]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/sparc-tdep.c
gdb: add names to unwinders, add debug messages when looking for unwinder
[thirdparty/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "dwarf2.h"
24 #include "dwarf2/frame.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "osabi.h"
34 #include "regcache.h"
35 #include "target.h"
36 #include "target-descriptions.h"
37 #include "value.h"
38
39 #include "sparc-tdep.h"
40 #include "sparc-ravenscar-thread.h"
41 #include <algorithm>
42
43 struct regset;
44
45 /* This file implements the SPARC 32-bit ABI as defined by the section
46 "Low-Level System Information" of the SPARC Compliance Definition
47 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
48 lists changes with respect to the original 32-bit psABI as defined
49 in the "System V ABI, SPARC Processor Supplement".
50
51 Note that if we talk about SunOS, we mean SunOS 4.x, which was
52 BSD-based, which is sometimes (retroactively?) referred to as
53 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
54 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
55 suffering from severe version number inflation). Solaris 2.x is
56 also known as SunOS 5.x, since that's what uname(1) says. Solaris
57 2.x is SVR4-based. */
58
59 /* Please use the sparc32_-prefix for 32-bit specific code, the
60 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
61 code that can handle both. The 64-bit specific code lives in
62 sparc64-tdep.c; don't add any here. */
63
64 /* The SPARC Floating-Point Quad-Precision format is similar to
65 big-endian IA-64 Quad-Precision format. */
66 #define floatformats_sparc_quad floatformats_ia64_quad
67
68 /* The stack pointer is offset from the stack frame by a BIAS of 2047
69 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
70 hosts, so undefine it first. */
71 #undef BIAS
72 #define BIAS 2047
73
74 /* Macros to extract fields from SPARC instructions. */
75 #define X_OP(i) (((i) >> 30) & 0x3)
76 #define X_RD(i) (((i) >> 25) & 0x1f)
77 #define X_A(i) (((i) >> 29) & 1)
78 #define X_COND(i) (((i) >> 25) & 0xf)
79 #define X_OP2(i) (((i) >> 22) & 0x7)
80 #define X_IMM22(i) ((i) & 0x3fffff)
81 #define X_OP3(i) (((i) >> 19) & 0x3f)
82 #define X_RS1(i) (((i) >> 14) & 0x1f)
83 #define X_RS2(i) ((i) & 0x1f)
84 #define X_I(i) (((i) >> 13) & 1)
85 /* Sign extension macros. */
86 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
87 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
88 #define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90 /* Macros to identify some instructions. */
91 /* RETURN (RETT in V8) */
92 #define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))
93
94 /* Fetch the instruction at PC. Instructions are always big-endian
95 even if the processor operates in little-endian mode. */
96
97 unsigned long
98 sparc_fetch_instruction (CORE_ADDR pc)
99 {
100 gdb_byte buf[4];
101 unsigned long insn;
102 int i;
103
104 /* If we can't read the instruction at PC, return zero. */
105 if (target_read_memory (pc, buf, sizeof (buf)))
106 return 0;
107
108 insn = 0;
109 for (i = 0; i < sizeof (buf); i++)
110 insn = (insn << 8) | buf[i];
111 return insn;
112 }
113 \f
114
115 /* Return non-zero if the instruction corresponding to PC is an "unimp"
116 instruction. */
117
118 static int
119 sparc_is_unimp_insn (CORE_ADDR pc)
120 {
121 const unsigned long insn = sparc_fetch_instruction (pc);
122
123 return ((insn & 0xc1c00000) == 0);
124 }
125
126 /* Return non-zero if the instruction corresponding to PC is an
127 "annulled" branch, i.e. the annul bit is set. */
128
129 int
130 sparc_is_annulled_branch_insn (CORE_ADDR pc)
131 {
132 /* The branch instructions featuring an annul bit can be identified
133 by the following bit patterns:
134
135 OP=0
136 OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
137 OP2=2: Branch on Integer Condition Codes (Bcc).
138 OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
139 OP2=6: Branch on FP Condition Codes (FBcc).
140 OP2=3 && Bit28=0:
141 Branch on Integer Register with Prediction (BPr).
142
143 This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
144 coprocessor branch instructions (Op2=7). */
145
146 const unsigned long insn = sparc_fetch_instruction (pc);
147 const unsigned op2 = X_OP2 (insn);
148
149 if ((X_OP (insn) == 0)
150 && ((op2 == 1) || (op2 == 2) || (op2 == 5) || (op2 == 6)
151 || ((op2 == 3) && ((insn & 0x10000000) == 0))))
152 return X_A (insn);
153 else
154 return 0;
155 }
156
157 /* OpenBSD/sparc includes StackGhost, which according to the author's
158 website http://stackghost.cerias.purdue.edu "... transparently and
159 automatically protects applications' stack frames; more
160 specifically, it guards the return pointers. The protection
161 mechanisms require no application source or binary modification and
162 imposes only a negligible performance penalty."
163
164 The same website provides the following description of how
165 StackGhost works:
166
167 "StackGhost interfaces with the kernel trap handler that would
168 normally write out registers to the stack and the handler that
169 would read them back in. By XORing a cookie into the
170 return-address saved in the user stack when it is actually written
171 to the stack, and then XOR it out when the return-address is pulled
172 from the stack, StackGhost can cause attacker corrupted return
173 pointers to behave in a manner the attacker cannot predict.
174 StackGhost can also use several unused bits in the return pointer
175 to detect a smashed return pointer and abort the process."
176
177 For GDB this means that whenever we're reading %i7 from a stack
178 frame's window save area, we'll have to XOR the cookie.
179
180 More information on StackGuard can be found on in:
181
182 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
183 Stack Protection." 2001. Published in USENIX Security Symposium
184 '01. */
185
186 /* Fetch StackGhost Per-Process XOR cookie. */
187
188 ULONGEST
189 sparc_fetch_wcookie (struct gdbarch *gdbarch)
190 {
191 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
192 struct target_ops *ops = current_inferior ()->top_target ();
193 gdb_byte buf[8];
194 int len;
195
196 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
197 if (len == -1)
198 return 0;
199
200 /* We should have either an 32-bit or an 64-bit cookie. */
201 gdb_assert (len == 4 || len == 8);
202
203 return extract_unsigned_integer (buf, len, byte_order);
204 }
205 \f
206
207 /* The functions on this page are intended to be used to classify
208 function arguments. */
209
210 /* Check whether TYPE is "Integral or Pointer". */
211
212 static int
213 sparc_integral_or_pointer_p (const struct type *type)
214 {
215 int len = TYPE_LENGTH (type);
216
217 switch (type->code ())
218 {
219 case TYPE_CODE_INT:
220 case TYPE_CODE_BOOL:
221 case TYPE_CODE_CHAR:
222 case TYPE_CODE_ENUM:
223 case TYPE_CODE_RANGE:
224 /* We have byte, half-word, word and extended-word/doubleword
225 integral types. The doubleword is an extension to the
226 original 32-bit ABI by the SCD 2.4.x. */
227 return (len == 1 || len == 2 || len == 4 || len == 8);
228 case TYPE_CODE_PTR:
229 case TYPE_CODE_REF:
230 case TYPE_CODE_RVALUE_REF:
231 /* Allow either 32-bit or 64-bit pointers. */
232 return (len == 4 || len == 8);
233 default:
234 break;
235 }
236
237 return 0;
238 }
239
240 /* Check whether TYPE is "Floating". */
241
242 static int
243 sparc_floating_p (const struct type *type)
244 {
245 switch (type->code ())
246 {
247 case TYPE_CODE_FLT:
248 {
249 int len = TYPE_LENGTH (type);
250 return (len == 4 || len == 8 || len == 16);
251 }
252 default:
253 break;
254 }
255
256 return 0;
257 }
258
259 /* Check whether TYPE is "Complex Floating". */
260
261 static int
262 sparc_complex_floating_p (const struct type *type)
263 {
264 switch (type->code ())
265 {
266 case TYPE_CODE_COMPLEX:
267 {
268 int len = TYPE_LENGTH (type);
269 return (len == 8 || len == 16 || len == 32);
270 }
271 default:
272 break;
273 }
274
275 return 0;
276 }
277
278 /* Check whether TYPE is "Structure or Union".
