]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/sparc-linux-tdep.c
* sparc-linux-tdep.c (PSR_SYSCALL): Define.
[thirdparty/binutils-gdb.git] / gdb / sparc-linux-tdep.c
1 /* Target-dependent code for GNU/Linux SPARC.
2
3 Copyright (C) 2003, 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "dwarf2-frame.h"
22 #include "frame.h"
23 #include "frame-unwind.h"
24 #include "gdbtypes.h"
25 #include "regset.h"
26 #include "gdbarch.h"
27 #include "gdbcore.h"
28 #include "osabi.h"
29 #include "regcache.h"
30 #include "solib-svr4.h"
31 #include "symtab.h"
32 #include "trad-frame.h"
33 #include "tramp-frame.h"
34
35 #include "sparc-tdep.h"
36
37 /* Signal trampoline support. */
38
39 static void sparc32_linux_sigframe_init (const struct tramp_frame *self,
40 struct frame_info *this_frame,
41 struct trad_frame_cache *this_cache,
42 CORE_ADDR func);
43
44 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
45 "realtime" (RT) signals. The RT signals can provide additional
46 information to the signal handler if the SA_SIGINFO flag is set
47 when establishing a signal handler using `sigaction'. It is not
48 unlikely that future versions of GNU/Linux will support SA_SIGINFO
49 for normal signals too. */
50
51 /* When the sparc Linux kernel calls a signal handler and the
52 SA_RESTORER flag isn't set, the return address points to a bit of
53 code on the stack. This code checks whether the PC appears to be
54 within this bit of code.
55
56 The instruction sequence for normal signals is encoded below.
57 Checking for the code sequence should be somewhat reliable, because
58 the effect is to call the system call sigreturn. This is unlikely
59 to occur anywhere other than a signal trampoline. */
60
61 static const struct tramp_frame sparc32_linux_sigframe =
62 {
63 SIGTRAMP_FRAME,
64 4,
65 {
66 { 0x821020d8, -1 }, /* mov __NR_sugreturn, %g1 */
67 { 0x91d02010, -1 }, /* ta 0x10 */
68 { TRAMP_SENTINEL_INSN, -1 }
69 },
70 sparc32_linux_sigframe_init
71 };
72
73 /* The instruction sequence for RT signals is slightly different. The
74 effect is to call the system call rt_sigreturn. */
75
76 static const struct tramp_frame sparc32_linux_rt_sigframe =
77 {
78 SIGTRAMP_FRAME,
79 4,
80 {
81 { 0x82102065, -1 }, /* mov __NR_rt_sigreturn, %g1 */
82 { 0x91d02010, -1 }, /* ta 0x10 */
83 { TRAMP_SENTINEL_INSN, -1 }
84 },
85 sparc32_linux_sigframe_init
86 };
87
88 static void
89 sparc32_linux_sigframe_init (const struct tramp_frame *self,
90 struct frame_info *this_frame,
91 struct trad_frame_cache *this_cache,
92 CORE_ADDR func)
93 {
94 CORE_ADDR base, addr, sp_addr;
95 int regnum;
96
97 base = get_frame_register_unsigned (this_frame, SPARC_O1_REGNUM);
98 if (self == &sparc32_linux_rt_sigframe)
99 base += 128;
100
101 /* Offsets from <bits/sigcontext.h>. */
102
103 trad_frame_set_reg_addr (this_cache, SPARC32_PSR_REGNUM, base + 0);
104 trad_frame_set_reg_addr (this_cache, SPARC32_PC_REGNUM, base + 4);
105 trad_frame_set_reg_addr (this_cache, SPARC32_NPC_REGNUM, base + 8);
106 trad_frame_set_reg_addr (this_cache, SPARC32_Y_REGNUM, base + 12);
107
108 /* Since %g0 is always zero, keep the identity encoding. */
109 addr = base + 20;
110 sp_addr = base + 16 + ((SPARC_SP_REGNUM - SPARC_G0_REGNUM) * 4);
111 for (regnum = SPARC_G1_REGNUM; regnum <= SPARC_O7_REGNUM; regnum++)
112 {
113 trad_frame_set_reg_addr (this_cache, regnum, addr);
114 addr += 4;
115 }
116
117 base = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
118 addr = get_frame_memory_unsigned (this_frame, sp_addr, 4);
119
120 for (regnum = SPARC_L0_REGNUM; regnum <= SPARC_I7_REGNUM; regnum++)
121 {
122 trad_frame_set_reg_addr (this_cache, regnum, addr);
123 addr += 4;
124 }
125 trad_frame_set_id (this_cache, frame_id_build (base, func));
126 }
127 \f
128 /* Return the address of a system call's alternative return
129 address. */
130
131 static CORE_ADDR
132 sparc32_linux_step_trap (struct frame_info *frame, unsigned long insn)
133 {
134 if (insn == 0x91d02010)
135 {
136 ULONGEST sc_num = get_frame_register_unsigned (frame, SPARC_G1_REGNUM);
137
138 /* __NR_rt_sigreturn is 101 and __NR_sigreturn is 216 */
139 if (sc_num == 101 || sc_num == 216)
140 {
141 ULONGEST sp, pc_offset;
142
143 sp = get_frame_register_unsigned (frame, SPARC_SP_REGNUM);
144
145 /* The kernel puts the sigreturn registers on the stack,
146 and this is where the signal unwinding state is take from
147 when returning from a signal.
