]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/spu-tdep.c
Remove some unused variables
[thirdparty/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006-2017 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "disasm.h"
37 #include "objfiles.h"
38 #include "language.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41 #include "block.h"
42 #include "observer.h"
43 #include "infcall.h"
44 #include "dwarf2.h"
45 #include "dwarf2-frame.h"
46 #include "ax.h"
47 #include "spu-tdep.h"
48 #include "location.h"
49
50 /* The list of available "set spu " and "show spu " commands. */
51 static struct cmd_list_element *setspucmdlist = NULL;
52 static struct cmd_list_element *showspucmdlist = NULL;
53
54 /* Whether to stop for new SPE contexts. */
55 static int spu_stop_on_load_p = 0;
56 /* Whether to automatically flush the SW-managed cache. */
57 static int spu_auto_flush_cache_p = 1;
58
59
60 /* The tdep structure. */
61 struct gdbarch_tdep
62 {
63 /* The spufs ID identifying our address space. */
64 int id;
65
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
68 };
69
70
71 /* SPU-specific vector type. */
72 static struct type *
73 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
74 {
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
76
77 if (!tdep->spu_builtin_type_vec128)
78 {
79 const struct builtin_type *bt = builtin_type (gdbarch);
80 struct type *t;
81
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
84 append_composite_type_field (t, "uint128", bt->builtin_int128);
85 append_composite_type_field (t, "v2_int64",
86 init_vector_type (bt->builtin_int64, 2));
87 append_composite_type_field (t, "v4_int32",
88 init_vector_type (bt->builtin_int32, 4));
89 append_composite_type_field (t, "v8_int16",
90 init_vector_type (bt->builtin_int16, 8));
91 append_composite_type_field (t, "v16_int8",
92 init_vector_type (bt->builtin_int8, 16));
93 append_composite_type_field (t, "v2_double",
94 init_vector_type (bt->builtin_double, 2));
95 append_composite_type_field (t, "v4_float",
96 init_vector_type (bt->builtin_float, 4));
97
98 TYPE_VECTOR (t) = 1;
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
100
101 tdep->spu_builtin_type_vec128 = t;
102 }
103
104 return tdep->spu_builtin_type_vec128;
105 }
106
107
108 /* The list of available "info spu " commands. */
109 static struct cmd_list_element *infospucmdlist = NULL;
110
111 /* Registers. */
112
113 static const char *
114 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
115 {
116 static const char *register_names[] =
117 {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
135 };
136
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
140 return NULL;
141
142 return register_names[reg_nr];
143 }
144
145 static struct type *
146 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
147 {
148 if (reg_nr < SPU_NUM_GPRS)
149 return spu_builtin_type_vec128 (gdbarch);
150
151 switch (reg_nr)
152 {
153 case SPU_ID_REGNUM:
154 return builtin_type (gdbarch)->builtin_uint32;
155
156 case SPU_PC_REGNUM:
157 return builtin_type (gdbarch)->builtin_func_ptr;
158
159 case SPU_SP_REGNUM:
160 return builtin_type (gdbarch)->builtin_data_ptr;
161
162 case SPU_FPSCR_REGNUM:
163 return builtin_type (gdbarch)->builtin_uint128;
164
165 case SPU_SRR0_REGNUM:
166 return builtin_type (gdbarch)->builtin_uint32;
167
168 case SPU_LSLR_REGNUM:
169 return builtin_type (gdbarch)->builtin_uint32;
170
171 case SPU_DECR_REGNUM:
172 return builtin_type (gdbarch)->builtin_uint32;
173
174 case SPU_DECR_STATUS_REGNUM:
175 return builtin_type (gdbarch)->builtin_uint32;
176
177 default:
178 internal_error (__FILE__, __LINE__, _("invalid regnum"));
179 }
180 }
181
182 /* Pseudo registers for preferred slots - stack pointer. */
183
184 static enum register_status
185 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
186 gdb_byte *buf)
187 {
188 struct gdbarch *gdbarch = regcache->arch ();
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
190 enum register_status status;
191 gdb_byte reg[32];
192 char annex[32];
193 ULONGEST id;
194 ULONGEST ul;
195
196 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
197 if (status != REG_VALID)
198 return status;
199 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
200 memset (reg, 0, sizeof reg);
201 target_read (&current_target, TARGET_OBJECT_SPU, annex,
202 reg, 0, sizeof reg);
203
204 ul = strtoulst ((char *) reg, NULL, 16);
205 store_unsigned_integer (buf, 4, byte_order, ul);
206 return REG_VALID;
207 }
208
209 static enum register_status
210 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
211 int regnum, gdb_byte *buf)
212 {
213 gdb_byte reg[16];
214 char annex[32];
215 ULONGEST id;
216 enum register_status status;
217
218 switch (regnum)
219 {
220 case SPU_SP_REGNUM:
221 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
222 if (status != REG_VALID)
223 return status;
224 memcpy (buf, reg, 4);
225 return status;
226
227 case SPU_FPSCR_REGNUM:
228 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
229 if (status != REG_VALID)
230 return status;
231 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
232 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
233 return status;
234
235 case SPU_SRR0_REGNUM:
236 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
237
238 case SPU_LSLR_REGNUM:
239 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
240
241 case SPU_DECR_REGNUM:
242 return spu_pseudo_register_read_spu (regcache, "decr", buf);
243
244 case SPU_DECR_STATUS_REGNUM:
245 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
246
247 default:
248 internal_error (__FILE__, __LINE__, _("invalid regnum"));
249 }
250 }
251
252 static void
253 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
254 const gdb_byte *buf)
255 {
256 struct gdbarch *gdbarch = regcache->arch ();
257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
258 char reg[32];
259 char annex[32];
260 ULONGEST id;
261
262 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
263 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
264 xsnprintf (reg, sizeof reg, "0x%s",
265 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
266 target_write (&current_target, TARGET_OBJECT_SPU, annex,
267 (gdb_byte *) reg, 0, strlen (reg));
268 }
269
270 static void
271 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
272 int regnum, const gdb_byte *buf)
273 {
274 gdb_byte reg[16];
275 char annex[32];
276 ULONGEST id;
277
278 switch (regnum)
279 {
280 case SPU_SP_REGNUM:
281 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
282 memcpy (reg, buf, 4);
283 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
284 break;
285
286 case SPU_FPSCR_REGNUM:
287 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
288 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
289 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
290 break;
291
292 case SPU_SRR0_REGNUM:
293 spu_pseudo_register_write_spu (regcache, "srr0", buf);
294 break;
295
296 case SPU_LSLR_REGNUM:
297 spu_pseudo_register_write_spu (regcache, "lslr", buf);
298 break;
299
300 case SPU_DECR_REGNUM:
301 spu_pseudo_register_write_spu (regcache, "decr", buf);
302 break;
303
304 case SPU_DECR_STATUS_REGNUM:
305 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
306 break;
307
308 default:
309 internal_error (__FILE__, __LINE__, _("invalid regnum"));
310 }
311 }
312
313 static int
314 spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
315 struct agent_expr *ax, int regnum)
316 {
317 switch (regnum)
318 {
319 case SPU_SP_REGNUM:
320 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
321 return 0;
322
323 case SPU_FPSCR_REGNUM:
324 case SPU_SRR0_REGNUM:
325 case SPU_LSLR_REGNUM:
326 case SPU_DECR_REGNUM:
327 case SPU_DECR_STATUS_REGNUM:
328 return -1;
329
330 default:
331 internal_error (__FILE__, __LINE__, _("invalid regnum"));
332 }
333 }
334
335 static int
336 spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
337 struct agent_expr *ax, int regnum)
338 {
339 switch (regnum)
340 {
341 case SPU_SP_REGNUM:
342 ax_reg (ax, SPU_RAW_SP_REGNUM);
343 return 0;
344
345 case SPU_FPSCR_REGNUM:
346 case SPU_SRR0_REGNUM:
347 case SPU_LSLR_REGNUM:
348 case SPU_DECR_REGNUM:
349 case SPU_DECR_STATUS_REGNUM:
350 return -1;
351
352 default:
353 internal_error (__FILE__, __LINE__, _("invalid regnum"));
354 }
355 }
356
357
358 /* Value conversion -- access scalar values at the preferred slot. */
359
360 static struct value *
361 spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
362 int regnum, struct frame_id frame_id)
363 {
364 struct value *value = default_value_from_register (gdbarch, type,
365 regnum, frame_id);
366 LONGEST len = TYPE_LENGTH (type);
367
368 if (regnum < SPU_NUM_GPRS && len < 16)
369 {
370 int preferred_slot = len < 4 ? 4 - len : 0;
371 set_value_offset (value, preferred_slot);
372 }
373
374 return value;
375 }
376
377 /* Register groups. */
378
379 static int
380 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
381 struct reggroup *group)
382 {
383 /* Registers displayed via 'info regs'. */
384 if (group == general_reggroup)
385 return 1;
386
387 /* Registers displayed via 'info float'. */
388 if (group == float_reggroup)
389 return 0;
390
391 /* Registers that need to be saved/restored in order to