279
280 In terms of Ada subprogram calls, arrays are treated the same as
281 struct and union types. So this function also returns non-zero
282 for array types. */
283
284 static int
285 sparc_structure_or_union_p (const struct type *type)
286 {
287 switch (type->code ())
288 {
289 case TYPE_CODE_STRUCT:
290 case TYPE_CODE_UNION:
291 case TYPE_CODE_ARRAY:
292 return 1;
293 default:
294 break;
295 }
296
297 return 0;
298 }
299
300 /* Return true if TYPE is returned by memory, false if returned by
301 register. */
302
303 static bool
304 sparc_structure_return_p (const struct type *type)
305 {
306 if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
307 {
308 /* Float vectors are always returned by memory. */
309 if (sparc_floating_p (check_typedef (TYPE_TARGET_TYPE (type))))
310 return true;
311 /* Integer vectors are returned by memory if the vector size
312 is greater than 8 bytes long. */
313 return (TYPE_LENGTH (type) > 8);
314 }
315
316 if (sparc_floating_p (type))
317 {
318 /* Floating point types are passed by register for size 4 and
319 8 bytes, and by memory for size 16 bytes. */
320 return (TYPE_LENGTH (type) == 16);
321 }
322
323 /* Other than that, only aggregates of all sizes get returned by
324 memory. */
325 return sparc_structure_or_union_p (type);
326 }
327
328 /* Return true if arguments of the given TYPE are passed by
329 memory; false if returned by register. */
330
331 static bool
332 sparc_arg_by_memory_p (const struct type *type)
333 {
334 if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
335 {
336 /* Float vectors are always passed by memory. */
337 if (sparc_floating_p (check_typedef (TYPE_TARGET_TYPE (type))))
338 return true;
339 /* Integer vectors are passed by memory if the vector size
340 is greater than 8 bytes long. */
341 return (TYPE_LENGTH (type) > 8);
342 }
343
344 /* Floats are passed by register for size 4 and 8 bytes, and by memory
345 for size 16 bytes. */
346 if (sparc_floating_p (type))
347 return (TYPE_LENGTH (type) == 16);
348
349 /* Complex floats and aggregates of all sizes are passed by memory. */
350 if (sparc_complex_floating_p (type) || sparc_structure_or_union_p (type))
351 return true;
352
353 /* Everything else gets passed by register. */
354 return false;
355 }
356
357 /* Register information. */
358 #define SPARC32_FPU_REGISTERS \
359 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
360 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
361 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
362 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
363 #define SPARC32_CP0_REGISTERS \
364 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
365
366 static const char * const sparc_core_register_names[] = {
367 SPARC_CORE_REGISTERS
368 };
369 static const char * const sparc32_fpu_register_names[] = {
370 SPARC32_FPU_REGISTERS
371 };
372 static const char * const sparc32_cp0_register_names[] = {
373 SPARC32_CP0_REGISTERS
374 };
375
376 static const char * const sparc32_register_names[] =
377 {
378 SPARC_CORE_REGISTERS,
379 SPARC32_FPU_REGISTERS,
380 SPARC32_CP0_REGISTERS
381 };
382
383 /* Total number of registers. */
384 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
385
386 /* We provide the aliases %d0..%d30 for the floating registers as
387 "psuedo" registers. */
388
389 static const char * const sparc32_pseudo_register_names[] =
390 {
391 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
392 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
393 };
394
395 /* Total number of pseudo registers. */
396 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
397
398 /* Return the name of pseudo register REGNUM. */
399
400 static const char *
401 sparc32_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
402 {
403 regnum -= gdbarch_num_regs (gdbarch);
404
405 if (regnum < SPARC32_NUM_PSEUDO_REGS)
406 return sparc32_pseudo_register_names[regnum];
407
408 internal_error (__FILE__, __LINE__,
409 _("sparc32_pseudo_register_name: bad register number %d"),
410 regnum);
411 }
412
413 /* Return the name of register REGNUM. */
414
415 static const char *
416 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
417 {
418 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
419 return tdesc_register_name (gdbarch, regnum);
420
421 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
422 return sparc32_register_names[regnum];
423
424 return sparc32_pseudo_register_name (gdbarch, regnum);
425 }
426 \f
427 /* Construct types for ISA-specific registers. */
428
429 static struct type *
430 sparc_psr_type (struct gdbarch *gdbarch)
431 {
432 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
433
434 if (!tdep->sparc_psr_type)
435 {
436 struct type *type;
437
438 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 32);
439 append_flags_type_flag (type, 5, "ET");
440 append_flags_type_flag (type, 6, "PS");
441 append_flags_type_flag (type, 7, "S");
442 append_flags_type_flag (type, 12, "EF");
443 append_flags_type_flag (type, 13, "EC");
444
445 tdep->sparc_psr_type = type;
446 }
447
448 return tdep->sparc_psr_type;
449 }
450
451 static struct type *
452 sparc_fsr_type (struct gdbarch *gdbarch)
453 {
454 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
455
456 if (!tdep->sparc_fsr_type)
457 {
458 struct type *type;
459
460 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 32);
461 append_flags_type_flag (type, 0, "NXA");
462 append_flags_type_flag (type, 1, "DZA");
463 append_flags_type_flag (type, 2, "UFA");
464 append_flags_type_flag (type, 3, "OFA");
465 append_flags_type_flag (type, 4, "NVA");
466 append_flags_type_flag (type, 5, "NXC");
467 append_flags_type_flag (type, 6, "DZC");
468 append_flags_type_flag (type, 7, "UFC");
469 append_flags_type_flag (type, 8, "OFC");
470 append_flags_type_flag (type, 9, "NVC");
471 append_flags_type_flag (type, 22, "NS");
472 append_flags_type_flag (type, 23, "NXM");
473 append_flags_type_flag (type, 24, "DZM");
474 append_flags_type_flag (type, 25, "UFM");
475 append_flags_type_flag (type, 26, "OFM");
476 append_flags_type_flag (type, 27, "NVM");
477
478 tdep->sparc_fsr_type = type;
479 }
480
481 return tdep->sparc_fsr_type;
482 }
483
484 /* Return the GDB type object for the "standard" data type of data in
485 pseudo register REGNUM. */
486
487 static struct type *
488 sparc32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
489 {
490 regnum -= gdbarch_num_regs (gdbarch);
491
492 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
493 return builtin_type (gdbarch)->builtin_double;
494
495 internal_error (__FILE__, __LINE__,
496 _("sparc32_pseudo_register_type: bad register number %d"),
497 regnum);
498 }
499
500 /* Return the GDB type object for the "standard" data type of data in
501 register REGNUM. */
502
503 static struct type *
504 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
505 {
506 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
507 return tdesc_register_type (gdbarch, regnum);
508
509 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
510 return builtin_type (gdbarch)->builtin_float;
511
512 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
513 return builtin_type (gdbarch)->builtin_data_ptr;
514
515 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
516 return builtin_type (gdbarch)->builtin_func_ptr;
517
518 if (regnum == SPARC32_PSR_REGNUM)
519 return sparc_psr_type (gdbarch);
520
521 if (regnum == SPARC32_FSR_REGNUM)
522 return sparc_fsr_type (gdbarch);
523
524 if (regnum >= gdbarch_num_regs (gdbarch))
525 return sparc32_pseudo_register_type (gdbarch, regnum);
526
527 return builtin_type (gdbarch)->builtin_int32;
528 }
529
530 static enum register_status
531 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
532 readable_regcache *regcache,
533 int regnum, gdb_byte *buf)
534 {
535 enum register_status status;
536
537 regnum -= gdbarch_num_regs (gdbarch);
538 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
539
540 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
541 status = regcache->raw_read (regnum, buf);
542 if (status == REG_VALID)
543 status = regcache->raw_read (regnum + 1, buf + 4);
544 return status;
545 }
546
547 static void
548 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
549 struct regcache *regcache,
550 int regnum, const gdb_byte *buf)
551 {
552 regnum -= gdbarch_num_regs (gdbarch);
553 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
554
555 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
556 regcache->raw_write (regnum, buf);
557 regcache->raw_write (regnum + 1, buf + 4);
558 }
559 \f
560 /* Implement the stack_frame_destroyed_p gdbarch method. */
561
562 int
563 sparc_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
564 {
565 /* This function must return true if we are one instruction after an
566 instruction that destroyed the stack frame of the current
567 function. The SPARC instructions used to restore the callers
568 stack frame are RESTORE and RETURN/RETT.
