]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/sparc-stub.c
* config/sh/tm-sh.h (BELIEVE_PCC_PROMOTION): Define, so that
[thirdparty/binutils-gdb.git] / gdb / sparc-stub.c
1 /****************************************************************************
2
3 THIS SOFTWARE IS NOT COPYRIGHTED
4
5 HP offers the following for use in the public domain. HP makes no
6 warranty with regard to the software or it's performance and the
7 user accepts the software "AS IS" with all faults.
8
9 HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
10 TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
11 OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
12
13 ****************************************************************************/
14
15 /****************************************************************************
16 * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
17 *
18 * Module name: remcom.c $
19 * Revision: 1.34 $
20 * Date: 91/03/09 12:29:49 $
21 * Contributor: Lake Stevens Instrument Division$
22 *
23 * Description: low level support for gdb debugger. $
24 *
25 * Considerations: only works on target hardware $
26 *
27 * Written by: Glenn Engel $
28 * ModuleState: Experimental $
29 *
30 * NOTES: See Below $
31 *
32 * Modified for SPARC by Stu Grossman, Cygnus Support.
33 *
34 * This code has been extensively tested on the Fujitsu SPARClite demo board.
35 *
36 * To enable debugger support, two things need to happen. One, a
37 * call to set_debug_traps() is necessary in order to allow any breakpoints
38 * or error conditions to be properly intercepted and reported to gdb.
39 * Two, a breakpoint needs to be generated to begin communication. This
40 * is most easily accomplished by a call to breakpoint(). Breakpoint()
41 * simulates a breakpoint by executing a trap #1.
42 *
43 *************
44 *
45 * The following gdb commands are supported:
46 *
47 * command function Return value
48 *
49 * g return the value of the CPU registers hex data or ENN
50 * G set the value of the CPU registers OK or ENN
51 *
52 * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
53 * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
54 *
55 * c Resume at current address SNN ( signal NN)
56 * cAA..AA Continue at address AA..AA SNN
57 *
58 * s Step one instruction SNN
59 * sAA..AA Step one instruction from AA..AA SNN
60 *
61 * k kill
62 *
63 * ? What was the last sigval ? SNN (signal NN)
64 *
65 * bBB..BB Set baud rate to BB..BB OK or BNN, then sets
66 * baud rate
67 *
68 * All commands and responses are sent with a packet which includes a
69 * checksum. A packet consists of
70 *
71 * $<packet info>#<checksum>.
72 *
73 * where
74 * <packet info> :: <characters representing the command or response>
75 * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
76 *
77 * When a packet is received, it is first acknowledged with either '+' or '-'.
78 * '+' indicates a successful transfer. '-' indicates a failed transfer.
79 *
80 * Example:
81 *
82 * Host: Reply:
83 * $m0,10#2a +$00010203040506070809101112131415#42
84 *
85 ****************************************************************************/
86
87 #include <string.h>
88 #include <signal.h>
89
90 /************************************************************************
91 *
92 * external low-level support routines
93 */
94
95 extern void putDebugChar(); /* write a single character */
96 extern int getDebugChar(); /* read and return a single char */
97
98 /************************************************************************/
99 /* BUFMAX defines the maximum number of characters in inbound/outbound buffers*/
100 /* at least NUMREGBYTES*2 are needed for register packets */
101 #define BUFMAX 2048
102
103 static int initialized = 0; /* !0 means we've been initialized */
104
105 static void set_mem_fault_trap();
106
107 static const char hexchars[]="0123456789abcdef";
108
109 #define NUMREGS 72
110
111 /* Number of bytes of registers. */
112 #define NUMREGBYTES (NUMREGS * 4)
113 enum regnames {G0, G1, G2, G3, G4, G5, G6, G7,
114 O0, O1, O2, O3, O4, O5, SP, O7,
115 L0, L1, L2, L3, L4, L5, L6, L7,
116 I0, I1, I2, I3, I4, I5, FP, I7,
117
118 F0, F1, F2, F3, F4, F5, F6, F7,
119 F8, F9, F10, F11, F12, F13, F14, F15,
120 F16, F17, F18, F19, F20, F21, F22, F23,
121 F24, F25, F26, F27, F28, F29, F30, F31,
122 Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR };
123
124 /*************************** ASSEMBLY CODE MACROS *************************/
125 /* */
126
127 extern void trap_low();
128
129 asm("
130 .reserve trapstack, 1000 * 4, \"bss\", 8
131
132 .data
133 .align 4
134
135 in_trap_handler:
136 .word 0
137
138 .text
139 .align 4
140
141 ! This function is called when any SPARC trap (except window overflow or
142 ! underflow) occurs. It makes sure that the invalid register window is still
143 ! available before jumping into C code. It will also restore the world if you
144 ! return from handle_exception.
