bogus value. */
276 if (main_executable_lm_info == 0)
277 return 0;
278
279 /* If we already have a cached value, return it. */
280 if (lm_base_cache)
281 return lm_base_cache;
282
283 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
284 current_program_space->symfile_object_file);
285 if (got_sym.minsym == 0)
286 {
287 solib_debug_printf ("_GLOBAL_OFFSET_TABLE_ not found.");
288 return 0;
289 }
290
291 addr = got_sym.value_address () + 8;
292
293 solib_debug_printf ("_GLOBAL_OFFSET_TABLE_ + 8 = %s",
294 hex_string_custom (addr, 8));
295
296 if (target_read_memory (addr, buf, sizeof buf) != 0)
297 return 0;
298 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
299
300 solib_debug_printf ("lm_base_cache = %s",
301 hex_string_custom (lm_base_cache, 8));
302
303 return lm_base_cache;
304 }
305
306
307 /* Implement the "current_sos" target_so_ops method. */
308
309 static intrusive_list<shobj>
310 frv_current_sos ()
311 {
312 bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
313 CORE_ADDR lm_addr, mgot;
314 intrusive_list<shobj> sos;
315
316 /* Make sure that the main executable has been relocated. This is
317 required in order to find the address of the global offset table,
318 which in turn is used to find the link map info. (See lm_base()
319 for details.)
320
321 Note that the relocation of the main executable is also performed
322 by solib_create_inferior_hook(), however, in the case of core
323 files, this hook is called too late in order to be of benefit to
324 solib_add. solib_add eventually calls this this function,
325 frv_current_sos, and also precedes the call to
326 solib_create_inferior_hook(). (See post_create_inferior() in
327 infcmd.c.) */
328 if (main_executable_lm_info == 0 && core_bfd != NULL)
329 frv_relocate_main_executable ();
330
331 /* Fetch the GOT corresponding to the main executable. */
332 mgot = main_got ();
333
334 /* Locate the address of the first link map struct. */
335 lm_addr = lm_base ();
336
337 /* We have at least one link map entry. Fetch the lot of them,
338 building the solist chain. */
339 while (lm_addr)
340 {
341 struct ext_link_map lm_buf;
342 CORE_ADDR got_addr;
343
344 solib_debug_printf ("reading link_map entry at %s",
345 hex_string_custom (lm_addr, 8));
346
347 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
348 sizeof (lm_buf)) != 0)
349 {
350 warning (_("frv_current_sos: Unable to read link map entry. "
351 "Shared object chain may be incomplete."));
352 break;
353 }
354
355 got_addr
356 = extract_unsigned_integer (lm_buf.l_addr.got_value,
357 sizeof (lm_buf.l_addr.got_value),
358 byte_order);
359 /* If the got_addr is the same as mgotr, then we're looking at the
360 entry for the main executable. By convention, we don't include
361 this in the list of shared objects. */
362 if (got_addr != mgot)
363 {
364 struct int_elf32_fdpic_loadmap *loadmap;
365 CORE_ADDR addr;
366
367 /* Fetch the load map address. */
368 addr = extract_unsigned_integer (lm_buf.l_addr.map,
369 sizeof lm_buf.l_addr.map,
370 byte_order);
371 loadmap = fetch_loadmap (addr);
372 if (loadmap == NULL)
373 {
374 warning (_("frv_current_sos: Unable to fetch load map. "
375 "Shared object chain may be incomplete."));
376 break;
377 }
378
379 shobj *sop = new shobj;
380 auto li = std::make_unique<lm_info_frv> ();
381 li->map = loadmap;
382 li->got_value = got_addr;
383 li->lm_addr = lm_addr;
384 /* Fetch the name. */
385 addr = extract_unsigned_integer (lm_buf.l_name,
386 sizeof (lm_buf.l_name),
387 byte_order);
388 gdb::unique_xmalloc_ptr<char> name_buf
389 = target_read_string (addr, SO_NAME_MAX_PATH_SIZE - 1);
390
391 solib_debug_printf ("name = %s", name_buf.get ());
392
393 if (name_buf == nullptr)
394 warning (_("Can't read pathname for link map entry."));
395 else
396 {
397 sop->so_name = name_buf.get ();
398 sop->so_original_name = sop->so_name;
399 }
400
401 sos.push_back (*sop);
402 }