569
570 Of these RETURN/RETT is a branch instruction and thus we return
571 true if we are in its delay slot.
572
573 RESTORE is almost always found in the delay slot of a branch
574 instruction that transfers control to the caller, such as JMPL.
575 Thus the next instruction is in the caller frame and we don't
576 need to do anything about it. */
577
578 unsigned int insn = sparc_fetch_instruction (pc - 4);
579
580 return X_RETTURN (insn);
581 }
582 \f
583
584 static CORE_ADDR
585 sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
586 {
587 /* The ABI requires double-word alignment. */
588 return address & ~0x7;
589 }
590
591 static CORE_ADDR
592 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
593 CORE_ADDR funcaddr,
594 struct value **args, int nargs,
595 struct type *value_type,
596 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
597 struct regcache *regcache)
598 {
599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
600
601 *bp_addr = sp - 4;
602 *real_pc = funcaddr;
603
604 if (using_struct_return (gdbarch, NULL, value_type))
605 {
606 gdb_byte buf[4];
607
608 /* This is an UNIMP instruction. */
609 store_unsigned_integer (buf, 4, byte_order,
610 TYPE_LENGTH (value_type) & 0x1fff);
611 write_memory (sp - 8, buf, 4);
612 return sp - 8;
613 }
614
615 return sp - 4;
616 }
617
618 static CORE_ADDR
619 sparc32_store_arguments (struct regcache *regcache, int nargs,
620 struct value **args, CORE_ADDR sp,
621 function_call_return_method return_method,
622 CORE_ADDR struct_addr)
623 {
624 struct gdbarch *gdbarch = regcache->arch ();
625 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
626 /* Number of words in the "parameter array". */
627 int num_elements = 0;
628 int element = 0;
629 int i;
630
631 for (i = 0; i < nargs; i++)
632 {
633 struct type *type = value_type (args[i]);
634 int len = TYPE_LENGTH (type);
635
636 if (sparc_arg_by_memory_p (type))
637 {
638 /* Structure, Union and Quad-Precision Arguments. */
639 sp -= len;
640
641 /* Use doubleword alignment for these values. That's always
642 correct, and wasting a few bytes shouldn't be a problem. */
643 sp &= ~0x7;
644
645 write_memory (sp, value_contents (args[i]), len);
646 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
647 num_elements++;
648 }
649 else if (sparc_floating_p (type))
650 {
651 /* Floating arguments. */
652 gdb_assert (len == 4 || len == 8);
653 num_elements += (len / 4);
654 }
655 else
656 {
657 /* Arguments passed via the General Purpose Registers. */
658 num_elements += ((len + 3) / 4);
659 }
660 }
661
662 /* Always allocate at least six words. */
663 sp -= std::max (6, num_elements) * 4;
664
665 /* The psABI says that "Software convention requires space for the
666 struct/union return value pointer, even if the word is unused." */
667 sp -= 4;
668
669 /* The psABI says that "Although software convention and the
670 operating system require every stack frame to be doubleword
671 aligned." */
672 sp &= ~0x7;
673
674 for (i = 0; i < nargs; i++)
675 {
676 const bfd_byte *valbuf = value_contents (args[i]);
677 struct type *type = value_type (args[i]);
678 int len = TYPE_LENGTH (type);
679 gdb_byte buf[4];
680
681 if (len < 4)
682 {
683 memset (buf, 0, 4 - len);
684 memcpy (buf + 4 - len, valbuf, len);
685 valbuf = buf;
686 len = 4;
687 }
688
689 gdb_assert (len == 4 || len == 8);
690
691 if (element < 6)
692 {
693 int regnum = SPARC_O0_REGNUM + element;
694
695 regcache->cooked_write (regnum, valbuf);
696 if (len > 4 && element < 5)
697 regcache->cooked_write (regnum + 1, valbuf + 4);
698 }
699
700 /* Always store the argument in memory. */
701 write_memory (sp + 4 + element * 4, valbuf, len);
702 element += len / 4;
703 }
704
705 gdb_assert (element == num_elements);
706
707 if (return_method == return_method_struct)
708 {
709 gdb_byte buf[4];
710
711 store_unsigned_integer (buf, 4, byte_order, struct_addr);
712 write_memory (sp, buf, 4);
713 }
714
715 return sp;
716 }
717
718 static CORE_ADDR
719 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
720 struct regcache *regcache, CORE_ADDR bp_addr,
721 int nargs, struct value **args, CORE_ADDR sp,
722 function_call_return_method return_method,
723 CORE_ADDR struct_addr)
724 {
725 CORE_ADDR call_pc = (return_method == return_method_struct
726 ? (bp_addr - 12) : (bp_addr - 8));
727
728 /* Set return address. */
729 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
730
731 /* Set up function arguments. */
732 sp = sparc32_store_arguments (regcache, nargs, args, sp, return_method,
733 struct_addr);
734
735 /* Allocate the 16-word window save area. */
736 sp -= 16 * 4;
737
738 /* Stack should be doubleword aligned at this point. */
739 gdb_assert (sp % 8 == 0);
740
741 /* Finally, update the stack pointer. */
742 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
743
744 return sp;
745 }
746 \f
747
748 /* Use the program counter to determine the contents and size of a
749 breakpoint instruction. Return a pointer to a string of bytes that
750 encode a breakpoint instruction, store the length of the string in
751 *LEN and optionally adjust *PC to point to the correct memory
752 location for inserting the breakpoint. */
753 constexpr gdb_byte sparc_break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
754
755 typedef BP_MANIPULATION (sparc_break_insn) sparc_breakpoint;
756 \f
757
758 /* Allocate and initialize a frame cache. */
759
760 static struct sparc_frame_cache *
761 sparc_alloc_frame_cache (void)
762 {
763 struct sparc_frame_cache *cache;
764
765 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
766
767 /* Base address. */
768 cache->base = 0;
769 cache->pc = 0;
770
771 /* Frameless until proven otherwise. */
772 cache->frameless_p = 1;
773 cache->frame_offset = 0;
774 cache->saved_regs_mask = 0;
775 cache->copied_regs_mask = 0;
776 cache->struct_return_p = 0;
777
778 return cache;
779 }
780
781 /* GCC generates several well-known sequences of instructions at the begining
782 of each function prologue when compiling with -fstack-check. If one of
783 such sequences starts at START_PC, then return the address of the
784 instruction immediately past this sequence. Otherwise, return START_PC. */
785
786 static CORE_ADDR
787 sparc_skip_stack_check (const CORE_ADDR start_pc)
788 {
789 CORE_ADDR pc = start_pc;
790 unsigned long insn;
791 int probing_loop = 0;
792
793 /* With GCC, all stack checking sequences begin with the same two
794 instructions, plus an optional one in the case of a probing loop:
795
796 sethi <some immediate>, %g1
797 sub %sp, %g1, %g1
798
799 or:
800
801 sethi <some immediate>, %g1
802 sethi <some immediate>, %g4
803 sub %sp, %g1, %g1
804
805 or:
806
807 sethi <some immediate>, %g1
808 sub %sp, %g1, %g1
809 sethi <some immediate>, %g4
810
811 If the optional instruction is found (setting g4), assume that a
812 probing loop will follow. */
813
814 /* sethi <some immediate>, %g1 */
815 insn = sparc_fetch_instruction (pc);
816 pc = pc + 4;
817 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
818 return start_pc;
819
820 /* optional: sethi <some immediate>, %g4 */
821 insn = sparc_fetch_instruction (pc);
822 pc = pc + 4;
823 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
824 {
825 probing_loop = 1;
826 insn = sparc_fetch_instruction (pc);
827 pc = pc + 4;
828 }
829
830 /* sub %sp, %g1, %g1 */
831 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
832 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
833 return start_pc;
834
835 insn = sparc_fetch_instruction (pc);
836 pc = pc + 4;
837
838 /* optional: sethi <some immediate>, %g4 */
839 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
840 {
841 probing_loop = 1;
842 insn = sparc_fetch_instruction (pc);
843 pc = pc + 4;
844 }
845
846 /* First possible sequence:
847 [first two instructions above]
848 clr [%g1 - some immediate] */
849
850 /* clr [%g1 - some immediate] */
851 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
852 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
853 {
854 /* Valid stack-check sequence, return the new PC. */
855 return pc;
856 }
857
858 /* Second possible sequence: A small number of probes.
