]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/stabsread.c
00467725996b16b3c431e87cd1a2d03b5d7335ff
[thirdparty/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
24 Avoid placing any object file format specific code in this file. */
25
26 #include "defs.h"
27 #include <string.h>
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "doublest.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include "gdb_assert.h"
48
49 #include <ctype.h>
50
51 /* Ask stabsread.h to define the vars it normally declares `extern'. */
52 #define EXTERN
53 /**/
54 #include "stabsread.h" /* Our own declarations */
55 #undef EXTERN
56
57 extern void _initialize_stabsread (void);
58
59 /* The routines that read and process a complete stabs for a C struct or
60 C++ class pass lists of data member fields and lists of member function
61 fields in an instance of a field_info structure, as defined below.
62 This is part of some reorganization of low level C++ support and is
63 expected to eventually go away... (FIXME) */
64
65 struct field_info
66 {
67 struct nextfield
68 {
69 struct nextfield *next;
70
71 /* This is the raw visibility from the stab. It is not checked
72 for being one of the visibilities we recognize, so code which
73 examines this field better be able to deal. */
74 int visibility;
75
76 struct field field;
77 }
78 *list;
79 struct next_fnfieldlist
80 {
81 struct next_fnfieldlist *next;
82 struct fn_fieldlist fn_fieldlist;
83 }
84 *fnlist;
85 };
86
87 static void
88 read_one_struct_field (struct field_info *, char **, char *,
89 struct type *, struct objfile *);
90
91 static struct type *dbx_alloc_type (int[2], struct objfile *);
92
93 static long read_huge_number (char **, int, int *, int);
94
95 static struct type *error_type (char **, struct objfile *);
96
97 static void
98 patch_block_stabs (struct pending *, struct pending_stabs *,
99 struct objfile *);
100
101 static void fix_common_block (struct symbol *, CORE_ADDR);
102
103 static int read_type_number (char **, int *);
104
105 static struct type *read_type (char **, struct objfile *);
106
107 static struct type *read_range_type (char **, int[2], int, struct objfile *);
108
109 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
110
111 static struct type *read_sun_floating_type (char **, int[2],
112 struct objfile *);
113
114 static struct type *read_enum_type (char **, struct type *, struct objfile *);
115
116 static struct type *rs6000_builtin_type (int, struct objfile *);
117
118 static int
119 read_member_functions (struct field_info *, char **, struct type *,
120 struct objfile *);
121
122 static int
123 read_struct_fields (struct field_info *, char **, struct type *,
124 struct objfile *);
125
126 static int
127 read_baseclasses (struct field_info *, char **, struct type *,
128 struct objfile *);
129
130 static int
131 read_tilde_fields (struct field_info *, char **, struct type *,
132 struct objfile *);
133
134 static int attach_fn_fields_to_type (struct field_info *, struct type *);
135
136 static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
138
139 static struct type *read_struct_type (char **, struct type *,
140 enum type_code,
141 struct objfile *);
142
143 static struct type *read_array_type (char **, struct type *,
144 struct objfile *);
145
146 static struct field *read_args (char **, int, struct objfile *, int *, int *);
147
148 static void add_undefined_type (struct type *, int[2]);
149
150 static int
151 read_cpp_abbrev (struct field_info *, char **, struct type *,
152 struct objfile *);
153
154 static char *find_name_end (char *name);
155
156 static int process_reference (char **string);
157
158 void stabsread_clear_cache (void);
159
160 static const char vptr_name[] = "_vptr$";
161 static const char vb_name[] = "_vb$";
162
163 static void
164 invalid_cpp_abbrev_complaint (const char *arg1)
165 {
166 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
167 }
168
169 static void
170 reg_value_complaint (int regnum, int num_regs, const char *sym)
171 {
172 complaint (&symfile_complaints,
173 _("register number %d too large (max %d) in symbol %s"),
174 regnum, num_regs - 1, sym);
175 }
176
177 static void
178 stabs_general_complaint (const char *arg1)
179 {
180 complaint (&symfile_complaints, "%s", arg1);
181 }
182
183 /* Make a list of forward references which haven't been defined. */
184
185 static struct type **undef_types;
186 static int undef_types_allocated;
187 static int undef_types_length;
188 static struct symbol *current_symbol = NULL;
189
190 /* Make a list of nameless types that are undefined.
191 This happens when another type is referenced by its number
192 before this type is actually defined. For instance "t(0,1)=k(0,2)"
193 and type (0,2) is defined only later. */
194
195 struct nat
196 {
197 int typenums[2];
198 struct type *type;
199 };
200 static struct nat *noname_undefs;
201 static int noname_undefs_allocated;
202 static int noname_undefs_length;
203
204 /* Check for and handle cretinous stabs symbol name continuation! */
205 #define STABS_CONTINUE(pp,objfile) \
206 do { \
207 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208 *(pp) = next_symbol_text (objfile); \
209 } while (0)
210
211 /* Vector of types defined so far, indexed by their type numbers.
212 (In newer sun systems, dbx uses a pair of numbers in parens,
213 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
214 Then these numbers must be translated through the type_translations
215 hash table to get the index into the type vector.) */
216
217 static struct type **type_vector;
218
219 /* Number of elements allocated for type_vector currently. */
220
221 static int type_vector_length;
222
223 /* Initial size of type vector. Is realloc'd larger if needed, and
224 realloc'd down to the size actually used, when completed. */
225
226 #define INITIAL_TYPE_VECTOR_LENGTH 160
227 \f
228
229 /* Look up a dbx type-number pair. Return the address of the slot
230 where the type for that number-pair is stored.
231 The number-pair is in TYPENUMS.
232
233 This can be used for finding the type associated with that pair
234 or for associating a new type with the pair. */
235
236 static struct type **
237 dbx_lookup_type (int typenums[2], struct objfile *objfile)
238 {
239 int filenum = typenums[0];
240 int index = typenums[1];
241 unsigned old_len;
242 int real_filenum;
243 struct header_file *f;
244 int f_orig_length;
245
246 if (filenum == -1) /* -1,-1 is for temporary types. */
247 return 0;
248
249 if (filenum < 0 || filenum >= n_this_object_header_files)
250 {
251 complaint (&symfile_complaints,
252 _("Invalid symbol data: type number "
253 "(%d,%d) out of range at symtab pos %d."),
254 filenum, index, symnum);
255 goto error_return;
256 }
257
258 if (filenum == 0)
259 {
260 if (index < 0)
261 {
262 /* Caller wants address of address of type. We think
263 that negative (rs6k builtin) types will never appear as
264 "lvalues", (nor should they), so we stuff the real type
265 pointer into a temp, and return its address. If referenced,
266 this will do the right thing. */
267 static struct type *temp_type;
268
269 temp_type = rs6000_builtin_type (index, objfile);
270 return &temp_type;
271 }
272
273 /* Type is defined outside of header files.
274 Find it in this object file's type vector. */
275 if (index >= type_vector_length)
276 {
277 old_len = type_vector_length;
278 if (old_len == 0)
279 {
280 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
281 type_vector = (struct type **)
282 xmalloc (type_vector_length * sizeof (struct type *));
283 }
284 while (index >= type_vector_length)
285 {
286 type_vector_length *= 2;
287 }
288 type_vector = (struct type **)
289 xrealloc ((char *) type_vector,
290 (type_vector_length * sizeof (struct type *)));
291 memset (&type_vector[old_len], 0,
292 (type_vector_length - old_len) * sizeof (struct type *));
293 }
294 return (&type_vector[index]);
295 }
296 else
297 {
298 real_filenum = this_object_header_files[filenum];
299
300 if (real_filenum >= N_HEADER_FILES (objfile))
301 {
302 static struct type *temp_type;
303
304 warning (_("GDB internal error: bad real_filenum"));
305
306 error_return:
307 temp_type = objfile_type (objfile)->builtin_error;
308 return &temp_type;
309 }
310
311 f = HEADER_FILES (objfile) + real_filenum;
312
313 f_orig_length = f->length;
314 if (index >= f_orig_length)
315 {
316 while (index >= f->length)
317 {
318 f->length *= 2;
319 }
320 f->vector = (struct type **)
321 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
322 memset (&f->vector[f_orig_length], 0,
323 (f->length - f_orig_length) * sizeof (struct type *));
324 }
325 return (&f->vector[index]);
326 }
327 }
328
329 /* Make sure there is a type allocated for type numbers TYPENUMS
330 and return the type object.
