]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/solib-sunos.c
* defs.h (extract_signed_integer, extract_unsigned_integer,
[thirdparty/binutils-gdb.git] / gdb / solib-sunos.c
1 /* Handle SunOS shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include <sys/types.h>
24 #include <signal.h>
25 #include "gdb_string.h"
26 #include <sys/param.h>
27 #include <fcntl.h>
28
29 /* SunOS shared libs need the nlist structure. */
30 #include <a.out.h>
31 #include <link.h>
32
33 #include "symtab.h"
34 #include "bfd.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbcore.h"
38 #include "inferior.h"
39 #include "gdbthread.h"
40 #include "solist.h"
41 #include "bcache.h"
42 #include "regcache.h"
43
44 /* The shared library implementation found on BSD a.out systems is
45 very similar to the SunOS implementation. However, the data
46 structures defined in <link.h> are named very differently. Make up
47 for those differences here. */
48
49 #ifdef HAVE_STRUCT_SO_MAP_WITH_SOM_MEMBERS
50
51 /* FIXME: Temporary until the equivalent defines have been removed
52 from all nm-*bsd*.h files. */
53 #ifndef link_dynamic
54
55 /* Map `struct link_map' and its members. */
56 #define link_map so_map
57 #define lm_addr som_addr
58 #define lm_name som_path
59 #define lm_next som_next
60
61 /* Map `struct link_dynamic_2' and its members. */
62 #define link_dynamic_2 section_dispatch_table
63 #define ld_loaded sdt_loaded
64
65 /* Map `struct rtc_symb' and its members. */
66 #define rtc_symb rt_symbol
67 #define rtc_sp rt_sp
68 #define rtc_next rt_next
69
70 /* Map `struct ld_debug' and its members. */
71 #define ld_debug so_debug
72 #define ldd_in_debugger dd_in_debugger
73 #define ldd_bp_addr dd_bpt_addr
74 #define ldd_bp_inst dd_bpt_shadow
75 #define ldd_cp dd_cc
76
77 /* Map `struct link_dynamic' and its members. */
78 #define link_dynamic _dynamic
79 #define ld_version d_version
80 #define ldd d_debug
81 #define ld_un d_un
82 #define ld_2 d_sdt
83
84 #endif
85
86 #endif
87
88 /* Link map info to include in an allocated so_list entry */
89
90 struct lm_info
91 {
92 /* Pointer to copy of link map from inferior. The type is char *
93 rather than void *, so that we may use byte offsets to find the
94 various fields without the need for a cast. */
95 char *lm;
96 };
97
98
99 /* Symbols which are used to locate the base of the link map structures. */
100
101 static char *debug_base_symbols[] =
102 {
103 "_DYNAMIC",
104 "_DYNAMIC__MGC",
105 NULL
106 };
107
108 static char *main_name_list[] =
109 {
110 "main_$main",
111 NULL
112 };
113
114 /* Macro to extract an address from a solib structure. When GDB is
115 configured for some 32-bit targets (e.g. Solaris 2.7 sparc), BFD is
116 configured to handle 64-bit targets, so CORE_ADDR is 64 bits. We
117 have to extract only the significant bits of addresses to get the
118 right address when accessing the core file BFD.