859 [first two instructions above]
860 clr [%g1]
861 add %g1, -<some immediate>, %g1
862 clr [%g1]
863 [repeat the two instructions above any (small) number of times]
864 clr [%g1 - some immediate] */
865
866 /* clr [%g1] */
867 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
868 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
869 {
870 while (1)
871 {
872 /* add %g1, -<some immediate>, %g1 */
873 insn = sparc_fetch_instruction (pc);
874 pc = pc + 4;
875 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
876 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
877 break;
878
879 /* clr [%g1] */
880 insn = sparc_fetch_instruction (pc);
881 pc = pc + 4;
882 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
883 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
884 return start_pc;
885 }
886
887 /* clr [%g1 - some immediate] */
888 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
889 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
890 return start_pc;
891
892 /* We found a valid stack-check sequence, return the new PC. */
893 return pc;
894 }
895
896 /* Third sequence: A probing loop.
897 [first three instructions above]
898 sub %g1, %g4, %g4
899 cmp %g1, %g4
900 be <disp>
901 add %g1, -<some immediate>, %g1
902 ba <disp>
903 clr [%g1]
904
905 And an optional last probe for the remainder:
906
907 clr [%g4 - some immediate] */
908
909 if (probing_loop)
910 {
911 /* sub %g1, %g4, %g4 */
912 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
913 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
914 return start_pc;
915
916 /* cmp %g1, %g4 */
917 insn = sparc_fetch_instruction (pc);
918 pc = pc + 4;
919 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
920 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
921 return start_pc;
922
923 /* be <disp> */
924 insn = sparc_fetch_instruction (pc);
925 pc = pc + 4;
926 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
927 return start_pc;
928
929 /* add %g1, -<some immediate>, %g1 */
930 insn = sparc_fetch_instruction (pc);
931 pc = pc + 4;
932 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
933 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
934 return start_pc;
935
936 /* ba <disp> */
937 insn = sparc_fetch_instruction (pc);
938 pc = pc + 4;
939 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
940 return start_pc;
941
942 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
943 insn = sparc_fetch_instruction (pc);
944 pc = pc + 4;
945 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
946 && X_RD (insn) == 0 && X_RS1 (insn) == 1
947 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
948 return start_pc;
949
950 /* We found a valid stack-check sequence, return the new PC. */
951
952 /* optional: clr [%g4 - some immediate] */
953 insn = sparc_fetch_instruction (pc);
954 pc = pc + 4;
955 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
956 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
957 return pc - 4;
958 else
959 return pc;
960 }
961
962 /* No stack check code in our prologue, return the start_pc. */
963 return start_pc;
964 }
965
966 /* Record the effect of a SAVE instruction on CACHE. */
967
968 void
969 sparc_record_save_insn (struct sparc_frame_cache *cache)
970 {
971 /* The frame is set up. */
972 cache->frameless_p = 0;
973
974 /* The frame pointer contains the CFA. */
975 cache->frame_offset = 0;
976
977 /* The `local' and `in' registers are all saved. */
978 cache->saved_regs_mask = 0xffff;
979
980 /* The `out' registers are all renamed. */
981 cache->copied_regs_mask = 0xff;
982 }
983
984 /* Do a full analysis of the prologue at PC and update CACHE accordingly.
985 Bail out early if CURRENT_PC is reached. Return the address where
986 the analysis stopped.
987
988 We handle both the traditional register window model and the single
989 register window (aka flat) model. */
990
991 CORE_ADDR
992 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
993 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
994 {
995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
996 unsigned long insn;
997 int offset = 0;
998 int dest = -1;
999
1000 pc = sparc_skip_stack_check (pc);
1001
1002 if (current_pc <= pc)
1003 return current_pc;
1004
1005 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
1006 SPARC the linker usually defines a symbol (typically
1007 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
1008 This symbol makes us end up here with PC pointing at the start of
1009 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
1010 would do our normal prologue analysis, we would probably conclude
1011 that we've got a frame when in reality we don't, since the
1012 dynamic linker patches up the first PLT with some code that
1013 starts with a SAVE instruction. Patch up PC such that it points
1014 at the start of our PLT entry. */
1015 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
1016 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
1017
1018 insn = sparc_fetch_instruction (pc);
1019
1020 /* Recognize store insns and record their sources. */
1021 while (X_OP (insn) == 3
1022 && (X_OP3 (insn) == 0x4 /* stw */
1023 || X_OP3 (insn) == 0x7 /* std */
1024 || X_OP3 (insn) == 0xe) /* stx */
1025 && X_RS1 (insn) == SPARC_SP_REGNUM)
1026 {
1027 int regnum = X_RD (insn);
1028
1029 /* Recognize stores into the corresponding stack slots. */
1030 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1031 && ((X_I (insn)
1032 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
1033 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
1034 : (regnum - SPARC_L0_REGNUM) * 4))
1035 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
1036 {
1037 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
1038 if (X_OP3 (insn) == 0x7)
1039 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
1040 }
1041
1042 offset += 4;
1043
1044 insn = sparc_fetch_instruction (pc + offset);
1045 }
1046
1047 /* Recognize a SETHI insn and record its destination. */
1048 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
1049 {
1050 dest = X_RD (insn);
1051 offset += 4;
1052
1053 insn = sparc_fetch_instruction (pc + offset);
1054 }
1055
1056 /* Allow for an arithmetic operation on DEST or %g1. */
1057 if (X_OP (insn) == 2 && X_I (insn)
1058 && (X_RD (insn) == 1 || X_RD (insn) == dest))
1059 {
1060 offset += 4;
1061
1062 insn = sparc_fetch_instruction (pc + offset);
1063 }
1064
1065 /* Check for the SAVE instruction that sets up the frame. */
1066 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
1067 {
1068 sparc_record_save_insn (cache);
1069 offset += 4;
1070 return pc + offset;
1071 }
1072
1073 /* Check for an arithmetic operation on %sp. */
1074 if (X_OP (insn) == 2
1075 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
1076 && X_RS1 (insn) == SPARC_SP_REGNUM
1077 && X_RD (insn) == SPARC_SP_REGNUM)
1078 {
1079 if (X_I (insn))
1080 {
1081 cache->frame_offset = X_SIMM13 (insn);
1082 if (X_OP3 (insn) == 0)
1083 cache->frame_offset = -cache->frame_offset;
1084 }
1085 offset += 4;
1086
1087 insn = sparc_fetch_instruction (pc + offset);
1088
1089 /* Check for an arithmetic operation that sets up the frame. */
1090 if (X_OP (insn) == 2
1091 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
1092 && X_RS1 (insn) == SPARC_SP_REGNUM
1093 && X_RD (insn) == SPARC_FP_REGNUM)
1094 {
1095 cache->frameless_p = 0;
1096 cache->frame_offset = 0;
1097 /* We could check that the amount subtracted to %sp above is the
1098 same as the one added here, but this seems superfluous. */
1099 cache->copied_regs_mask |= 0x40;
1100 offset += 4;
1101
1102 insn = sparc_fetch_instruction (pc + offset);
1103 }
1104
1105 /* Check for a move (or) operation that copies the return register. */
1106 if (X_OP (insn) == 2
1107 && X_OP3 (insn) == 0x2
1108 && !X_I (insn)
1109 && X_RS1 (insn) == SPARC_G0_REGNUM
1110 && X_RS2 (insn) == SPARC_O7_REGNUM
1111 && X_RD (insn) == SPARC_I7_REGNUM)
1112 {
1113 cache->copied_regs_mask |= 0x80;
1114 offset += 4;
1115 }
1116
1117 return pc + offset;
1118 }
1119
1120 return pc;
1121 }
1122
1123 /* Return PC of first real instruction of the function starting at
1124 START_PC. */
1125
1126 static CORE_ADDR
1127 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1128 {
1129 struct symtab_and_line sal;
1130 CORE_ADDR func_addr;
1131 struct sparc_frame_cache cache;
1132
1133 /* This is the preferred method, find the end of the prologue by
1134 using the debugging information. */
1135