331 This can create an empty (zeroed) type object.
332 TYPENUMS may be (-1, -1) to return a new type object that is not
333 put into the type vector, and so may not be referred to by number. */
334
335 static struct type *
336 dbx_alloc_type (int typenums[2], struct objfile *objfile)
337 {
338 struct type **type_addr;
339
340 if (typenums[0] == -1)
341 {
342 return (alloc_type (objfile));
343 }
344
345 type_addr = dbx_lookup_type (typenums, objfile);
346
347 /* If we are referring to a type not known at all yet,
348 allocate an empty type for it.
349 We will fill it in later if we find out how. */
350 if (*type_addr == 0)
351 {
352 *type_addr = alloc_type (objfile);
353 }
354
355 return (*type_addr);
356 }
357
358 /* for all the stabs in a given stab vector, build appropriate types
359 and fix their symbols in given symbol vector. */
360
361 static void
362 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
363 struct objfile *objfile)
364 {
365 int ii;
366 char *name;
367 char *pp;
368 struct symbol *sym;
369
370 if (stabs)
371 {
372 /* for all the stab entries, find their corresponding symbols and
373 patch their types! */
374
375 for (ii = 0; ii < stabs->count; ++ii)
376 {
377 name = stabs->stab[ii];
378 pp = (char *) strchr (name, ':');
379 gdb_assert (pp); /* Must find a ':' or game's over. */
380 while (pp[1] == ':')
381 {
382 pp += 2;
383 pp = (char *) strchr (pp, ':');
384 }
385 sym = find_symbol_in_list (symbols, name, pp - name);
386 if (!sym)
387 {
388 /* FIXME-maybe: it would be nice if we noticed whether
389 the variable was defined *anywhere*, not just whether
390 it is defined in this compilation unit. But neither
391 xlc or GCC seem to need such a definition, and until
392 we do psymtabs (so that the minimal symbols from all
393 compilation units are available now), I'm not sure
394 how to get the information. */
395
396 /* On xcoff, if a global is defined and never referenced,
397 ld will remove it from the executable. There is then
398 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
399 sym = allocate_symbol (objfile);
400 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
401 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
402 SYMBOL_SET_LINKAGE_NAME
403 (sym, obstack_copy0 (&objfile->objfile_obstack,
404 name, pp - name));
405 pp += 2;
406 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
407 {
408 /* I don't think the linker does this with functions,
409 so as far as I know this is never executed.
410 But it doesn't hurt to check. */
411 SYMBOL_TYPE (sym) =
412 lookup_function_type (read_type (&pp, objfile));
413 }
414 else
415 {
416 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
417 }
418 add_symbol_to_list (sym, &global_symbols);
419 }
420 else
421 {
422 pp += 2;
423 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
424 {
425 SYMBOL_TYPE (sym) =
426 lookup_function_type (read_type (&pp, objfile));
427 }
428 else
429 {
430 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
431 }
432 }
433 }
434 }
435 }
436 \f
437
438 /* Read a number by which a type is referred to in dbx data,
439 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
440 Just a single number N is equivalent to (0,N).
441 Return the two numbers by storing them in the vector TYPENUMS.
442 TYPENUMS will then be used as an argument to dbx_lookup_type.
443
444 Returns 0 for success, -1 for error. */
445
446 static int
447 read_type_number (char **pp, int *typenums)
448 {
449 int nbits;
450
451 if (**pp == '(')
452 {
453 (*pp)++;
454 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
455 if (nbits != 0)
456 return -1;
457 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
458 if (nbits != 0)
459 return -1;
460 }
461 else
462 {
463 typenums[0] = 0;
464 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
465 if (nbits != 0)
466 return -1;
467 }
468 return 0;
469 }
470 \f
471
472 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
473 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
474 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
475 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
476
477 /* Structure for storing pointers to reference definitions for fast lookup
478 during "process_later". */
479
480 struct ref_map
481 {
482 char *stabs;
483 CORE_ADDR value;
484 struct symbol *sym;
485 };
486
487 #define MAX_CHUNK_REFS 100
488 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
489 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
490
491 static struct ref_map *ref_map;
492
493 /* Ptr to free cell in chunk's linked list. */
494 static int ref_count = 0;
495
496 /* Number of chunks malloced. */
497 static int ref_chunk = 0;
498
499 /* This file maintains a cache of stabs aliases found in the symbol
500 table. If the symbol table changes, this cache must be cleared
501 or we are left holding onto data in invalid obstacks. */
502 void
503 stabsread_clear_cache (void)
504 {
505 ref_count = 0;
506 ref_chunk = 0;
507 }
508
509 /* Create array of pointers mapping refids to symbols and stab strings.
510 Add pointers to reference definition symbols and/or their values as we
511 find them, using their reference numbers as our index.
512 These will be used later when we resolve references. */
513 void
514 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
515 {
516 if (ref_count == 0)
517 ref_chunk = 0;
518 if (refnum >= ref_count)
519 ref_count = refnum + 1;
520 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
521 {
522 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
523 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
524
525 ref_map = (struct ref_map *)
526 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
527 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
528 new_chunks * REF_CHUNK_SIZE);
529 ref_chunk += new_chunks;
530 }
531 ref_map[refnum].stabs = stabs;
532 ref_map[refnum].sym = sym;
533 ref_map[refnum].value = value;
534 }
535
536 /* Return defined sym for the reference REFNUM. */
537 struct symbol *
538 ref_search (int refnum)
539 {
540 if (refnum < 0 || refnum > ref_count)
541 return 0;
542 return ref_map[refnum].sym;
543 }
544
545 /* Parse a reference id in STRING and return the resulting
546 reference number. Move STRING beyond the reference id. */
547
548 static int
549 process_reference (char **string)
550 {
551 char *p;
552 int refnum = 0;
553
554 if (**string != '#')
555 return 0;
556
557 /* Advance beyond the initial '#'. */
558 p = *string + 1;
559
560 /* Read number as reference id. */
561 while (*p && isdigit (*p))
562 {
563 refnum = refnum * 10 + *p - '0';
564 p++;
565 }
566 *string = p;
567 return refnum;
568 }
569
570 /* If STRING defines a reference, store away a pointer to the reference
571 definition for later use. Return the reference number. */
572
573 int
574 symbol_reference_defined (char **string)
575 {
576 char *p = *string;
577 int refnum = 0;
578
579 refnum = process_reference (&p);
580
581 /* Defining symbols end in '='. */
582 if (*p == '=')
583 {
584 /* Symbol is being defined here. */
585 *string = p + 1;
586 return refnum;
587 }
588 else
589 {
590 /* Must be a reference. Either the symbol has already been defined,
591 or this is a forward reference to it. */
592 *string = p;
593 return -1;
594 }
595 }
596
597 static int
598 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
599 {
600 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
601
602 if (regno >= gdbarch_num_regs (gdbarch)
603 + gdbarch_num_pseudo_regs (gdbarch))
604 {
605 reg_value_complaint (regno,
606 gdbarch_num_regs (gdbarch)
607 + gdbarch_num_pseudo_regs (gdbarch),
608 SYMBOL_PRINT_NAME (sym));
609
610 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
611 }
612
613 return regno;
614 }
615
616 static const struct symbol_register_ops stab_register_funcs = {
617 stab_reg_to_regnum
618 };
619
620 /* The "aclass" indices for computed symbols. */
621
622 static int stab_register_index;
623 static int stab_regparm_index;
624
625 struct symbol *
626 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
627 struct objfile *objfile)
628 {
629 struct gdbarch *gdbarch = get_objfile_arch (objfile);
630 struct symbol *sym;
631 char *p = (char *) find_name_end (string);
632 int deftype;
633 int synonym = 0;
634 int i;
635 char *new_name = NULL;
636
637 /* We would like to eliminate nameless symbols, but keep their types.