392 push or pop frames. */
393 if (group == save_reggroup || group == restore_reggroup)
394 return 1;
395
396 return default_register_reggroup_p (gdbarch, regnum, group);
397 }
398
399 /* DWARF-2 register numbers. */
400
401 static int
402 spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
403 {
404 /* Use cooked instead of raw SP. */
405 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
406 }
407
408
409 /* Address handling. */
410
411 static int
412 spu_gdbarch_id (struct gdbarch *gdbarch)
413 {
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 int id = tdep->id;
416
417 /* The objfile architecture of a standalone SPU executable does not
418 provide an SPU ID. Retrieve it from the objfile's relocated
419 address range in this special case. */
420 if (id == -1
421 && symfile_objfile && symfile_objfile->obfd
422 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
423 && symfile_objfile->sections != symfile_objfile->sections_end)
424 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
425
426 return id;
427 }
428
429 static int
430 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
431 {
432 if (dwarf2_addr_class == 1)
433 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
434 else
435 return 0;
436 }
437
438 static const char *
439 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
440 {
441 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
442 return "__ea";
443 else
444 return NULL;
445 }
446
447 static int
448 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
449 const char *name, int *type_flags_ptr)
450 {
451 if (strcmp (name, "__ea") == 0)
452 {
453 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
454 return 1;
455 }
456 else
457 return 0;
458 }
459
460 static void
461 spu_address_to_pointer (struct gdbarch *gdbarch,
462 struct type *type, gdb_byte *buf, CORE_ADDR addr)
463 {
464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
465 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
466 SPUADDR_ADDR (addr));
467 }
468
469 static CORE_ADDR
470 spu_pointer_to_address (struct gdbarch *gdbarch,
471 struct type *type, const gdb_byte *buf)
472 {
473 int id = spu_gdbarch_id (gdbarch);
474 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
475 ULONGEST addr
476 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
477
478 /* Do not convert __ea pointers. */
479 if (TYPE_ADDRESS_CLASS_1 (type))
480 return addr;
481
482 return addr? SPUADDR (id, addr) : 0;
483 }
484
485 static CORE_ADDR
486 spu_integer_to_address (struct gdbarch *gdbarch,
487 struct type *type, const gdb_byte *buf)
488 {
489 int id = spu_gdbarch_id (gdbarch);
490 ULONGEST addr = unpack_long (type, buf);
491
492 return SPUADDR (id, addr);
493 }
494
495
496 /* Decoding SPU instructions. */
497
498 enum
499 {
500 op_lqd = 0x34,
501 op_lqx = 0x3c4,
502 op_lqa = 0x61,
503 op_lqr = 0x67,
504 op_stqd = 0x24,
505 op_stqx = 0x144,
506 op_stqa = 0x41,
507 op_stqr = 0x47,
508
509 op_il = 0x081,
510 op_ila = 0x21,
511 op_a = 0x0c0,
512 op_ai = 0x1c,
513
514 op_selb = 0x8,
515
516 op_br = 0x64,
517 op_bra = 0x60,
518 op_brsl = 0x66,
519 op_brasl = 0x62,
520 op_brnz = 0x42,
521 op_brz = 0x40,
522 op_brhnz = 0x46,
523 op_brhz = 0x44,
524 op_bi = 0x1a8,
525 op_bisl = 0x1a9,
526 op_biz = 0x128,
527 op_binz = 0x129,
528 op_bihz = 0x12a,
529 op_bihnz = 0x12b,
530 };
531
532 static int
533 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
534 {
535 if ((insn >> 21) == op)
536 {
537 *rt = insn & 127;
538 *ra = (insn >> 7) & 127;
539 *rb = (insn >> 14) & 127;
540 return 1;
541 }
542
543 return 0;
544 }
545
546 static int
547 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
548 {
549 if ((insn >> 28) == op)
550 {
551 *rt = (insn >> 21) & 127;
552 *ra = (insn >> 7) & 127;
553 *rb = (insn >> 14) & 127;
554 *rc = insn & 127;
555 return 1;
556 }
557
558 return 0;
559 }
560
561 static int
562 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
563 {
564 if ((insn >> 21) == op)
565 {
566 *rt = insn & 127;
567 *ra = (insn >> 7) & 127;
568 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
569 return 1;
570 }
571
572 return 0;
573 }
574
575 static int
576 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
577 {
578 if ((insn >> 24) == op)
579 {
580 *rt = insn & 127;
581 *ra = (insn >> 7) & 127;
582 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
583 return 1;
584 }
585
586 return 0;
587 }
588
589 static int
590 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
591 {
592 if ((insn >> 23) == op)
593 {
594 *rt = insn & 127;
595 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
596 return 1;
597 }
598
599 return 0;
600 }
601
602 static int
603 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
604 {
605 if ((insn >> 25) == op)
606 {
607 *rt = insn & 127;
608 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
609 return 1;
610 }
611
612 return 0;
613 }
614
615 static int
616 is_branch (unsigned int insn, int *offset, int *reg)
617 {
618 int rt, i7, i16;
619
620 if (is_ri16 (insn, op_br, &rt, &i16)
621 || is_ri16 (insn, op_brsl, &rt, &i16)
622 || is_ri16 (insn, op_brnz, &rt, &i16)
623 || is_ri16 (insn, op_brz, &rt, &i16)
624 || is_ri16 (insn, op_brhnz, &rt, &i16)
625 || is_ri16 (insn, op_brhz, &rt, &i16))
626 {
627 *reg = SPU_PC_REGNUM;
628 *offset = i16 << 2;
629 return 1;
630 }
631
632 if (is_ri16 (insn, op_bra, &rt, &i16)
633 || is_ri16 (insn, op_brasl, &rt, &i16))
634 {
635 *reg = -1;
636 *offset = i16 << 2;
637 return 1;
638 }
639
640 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
641 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
642 || is_ri7 (insn, op_biz, &rt, reg, &i7)
643 || is_ri7 (insn, op_binz, &rt, reg, &i7)
644 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
645 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
646 {
647 *offset = 0;
648 return 1;
649 }
650
651 return 0;
652 }
653
654
655 /* Prolog parsing. */
656
657 struct spu_prologue_data
658 {
659 /* Stack frame size. -1 if analysis was unsuccessful. */
660 int size;
661
662 /* How to find the CFA. The CFA is equal to SP at function entry. */
663 int cfa_reg;
664 int cfa_offset;
665
666 /* Offset relative to CFA where a register is saved. -1 if invalid. */
667 int reg_offset[SPU_NUM_GPRS];
668 };
669
670 static CORE_ADDR
671 spu_analyze_prologue (struct gdbarch *gdbarch,
672 CORE_ADDR start_pc, CORE_ADDR end_pc,
673 struct spu_prologue_data *data)
674 {
675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
676 int found_sp = 0;
677 int found_fp = 0;
678 int found_lr = 0;
679 int found_bc = 0;
680 int reg_immed[SPU_NUM_GPRS];
681 gdb_byte buf[16];
682 CORE_ADDR prolog_pc = start_pc;
683 CORE_ADDR pc;
684 int i;
685
686
687 /* Initialize DATA to default values. */
688 data->size = -1;
689
690 data->cfa_reg = SPU_RAW_SP_REGNUM;
691 data->cfa_offset = 0;
692
693 for (i = 0; i < SPU_NUM_GPRS; i++)
694 data->reg_offset[i] = -1;
695
696 /* Set up REG_IMMED array. This is non-zero for a register if we know its
697 preferred slot currently holds this immediate value. */
698 for (i = 0; i < SPU_NUM_GPRS; i++)
699 reg_immed[i] = 0;
700
701 /* Scan instructions until the first branch.
702
703 The following instructions are important prolog components:
704
705 - The first instruction to set up the stack pointer.
706 - The first instruction to set up the frame pointer.
707 - The first instruction to save the link register.
708 - The first instruction to save the backchain.
709
710 We return the instruction after the latest of these four,
711 or the incoming PC if none is found. The first instruction
712 to set up the stack pointer also defines the frame size.
713
714 Note that instructions saving incoming arguments to their stack
715 slots are not counted as important, because they are hard to
716 identify with certainty. This should not matter much, because
717 arguments are relevant only in code compiled with debug data,
718 and in such code the GDB core will advance until the first source
719 line anyway, using SAL data.
720
721 For purposes of stack unwinding, we analyze the following types
722 of instructions in addition:
723
724 - Any instruction adding to the current frame pointer.
725 - Any instruction loading an immediate constant into a register.
726 - Any instruction storing a register onto the stack.
727
728 These are used to compute the CFA and REG_OFFSET output. */
729
730 for (pc = start_pc; pc < end_pc; pc += 4)
731 {
732 unsigned int insn;
733 int rt, ra, rb, rc, immed;
734
735 if (target_read_memory (pc, buf, 4))
736 break;
737 insn = extract_unsigned_integer (buf, 4, byte_order);
738
739 /* AI is the typical instruction to set up a stack frame.
740 It is also used to initialize the frame pointer. */
741 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
742 {
743 if (rt == data->cfa_reg && ra == data->cfa_reg)
744 data->cfa_offset -= immed;
745
746 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
747 && !found_sp)
748 {
749 found_sp = 1;
750 prolog_pc = pc + 4;
751
752 data->size = -immed;
753 }
754 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
755 && !found_fp)
756 {
757 found_fp = 1;
758 prolog_pc = pc + 4;
759
760 data->cfa_reg = SPU_FP_REGNUM;
761 data->cfa_offset -= immed;
762 }
763 }
764
765 /* A is used to set up stack frames of size >= 512 bytes.
