]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/solib-sunos.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / solib-sunos.c
1 /* Handle SunOS shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-1996, 1998-2001, 2004, 2007-2012 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include <sys/types.h>
24 #include <signal.h>
25 #include "gdb_string.h"
26 #include <sys/param.h>
27 #include <fcntl.h>
28
29 /* SunOS shared libs need the nlist structure. */
30 #include <a.out.h>
31 #include <link.h>
32
33 #include "symtab.h"
34 #include "bfd.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbcore.h"
38 #include "inferior.h"
39 #include "gdbthread.h"
40 #include "solist.h"
41 #include "bcache.h"
42 #include "regcache.h"
43
44 /* The shared library implementation found on BSD a.out systems is
45 very similar to the SunOS implementation. However, the data
46 structures defined in <link.h> are named very differently. Make up
47 for those differences here. */
48
49 #ifdef HAVE_STRUCT_SO_MAP_WITH_SOM_MEMBERS
50
51 /* FIXME: Temporary until the equivalent defines have been removed
52 from all nm-*bsd*.h files. */
53 #ifndef link_dynamic
54
55 /* Map `struct link_map' and its members. */
56 #define link_map so_map
57 #define lm_addr som_addr
58 #define lm_name som_path
59 #define lm_next som_next
60
61 /* Map `struct link_dynamic_2' and its members. */
62 #define link_dynamic_2 section_dispatch_table
63 #define ld_loaded sdt_loaded
64
65 /* Map `struct rtc_symb' and its members. */
66 #define rtc_symb rt_symbol
67 #define rtc_sp rt_sp
68 #define rtc_next rt_next
69
70 /* Map `struct ld_debug' and its members. */
71 #define ld_debug so_debug
72 #define ldd_in_debugger dd_in_debugger
73 #define ldd_bp_addr dd_bpt_addr
74 #define ldd_bp_inst dd_bpt_shadow
75 #define ldd_cp dd_cc
76
77 /* Map `struct link_dynamic' and its members. */
78 #define link_dynamic _dynamic
79 #define ld_version d_version
80 #define ldd d_debug
81 #define ld_un d_un
82 #define ld_2 d_sdt
83
84 #endif
85
86 #endif
87
88 /* Link map info to include in an allocated so_list entry. */
89
90 struct lm_info
91 {
92 /* Pointer to copy of link map from inferior. The type is char *
93 rather than void *, so that we may use byte offsets to find the
94 various fields without the need for a cast. */
95 char *lm;
96 };
97
98
99 /* Symbols which are used to locate the base of the link map structures. */
100
101 static char *debug_base_symbols[] =
102 {
103 "_DYNAMIC",
104 "_DYNAMIC__MGC",
105 NULL
106 };
107
108 static char *main_name_list[] =
109 {
110 "main_$main",
111 NULL
112 };
113
114 /* Macro to extract an address from a solib structure. When GDB is
115 configured for some 32-bit targets (e.g. Solaris 2.7 sparc), BFD is
116 configured to handle 64-bit targets, so CORE_ADDR is 64 bits. We
117 have to extract only the significant bits of addresses to get the
118 right address when accessing the core file BFD.
119
120 Assume that the address is unsigned. */
121
122 #define SOLIB_EXTRACT_ADDRESS(MEMBER) \
123 extract_unsigned_integer (&(MEMBER), sizeof (MEMBER), \
124 gdbarch_byte_order (target_gdbarch))
125
126 /* local data declarations */
127
128 static struct link_dynamic dynamic_copy;
129 static struct link_dynamic_2 ld_2_copy;
130 static struct ld_debug debug_copy;
131 static CORE_ADDR debug_addr;
132 static CORE_ADDR flag_addr;
133
134 #ifndef offsetof
135 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
136 #endif
137 #define fieldsize(TYPE, MEMBER) (sizeof (((TYPE *)0)->MEMBER))
138
139 /* link map access functions */
140
141 static CORE_ADDR
142 lm_addr (struct so_list *so)
143 {
144 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
145 int lm_addr_offset = offsetof (struct link_map, lm_addr);
146 int lm_addr_size = fieldsize (struct link_map, lm_addr);
147
148 return (CORE_ADDR) extract_signed_integer (so->lm_info->lm + lm_addr_offset,
149 lm_addr_size, byte_order);
150 }
151
152 static CORE_ADDR
153 lm_next (struct so_list *so)
154 {
155 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
156 int lm_next_offset = offsetof (struct link_map, lm_next);
157 int lm_next_size = fieldsize (struct link_map, lm_next);
158
159 /* Assume that the address is unsigned. */
160 return extract_unsigned_integer (so->lm_info->lm + lm_next_offset,
161 lm_next_size, byte_order);
162 }
163
164 static CORE_ADDR
165 lm_name (struct so_list *so)
166 {
167 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
168 int lm_name_offset = offsetof (struct link_map, lm_name);