403 else
404 {
405 main_lm_addr = lm_addr;
406 }
407
408 lm_addr = extract_unsigned_integer (lm_buf.l_next,
409 sizeof (lm_buf.l_next), byte_order);
410 }
411
412 enable_break2 ();
413
414 return sos;
415 }
416
417
418 /* Return 1 if PC lies in the dynamic symbol resolution code of the
419 run time loader. */
420
421 static CORE_ADDR interp_text_sect_low;
422 static CORE_ADDR interp_text_sect_high;
423 static CORE_ADDR interp_plt_sect_low;
424 static CORE_ADDR interp_plt_sect_high;
425
426 static int
427 frv_in_dynsym_resolve_code (CORE_ADDR pc)
428 {
429 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
430 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
431 || in_plt_section (pc));
432 }
433
434 /* Given a loadmap and an address, return the displacement needed
435 to relocate the address. */
436
437 static CORE_ADDR
438 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
439 CORE_ADDR addr)
440 {
441 int seg;
442
443 for (seg = 0; seg < map->nsegs; seg++)
444 {
445 if (map->segs[seg].p_vaddr <= addr
446 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
447 {
448 return map->segs[seg].addr - map->segs[seg].p_vaddr;
449 }
450 }
451
452 return 0;
453 }
454
455 /* Print a warning about being unable to set the dynamic linker
456 breakpoint. */
457
458 static void
459 enable_break_failure_warning (void)
460 {
461 warning (_("Unable to find dynamic linker breakpoint function.\n"
462 "GDB will be unable to debug shared library initializers\n"
463 "and track explicitly loaded dynamic code."));
464 }
465
466 /* Arrange for dynamic linker to hit breakpoint.
467
468 The dynamic linkers has, as part of its debugger interface, support
469 for arranging for the inferior to hit a breakpoint after mapping in
470 the shared libraries. This function enables that breakpoint.
471
472 On the FR-V, using the shared library (FDPIC) ABI, the symbol
473 _dl_debug_addr points to the r_debug struct which contains
474 a field called r_brk. r_brk is the address of the function
475 descriptor upon which a breakpoint must be placed. Being a
476 function descriptor, we must extract the entry point in order
477 to set the breakpoint.
478
479 Our strategy will be to get the .interp section from the
480 executable. This section will provide us with the name of the
481 interpreter. We'll open the interpreter and then look up
482 the address of _dl_debug_addr. We then relocate this address
483 using the interpreter's loadmap. Once the relocated address
484 is known, we fetch the value (address) corresponding to r_brk
485 and then use that value to fetch the entry point of the function
486 we're interested in. */
487
488 static int enable_break2_done = 0;
489
490 static int
491 enable_break2 (void)
492 {
493 bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
494 asection *interp_sect;
495
496 if (enable_break2_done)
497 return 1;
498
499 interp_text_sect_low = interp_text_sect_high = 0;
500 interp_plt_sect_low = interp_plt_sect_high = 0;
501
502 /* Find the .interp section; if not found, warn the user and drop
503 into the old breakpoint at symbol code. */
504 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
505 ".interp");
506 if (interp_sect)
507 {
508 unsigned int interp_sect_size;
509 char *buf;
510 int status;
511 CORE_ADDR addr, interp_loadmap_addr;
512 gdb_byte addr_buf[FRV_PTR_SIZE];
513 struct int_elf32_fdpic_loadmap *ldm;
514
515 /* Read the contents of the .interp section into a local buffer;
516 the contents specify the dynamic linker this program uses. */
517 interp_sect_size = bfd_section_size (interp_sect);
518 buf = (char *) alloca (interp_sect_size);
519 bfd_get_section_contents (current_program_space->exec_bfd (),
520 interp_sect, buf, 0, interp_sect_size);
521
522 /* Now we need to figure out where the dynamic linker was
523 loaded so that we can load its symbols and place a breakpoint
524 in the dynamic linker itself.