638 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
639 to type 2, but, should not create a symbol to address that type. Since
640 the symbol will be nameless, there is no way any user can refer to it. */
641
642 int nameless;
643
644 /* Ignore syms with empty names. */
645 if (string[0] == 0)
646 return 0;
647
648 /* Ignore old-style symbols from cc -go. */
649 if (p == 0)
650 return 0;
651
652 while (p[1] == ':')
653 {
654 p += 2;
655 p = strchr (p, ':');
656 if (p == NULL)
657 {
658 complaint (&symfile_complaints,
659 _("Bad stabs string '%s'"), string);
660 return NULL;
661 }
662 }
663
664 /* If a nameless stab entry, all we need is the type, not the symbol.
665 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
666 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
667
668 current_symbol = sym = allocate_symbol (objfile);
669
670 if (processing_gcc_compilation)
671 {
672 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
673 number of bytes occupied by a type or object, which we ignore. */
674 SYMBOL_LINE (sym) = desc;
675 }
676 else
677 {
678 SYMBOL_LINE (sym) = 0; /* unknown */
679 }
680
681 if (is_cplus_marker (string[0]))
682 {
683 /* Special GNU C++ names. */
684 switch (string[1])
685 {
686 case 't':
687 SYMBOL_SET_LINKAGE_NAME (sym, "this");
688 break;
689
690 case 'v': /* $vtbl_ptr_type */
691 goto normal;
692
693 case 'e':
694 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
695 break;
696
697 case '_':
698 /* This was an anonymous type that was never fixed up. */
699 goto normal;
700
701 case 'X':
702 /* SunPRO (3.0 at least) static variable encoding. */
703 if (gdbarch_static_transform_name_p (gdbarch))
704 goto normal;
705 /* ... fall through ... */
706
707 default:
708 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
709 string);
710 goto normal; /* Do *something* with it. */
711 }
712 }
713 else
714 {
715 normal:
716 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
717 &objfile->objfile_obstack);
718 if (SYMBOL_LANGUAGE (sym) == language_cplus)
719 {
720 char *name = alloca (p - string + 1);
721
722 memcpy (name, string, p - string);
723 name[p - string] = '\0';
724 new_name = cp_canonicalize_string (name);
725 }
726 if (new_name != NULL)
727 {
728 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
729 xfree (new_name);
730 }
731 else
732 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
733
734 if (SYMBOL_LANGUAGE (sym) == language_cplus)
735 cp_scan_for_anonymous_namespaces (sym, objfile);
736
737 }
738 p++;
739
740 /* Determine the type of name being defined. */
741 #if 0
742 /* Getting GDB to correctly skip the symbol on an undefined symbol
743 descriptor and not ever dump core is a very dodgy proposition if
744 we do things this way. I say the acorn RISC machine can just
745 fix their compiler. */
746 /* The Acorn RISC machine's compiler can put out locals that don't
747 start with "234=" or "(3,4)=", so assume anything other than the
748 deftypes we know how to handle is a local. */
749 if (!strchr ("cfFGpPrStTvVXCR", *p))
750 #else
751 if (isdigit (*p) || *p == '(' || *p == '-')
752 #endif
753 deftype = 'l';
754 else
755 deftype = *p++;
756
757 switch (deftype)
758 {
759 case 'c':
760 /* c is a special case, not followed by a type-number.
761 SYMBOL:c=iVALUE for an integer constant symbol.
762 SYMBOL:c=rVALUE for a floating constant symbol.
763 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
764 e.g. "b:c=e6,0" for "const b = blob1"
765 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
766 if (*p != '=')
767 {
768 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
769 SYMBOL_TYPE (sym) = error_type (&p, objfile);
770 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
771 add_symbol_to_list (sym, &file_symbols);
772 return sym;
773 }
774 ++p;
775 switch (*p++)
776 {
777 case 'r':
778 {
779 double d = atof (p);
780 gdb_byte *dbl_valu;
781 struct type *dbl_type;
782
783 /* FIXME-if-picky-about-floating-accuracy: Should be using
784 target arithmetic to get the value. real.c in GCC
785 probably has the necessary code. */
786
787 dbl_type = objfile_type (objfile)->builtin_double;
788 dbl_valu =
789 obstack_alloc (&objfile->objfile_obstack,
790 TYPE_LENGTH (dbl_type));
791 store_typed_floating (dbl_valu, dbl_type, d);
792
793 SYMBOL_TYPE (sym) = dbl_type;
794 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
795 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
796 }
797 break;
798 case 'i':
799 {
800 /* Defining integer constants this way is kind of silly,
801 since 'e' constants allows the compiler to give not
802 only the value, but the type as well. C has at least
803 int, long, unsigned int, and long long as constant
804 types; other languages probably should have at least
805 unsigned as well as signed constants. */
806
807 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
808 SYMBOL_VALUE (sym) = atoi (p);
809 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
810 }
811 break;
812
813 case 'c':
814 {
815 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
816 SYMBOL_VALUE (sym) = atoi (p);
817 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
818 }
819 break;
820
821 case 's':
822 {
823 struct type *range_type;
824 int ind = 0;
825 char quote = *p++;
826 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
827 gdb_byte *string_value;
828
829 if (quote != '\'' && quote != '"')
830 {
831 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
832 SYMBOL_TYPE (sym) = error_type (&p, objfile);
833 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
834 add_symbol_to_list (sym, &file_symbols);
835 return sym;
836 }
837
838 /* Find matching quote, rejecting escaped quotes. */
839 while (*p && *p != quote)
840 {
841 if (*p == '\\' && p[1] == quote)
842 {
843 string_local[ind] = (gdb_byte) quote;
844 ind++;
845 p += 2;
846 }
847 else if (*p)
848 {
849 string_local[ind] = (gdb_byte) (*p);
850 ind++;
851 p++;
852 }
853 }
854 if (*p != quote)
855 {
856 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
857 SYMBOL_TYPE (sym) = error_type (&p, objfile);
858 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
859 add_symbol_to_list (sym, &file_symbols);
860 return sym;
861 }
862
863 /* NULL terminate the string. */
864 string_local[ind] = 0;
865 range_type
866 = create_range_type (NULL,
867 objfile_type (objfile)->builtin_int,
868 0, ind);
869 SYMBOL_TYPE (sym) = create_array_type (NULL,
870 objfile_type (objfile)->builtin_char,
871 range_type);
872 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
873 memcpy (string_value, string_local, ind + 1);
874 p++;
875
876 SYMBOL_VALUE_BYTES (sym) = string_value;
877 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
878 }
879 break;
880
881 case 'e':
882 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
883 can be represented as integral.