766 If we have tracked the contents of the addend register,
767 we can handle this as well. */
768 else if (is_rr (insn, op_a, &rt, &ra, &rb))
769 {
770 if (rt == data->cfa_reg && ra == data->cfa_reg)
771 {
772 if (reg_immed[rb] != 0)
773 data->cfa_offset -= reg_immed[rb];
774 else
775 data->cfa_reg = -1; /* We don't know the CFA any more. */
776 }
777
778 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
779 && !found_sp)
780 {
781 found_sp = 1;
782 prolog_pc = pc + 4;
783
784 if (reg_immed[rb] != 0)
785 data->size = -reg_immed[rb];
786 }
787 }
788
789 /* We need to track IL and ILA used to load immediate constants
790 in case they are later used as input to an A instruction. */
791 else if (is_ri16 (insn, op_il, &rt, &immed))
792 {
793 reg_immed[rt] = immed;
794
795 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
796 found_sp = 1;
797 }
798
799 else if (is_ri18 (insn, op_ila, &rt, &immed))
800 {
801 reg_immed[rt] = immed & 0x3ffff;
802
803 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
804 found_sp = 1;
805 }
806
807 /* STQD is used to save registers to the stack. */
808 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
809 {
810 if (ra == data->cfa_reg)
811 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
812
813 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
814 && !found_lr)
815 {
816 found_lr = 1;
817 prolog_pc = pc + 4;
818 }
819
820 if (ra == SPU_RAW_SP_REGNUM
821 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
822 && !found_bc)
823 {
824 found_bc = 1;
825 prolog_pc = pc + 4;
826 }
827 }
828
829 /* _start uses SELB to set up the stack pointer. */
830 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
831 {
832 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
833 found_sp = 1;
834 }
835
836 /* We terminate if we find a branch. */
837 else if (is_branch (insn, &immed, &ra))
838 break;
839 }
840
841
842 /* If we successfully parsed until here, and didn't find any instruction
843 modifying SP, we assume we have a frameless function. */
844 if (!found_sp)
845 data->size = 0;
846
847 /* Return cooked instead of raw SP. */
848 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
849 data->cfa_reg = SPU_SP_REGNUM;
850
851 return prolog_pc;
852 }
853
854 /* Return the first instruction after the prologue starting at PC. */
855 static CORE_ADDR
856 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
857 {
858 struct spu_prologue_data data;
859 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
860 }
861
862 /* Return the frame pointer in use at address PC. */
863 static void
864 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
865 int *reg, LONGEST *offset)
866 {
867 struct spu_prologue_data data;
868 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
869
870 if (data.size != -1 && data.cfa_reg != -1)
871 {
872 /* The 'frame pointer' address is CFA minus frame size. */
873 *reg = data.cfa_reg;
874 *offset = data.cfa_offset - data.size;
875 }
876 else
877 {
878 /* ??? We don't really know ... */
879 *reg = SPU_SP_REGNUM;
880 *offset = 0;
881 }
882 }
883
884 /* Implement the stack_frame_destroyed_p gdbarch method.
885
886 1) scan forward from the point of execution:
887 a) If you find an instruction that modifies the stack pointer
888 or transfers control (except a return), execution is not in
889 an epilogue, return.
890 b) Stop scanning if you find a return instruction or reach the
891 end of the function or reach the hard limit for the size of
892 an epilogue.
893 2) scan backward from the point of execution:
894 a) If you find an instruction that modifies the stack pointer,
895 execution *is* in an epilogue, return.
896 b) Stop scanning if you reach an instruction that transfers
897 control or the beginning of the function or reach the hard
898 limit for the size of an epilogue. */
899
900 static int
901 spu_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
902 {
903 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
904 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
905 bfd_byte buf[4];
906 unsigned int insn;
907 int rt, ra, rb, immed;
908
909 /* Find the search limits based on function boundaries and hard limit.
910 We assume the epilogue can be up to 64 instructions long. */
911
912 const int spu_max_epilogue_size = 64 * 4;
913
914 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
915 return 0;
916
917 if (pc - func_start < spu_max_epilogue_size)
918 epilogue_start = func_start;
919 else
920 epilogue_start = pc - spu_max_epilogue_size;
921
922 if (func_end - pc < spu_max_epilogue_size)
923 epilogue_end = func_end;
924 else
925 epilogue_end = pc + spu_max_epilogue_size;
926
927 /* Scan forward until next 'bi $0'. */
928
929 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
930 {
931 if (target_read_memory (scan_pc, buf, 4))
932 return 0;
933 insn = extract_unsigned_integer (buf, 4, byte_order);
934
935 if (is_branch (insn, &immed, &ra))
936 {
937 if (immed == 0 && ra == SPU_LR_REGNUM)
938 break;
939
940 return 0;
941 }
942
943 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
944 || is_rr (insn, op_a, &rt, &ra, &rb)
945 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
946 {
947 if (rt == SPU_RAW_SP_REGNUM)
948 return 0;
949 }
950 }
951
952 if (scan_pc >= epilogue_end)
953 return 0;
954
955 /* Scan backward until adjustment to stack pointer (R1). */
956
957 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
958 {
959 if (target_read_memory (scan_pc, buf, 4))
960 return 0;
961 insn = extract_unsigned_integer (buf, 4, byte_order);
962
963 if (is_branch (insn, &immed, &ra))
964 return 0;
965
966 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
967 || is_rr (insn, op_a, &rt, &ra, &rb)
968 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
969 {
970 if (rt == SPU_RAW_SP_REGNUM)
971 return 1;
972 }
973 }
974
975 return 0;
976 }
977
978
979 /* Normal stack frames. */
980
981 struct spu_unwind_cache
982 {
983 CORE_ADDR func;
984 CORE_ADDR frame_base;
985 CORE_ADDR local_base;
986
987 struct trad_frame_saved_reg *saved_regs;
988 };
989
990 static struct spu_unwind_cache *
991 spu_frame_unwind_cache (struct frame_info *this_frame,
992 void **this_prologue_cache)
993 {
994 struct gdbarch *gdbarch = get_frame_arch (this_frame);
995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
996 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
997 struct spu_unwind_cache *info;
998 struct spu_prologue_data data;
999 CORE_ADDR id = tdep->id;
1000 gdb_byte buf[16];
1001
1002 if (*this_prologue_cache)
1003 return (struct spu_unwind_cache *) *this_prologue_cache;
1004
1005 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1006 *this_prologue_cache = info;
1007 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1008 info->frame_base = 0;
1009 info->local_base = 0;
1010
1011 /* Find the start of the current function, and analyze its prologue. */
1012 info->func = get_frame_func (this_frame);
1013 if (info->func == 0)
1014 {
1015 /* Fall back to using the current PC as frame ID. */
1016 info->func = get_frame_pc (this_frame);
1017 data.size = -1;
1018 }
1019 else
1020 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1021 &data);
1022
1023 /* If successful, use prologue analysis data. */
1024 if (data.size != -1 && data.cfa_reg != -1)
1025 {
1026 CORE_ADDR cfa;
1027 int i;
1028
1029 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
1030 get_frame_register (this_frame, data.cfa_reg, buf);
1031 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
1032 cfa = SPUADDR (id, cfa);
1033
1034 /* Call-saved register slots. */
1035 for (i = 0; i < SPU_NUM_GPRS; i++)
1036 if (i == SPU_LR_REGNUM
1037 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1038 if (data.reg_offset[i] != -1)
1039 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1040
1041 /* Frame bases. */
1042 info->frame_base = cfa;
1043 info->local_base = cfa - data.size;
1044 }
1045
1046 /* Otherwise, fall back to reading the backchain link. */
1047 else
1048 {
1049 CORE_ADDR reg;
1050 LONGEST backchain;
1051 ULONGEST lslr;
1052 int status;
1053
1054 /* Get local store limit. */
1055 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1056 if (!lslr)
1057 lslr = (ULONGEST) -1;
1058
1059 /* Get the backchain. */
1060 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1061 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1062 &backchain);
1063
1064 /* A zero backchain terminates the frame chain. Also, sanity
1065 check against the local store size limit. */
1066 if (status && backchain > 0 && backchain <= lslr)
1067 {
1068 /* Assume the link register is saved into its slot. */
1069 if (backchain + 16 <= lslr)
1070 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1071 backchain + 16);
1072
1073 /* Frame bases. */
1074 info->frame_base = SPUADDR (id, backchain);
1075 info->local_base = SPUADDR (id, reg);
1076 }
1077 }
1078
1079 /* If we didn't find a frame, we cannot determine SP / return address. */
1080 if (info->frame_base == 0)
1081 return info;
1082
1083 /* The previous SP is equal to the CFA. */
1084 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1085 SPUADDR_ADDR (info->frame_base));
1086
1087 /* Read full contents of the unwound link register in order to
1088 be able to determine the return address. */
1089 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1090 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1091 else
1092 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1093
1094 /* Normally, the return address is contained in the slot 0 of the
1095 link register, and slots 1-3 are zero. For an overlay return,
1096 slot 0 contains the address of the overlay manager return stub,
1097 slot 1 contains the partition number of the overlay section to
1098 be returned to, and slot 2 contains the return address within
1099 that section. Return the latter address in that case. */
1100 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1101 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1102 extract_unsigned_integer (buf + 8, 4, byte_order));
1103 else
1104 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1105 extract_unsigned_integer (buf, 4, byte_order));
1106
1107 return info;
1108 }
1109
1110 static void
1111 spu_frame_this_id (struct frame_info *this_frame,
1112 void **this_prologue_cache, struct frame_id *this_id)
1113 {
1114 struct spu_unwind_cache *info =
1115 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1116
1117 if (info->frame_base == 0)
1118 return;
1119
1120 *this_id = frame_id_build (info->frame_base, info->func);
1121 }
1122
1123 static struct value *
1124 spu_frame_prev_register (struct frame_info *this_frame,
1125 void **this_prologue_cache, int regnum)
1126 {
1127 struct spu_unwind_cache *info
1128 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1129
1130 /* Special-case the stack pointer. */
1131 if (regnum == SPU_RAW_SP_REGNUM)
1132 regnum = SPU_SP_REGNUM;
1133
1134 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1135 }
1136
1137 static const struct frame_unwind spu_frame_unwind = {
1138 NORMAL_FRAME,
1139 default_frame_unwind_stop_reason,
1140 spu_frame_this_id,
1141 spu_frame_prev_register,
1142 NULL,
1143 default_frame_sniffer
1144 };
1145
1146 static CORE_ADDR
1147 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1148 {
1149 struct spu_unwind_cache *info
1150 = spu_frame_unwind_cache (this_frame, this_cache);
1151 return info->local_base;
1152 }
1153
1154 static const struct frame_base spu_frame_base = {
1155 &spu_frame_unwind,
1156 spu_frame_base_address,
1157 spu_frame_base_address,
1158 spu_frame_base_address
1159 };
1160
1161 static CORE_ADDR
1162 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1163 {
1164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1165 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1166 /* Mask off interrupt enable bit. */
1167 return SPUADDR (tdep->id, pc & -4);
1168 }
1169