119
120 Assume that the address is unsigned. */
121
122 #define SOLIB_EXTRACT_ADDRESS(MEMBER) \
123 extract_unsigned_integer (&(MEMBER), sizeof (MEMBER), \
124 gdbarch_byte_order (target_gdbarch))
125
126 /* local data declarations */
127
128 static struct link_dynamic dynamic_copy;
129 static struct link_dynamic_2 ld_2_copy;
130 static struct ld_debug debug_copy;
131 static CORE_ADDR debug_addr;
132 static CORE_ADDR flag_addr;
133
134 #ifndef offsetof
135 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
136 #endif
137 #define fieldsize(TYPE, MEMBER) (sizeof (((TYPE *)0)->MEMBER))
138
139 /* link map access functions */
140
141 static CORE_ADDR
142 LM_ADDR (struct so_list *so)
143 {
144 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
145 int lm_addr_offset = offsetof (struct link_map, lm_addr);
146 int lm_addr_size = fieldsize (struct link_map, lm_addr);
147
148 return (CORE_ADDR) extract_signed_integer (so->lm_info->lm + lm_addr_offset,
149 lm_addr_size, byte_order);
150 }
151
152 static CORE_ADDR
153 LM_NEXT (struct so_list *so)
154 {
155 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
156 int lm_next_offset = offsetof (struct link_map, lm_next);
157 int lm_next_size = fieldsize (struct link_map, lm_next);
158
159 /* Assume that the address is unsigned. */
160 return extract_unsigned_integer (so->lm_info->lm + lm_next_offset,
161 lm_next_size, byte_order);
162 }
163
164 static CORE_ADDR
165 LM_NAME (struct so_list *so)
166 {
167 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
168 int lm_name_offset = offsetof (struct link_map, lm_name);
169 int lm_name_size = fieldsize (struct link_map, lm_name);
170
171 /* Assume that the address is unsigned. */
172 return extract_unsigned_integer (so->lm_info->lm + lm_name_offset,
173 lm_name_size, byte_order);
174 }
175
176 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
177
178 /* Local function prototypes */
179
180 static int match_main (char *);
181
182 /* Allocate the runtime common object file. */
183
184 static void
185 allocate_rt_common_objfile (void)
186 {
187 struct objfile *objfile;
188 struct objfile *last_one;
189
190 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
191 memset (objfile, 0, sizeof (struct objfile));
192 objfile->psymbol_cache = bcache_xmalloc ();
193 objfile->macro_cache = bcache_xmalloc ();
194 obstack_init (&objfile->objfile_obstack);
195 objfile->name = xstrdup ("rt_common");
196
197 /* Add this file onto the tail of the linked list of other such files. */
198
199 objfile->next = NULL;
200 if (object_files == NULL)
201 object_files = objfile;
202 else
203 {
204 for (last_one = object_files;
205 last_one->next;
206 last_one = last_one->next);
207 last_one->next = objfile;
208 }
209
210 rt_common_objfile = objfile;
211 }
212
213 /* Read all dynamically loaded common symbol definitions from the inferior
214 and put them into the minimal symbol table for the runtime common
215 objfile. */
216
217 static void
218 solib_add_common_symbols (CORE_ADDR rtc_symp)
219 {
220 struct rtc_symb inferior_rtc_symb;
221 struct nlist inferior_rtc_nlist;
222 int len;
223 char *name;
224
225 /* Remove any runtime common symbols from previous runs. */
226
227 if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
228 {
229 obstack_free (&rt_common_objfile->objfile_obstack, 0);
230 obstack_init (&rt_common_objfile->objfile_obstack);
231 rt_common_objfile->minimal_symbol_count = 0;
232 rt_common_objfile->msymbols = NULL;
233 terminate_minimal_symbol_table (rt_common_objfile);
234 }
235
236 init_minimal_symbol_collection ();
237 make_cleanup_discard_minimal_symbols ();
238
239 while (rtc_symp)
240 {
241 read_memory (rtc_symp,
242 (char *) &inferior_rtc_symb,
243 sizeof (inferior_rtc_symb));
244 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_sp),
245 (char *) &inferior_rtc_nlist,
246 sizeof (inferior_rtc_nlist));
247 if (inferior_rtc_nlist.n_type == N_COMM)
248 {
249 /* FIXME: The length of the symbol name is not available, but in the
250 current implementation the common symbol is allocated immediately
251 behind the name of the symbol. */
252 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
253
254 name = xmalloc (len);
255 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_nlist.n_un.n_name),
256 name, len);
257
258 /* Allocate the runtime common objfile if necessary. */
259 if (rt_common_objfile == NULL)
260 allocate_rt_common_objfile ();
261
262 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
263 mst_bss, rt_common_objfile);
264 xfree (name);
265 }
266 rtc_symp = SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_next);
267 }
268
269 /* Install any minimal symbols that have been collected as the current
270 minimal symbols for the runtime common objfile. */
271
272 install_minimal_symbols (rt_common_objfile);
273 }
274
275
276 /*
277
278 LOCAL FUNCTION
279
280 locate_base -- locate the base address of dynamic linker structs
281
282 SYNOPSIS
283
284 CORE_ADDR locate_base (void)
285
286 DESCRIPTION
287
288 For both the SunOS and SVR4 shared library implementations, if the
289 inferior executable has been linked dynamically, there is a single
290 address somewhere in the inferior's data space which is the key to
291 locating all of the dynamic linker's runtime structures. This
292 address is the value of the debug base symbol. The job of this
293 function is to find and return that address, or to return 0 if there
294 is no such address (the executable is statically linked for example).