145
146 .globl _trap_low
147 _trap_low:
148 mov %psr, %l0
149 mov %wim, %l3
150
151 srl %l3, %l0, %l4 ! wim >> cwp
152 cmp %l4, 1
153 bne window_fine ! Branch if not in the invalid window
154 nop
155
156 ! Handle window overflow
157
158 mov %g1, %l4 ! Save g1, we use it to hold the wim
159 srl %l3, 1, %g1 ! Rotate wim right
160 tst %g1
161 bg good_wim ! Branch if new wim is non-zero
162 nop
163
164 ! At this point, we need to bring a 1 into the high order bit of the wim.
165 ! Since we don't want to make any assumptions about the number of register
166 ! windows, we figure it out dynamically so as to setup the wim correctly.
167
168 not %g1 ! Fill g1 with ones
169 mov %g1, %wim ! Fill the wim with ones
170 nop
171 nop
172 nop
173 mov %wim, %g1 ! Read back the wim
174 inc %g1 ! Now g1 has 1 just to left of wim
175 srl %g1, 1, %g1 ! Now put 1 at top of wim
176 mov %g0, %wim ! Clear wim so that subsequent save
177 nop ! won't trap
178 nop
179 nop
180
181 good_wim:
182 save %g0, %g0, %g0 ! Slip into next window
183 mov %g1, %wim ! Install the new wim
184
185 std %l0, [%sp + 0 * 4] ! save L & I registers
186 std %l2, [%sp + 2 * 4]
187 std %l4, [%sp + 4 * 4]
188 std %l6, [%sp + 6 * 4]
189
190 std %i0, [%sp + 8 * 4]
191 std %i2, [%sp + 10 * 4]
192 std %i4, [%sp + 12 * 4]
193 std %i6, [%sp + 14 * 4]
194
195 restore ! Go back to trap window.
196 mov %l4, %g1 ! Restore %g1
197
198 window_fine:
199 sethi %hi(in_trap_handler), %l4
200 ld [%lo(in_trap_handler) + %l4], %l5
201 tst %l5
202 bg recursive_trap
203 inc %l5
204
205 set trapstack+1000*4, %sp ! Switch to trap stack
206
207 recursive_trap:
208 st %l5, [%lo(in_trap_handler) + %l4]
209 sub %sp,(16+1+6+1+72)*4,%sp ! Make room for input & locals
210 ! + hidden arg + arg spill
211 ! + doubleword alignment
212 ! + registers[72] local var
213
214 std %g0, [%sp + (24 + 0) * 4] ! registers[Gx]
215 std %g2, [%sp + (24 + 2) * 4]
216 std %g4, [%sp + (24 + 4) * 4]
217 std %g6, [%sp + (24 + 6) * 4]
218
219 std %i0, [%sp + (24 + 8) * 4] ! registers[Ox]
220 std %i2, [%sp + (24 + 10) * 4]
221 std %i4, [%sp + (24 + 12) * 4]
222 std %i6, [%sp + (24 + 14) * 4]
223 ! F0->F31 not implemented
224 mov %y, %l4
225 mov %tbr, %l5
226 st %l4, [%sp + (24 + 64) * 4] ! Y
227 st %l0, [%sp + (24 + 65) * 4] ! PSR
228 st %l3, [%sp + (24 + 66) * 4] ! WIM
229 st %l5, [%sp + (24 + 67) * 4] ! TBR
230 st %l1, [%sp + (24 + 68) * 4] ! PC
231 st %l2, [%sp + (24 + 69) * 4] ! NPC
232
233 ! CPSR and FPSR not impl
234
235 or %l0, 0xf20, %l4
236 mov %l4, %psr ! Turn on traps, disable interrupts
237
238 call _handle_exception
239 add %sp, 24 * 4, %o0 ! Pass address of registers
240
241 ! Reload all of the registers that aren't on the stack
242
243 ld [%sp + (24 + 1) * 4], %g1 ! registers[Gx]
244 ldd [%sp + (24 + 2) * 4], %g2
245 ldd [%sp + (24 + 4) * 4], %g4
246 ldd [%sp + (24 + 6) * 4], %g6
247
248 ldd [%sp + (24 + 8) * 4], %i0 ! registers[Ox]
249 ldd [%sp + (24 + 10) * 4], %i2
250 ldd [%sp + (24 + 12) * 4], %i4
251 ldd [%sp + (24 + 14) * 4], %i6
252
253 ldd [%sp + (24 + 64) * 4], %l0 ! Y & PSR