1136 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1137 {
1138 CORE_ADDR post_prologue_pc
1139 = skip_prologue_using_sal (gdbarch, func_addr);
1140
1141 if (post_prologue_pc != 0)
1142 return std::max (start_pc, post_prologue_pc);
1143 }
1144
1145 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
1146
1147 /* The psABI says that "Although the first 6 words of arguments
1148 reside in registers, the standard stack frame reserves space for
1149 them.". It also suggests that a function may use that space to
1150 "write incoming arguments 0 to 5" into that space, and that's
1151 indeed what GCC seems to be doing. In that case GCC will
1152 generate debug information that points to the stack slots instead
1153 of the registers, so we should consider the instructions that
1154 write out these incoming arguments onto the stack. */
1155
1156 while (1)
1157 {
1158 unsigned long insn = sparc_fetch_instruction (start_pc);
1159
1160 /* Recognize instructions that store incoming arguments into the
1161 corresponding stack slots. */
1162 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1163 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
1164 {
1165 int regnum = X_RD (insn);
1166
1167 /* Case of arguments still in %o[0..5]. */
1168 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1169 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1170 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1171 {
1172 start_pc += 4;
1173 continue;
1174 }
1175
1176 /* Case of arguments copied into %i[0..5]. */
1177 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1178 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1179 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1180 {
1181 start_pc += 4;
1182 continue;
1183 }
1184 }
1185
1186 break;
1187 }
1188
1189 return start_pc;
1190 }
1191
1192 /* Normal frames. */
1193
1194 struct sparc_frame_cache *
1195 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
1196 {
1197 struct sparc_frame_cache *cache;
1198
1199 if (*this_cache)
1200 return (struct sparc_frame_cache *) *this_cache;
1201
1202 cache = sparc_alloc_frame_cache ();
1203 *this_cache = cache;
1204
1205 cache->pc = get_frame_func (this_frame);
1206 if (cache->pc != 0)
1207 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1208 get_frame_pc (this_frame), cache);
1209
1210 if (cache->frameless_p)
1211 {
1212 /* This function is frameless, so %fp (%i6) holds the frame
1213 pointer for our calling frame. Use %sp (%o6) as this frame's
1214 base address. */
1215 cache->base =
1216 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1217 }
1218 else
1219 {
1220 /* For normal frames, %fp (%i6) holds the frame pointer, the
1221 base address for the current stack frame. */
1222 cache->base =
1223 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
1224 }
1225
1226 cache->base += cache->frame_offset;
1227
1228 if (cache->base & 1)
1229 cache->base += BIAS;
1230
1231 return cache;
1232 }
1233
1234 static int
1235 sparc32_struct_return_from_sym (struct symbol *sym)
1236 {
1237 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1238 enum type_code code = type->code ();
1239
1240 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1241 {
1242 type = check_typedef (TYPE_TARGET_TYPE (type));
1243 if (sparc_structure_or_union_p (type)
1244 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1245 return 1;
1246 }
1247
1248 return 0;
1249 }
1250
1251 struct sparc_frame_cache *
1252 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
1253 {
1254 struct sparc_frame_cache *cache;
1255 struct symbol *sym;
1256
1257 if (*this_cache)
1258 return (struct sparc_frame_cache *) *this_cache;
1259
1260 cache = sparc_frame_cache (this_frame, this_cache);
1261
1262 sym = find_pc_function (cache->pc);
1263 if (sym)
1264 {
1265 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
1266 }
1267 else
1268 {
1269 /* There is no debugging information for this function to
1270 help us determine whether this function returns a struct
1271 or not. So we rely on another heuristic which is to check
1272 the instruction at the return address and see if this is
1273 an "unimp" instruction. If it is, then it is a struct-return
1274 function. */
1275 CORE_ADDR pc;
1276 int regnum =
1277 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1278
1279 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
1280 if (sparc_is_unimp_insn (pc))
1281 cache->struct_return_p = 1;
1282 }
1283
1284 return cache;
1285 }
1286
1287 static void
1288 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
1289 struct frame_id *this_id)
1290 {
1291 struct sparc_frame_cache *cache =
1292 sparc32_frame_cache (this_frame, this_cache);
1293
1294 /* This marks the outermost frame. */
1295 if (cache->base == 0)
1296 return;
1297
1298 (*this_id) = frame_id_build (cache->base, cache->pc);
1299 }
1300
1301 static struct value *
1302 sparc32_frame_prev_register (struct frame_info *this_frame,
1303 void **this_cache, int regnum)
1304 {
1305 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1306 struct sparc_frame_cache *cache =
1307 sparc32_frame_cache (this_frame, this_cache);
1308
1309 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
1310 {
1311 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
1312
1313 /* If this functions has a Structure, Union or Quad-Precision
1314 return value, we have to skip the UNIMP instruction that encodes
1315 the size of the structure. */
1316 if (cache->struct_return_p)
1317 pc += 4;
1318
1319 regnum =
1320 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1321 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1322 return frame_unwind_got_constant (this_frame, regnum, pc);
1323 }
1324
1325 /* Handle StackGhost. */
1326 {
1327 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1328
1329 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1330 {
1331 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1332 ULONGEST i7;
1333
1334 /* Read the value in from memory. */
1335 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1336 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1337 }
1338 }
1339
1340 /* The previous frame's `local' and `in' registers may have been saved
1341 in the register save area. */
1342 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1343 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
1344 {
1345 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1346
1347 return frame_unwind_got_memory (this_frame, regnum, addr);
1348 }
1349
1350 /* The previous frame's `out' registers may be accessible as the current
1351 frame's `in' registers. */
1352 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1353 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
1354 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1355
1356 return frame_unwind_got_register (this_frame, regnum, regnum);
1357 }
1358
1359 static const struct frame_unwind sparc32_frame_unwind =
1360 {
1361 "sparc32 prologue",
1362 NORMAL_FRAME,
1363 default_frame_unwind_stop_reason,
1364 sparc32_frame_this_id,
1365 sparc32_frame_prev_register,
1366 NULL,
1367 default_frame_sniffer
1368 };
1369 \f
1370
1371 static CORE_ADDR
1372 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1373 {
1374 struct sparc_frame_cache *cache =
1375 sparc32_frame_cache (this_frame, this_cache);
1376
1377 return cache->base;
1378 }
1379
1380 static const struct frame_base sparc32_frame_base =
1381 {
1382 &sparc32_frame_unwind,
1383 sparc32_frame_base_address,
1384 sparc32_frame_base_address,
1385 sparc32_frame_base_address
1386 };
1387
1388 static struct frame_id
1389 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1390 {
1391 CORE_ADDR sp;
1392
1393 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1394 if (sp & 1)
1395 sp += BIAS;
1396 return frame_id_build (sp, get_frame_pc (this_frame));
1397 }
1398 \f
1399
1400 /* Extract a function return value of TYPE from REGCACHE, and copy
1401 that into VALBUF. */
1402
1403 static void
1404 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1405 gdb_byte *valbuf)
1406 {
1407 int len = TYPE_LENGTH (type);
1408 gdb_byte buf[32];
1409
1410 gdb_assert (!sparc_structure_return_p (type));
1411
1412 if (sparc_floating_p (type) || sparc_complex_floating_p (type)
1413 || type->code () == TYPE_CODE_ARRAY)
1414 {
1415 /* Floating return values. */
1416 regcache->cooked_read (SPARC_F0_REGNUM, buf);
1417 if (len > 4)
1418 regcache->cooked_read (SPARC_F1_REGNUM, buf + 4);
1419 if (len > 8)
1420 {