525
526 This address is stored on the stack. However, I've been unable
527 to find any magic formula to find it for Solaris (appears to
528 be trivial on GNU/Linux). Therefore, we have to try an alternate
529 mechanism to find the dynamic linker's base address. */
530
531 gdb_bfd_ref_ptr tmp_bfd;
532 try
533 {
534 tmp_bfd = solib_bfd_open (buf);
535 }
536 catch (const gdb_exception &ex)
537 {
538 }
539
540 if (tmp_bfd == NULL)
541 {
542 enable_break_failure_warning ();
543 return 0;
544 }
545
546 status = frv_fdpic_loadmap_addresses (current_inferior ()->arch (),
547 &interp_loadmap_addr, 0);
548 if (status < 0)
549 {
550 warning (_("Unable to determine dynamic linker loadmap address."));
551 enable_break_failure_warning ();
552 return 0;
553 }
554
555 solib_debug_printf ("interp_loadmap_addr = %s",
556 hex_string_custom (interp_loadmap_addr, 8));
557
558 ldm = fetch_loadmap (interp_loadmap_addr);
559 if (ldm == NULL)
560 {
561 warning (_("Unable to load dynamic linker loadmap at address %s."),
562 hex_string_custom (interp_loadmap_addr, 8));
563 enable_break_failure_warning ();
564 return 0;
565 }
566
567 /* Record the relocated start and end address of the dynamic linker
568 text and plt section for svr4_in_dynsym_resolve_code. */
569 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
570 if (interp_sect)
571 {
572 interp_text_sect_low = bfd_section_vma (interp_sect);
573 interp_text_sect_low
574 += displacement_from_map (ldm, interp_text_sect_low);
575 interp_text_sect_high
576 = interp_text_sect_low + bfd_section_size (interp_sect);
577 }
578 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
579 if (interp_sect)
580 {
581 interp_plt_sect_low = bfd_section_vma (interp_sect);
582 interp_plt_sect_low
583 += displacement_from_map (ldm, interp_plt_sect_low);
584 interp_plt_sect_high =
585 interp_plt_sect_low + bfd_section_size (interp_sect);
586 }
587
588 addr = (gdb_bfd_lookup_symbol
589 (tmp_bfd.get (),
590 [] (const asymbol *sym)
591 {
592 return strcmp (sym->name, "_dl_debug_addr") == 0;
593 }));
594
595 if (addr == 0)
596 {
597 warning (_("Could not find symbol _dl_debug_addr "
598 "in dynamic linker"));
599 enable_break_failure_warning ();
600 return 0;
601 }
602
603 solib_debug_printf ("_dl_debug_addr (prior to relocation) = %s",
604 hex_string_custom (addr, 8));
605
606 addr += displacement_from_map (ldm, addr);
607
608 solib_debug_printf ("_dl_debug_addr (after relocation) = %s",
609 hex_string_custom (addr, 8));
610
611 /* Fetch the address of the r_debug struct. */
612 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
613 {
614 warning (_("Unable to fetch contents of _dl_debug_addr "
615 "(at address %s) from dynamic linker"),
616 hex_string_custom (addr, 8));
617 }
618 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
619
620 solib_debug_printf ("_dl_debug_addr[0..3] = %s",
621 hex_string_custom (addr, 8));
622
623 /* If it's zero, then the ldso hasn't initialized yet, and so
624 there are no shared libs yet loaded. */
625 if (addr == 0)
626 {
627 solib_debug_printf ("ldso not yet initialized");
628 /* Do not warn, but mark to run again. */
629 return 0;
630 }
631
632 /* Fetch the r_brk field. It's 8 bytes from the start of
633 _dl_debug_addr. */
634 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
635 {
636 warning (_("Unable to fetch _dl_debug_addr->r_brk "
637 "(at address %s) from dynamic linker"),
638 hex_string_custom (addr + 8, 8));
639 enable_break_failure_warning ();
640 return 0;
641 }
642 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
643
644 /* Now fetch the function entry point. */
645 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
646 {