254 ldd [%sp + (24 + 68) * 4], %l2 ! PC & NPC
255
256 restore ! Ensure that previous window is valid
257 save %g0, %g0, %g0 ! by causing a window_underflow trap
258
259 mov %l0, %y
260 mov %l1, %psr ! Make sure that traps are disabled
261 ! for rett
262
263 sethi %hi(in_trap_handler), %l4
264 ld [%lo(in_trap_handler) + %l4], %l5
265 dec %l5
266 st %l5, [%lo(in_trap_handler) + %l4]
267
268 jmpl %l2, %g0 ! Restore old PC
269 rett %l3 ! Restore old nPC
270 ");
271
272 /* Convert ch from a hex digit to an int */
273
274 static int
275 hex(ch)
276 unsigned char ch;
277 {
278 if (ch >= 'a' && ch <= 'f')
279 return ch-'a'+10;
280 if (ch >= '0' && ch <= '9')
281 return ch-'0';
282 if (ch >= 'A' && ch <= 'F')
283 return ch-'A'+10;
284 return -1;
285 }
286
287 /* scan for the sequence $<data>#<checksum> */
288
289 static void
290 getpacket(buffer)
291 char *buffer;
292 {
293 unsigned char checksum;
294 unsigned char xmitcsum;
295 int i;
296 int count;
297 unsigned char ch;
298
299 do
300 {
301 /* wait around for the start character, ignore all other characters */
302 while ((ch = (getDebugChar() & 0x7f)) != '$') ;
303
304 checksum = 0;
305 xmitcsum = -1;
306
307 count = 0;
308
309 /* now, read until a # or end of buffer is found */
310 while (count < BUFMAX)
311 {
312 ch = getDebugChar() & 0x7f;
313 if (ch == '#')
314 break;
315 checksum = checksum + ch;
316 buffer[count] = ch;
317 count = count + 1;
318 }
319
320 if (count >= BUFMAX)
321 continue;
322
323 buffer[count] = 0;
324
325 if (ch == '#')
326 {
327 xmitcsum = hex(getDebugChar() & 0x7f) << 4;
328 xmitcsum |= hex(getDebugChar() & 0x7f);
329 #if 0
330 /* Humans shouldn't have to figure out checksums to type to it. */
331 putDebugChar ('+');
332 return;
333 #endif
334 if (checksum != xmitcsum)
335 putDebugChar('-'); /* failed checksum */
336 else
337 {
338 putDebugChar('+'); /* successful transfer */
339 /* if a sequence char is present, reply the sequence ID */
340 if (buffer[2] == ':')
341 {
342 putDebugChar(buffer[0]);
343 putDebugChar(buffer[1]);
344 /* remove sequence chars from buffer */
345 count = strlen(buffer);
346 for (i=3; i <= count; i++)
347 buffer[i-3] = buffer[i];
348 }
349 }
350 }
351 }
352 while (checksum != xmitcsum);
353 }
354
355 /* send the packet in buffer. */
356
357 static void
358 putpacket(buffer)
359 unsigned char *buffer;
360 {
361 unsigned char checksum;
362 int count;
363 unsigned char ch;
364
365 /* $<packet info>#<checksum>. */
366 do
367 {
368 putDebugChar('$');
369 checksum = 0;
370 count = 0;
371
372 while (ch = buffer[count])
373 {
374 putDebugChar(ch);
375 checksum += ch;
376 count += 1;
377 }
378
379 putDebugChar('#');
380 putDebugChar(hexchars[checksum >> 4]);
381 putDebugChar(hexchars[checksum & 0xf]);
382
383 }
384 while ((getDebugChar() & 0x7f) != '+');
385 }
386
387 static char remcomInBuffer[BUFMAX];
388 static char remcomOutBuffer[BUFMAX];
389
390 /* Indicate to caller of mem2hex or hex2mem that there has been an
391 error. */
392 static volatile int mem_err = 0;
393
394 /* Convert the memory pointed to by mem into hex, placing result in buf.