1170 static CORE_ADDR
1171 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1172 {
1173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1174 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1175 return SPUADDR (tdep->id, sp);
1176 }
1177
1178 static CORE_ADDR
1179 spu_read_pc (struct regcache *regcache)
1180 {
1181 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
1182 ULONGEST pc;
1183 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1184 /* Mask off interrupt enable bit. */
1185 return SPUADDR (tdep->id, pc & -4);
1186 }
1187
1188 static void
1189 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1190 {
1191 /* Keep interrupt enabled state unchanged. */
1192 ULONGEST old_pc;
1193
1194 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1195 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1196 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1197 }
1198
1199
1200 /* Cell/B.E. cross-architecture unwinder support. */
1201
1202 struct spu2ppu_cache
1203 {
1204 struct frame_id frame_id;
1205 struct regcache *regcache;
1206 };
1207
1208 static struct gdbarch *
1209 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1210 {
1211 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1212 return cache->regcache->arch ();
1213 }
1214
1215 static void
1216 spu2ppu_this_id (struct frame_info *this_frame,
1217 void **this_cache, struct frame_id *this_id)
1218 {
1219 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1220 *this_id = cache->frame_id;
1221 }
1222
1223 static struct value *
1224 spu2ppu_prev_register (struct frame_info *this_frame,
1225 void **this_cache, int regnum)
1226 {
1227 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1228 struct gdbarch *gdbarch = cache->regcache->arch ();
1229 gdb_byte *buf;
1230
1231 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1232 regcache_cooked_read (cache->regcache, regnum, buf);
1233 return frame_unwind_got_bytes (this_frame, regnum, buf);
1234 }
1235
1236 static int
1237 spu2ppu_sniffer (const struct frame_unwind *self,
1238 struct frame_info *this_frame, void **this_prologue_cache)
1239 {
1240 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1241 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1242 CORE_ADDR base, func, backchain;
1243 gdb_byte buf[4];
1244
1245 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
1246 return 0;
1247
1248 base = get_frame_sp (this_frame);
1249 func = get_frame_pc (this_frame);
1250 if (target_read_memory (base, buf, 4))
1251 return 0;
1252 backchain = extract_unsigned_integer (buf, 4, byte_order);
1253
1254 if (!backchain)
1255 {
1256 struct frame_info *fi;
1257
1258 struct spu2ppu_cache *cache
1259 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1260
1261 cache->frame_id = frame_id_build (base + 16, func);
1262
1263 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1264 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1265 break;
1266
1267 if (fi)
1268 {
1269 cache->regcache = frame_save_as_regcache (fi).release ();
1270 *this_prologue_cache = cache;
1271 return 1;
1272 }
1273 else
1274 {
1275 struct regcache *regcache;
1276 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
1277 cache->regcache = regcache_dup (regcache);
1278 *this_prologue_cache = cache;
1279 return 1;
1280 }
1281 }
1282
1283 return 0;
1284 }
1285
1286 static void
1287 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1288 {
1289 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) this_cache;
1290 delete cache->regcache;
1291 }
1292
1293 static const struct frame_unwind spu2ppu_unwind = {
1294 ARCH_FRAME,
1295 default_frame_unwind_stop_reason,
1296 spu2ppu_this_id,
1297 spu2ppu_prev_register,
1298 NULL,
1299 spu2ppu_sniffer,
1300 spu2ppu_dealloc_cache,
1301 spu2ppu_prev_arch,
1302 };
1303
1304
1305 /* Function calling convention. */
1306
1307 static CORE_ADDR
1308 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1309 {
1310 return sp & ~15;
1311 }
1312
1313 static CORE_ADDR
1314 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1315 struct value **args, int nargs, struct type *value_type,
1316 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1317 struct regcache *regcache)
1318 {
1319 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1320 sp = (sp - 4) & ~15;
1321 /* Store the address of that breakpoint */
1322 *bp_addr = sp;
1323 /* The call starts at the callee's entry point. */
1324 *real_pc = funaddr;
1325
1326 return sp;
1327 }
1328
1329 static int
1330 spu_scalar_value_p (struct type *type)
1331 {
1332 switch (TYPE_CODE (type))
1333 {
1334 case TYPE_CODE_INT:
1335 case TYPE_CODE_ENUM:
1336 case TYPE_CODE_RANGE:
1337 case TYPE_CODE_CHAR:
1338 case TYPE_CODE_BOOL:
1339 case TYPE_CODE_PTR:
1340 case TYPE_CODE_REF:
1341 case TYPE_CODE_RVALUE_REF:
1342 return TYPE_LENGTH (type) <= 16;
1343
1344 default:
1345 return 0;
1346 }
1347 }
1348
1349 static void
1350 spu_value_to_regcache (struct regcache *regcache, int regnum,
1351 struct type *type, const gdb_byte *in)
1352 {
1353 int len = TYPE_LENGTH (type);
1354
1355 if (spu_scalar_value_p (type))
1356 {
1357 int preferred_slot = len < 4 ? 4 - len : 0;
1358 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1359 }
1360 else
1361 {
1362 while (len >= 16)
1363 {
1364 regcache_cooked_write (regcache, regnum++, in);
1365 in += 16;
1366 len -= 16;
1367 }
1368
1369 if (len > 0)
1370 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1371 }
1372 }
1373
1374 static void
1375 spu_regcache_to_value (struct regcache *regcache, int regnum,
1376 struct type *type, gdb_byte *out)
1377 {
1378 int len = TYPE_LENGTH (type);
1379
1380 if (spu_scalar_value_p (type))
1381 {
1382 int preferred_slot = len < 4 ? 4 - len : 0;
1383 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1384 }
1385 else
1386 {
1387 while (len >= 16)
1388 {
1389 regcache_cooked_read (regcache, regnum++, out);
1390 out += 16;
1391 len -= 16;
1392 }
1393
1394 if (len > 0)
1395 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1396 }
1397 }
1398
1399 static CORE_ADDR
1400 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1401 struct regcache *regcache, CORE_ADDR bp_addr,
1402 int nargs, struct value **args, CORE_ADDR sp,
1403 int struct_return, CORE_ADDR struct_addr)
1404 {
1405 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1406 CORE_ADDR sp_delta;
1407 int i;
1408 int regnum = SPU_ARG1_REGNUM;
1409 int stack_arg = -1;
1410 gdb_byte buf[16];
1411
1412 /* Set the return address. */
1413 memset (buf, 0, sizeof buf);
1414 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1415 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1416
1417 /* If STRUCT_RETURN is true, then the struct return address (in
1418 STRUCT_ADDR) will consume the first argument-passing register.
1419 Both adjust the register count and store that value. */
1420 if (struct_return)
1421 {
1422 memset (buf, 0, sizeof buf);
1423 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1424 regcache_cooked_write (regcache, regnum++, buf);
1425 }
1426
1427 /* Fill in argument registers. */
1428 for (i = 0; i < nargs; i++)
1429 {
1430 struct value *arg = args[i];
1431 struct type *type = check_typedef (value_type (arg));
1432 const gdb_byte *contents = value_contents (arg);
1433 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
1434
1435 /* If the argument doesn't wholly fit into registers, it and
1436 all subsequent arguments go to the stack. */
1437 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1438 {
1439 stack_arg = i;
1440 break;
1441 }
1442
1443 spu_value_to_regcache (regcache, regnum, type, contents);
1444 regnum += n_regs;
1445 }
1446
1447 /* Overflow arguments go to the stack. */
1448 if (stack_arg != -1)
1449 {
1450 CORE_ADDR ap;
1451
1452 /* Allocate all required stack size. */
1453 for (i = stack_arg; i < nargs; i++)
1454 {
1455 struct type *type = check_typedef (value_type (args[i]));
1456 sp -= align_up (TYPE_LENGTH (type), 16);
1457 }
1458
1459 /* Fill in stack arguments. */
1460 ap = sp;
1461 for (i = stack_arg; i < nargs; i++)
1462 {
1463 struct value *arg = args[i];
1464 struct type *type = check_typedef (value_type (arg));
1465 int len = TYPE_LENGTH (type);
1466 int preferred_slot;
1467
1468 if (spu_scalar_value_p (type))
1469 preferred_slot = len < 4 ? 4 - len : 0;
1470 else
1471 preferred_slot = 0;
1472
1473 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1474 ap += align_up (TYPE_LENGTH (type), 16);
1475 }
1476 }
1477
1478 /* Allocate stack frame header. */
1479 sp -= 32;
1480
1481 /* Store stack back chain. */
1482 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1483 target_write_memory (sp, buf, 16);
1484
1485 /* Finally, update all slots of the SP register. */
1486 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1487 for (i = 0; i < 4; i++)
1488 {
1489 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1490 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1491 }
1492 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1493
1494 return sp;
1495 }
1496
1497 static struct frame_id
1498 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1499 {
1500 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1501 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1502 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1503 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1504 }
1505
1506 /* Function return value access. */
1507
1508 static enum return_value_convention
1509 spu_return_value (struct gdbarch *gdbarch, struct value *function,
1510 struct type *type, struct regcache *regcache,
1511 gdb_byte *out, const gdb_byte *in)
1512 {
1513 struct type *func_type = function ? value_type (function) : NULL;
1514 enum return_value_convention rvc;
1515 int opencl_vector = 0;
1516
1517 if (func_type)
1518 {
1519 func_type = check_typedef (func_type);
1520
1521 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1522 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1523
1524 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1525 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1526 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1527 && TYPE_VECTOR (type))
1528 opencl_vector = 1;
1529 }
1530
1531 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1532 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1533 else
1534 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1535
1536 if (in)
1537 {
1538 switch (rvc)
1539 {
1540 case RETURN_VALUE_REGISTER_CONVENTION:
1541 if (opencl_vector && TYPE_LENGTH (type) == 2)
1542 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1543 else
1544 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1545 break;
1546
1547 case RETURN_VALUE_STRUCT_CONVENTION:
1548 error (_("Cannot set function return value."));
1549 break;
1550 }
1551 }
1552 else if (out)
1553 {
1554 switch (rvc)
1555 {
1556 case RETURN_VALUE_REGISTER_CONVENTION:
1557 if (opencl_vector && TYPE_LENGTH (type) == 2)
1558 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1559 else
1560 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1561 break;
1562
1563 case RETURN_VALUE_STRUCT_CONVENTION:
1564 error (_("Function return value unknown."));
1565 break;
1566 }
1567 }
1568
1569 return rvc;
1570 }
1571
1572
1573 /* Breakpoints. */
1574 constexpr gdb_byte spu_break_insn[] = { 0x00, 0x00, 0x3f, 0xff };
1575
1576 typedef BP_MANIPULATION (spu_break_insn) spu_breakpoint;
1577
1578 static int
1579 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1580 struct bp_target_info *bp_tgt)
1581 {
1582 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1583 that in a combined application, we have some breakpoints inserted in SPU
1584 code, and now the application forks (on the PPU side). GDB common code
1585 will assume that the fork system call copied all breakpoints into the new
1586 process' address space, and that all those copies now need to be removed
1587 (see breakpoint.c:detach_breakpoints).