647 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
648 "(at address %s) from dynamic linker"),
649 hex_string_custom (addr, 8));
650 enable_break_failure_warning ();
651 return 0;
652 }
653 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
654
655 /* We're done with the loadmap. */
656 xfree (ldm);
657
658 /* Remove all the solib event breakpoints. Their addresses
659 may have changed since the last time we ran the program. */
660 remove_solib_event_breakpoints ();
661
662 /* Now (finally!) create the solib breakpoint. */
663 create_solib_event_breakpoint (current_inferior ()->arch (), addr);
664
665 enable_break2_done = 1;
666
667 return 1;
668 }
669
670 /* Tell the user we couldn't set a dynamic linker breakpoint. */
671 enable_break_failure_warning ();
672
673 /* Failure return. */
674 return 0;
675 }
676
677 static int
678 enable_break (void)
679 {
680 asection *interp_sect;
681 CORE_ADDR entry_point;
682
683 if (current_program_space->symfile_object_file == NULL)
684 {
685 solib_debug_printf ("No symbol file found.");
686 return 0;
687 }
688
689 if (!entry_point_address_query (&entry_point))
690 {
691 solib_debug_printf ("Symbol file has no entry point.");
692 return 0;
693 }
694
695 /* Check for the presence of a .interp section. If there is no
696 such section, the executable is statically linked. */
697
698 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
699 ".interp");
700
701 if (interp_sect == NULL)
702 {
703 solib_debug_printf ("No .interp section found.");
704 return 0;
705 }
706
707 create_solib_event_breakpoint (current_inferior ()->arch (), entry_point);
708
709 solib_debug_printf ("solib event breakpoint placed at entry point: %s",
710 hex_string_custom (entry_point, 8));
711 return 1;
712 }
713
714 static void
715 frv_relocate_main_executable (void)
716 {
717 int status;
718 CORE_ADDR exec_addr, interp_addr;
719 struct int_elf32_fdpic_loadmap *ldm;
720 int changed;
721
722 status = frv_fdpic_loadmap_addresses (current_inferior ()->arch (),
723 &interp_addr, &exec_addr);
724
725 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
726 {
727 /* Not using FDPIC ABI, so do nothing. */
728 return;
729 }
730
731 /* Fetch the loadmap located at ``exec_addr''. */
732 ldm = fetch_loadmap (exec_addr);
733 if (ldm == NULL)
734 error (_("Unable to load the executable's loadmap."));
735
736 delete main_executable_lm_info;
737 main_executable_lm_info = new lm_info_frv;
738 main_executable_lm_info->map = ldm;
739
740 objfile *objf = current_program_space->symfile_object_file;
741 section_offsets new_offsets (objf->section_offsets.size ());
742 changed = 0;
743
744 for (obj_section *osect : objf->sections ())
745 {
746 CORE_ADDR orig_addr, addr, offset;
747 int osect_idx;
748 int seg;
749
750 osect_idx = osect - objf->sections_start;
751
752 /* Current address of section. */
753 addr = osect->addr ();
754 /* Offset from where this section started. */
755 offset = objf->section_offsets[osect_idx];
756 /* Original address prior to any past relocations. */
757 orig_addr = addr - offset;
758
759 for (seg = 0; seg < ldm->nsegs; seg++)
760 {
761 if (ldm->segs[seg].p_vaddr <= orig_addr
762 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
763 {
764 new_offsets[osect_idx]
765 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
766
767 if (new_offsets[osect_idx] != offset)
768 changed = 1;
769 break;
770 }
771 }
772 }
773
774 if (changed)
775 objfile_relocate (objf, new_offsets);
776
777 /* Now that OBJF has been relocated, we can compute the GOT value
778 and stash it away. */
779 main_executable_lm_info->got_value = main_got ();
780 }
781
782 /* Implement the "create_inferior_hook" target_solib_ops method.