395 * Return a pointer to the last char put in buf (null), in case of mem fault,
396 * return 0.
397 * If MAY_FAULT is non-zero, then we will handle memory faults by returning
398 * a 0, else treat a fault like any other fault in the stub.
399 */
400
401 static unsigned char *
402 mem2hex(mem, buf, count, may_fault)
403 unsigned char *mem;
404 unsigned char *buf;
405 int count;
406 int may_fault;
407 {
408 unsigned char ch;
409
410 set_mem_fault_trap(may_fault);
411
412 while (count-- > 0)
413 {
414 ch = *mem++;
415 if (mem_err)
416 return 0;
417 *buf++ = hexchars[ch >> 4];
418 *buf++ = hexchars[ch & 0xf];
419 }
420
421 *buf = 0;
422
423 set_mem_fault_trap(0);
424
425 return buf;
426 }
427
428 /* convert the hex array pointed to by buf into binary to be placed in mem
429 * return a pointer to the character AFTER the last byte written */
430
431 static char *
432 hex2mem(buf, mem, count, may_fault)
433 unsigned char *buf;
434 unsigned char *mem;
435 int count;
436 int may_fault;
437 {
438 int i;
439 unsigned char ch;
440
441 set_mem_fault_trap(may_fault);
442
443 for (i=0; i<count; i++)
444 {
445 ch = hex(*buf++) << 4;
446 ch |= hex(*buf++);
447 *mem++ = ch;
448 if (mem_err)
449 return 0;
450 }
451
452 set_mem_fault_trap(0);
453
454 return mem;
455 }
456
457 /* This table contains the mapping between SPARC hardware trap types, and
458 signals, which are primarily what GDB understands. It also indicates
459 which hardware traps we need to commandeer when initializing the stub. */
460
461 static struct hard_trap_info
462 {
463 unsigned char tt; /* Trap type code for SPARClite */
464 unsigned char signo; /* Signal that we map this trap into */
465 } hard_trap_info[] = {
466 {1, SIGSEGV}, /* instruction access error */
467 {2, SIGILL}, /* privileged instruction */
468 {3, SIGILL}, /* illegal instruction */
469 {4, SIGEMT}, /* fp disabled */
470 {36, SIGEMT}, /* cp disabled */
471 {7, SIGBUS}, /* mem address not aligned */
472 {9, SIGSEGV}, /* data access exception */
473 {10, SIGEMT}, /* tag overflow */
474 {128+1, SIGTRAP}, /* ta 1 - normal breakpoint instruction */
475 {0, 0} /* Must be last */
476 };
477
478 /* Set up exception handlers for tracing and breakpoints */
479
480 void
481 set_debug_traps()
482 {
483 struct hard_trap_info *ht;
484
485 for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
486 exceptionHandler(ht->tt, trap_low);
487
488 /* In case GDB is started before us, ack any packets (presumably
489 "$?#xx") sitting there. */
490
491 putDebugChar ('+');
492
493 initialized = 1;
494 }
495
496 asm ("
497 ! Trap handler for memory errors. This just sets mem_err to be non-zero. It
498 ! assumes that %l1 is non-zero. This should be safe, as it is doubtful that
499 ! 0 would ever contain code that could mem fault. This routine will skip
500 ! past the faulting instruction after setting mem_err.
501
502 .text
503 .align 4
504
505 _fltr_set_mem_err:
506 sethi %hi(_mem_err), %l0
507 st %l1, [%l0 + %lo(_mem_err)]
508 jmpl %l2, %g0
509 rett %l2+4
510 ");
511
512 static void
513 set_mem_fault_trap(enable)
514 int enable;
515 {
516 extern void fltr_set_mem_err();
517 mem_err = 0;
518
519 if (enable)
520 exceptionHandler(9, fltr_set_mem_err);
521 else
522 exceptionHandler(9, trap_low);
523 }
524
525 /* Convert the SPARC hardware trap type code to a unix signal number. */
526
527 static int
528 computeSignal(tt)
529 int tt;
530 {
531 struct hard_trap_info *ht;
532
533 for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
534 if (ht->tt == tt)
535 return ht->signo;
536
537 return SIGHUP; /* default for things we don't know about */
538 }
539
540 /*
541 * While we find nice hex chars, build an int.
542 * Return number of chars processed.
