]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/solib.c
Initial creation of sourceware repository
[thirdparty/binutils-gdb.git] / gdb / solib.c
1 /* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
2 Copyright 1990, 91, 92, 93, 94, 95, 96, 98, 1999
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21
22 #include "defs.h"
23
24 /* This file is only compilable if link.h is available. */
25
26 #ifdef HAVE_LINK_H
27
28 #include <sys/types.h>
29 #include <signal.h>
30 #include "gdb_string.h"
31 #include <sys/param.h>
32 #include <fcntl.h>
33 #include <unistd.h>
34
35 #ifndef SVR4_SHARED_LIBS
36 /* SunOS shared libs need the nlist structure. */
37 #include <a.out.h>
38 #else
39 #include "elf/external.h"
40 #endif
41
42 #include <link.h>
43
44 #include "symtab.h"
45 #include "bfd.h"
46 #include "symfile.h"
47 #include "objfiles.h"
48 #include "gdbcore.h"
49 #include "command.h"
50 #include "target.h"
51 #include "frame.h"
52 #include "gnu-regex.h"
53 #include "inferior.h"
54 #include "environ.h"
55 #include "language.h"
56 #include "gdbcmd.h"
57
58 #define MAX_PATH_SIZE 512 /* FIXME: Should be dynamic */
59
60 /* On SVR4 systems, a list of symbols in the dynamic linker where
61 GDB can try to place a breakpoint to monitor shared library
62 events.
63
64 If none of these symbols are found, or other errors occur, then
65 SVR4 systems will fall back to using a symbol as the "startup
66 mapping complete" breakpoint address. */
67
68 #ifdef SVR4_SHARED_LIBS
69 static char *solib_break_names[] = {
70 "r_debug_state",
71 "_r_debug_state",
72 "_dl_debug_state",
73 "rtld_db_dlactivity",
74 NULL
75 };
76 #endif
77
78 #define BKPT_AT_SYMBOL 1
79
80 #if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
81 static char *bkpt_names[] = {
82 #ifdef SOLIB_BKPT_NAME
83 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
84 #endif
85 "_start",
86 "main",
87 NULL
88 };
89 #endif
90
91 /* Symbols which are used to locate the base of the link map structures. */
92
93 #ifndef SVR4_SHARED_LIBS
94 static char *debug_base_symbols[] = {
95 "_DYNAMIC",
96 "_DYNAMIC__MGC",
97 NULL
98 };
99 #endif
100
101 static char *main_name_list[] = {
102 "main_$main",
103 NULL
104 };
105
106 /* local data declarations */
107
108 #ifndef SVR4_SHARED_LIBS
109
110 #define LM_ADDR(so) ((so) -> lm.lm_addr)
111 #define LM_NEXT(so) ((so) -> lm.lm_next)
112 #define LM_NAME(so) ((so) -> lm.lm_name)
113 /* Test for first link map entry; first entry is a shared library. */
114 #define IGNORE_FIRST_LINK_MAP_ENTRY(x) (0)
115 static struct link_dynamic dynamic_copy;
116 static struct link_dynamic_2 ld_2_copy;
117 static struct ld_debug debug_copy;
118 static CORE_ADDR debug_addr;
119 static CORE_ADDR flag_addr;
120
121 #else /* SVR4_SHARED_LIBS */
122
123 #define LM_ADDR(so) ((so) -> lm.l_addr)
124 #define LM_NEXT(so) ((so) -> lm.l_next)
125 #define LM_NAME(so) ((so) -> lm.l_name)
126 /* Test for first link map entry; first entry is the exec-file. */
127 #define IGNORE_FIRST_LINK_MAP_ENTRY(x) ((x).l_prev == NULL)
128 static struct r_debug debug_copy;
129 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
130
131 #endif /* !SVR4_SHARED_LIBS */
132
133 struct so_list {
134 struct so_list *next; /* next structure in linked list */
135 struct link_map lm; /* copy of link map from inferior */
136 struct link_map *lmaddr; /* addr in inferior lm was read from */
137 CORE_ADDR lmend; /* upper addr bound of mapped object */
138 char so_name[MAX_PATH_SIZE]; /* shared object lib name (FIXME) */
139 char symbols_loaded; /* flag: symbols read in yet? */
140 char from_tty; /* flag: print msgs? */
141 struct objfile *objfile; /* objfile for loaded lib */
142 struct section_table *sections;
143 struct section_table *sections_end;
144 struct section_table *textsection;
145 bfd *abfd;
146 };
147
148 static struct so_list *so_list_head; /* List of known shared objects */
149 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
150 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
151
152 static int solib_cleanup_queued = 0; /* make_run_cleanup called */
153
154 extern int
155 fdmatch PARAMS ((int, int)); /* In libiberty */
156
157 /* Local function prototypes */
158
159 static void
160 do_clear_solib PARAMS ((PTR));
161
162 static int
163 match_main PARAMS ((char *));
164
165 static void
166 special_symbol_handling PARAMS ((struct so_list *));
167
168 static void
169 sharedlibrary_command PARAMS ((char *, int));
170
171 static int
172 enable_break PARAMS ((void));
173
174 static void
175 info_sharedlibrary_command PARAMS ((char *, int));
176
177 static int symbol_add_stub PARAMS ((PTR));
178
179 static struct so_list *
180 find_solib PARAMS ((struct so_list *));
181
182 static struct link_map *
183 first_link_map_member PARAMS ((void));
184
185 static CORE_ADDR
186 locate_base PARAMS ((void));
187
188 static int solib_map_sections PARAMS ((PTR));
189
190 #ifdef SVR4_SHARED_LIBS
191
192 static CORE_ADDR
193 elf_locate_base PARAMS ((void));
194
195 #else
196
197 static int
198 disable_break PARAMS ((void));
199
200 static void
201 allocate_rt_common_objfile PARAMS ((void));
202
203 static void
204 solib_add_common_symbols PARAMS ((struct rtc_symb *));
205
206 #endif
207
208 void _initialize_solib PARAMS ((void));
209
210 /* If non-zero, this is a prefix that will be added to the front of the name
211 shared libraries with an absolute filename for loading. */
212 static char *solib_absolute_prefix = NULL;
213
214 /* If non-empty, this is a search path for loading non-absolute shared library
215 symbol files. This takes precedence over the environment variables PATH
216 and LD_LIBRARY_PATH. */
217 static char *solib_search_path = NULL;
218
219 /*
220
221 LOCAL FUNCTION
222
223 solib_map_sections -- open bfd and build sections for shared lib
224
225 SYNOPSIS
226
227 static int solib_map_sections (struct so_list *so)
228
229 DESCRIPTION
230
231 Given a pointer to one of the shared objects in our list
232 of mapped objects, use the recorded name to open a bfd
233 descriptor for the object, build a section table, and then
234 relocate all the section addresses by the base address at
235 which the shared object was mapped.
236
237 FIXMES
238
239 In most (all?) cases the shared object file name recorded in the
240 dynamic linkage tables will be a fully qualified pathname. For
241 cases where it isn't, do we really mimic the systems search
242 mechanism correctly in the below code (particularly the tilde
243 expansion stuff?).