783
784 For the FR-V shared library ABI (FDPIC), the main executable needs
785 to be relocated. The shared library breakpoints also need to be
786 enabled. */
787
788 static void
789 frv_solib_create_inferior_hook (int from_tty)
790 {
791 /* Relocate main executable. */
792 frv_relocate_main_executable ();
793
794 /* Enable shared library breakpoints. */
795 if (!enable_break ())
796 {
797 warning (_("shared library handler failed to enable breakpoint"));
798 return;
799 }
800 }
801
802 static void
803 frv_clear_solib (program_space *pspace)
804 {
805 lm_base_cache = 0;
806 enable_break2_done = 0;
807 main_lm_addr = 0;
808
809 delete main_executable_lm_info;
810 main_executable_lm_info = NULL;
811 }
812
813 static void
814 frv_relocate_section_addresses (shobj &so, target_section *sec)
815 {
816 int seg;
817 auto *li = gdb::checked_static_cast<lm_info_frv *> (so.lm_info.get ());
818 int_elf32_fdpic_loadmap *map = li->map;
819
820 for (seg = 0; seg < map->nsegs; seg++)
821 {
822 if (map->segs[seg].p_vaddr <= sec->addr
823 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
824 {
825 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
826
827 sec->addr += displ;
828 sec->endaddr += displ;
829 break;
830 }
831 }
832 }
833
834 /* Return the GOT address associated with the main executable. Return
835 0 if it can't be found. */
836
837 static CORE_ADDR
838 main_got (void)
839 {
840 struct bound_minimal_symbol got_sym;
841
842 objfile *objf = current_program_space->symfile_object_file;
843 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, objf);
844 if (got_sym.minsym == 0)
845 return 0;
846
847 return got_sym.value_address ();
848 }
849
850 /* Find the global pointer for the given function address ADDR. */
851
852 CORE_ADDR
853 frv_fdpic_find_global_pointer (CORE_ADDR addr)
854 {
855 for (const shobj &so : current_program_space->solibs ())
856 {
857 int seg;
858 auto *li = gdb::checked_static_cast<lm_info_frv *> (so.lm_info.get ());
859 int_elf32_fdpic_loadmap *map = li->map;
860
861 for (seg = 0; seg < map->nsegs; seg++)
862 {
863 if (map->segs[seg].addr <= addr
864 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
865 return li->got_value;
866 }
867 }
868
869 /* Didn't find it in any of the shared objects. So assume it's in the
870 main executable. */
871 return main_got ();
872 }
873
874 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
875 static CORE_ADDR find_canonical_descriptor_in_load_object
876 (CORE_ADDR, CORE_ADDR, const char *, bfd *, lm_info_frv *);
877
878 /* Given a function entry point, attempt to find the canonical descriptor
879 associated with that entry point. Return 0 if no canonical descriptor
880 could be found. */
881
882 CORE_ADDR
883 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
884 {
885 const char *name;
886 CORE_ADDR addr;
887 CORE_ADDR got_value;
888 struct symbol *sym;
889
890 /* Fetch the corresponding global pointer for the entry point. */
891 got_value = frv_fdpic_find_global_pointer (entry_point);
892
893 /* Attempt to find the name of the function. If the name is available,
894 it'll be used as an aid in finding matching functions in the dynamic
895 symbol table. */
896 sym = find_pc_function (entry_point);
897 if (sym == 0)
898 name = 0;
899 else
900 name = sym->linkage_name ();
901
902 /* Check the main executable. */
903 objfile *objf = current_program_space->symfile_object_file;
904 addr = find_canonical_descriptor_in_load_object
905 (entry_point, got_value, name, objf->obfd.get (),
906 main_executable_lm_info);
907
908 /* If descriptor not found via main executable, check each load object
909 in list of shared objects. */
910 if (addr == 0)
911 {
912 for (const shobj &so : current_program_space->solibs ())
913 {
914 auto *li = gdb::checked_static_cast<lm_info_frv *> (so.lm_info.get ());
915
916 addr = find_canonical_descriptor_in_load_object
917 (entry_point, got_value, name, so.abfd.get(), li);
918
919 if (addr != 0)
920 break;
921 }
922 }
923
924 return addr;
925 }
926
927 static CORE_ADDR
928 find_canonical_descriptor_in_load_object
929 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
930 lm_info_frv *lm)
931 {
932 bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
933 arelent *rel;
934 unsigned int i;
935 CORE_ADDR addr = 0;
936
937 /* Nothing to do if no bfd. */
938 if (abfd == 0)
939 return 0;
940
941 /* Nothing to do if no link map. */
942 if (lm == 0)
943 return 0;
944
945 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