169 int lm_name_size = fieldsize (struct link_map, lm_name);
170
171 /* Assume that the address is unsigned. */
172 return extract_unsigned_integer (so->lm_info->lm + lm_name_offset,
173 lm_name_size, byte_order);
174 }
175
176 static CORE_ADDR debug_base; /* Base of dynamic linker structures. */
177
178 /* Local function prototypes */
179
180 static int match_main (char *);
181
182 /* Allocate the runtime common object file. */
183
184 static void
185 allocate_rt_common_objfile (void)
186 {
187 struct objfile *objfile;
188 struct objfile *last_one;
189
190 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
191 memset (objfile, 0, sizeof (struct objfile));
192 objfile->psymbol_cache = psymbol_bcache_init ();
193 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
194 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
195 obstack_init (&objfile->objfile_obstack);
196 objfile->name = xstrdup ("rt_common");
197
198 /* Add this file onto the tail of the linked list of other such files. */
199
200 objfile->next = NULL;
201 if (object_files == NULL)
202 object_files = objfile;
203 else
204 {
205 for (last_one = object_files;
206 last_one->next;
207 last_one = last_one->next);
208 last_one->next = objfile;
209 }
210
211 rt_common_objfile = objfile;
212 }
213
214 /* Read all dynamically loaded common symbol definitions from the inferior
215 and put them into the minimal symbol table for the runtime common
216 objfile. */
217
218 static void
219 solib_add_common_symbols (CORE_ADDR rtc_symp)
220 {
221 struct rtc_symb inferior_rtc_symb;
222 struct nlist inferior_rtc_nlist;
223 int len;
224 char *name;
225
226 /* Remove any runtime common symbols from previous runs. */
227
228 if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
229 {
230 obstack_free (&rt_common_objfile->objfile_obstack, 0);
231 obstack_init (&rt_common_objfile->objfile_obstack);
232 rt_common_objfile->minimal_symbol_count = 0;
233 rt_common_objfile->msymbols = NULL;
234 terminate_minimal_symbol_table (rt_common_objfile);
235 }
236
237 init_minimal_symbol_collection ();
238 make_cleanup_discard_minimal_symbols ();
239
240 while (rtc_symp)
241 {
242 read_memory (rtc_symp,
243 (char *) &inferior_rtc_symb,
244 sizeof (inferior_rtc_symb));
245 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_sp),
246 (char *) &inferior_rtc_nlist,
247 sizeof (inferior_rtc_nlist));
248 if (inferior_rtc_nlist.n_type == N_COMM)
249 {
250 /* FIXME: The length of the symbol name is not available, but in the
251 current implementation the common symbol is allocated immediately
252 behind the name of the symbol. */
253 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
254
255 name = xmalloc (len);
256 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_nlist.n_un.n_name),
257 name, len);
258
259 /* Allocate the runtime common objfile if necessary. */
260 if (rt_common_objfile == NULL)
261 allocate_rt_common_objfile ();
262
263 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
264 mst_bss, rt_common_objfile);
265 xfree (name);
266 }
267 rtc_symp = SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_next);
268 }
269
270 /* Install any minimal symbols that have been collected as the current
271 minimal symbols for the runtime common objfile. */
272
273 install_minimal_symbols (rt_common_objfile);
274 }
275
276
277 /* Locate the base address of dynamic linker structs.
278
279 For both the SunOS and SVR4 shared library implementations, if the
280 inferior executable has been linked dynamically, there is a single
281 address somewhere in the inferior's data space which is the key to
282 locating all of the dynamic linker's runtime structures. This
283 address is the value of the debug base symbol. The job of this
284 function is to find and return that address, or to return 0 if there
285 is no such address (the executable is statically linked for example).
286
287 For SunOS, the job is almost trivial, since the dynamic linker and
288 all of it's structures are statically linked to the executable at
289 link time. Thus the symbol for the address we are looking for has
290 already been added to the minimal symbol table for the executable's
291 objfile at the time the symbol file's symbols were read, and all we
292 have to do is look it up there. Note that we explicitly do NOT want
293 to find the copies in the shared library.
294
295 The SVR4 version is a bit more complicated because the address
296 is contained somewhere in the dynamic info section. We have to go
297 to a lot more work to discover the address of the debug base symbol.