244 */
245
246 static int
247 solib_map_sections (arg)
248 PTR arg;
249 {
250 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
251 char *filename;
252 char *scratch_pathname;
253 int scratch_chan;
254 struct section_table *p;
255 struct cleanup *old_chain;
256 bfd *abfd;
257
258 filename = tilde_expand (so -> so_name);
259
260 if (solib_absolute_prefix && ROOTED_P (filename))
261 /* Prefix shared libraries with absolute filenames with
262 SOLIB_ABSOLUTE_PREFIX. */
263 {
264 char *pfxed_fn;
265 int pfx_len;
266
267 pfx_len = strlen (solib_absolute_prefix);
268
269 /* Remove trailing slashes. */
270 while (pfx_len > 0 && SLASH_P (solib_absolute_prefix[pfx_len - 1]))
271 pfx_len--;
272
273 pfxed_fn = xmalloc (pfx_len + strlen (filename) + 1);
274 strcpy (pfxed_fn, solib_absolute_prefix);
275 strcat (pfxed_fn, filename);
276 free (filename);
277
278 filename = pfxed_fn;
279 }
280
281 old_chain = make_cleanup (free, filename);
282
283 scratch_chan = -1;
284
285 if (solib_search_path)
286 scratch_chan = openp (solib_search_path,
287 1, filename, O_RDONLY, 0, &scratch_pathname);
288 if (scratch_chan < 0)
289 scratch_chan = openp (get_in_environ (inferior_environ, "PATH"),
290 1, filename, O_RDONLY, 0, &scratch_pathname);
291 if (scratch_chan < 0)
292 {
293 scratch_chan = openp (get_in_environ
294 (inferior_environ, "LD_LIBRARY_PATH"),
295 1, filename, O_RDONLY, 0, &scratch_pathname);
296 }
297 if (scratch_chan < 0)
298 {
299 perror_with_name (filename);
300 }
301 /* Leave scratch_pathname allocated. abfd->name will point to it. */
302
303 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
304 if (!abfd)
305 {
306 close (scratch_chan);
307 error ("Could not open `%s' as an executable file: %s",
308 scratch_pathname, bfd_errmsg (bfd_get_error ()));
309 }
310 /* Leave bfd open, core_xfer_memory and "info files" need it. */
311 so -> abfd = abfd;
312 abfd -> cacheable = true;
313
314 /* copy full path name into so_name, so that later symbol_file_add can find
315 it */
316 if (strlen (scratch_pathname) >= MAX_PATH_SIZE)
317 error ("Full path name length of shared library exceeds MAX_PATH_SIZE in so_list structure.");
318 strcpy (so->so_name, scratch_pathname);
319
320 if (!bfd_check_format (abfd, bfd_object))
321 {
322 error ("\"%s\": not in executable format: %s.",
323 scratch_pathname, bfd_errmsg (bfd_get_error ()));
324 }
325 if (build_section_table (abfd, &so -> sections, &so -> sections_end))
326 {
327 error ("Can't find the file sections in `%s': %s",
328 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
329 }
330
331 for (p = so -> sections; p < so -> sections_end; p++)
332 {
333 /* Relocate the section binding addresses as recorded in the shared
334 object's file by the base address to which the object was actually
335 mapped. */
336 p -> addr += (CORE_ADDR) LM_ADDR (so);
337 p -> endaddr += (CORE_ADDR) LM_ADDR (so);
338 so -> lmend = (CORE_ADDR) max (p -> endaddr, so -> lmend);
339 if (STREQ (p -> the_bfd_section -> name, ".text"))
340 {
341 so -> textsection = p;
342 }
343 }
344
345 /* Free the file names, close the file now. */
346 do_cleanups (old_chain);
347
348 return (1);
349 }
350
351 #ifndef SVR4_SHARED_LIBS
352
353 /* Allocate the runtime common object file. */
354
355 static void
356 allocate_rt_common_objfile ()
357 {
358 struct objfile *objfile;
359 struct objfile *last_one;
360
361 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
362 memset (objfile, 0, sizeof (struct objfile));
363 objfile -> md = NULL;
364 obstack_specify_allocation (&objfile -> psymbol_cache.cache, 0, 0,
365 xmalloc, free);
366 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
367 free);
368 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
369 free);
370 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
371 free);
372 objfile -> name = mstrsave (objfile -> md, "rt_common");
373
374 /* Add this file onto the tail of the linked list of other such files. */
375
376 objfile -> next = NULL;
377 if (object_files == NULL)
378 object_files = objfile;
379 else
380 {
381 for (last_one = object_files;
382 last_one -> next;
383 last_one = last_one -> next);
384 last_one -> next = objfile;
385 }
386
387 rt_common_objfile = objfile;
388 }
389
390 /* Read all dynamically loaded common symbol definitions from the inferior
391 and put them into the minimal symbol table for the runtime common
392 objfile. */
393
394 static void
395 solib_add_common_symbols (rtc_symp)
396 struct rtc_symb *rtc_symp;
397 {
398 struct rtc_symb inferior_rtc_symb;
399 struct nlist inferior_rtc_nlist;
400 int len;
401 char *name;
402
403 /* Remove any runtime common symbols from previous runs. */
404
405 if (rt_common_objfile != NULL && rt_common_objfile -> minimal_symbol_count)
406 {
407 obstack_free (&rt_common_objfile -> symbol_obstack, 0);
408 obstack_specify_allocation (&rt_common_objfile -> symbol_obstack, 0, 0,
409 xmalloc, free);
410 rt_common_objfile -> minimal_symbol_count = 0;
411 rt_common_objfile -> msymbols = NULL;
412 }
413
414 init_minimal_symbol_collection ();
415 make_cleanup ((make_cleanup_func) discard_minimal_symbols, 0);
416
417 while (rtc_symp)
418 {
419 read_memory ((CORE_ADDR) rtc_symp,
420 (char *) &inferior_rtc_symb,
421 sizeof (inferior_rtc_symb));
422 read_memory ((CORE_ADDR) inferior_rtc_symb.rtc_sp,
423 (char *) &inferior_rtc_nlist,
424 sizeof(inferior_rtc_nlist));
425 if (inferior_rtc_nlist.n_type == N_COMM)
426 {
427 /* FIXME: The length of the symbol name is not available, but in the
428 current implementation the common symbol is allocated immediately
429 behind the name of the symbol. */
430 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
431
432 name = xmalloc (len);
433 read_memory ((CORE_ADDR) inferior_rtc_nlist.n_un.n_name, name, len);
434
435 /* Allocate the runtime common objfile if necessary. */
436 if (rt_common_objfile == NULL)
437 allocate_rt_common_objfile ();
438
439 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
440 mst_bss, rt_common_objfile);
441 free (name);
442 }
443 rtc_symp = inferior_rtc_symb.rtc_next;
444 }
445
446 /* Install any minimal symbols that have been collected as the current
447 minimal symbols for the runtime common objfile. */
448
449 install_minimal_symbols (rt_common_objfile);
450 }
451
452 #endif /* SVR4_SHARED_LIBS */
453
454
455 #ifdef SVR4_SHARED_LIBS
456
457 static CORE_ADDR
458 bfd_lookup_symbol PARAMS ((bfd *, char *));
459
460 /*
461
462 LOCAL FUNCTION
463
464 bfd_lookup_symbol -- lookup the value for a specific symbol
465
466 SYNOPSIS
467
468 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
469
470 DESCRIPTION
471
472 An expensive way to lookup the value of a single symbol for
473 bfd's that are only temporary anyway. This is used by the
474 shared library support to find the address of the debugger
475 interface structures in the shared library.