1421 regcache->cooked_read (SPARC_F2_REGNUM, buf + 8);
1422 regcache->cooked_read (SPARC_F3_REGNUM, buf + 12);
1423 }
1424 if (len > 16)
1425 {
1426 regcache->cooked_read (SPARC_F4_REGNUM, buf + 16);
1427 regcache->cooked_read (SPARC_F5_REGNUM, buf + 20);
1428 regcache->cooked_read (SPARC_F6_REGNUM, buf + 24);
1429 regcache->cooked_read (SPARC_F7_REGNUM, buf + 28);
1430 }
1431 memcpy (valbuf, buf, len);
1432 }
1433 else
1434 {
1435 /* Integral and pointer return values. */
1436 gdb_assert (sparc_integral_or_pointer_p (type));
1437
1438 regcache->cooked_read (SPARC_O0_REGNUM, buf);
1439 if (len > 4)
1440 {
1441 regcache->cooked_read (SPARC_O1_REGNUM, buf + 4);
1442 gdb_assert (len == 8);
1443 memcpy (valbuf, buf, 8);
1444 }
1445 else
1446 {
1447 /* Just stripping off any unused bytes should preserve the
1448 signed-ness just fine. */
1449 memcpy (valbuf, buf + 4 - len, len);
1450 }
1451 }
1452 }
1453
1454 /* Store the function return value of type TYPE from VALBUF into
1455 REGCACHE. */
1456
1457 static void
1458 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1459 const gdb_byte *valbuf)
1460 {
1461 int len = TYPE_LENGTH (type);
1462 gdb_byte buf[32];
1463
1464 gdb_assert (!sparc_structure_return_p (type));
1465
1466 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1467 {
1468 /* Floating return values. */
1469 memcpy (buf, valbuf, len);
1470 regcache->cooked_write (SPARC_F0_REGNUM, buf);
1471 if (len > 4)
1472 regcache->cooked_write (SPARC_F1_REGNUM, buf + 4);
1473 if (len > 8)
1474 {
1475 regcache->cooked_write (SPARC_F2_REGNUM, buf + 8);
1476 regcache->cooked_write (SPARC_F3_REGNUM, buf + 12);
1477 }
1478 if (len > 16)
1479 {
1480 regcache->cooked_write (SPARC_F4_REGNUM, buf + 16);
1481 regcache->cooked_write (SPARC_F5_REGNUM, buf + 20);
1482 regcache->cooked_write (SPARC_F6_REGNUM, buf + 24);
1483 regcache->cooked_write (SPARC_F7_REGNUM, buf + 28);
1484 }
1485 }
1486 else
1487 {
1488 /* Integral and pointer return values. */
1489 gdb_assert (sparc_integral_or_pointer_p (type));
1490
1491 if (len > 4)
1492 {
1493 gdb_assert (len == 8);
1494 memcpy (buf, valbuf, 8);
1495 regcache->cooked_write (SPARC_O1_REGNUM, buf + 4);
1496 }
1497 else
1498 {
1499 /* ??? Do we need to do any sign-extension here? */
1500 memcpy (buf + 4 - len, valbuf, len);
1501 }
1502 regcache->cooked_write (SPARC_O0_REGNUM, buf);
1503 }
1504 }
1505
1506 static enum return_value_convention
1507 sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
1508 struct type *type, struct regcache *regcache,
1509 gdb_byte *readbuf, const gdb_byte *writebuf)
1510 {
1511 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1512
1513 /* The psABI says that "...every stack frame reserves the word at
1514 %fp+64. If a function returns a structure, union, or
1515 quad-precision value, this word should hold the address of the
1516 object into which the return value should be copied." This
1517 guarantees that we can always find the return value, not just
1518 before the function returns. */
1519
1520 if (sparc_structure_return_p (type))
1521 {
1522 ULONGEST sp;
1523 CORE_ADDR addr;
1524
1525 if (readbuf)
1526 {
1527 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1528 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1529 read_memory (addr, readbuf, TYPE_LENGTH (type));
1530 }
1531 if (writebuf)
1532 {
1533 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1534 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1535 write_memory (addr, writebuf, TYPE_LENGTH (type));
1536 }
1537
1538 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1539 }
1540
1541 if (readbuf)
1542 sparc32_extract_return_value (type, regcache, readbuf);
1543 if (writebuf)
1544 sparc32_store_return_value (type, regcache, writebuf);
1545
1546 return RETURN_VALUE_REGISTER_CONVENTION;
1547 }
1548
1549 static int
1550 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1551 {
1552 return (sparc_structure_or_union_p (type)
1553 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1554 || sparc_complex_floating_p (type));
1555 }
1556
1557 static int
1558 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1559 {
1560 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1561 struct symbol *sym = find_pc_function (pc);
1562
1563 if (sym)
1564 return sparc32_struct_return_from_sym (sym);
1565 return 0;
1566 }
1567
1568 static void
1569 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1570 struct dwarf2_frame_state_reg *reg,
1571 struct frame_info *this_frame)
1572 {
1573 int off;
1574
1575 switch (regnum)
1576 {
1577 case SPARC_G0_REGNUM:
1578 /* Since %g0 is always zero, there is no point in saving it, and
1579 people will be inclined omit it from the CFI. Make sure we
1580 don't warn about that. */
1581 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1582 break;
1583 case SPARC_SP_REGNUM:
1584 reg->how = DWARF2_FRAME_REG_CFA;
1585 break;
1586 case SPARC32_PC_REGNUM:
1587 case SPARC32_NPC_REGNUM:
1588 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1589 off = 8;
1590 if (sparc32_dwarf2_struct_return_p (this_frame))
1591 off += 4;
1592 if (regnum == SPARC32_NPC_REGNUM)
1593 off += 4;
1594 reg->loc.offset = off;
1595 break;
1596 }
1597 }
1598
1599 /* Implement the execute_dwarf_cfa_vendor_op method. */
1600
1601 static bool
1602 sparc_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
1603 struct dwarf2_frame_state *fs)
1604 {
1605 /* Only DW_CFA_GNU_window_save is expected on SPARC. */
1606 if (op != DW_CFA_GNU_window_save)
1607 return false;
1608
1609 uint64_t reg;
1610 int size = register_size (gdbarch, 0);
1611
1612 fs->regs.alloc_regs (32);
1613 for (reg = 8; reg < 16; reg++)
1614 {
1615 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
1616 fs->regs.reg[reg].loc.reg = reg + 16;
1617 }
1618 for (reg = 16; reg < 32; reg++)
1619 {
1620 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
1621 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
1622 }
1623
1624 return true;
1625 }
1626
1627 \f
1628 /* The SPARC Architecture doesn't have hardware single-step support,
1629 and most operating systems don't implement it either, so we provide
1630 software single-step mechanism. */
1631
1632 static CORE_ADDR
1633 sparc_analyze_control_transfer (struct regcache *regcache,
1634 CORE_ADDR pc, CORE_ADDR *npc)
1635 {
1636 unsigned long insn = sparc_fetch_instruction (pc);
1637 int conditional_p = X_COND (insn) & 0x7;
1638 int branch_p = 0, fused_p = 0;
1639 long offset = 0; /* Must be signed for sign-extend. */
1640
1641 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
1642 {
1643 if ((insn & 0x10000000) == 0)
1644 {
1645 /* Branch on Integer Register with Prediction (BPr). */
1646 branch_p = 1;
1647 conditional_p = 1;
1648 }
1649 else
1650 {
1651 /* Compare and Branch */
1652 branch_p = 1;
1653 fused_p = 1;
1654 offset = 4 * X_DISP10 (insn);
1655 }
1656 }
1657 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1658 {
1659 /* Branch on Floating-Point Condition Codes (FBfcc). */
1660 branch_p = 1;
1661 offset = 4 * X_DISP22 (insn);
1662 }
1663 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1664 {
1665 /* Branch on Floating-Point Condition Codes with Prediction
1666 (FBPfcc). */
1667 branch_p = 1;
1668 offset = 4 * X_DISP19 (insn);
1669 }
1670 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1671 {
1672 /* Branch on Integer Condition Codes (Bicc). */
1673 branch_p = 1;
1674 offset = 4 * X_DISP22 (insn);
1675 }
1676 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1677 {
1678 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1679 branch_p = 1;
1680 offset = 4 * X_DISP19 (insn);
1681 }
1682 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1683 {
1684 struct frame_info *frame = get_current_frame ();
1685
1686 /* Trap instruction (TRAP). */
1687 return gdbarch_tdep (regcache->arch ())->step_trap (frame,
1688 insn);
1689 }
1690
1691 /* FIXME: Handle DONE and RETRY instructions. */
1692
1693 if (branch_p)
1694 {
1695 if (fused_p)
1696 {
1697 /* Fused compare-and-branch instructions are non-delayed,
1698 and do not have an annulling capability. So we need to
1699 always set a breakpoint on both the NPC and the branch
1700 target address. */
1701 gdb_assert (offset != 0);
1702 return pc + offset;
1703 }
1704 else if (conditional_p)
1705 {
1706 /* For conditional branches, return nPC + 4 iff the annul
1707 bit is 1. */
1708 return (X_A (insn) ? *npc + 4 : 0);
1709 }
1710 else
1711 {
1712 /* For unconditional branches, return the target if its