1588
1589 While this is certainly true for PPU side breakpoints, it is not true
1590 for SPU side breakpoints. fork will clone the SPU context file
1591 descriptors, so that all the existing SPU contexts are in accessible
1592 in the new process. However, the contents of the SPU contexts themselves
1593 are *not* cloned. Therefore the effect of detach_breakpoints is to
1594 remove SPU breakpoints from the *original* SPU context's local store
1595 -- this is not the correct behaviour.
1596
1597 The workaround is to check whether the PID we are asked to remove this
1598 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1599 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1600 true in the context of detach_breakpoints. If so, we simply do nothing.
1601 [ Note that for the fork child process, it does not matter if breakpoints
1602 remain inserted, because those SPU contexts are not runnable anyway --
1603 the Linux kernel allows only the original process to invoke spu_run. */
1604
1605 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1606 return 0;
1607
1608 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1609 }
1610
1611
1612 /* Software single-stepping support. */
1613
1614 static std::vector<CORE_ADDR>
1615 spu_software_single_step (struct regcache *regcache)
1616 {
1617 struct gdbarch *gdbarch = regcache->arch ();
1618 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1619 CORE_ADDR pc, next_pc;
1620 unsigned int insn;
1621 int offset, reg;
1622 gdb_byte buf[4];
1623 ULONGEST lslr;
1624 std::vector<CORE_ADDR> next_pcs;
1625
1626 pc = regcache_read_pc (regcache);
1627
1628 if (target_read_memory (pc, buf, 4))
1629 throw_error (MEMORY_ERROR, _("Could not read instruction at %s."),
1630 paddress (gdbarch, pc));
1631
1632 insn = extract_unsigned_integer (buf, 4, byte_order);
1633
1634 /* Get local store limit. */
1635 if ((regcache_cooked_read_unsigned (regcache, SPU_LSLR_REGNUM, &lslr)
1636 != REG_VALID) || !lslr)
1637 lslr = (ULONGEST) -1;
1638
1639 /* Next sequential instruction is at PC + 4, except if the current
1640 instruction is a PPE-assisted call, in which case it is at PC + 8.
1641 Wrap around LS limit to be on the safe side. */
1642 if ((insn & 0xffffff00) == 0x00002100)
1643 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1644 else
1645 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1646
1647 next_pcs.push_back (SPUADDR (SPUADDR_SPU (pc), next_pc));
1648
1649 if (is_branch (insn, &offset, &reg))
1650 {
1651 CORE_ADDR target = offset;
1652
1653 if (reg == SPU_PC_REGNUM)
1654 target += SPUADDR_ADDR (pc);
1655 else if (reg != -1)
1656 {
1657 regcache_raw_read_part (regcache, reg, 0, 4, buf);
1658 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1659 }
1660
1661 target = target & lslr;
1662 if (target != next_pc)
1663 next_pcs.push_back (SPUADDR (SPUADDR_SPU (pc), target));
1664 }
1665
1666 return next_pcs;
1667 }
1668
1669
1670 /* Longjmp support. */
1671
1672 static int
1673 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1674 {
1675 struct gdbarch *gdbarch = get_frame_arch (frame);
1676 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1677 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1678 gdb_byte buf[4];
1679 CORE_ADDR jb_addr;
1680 int optim, unavail;
1681
1682 /* Jump buffer is pointed to by the argument register $r3. */
1683 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1684 &optim, &unavail))
1685 return 0;
1686
1687 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1688 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1689 return 0;
1690
1691 *pc = extract_unsigned_integer (buf, 4, byte_order);
1692 *pc = SPUADDR (tdep->id, *pc);
1693 return 1;
1694 }
1695
1696
1697 /* Disassembler. */
1698
1699 struct spu_dis_asm_info : disassemble_info
1700 {
1701 int id;
1702 };
1703
1704 static void
1705 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1706 {
1707 struct spu_dis_asm_info *data = (struct spu_dis_asm_info *) info;
1708 gdb_disassembler *di
1709 = static_cast<gdb_disassembler *>(info->application_data);
1710
1711 print_address (di->arch (), SPUADDR (data->id, addr),
1712 (struct ui_file *) info->stream);
1713 }
1714
1715 static int
1716 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1717 {
1718 /* The opcodes disassembler does 18-bit address arithmetic. Make
1719 sure the SPU ID encoded in the high bits is added back when we
1720 call print_address. */
1721 struct spu_dis_asm_info spu_info;
1722
1723 memcpy (&spu_info, info, sizeof (*info));
1724 spu_info.id = SPUADDR_SPU (memaddr);
1725 spu_info.print_address_func = spu_dis_asm_print_address;
1726 return default_print_insn (memaddr, &spu_info);
1727 }
1728
1729
1730 /* Target overlays for the SPU overlay manager.
1731
1732 See the documentation of simple_overlay_update for how the
1733 interface is supposed to work.
1734
1735 Data structures used by the overlay manager:
1736
1737 struct ovly_table
1738 {
1739 u32 vma;
1740 u32 size;
1741 u32 pos;
1742 u32 buf;
1743 } _ovly_table[]; -- one entry per overlay section
1744
1745 struct ovly_buf_table
1746 {
1747 u32 mapped;
1748 } _ovly_buf_table[]; -- one entry per overlay buffer
1749
1750 _ovly_table should never change.
1751
1752 Both tables are aligned to a 16-byte boundary, the symbols
1753 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1754 size set to the size of the respective array. buf in _ovly_table is
1755 an index into _ovly_buf_table.
1756
1757 mapped is an index into _ovly_table. Both the mapped and buf indices start
1758 from one to reference the first entry in their respective tables. */
1759
1760 /* Using the per-objfile private data mechanism, we store for each
1761 objfile an array of "struct spu_overlay_table" structures, one
1762 for each obj_section of the objfile. This structure holds two
1763 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1764 is *not* an overlay section. If it is non-zero, it represents
1765 a target address. The overlay section is mapped iff the target
1766 integer at this location equals MAPPED_VAL. */
1767
1768 static const struct objfile_data *spu_overlay_data;
1769
1770 struct spu_overlay_table
1771 {
1772 CORE_ADDR mapped_ptr;
1773 CORE_ADDR mapped_val;
1774 };
1775
1776 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1777 the _ovly_table data structure from the target and initialize the
1778 spu_overlay_table data structure from it. */
1779 static struct spu_overlay_table *
1780 spu_get_overlay_table (struct objfile *objfile)
1781 {
1782 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1783 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1784 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
1785 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1786 unsigned ovly_table_size, ovly_buf_table_size;
1787 struct spu_overlay_table *tbl;
1788 struct obj_section *osect;
1789 gdb_byte *ovly_table;
1790 int i;
1791
1792 tbl = (struct spu_overlay_table *) objfile_data (objfile, spu_overlay_data);
1793 if (tbl)
1794 return tbl;
1795
1796 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1797 if (!ovly_table_msym.minsym)
1798 return NULL;
1799
1800 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1801 NULL, objfile);
1802 if (!ovly_buf_table_msym.minsym)
1803 return NULL;
1804
1805 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
1806 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
1807
1808 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1809 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
1810
1811 ovly_table = (gdb_byte *) xmalloc (ovly_table_size);
1812 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1813
1814 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1815 objfile->sections_end - objfile->sections,
1816 struct spu_overlay_table);
1817
1818 for (i = 0; i < ovly_table_size / 16; i++)
1819 {
1820 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1821 4, byte_order);
1822 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1823 4, byte_order);
1824 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1825 4, byte_order);
1826 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1827 4, byte_order);
1828
1829 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1830 continue;
1831
1832 ALL_OBJFILE_OSECTIONS (objfile, osect)
1833 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1834 && pos == osect->the_bfd_section->filepos)
1835 {
1836 int ndx = osect - objfile->sections;
1837 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1838 tbl[ndx].mapped_val = i + 1;
1839 break;
1840 }
1841 }
1842
1843 xfree (ovly_table);
1844 set_objfile_data (objfile, spu_overlay_data, tbl);
1845 return tbl;
1846 }
1847
1848 /* Read _ovly_buf_table entry from the target to dermine whether
1849 OSECT is currently mapped, and update the mapped state. */
1850 static void
1851 spu_overlay_update_osect (struct obj_section *osect)
1852 {
1853 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1854 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1855 struct spu_overlay_table *ovly_table;
1856 CORE_ADDR id, val;
1857
1858 ovly_table = spu_get_overlay_table (osect->objfile);
1859 if (!ovly_table)
1860 return;
1861
1862 ovly_table += osect - osect->objfile->sections;
1863 if (ovly_table->mapped_ptr == 0)
1864 return;
1865
1866 id = SPUADDR_SPU (obj_section_addr (osect));
1867 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1868 4, byte_order);
1869 osect->ovly_mapped = (val == ovly_table->mapped_val);
1870 }
1871
1872 /* If OSECT is NULL, then update all sections' mapped state.