295
296 For SunOS, the job is almost trivial, since the dynamic linker and
297 all of it's structures are statically linked to the executable at
298 link time. Thus the symbol for the address we are looking for has
299 already been added to the minimal symbol table for the executable's
300 objfile at the time the symbol file's symbols were read, and all we
301 have to do is look it up there. Note that we explicitly do NOT want
302 to find the copies in the shared library.
303
304 The SVR4 version is a bit more complicated because the address
305 is contained somewhere in the dynamic info section. We have to go
306 to a lot more work to discover the address of the debug base symbol.
307 Because of this complexity, we cache the value we find and return that
308 value on subsequent invocations. Note there is no copy in the
309 executable symbol tables.
310
311 */
312
313 static CORE_ADDR
314 locate_base (void)
315 {
316 struct minimal_symbol *msymbol;
317 CORE_ADDR address = 0;
318 char **symbolp;
319
320 /* For SunOS, we want to limit the search for the debug base symbol to the
321 executable being debugged, since there is a duplicate named symbol in the
322 shared library. We don't want the shared library versions. */
323
324 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
325 {
326 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
327 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
328 {
329 address = SYMBOL_VALUE_ADDRESS (msymbol);
330 return (address);
331 }
332 }
333 return (0);
334 }
335
336 /*
337
338 LOCAL FUNCTION
339
340 first_link_map_member -- locate first member in dynamic linker's map
341
342 SYNOPSIS
343
344 static CORE_ADDR first_link_map_member (void)
345
346 DESCRIPTION
347
348 Find the first element in the inferior's dynamic link map, and
349 return its address in the inferior. This function doesn't copy the
350 link map entry itself into our address space; current_sos actually
351 does the reading. */
352
353 static CORE_ADDR
354 first_link_map_member (void)
355 {
356 CORE_ADDR lm = 0;
357
358 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
359 if (dynamic_copy.ld_version >= 2)
360 {
361 /* It is a version that we can deal with, so read in the secondary
362 structure and find the address of the link map list from it. */
363 read_memory (SOLIB_EXTRACT_ADDRESS (dynamic_copy.ld_un.ld_2),
364 (char *) &ld_2_copy, sizeof (struct link_dynamic_2));
365 lm = SOLIB_EXTRACT_ADDRESS (ld_2_copy.ld_loaded);
366 }
367 return (lm);
368 }
369
370 static int
371 open_symbol_file_object (void *from_ttyp)
372 {
373 return 1;
374 }
375
376
377 /* LOCAL FUNCTION
378
379 current_sos -- build a list of currently loaded shared objects
380
381 SYNOPSIS
382
383 struct so_list *current_sos ()
384
385 DESCRIPTION
386
387 Build a list of `struct so_list' objects describing the shared
388 objects currently loaded in the inferior. This list does not
389 include an entry for the main executable file.