298 Because of this complexity, we cache the value we find and return that
299 value on subsequent invocations. Note there is no copy in the
300 executable symbol tables. */
301
302 static CORE_ADDR
303 locate_base (void)
304 {
305 struct minimal_symbol *msymbol;
306 CORE_ADDR address = 0;
307 char **symbolp;
308
309 /* For SunOS, we want to limit the search for the debug base symbol to the
310 executable being debugged, since there is a duplicate named symbol in the
311 shared library. We don't want the shared library versions. */
312
313 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
314 {
315 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
316 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
317 {
318 address = SYMBOL_VALUE_ADDRESS (msymbol);
319 return (address);
320 }
321 }
322 return (0);
323 }
324
325 /* Locate first member in dynamic linker's map.
326
327 Find the first element in the inferior's dynamic link map, and
328 return its address in the inferior. This function doesn't copy the
329 link map entry itself into our address space; current_sos actually
330 does the reading. */
331
332 static CORE_ADDR
333 first_link_map_member (void)
334 {
335 CORE_ADDR lm = 0;
336
337 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
338 if (dynamic_copy.ld_version >= 2)
339 {
340 /* It is a version that we can deal with, so read in the secondary
341 structure and find the address of the link map list from it. */
342 read_memory (SOLIB_EXTRACT_ADDRESS (dynamic_copy.ld_un.ld_2),
343 (char *) &ld_2_copy, sizeof (struct link_dynamic_2));
344 lm = SOLIB_EXTRACT_ADDRESS (ld_2_copy.ld_loaded);
345 }
346 return (lm);
347 }
348
349 static int
350 open_symbol_file_object (void *from_ttyp)
351 {
352 return 1;
353 }
354
355
356 /* Implement the "current_sos" target_so_ops method. */
357
358 static struct so_list *
359 sunos_current_sos (void)
360 {
361 CORE_ADDR lm;
362 struct so_list *head = 0;
363 struct so_list **link_ptr = &head;
364 int errcode;
365 char *buffer;
366
367 /* Make sure we've looked up the inferior's dynamic linker's base
368 structure. */
369 if (! debug_base)
370 {
371 debug_base = locate_base ();
372
373 /* If we can't find the dynamic linker's base structure, this
374 must not be a dynamically linked executable. Hmm. */
375 if (! debug_base)
376 return 0;
377 }
378
379 /* Walk the inferior's link map list, and build our list of
380 `struct so_list' nodes. */
381 lm = first_link_map_member ();
382 while (lm)
383 {
384 struct so_list *new
385 = (struct so_list *) xmalloc (sizeof (struct so_list));
386 struct cleanup *old_chain = make_cleanup (xfree, new);
387
388 memset (new, 0, sizeof (*new));
389
390 new->lm_info = xmalloc (sizeof (struct lm_info));
391 make_cleanup (xfree, new->lm_info);
392
393 new->lm_info->lm = xmalloc (sizeof (struct link_map));
394 make_cleanup (xfree, new->lm_info->lm);
395 memset (new->lm_info->lm, 0, sizeof (struct link_map));
396
397 read_memory (lm, new->lm_info->lm, sizeof (struct link_map));
398
399 lm = lm_next (new);
400
401 /* Extract this shared object's name. */
402 target_read_string (lm_name (new), &buffer,
403 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
404 if (errcode != 0)
405 warning (_("Can't read pathname for load map: %s."),
406 safe_strerror (errcode));
407 else
408 {
409 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
410 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
411 xfree (buffer);
412 strcpy (new->so_original_name, new->so_name);
413 }
414
415 /* If this entry has no name, or its name matches the name
416 for the main executable, don't include it in the list. */
417 if (! new->so_name[0]
418 || match_main (new->so_name))
419 free_so (new);
420 else
421 {
422 new->next = 0;
423 *link_ptr = new;
424 link_ptr = &new->next;
425 }
426
427 discard_cleanups (old_chain);
428 }
429
430 return head;
431 }
432
433
434 /* On some systems, the only way to recognize the link map entry for
435 the main executable file is by looking at its name. Return
436 non-zero iff SONAME matches one of the known main executable names. */
437
438 static int
439 match_main (char *soname)
440 {
441 char **mainp;
442
443 for (mainp = main_name_list; *mainp != NULL; mainp++)
444 {
445 if (strcmp (soname, *mainp) == 0)
446 return (1);
447 }
448
449 return (0);
450 }
451
452
453 static int
454 sunos_in_dynsym_resolve_code (CORE_ADDR pc)
455 {
456 return 0;
457 }
458
459 /* Remove the "mapping changed" breakpoint.