1873 If OSECT is non-NULL, then update only OSECT's mapped state. */
1874 static void
1875 spu_overlay_update (struct obj_section *osect)
1876 {
1877 /* Just one section. */
1878 if (osect)
1879 spu_overlay_update_osect (osect);
1880
1881 /* All sections. */
1882 else
1883 {
1884 struct objfile *objfile;
1885
1886 ALL_OBJSECTIONS (objfile, osect)
1887 if (section_is_overlay (osect))
1888 spu_overlay_update_osect (osect);
1889 }
1890 }
1891
1892 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1893 If there is one, go through all sections and make sure for non-
1894 overlay sections LMA equals VMA, while for overlay sections LMA
1895 is larger than SPU_OVERLAY_LMA. */
1896 static void
1897 spu_overlay_new_objfile (struct objfile *objfile)
1898 {
1899 struct spu_overlay_table *ovly_table;
1900 struct obj_section *osect;
1901
1902 /* If we've already touched this file, do nothing. */
1903 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1904 return;
1905
1906 /* Consider only SPU objfiles. */
1907 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1908 return;
1909
1910 /* Check if this objfile has overlays. */
1911 ovly_table = spu_get_overlay_table (objfile);
1912 if (!ovly_table)
1913 return;
1914
1915 /* Now go and fiddle with all the LMAs. */
1916 ALL_OBJFILE_OSECTIONS (objfile, osect)
1917 {
1918 asection *bsect = osect->the_bfd_section;
1919 int ndx = osect - objfile->sections;
1920
1921 if (ovly_table[ndx].mapped_ptr == 0)
1922 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1923 else
1924 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1925 }
1926 }
1927
1928
1929 /* Insert temporary breakpoint on "main" function of newly loaded
1930 SPE context OBJFILE. */
1931 static void
1932 spu_catch_start (struct objfile *objfile)
1933 {
1934 struct bound_minimal_symbol minsym;
1935 struct compunit_symtab *cust;
1936 CORE_ADDR pc;
1937
1938 /* Do this only if requested by "set spu stop-on-load on". */
1939 if (!spu_stop_on_load_p)
1940 return;
1941
1942 /* Consider only SPU objfiles. */
1943 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1944 return;
1945
1946 /* The main objfile is handled differently. */
1947 if (objfile == symfile_objfile)
1948 return;
1949
1950 /* There can be multiple symbols named "main". Search for the
1951 "main" in *this* objfile. */
1952 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1953 if (!minsym.minsym)
1954 return;
1955
1956 /* If we have debugging information, try to use it -- this
1957 will allow us to properly skip the prologue. */
1958 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
1959 cust
1960 = find_pc_sect_compunit_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1961 minsym.minsym));
1962 if (cust != NULL)
1963 {
1964 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
1965 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1966 struct symbol *sym;
1967 struct symtab_and_line sal;
1968
1969 sym = block_lookup_symbol (block, "main", VAR_DOMAIN);
1970 if (sym)
1971 {
1972 fixup_symbol_section (sym, objfile);
1973 sal = find_function_start_sal (sym, 1);
1974 pc = sal.pc;
1975 }
1976 }
1977
1978 /* Use a numerical address for the set_breakpoint command to avoid having
1979 the breakpoint re-set incorrectly. */
1980 event_location_up location = new_address_location (pc, NULL, 0);
1981 create_breakpoint (get_objfile_arch (objfile), location.get (),
1982 NULL /* cond_string */, -1 /* thread */,
1983 NULL /* extra_string */,
1984 0 /* parse_condition_and_thread */, 1 /* tempflag */,
1985 bp_breakpoint /* type_wanted */,
1986 0 /* ignore_count */,
1987 AUTO_BOOLEAN_FALSE /* pending_break_support */,
1988 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
1989 1 /* enabled */, 0 /* internal */, 0);
1990 }
1991
1992
1993 /* Look up OBJFILE loaded into FRAME's SPU context. */
1994 static struct objfile *
1995 spu_objfile_from_frame (struct frame_info *frame)
1996 {
1997 struct gdbarch *gdbarch = get_frame_arch (frame);
1998 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1999 struct objfile *obj;
2000
2001 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2002 return NULL;
2003
2004 ALL_OBJFILES (obj)
2005 {
2006 if (obj->sections != obj->sections_end
2007 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2008 return obj;
2009 }
2010
2011 return NULL;
2012 }
2013
2014 /* Flush cache for ea pointer access if available. */
2015 static void
2016 flush_ea_cache (void)
2017 {
2018 struct bound_minimal_symbol msymbol;
2019 struct objfile *obj;
2020
2021 if (!has_stack_frames ())
2022 return;
2023
2024 obj = spu_objfile_from_frame (get_current_frame ());
2025 if (obj == NULL)
2026 return;
2027
2028 /* Lookup inferior function __cache_flush. */
2029 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
2030 if (msymbol.minsym != NULL)
2031 {
2032 struct type *type;
2033 CORE_ADDR addr;
2034
2035 type = objfile_type (obj)->builtin_void;
2036 type = lookup_function_type (type);
2037 type = lookup_pointer_type (type);
2038 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2039
2040 call_function_by_hand (value_from_pointer (type, addr), NULL, 0, NULL);
2041 }
2042 }
2043
2044 /* This handler is called when the inferior has stopped. If it is stopped in
2045 SPU architecture then flush the ea cache if used. */
2046 static void
2047 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2048 {
2049 if (!spu_auto_flush_cache_p)
2050 return;
2051
2052 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2053 re-entering this function when __cache_flush stops. */
2054 spu_auto_flush_cache_p = 0;
2055 flush_ea_cache ();
2056 spu_auto_flush_cache_p = 1;
2057 }
2058
2059
2060 /* "info spu" commands. */
2061
2062 static void
2063 info_spu_event_command (const char *args, int from_tty)
2064 {
2065 struct frame_info *frame = get_selected_frame (NULL);
2066 ULONGEST event_status = 0;
2067 ULONGEST event_mask = 0;
2068 gdb_byte buf[100];
2069 char annex[32];
2070 LONGEST len;
2071 int id;
2072
2073 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2074 error (_("\"info spu\" is only supported on the SPU architecture."));
2075
2076 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2077
2078 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2079 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2080 buf, 0, (sizeof (buf) - 1));
2081 if (len <= 0)
2082 error (_("Could not read event_status."));
2083 buf[len] = '\0';
2084 event_status = strtoulst ((char *) buf, NULL, 16);
2085
2086 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2087 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2088 buf, 0, (sizeof (buf) - 1));
2089 if (len <= 0)
2090 error (_("Could not read event_mask."));
2091 buf[len] = '\0';
2092 event_mask = strtoulst ((char *) buf, NULL, 16);
2093
2094 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoEvent");
2095
2096 if (current_uiout->is_mi_like_p ())
2097 {
2098 current_uiout->field_fmt ("event_status",
2099 "0x%s", phex_nz (event_status, 4));
2100 current_uiout->field_fmt ("event_mask",
2101 "0x%s", phex_nz (event_mask, 4));
2102 }
2103 else
2104 {
2105 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2106 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2107 }
2108 }
2109
2110 static void
2111 info_spu_signal_command (const char *args, int from_tty)
2112 {
2113 struct frame_info *frame = get_selected_frame (NULL);
2114 struct gdbarch *gdbarch = get_frame_arch (frame);
2115 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2116 ULONGEST signal1 = 0;
2117 ULONGEST signal1_type = 0;
2118 int signal1_pending = 0;
2119 ULONGEST signal2 = 0;
2120 ULONGEST signal2_type = 0;
2121 int signal2_pending = 0;
2122 char annex[32];
2123 gdb_byte buf[100];
2124 LONGEST len;
2125 int id;
2126
2127 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2128 error (_("\"info spu\" is only supported on the SPU architecture."));
2129
2130 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2131
2132 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2133 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2134 if (len < 0)
2135 error (_("Could not read signal1."));
2136 else if (len == 4)
2137 {
2138 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2139 signal1_pending = 1;
2140 }
2141
2142 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2143 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2144 buf, 0, (sizeof (buf) - 1));
2145 if (len <= 0)
2146 error (_("Could not read signal1_type."));
2147 buf[len] = '\0';
2148 signal1_type = strtoulst ((char *) buf, NULL, 16);
2149
2150 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2151 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2152 if (len < 0)
2153 error (_("Could not read signal2."));
2154 else if (len == 4)
2155 {
2156 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2157 signal2_pending = 1;
2158 }
2159
2160 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2161 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2162 buf, 0, (sizeof (buf) - 1));
2163 if (len <= 0)
2164 error (_("Could not read signal2_type."));
2165 buf[len] = '\0';
2166 signal2_type = strtoulst ((char *) buf, NULL, 16);
2167
2168 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoSignal");
2169
2170 if (current_uiout->is_mi_like_p ())
2171 {
2172 current_uiout->field_int ("signal1_pending", signal1_pending);
2173 current_uiout->field_fmt ("signal1", "0x%s", phex_nz (signal1, 4));
2174 current_uiout->field_int ("signal1_type", signal1_type);
2175 current_uiout->field_int ("signal2_pending", signal2_pending);
2176 current_uiout->field_fmt ("signal2", "0x%s", phex_nz (signal2, 4));
2177 current_uiout->field_int ("signal2_type", signal2_type);
2178 }
2179 else
2180 {
2181 if (signal1_pending)
2182 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2183 else
2184 printf_filtered (_("Signal 1 not pending "));
2185
2186 if (signal1_type)
2187 printf_filtered (_("(Type Or)\n"));
2188 else
2189 printf_filtered (_("(Type Overwrite)\n"));
2190
2191 if (signal2_pending)
2192 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2193 else
2194 printf_filtered (_("Signal 2 not pending "));
2195
2196 if (signal2_type)
2197 printf_filtered (_("(Type Or)\n"));
2198 else
2199 printf_filtered (_("(Type Overwrite)\n"));
2200 }
2201 }
2202
2203 static void
2204 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2205 const char *field, const char *msg)
2206 {
2207 int i;
2208
2209 if (nr <= 0)
2210 return;
2211
2212 ui_out_emit_table table_emitter (current_uiout, 1, nr, "mbox");
2213
2214 current_uiout->table_header (32, ui_left, field, msg);
2215 current_uiout->table_body ();
2216
2217 for (i = 0; i < nr; i++)
2218 {
2219 {
2220 ULONGEST val;
2221 ui_out_emit_tuple tuple_emitter (current_uiout, "mbox");
2222 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2223 current_uiout->field_fmt (field, "0x%s", phex (val, 4));
2224 }
2225
2226 if (!current_uiout->is_mi_like_p ())
2227 printf_filtered ("\n");
2228 }
2229 }
2230
2231 static void
2232 info_spu_mailbox_command (const char *args, int from_tty)