884 e.g. "b:c=e6,0" for "const b = blob1"
885 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
886 {
887 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
888 SYMBOL_TYPE (sym) = read_type (&p, objfile);
889
890 if (*p != ',')
891 {
892 SYMBOL_TYPE (sym) = error_type (&p, objfile);
893 break;
894 }
895 ++p;
896
897 /* If the value is too big to fit in an int (perhaps because
898 it is unsigned), or something like that, we silently get
899 a bogus value. The type and everything else about it is
900 correct. Ideally, we should be using whatever we have
901 available for parsing unsigned and long long values,
902 however. */
903 SYMBOL_VALUE (sym) = atoi (p);
904 }
905 break;
906 default:
907 {
908 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
909 SYMBOL_TYPE (sym) = error_type (&p, objfile);
910 }
911 }
912 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
913 add_symbol_to_list (sym, &file_symbols);
914 return sym;
915
916 case 'C':
917 /* The name of a caught exception. */
918 SYMBOL_TYPE (sym) = read_type (&p, objfile);
919 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
920 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
921 SYMBOL_VALUE_ADDRESS (sym) = valu;
922 add_symbol_to_list (sym, &local_symbols);
923 break;
924
925 case 'f':
926 /* A static function definition. */
927 SYMBOL_TYPE (sym) = read_type (&p, objfile);
928 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
929 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
930 add_symbol_to_list (sym, &file_symbols);
931 /* fall into process_function_types. */
932
933 process_function_types:
934 /* Function result types are described as the result type in stabs.
935 We need to convert this to the function-returning-type-X type
936 in GDB. E.g. "int" is converted to "function returning int". */
937 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
938 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
939
940 /* All functions in C++ have prototypes. Stabs does not offer an
941 explicit way to identify prototyped or unprototyped functions,
942 but both GCC and Sun CC emit stabs for the "call-as" type rather
943 than the "declared-as" type for unprototyped functions, so
944 we treat all functions as if they were prototyped. This is used
945 primarily for promotion when calling the function from GDB. */
946 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
947
948 /* fall into process_prototype_types. */
949
950 process_prototype_types:
951 /* Sun acc puts declared types of arguments here. */
952 if (*p == ';')
953 {
954 struct type *ftype = SYMBOL_TYPE (sym);
955 int nsemi = 0;
956 int nparams = 0;
957 char *p1 = p;
958
959 /* Obtain a worst case guess for the number of arguments
960 by counting the semicolons. */
961 while (*p1)
962 {
963 if (*p1++ == ';')
964 nsemi++;
965 }
966
967 /* Allocate parameter information fields and fill them in. */
968 TYPE_FIELDS (ftype) = (struct field *)
969 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
970 while (*p++ == ';')
971 {
972 struct type *ptype;
973
974 /* A type number of zero indicates the start of varargs.
975 FIXME: GDB currently ignores vararg functions. */
976 if (p[0] == '0' && p[1] == '\0')
977 break;
978 ptype = read_type (&p, objfile);
979
980 /* The Sun compilers mark integer arguments, which should
981 be promoted to the width of the calling conventions, with
982 a type which references itself. This type is turned into
983 a TYPE_CODE_VOID type by read_type, and we have to turn
984 it back into builtin_int here.
985 FIXME: Do we need a new builtin_promoted_int_arg ? */
986 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
987 ptype = objfile_type (objfile)->builtin_int;
988 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
989 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
990 }
991 TYPE_NFIELDS (ftype) = nparams;
992 TYPE_PROTOTYPED (ftype) = 1;
993 }
994 break;
995
996 case 'F':
997 /* A global function definition. */
998 SYMBOL_TYPE (sym) = read_type (&p, objfile);
999 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1000 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1001 add_symbol_to_list (sym, &global_symbols);
1002 goto process_function_types;
1003
1004 case 'G':
1005 /* For a class G (global) symbol, it appears that the
1006 value is not correct. It is necessary to search for the
1007 corresponding linker definition to find the value.
1008 These definitions appear at the end of the namelist. */
1009 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1010 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1011 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1012 /* Don't add symbol references to global_sym_chain.
1013 Symbol references don't have valid names and wont't match up with
1014 minimal symbols when the global_sym_chain is relocated.
1015 We'll fixup symbol references when we fixup the defining symbol. */
1016 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1017 {
1018 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1019 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1020 global_sym_chain[i] = sym;
1021 }
1022 add_symbol_to_list (sym, &global_symbols);
1023 break;
1024
1025 /* This case is faked by a conditional above,
1026 when there is no code letter in the dbx data.
1027 Dbx data never actually contains 'l'. */
1028 case 's':
1029 case 'l':
1030 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1031 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1032 SYMBOL_VALUE (sym) = valu;
1033 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1034 add_symbol_to_list (sym, &local_symbols);
1035 break;
1036
1037 case 'p':
1038 if (*p == 'F')
1039 /* pF is a two-letter code that means a function parameter in Fortran.
1040 The type-number specifies the type of the return value.
1041 Translate it into a pointer-to-function type. */
1042 {
1043 p++;
1044 SYMBOL_TYPE (sym)
1045 = lookup_pointer_type
1046 (lookup_function_type (read_type (&p, objfile)));
1047 }
1048 else
1049 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1050
1051 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1052 SYMBOL_VALUE (sym) = valu;
1053 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1054 SYMBOL_IS_ARGUMENT (sym) = 1;
1055 add_symbol_to_list (sym, &local_symbols);
1056
1057 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1058 {
1059 /* On little-endian machines, this crud is never necessary,
1060 and, if the extra bytes contain garbage, is harmful. */
1061 break;
1062 }
1063
1064 /* If it's gcc-compiled, if it says `short', believe it. */
1065 if (processing_gcc_compilation
1066 || gdbarch_believe_pcc_promotion (gdbarch))
1067 break;
1068
1069 if (!gdbarch_believe_pcc_promotion (gdbarch))
1070 {
1071 /* If PCC says a parameter is a short or a char, it is
1072 really an int. */
1073 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1074 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1075 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1076 {
1077 SYMBOL_TYPE (sym) =
1078 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1079 ? objfile_type (objfile)->builtin_unsigned_int
1080 : objfile_type (objfile)->builtin_int;
1081 }
1082 break;
1083 }
1084
1085 case 'P':
1086 /* acc seems to use P to declare the prototypes of functions that
1087 are referenced by this file. gdb is not prepared to deal
1088 with this extra information. FIXME, it ought to. */
1089 if (type == N_FUN)
1090 {
1091 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1092 goto process_prototype_types;
1093 }
1094 /*FALLTHROUGH */
1095
1096 case 'R':
1097 /* Parameter which is in a register. */
1098 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1099 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1100 SYMBOL_IS_ARGUMENT (sym) = 1;
1101 SYMBOL_VALUE (sym) = valu;
1102 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1103 add_symbol_to_list (sym, &local_symbols);
1104 break;
1105
1106 case 'r':
1107 /* Register variable (either global or local). */
1108 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1109 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1110 SYMBOL_VALUE (sym) = valu;
1111 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1112 if (within_function)
1113 {
1114 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1115 the same name to represent an argument passed in a
1116 register. GCC uses 'P' for the same case. So if we find
1117 such a symbol pair we combine it into one 'P' symbol.
1118 For Sun cc we need to do this regardless of
1119 stabs_argument_has_addr, because the compiler puts out
1120 the 'p' symbol even if it never saves the argument onto
1121 the stack.
1122
1123 On most machines, we want to preserve both symbols, so
1124 that we can still get information about what is going on
1125 with the stack (VAX for computing args_printed, using
1126 stack slots instead of saved registers in backtraces,
1127 etc.).