460
461 Removes the breakpoint that gets hit when the dynamic linker
462 completes a mapping change. */
463
464 static int
465 disable_break (void)
466 {
467 CORE_ADDR breakpoint_addr; /* Address where end bkpt is set. */
468
469 int in_debugger = 0;
470
471 /* Read the debugger structure from the inferior to retrieve the
472 address of the breakpoint and the original contents of the
473 breakpoint address. Remove the breakpoint by writing the original
474 contents back. */
475
476 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
477
478 /* Set `in_debugger' to zero now. */
479
480 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
481
482 breakpoint_addr = SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_bp_addr);
483 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
484 sizeof (debug_copy.ldd_bp_inst));
485
486 /* For the SVR4 version, we always know the breakpoint address. For the
487 SunOS version we don't know it until the above code is executed.
488 Grumble if we are stopped anywhere besides the breakpoint address. */
489
490 if (stop_pc != breakpoint_addr)
491 {
492 warning (_("stopped at unknown breakpoint "
493 "while handling shared libraries"));
494 }
495
496 return 1;
497 }
498
499 /* Arrange for dynamic linker to hit breakpoint.
500
501 Both the SunOS and the SVR4 dynamic linkers have, as part of their
502 debugger interface, support for arranging for the inferior to hit
503 a breakpoint after mapping in the shared libraries. This function
504 enables that breakpoint.
505
506 For SunOS, there is a special flag location (in_debugger) which we
507 set to 1. When the dynamic linker sees this flag set, it will set
508 a breakpoint at a location known only to itself, after saving the
509 original contents of that place and the breakpoint address itself,
510 in it's own internal structures. When we resume the inferior, it
511 will eventually take a SIGTRAP when it runs into the breakpoint.
512 We handle this (in a different place) by restoring the contents of
513 the breakpointed location (which is only known after it stops),
514 chasing around to locate the shared libraries that have been
515 loaded, then resuming.
516
517 For SVR4, the debugger interface structure contains a member (r_brk)
518 which is statically initialized at the time the shared library is
519 built, to the offset of a function (_r_debug_state) which is guaran-
520 teed to be called once before mapping in a library, and again when
521 the mapping is complete. At the time we are examining this member,
522 it contains only the unrelocated offset of the function, so we have
523 to do our own relocation. Later, when the dynamic linker actually
524 runs, it relocates r_brk to be the actual address of _r_debug_state().
525
526 The debugger interface structure also contains an enumeration which
527 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
528 depending upon whether or not the library is being mapped or
529 unmapped, and then set to RT_CONSISTENT after the library is
530 mapped/unmapped. */
531
532 static int
533 enable_break (void)
534 {
535 int success = 0;
536 int j;
537 int in_debugger;
538
539 /* Get link_dynamic structure. */
540
541 j = target_read_memory (debug_base, (char *) &dynamic_copy,
542 sizeof (dynamic_copy));
543 if (j)
544 {
545 /* unreadable */
546 return (0);
547 }
548
549 /* Calc address of debugger interface structure. */
550
551 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
552
553 /* Calc address of `in_debugger' member of debugger interface structure. */
554
555 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
556 (char *) &debug_copy);
557
558 /* Write a value of 1 to this member. */
559
560 in_debugger = 1;
561 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
562 success = 1;
563
564 return (success);
565 }
566
567 /* Implement the "special_symbol_handling" target_so_ops method.
568
569 For SunOS4, this consists of grunging around in the dynamic
570 linkers structures to find symbol definitions for "common" symbols
571 and adding them to the minimal symbol table for the runtime common
572 objfile. */
573
574 static void
575 sunos_special_symbol_handling (void)
576 {
577 int j;
578
579 if (debug_addr == 0)
580 {
581 /* Get link_dynamic structure. */
582
583 j = target_read_memory (debug_base, (char *) &dynamic_copy,
584 sizeof (dynamic_copy));
585 if (j)
586 {
587 /* unreadable */
588 return;
589 }
590
591 /* Calc address of debugger interface structure. */
592 /* FIXME, this needs work for cross-debugging of core files
593 (byteorder, size, alignment, etc). */
594
595 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
596 }
597
598 /* Read the debugger structure from the inferior, just to make sure
599 we have a current copy. */
600
601 j = target_read_memory (debug_addr, (char *) &debug_copy,
602 sizeof (debug_copy));
603 if (j)
604 return; /* unreadable */
605
606 /* Get common symbol definitions for the loaded object. */
607
608 if (debug_copy.ldd_cp)
609 {
610 solib_add_common_symbols (SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_cp));
611 }
612 }
613
614 /* Implement the "create_inferior_hook" target_solib_ops method.