2233 {
2234 struct frame_info *frame = get_selected_frame (NULL);
2235 struct gdbarch *gdbarch = get_frame_arch (frame);
2236 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2237 char annex[32];
2238 gdb_byte buf[1024];
2239 LONGEST len;
2240 int id;
2241
2242 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2243 error (_("\"info spu\" is only supported on the SPU architecture."));
2244
2245 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2246
2247 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoMailbox");
2248
2249 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2250 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2251 buf, 0, sizeof buf);
2252 if (len < 0)
2253 error (_("Could not read mbox_info."));
2254
2255 info_spu_mailbox_list (buf, len / 4, byte_order,
2256 "mbox", "SPU Outbound Mailbox");
2257
2258 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2259 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2260 buf, 0, sizeof buf);
2261 if (len < 0)
2262 error (_("Could not read ibox_info."));
2263
2264 info_spu_mailbox_list (buf, len / 4, byte_order,
2265 "ibox", "SPU Outbound Interrupt Mailbox");
2266
2267 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2268 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2269 buf, 0, sizeof buf);
2270 if (len < 0)
2271 error (_("Could not read wbox_info."));
2272
2273 info_spu_mailbox_list (buf, len / 4, byte_order,
2274 "wbox", "SPU Inbound Mailbox");
2275 }
2276
2277 static ULONGEST
2278 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2279 {
2280 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2281 return (word >> (63 - last)) & mask;
2282 }
2283
2284 static void
2285 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2286 {
2287 static const char *spu_mfc_opcode[256] =
2288 {
2289 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2290 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2291 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2292 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2293 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2294 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2295 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2296 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2297 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2298 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2299 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2300 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2301 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2302 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2303 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2304 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2305 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2306 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2307 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2308 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2309 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2310 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2311 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2312 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2313 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2314 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2315 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2316 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2317 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2318 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2319 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2320 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2321 };
2322
2323 int *seq = XALLOCAVEC (int, nr);
2324 int done = 0;
2325 int i, j;
2326
2327
2328 /* Determine sequence in which to display (valid) entries. */
2329 for (i = 0; i < nr; i++)
2330 {
2331 /* Search for the first valid entry all of whose
2332 dependencies are met. */
2333 for (j = 0; j < nr; j++)
2334 {
2335 ULONGEST mfc_cq_dw3;
2336 ULONGEST dependencies;
2337
2338 if (done & (1 << (nr - 1 - j)))
2339 continue;
2340
2341 mfc_cq_dw3
2342 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2343 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2344 continue;
2345
2346 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2347 if ((dependencies & done) != dependencies)
2348 continue;
2349
2350 seq[i] = j;
2351 done |= 1 << (nr - 1 - j);
2352 break;
2353 }
2354
2355 if (j == nr)
2356 break;
2357 }
2358
2359 nr = i;
2360
2361
2362 ui_out_emit_table table_emitter (current_uiout, 10, nr, "dma_cmd");
2363
2364 current_uiout->table_header (7, ui_left, "opcode", "Opcode");
2365 current_uiout->table_header (3, ui_left, "tag", "Tag");
2366 current_uiout->table_header (3, ui_left, "tid", "TId");
2367 current_uiout->table_header (3, ui_left, "rid", "RId");
2368 current_uiout->table_header (18, ui_left, "ea", "EA");
2369 current_uiout->table_header (7, ui_left, "lsa", "LSA");
2370 current_uiout->table_header (7, ui_left, "size", "Size");
2371 current_uiout->table_header (7, ui_left, "lstaddr", "LstAddr");
2372 current_uiout->table_header (7, ui_left, "lstsize", "LstSize");
2373 current_uiout->table_header (1, ui_left, "error_p", "E");
2374
2375 current_uiout->table_body ();
2376
2377 for (i = 0; i < nr; i++)
2378 {
2379 ULONGEST mfc_cq_dw0;
2380 ULONGEST mfc_cq_dw1;
2381 ULONGEST mfc_cq_dw2;
2382 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2383 int list_lsa, list_size, mfc_lsa, mfc_size;
2384 ULONGEST mfc_ea;
2385 int list_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2386
2387 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2388 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2389
2390 mfc_cq_dw0
2391 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2392 mfc_cq_dw1
2393 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2394 mfc_cq_dw2
2395 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2396
2397 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2398 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2399 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2400 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2401 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2402 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2403 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2404
2405 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2406 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2407
2408 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2409 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2410 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2411 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2412 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2413
2414 {
2415 ui_out_emit_tuple tuple_emitter (current_uiout, "cmd");
2416
2417 if (spu_mfc_opcode[mfc_cmd_opcode])
2418 current_uiout->field_string ("opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2419 else
2420 current_uiout->field_int ("opcode", mfc_cmd_opcode);
2421
2422 current_uiout->field_int ("tag", mfc_cmd_tag);
2423 current_uiout->field_int ("tid", tclass_id);
2424 current_uiout->field_int ("rid", rclass_id);
2425
2426 if (ea_valid_p)
2427 current_uiout->field_fmt ("ea", "0x%s", phex (mfc_ea, 8));
2428 else
2429 current_uiout->field_skip ("ea");
2430
2431 current_uiout->field_fmt ("lsa", "0x%05x", mfc_lsa << 4);
2432 if (qw_valid_p)
2433 current_uiout->field_fmt ("size", "0x%05x", mfc_size << 4);
2434 else
2435 current_uiout->field_fmt ("size", "0x%05x", mfc_size);
2436
2437 if (list_valid_p)
2438 {
2439 current_uiout->field_fmt ("lstaddr", "0x%05x", list_lsa << 3);
2440 current_uiout->field_fmt ("lstsize", "0x%05x", list_size << 3);
2441 }
2442 else
2443 {
2444 current_uiout->field_skip ("lstaddr");
2445 current_uiout->field_skip ("lstsize");
2446 }
2447
2448 if (cmd_error_p)
2449 current_uiout->field_string ("error_p", "*");
2450 else
2451 current_uiout->field_skip ("error_p");
2452 }
2453
2454 if (!current_uiout->is_mi_like_p ())
2455 printf_filtered ("\n");
2456 }
2457 }
2458
2459 static void
2460 info_spu_dma_command (const char *args, int from_tty)
2461 {
2462 struct frame_info *frame = get_selected_frame (NULL);
2463 struct gdbarch *gdbarch = get_frame_arch (frame);
2464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2465 ULONGEST dma_info_type;
2466 ULONGEST dma_info_mask;
2467 ULONGEST dma_info_status;
2468 ULONGEST dma_info_stall_and_notify;
2469 ULONGEST dma_info_atomic_command_status;
2470 char annex[32];
2471 gdb_byte buf[1024];
2472 LONGEST len;
2473 int id;
2474
2475 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2476 error (_("\"info spu\" is only supported on the SPU architecture."));
2477
2478 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2479
2480 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2481 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2482 buf, 0, 40 + 16 * 32);
2483 if (len <= 0)
2484 error (_("Could not read dma_info."));
2485
2486 dma_info_type
2487 = extract_unsigned_integer (buf, 8, byte_order);
2488 dma_info_mask
2489 = extract_unsigned_integer (buf + 8, 8, byte_order);
2490 dma_info_status
2491 = extract_unsigned_integer (buf + 16, 8, byte_order);
2492 dma_info_stall_and_notify
2493 = extract_unsigned_integer (buf + 24, 8, byte_order);
2494 dma_info_atomic_command_status
2495 = extract_unsigned_integer (buf + 32, 8, byte_order);
2496
2497 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoDMA");
2498
2499 if (current_uiout->is_mi_like_p ())
2500 {
2501 current_uiout->field_fmt ("dma_info_type", "0x%s",
2502 phex_nz (dma_info_type, 4));
2503 current_uiout->field_fmt ("dma_info_mask", "0x%s",
2504 phex_nz (dma_info_mask, 4));
2505 current_uiout->field_fmt ("dma_info_status", "0x%s",
2506 phex_nz (dma_info_status, 4));
2507 current_uiout->field_fmt ("dma_info_stall_and_notify", "0x%s",
2508 phex_nz (dma_info_stall_and_notify, 4));
2509 current_uiout->field_fmt ("dma_info_atomic_command_status", "0x%s",
2510 phex_nz (dma_info_atomic_command_status, 4));
2511 }
2512 else
2513 {
2514 const char *query_msg = _("no query pending");
2515
2516 if (dma_info_type & 4)
2517 switch (dma_info_type & 3)
2518 {
2519 case 1: query_msg = _("'any' query pending"); break;
2520 case 2: query_msg = _("'all' query pending"); break;
2521 default: query_msg = _("undefined query type"); break;
2522 }
2523
2524 printf_filtered (_("Tag-Group Status 0x%s\n"),
2525 phex (dma_info_status, 4));
2526 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2527 phex (dma_info_mask, 4), query_msg);
2528 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2529 phex (dma_info_stall_and_notify, 4));
2530 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2531 phex (dma_info_atomic_command_status, 4));
2532 printf_filtered ("\n");
2533 }
2534
2535 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2536 }
2537
2538 static void
2539 info_spu_proxydma_command (const char *args, int from_tty)
2540 {