1128
1129 Note that this code illegally combines
1130 main(argc) struct foo argc; { register struct foo argc; }
1131 but this case is considered pathological and causes a warning
1132 from a decent compiler. */
1133
1134 if (local_symbols
1135 && local_symbols->nsyms > 0
1136 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1137 {
1138 struct symbol *prev_sym;
1139
1140 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1141 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1142 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1143 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1144 SYMBOL_LINKAGE_NAME (sym)) == 0)
1145 {
1146 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1147 /* Use the type from the LOC_REGISTER; that is the type
1148 that is actually in that register. */
1149 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1150 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1151 sym = prev_sym;
1152 break;
1153 }
1154 }
1155 add_symbol_to_list (sym, &local_symbols);
1156 }
1157 else
1158 add_symbol_to_list (sym, &file_symbols);
1159 break;
1160
1161 case 'S':
1162 /* Static symbol at top level of file. */
1163 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1164 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1165 SYMBOL_VALUE_ADDRESS (sym) = valu;
1166 if (gdbarch_static_transform_name_p (gdbarch)
1167 && gdbarch_static_transform_name (gdbarch,
1168 SYMBOL_LINKAGE_NAME (sym))
1169 != SYMBOL_LINKAGE_NAME (sym))
1170 {
1171 struct minimal_symbol *msym;
1172
1173 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1174 NULL, objfile);
1175 if (msym != NULL)
1176 {
1177 const char *new_name = gdbarch_static_transform_name
1178 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1179
1180 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1181 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1182 }
1183 }
1184 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1185 add_symbol_to_list (sym, &file_symbols);
1186 break;
1187
1188 case 't':
1189 /* In Ada, there is no distinction between typedef and non-typedef;
1190 any type declaration implicitly has the equivalent of a typedef,
1191 and thus 't' is in fact equivalent to 'Tt'.
1192
1193 Therefore, for Ada units, we check the character immediately
1194 before the 't', and if we do not find a 'T', then make sure to
1195 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1196 will be stored in the VAR_DOMAIN). If the symbol was indeed
1197 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1198 elsewhere, so we don't need to take care of that.
1199
1200 This is important to do, because of forward references:
1201 The cleanup of undefined types stored in undef_types only uses
1202 STRUCT_DOMAIN symbols to perform the replacement. */
1203 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1204
1205 /* Typedef */
1206 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1207
1208 /* For a nameless type, we don't want a create a symbol, thus we
1209 did not use `sym'. Return without further processing. */
1210 if (nameless)
1211 return NULL;
1212
1213 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1214 SYMBOL_VALUE (sym) = valu;
1215 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1216 /* C++ vagaries: we may have a type which is derived from
1217 a base type which did not have its name defined when the
1218 derived class was output. We fill in the derived class's
1219 base part member's name here in that case. */
1220 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1221 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1222 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1223 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1224 {
1225 int j;
1226
1227 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1228 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1229 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1230 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1231 }
1232
1233 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1234 {
1235 /* gcc-2.6 or later (when using -fvtable-thunks)
1236 emits a unique named type for a vtable entry.
1237 Some gdb code depends on that specific name. */
1238 extern const char vtbl_ptr_name[];
1239
1240 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1241 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1242 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1243 {
1244 /* If we are giving a name to a type such as "pointer to
1245 foo" or "function returning foo", we better not set
1246 the TYPE_NAME. If the program contains "typedef char
1247 *caddr_t;", we don't want all variables of type char
1248 * to print as caddr_t. This is not just a
1249 consequence of GDB's type management; PCC and GCC (at
1250 least through version 2.4) both output variables of
1251 either type char * or caddr_t with the type number
1252 defined in the 't' symbol for caddr_t. If a future
1253 compiler cleans this up it GDB is not ready for it
1254 yet, but if it becomes ready we somehow need to
1255 disable this check (without breaking the PCC/GCC2.4
1256 case).
1257
1258 Sigh.
1259
1260 Fortunately, this check seems not to be necessary
1261 for anything except pointers or functions. */
1262 /* ezannoni: 2000-10-26. This seems to apply for
1263 versions of gcc older than 2.8. This was the original
1264 problem: with the following code gdb would tell that
1265 the type for name1 is caddr_t, and func is char().
1266
1267 typedef char *caddr_t;
1268 char *name2;
1269 struct x
1270 {
1271 char *name1;
1272 } xx;
1273 char *func()
1274 {
1275 }
1276 main () {}
1277 */
1278
1279 /* Pascal accepts names for pointer types. */
1280 if (current_subfile->language == language_pascal)
1281 {
1282 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1283 }
1284 }
1285 else
1286 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1287 }
1288
1289 add_symbol_to_list (sym, &file_symbols);
1290
1291 if (synonym)
1292 {
1293 /* Create the STRUCT_DOMAIN clone. */
1294 struct symbol *struct_sym = allocate_symbol (objfile);
1295
1296 *struct_sym = *sym;
1297 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1298 SYMBOL_VALUE (struct_sym) = valu;
1299 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1300 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1301 TYPE_NAME (SYMBOL_TYPE (sym))
1302 = obconcat (&objfile->objfile_obstack,
1303 SYMBOL_LINKAGE_NAME (sym),
1304 (char *) NULL);
1305 add_symbol_to_list (struct_sym, &file_symbols);
1306 }
1307
1308 break;
1309
1310 case 'T':
1311 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1312 by 't' which means we are typedef'ing it as well. */
1313 synonym = *p == 't';
1314
1315 if (synonym)
1316 p++;
1317
1318 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1319
1320 /* For a nameless type, we don't want a create a symbol, thus we
1321 did not use `sym'. Return without further processing. */
1322 if (nameless)
1323 return NULL;
1324
1325 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1326 SYMBOL_VALUE (sym) = valu;
1327 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1328 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1329 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1330 = obconcat (&objfile->objfile_obstack,
1331 SYMBOL_LINKAGE_NAME (sym),
1332 (char *) NULL);
1333 add_symbol_to_list (sym, &file_symbols);
1334
1335 if (synonym)
1336 {
1337 /* Clone the sym and then modify it. */
1338 struct symbol *typedef_sym = allocate_symbol (objfile);
1339
1340 *typedef_sym = *sym;
1341 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1342 SYMBOL_VALUE (typedef_sym) = valu;
1343 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1344 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1345 TYPE_NAME (SYMBOL_TYPE (sym))
1346 = obconcat (&objfile->objfile_obstack,
1347 SYMBOL_LINKAGE_NAME (sym),
1348 (char *) NULL);
1349 add_symbol_to_list (typedef_sym, &file_symbols);
1350 }
1351 break;
1352
1353 case 'V':
1354 /* Static symbol of local scope. */
1355 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1356 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1357 SYMBOL_VALUE_ADDRESS (sym) = valu;
1358 if (gdbarch_static_transform_name_p (gdbarch)
1359 && gdbarch_static_transform_name (gdbarch,
1360 SYMBOL_LINKAGE_NAME (sym))
1361 != SYMBOL_LINKAGE_NAME (sym))
1362 {
1363 struct minimal_symbol *msym;
1364
1365 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1366 NULL, objfile);
1367 if (msym != NULL)
1368 {
1369 const char *new_name = gdbarch_static_transform_name
1370 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1371
1372 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1373 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1374 }
1375 }
1376 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1377 add_symbol_to_list (sym, &local_symbols);
1378 break;
1379
1380 case 'v':
1381 /* Reference parameter */
1382 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1383 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1384 SYMBOL_IS_ARGUMENT (sym) = 1;
1385 SYMBOL_VALUE (sym) = valu;
1386 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1387 add_symbol_to_list (sym, &local_symbols);
1388 break;
1389
1390 case 'a':
1391 /* Reference parameter which is in a register. */
1392 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1393 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1394 SYMBOL_IS_ARGUMENT (sym) = 1;
1395 SYMBOL_VALUE (sym) = valu;
1396 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1397 add_symbol_to_list (sym, &local_symbols);
1398 break;
1399
1400 case 'X':
1401 /* This is used by Sun FORTRAN for "function result value".