476
477 Note that 0 is specifically allowed as an error return (no
478 such symbol).
479 */
480
481 static CORE_ADDR
482 bfd_lookup_symbol (abfd, symname)
483 bfd *abfd;
484 char *symname;
485 {
486 unsigned int storage_needed;
487 asymbol *sym;
488 asymbol **symbol_table;
489 unsigned int number_of_symbols;
490 unsigned int i;
491 struct cleanup *back_to;
492 CORE_ADDR symaddr = 0;
493
494 storage_needed = bfd_get_symtab_upper_bound (abfd);
495
496 if (storage_needed > 0)
497 {
498 symbol_table = (asymbol **) xmalloc (storage_needed);
499 back_to = make_cleanup (free, (PTR)symbol_table);
500 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
501
502 for (i = 0; i < number_of_symbols; i++)
503 {
504 sym = *symbol_table++;
505 if (STREQ (sym -> name, symname))
506 {
507 /* Bfd symbols are section relative. */
508 symaddr = sym -> value + sym -> section -> vma;
509 break;
510 }
511 }
512 do_cleanups (back_to);
513 }
514 return (symaddr);
515 }
516
517 #ifdef HANDLE_SVR4_EXEC_EMULATORS
518
519 /*
520 Solaris BCP (the part of Solaris which allows it to run SunOS4
521 a.out files) throws in another wrinkle. Solaris does not fill
522 in the usual a.out link map structures when running BCP programs,
523 the only way to get at them is via groping around in the dynamic
524 linker.
525 The dynamic linker and it's structures are located in the shared
526 C library, which gets run as the executable's "interpreter" by
527 the kernel.
528
529 Note that we can assume nothing about the process state at the time
530 we need to find these structures. We may be stopped on the first
531 instruction of the interpreter (C shared library), the first
532 instruction of the executable itself, or somewhere else entirely
533 (if we attached to the process for example).
534 */
535
536 static char *debug_base_symbols[] = {
537 "r_debug", /* Solaris 2.3 */
538 "_r_debug", /* Solaris 2.1, 2.2 */
539 NULL
540 };
541
542 static int
543 look_for_base PARAMS ((int, CORE_ADDR));
544
545 /*
546
547 LOCAL FUNCTION
548
549 look_for_base -- examine file for each mapped address segment
550
551 SYNOPSYS
552
553 static int look_for_base (int fd, CORE_ADDR baseaddr)
554
555 DESCRIPTION
556
557 This function is passed to proc_iterate_over_mappings, which
558 causes it to get called once for each mapped address space, with
559 an open file descriptor for the file mapped to that space, and the
560 base address of that mapped space.
561
562 Our job is to find the debug base symbol in the file that this
563 fd is open on, if it exists, and if so, initialize the dynamic
564 linker structure base address debug_base.
565
566 Note that this is a computationally expensive proposition, since
567 we basically have to open a bfd on every call, so we specifically
568 avoid opening the exec file.
569 */
570
571 static int
572 look_for_base (fd, baseaddr)
573 int fd;
574 CORE_ADDR baseaddr;
575 {
576 bfd *interp_bfd;
577 CORE_ADDR address = 0;
578 char **symbolp;
579
580 /* If the fd is -1, then there is no file that corresponds to this
581 mapped memory segment, so skip it. Also, if the fd corresponds
582 to the exec file, skip it as well. */
583
584 if (fd == -1
585 || (exec_bfd != NULL
586 && fdmatch (fileno ((FILE *)(exec_bfd -> iostream)), fd)))
587 {
588 return (0);
589 }
590
591 /* Try to open whatever random file this fd corresponds to. Note that
592 we have no way currently to find the filename. Don't gripe about
593 any problems we might have, just fail. */
594
595 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
596 {
597 return (0);
598 }
599 if (!bfd_check_format (interp_bfd, bfd_object))
600 {
601 /* FIXME-leak: on failure, might not free all memory associated with
602 interp_bfd. */
603 bfd_close (interp_bfd);
604 return (0);
605 }
606
607 /* Now try to find our debug base symbol in this file, which we at
608 least know to be a valid ELF executable or shared library. */
609
610 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
611 {
612 address = bfd_lookup_symbol (interp_bfd, *symbolp);
613 if (address != 0)
614 {
615 break;
616 }
617 }
618 if (address == 0)
619 {
620 /* FIXME-leak: on failure, might not free all memory associated with
621 interp_bfd. */
622 bfd_close (interp_bfd);
623 return (0);
624 }
625
626 /* Eureka! We found the symbol. But now we may need to relocate it
627 by the base address. If the symbol's value is less than the base
628 address of the shared library, then it hasn't yet been relocated
629 by the dynamic linker, and we have to do it ourself. FIXME: Note
630 that we make the assumption that the first segment that corresponds
631 to the shared library has the base address to which the library
632 was relocated. */
633
634 if (address < baseaddr)
635 {
636 address += baseaddr;
637 }
638 debug_base = address;
639 /* FIXME-leak: on failure, might not free all memory associated with
640 interp_bfd. */
641 bfd_close (interp_bfd);
642 return (1);
643 }
644 #endif /* HANDLE_SVR4_EXEC_EMULATORS */
645
646 /*
647
648 LOCAL FUNCTION
649
650 elf_locate_base -- locate the base address of dynamic linker structs
651 for SVR4 elf targets.
652
653 SYNOPSIS
654
655 CORE_ADDR elf_locate_base (void)
656
657 DESCRIPTION
658
659 For SVR4 elf targets the address of the dynamic linker's runtime
660 structure is contained within the dynamic info section in the
661 executable file. The dynamic section is also mapped into the
662 inferior address space. Because the runtime loader fills in the
663 real address before starting the inferior, we have to read in the
664 dynamic info section from the inferior address space.
665 If there are any errors while trying to find the address, we
666 silently return 0, otherwise the found address is returned.
667
668 */
669
670 static CORE_ADDR
671 elf_locate_base ()
672 {
673 sec_ptr dyninfo_sect;
674 int dyninfo_sect_size;
675 CORE_ADDR dyninfo_addr;
676 char *buf;
677 char *bufend;
678
679 /* Find the start address of the .dynamic section. */
680 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
681 if (dyninfo_sect == NULL)
682 return 0;
683 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
684
685 /* Read in .dynamic section, silently ignore errors. */
686 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
687 buf = alloca (dyninfo_sect_size);
688 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
689 return 0;
690
691 /* Find the DT_DEBUG entry in the the .dynamic section.