390
391 Note that we only gather information directly available from the
392 inferior --- we don't examine any of the shared library files
393 themselves. The declaration of `struct so_list' says which fields
394 we provide values for. */
395
396 static struct so_list *
397 sunos_current_sos (void)
398 {
399 CORE_ADDR lm;
400 struct so_list *head = 0;
401 struct so_list **link_ptr = &head;
402 int errcode;
403 char *buffer;
404
405 /* Make sure we've looked up the inferior's dynamic linker's base
406 structure. */
407 if (! debug_base)
408 {
409 debug_base = locate_base ();
410
411 /* If we can't find the dynamic linker's base structure, this
412 must not be a dynamically linked executable. Hmm. */
413 if (! debug_base)
414 return 0;
415 }
416
417 /* Walk the inferior's link map list, and build our list of
418 `struct so_list' nodes. */
419 lm = first_link_map_member ();
420 while (lm)
421 {
422 struct so_list *new
423 = (struct so_list *) xmalloc (sizeof (struct so_list));
424 struct cleanup *old_chain = make_cleanup (xfree, new);
425
426 memset (new, 0, sizeof (*new));
427
428 new->lm_info = xmalloc (sizeof (struct lm_info));
429 make_cleanup (xfree, new->lm_info);
430
431 new->lm_info->lm = xmalloc (sizeof (struct link_map));
432 make_cleanup (xfree, new->lm_info->lm);
433 memset (new->lm_info->lm, 0, sizeof (struct link_map));
434
435 read_memory (lm, new->lm_info->lm, sizeof (struct link_map));
436
437 lm = LM_NEXT (new);
438
439 /* Extract this shared object's name. */
440 target_read_string (LM_NAME (new), &buffer,
441 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
442 if (errcode != 0)
443 warning (_("Can't read pathname for load map: %s."),
444 safe_strerror (errcode));
445 else
446 {
447 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
448 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
449 xfree (buffer);
450 strcpy (new->so_original_name, new->so_name);
451 }
452
453 /* If this entry has no name, or its name matches the name
454 for the main executable, don't include it in the list. */
455 if (! new->so_name[0]
456 || match_main (new->so_name))
457 free_so (new);
458 else
459 {
460 new->next = 0;
461 *link_ptr = new;
462 link_ptr = &new->next;
463 }
464
465 discard_cleanups (old_chain);
466 }
467
468 return head;
469 }
470
471
472 /* On some systems, the only way to recognize the link map entry for
473 the main executable file is by looking at its name. Return
474 non-zero iff SONAME matches one of the known main executable names. */
475
476 static int
477 match_main (char *soname)
478 {
479 char **mainp;
480
481 for (mainp = main_name_list; *mainp != NULL; mainp++)
482 {
483 if (strcmp (soname, *mainp) == 0)
484 return (1);
485 }
486
487 return (0);
488 }
489
490
491 static int
492 sunos_in_dynsym_resolve_code (CORE_ADDR pc)
493 {
494 return 0;
495 }
496
497 /*
498
499 LOCAL FUNCTION
500
501 disable_break -- remove the "mapping changed" breakpoint
502
503 SYNOPSIS
504
505 static int disable_break ()
506
507 DESCRIPTION
508
509 Removes the breakpoint that gets hit when the dynamic linker
510 completes a mapping change.
511
512 */
513
514 static int
515 disable_break (void)
516 {
517 CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
518
519 int in_debugger = 0;
520
521 /* Read the debugger structure from the inferior to retrieve the
522 address of the breakpoint and the original contents of the
523 breakpoint address. Remove the breakpoint by writing the original
524 contents back. */
525
526 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
527
528 /* Set `in_debugger' to zero now. */
529
530 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
531
532 breakpoint_addr = SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_bp_addr);
533 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
534 sizeof (debug_copy.ldd_bp_inst));
535
536 /* For the SVR4 version, we always know the breakpoint address. For the
537 SunOS version we don't know it until the above code is executed.
538 Grumble if we are stopped anywhere besides the breakpoint address. */
539
540 if (stop_pc != breakpoint_addr)
541 {
542 warning (_("stopped at unknown breakpoint while handling shared libraries"));
543 }
544
545 return 1;
546 }
547
548
549 /*
550
551 LOCAL FUNCTION
552
553 enable_break -- arrange for dynamic linker to hit breakpoint
554
555 SYNOPSIS
556
557 int enable_break (void)
558
559 DESCRIPTION
560
561 Both the SunOS and the SVR4 dynamic linkers have, as part of their
562 debugger interface, support for arranging for the inferior to hit
563 a breakpoint after mapping in the shared libraries. This function
564 enables that breakpoint.
565
566 For SunOS, there is a special flag location (in_debugger) which we
567 set to 1. When the dynamic linker sees this flag set, it will set
568 a breakpoint at a location known only to itself, after saving the
569 original contents of that place and the breakpoint address itself,
570 in it's own internal structures. When we resume the inferior, it
571 will eventually take a SIGTRAP when it runs into the breakpoint.
572 We handle this (in a different place) by restoring the contents of
573 the breakpointed location (which is only known after it stops),
574 chasing around to locate the shared libraries that have been
575 loaded, then resuming.