1402 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1403 that Pascal uses it too, but when I tried it Pascal used
1404 "x:3" (local symbol) instead. */
1405 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1406 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1407 SYMBOL_VALUE (sym) = valu;
1408 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1409 add_symbol_to_list (sym, &local_symbols);
1410 break;
1411
1412 default:
1413 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1414 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1415 SYMBOL_VALUE (sym) = 0;
1416 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1417 add_symbol_to_list (sym, &file_symbols);
1418 break;
1419 }
1420
1421 /* Some systems pass variables of certain types by reference instead
1422 of by value, i.e. they will pass the address of a structure (in a
1423 register or on the stack) instead of the structure itself. */
1424
1425 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1426 && SYMBOL_IS_ARGUMENT (sym))
1427 {
1428 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1429 variables passed in a register). */
1430 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1431 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1432 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1433 and subsequent arguments on SPARC, for example). */
1434 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1435 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1436 }
1437
1438 return sym;
1439 }
1440
1441 /* Skip rest of this symbol and return an error type.
1442
1443 General notes on error recovery: error_type always skips to the
1444 end of the symbol (modulo cretinous dbx symbol name continuation).
1445 Thus code like this:
1446
1447 if (*(*pp)++ != ';')
1448 return error_type (pp, objfile);
1449
1450 is wrong because if *pp starts out pointing at '\0' (typically as the
1451 result of an earlier error), it will be incremented to point to the
1452 start of the next symbol, which might produce strange results, at least
1453 if you run off the end of the string table. Instead use
1454
1455 if (**pp != ';')
1456 return error_type (pp, objfile);
1457 ++*pp;
1458
1459 or
1460
1461 if (**pp != ';')
1462 foo = error_type (pp, objfile);
1463 else
1464 ++*pp;
1465
1466 And in case it isn't obvious, the point of all this hair is so the compiler
1467 can define new types and new syntaxes, and old versions of the
1468 debugger will be able to read the new symbol tables. */
1469
1470 static struct type *
1471 error_type (char **pp, struct objfile *objfile)
1472 {
1473 complaint (&symfile_complaints,
1474 _("couldn't parse type; debugger out of date?"));
1475 while (1)
1476 {
1477 /* Skip to end of symbol. */
1478 while (**pp != '\0')
1479 {
1480 (*pp)++;
1481 }
1482
1483 /* Check for and handle cretinous dbx symbol name continuation! */
1484 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1485 {
1486 *pp = next_symbol_text (objfile);
1487 }
1488 else
1489 {
1490 break;
1491 }
1492 }
1493 return objfile_type (objfile)->builtin_error;
1494 }
1495 \f
1496
1497 /* Read type information or a type definition; return the type. Even
1498 though this routine accepts either type information or a type
1499 definition, the distinction is relevant--some parts of stabsread.c
1500 assume that type information starts with a digit, '-', or '(' in
1501 deciding whether to call read_type. */
1502
1503 static struct type *
1504 read_type (char **pp, struct objfile *objfile)
1505 {
1506 struct type *type = 0;
1507 struct type *type1;
1508 int typenums[2];
1509 char type_descriptor;
1510
1511 /* Size in bits of type if specified by a type attribute, or -1 if
1512 there is no size attribute. */
1513 int type_size = -1;
1514
1515 /* Used to distinguish string and bitstring from char-array and set. */
1516 int is_string = 0;
1517
1518 /* Used to distinguish vector from array. */
1519 int is_vector = 0;
1520
1521 /* Read type number if present. The type number may be omitted.
1522 for instance in a two-dimensional array declared with type
1523 "ar1;1;10;ar1;1;10;4". */
1524 if ((**pp >= '0' && **pp <= '9')
1525 || **pp == '('
1526 || **pp == '-')
1527 {
1528 if (read_type_number (pp, typenums) != 0)
1529 return error_type (pp, objfile);
1530
1531 if (**pp != '=')
1532 {
1533 /* Type is not being defined here. Either it already
1534 exists, or this is a forward reference to it.
1535 dbx_alloc_type handles both cases. */
1536 type = dbx_alloc_type (typenums, objfile);
1537
1538 /* If this is a forward reference, arrange to complain if it
1539 doesn't get patched up by the time we're done
1540 reading. */
1541 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1542 add_undefined_type (type, typenums);
1543
1544 return type;
1545 }
1546
1547 /* Type is being defined here. */
1548 /* Skip the '='.
1549 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1550 (*pp) += 2;
1551 }
1552 else
1553 {
1554 /* 'typenums=' not present, type is anonymous. Read and return
1555 the definition, but don't put it in the type vector. */
1556 typenums[0] = typenums[1] = -1;
1557 (*pp)++;
1558 }
1559
1560 again:
1561 type_descriptor = (*pp)[-1];
1562 switch (type_descriptor)
1563 {
1564 case 'x':
1565 {
1566 enum type_code code;
1567
1568 /* Used to index through file_symbols. */
1569 struct pending *ppt;
1570 int i;
1571
1572 /* Name including "struct", etc. */
1573 char *type_name;
1574
1575 {
1576 char *from, *to, *p, *q1, *q2;
1577
1578 /* Set the type code according to the following letter. */
1579 switch ((*pp)[0])
1580 {
1581 case 's':
1582 code = TYPE_CODE_STRUCT;
1583 break;
1584 case 'u':
1585 code = TYPE_CODE_UNION;
1586 break;
1587 case 'e':
1588 code = TYPE_CODE_ENUM;
1589 break;
1590 default:
1591 {
1592 /* Complain and keep going, so compilers can invent new
1593 cross-reference types. */
1594 complaint (&symfile_complaints,
1595 _("Unrecognized cross-reference type `%c'"),
1596 (*pp)[0]);
1597 code = TYPE_CODE_STRUCT;
1598 break;
1599 }
1600 }
1601
1602 q1 = strchr (*pp, '<');
1603 p = strchr (*pp, ':');
1604 if (p == NULL)
1605 return error_type (pp, objfile);
1606 if (q1 && p > q1 && p[1] == ':')
1607 {
1608 int nesting_level = 0;
1609
1610 for (q2 = q1; *q2; q2++)
1611 {
1612 if (*q2 == '<')
1613 nesting_level++;
1614 else if (*q2 == '>')
1615 nesting_level--;
1616 else if (*q2 == ':' && nesting_level == 0)
1617 break;
1618 }
1619 p = q2;
1620 if (*p != ':')
1621 return error_type (pp, objfile);
1622 }
1623 type_name = NULL;
1624 if (current_subfile->language == language_cplus)
1625 {
1626 char *new_name, *name = alloca (p - *pp + 1);
1627
1628 memcpy (name, *pp, p - *pp);
1629 name[p - *pp] = '\0';
1630 new_name = cp_canonicalize_string (name);
1631 if (new_name != NULL)
1632 {
1633 type_name = obstack_copy0 (&objfile->objfile_obstack,
1634 new_name, strlen (new_name));
1635 xfree (new_name);
1636 }
1637 }
1638 if (type_name == NULL)
1639 {
1640 to = type_name = (char *)
1641 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1642
1643 /* Copy the name. */
1644 from = *pp + 1;
1645 while (from < p)
1646 *to++ = *from++;
1647 *to = '\0';
1648 }
1649
1650 /* Set the pointer ahead of the name which we just read, and
1651 the colon. */
1652 *pp = p + 1;
1653 }
1654
1655 /* If this type has already been declared, then reuse the same
1656 type, rather than allocating a new one. This saves some
1657 memory. */
1658
1659 for (ppt = file_symbols; ppt; ppt = ppt->next)
1660 for (i = 0; i < ppt->nsyms; i++)
1661 {
1662 struct symbol *sym = ppt->symbol[i];
1663
1664 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1665 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1666 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1667 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1668 {
1669 obstack_free (&objfile->objfile_obstack, type_name);
1670 type = SYMBOL_TYPE (sym);
1671 if (typenums[0] != -1)
1672 *dbx_lookup_type (typenums, objfile) = type;
1673 return type;
1674 }
1675 }
1676
1677 /* Didn't find the type to which this refers, so we must
1678 be dealing with a forward reference. Allocate a type
1679 structure for it, and keep track of it so we can
1680 fill in the rest of the fields when we get the full
1681 type. */
1682 type = dbx_alloc_type (typenums, objfile);
1683 TYPE_CODE (type) = code;
1684 TYPE_TAG_NAME (type) = type_name;
1685 INIT_CPLUS_SPECIFIC (type);
1686 TYPE_STUB (type) = 1;
1687
1688 add_undefined_type (type, typenums);
1689 return type;
1690 }
1691
1692 case '-': /* RS/6000 built-in type */
1693 case '0':
1694 case '1':
1695 case '2':
1696 case '3':
1697 case '4':
1698 case '5':
1699 case '6':
1700 case '7':
1701 case '8':
1702 case '9':
1703 case '(':
1704 (*pp)--;
1705
1706 /* We deal with something like t(1,2)=(3,4)=... which
1707 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1708
1709 /* Allocate and enter the typedef type first.