692 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
693 no DT_DEBUG entries. */
694 #ifndef TARGET_ELF64
695 for (bufend = buf + dyninfo_sect_size;
696 buf < bufend;
697 buf += sizeof (Elf32_External_Dyn))
698 {
699 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *)buf;
700 long dyn_tag;
701 CORE_ADDR dyn_ptr;
702
703 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
704 if (dyn_tag == DT_NULL)
705 break;
706 else if (dyn_tag == DT_DEBUG)
707 {
708 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
709 return dyn_ptr;
710 }
711 #ifdef DT_MIPS_RLD_MAP
712 else if (dyn_tag == DT_MIPS_RLD_MAP)
713 {
714 char pbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
715
716 /* DT_MIPS_RLD_MAP contains a pointer to the address
717 of the dynamic link structure. */
718 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
719 if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
720 return 0;
721 return extract_unsigned_integer (pbuf, sizeof (pbuf));
722 }
723 #endif
724 }
725 #else /* ELF64 */
726 for (bufend = buf + dyninfo_sect_size;
727 buf < bufend;
728 buf += sizeof (Elf64_External_Dyn))
729 {
730 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *)buf;
731 long dyn_tag;
732 CORE_ADDR dyn_ptr;
733
734 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
735 if (dyn_tag == DT_NULL)
736 break;
737 else if (dyn_tag == DT_DEBUG)
738 {
739 dyn_ptr = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
740 return dyn_ptr;
741 }
742 }
743 #endif
744
745 /* DT_DEBUG entry not found. */
746 return 0;
747 }
748
749 #endif /* SVR4_SHARED_LIBS */
750
751 /*
752
753 LOCAL FUNCTION
754
755 locate_base -- locate the base address of dynamic linker structs
756
757 SYNOPSIS
758
759 CORE_ADDR locate_base (void)
760
761 DESCRIPTION
762
763 For both the SunOS and SVR4 shared library implementations, if the
764 inferior executable has been linked dynamically, there is a single
765 address somewhere in the inferior's data space which is the key to
766 locating all of the dynamic linker's runtime structures. This
767 address is the value of the debug base symbol. The job of this
768 function is to find and return that address, or to return 0 if there
769 is no such address (the executable is statically linked for example).
770
771 For SunOS, the job is almost trivial, since the dynamic linker and
772 all of it's structures are statically linked to the executable at
773 link time. Thus the symbol for the address we are looking for has
774 already been added to the minimal symbol table for the executable's
775 objfile at the time the symbol file's symbols were read, and all we
776 have to do is look it up there. Note that we explicitly do NOT want
777 to find the copies in the shared library.
778
779 The SVR4 version is a bit more complicated because the address
780 is contained somewhere in the dynamic info section. We have to go
781 to a lot more work to discover the address of the debug base symbol.
782 Because of this complexity, we cache the value we find and return that
783 value on subsequent invocations. Note there is no copy in the
784 executable symbol tables.
785
786 */
787
788 static CORE_ADDR
789 locate_base ()
790 {
791
792 #ifndef SVR4_SHARED_LIBS
793
794 struct minimal_symbol *msymbol;
795 CORE_ADDR address = 0;
796 char **symbolp;
797
798 /* For SunOS, we want to limit the search for the debug base symbol to the
799 executable being debugged, since there is a duplicate named symbol in the
800 shared library. We don't want the shared library versions. */
801
802 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
803 {
804 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
805 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
806 {
807 address = SYMBOL_VALUE_ADDRESS (msymbol);
808 return (address);
809 }
810 }
811 return (0);
812
813 #else /* SVR4_SHARED_LIBS */
814
815 /* Check to see if we have a currently valid address, and if so, avoid
816 doing all this work again and just return the cached address. If
817 we have no cached address, try to locate it in the dynamic info
818 section for ELF executables. */
819
820 if (debug_base == 0)
821 {
822 if (exec_bfd != NULL
823 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
824 debug_base = elf_locate_base ();
825 #ifdef HANDLE_SVR4_EXEC_EMULATORS
826 /* Try it the hard way for emulated executables. */
827 else if (inferior_pid != 0 && target_has_execution)
828 proc_iterate_over_mappings (look_for_base);
829 #endif
830 }
831 return (debug_base);
832
833 #endif /* !SVR4_SHARED_LIBS */
834
835 }
836
837 /*
838
839 LOCAL FUNCTION
840
841 first_link_map_member -- locate first member in dynamic linker's map
842
843 SYNOPSIS
844
845 static struct link_map *first_link_map_member (void)
846
847 DESCRIPTION
848
849 Read in a copy of the first member in the inferior's dynamic
850 link map from the inferior's dynamic linker structures, and return
851 a pointer to the copy in our address space.
852 */
853
854 static struct link_map *
855 first_link_map_member ()
856 {
857 struct link_map *lm = NULL;
858
859 #ifndef SVR4_SHARED_LIBS
860
861 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
862 if (dynamic_copy.ld_version >= 2)
863 {
864 /* It is a version that we can deal with, so read in the secondary
865 structure and find the address of the link map list from it. */
866 read_memory ((CORE_ADDR) dynamic_copy.ld_un.ld_2, (char *) &ld_2_copy,
867 sizeof (struct link_dynamic_2));
868 lm = ld_2_copy.ld_loaded;
869 }
870
871 #else /* SVR4_SHARED_LIBS */
872
873 read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
874 /* FIXME: Perhaps we should validate the info somehow, perhaps by
875 checking r_version for a known version number, or r_state for
876 RT_CONSISTENT. */
877 lm = debug_copy.r_map;
878
879 #endif /* !SVR4_SHARED_LIBS */
880
881 return (lm);
882 }
883
884 /*
885
886 LOCAL FUNCTION
887
888 find_solib -- step through list of shared objects
889
890 SYNOPSIS
891
892 struct so_list *find_solib (struct so_list *so_list_ptr)
893
894 DESCRIPTION
895
896 This module contains the routine which finds the names of any
897 loaded "images" in the current process. The argument in must be
898 NULL on the first call, and then the returned value must be passed
899 in on subsequent calls. This provides the capability to "step" down
900 the list of loaded objects. On the last object, a NULL value is
901 returned.
902
903 The arg and return value are "struct link_map" pointers, as defined
904 in <link.h>.