2541 struct frame_info *frame = get_selected_frame (NULL);
2542 struct gdbarch *gdbarch = get_frame_arch (frame);
2543 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2544 ULONGEST dma_info_type;
2545 ULONGEST dma_info_mask;
2546 ULONGEST dma_info_status;
2547 char annex[32];
2548 gdb_byte buf[1024];
2549 LONGEST len;
2550 int id;
2551
2552 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2553 error (_("\"info spu\" is only supported on the SPU architecture."));
2554
2555 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2556
2557 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2558 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2559 buf, 0, 24 + 8 * 32);
2560 if (len <= 0)
2561 error (_("Could not read proxydma_info."));
2562
2563 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2564 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2565 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2566
2567 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoProxyDMA");
2568
2569 if (current_uiout->is_mi_like_p ())
2570 {
2571 current_uiout->field_fmt ("proxydma_info_type", "0x%s",
2572 phex_nz (dma_info_type, 4));
2573 current_uiout->field_fmt ("proxydma_info_mask", "0x%s",
2574 phex_nz (dma_info_mask, 4));
2575 current_uiout->field_fmt ("proxydma_info_status", "0x%s",
2576 phex_nz (dma_info_status, 4));
2577 }
2578 else
2579 {
2580 const char *query_msg;
2581
2582 switch (dma_info_type & 3)
2583 {
2584 case 0: query_msg = _("no query pending"); break;
2585 case 1: query_msg = _("'any' query pending"); break;
2586 case 2: query_msg = _("'all' query pending"); break;
2587 default: query_msg = _("undefined query type"); break;
2588 }
2589
2590 printf_filtered (_("Tag-Group Status 0x%s\n"),
2591 phex (dma_info_status, 4));
2592 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2593 phex (dma_info_mask, 4), query_msg);
2594 printf_filtered ("\n");
2595 }
2596
2597 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2598 }
2599
2600 static void
2601 info_spu_command (const char *args, int from_tty)
2602 {
2603 printf_unfiltered (_("\"info spu\" must be followed by "
2604 "the name of an SPU facility.\n"));
2605 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
2606 }
2607
2608
2609 /* Root of all "set spu "/"show spu " commands. */
2610
2611 static void
2612 show_spu_command (const char *args, int from_tty)
2613 {
2614 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2615 }
2616
2617 static void
2618 set_spu_command (const char *args, int from_tty)
2619 {
2620 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2621 }
2622
2623 static void
2624 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2625 struct cmd_list_element *c, const char *value)
2626 {
2627 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2628 value);
2629 }
2630
2631 static void
2632 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2633 struct cmd_list_element *c, const char *value)
2634 {
2635 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2636 value);
2637 }
2638
2639
2640 /* Set up gdbarch struct. */
2641
2642 static struct gdbarch *
2643 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2644 {
2645 struct gdbarch *gdbarch;
2646 struct gdbarch_tdep *tdep;
2647 int id = -1;
2648
2649 /* Which spufs ID was requested as address space? */
2650 if (info.id)
2651 id = *info.id;
2652 /* For objfile architectures of SPU solibs, decode the ID from the name.
2653 This assumes the filename convention employed by solib-spu.c. */
2654 else if (info.abfd)
2655 {
2656 const char *name = strrchr (info.abfd->filename, '@');
2657 if (name)
2658 sscanf (name, "@0x%*x <%d>", &id);
2659 }
2660
2661 /* Find a candidate among extant architectures. */
2662 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2663 arches != NULL;
2664 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2665 {
2666 tdep = gdbarch_tdep (arches->gdbarch);
2667 if (tdep && tdep->id == id)
2668 return arches->gdbarch;
2669 }
2670
2671 /* None found, so create a new architecture. */
2672 tdep = XCNEW (struct gdbarch_tdep);
2673 tdep->id = id;
2674 gdbarch = gdbarch_alloc (&info, tdep);
2675
2676 /* Disassembler. */
2677 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2678
2679 /* Registers. */
2680 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2681 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2682 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2683 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2684 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2685 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2686 set_gdbarch_register_name (gdbarch, spu_register_name);
2687 set_gdbarch_register_type (gdbarch, spu_register_type);
2688 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2689 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2690 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2691 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2692 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2693 set_gdbarch_ax_pseudo_register_collect
2694 (gdbarch, spu_ax_pseudo_register_collect);
2695 set_gdbarch_ax_pseudo_register_push_stack
2696 (gdbarch, spu_ax_pseudo_register_push_stack);
2697
2698 /* Data types. */
2699 set_gdbarch_char_signed (gdbarch, 0);
2700 set_gdbarch_ptr_bit (gdbarch, 32);
2701 set_gdbarch_addr_bit (gdbarch, 32);
2702 set_gdbarch_short_bit (gdbarch, 16);
2703 set_gdbarch_int_bit (gdbarch, 32);
2704 set_gdbarch_long_bit (gdbarch, 32);
2705 set_gdbarch_long_long_bit (gdbarch, 64);
2706 set_gdbarch_float_bit (gdbarch, 32);
2707 set_gdbarch_double_bit (gdbarch, 64);
2708 set_gdbarch_long_double_bit (gdbarch, 64);
2709 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2710 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2711 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2712
2713 /* Address handling. */
2714 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2715 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2716 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2717 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2718 set_gdbarch_address_class_type_flags_to_name
2719 (gdbarch, spu_address_class_type_flags_to_name);
2720 set_gdbarch_address_class_name_to_type_flags
2721 (gdbarch, spu_address_class_name_to_type_flags);
2722
2723
2724 /* Inferior function calls. */
2725 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2726 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2727 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2728 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2729 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2730 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2731 set_gdbarch_return_value (gdbarch, spu_return_value);
2732
2733 /* Frame handling. */
2734 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2735 dwarf2_append_unwinders (gdbarch);
2736 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2737 frame_base_set_default (gdbarch, &spu_frame_base);
2738 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2739 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2740 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2741 set_gdbarch_frame_args_skip (gdbarch, 0);
2742 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2743 set_gdbarch_stack_frame_destroyed_p (gdbarch, spu_stack_frame_destroyed_p);
2744
2745 /* Cell/B.E. cross-architecture unwinder support. */
2746 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2747
2748 /* Breakpoints. */
2749 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2750 set_gdbarch_breakpoint_kind_from_pc (gdbarch, spu_breakpoint::kind_from_pc);
2751 set_gdbarch_sw_breakpoint_from_kind (gdbarch, spu_breakpoint::bp_from_kind);
2752 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2753 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2754 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2755
2756 /* Overlays. */
2757 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2758
2759 return gdbarch;
2760 }
2761
2762 void
2763 _initialize_spu_tdep (void)
2764 {
2765 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2766
2767 /* Add ourselves to objfile event chain. */
2768 observer_attach_new_objfile (spu_overlay_new_objfile);
2769 spu_overlay_data = register_objfile_data ();
2770
2771 /* Install spu stop-on-load handler. */
2772 observer_attach_new_objfile (spu_catch_start);
2773
2774 /* Add ourselves to normal_stop event chain. */
2775 observer_attach_normal_stop (spu_attach_normal_stop);
2776
2777 /* Add root prefix command for all "set spu"/"show spu" commands. */
2778 add_prefix_cmd ("spu", no_class, set_spu_command,
2779 _("Various SPU specific commands."),
2780 &setspucmdlist, "set spu ", 0, &setlist);
2781 add_prefix_cmd ("spu", no_class, show_spu_command,
2782 _("Various SPU specific commands."),
2783 &showspucmdlist, "show spu ", 0, &showlist);
2784
2785 /* Toggle whether or not to add a temporary breakpoint at the "main"
2786 function of new SPE contexts. */
2787 add_setshow_boolean_cmd ("stop-on-load", class_support,
2788 &spu_stop_on_load_p, _("\
2789 Set whether to stop for new SPE threads."),
2790 _("\
2791 Show whether to stop for new SPE threads."),
2792 _("\
2793 Use \"on\" to give control to the user when a new SPE thread\n\
2794 enters its \"main\" function.\n\
2795 Use \"off\" to disable stopping for new SPE threads."),
2796 NULL,
2797 show_spu_stop_on_load,
2798 &setspucmdlist, &showspucmdlist);
2799
2800 /* Toggle whether or not to automatically flush the software-managed
2801 cache whenever SPE execution stops. */
2802 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2803 &spu_auto_flush_cache_p, _("\
2804 Set whether to automatically flush the software-managed cache."),
2805 _("\
2806 Show whether to automatically flush the software-managed cache."),
2807 _("\
2808 Use \"on\" to automatically flush the software-managed cache\n\
2809 whenever SPE execution stops.\n\
2810 Use \"off\" to never automatically flush the software-managed cache."),
2811 NULL,
2812 show_spu_auto_flush_cache,
2813 &setspucmdlist, &showspucmdlist);
2814
2815 /* Add root prefix command for all "info spu" commands. */
2816 add_prefix_cmd ("spu", class_info, info_spu_command,
2817 _("Various SPU specific commands."),
2818 &infospucmdlist, "info spu ", 0, &infolist);
2819
2820 /* Add various "info spu" commands. */
2821 add_cmd ("event", class_info, info_spu_event_command,
2822 _("Display SPU event facility status.\n"),
2823 &infospucmdlist);
2824 add_cmd ("signal", class_info, info_spu_signal_command,
2825 _("Display SPU signal notification facility status.\n"),
2826 &infospucmdlist);
2827 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2828 _("Display SPU mailbox facility status.\n"),
2829 &infospucmdlist);
2830 add_cmd ("dma", class_info, info_spu_dma_command,
2831 _("Display MFC DMA status.\n"),
2832 &infospucmdlist);
2833 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2834 _("Display MFC Proxy-DMA status.\n"),
2835 &infospucmdlist);
2836 }