615
616 For SunOS executables, this first instruction is typically the
617 one at "_start", or a similar text label, regardless of whether
618 the executable is statically or dynamically linked. The runtime
619 startup code takes care of dynamically linking in any shared
620 libraries, once gdb allows the inferior to continue.
621
622 We can arrange to cooperate with the dynamic linker to discover the
623 names of shared libraries that are dynamically linked, and the base
624 addresses to which they are linked.
625
626 This function is responsible for discovering those names and
627 addresses, and saving sufficient information about them to allow
628 their symbols to be read at a later time.
629
630 FIXME
631
632 Between enable_break() and disable_break(), this code does not
633 properly handle hitting breakpoints which the user might have
634 set in the startup code or in the dynamic linker itself. Proper
635 handling will probably have to wait until the implementation is
636 changed to use the "breakpoint handler function" method.
637
638 Also, what if child has exit()ed? Must exit loop somehow. */
639
640 static void
641 sunos_solib_create_inferior_hook (int from_tty)
642 {
643 struct thread_info *tp;
644 struct inferior *inf;
645
646 if ((debug_base = locate_base ()) == 0)
647 {
648 /* Can't find the symbol or the executable is statically linked. */
649 return;
650 }
651
652 if (!enable_break ())
653 {
654 warning (_("shared library handler failed to enable breakpoint"));
655 return;
656 }
657
658 /* SCO and SunOS need the loop below, other systems should be using the
659 special shared library breakpoints and the shared library breakpoint
660 service routine.
661
662 Now run the target. It will eventually hit the breakpoint, at
663 which point all of the libraries will have been mapped in and we
664 can go groveling around in the dynamic linker structures to find
665 out what we need to know about them. */
666
667 inf = current_inferior ();
668 tp = inferior_thread ();
669
670 clear_proceed_status ();
671
672 inf->control.stop_soon = STOP_QUIETLY;
673 tp->suspend.stop_signal = GDB_SIGNAL_0;
674 do
675 {
676 target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal);
677 wait_for_inferior ();
678 }
679 while (tp->suspend.stop_signal != GDB_SIGNAL_TRAP);
680 inf->control.stop_soon = NO_STOP_QUIETLY;
681
682 /* We are now either at the "mapping complete" breakpoint (or somewhere
683 else, a condition we aren't prepared to deal with anyway), so adjust
684 the PC as necessary after a breakpoint, disable the breakpoint, and
685 add any shared libraries that were mapped in.
686
687 Note that adjust_pc_after_break did not perform any PC adjustment,
688 as the breakpoint the inferior just hit was not inserted by GDB,
689 but by the dynamic loader itself, and is therefore not found on
690 the GDB software break point list. Thus we have to adjust the
691 PC here. */
692
693 if (gdbarch_decr_pc_after_break (target_gdbarch))
694 {
695 stop_pc -= gdbarch_decr_pc_after_break (target_gdbarch);
696 regcache_write_pc (get_current_regcache (), stop_pc);
697 }
698
699 if (!disable_break ())
700 {
701 warning (_("shared library handler failed to disable breakpoint"));
702 }
703
704 solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
705 }
706
707 static void
708 sunos_clear_solib (void)
709 {
710 debug_base = 0;
711 }
712
713 static void
714 sunos_free_so (struct so_list *so)
715 {
716 xfree (so->lm_info->lm);
717 xfree (so->lm_info);
718 }
719
720 static void
721 sunos_relocate_section_addresses (struct so_list *so,
722 struct target_section *sec)
723 {
724 sec->addr += lm_addr (so);
725 sec->endaddr += lm_addr (so);
726 }
727
728 static struct target_so_ops sunos_so_ops;
729
730 void
731 _initialize_sunos_solib (void)
732 {
733 sunos_so_ops.relocate_section_addresses = sunos_relocate_section_addresses;
734 sunos_so_ops.free_so = sunos_free_so;
735 sunos_so_ops.clear_solib = sunos_clear_solib;
736 sunos_so_ops.solib_create_inferior_hook = sunos_solib_create_inferior_hook;
737 sunos_so_ops.special_symbol_handling = sunos_special_symbol_handling;
738 sunos_so_ops.current_sos = sunos_current_sos;
739 sunos_so_ops.open_symbol_file_object = open_symbol_file_object;
740 sunos_so_ops.in_dynsym_resolve_code = sunos_in_dynsym_resolve_code;
741 sunos_so_ops.bfd_open = solib_bfd_open;
742
743 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
744 current_target_so_ops = &sunos_so_ops;
745 }