576
577 For SVR4, the debugger interface structure contains a member (r_brk)
578 which is statically initialized at the time the shared library is
579 built, to the offset of a function (_r_debug_state) which is guaran-
580 teed to be called once before mapping in a library, and again when
581 the mapping is complete. At the time we are examining this member,
582 it contains only the unrelocated offset of the function, so we have
583 to do our own relocation. Later, when the dynamic linker actually
584 runs, it relocates r_brk to be the actual address of _r_debug_state().
585
586 The debugger interface structure also contains an enumeration which
587 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
588 depending upon whether or not the library is being mapped or unmapped,
589 and then set to RT_CONSISTENT after the library is mapped/unmapped.
590 */
591
592 static int
593 enable_break (void)
594 {
595 int success = 0;
596 int j;
597 int in_debugger;
598
599 /* Get link_dynamic structure */
600
601 j = target_read_memory (debug_base, (char *) &dynamic_copy,
602 sizeof (dynamic_copy));
603 if (j)
604 {
605 /* unreadable */
606 return (0);
607 }
608
609 /* Calc address of debugger interface structure */
610
611 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
612
613 /* Calc address of `in_debugger' member of debugger interface structure */
614
615 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
616 (char *) &debug_copy);
617
618 /* Write a value of 1 to this member. */
619
620 in_debugger = 1;
621 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
622 success = 1;
623
624 return (success);
625 }
626
627 /*
628
629 LOCAL FUNCTION
630
631 special_symbol_handling -- additional shared library symbol handling
632
633 SYNOPSIS
634
635 void special_symbol_handling ()
636
637 DESCRIPTION
638
639 Once the symbols from a shared object have been loaded in the usual
640 way, we are called to do any system specific symbol handling that
641 is needed.
642
643 For SunOS4, this consists of grunging around in the dynamic
644 linkers structures to find symbol definitions for "common" symbols
645 and adding them to the minimal symbol table for the runtime common
646 objfile.
647
648 */
649
650 static void
651 sunos_special_symbol_handling (void)
652 {
653 int j;
654
655 if (debug_addr == 0)
656 {
657 /* Get link_dynamic structure */
658
659 j = target_read_memory (debug_base, (char *) &dynamic_copy,
660 sizeof (dynamic_copy));
661 if (j)
662 {
663 /* unreadable */
664 return;
665 }
666
667 /* Calc address of debugger interface structure */
668 /* FIXME, this needs work for cross-debugging of core files
669 (byteorder, size, alignment, etc). */
670
671 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
672 }
673
674 /* Read the debugger structure from the inferior, just to make sure
675 we have a current copy. */
676
677 j = target_read_memory (debug_addr, (char *) &debug_copy,
678 sizeof (debug_copy));
679 if (j)
680 return; /* unreadable */
681
682 /* Get common symbol definitions for the loaded object. */
683
684 if (debug_copy.ldd_cp)
685 {
686 solib_add_common_symbols (SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_cp));
687 }
688 }
689
690 /*
691
692 GLOBAL FUNCTION
693
694 sunos_solib_create_inferior_hook -- shared library startup support
695
696 SYNOPSIS
697
698 void sunos_solib_create_inferior_hook ()
699
700 DESCRIPTION
701
702 When gdb starts up the inferior, it nurses it along (through the
703 shell) until it is ready to execute it's first instruction. At this
704 point, this function gets called via expansion of the macro
705 SOLIB_CREATE_INFERIOR_HOOK.
706
707 For SunOS executables, this first instruction is typically the
708 one at "_start", or a similar text label, regardless of whether
709 the executable is statically or dynamically linked. The runtime
710 startup code takes care of dynamically linking in any shared
711 libraries, once gdb allows the inferior to continue.
712
713 For SVR4 executables, this first instruction is either the first
714 instruction in the dynamic linker (for dynamically linked
715 executables) or the instruction at "start" for statically linked
716 executables. For dynamically linked executables, the system
717 first exec's /lib/libc.so.N, which contains the dynamic linker,
718 and starts it running. The dynamic linker maps in any needed
719 shared libraries, maps in the actual user executable, and then
720 jumps to "start" in the user executable.