1710 This handles recursive types. */
1711 type = dbx_alloc_type (typenums, objfile);
1712 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1713 {
1714 struct type *xtype = read_type (pp, objfile);
1715
1716 if (type == xtype)
1717 {
1718 /* It's being defined as itself. That means it is "void". */
1719 TYPE_CODE (type) = TYPE_CODE_VOID;
1720 TYPE_LENGTH (type) = 1;
1721 }
1722 else if (type_size >= 0 || is_string)
1723 {
1724 /* This is the absolute wrong way to construct types. Every
1725 other debug format has found a way around this problem and
1726 the related problems with unnecessarily stubbed types;
1727 someone motivated should attempt to clean up the issue
1728 here as well. Once a type pointed to has been created it
1729 should not be modified.
1730
1731 Well, it's not *absolutely* wrong. Constructing recursive
1732 types (trees, linked lists) necessarily entails modifying
1733 types after creating them. Constructing any loop structure
1734 entails side effects. The Dwarf 2 reader does handle this
1735 more gracefully (it never constructs more than once
1736 instance of a type object, so it doesn't have to copy type
1737 objects wholesale), but it still mutates type objects after
1738 other folks have references to them.
1739
1740 Keep in mind that this circularity/mutation issue shows up
1741 at the source language level, too: C's "incomplete types",
1742 for example. So the proper cleanup, I think, would be to
1743 limit GDB's type smashing to match exactly those required
1744 by the source language. So GDB could have a
1745 "complete_this_type" function, but never create unnecessary
1746 copies of a type otherwise. */
1747 replace_type (type, xtype);
1748 TYPE_NAME (type) = NULL;
1749 TYPE_TAG_NAME (type) = NULL;
1750 }
1751 else
1752 {
1753 TYPE_TARGET_STUB (type) = 1;
1754 TYPE_TARGET_TYPE (type) = xtype;
1755 }
1756 }
1757 break;
1758
1759 /* In the following types, we must be sure to overwrite any existing
1760 type that the typenums refer to, rather than allocating a new one
1761 and making the typenums point to the new one. This is because there
1762 may already be pointers to the existing type (if it had been
1763 forward-referenced), and we must change it to a pointer, function,
1764 reference, or whatever, *in-place*. */
1765
1766 case '*': /* Pointer to another type */
1767 type1 = read_type (pp, objfile);
1768 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1769 break;
1770
1771 case '&': /* Reference to another type */
1772 type1 = read_type (pp, objfile);
1773 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1774 break;
1775
1776 case 'f': /* Function returning another type */
1777 type1 = read_type (pp, objfile);
1778 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1779 break;
1780
1781 case 'g': /* Prototyped function. (Sun) */
1782 {
1783 /* Unresolved questions:
1784
1785 - According to Sun's ``STABS Interface Manual'', for 'f'
1786 and 'F' symbol descriptors, a `0' in the argument type list
1787 indicates a varargs function. But it doesn't say how 'g'
1788 type descriptors represent that info. Someone with access
1789 to Sun's toolchain should try it out.
1790
1791 - According to the comment in define_symbol (search for
1792 `process_prototype_types:'), Sun emits integer arguments as
1793 types which ref themselves --- like `void' types. Do we
1794 have to deal with that here, too? Again, someone with
1795 access to Sun's toolchain should try it out and let us
1796 know. */
1797
1798 const char *type_start = (*pp) - 1;
1799 struct type *return_type = read_type (pp, objfile);
1800 struct type *func_type
1801 = make_function_type (return_type,
1802 dbx_lookup_type (typenums, objfile));
1803 struct type_list {
1804 struct type *type;
1805 struct type_list *next;
1806 } *arg_types = 0;
1807 int num_args = 0;
1808
1809 while (**pp && **pp != '#')
1810 {
1811 struct type *arg_type = read_type (pp, objfile);
1812 struct type_list *new = alloca (sizeof (*new));
1813 new->type = arg_type;
1814 new->next = arg_types;
1815 arg_types = new;
1816 num_args++;
1817 }
1818 if (**pp == '#')
1819 ++*pp;
1820 else
1821 {
1822 complaint (&symfile_complaints,
1823 _("Prototyped function type didn't "
1824 "end arguments with `#':\n%s"),
1825 type_start);
1826 }
1827
1828 /* If there is just one argument whose type is `void', then
1829 that's just an empty argument list. */
1830 if (arg_types
1831 && ! arg_types->next
1832 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1833 num_args = 0;
1834
1835 TYPE_FIELDS (func_type)
1836 = (struct field *) TYPE_ALLOC (func_type,
1837 num_args * sizeof (struct field));
1838 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1839 {
1840 int i;
1841 struct type_list *t;
1842
1843 /* We stuck each argument type onto the front of the list
1844 when we read it, so the list is reversed. Build the
1845 fields array right-to-left. */
1846 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1847 TYPE_FIELD_TYPE (func_type, i) = t->type;
1848 }
1849 TYPE_NFIELDS (func_type) = num_args;
1850 TYPE_PROTOTYPED (func_type) = 1;
1851
1852 type = func_type;
1853 break;
1854 }
1855
1856 case 'k': /* Const qualifier on some type (Sun) */
1857 type = read_type (pp, objfile);
1858 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1859 dbx_lookup_type (typenums, objfile));
1860 break;
1861
1862 case 'B': /* Volatile qual on some type (Sun) */
1863 type = read_type (pp, objfile);
1864 type = make_cv_type (TYPE_CONST (type), 1, type,
1865 dbx_lookup_type (typenums, objfile));
1866 break;
1867
1868 case '@':
1869 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1870 { /* Member (class & variable) type */
1871 /* FIXME -- we should be doing smash_to_XXX types here. */
1872
1873 struct type *domain = read_type (pp, objfile);
1874 struct type *memtype;
1875
1876 if (**pp != ',')
1877 /* Invalid member type data format. */
1878 return error_type (pp, objfile);
1879 ++*pp;
1880
1881 memtype = read_type (pp, objfile);
1882 type = dbx_alloc_type (typenums, objfile);
1883 smash_to_memberptr_type (type, domain, memtype);
1884 }
1885 else
1886 /* type attribute */
1887 {
1888 char *attr = *pp;
1889
1890 /* Skip to the semicolon. */
1891 while (**pp != ';' && **pp != '\0')
1892 ++(*pp);
1893 if (**pp == '\0')
1894 return error_type (pp, objfile);
1895 else
1896 ++ * pp; /* Skip the semicolon. */
1897
1898 switch (*attr)
1899 {
1900 case 's': /* Size attribute */
1901 type_size = atoi (attr + 1);
1902 if (type_size <= 0)
1903 type_size = -1;
1904 break;
1905
1906 case 'S': /* String attribute */
1907 /* FIXME: check to see if following type is array? */
1908 is_string = 1;
1909 break;
1910
1911 case 'V': /* Vector attribute */
1912 /* FIXME: check to see if following type is array? */
1913 is_vector = 1;
1914 break;
1915
1916 default:
1917 /* Ignore unrecognized type attributes, so future compilers
1918 can invent new ones. */
1919 break;
1920 }
1921 ++*pp;
1922 goto again;
1923 }
1924 break;
1925
1926 case '#': /* Method (class & fn) type */
1927 if ((*pp)[0] == '#')
1928 {
1929 /* We'll get the parameter types from the name. */
1930 struct type *return_type;
1931
1932 (*pp)++;
1933 return_type = read_type (pp, objfile);
1934 if (*(*pp)++ != ';')
1935 complaint (&symfile_complaints,
1936 _("invalid (minimal) member type "
1937 "data format at symtab pos %d."),
1938 symnum);
1939 type = allocate_stub_method (return_type);
1940 if (typenums[0] != -1)
1941 *dbx_lookup_type (typenums, objfile) = type;
1942 }
1943 else
1944 {
1945 struct type *domain = read_type (pp, objfile);