1713 specified condition is "always" and return nPC + 4 if the
1714 condition is "never". If the annul bit is 1, set *NPC to
1715 zero. */
1716 if (X_COND (insn) == 0x0)
1717 pc = *npc, offset = 4;
1718 if (X_A (insn))
1719 *npc = 0;
1720
1721 return pc + offset;
1722 }
1723 }
1724
1725 return 0;
1726 }
1727
1728 static CORE_ADDR
1729 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1730 {
1731 return 0;
1732 }
1733
1734 static std::vector<CORE_ADDR>
1735 sparc_software_single_step (struct regcache *regcache)
1736 {
1737 struct gdbarch *arch = regcache->arch ();
1738 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1739 CORE_ADDR npc, nnpc;
1740
1741 CORE_ADDR pc, orig_npc;
1742 std::vector<CORE_ADDR> next_pcs;
1743
1744 pc = regcache_raw_get_unsigned (regcache, tdep->pc_regnum);
1745 orig_npc = npc = regcache_raw_get_unsigned (regcache, tdep->npc_regnum);
1746
1747 /* Analyze the instruction at PC. */
1748 nnpc = sparc_analyze_control_transfer (regcache, pc, &npc);
1749 if (npc != 0)
1750 next_pcs.push_back (npc);
1751
1752 if (nnpc != 0)
1753 next_pcs.push_back (nnpc);
1754
1755 /* Assert that we have set at least one breakpoint, and that
1756 they're not set at the same spot - unless we're going
1757 from here straight to NULL, i.e. a call or jump to 0. */
1758 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1759 gdb_assert (nnpc != npc || orig_npc == 0);
1760
1761 return next_pcs;
1762 }
1763
1764 static void
1765 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1766 {
1767 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
1768
1769 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1770 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1771 }
1772 \f
1773
1774 /* Iterate over core file register note sections. */
1775
1776 static void
1777 sparc_iterate_over_regset_sections (struct gdbarch *gdbarch,
1778 iterate_over_regset_sections_cb *cb,
1779 void *cb_data,
1780 const struct regcache *regcache)
1781 {
1782 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1783
1784 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, tdep->gregset, NULL,
1785 cb_data);
1786 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
1787 NULL, cb_data);
1788 }
1789 \f
1790
1791 static int
1792 validate_tdesc_registers (const struct target_desc *tdesc,
1793 struct tdesc_arch_data *tdesc_data,
1794 const char *feature_name,
1795 const char * const register_names[],
1796 unsigned int registers_num,
1797 unsigned int reg_start)
1798 {
1799 int valid_p = 1;
1800 const struct tdesc_feature *feature;
1801
1802 feature = tdesc_find_feature (tdesc, feature_name);
1803 if (feature == NULL)
1804 return 0;
1805
1806 for (unsigned int i = 0; i < registers_num; i++)
1807 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1808 reg_start + i,
1809 register_names[i]);
1810
1811 return valid_p;
1812 }
1813
1814 static struct gdbarch *
1815 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1816 {
1817 struct gdbarch_tdep *tdep;
1818 const struct target_desc *tdesc = info.target_desc;
1819 struct gdbarch *gdbarch;
1820 int valid_p = 1;
1821
1822 /* If there is already a candidate, use it. */
1823 arches = gdbarch_list_lookup_by_info (arches, &info);
1824 if (arches != NULL)
1825 return arches->gdbarch;
1826
1827 /* Allocate space for the new architecture. */
1828 tdep = XCNEW (struct gdbarch_tdep);
1829 gdbarch = gdbarch_alloc (&info, tdep);
1830
1831 tdep->pc_regnum = SPARC32_PC_REGNUM;
1832 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1833 tdep->step_trap = sparc_step_trap;
1834 tdep->fpu_register_names = sparc32_fpu_register_names;
1835 tdep->fpu_registers_num = ARRAY_SIZE (sparc32_fpu_register_names);
1836 tdep->cp0_register_names = sparc32_cp0_register_names;
1837 tdep->cp0_registers_num = ARRAY_SIZE (sparc32_cp0_register_names);
1838
1839 set_gdbarch_long_double_bit (gdbarch, 128);
1840 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1841
1842 set_gdbarch_wchar_bit (gdbarch, 16);
1843 set_gdbarch_wchar_signed (gdbarch, 1);
1844
1845 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1846 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1847 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1848 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1849 set_tdesc_pseudo_register_name (gdbarch, sparc32_pseudo_register_name);
1850 set_tdesc_pseudo_register_type (gdbarch, sparc32_pseudo_register_type);
1851 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1852 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1853
1854 /* Register numbers of various important registers. */
1855 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1856 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1857 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1858
1859 /* Call dummy code. */
1860 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
1861 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1862 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1863 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1864
1865 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1866 set_gdbarch_stabs_argument_has_addr
1867 (gdbarch, sparc32_stabs_argument_has_addr);
1868
1869 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1870
1871 /* Stack grows downward. */
1872 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1873
1874 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1875 sparc_breakpoint::kind_from_pc);
1876 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1877 sparc_breakpoint::bp_from_kind);
1878
1879 set_gdbarch_frame_args_skip (gdbarch, 8);
1880
1881 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1882 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1883
1884 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1885
1886 frame_base_set_default (gdbarch, &sparc32_frame_base);
1887
1888 /* Hook in the DWARF CFI frame unwinder. */
1889 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1890 /* Register DWARF vendor CFI handler. */
1891 set_gdbarch_execute_dwarf_cfa_vendor_op (gdbarch,
1892 sparc_execute_dwarf_cfa_vendor_op);
1893 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1894 StackGhost issues have been resolved. */
1895
1896 /* Hook in ABI-specific overrides, if they have been registered. */
1897 gdbarch_init_osabi (info, gdbarch);
1898
1899 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1900
1901 if (tdesc_has_registers (tdesc))
1902 {
1903 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
1904
1905 /* Validate that the descriptor provides the mandatory registers
1906 and allocate their numbers. */
1907 valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
1908 "org.gnu.gdb.sparc.cpu",
1909 sparc_core_register_names,
1910 ARRAY_SIZE (sparc_core_register_names),
1911 SPARC_G0_REGNUM);
1912 valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
1913 "org.gnu.gdb.sparc.fpu",
1914 tdep->fpu_register_names,
1915 tdep->fpu_registers_num,
1916 SPARC_F0_REGNUM);
1917 valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
1918 "org.gnu.gdb.sparc.cp0",
1919 tdep->cp0_register_names,
1920 tdep->cp0_registers_num,
1921 SPARC_F0_REGNUM
1922 + tdep->fpu_registers_num);
1923 if (!valid_p)
1924 return NULL;
1925
1926 /* Target description may have changed. */
1927 info.tdesc_data = tdesc_data.get ();
1928 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
1929 }
1930
1931 /* If we have register sets, enable the generic core file support. */
1932 if (tdep->gregset)
1933 set_gdbarch_iterate_over_regset_sections
1934 (gdbarch, sparc_iterate_over_regset_sections);
1935
1936 register_sparc_ravenscar_ops (gdbarch);
1937
1938 return gdbarch;
1939 }
1940 \f
1941 /* Helper functions for dealing with register windows. */
1942
1943 void
1944 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1945 {
1946 struct gdbarch *gdbarch = regcache->arch ();
1947 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1948 int offset = 0;
1949 gdb_byte buf[8];
1950 int i;
1951
1952 /* This function calls functions that depend on the global current thread. */
1953 gdb_assert (regcache->ptid () == inferior_ptid);
1954
1955 if (sp & 1)
1956 {
1957 /* Registers are 64-bit. */
1958 sp += BIAS;
1959
1960 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1961 {
1962 if (regnum == i || regnum == -1)
1963 {
1964 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1965
1966 /* Handle StackGhost. */
1967 if (i == SPARC_I7_REGNUM)
1968 {