721
722 For both SunOS shared libraries, and SVR4 shared libraries, we
723 can arrange to cooperate with the dynamic linker to discover the
724 names of shared libraries that are dynamically linked, and the
725 base addresses to which they are linked.
726
727 This function is responsible for discovering those names and
728 addresses, and saving sufficient information about them to allow
729 their symbols to be read at a later time.
730
731 FIXME
732
733 Between enable_break() and disable_break(), this code does not
734 properly handle hitting breakpoints which the user might have
735 set in the startup code or in the dynamic linker itself. Proper
736 handling will probably have to wait until the implementation is
737 changed to use the "breakpoint handler function" method.
738
739 Also, what if child has exit()ed? Must exit loop somehow.
740 */
741
742 static void
743 sunos_solib_create_inferior_hook (void)
744 {
745 struct thread_info *tp;
746 struct inferior *inf;
747
748 if ((debug_base = locate_base ()) == 0)
749 {
750 /* Can't find the symbol or the executable is statically linked. */
751 return;
752 }
753
754 if (!enable_break ())
755 {
756 warning (_("shared library handler failed to enable breakpoint"));
757 return;
758 }
759
760 /* SCO and SunOS need the loop below, other systems should be using the
761 special shared library breakpoints and the shared library breakpoint
762 service routine.
763
764 Now run the target. It will eventually hit the breakpoint, at
765 which point all of the libraries will have been mapped in and we
766 can go groveling around in the dynamic linker structures to find
767 out what we need to know about them. */
768
769 inf = current_inferior ();
770 tp = inferior_thread ();
771
772 clear_proceed_status ();
773
774 inf->stop_soon = STOP_QUIETLY;
775 tp->stop_signal = TARGET_SIGNAL_0;
776 do
777 {
778 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
779 wait_for_inferior (0);
780 }
781 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
782 inf->stop_soon = NO_STOP_QUIETLY;
783
784 /* We are now either at the "mapping complete" breakpoint (or somewhere
785 else, a condition we aren't prepared to deal with anyway), so adjust
786 the PC as necessary after a breakpoint, disable the breakpoint, and
787 add any shared libraries that were mapped in.
788
789 Note that adjust_pc_after_break did not perform any PC adjustment,
790 as the breakpoint the inferior just hit was not inserted by GDB,
791 but by the dynamic loader itself, and is therefore not found on
792 the GDB software break point list. Thus we have to adjust the
793 PC here. */
794
795 if (gdbarch_decr_pc_after_break (target_gdbarch))
796 {
797 stop_pc -= gdbarch_decr_pc_after_break (target_gdbarch);
798 regcache_write_pc (get_current_regcache (), stop_pc);
799 }
800
801 if (!disable_break ())
802 {
803 warning (_("shared library handler failed to disable breakpoint"));
804 }
805
806 solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
807 }
808
809 static void
810 sunos_clear_solib (void)
811 {
812 debug_base = 0;
813 }
814
815 static void
816 sunos_free_so (struct so_list *so)
817 {
818 xfree (so->lm_info->lm);
819 xfree (so->lm_info);
820 }
821
822 static void
823 sunos_relocate_section_addresses (struct so_list *so,
824 struct target_section *sec)
825 {
826 sec->addr += LM_ADDR (so);
827 sec->endaddr += LM_ADDR (so);
828 }
829
830 static struct target_so_ops sunos_so_ops;
831
832 void
833 _initialize_sunos_solib (void)
834 {
835 sunos_so_ops.relocate_section_addresses = sunos_relocate_section_addresses;
836 sunos_so_ops.free_so = sunos_free_so;
837 sunos_so_ops.clear_solib = sunos_clear_solib;
838 sunos_so_ops.solib_create_inferior_hook = sunos_solib_create_inferior_hook;
839 sunos_so_ops.special_symbol_handling = sunos_special_symbol_handling;
840 sunos_so_ops.current_sos = sunos_current_sos;
841 sunos_so_ops.open_symbol_file_object = open_symbol_file_object;
842 sunos_so_ops.in_dynsym_resolve_code = sunos_in_dynsym_resolve_code;
843
844 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
845 current_target_so_ops = &sunos_so_ops;
846 }