148
149 For __NR_sigreturn, this register area sits 96 bytes from
150 the base of the stack. The saved PC sits 4 bytes into the
151 sigreturn register save area.
152
153 For __NR_rt_sigreturn a siginfo_t, which is 128 bytes, sits
154 right before the sigreturn register save area. */
155
156 pc_offset = 96 + 4;
157 if (sc_num == 101)
158 pc_offset += 128;
159
160 return read_memory_unsigned_integer (sp + pc_offset, 4);
161 }
162 }
163
164 return 0;
165 }
166 \f
167
168 const struct sparc_gregset sparc32_linux_core_gregset =
169 {
170 32 * 4, /* %psr */
171 33 * 4, /* %pc */
172 34 * 4, /* %npc */
173 35 * 4, /* %y */
174 -1, /* %wim */
175 -1, /* %tbr */
176 1 * 4, /* %g1 */
177 16 * 4, /* %l0 */
178 4, /* y size */
179 };
180 \f
181
182 static void
183 sparc32_linux_supply_core_gregset (const struct regset *regset,
184 struct regcache *regcache,
185 int regnum, const void *gregs, size_t len)
186 {
187 sparc32_supply_gregset (&sparc32_linux_core_gregset, regcache, regnum, gregs);
188 }
189
190 static void
191 sparc32_linux_collect_core_gregset (const struct regset *regset,
192 const struct regcache *regcache,
193 int regnum, void *gregs, size_t len)
194 {
195 sparc32_collect_gregset (&sparc32_linux_core_gregset, regcache, regnum, gregs);
196 }
197
198 static void
199 sparc32_linux_supply_core_fpregset (const struct regset *regset,
200 struct regcache *regcache,
201 int regnum, const void *fpregs, size_t len)
202 {
203 sparc32_supply_fpregset (regcache, regnum, fpregs);
204 }
205
206 static void
207 sparc32_linux_collect_core_fpregset (const struct regset *regset,
208 const struct regcache *regcache,
209 int regnum, void *fpregs, size_t len)
210 {
211 sparc32_collect_fpregset (regcache, regnum, fpregs);
212 }
213
214 /* Set the program counter for process PTID to PC. */
215
216 #define PSR_SYSCALL 0x00004000
217
218 static void
219 sparc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
220 {
221 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
222 ULONGEST psr;
223
224 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
225 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
226
227 /* Clear the "in syscall" bit to prevent the kernel from
228 messing with the PCs we just installed, if we happen to be
229 within an interrupted system call that the kernel wants to
230 restart.
231
232 Note that after we return from the dummy call, the PSR et al.
233 registers will be automatically restored, and the kernel
234 continues to restart the system call at this point. */
235 regcache_cooked_read_unsigned (regcache, SPARC32_PSR_REGNUM, &psr);
236 psr &= ~PSR_SYSCALL;
237 regcache_cooked_write_unsigned (regcache, SPARC32_PSR_REGNUM, psr);
238 }
239
240 \f
241
242 static void
243 sparc32_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
244 {
245 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
246
247 tdep->gregset = regset_alloc (gdbarch, sparc32_linux_supply_core_gregset,
248 sparc32_linux_collect_core_gregset);
249 tdep->sizeof_gregset = 152;
250
251 tdep->fpregset = regset_alloc (gdbarch, sparc32_linux_supply_core_fpregset,
252 sparc32_linux_collect_core_fpregset);
253 tdep->sizeof_fpregset = 396;
254
255 tramp_frame_prepend_unwinder (gdbarch, &sparc32_linux_sigframe);
256 tramp_frame_prepend_unwinder (gdbarch, &sparc32_linux_rt_sigframe);
257
258 /* GNU/Linux has SVR4-style shared libraries... */
259 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
260 set_solib_svr4_fetch_link_map_offsets
261 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
262
263 /* ...which means that we need some special handling when doing
264 prologue analysis. */
265 tdep->plt_entry_size = 12;
266
267 /* GNU/Linux doesn't support the 128-bit `long double' from the psABI. */
268 set_gdbarch_long_double_bit (gdbarch, 64);
269 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
270
271 /* Enable TLS support. */
272 set_gdbarch_fetch_tls_load_module_address (gdbarch,
273 svr4_fetch_objfile_link_map);
274
275 /* Make sure we can single-step over signal return system calls. */
276 tdep->step_trap = sparc32_linux_step_trap;
277
278 /* Hook in the DWARF CFI frame unwinder. */
279 dwarf2_append_unwinders (gdbarch);
280
281 set_gdbarch_write_pc (gdbarch, sparc_linux_write_pc);
282 }
283
284 /* Provide a prototype to silence -Wmissing-prototypes. */
285 extern void _initialize_sparc_linux_tdep (void);
286
287 void
288 _initialize_sparc_linux_tdep (void)
289 {
290 gdbarch_register_osabi (bfd_arch_sparc, 0, GDB_OSABI_LINUX,
291 sparc32_linux_init_abi);
292 }