905 */
906
907 static struct so_list *
908 find_solib (so_list_ptr)
909 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
910 {
911 struct so_list *so_list_next = NULL;
912 struct link_map *lm = NULL;
913 struct so_list *new;
914
915 if (so_list_ptr == NULL)
916 {
917 /* We are setting up for a new scan through the loaded images. */
918 if ((so_list_next = so_list_head) == NULL)
919 {
920 /* We have not already read in the dynamic linking structures
921 from the inferior, lookup the address of the base structure. */
922 debug_base = locate_base ();
923 if (debug_base != 0)
924 {
925 /* Read the base structure in and find the address of the first
926 link map list member. */
927 lm = first_link_map_member ();
928 }
929 }
930 }
931 else
932 {
933 /* We have been called before, and are in the process of walking
934 the shared library list. Advance to the next shared object. */
935 if ((lm = LM_NEXT (so_list_ptr)) == NULL)
936 {
937 /* We have hit the end of the list, so check to see if any were
938 added, but be quiet if we can't read from the target any more. */
939 int status = target_read_memory ((CORE_ADDR) so_list_ptr -> lmaddr,
940 (char *) &(so_list_ptr -> lm),
941 sizeof (struct link_map));
942 if (status == 0)
943 {
944 lm = LM_NEXT (so_list_ptr);
945 }
946 else
947 {
948 lm = NULL;
949 }
950 }
951 so_list_next = so_list_ptr -> next;
952 }
953 if ((so_list_next == NULL) && (lm != NULL))
954 {
955 /* Get next link map structure from inferior image and build a local
956 abbreviated load_map structure */
957 new = (struct so_list *) xmalloc (sizeof (struct so_list));
958 memset ((char *) new, 0, sizeof (struct so_list));
959 new -> lmaddr = lm;
960 /* Add the new node as the next node in the list, or as the root
961 node if this is the first one. */
962 if (so_list_ptr != NULL)
963 {
964 so_list_ptr -> next = new;
965 }
966 else
967 {
968 so_list_head = new;
969
970 if (! solib_cleanup_queued)
971 {
972 make_run_cleanup (do_clear_solib, NULL);
973 solib_cleanup_queued = 1;
974 }
975
976 }
977 so_list_next = new;
978 read_memory ((CORE_ADDR) lm, (char *) &(new -> lm),
979 sizeof (struct link_map));
980 /* For SVR4 versions, the first entry in the link map is for the
981 inferior executable, so we must ignore it. For some versions of
982 SVR4, it has no name. For others (Solaris 2.3 for example), it
983 does have a name, so we can no longer use a missing name to
984 decide when to ignore it. */
985 if (!IGNORE_FIRST_LINK_MAP_ENTRY (new -> lm))
986 {
987 int errcode;
988 char *buffer;
989 target_read_string ((CORE_ADDR) LM_NAME (new), &buffer,
990 MAX_PATH_SIZE - 1, &errcode);
991 if (errcode != 0)
992 {
993 warning ("find_solib: Can't read pathname for load map: %s\n",
994 safe_strerror (errcode));
995 return (so_list_next);
996 }
997 strncpy (new -> so_name, buffer, MAX_PATH_SIZE - 1);
998 new -> so_name[MAX_PATH_SIZE - 1] = '\0';
999 free (buffer);
1000 catch_errors (solib_map_sections, new,
1001 "Error while mapping shared library sections:\n",
1002 RETURN_MASK_ALL);
1003 }
1004 }
1005 return (so_list_next);
1006 }
1007
1008 /* A small stub to get us past the arg-passing pinhole of catch_errors. */
1009
1010 static int
1011 symbol_add_stub (arg)
1012 PTR arg;
1013 {
1014 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
1015 CORE_ADDR text_addr = 0;
1016
1017 if (so -> textsection)
1018 text_addr = so -> textsection -> addr;
1019 else if (so -> abfd != NULL)
1020 {
1021 asection *lowest_sect;
1022
1023 /* If we didn't find a mapped non zero sized .text section, set up
1024 text_addr so that the relocation in symbol_file_add does no harm. */
1025
1026 lowest_sect = bfd_get_section_by_name (so -> abfd, ".text");
1027 if (lowest_sect == NULL)
1028 bfd_map_over_sections (so -> abfd, find_lowest_section,
1029 (PTR) &lowest_sect);
1030 if (lowest_sect)
1031 text_addr = bfd_section_vma (so -> abfd, lowest_sect)
1032 + (CORE_ADDR) LM_ADDR (so);
1033 }
1034
1035 ALL_OBJFILES (so -> objfile)
1036 {
1037 if (strcmp (so -> objfile -> name, so -> so_name) == 0)
1038 return 1;
1039 }
1040 so -> objfile =
1041 symbol_file_add (so -> so_name, so -> from_tty,
1042 text_addr,
1043 0, 0, 0, 0, 1);
1044 return (1);
1045 }
1046
1047 /* This function will check the so name to see if matches the main list.
1048 In some system the main object is in the list, which we want to exclude */
1049
1050 static int match_main (soname)
1051 char *soname;
1052 {
1053 char **mainp;
1054
1055 for (mainp = main_name_list; *mainp != NULL; mainp++)
1056 {
1057 if (strcmp (soname, *mainp) == 0)
1058 return (1);
1059 }
1060
1061 return (0);
1062 }
1063
1064 /*
1065
1066 GLOBAL FUNCTION
1067
1068 solib_add -- add a shared library file to the symtab and section list
1069
1070 SYNOPSIS
1071
1072 void solib_add (char *arg_string, int from_tty,
1073 struct target_ops *target)
1074
1075 DESCRIPTION
1076
1077 */
1078
1079 void
1080 solib_add (arg_string, from_tty, target)
1081 char *arg_string;
1082 int from_tty;
1083 struct target_ops *target;
1084 {
1085 register struct so_list *so = NULL; /* link map state variable */
1086
1087 /* Last shared library that we read. */
1088 struct so_list *so_last = NULL;
1089
1090 char *re_err;
1091 int count;
1092 int old;
1093
1094 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
1095 {
1096 error ("Invalid regexp: %s", re_err);
1097 }
1098
1099 /* Add the shared library sections to the section table of the
1100 specified target, if any. */
1101 if (target)
1102 {
1103 /* Count how many new section_table entries there are. */
1104 so = NULL;
1105 count = 0;
1106 while ((so = find_solib (so)) != NULL)
1107 {
1108 if (so -> so_name[0] && !match_main (so -> so_name))
1109 {
1110 count += so -> sections_end - so -> sections;
1111 }
1112 }
1113
1114 if (count)
1115 {
1116 int update_coreops;
1117
1118 /* We must update the to_sections field in the core_ops structure
1119 here, otherwise we dereference a potential dangling pointer
1120 for each call to target_read/write_memory within this routine. */
1121 update_coreops = core_ops.to_sections == target->to_sections;
1122
1123 /* Reallocate the target's section table including the new size. */
1124 if (target -> to_sections)
1125 {
1126 old = target -> to_sections_end - target -> to_sections;
1127 target -> to_sections = (struct section_table *)
1128 xrealloc ((char *)target -> to_sections,
1129 (sizeof (struct section_table)) * (count + old));
1130 }
1131 else
1132 {
1133 old = 0;
1134 target -> to_sections = (struct section_table *)
1135 xmalloc ((sizeof (struct section_table)) * count);
1136 }
1137 target -> to_sections_end = target -> to_sections + (count + old);
1138
1139 /* Update the to_sections field in the core_ops structure
1140 if needed. */
1141 if (update_coreops)
1142 {
1143 core_ops.to_sections = target->to_sections;
1144 core_ops.to_sections_end = target->to_sections_end;
1145 }
1146
1147 /* Add these section table entries to the target's table. */
1148 while ((so = find_solib (so)) != NULL)
1149 {
1150 if (so -> so_name[0])
1151 {
1152 count = so -> sections_end - so -> sections;
1153 memcpy ((char *) (target -> to_sections + old),
1154 so -> sections,
1155 (sizeof (struct section_table)) * count);
1156 old += count;
1157 }
1158 }
1159 }
1160 }
1161
1162 /* Now add the symbol files. */
1163 while ((so = find_solib (so)) != NULL)
1164 {
1165 if (so -> so_name[0] && re_exec (so -> so_name) &&
1166 !match_main (so -> so_name))
1167 {
1168 so -> from_tty = from_tty;
1169 if (so -> symbols_loaded)
1170 {
1171 if (from_tty)
1172 {
1173 printf_unfiltered ("Symbols already loaded for %s\n", so -> so_name);
1174 }
1175 }
1176 else if (catch_errors
1177 (symbol_add_stub, so,
1178 "Error while reading shared library symbols:\n",
1179 RETURN_MASK_ALL))
1180 {
1181 so_last = so;
1182 so -> symbols_loaded = 1;
1183 }
1184 }
1185 }
1186
1187 /* Getting new symbols may change our opinion about what is
1188 frameless. */
1189 if (so_last)
1190 reinit_frame_cache ();
1191
1192 if (so_last)
1193 special_symbol_handling (so_last);
1194 }
1195
1196 /*
1197
1198 LOCAL FUNCTION
1199
1200 info_sharedlibrary_command -- code for "info sharedlibrary"
1201
1202 SYNOPSIS
1203
1204 static void info_sharedlibrary_command ()
1205
1206 DESCRIPTION
1207
1208 Walk through the shared library list and print information
1209 about each attached library.