946 (More about this later.) But in order to fetch the relocs, we
947 need to first fetch the dynamic symbols. These symbols need to
948 be cached due to the way that bfd_canonicalize_dynamic_reloc()
949 works. (See the comments in the declaration of struct lm_info
950 for more information.) */
951 if (lm->dyn_syms == NULL)
952 {
953 long storage_needed;
954 unsigned int number_of_symbols;
955
956 /* Determine amount of space needed to hold the dynamic symbol table. */
957 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
958
959 /* If there are no dynamic symbols, there's nothing to do. */
960 if (storage_needed <= 0)
961 return 0;
962
963 /* Allocate space for the dynamic symbol table. */
964 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
965
966 /* Fetch the dynamic symbol table. */
967 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
968
969 if (number_of_symbols == 0)
970 return 0;
971 }
972
973 /* Fetch the dynamic relocations if not already cached. */
974 if (lm->dyn_relocs == NULL)
975 {
976 long storage_needed;
977
978 /* Determine amount of space needed to hold the dynamic relocs. */
979 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
980
981 /* Bail out if there are no dynamic relocs. */
982 if (storage_needed <= 0)
983 return 0;
984
985 /* Allocate space for the relocs. */
986 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
987
988 /* Fetch the dynamic relocs. */
989 lm->dyn_reloc_count
990 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
991 }
992
993 /* Search the dynamic relocs. */
994 for (i = 0; i < lm->dyn_reloc_count; i++)
995 {
996 rel = lm->dyn_relocs[i];
997
998 /* Relocs of interest are those which meet the following
999 criteria:
1000
1001 - the names match (assuming the caller could provide
1002 a name which matches ``entry_point'').
1003 - the relocation type must be R_FRV_FUNCDESC. Relocs
1004 of this type are used (by the dynamic linker) to
1005 look up the address of a canonical descriptor (allocating
1006 it if need be) and initializing the GOT entry referred
1007 to by the offset to the address of the descriptor.
1008
1009 These relocs of interest may be used to obtain a
1010 candidate descriptor by first adjusting the reloc's
1011 address according to the link map and then dereferencing
1012 this address (which is a GOT entry) to obtain a descriptor
1013 address. */
1014 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1015 && rel->howto->type == R_FRV_FUNCDESC)
1016 {
1017 gdb_byte buf [FRV_PTR_SIZE];
1018
1019 /* Compute address of address of candidate descriptor. */
1020 addr = rel->address + displacement_from_map (lm->map, rel->address);
1021
1022 /* Fetch address of candidate descriptor. */
1023 if (target_read_memory (addr, buf, sizeof buf) != 0)
1024 continue;
1025 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1026
1027 /* Check for matching entry point. */
1028 if (target_read_memory (addr, buf, sizeof buf) != 0)
1029 continue;
1030 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1031 != entry_point)
1032 continue;
1033
1034 /* Check for matching got value. */
1035 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1036 continue;
1037 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1038 != got_value)
1039 continue;
1040
1041 /* Match was successful! Exit loop. */
1042 break;
1043 }
1044 }
1045
1046 return addr;
1047 }
1048
1049 /* Given an objfile, return the address of its link map. This value is
1050 needed for TLS support. */
1051 CORE_ADDR
1052 frv_fetch_objfile_link_map (struct objfile *objfile)
1053 {
1054 /* Cause frv_current_sos() to be run if it hasn't been already. */
1055 if (main_lm_addr == 0)
1056 solib_add (0, 0, 1);
1057
1058 /* frv_current_sos() will set main_lm_addr for the main executable. */
1059 if (objfile == current_program_space->symfile_object_file)
1060 return main_lm_addr;
1061
1062 /* The other link map addresses may be found by examining the list
1063 of shared libraries. */
1064 for (const shobj &so : current_program_space->solibs ())
1065 {
1066 auto *li = gdb::checked_static_cast<lm_info_frv *> (so.lm_info.get ());
1067
1068 if (so.objfile == objfile)
1069 return li->lm_addr;
1070 }
1071
1072 /* Not found! */
1073 return 0;
1074 }
1075
1076 const struct target_so_ops frv_so_ops =
1077 {
1078 frv_relocate_section_addresses,
1079 nullptr,
1080 frv_clear_solib,
1081 frv_solib_create_inferior_hook,
1082 frv_current_sos,
1083 open_symbol_file_object,
1084 frv_in_dynsym_resolve_code,
1085 solib_bfd_open,
1086 };