543 */
544
545 static int
546 hexToInt(char **ptr, int *intValue)
547 {
548 int numChars = 0;
549 int hexValue;
550
551 *intValue = 0;
552
553 while (**ptr)
554 {
555 hexValue = hex(**ptr);
556 if (hexValue < 0)
557 break;
558
559 *intValue = (*intValue << 4) | hexValue;
560 numChars ++;
561
562 (*ptr)++;
563 }
564
565 return (numChars);
566 }
567
568 /*
569 * This function does all command procesing for interfacing to gdb. It
570 * returns 1 if you should skip the instruction at the trap address, 0
571 * otherwise.
572 */
573
574 extern void breakinst();
575
576 static void
577 handle_exception (registers)
578 unsigned long *registers;
579 {
580 int tt; /* Trap type */
581 int sigval;
582 int addr;
583 int length;
584 char *ptr;
585 unsigned long *sp;
586
587 /* First, we must force all of the windows to be spilled out */
588
589 asm(" save %sp, -64, %sp
590 save %sp, -64, %sp
591 save %sp, -64, %sp
592 save %sp, -64, %sp
593 save %sp, -64, %sp
594 save %sp, -64, %sp
595 save %sp, -64, %sp
596 save %sp, -64, %sp
597 restore
598 restore
599 restore
600 restore
601 restore
602 restore
603 restore
604 restore
605 ");
606
607 if (registers[PC] == (unsigned long)breakinst)
608 {
609 registers[PC] = registers[NPC];
610 registers[NPC] += 4;
611 }
612
613 sp = (unsigned long *)registers[SP];
614
615 tt = (registers[TBR] >> 4) & 0xff;
616
617 /* reply to host that an exception has occurred */
618 sigval = computeSignal(tt);
619 ptr = remcomOutBuffer;
620
621 *ptr++ = 'T';
622 *ptr++ = hexchars[sigval >> 4];
623 *ptr++ = hexchars[sigval & 0xf];
624
625 *ptr++ = hexchars[PC >> 4];
626 *ptr++ = hexchars[PC & 0xf];
627 *ptr++ = ':';
628 ptr = mem2hex((char *)&registers[PC], ptr, 4, 0);
629 *ptr++ = ';';
630
631 *ptr++ = hexchars[FP >> 4];
632 *ptr++ = hexchars[FP & 0xf];
633 *ptr++ = ':';
634 ptr = mem2hex(sp + 8 + 6, ptr, 4, 0); /* FP */
635 *ptr++ = ';';
636
637 *ptr++ = hexchars[SP >> 4];
638 *ptr++ = hexchars[SP & 0xf];
639 *ptr++ = ':';
640 ptr = mem2hex((char *)&sp, ptr, 4, 0);
641 *ptr++ = ';';
642
643 *ptr++ = hexchars[NPC >> 4];
644 *ptr++ = hexchars[NPC & 0xf];
645 *ptr++ = ':';
646 ptr = mem2hex((char *)&registers[NPC], ptr, 4, 0);
647 *ptr++ = ';';
648
649 *ptr++ = hexchars[O7 >> 4];
650 *ptr++ = hexchars[O7 & 0xf];
651 *ptr++ = ':';
652 ptr = mem2hex((char *)&registers[O7], ptr, 4, 0);
653 *ptr++ = ';';
654
655 *ptr++ = 0;
656
657 putpacket(remcomOutBuffer);
658
659 while (1)
660 {
661 remcomOutBuffer[0] = 0;
662
663 getpacket(remcomInBuffer);
664 switch (remcomInBuffer[0])
665 {
666 case '?':
667 remcomOutBuffer[0] = 'S';
668 remcomOutBuffer[1] = hexchars[sigval >> 4];
669 remcomOutBuffer[2] = hexchars[sigval & 0xf];
670 remcomOutBuffer[3] = 0;
671 break;
672
673 case 'd':
674 /* toggle debug flag */
675 break;
676
677 case 'g': /* return the value of the CPU registers */
678 {
679 ptr = remcomOutBuffer;
680 ptr = mem2hex((char *)registers, ptr, 16 * 4, 0); /* G & O regs */
681 ptr = mem2hex(sp + 0, ptr, 16 * 4, 0); /* L & I regs */
682 memset(ptr, '0', 32 * 8); /* Floating point */
683 mem2hex((char *)&registers[Y],
684 ptr + 32 * 4 * 2,
685 8 * 4,
686 0); /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
687 }
688 break;
689
690 case 'G': /* set the value of the CPU registers - return OK */
691 {
692 unsigned long *newsp, psr;
693
694 psr = registers[PSR];
695
696 ptr = &remcomInBuffer[1];
697 hex2mem(ptr, (char *)registers, 16 * 4, 0); /* G & O regs */