1210 */
1211
1212 static void
1213 info_sharedlibrary_command (ignore, from_tty)
1214 char *ignore;
1215 int from_tty;
1216 {
1217 register struct so_list *so = NULL; /* link map state variable */
1218 int header_done = 0;
1219 int addr_width;
1220 char *addr_fmt;
1221
1222 if (exec_bfd == NULL)
1223 {
1224 printf_unfiltered ("No exec file.\n");
1225 return;
1226 }
1227
1228 #ifndef TARGET_ELF64
1229 addr_width = 8+4;
1230 addr_fmt = "08l";
1231 #else
1232 addr_width = 16+4;
1233 addr_fmt = "016l";
1234 #endif
1235
1236 while ((so = find_solib (so)) != NULL)
1237 {
1238 if (so -> so_name[0])
1239 {
1240 if (!header_done)
1241 {
1242 printf_unfiltered("%-*s%-*s%-12s%s\n", addr_width, "From",
1243 addr_width, "To", "Syms Read",
1244 "Shared Object Library");
1245 header_done++;
1246 }
1247
1248 printf_unfiltered ("%-*s", addr_width,
1249 local_hex_string_custom ((unsigned long) LM_ADDR (so),
1250 addr_fmt));
1251 printf_unfiltered ("%-*s", addr_width,
1252 local_hex_string_custom ((unsigned long) so -> lmend,
1253 addr_fmt));
1254 printf_unfiltered ("%-12s", so -> symbols_loaded ? "Yes" : "No");
1255 printf_unfiltered ("%s\n", so -> so_name);
1256 }
1257 }
1258 if (so_list_head == NULL)
1259 {
1260 printf_unfiltered ("No shared libraries loaded at this time.\n");
1261 }
1262 }
1263
1264 /*
1265
1266 GLOBAL FUNCTION
1267
1268 solib_address -- check to see if an address is in a shared lib
1269
1270 SYNOPSIS
1271
1272 char * solib_address (CORE_ADDR address)
1273
1274 DESCRIPTION
1275
1276 Provides a hook for other gdb routines to discover whether or
1277 not a particular address is within the mapped address space of
1278 a shared library. Any address between the base mapping address
1279 and the first address beyond the end of the last mapping, is
1280 considered to be within the shared library address space, for
1281 our purposes.
1282
1283 For example, this routine is called at one point to disable
1284 breakpoints which are in shared libraries that are not currently
1285 mapped in.
1286 */
1287
1288 char *
1289 solib_address (address)
1290 CORE_ADDR address;
1291 {
1292 register struct so_list *so = 0; /* link map state variable */
1293
1294 while ((so = find_solib (so)) != NULL)
1295 {
1296 if (so -> so_name[0])
1297 {
1298 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
1299 (address < (CORE_ADDR) so -> lmend))
1300 return (so->so_name);
1301 }
1302 }
1303 return (0);
1304 }
1305
1306 /* Called by free_all_symtabs */
1307
1308 void
1309 clear_solib()
1310 {
1311 struct so_list *next;
1312 char *bfd_filename;
1313
1314 while (so_list_head)
1315 {
1316 if (so_list_head -> sections)
1317 {
1318 free ((PTR)so_list_head -> sections);
1319 }
1320 if (so_list_head -> abfd)
1321 {
1322 bfd_filename = bfd_get_filename (so_list_head -> abfd);
1323 if (!bfd_close (so_list_head -> abfd))
1324 warning ("cannot close \"%s\": %s",
1325 bfd_filename, bfd_errmsg (bfd_get_error ()));
1326 }
1327 else
1328 /* This happens for the executable on SVR4. */
1329 bfd_filename = NULL;
1330
1331 next = so_list_head -> next;
1332 if (bfd_filename)
1333 free ((PTR)bfd_filename);
1334 free ((PTR)so_list_head);
1335 so_list_head = next;
1336 }
1337 debug_base = 0;
1338 }
1339
1340 static void
1341 do_clear_solib (dummy)
1342 PTR dummy;
1343 {
1344 solib_cleanup_queued = 0;
1345 clear_solib ();
1346 }
1347
1348 #ifdef SVR4_SHARED_LIBS
1349
1350 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1351 SVR4 run time loader. */
1352
1353 static CORE_ADDR interp_text_sect_low;
1354 static CORE_ADDR interp_text_sect_high;
1355 static CORE_ADDR interp_plt_sect_low;
1356 static CORE_ADDR interp_plt_sect_high;
1357
1358 int
1359 in_svr4_dynsym_resolve_code (pc)
1360 CORE_ADDR pc;
1361 {
1362 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
1363 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
1364 || in_plt_section (pc, NULL));
1365 }
1366 #endif
1367
1368 /*
1369
1370 LOCAL FUNCTION
1371
1372 disable_break -- remove the "mapping changed" breakpoint
1373
1374 SYNOPSIS
1375
1376 static int disable_break ()
1377
1378 DESCRIPTION
1379
1380 Removes the breakpoint that gets hit when the dynamic linker
1381 completes a mapping change.
1382
1383 */
1384
1385 #ifndef SVR4_SHARED_LIBS
1386
1387 static int
1388 disable_break ()
1389 {
1390 int status = 1;
1391
1392 #ifndef SVR4_SHARED_LIBS
1393
1394 int in_debugger = 0;
1395
1396 /* Read the debugger structure from the inferior to retrieve the
1397 address of the breakpoint and the original contents of the
1398 breakpoint address. Remove the breakpoint by writing the original
1399 contents back. */
1400
1401 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
1402
1403 /* Set `in_debugger' to zero now. */
1404
1405 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1406
1407 breakpoint_addr = (CORE_ADDR) debug_copy.ldd_bp_addr;
1408 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
1409 sizeof (debug_copy.ldd_bp_inst));
1410
1411 #else /* SVR4_SHARED_LIBS */
1412
1413 /* Note that breakpoint address and original contents are in our address
1414 space, so we just need to write the original contents back. */
1415
1416 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1417 {
1418 status = 0;
1419 }
1420
1421 #endif /* !SVR4_SHARED_LIBS */
1422
1423 /* For the SVR4 version, we always know the breakpoint address. For the
1424 SunOS version we don't know it until the above code is executed.
1425 Grumble if we are stopped anywhere besides the breakpoint address. */
1426
1427 if (stop_pc != breakpoint_addr)
1428 {
1429 warning ("stopped at unknown breakpoint while handling shared libraries");
1430 }
1431
1432 return (status);
1433 }
1434
1435 #endif /* #ifdef SVR4_SHARED_LIBS */
1436
1437 /*
1438
1439 LOCAL FUNCTION
1440
1441 enable_break -- arrange for dynamic linker to hit breakpoint
1442
1443 SYNOPSIS
1444
1445 int enable_break (void)
1446
1447 DESCRIPTION
1448
1449 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1450 debugger interface, support for arranging for the inferior to hit
1451 a breakpoint after mapping in the shared libraries. This function
1452 enables that breakpoint.