1969 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1970 ULONGEST i7;
1971
1972 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1973 store_unsigned_integer (buf + offset, 8, byte_order,
1974 i7 ^ wcookie);
1975 }
1976
1977 regcache->raw_supply (i, buf);
1978 }
1979 }
1980 }
1981 else
1982 {
1983 /* Registers are 32-bit. Toss any sign-extension of the stack
1984 pointer. */
1985 sp &= 0xffffffffUL;
1986
1987 /* Clear out the top half of the temporary buffer, and put the
1988 register value in the bottom half if we're in 64-bit mode. */
1989 if (gdbarch_ptr_bit (regcache->arch ()) == 64)
1990 {
1991 memset (buf, 0, 4);
1992 offset = 4;
1993 }
1994
1995 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1996 {
1997 if (regnum == i || regnum == -1)
1998 {
1999 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
2000 buf + offset, 4);
2001
2002 /* Handle StackGhost. */
2003 if (i == SPARC_I7_REGNUM)
2004 {
2005 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2006 ULONGEST i7;
2007
2008 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
2009 store_unsigned_integer (buf + offset, 4, byte_order,
2010 i7 ^ wcookie);
2011 }
2012
2013 regcache->raw_supply (i, buf);
2014 }
2015 }
2016 }
2017 }
2018
2019 void
2020 sparc_collect_rwindow (const struct regcache *regcache,
2021 CORE_ADDR sp, int regnum)
2022 {
2023 struct gdbarch *gdbarch = regcache->arch ();
2024 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2025 int offset = 0;
2026 gdb_byte buf[8];
2027 int i;
2028
2029 /* This function calls functions that depend on the global current thread. */
2030 gdb_assert (regcache->ptid () == inferior_ptid);
2031
2032 if (sp & 1)
2033 {
2034 /* Registers are 64-bit. */
2035 sp += BIAS;
2036
2037 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2038 {
2039 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
2040 {
2041 regcache->raw_collect (i, buf);
2042
2043 /* Handle StackGhost. */
2044 if (i == SPARC_I7_REGNUM)
2045 {
2046 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2047 ULONGEST i7;
2048
2049 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
2050 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
2051 }
2052
2053 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
2054 }
2055 }
2056 }
2057 else
2058 {
2059 /* Registers are 32-bit. Toss any sign-extension of the stack
2060 pointer. */
2061 sp &= 0xffffffffUL;
2062
2063 /* Only use the bottom half if we're in 64-bit mode. */
2064 if (gdbarch_ptr_bit (regcache->arch ()) == 64)
2065 offset = 4;
2066
2067 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2068 {
2069 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
2070 {
2071 regcache->raw_collect (i, buf);
2072
2073 /* Handle StackGhost. */
2074 if (i == SPARC_I7_REGNUM)
2075 {
2076 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2077 ULONGEST i7;
2078
2079 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
2080 store_unsigned_integer (buf + offset, 4, byte_order,
2081 i7 ^ wcookie);
2082 }
2083
2084 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
2085 buf + offset, 4);
2086 }
2087 }
2088 }
2089 }
2090
2091 /* Helper functions for dealing with register sets. */
2092
2093 void
2094 sparc32_supply_gregset (const struct sparc_gregmap *gregmap,
2095 struct regcache *regcache,
2096 int regnum, const void *gregs)
2097 {
2098 const gdb_byte *regs = (const gdb_byte *) gregs;
2099 gdb_byte zero[4] = { 0 };
2100 int i;
2101
2102 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
2103 regcache->raw_supply (SPARC32_PSR_REGNUM, regs + gregmap->r_psr_offset);
2104
2105 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
2106 regcache->raw_supply (SPARC32_PC_REGNUM, regs + gregmap->r_pc_offset);
2107
2108 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
2109 regcache->raw_supply (SPARC32_NPC_REGNUM, regs + gregmap->r_npc_offset);
2110
2111 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
2112 regcache->raw_supply (SPARC32_Y_REGNUM, regs + gregmap->r_y_offset);
2113
2114 if (regnum == SPARC_G0_REGNUM || regnum == -1)
2115 regcache->raw_supply (SPARC_G0_REGNUM, &zero);
2116
2117 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
2118 {
2119 int offset = gregmap->r_g1_offset;
2120
2121 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2122 {
2123 if (regnum == i || regnum == -1)
2124 regcache->raw_supply (i, regs + offset);
2125 offset += 4;
2126 }
2127 }
2128
2129 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
2130 {
2131 /* Not all of the register set variants include Locals and
2132 Inputs. For those that don't, we read them off the stack. */
2133 if (gregmap->r_l0_offset == -1)
2134 {
2135 ULONGEST sp;
2136
2137 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
2138 sparc_supply_rwindow (regcache, sp, regnum);
2139 }
2140 else
2141 {
2142 int offset = gregmap->r_l0_offset;
2143
2144 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2145 {
2146 if (regnum == i || regnum == -1)
2147 regcache->raw_supply (i, regs + offset);
2148 offset += 4;
2149 }
2150 }
2151 }
2152 }
2153
2154 void
2155 sparc32_collect_gregset (const struct sparc_gregmap *gregmap,
2156 const struct regcache *regcache,
2157 int regnum, void *gregs)
2158 {
2159 gdb_byte *regs = (gdb_byte *) gregs;
2160 int i;
2161
2162 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
2163 regcache->raw_collect (SPARC32_PSR_REGNUM, regs + gregmap->r_psr_offset);
2164
2165 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
2166 regcache->raw_collect (SPARC32_PC_REGNUM, regs + gregmap->r_pc_offset);
2167
2168 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
2169 regcache->raw_collect (SPARC32_NPC_REGNUM, regs + gregmap->r_npc_offset);
2170
2171 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
2172 regcache->raw_collect (SPARC32_Y_REGNUM, regs + gregmap->r_y_offset);
2173
2174 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
2175 {
2176 int offset = gregmap->r_g1_offset;
2177
2178 /* %g0 is always zero. */
2179 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2180 {
2181 if (regnum == i || regnum == -1)
2182 regcache->raw_collect (i, regs + offset);
2183 offset += 4;
2184 }
2185 }
2186
2187 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
2188 {
2189 /* Not all of the register set variants include Locals and
2190 Inputs. For those that don't, we read them off the stack. */
2191 if (gregmap->r_l0_offset != -1)
2192 {
2193 int offset = gregmap->r_l0_offset;
2194
2195 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2196 {
2197 if (regnum == i || regnum == -1)
2198 regcache->raw_collect (i, regs + offset);
2199 offset += 4;
2200 }
2201 }
2202 }
2203 }
2204
2205 void
2206 sparc32_supply_fpregset (const struct sparc_fpregmap *fpregmap,
2207 struct regcache *regcache,
2208 int regnum, const void *fpregs)
2209 {
2210 const gdb_byte *regs = (const gdb_byte *) fpregs;
2211 int i;
2212
2213 for (i = 0; i < 32; i++)
2214 {
2215 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2216 regcache->raw_supply (SPARC_F0_REGNUM + i,
2217 regs + fpregmap->r_f0_offset + (i * 4));
2218 }
2219
2220 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2221 regcache->raw_supply (SPARC32_FSR_REGNUM, regs + fpregmap->r_fsr_offset);
2222 }
2223
2224 void
2225 sparc32_collect_fpregset (const struct sparc_fpregmap *fpregmap,
2226 const struct regcache *regcache,
2227 int regnum, void *fpregs)
2228 {
2229 gdb_byte *regs = (gdb_byte *) fpregs;
2230 int i;
2231
2232 for (i = 0; i < 32; i++)
2233 {
2234 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2235 regcache->raw_collect (SPARC_F0_REGNUM + i,
2236 regs + fpregmap->r_f0_offset + (i * 4));
2237 }
2238
2239 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2240 regcache->raw_collect (SPARC32_FSR_REGNUM,
2241 regs + fpregmap->r_fsr_offset);
2242 }
2243 \f
2244
2245 /* SunOS 4. */
2246
2247 /* From <machine/reg.h>. */
2248 const struct sparc_gregmap sparc32_sunos4_gregmap =
2249 {
2250 0 * 4, /* %psr */
2251 1 * 4, /* %pc */
2252 2 * 4, /* %npc */
2253 3 * 4, /* %y */
2254 -1, /* %wim */
2255 -1, /* %tbr */
2256 4 * 4, /* %g1 */
2257 -1 /* %l0 */
2258 };
2259
2260 const struct sparc_fpregmap sparc32_sunos4_fpregmap =
2261 {
2262 0 * 4, /* %f0 */
2263 33 * 4, /* %fsr */
2264 };
2265
2266 const struct sparc_fpregmap sparc32_bsd_fpregmap =
2267 {
2268 0 * 4, /* %f0 */
2269 32 * 4, /* %fsr */
2270 };
2271
2272 void _initialize_sparc_tdep ();
2273 void
2274 _initialize_sparc_tdep ()
2275 {
2276 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
2277 }