698 hex2mem(ptr + 16 * 4 * 2, sp + 0, 16 * 4, 0); /* L & I regs */
699 hex2mem(ptr + 64 * 4 * 2, (char *)&registers[Y],
700 8 * 4, 0); /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
701
702 /* See if the stack pointer has moved. If so, then copy the saved
703 locals and ins to the new location. This keeps the window
704 overflow and underflow routines happy. */
705
706 newsp = (unsigned long *)registers[SP];
707 if (sp != newsp)
708 sp = memcpy(newsp, sp, 16 * 4);
709
710 /* Don't allow CWP to be modified. */
711
712 if (psr != registers[PSR])
713 registers[PSR] = (psr & 0x1f) | (registers[PSR] & ~0x1f);
714
715 strcpy(remcomOutBuffer,"OK");
716 }
717 break;
718
719 case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
720 /* Try to read %x,%x. */
721
722 ptr = &remcomInBuffer[1];
723
724 if (hexToInt(&ptr, &addr)
725 && *ptr++ == ','
726 && hexToInt(&ptr, &length))
727 {
728 if (mem2hex((char *)addr, remcomOutBuffer, length, 1))
729 break;
730
731 strcpy (remcomOutBuffer, "E03");
732 }
733 else
734 strcpy(remcomOutBuffer,"E01");
735 break;
736
737 case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
738 /* Try to read '%x,%x:'. */
739
740 ptr = &remcomInBuffer[1];
741
742 if (hexToInt(&ptr, &addr)
743 && *ptr++ == ','
744 && hexToInt(&ptr, &length)
745 && *ptr++ == ':')
746 {
747 if (hex2mem(ptr, (char *)addr, length, 1))
748 strcpy(remcomOutBuffer, "OK");
749 else
750 strcpy(remcomOutBuffer, "E03");
751 }
752 else
753 strcpy(remcomOutBuffer, "E02");
754 break;
755
756 case 'c': /* cAA..AA Continue at address AA..AA(optional) */
757 /* try to read optional parameter, pc unchanged if no parm */
758
759 ptr = &remcomInBuffer[1];
760 if (hexToInt(&ptr, &addr))
761 {
762 registers[PC] = addr;
763 registers[NPC] = addr + 4;
764 }
765
766 /* Need to flush the instruction cache here, as we may have deposited a
767 breakpoint, and the icache probably has no way of knowing that a data ref to
768 some location may have changed something that is in the instruction cache.
769 */
770
771 flush_i_cache();
772 return;
773
774 /* kill the program */
775 case 'k' : /* do nothing */
776 break;
777 #if 0
778 case 't': /* Test feature */
779 asm (" std %f30,[%sp]");
780 break;
781 #endif
782 case 'r': /* Reset */
783 asm ("call 0
784 nop ");
785 break;
786
787 #if 0
788 Disabled until we can unscrew this properly
789
790 case 'b': /* bBB... Set baud rate to BB... */
791 {
792 int baudrate;
793 extern void set_timer_3();
794
795 ptr = &remcomInBuffer[1];
796 if (!hexToInt(&ptr, &baudrate))
797 {
798 strcpy(remcomOutBuffer,"B01");
799 break;
800 }
801
802 /* Convert baud rate to uart clock divider */
803 switch (baudrate)
804 {
805 case 38400:
806 baudrate = 16;
807 break;
808 case 19200:
809 baudrate = 33;
810 break;
811 case 9600:
812 baudrate = 65;
813 break;
814 default:
815 strcpy(remcomOutBuffer,"B02");
816 goto x1;
817 }
818
819 putpacket("OK"); /* Ack before changing speed */
820 set_timer_3(baudrate); /* Set it */
821 }
822 x1: break;
823 #endif
824 } /* switch */
825
826 /* reply to the request */
827 putpacket(remcomOutBuffer);
828 }
829 }
830
831 /* This function will generate a breakpoint exception. It is used at the
832 beginning of a program to sync up with a debugger and can be used
833 otherwise as a quick means to stop program execution and "break" into
834 the debugger. */
835
836 void
837 breakpoint()
838 {
839 if (!initialized)
840 return;
841
842 asm(" .globl _breakinst
843
844 _breakinst: ta 1
845 ");
846 }