1453
1454 For SunOS, there is a special flag location (in_debugger) which we
1455 set to 1. When the dynamic linker sees this flag set, it will set
1456 a breakpoint at a location known only to itself, after saving the
1457 original contents of that place and the breakpoint address itself,
1458 in it's own internal structures. When we resume the inferior, it
1459 will eventually take a SIGTRAP when it runs into the breakpoint.
1460 We handle this (in a different place) by restoring the contents of
1461 the breakpointed location (which is only known after it stops),
1462 chasing around to locate the shared libraries that have been
1463 loaded, then resuming.
1464
1465 For SVR4, the debugger interface structure contains a member (r_brk)
1466 which is statically initialized at the time the shared library is
1467 built, to the offset of a function (_r_debug_state) which is guaran-
1468 teed to be called once before mapping in a library, and again when
1469 the mapping is complete. At the time we are examining this member,
1470 it contains only the unrelocated offset of the function, so we have
1471 to do our own relocation. Later, when the dynamic linker actually
1472 runs, it relocates r_brk to be the actual address of _r_debug_state().
1473
1474 The debugger interface structure also contains an enumeration which
1475 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1476 depending upon whether or not the library is being mapped or unmapped,
1477 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1478 */
1479
1480 static int
1481 enable_break ()
1482 {
1483 int success = 0;
1484
1485 #ifndef SVR4_SHARED_LIBS
1486
1487 int j;
1488 int in_debugger;
1489
1490 /* Get link_dynamic structure */
1491
1492 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1493 sizeof (dynamic_copy));
1494 if (j)
1495 {
1496 /* unreadable */
1497 return (0);
1498 }
1499
1500 /* Calc address of debugger interface structure */
1501
1502 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1503
1504 /* Calc address of `in_debugger' member of debugger interface structure */
1505
1506 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1507 (char *) &debug_copy);
1508
1509 /* Write a value of 1 to this member. */
1510
1511 in_debugger = 1;
1512 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1513 success = 1;
1514
1515 #else /* SVR4_SHARED_LIBS */
1516
1517 #ifdef BKPT_AT_SYMBOL
1518
1519 struct minimal_symbol *msymbol;
1520 char **bkpt_namep;
1521 asection *interp_sect;
1522
1523 /* First, remove all the solib event breakpoints. Their addresses
1524 may have changed since the last time we ran the program. */
1525 remove_solib_event_breakpoints ();
1526
1527 #ifdef SVR4_SHARED_LIBS
1528 interp_text_sect_low = interp_text_sect_high = 0;
1529 interp_plt_sect_low = interp_plt_sect_high = 0;
1530
1531 /* Find the .interp section; if not found, warn the user and drop
1532 into the old breakpoint at symbol code. */
1533 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1534 if (interp_sect)
1535 {
1536 unsigned int interp_sect_size;
1537 char *buf;
1538 CORE_ADDR load_addr;
1539 bfd *tmp_bfd;
1540 CORE_ADDR sym_addr = 0;
1541
1542 /* Read the contents of the .interp section into a local buffer;
1543 the contents specify the dynamic linker this program uses. */
1544 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1545 buf = alloca (interp_sect_size);
1546 bfd_get_section_contents (exec_bfd, interp_sect,
1547 buf, 0, interp_sect_size);
1548
1549 /* Now we need to figure out where the dynamic linker was
1550 loaded so that we can load its symbols and place a breakpoint
1551 in the dynamic linker itself.
1552
1553 This address is stored on the stack. However, I've been unable
1554 to find any magic formula to find it for Solaris (appears to
1555 be trivial on GNU/Linux). Therefore, we have to try an alternate
1556 mechanism to find the dynamic linker's base address. */
1557 tmp_bfd = bfd_openr (buf, gnutarget);
1558 if (tmp_bfd == NULL)
1559 goto bkpt_at_symbol;
1560
1561 /* Make sure the dynamic linker's really a useful object. */
1562 if (!bfd_check_format (tmp_bfd, bfd_object))
1563 {
1564 warning ("Unable to grok dynamic linker %s as an object file", buf);
1565 bfd_close (tmp_bfd);
1566 goto bkpt_at_symbol;
1567 }
1568
1569 /* We find the dynamic linker's base address by examining the
1570 current pc (which point at the entry point for the dynamic
1571 linker) and subtracting the offset of the entry point. */
1572 load_addr = read_pc () - tmp_bfd->start_address;
1573
1574 /* Record the relocated start and end address of the dynamic linker
1575 text and plt section for in_svr4_dynsym_resolve_code. */
1576 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1577 if (interp_sect)
1578 {
1579 interp_text_sect_low =
1580 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1581 interp_text_sect_high =
1582 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1583 }
1584 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1585 if (interp_sect)
1586 {
1587 interp_plt_sect_low =
1588 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1589 interp_plt_sect_high =
1590 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1591 }
1592
1593 /* Now try to set a breakpoint in the dynamic linker. */
1594 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1595 {
1596 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1597 if (sym_addr != 0)
1598 break;
1599 }
1600
1601 /* We're done with the temporary bfd. */
1602 bfd_close (tmp_bfd);
1603
1604 if (sym_addr != 0)
1605 {
1606 create_solib_event_breakpoint (load_addr + sym_addr);
1607 return 1;
1608 }
1609
1610 /* For whatever reason we couldn't set a breakpoint in the dynamic
1611 linker. Warn and drop into the old code. */
1612 bkpt_at_symbol:
1613 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1614 }
1615 #endif
1616
1617 /* Scan through the list of symbols, trying to look up the symbol and
1618 set a breakpoint there. Terminate loop when we/if we succeed. */
1619
1620 breakpoint_addr = 0;
1621 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1622 {
1623 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1624 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1625 {
1626 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1627 return 1;
1628 }
1629 }
1630
1631 /* Nothing good happened. */
1632 success = 0;
1633
1634 #endif /* BKPT_AT_SYMBOL */
1635
1636 #endif /* !SVR4_SHARED_LIBS */
1637
1638 return (success);
1639 }
1640
1641 /*
1642
1643 GLOBAL FUNCTION
1644
1645 solib_create_inferior_hook -- shared library startup support
1646
1647 SYNOPSIS
1648
1649 void solib_create_inferior_hook()
1650
1651 DESCRIPTION
1652
1653 When gdb starts up the inferior, it nurses it along (through the
1654 shell) until it is ready to execute it's first instruction. At this
1655 point, this function gets called via expansion of the macro
1656 SOLIB_CREATE_INFERIOR_HOOK.
1657
1658 For SunOS executables, this first instruction is typically the
1659 one at "_start", or a similar text label, regardless of whether
1660 the executable is statically or dynamically linked. The runtime
1661 startup code takes care of dynamically linking in any shared
1662 libraries, once gdb allows the inferior to continue.
1663
1664 For SVR4 executables, this first instruction is either the first
1665 instruction in the dynamic linker (for dynamically linked
1666 executables) or the instruction at "start" for statically linked
1667 executables. For dynamically linked executables, the system
1668 first exec's /lib/libc.so.N, which contains the dynamic linker,
1669 and starts it running. The dynamic linker maps in any needed
1670 shared libraries, maps in the actual user executable, and then
1671 jumps to "start" in the user executable.
1672
1673 For both SunOS shared libraries, and SVR4 shared libraries, we
1674 can arrange to cooperate with the dynamic linker to discover the
1675 names of shared libraries that are dynamically linked, and the
1676 base addresses to which they are linked.
1677
1678 This function is responsible for discovering those names and
1679 addresses, and saving sufficient information about them to allow
1680 their symbols to be read at a later time.
1681
1682 FIXME
1683
1684 Between enable_break() and disable_break(), this code does not
1685 properly handle hitting breakpoints which the user might have
1686 set in the startup code or in the dynamic linker itself. Proper
1687 handling will probably have to wait until the implementation is
1688 changed to use the "breakpoint handler function" method.
1689
1690 Also, what if child has exit()ed? Must exit loop somehow.
1691 */
1692
1693 void
1694 solib_create_inferior_hook()
1695 {
1696 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1697 yet. In fact, in the case of a SunOS4 executable being run on
1698 Solaris, we can't get it yet. find_solib will get it when it needs
1699 it. */
1700 #if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
1701 if ((debug_base = locate_base ()) == 0)
1702 {
1703 /* Can't find the symbol or the executable is statically linked. */
1704 return;
1705 }
1706 #endif
1707
1708 if (!enable_break ())
1709 {
1710 warning ("shared library handler failed to enable breakpoint");
1711 return;
1712 }
1713
1714 #if !defined(SVR4_SHARED_LIBS) || defined(_SCO_DS)
1715 /* SCO and SunOS need the loop below, other systems should be using the
1716 special shared library breakpoints and the shared library breakpoint
1717 service routine.
1718
1719 Now run the target. It will eventually hit the breakpoint, at
1720 which point all of the libraries will have been mapped in and we
1721 can go groveling around in the dynamic linker structures to find
1722 out what we need to know about them. */
1723
1724 clear_proceed_status ();
1725 stop_soon_quietly = 1;
1726 stop_signal = TARGET_SIGNAL_0;
1727 do
1728 {
1729 target_resume (-1, 0, stop_signal);
1730 wait_for_inferior ();
1731 }
1732 while (stop_signal != TARGET_SIGNAL_TRAP);
1733 stop_soon_quietly = 0;
1734
1735 #if !defined(_SCO_DS)
1736 /* We are now either at the "mapping complete" breakpoint (or somewhere
1737 else, a condition we aren't prepared to deal with anyway), so adjust
1738 the PC as necessary after a breakpoint, disable the breakpoint, and
1739 add any shared libraries that were mapped in. */
1740
1741 if (DECR_PC_AFTER_BREAK)
1742 {
1743 stop_pc -= DECR_PC_AFTER_BREAK;
1744 write_register (PC_REGNUM, stop_pc);
1745 }
1746
1747 if (!disable_break ())
1748 {
1749 warning ("shared library handler failed to disable breakpoint");
1750 }
1751
1752 if (auto_solib_add)
1753 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1754 #endif /* ! _SCO_DS */
1755 #endif
1756 }
1757
1758 /*
1759
1760 LOCAL FUNCTION
1761
1762 special_symbol_handling -- additional shared library symbol handling
1763
1764 SYNOPSIS
1765
1766 void special_symbol_handling (struct so_list *so)
1767
1768 DESCRIPTION
1769
1770 Once the symbols from a shared object have been loaded in the usual
1771 way, we are called to do any system specific symbol handling that
1772 is needed.
1773
1774 For SunOS4, this consists of grunging around in the dynamic
1775 linkers structures to find symbol definitions for "common" symbols
1776 and adding them to the minimal symbol table for the runtime common
1777 objfile.
1778
1779 */
1780
1781 static void
1782 special_symbol_handling (so)
1783 struct so_list *so;
1784 {
1785 #ifndef SVR4_SHARED_LIBS
1786 int j;
1787
1788 if (debug_addr == 0)
1789 {
1790 /* Get link_dynamic structure */
1791
1792 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1793 sizeof (dynamic_copy));
1794 if (j)
1795 {
1796 /* unreadable */
1797 return;
1798 }
1799
1800 /* Calc address of debugger interface structure */
1801 /* FIXME, this needs work for cross-debugging of core files
1802 (byteorder, size, alignment, etc). */
1803
1804 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1805 }
1806
1807 /* Read the debugger structure from the inferior, just to make sure
1808 we have a current copy. */
1809
1810 j = target_read_memory (debug_addr, (char *) &debug_copy,
1811 sizeof (debug_copy));
1812 if (j)
1813 return; /* unreadable */
1814
1815 /* Get common symbol definitions for the loaded object. */
1816
1817 if (debug_copy.ldd_cp)
1818 {
1819 solib_add_common_symbols (debug_copy.ldd_cp);
1820 }
1821
1822 #endif /* !SVR4_SHARED_LIBS */
1823 }
1824
1825
1826 /*
1827
1828 LOCAL FUNCTION
1829
1830 sharedlibrary_command -- handle command to explicitly add library
1831
1832 SYNOPSIS
1833
1834 static void sharedlibrary_command (char *args, int from_tty)
1835
1836 DESCRIPTION
1837
1838 */
1839
1840 static void
1841 sharedlibrary_command (args, from_tty)
1842 char *args;
1843 int from_tty;
1844 {
1845 dont_repeat ();
1846 solib_add (args, from_tty, (struct target_ops *) 0);
1847 }
1848
1849 #endif /* HAVE_LINK_H */
1850
1851 void
1852 _initialize_solib()
1853 {
1854 #ifdef HAVE_LINK_H
1855
1856 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1857 "Load shared object library symbols for files matching REGEXP.");
1858 add_info ("sharedlibrary", info_sharedlibrary_command,
1859 "Status of loaded shared object libraries.");
1860
1861 add_show_from_set
1862 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
1863 (char *) &auto_solib_add,
1864 "Set autoloading of shared library symbols.\n\
1865 If nonzero, symbols from all shared object libraries will be loaded\n\
1866 automatically when the inferior begins execution or when the dynamic linker\n\
1867 informs gdb that a new library has been loaded. Otherwise, symbols\n\
1868 must be loaded manually, using `sharedlibrary'.",
1869 &setlist),
1870 &showlist);
1871
1872 add_show_from_set
1873 (add_set_cmd ("solib-absolute-prefix", class_support, var_filename,
1874 (char *) &solib_absolute_prefix,
1875 "Set prefix for loading absolute shared library symbol files.\n\
1876 For other (relative) files, you can add values using `set solib-search-path'.",
1877 &setlist),
1878 &showlist);
1879 add_show_from_set
1880 (add_set_cmd ("solib-search-path", class_support, var_string,
1881 (char *) &solib_search_path,
1882 "Set the search path for loading non-absolute shared library symbol files.\n\
1883 This takes precedence over the environment variables PATH and LD_LIBRARY_PATH.",
1884 &setlist),
1885 &showlist);
1886
1887 #endif /* HAVE_LINK_H */
1888 }