1946 struct type *return_type;
1947 struct field *args;
1948 int nargs, varargs;
1949
1950 if (**pp != ',')
1951 /* Invalid member type data format. */
1952 return error_type (pp, objfile);
1953 else
1954 ++(*pp);
1955
1956 return_type = read_type (pp, objfile);
1957 args = read_args (pp, ';', objfile, &nargs, &varargs);
1958 if (args == NULL)
1959 return error_type (pp, objfile);
1960 type = dbx_alloc_type (typenums, objfile);
1961 smash_to_method_type (type, domain, return_type, args,
1962 nargs, varargs);
1963 }
1964 break;
1965
1966 case 'r': /* Range type */
1967 type = read_range_type (pp, typenums, type_size, objfile);
1968 if (typenums[0] != -1)
1969 *dbx_lookup_type (typenums, objfile) = type;
1970 break;
1971
1972 case 'b':
1973 {
1974 /* Sun ACC builtin int type */
1975 type = read_sun_builtin_type (pp, typenums, objfile);
1976 if (typenums[0] != -1)
1977 *dbx_lookup_type (typenums, objfile) = type;
1978 }
1979 break;
1980
1981 case 'R': /* Sun ACC builtin float type */
1982 type = read_sun_floating_type (pp, typenums, objfile);
1983 if (typenums[0] != -1)
1984 *dbx_lookup_type (typenums, objfile) = type;
1985 break;
1986
1987 case 'e': /* Enumeration type */
1988 type = dbx_alloc_type (typenums, objfile);
1989 type = read_enum_type (pp, type, objfile);
1990 if (typenums[0] != -1)
1991 *dbx_lookup_type (typenums, objfile) = type;
1992 break;
1993
1994 case 's': /* Struct type */
1995 case 'u': /* Union type */
1996 {
1997 enum type_code type_code = TYPE_CODE_UNDEF;
1998 type = dbx_alloc_type (typenums, objfile);
1999 switch (type_descriptor)
2000 {
2001 case 's':
2002 type_code = TYPE_CODE_STRUCT;
2003 break;
2004 case 'u':
2005 type_code = TYPE_CODE_UNION;
2006 break;
2007 }
2008 type = read_struct_type (pp, type, type_code, objfile);
2009 break;
2010 }
2011
2012 case 'a': /* Array type */
2013 if (**pp != 'r')
2014 return error_type (pp, objfile);
2015 ++*pp;
2016
2017 type = dbx_alloc_type (typenums, objfile);
2018 type = read_array_type (pp, type, objfile);
2019 if (is_string)
2020 TYPE_CODE (type) = TYPE_CODE_STRING;
2021 if (is_vector)
2022 make_vector_type (type);
2023 break;
2024
2025 case 'S': /* Set type */
2026 type1 = read_type (pp, objfile);
2027 type = create_set_type ((struct type *) NULL, type1);
2028 if (typenums[0] != -1)
2029 *dbx_lookup_type (typenums, objfile) = type;
2030 break;
2031
2032 default:
2033 --*pp; /* Go back to the symbol in error. */
2034 /* Particularly important if it was \0! */
2035 return error_type (pp, objfile);
2036 }
2037
2038 if (type == 0)
2039 {
2040 warning (_("GDB internal error, type is NULL in stabsread.c."));
2041 return error_type (pp, objfile);
2042 }
2043
2044 /* Size specified in a type attribute overrides any other size. */
2045 if (type_size != -1)
2046 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2047
2048 return type;
2049 }
2050 \f
2051 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2052 Return the proper type node for a given builtin type number. */
2053
2054 static const struct objfile_data *rs6000_builtin_type_data;
2055
2056 static struct type *
2057 rs6000_builtin_type (int typenum, struct objfile *objfile)
2058 {
2059 struct type **negative_types = objfile_data (objfile,
2060 rs6000_builtin_type_data);
2061
2062 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2063 #define NUMBER_RECOGNIZED 34
2064 struct type *rettype = NULL;
2065
2066 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2067 {
2068 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2069 return objfile_type (objfile)->builtin_error;
2070 }
2071
2072 if (!negative_types)
2073 {
2074 /* This includes an empty slot for type number -0. */
2075 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2076 NUMBER_RECOGNIZED + 1, struct type *);
2077 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2078 }
2079
2080 if (negative_types[-typenum] != NULL)
2081 return negative_types[-typenum];
2082
2083 #if TARGET_CHAR_BIT != 8
2084 #error This code wrong for TARGET_CHAR_BIT not 8
2085 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2086 that if that ever becomes not true, the correct fix will be to
2087 make the size in the struct type to be in bits, not in units of
2088 TARGET_CHAR_BIT. */
2089 #endif
2090
2091 switch (-typenum)
2092 {
2093 case 1:
2094 /* The size of this and all the other types are fixed, defined
2095 by the debugging format. If there is a type called "int" which
2096 is other than 32 bits, then it should use a new negative type
2097 number (or avoid negative type numbers for that case).
2098 See stabs.texinfo. */
2099 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2100 break;
2101 case 2:
2102 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2103 break;
2104 case 3:
2105 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2106 break;
2107 case 4:
2108 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2109 break;
2110 case 5:
2111 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2112 "unsigned char", objfile);
2113 break;
2114 case 6:
2115 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2116 break;
2117 case 7:
2118 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2119 "unsigned short", objfile);
2120 break;
2121 case 8:
2122 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2123 "unsigned int", objfile);
2124 break;
2125 case 9:
2126 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2127 "unsigned", objfile);
2128 break;
2129 case 10:
2130 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2131 "unsigned long", objfile);
2132 break;
2133 case 11:
2134 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2135 break;
2136 case 12:
2137 /* IEEE single precision (32 bit). */
2138 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2139 break;
2140 case 13:
2141 /* IEEE double precision (64 bit). */
2142 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2143 break;
2144 case 14:
2145 /* This is an IEEE double on the RS/6000, and different machines with
2146 different sizes for "long double" should use different negative
2147 type numbers. See stabs.texinfo. */
2148 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2149 break;
2150 case 15:
2151 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2152 break;
2153 case 16:
2154 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2155 "boolean", objfile);
2156 break;
2157 case 17:
2158 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2159 break;
2160 case 18:
2161 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2162 break;
2163 case 19:
2164 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2165 break;
2166 case 20:
2167 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2168 "character", objfile);
2169 break;
2170 case 21:
2171 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2172 "logical*1", objfile);
2173 break;
2174 case 22:
2175 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2176 "logical*2", objfile);
2177 break;
2178 case 23:
2179 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2180 "logical*4", objfile);
2181 break;
2182 case 24:
2183 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2184 "logical", objfile);
2185 break;
2186 case 25:
2187 /* Complex type consisting of two IEEE single precision values. */
2188 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2189 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2190 objfile);
2191 break;
2192 case 26:
2193 /* Complex type consisting of two IEEE double precision values. */
2194 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2195 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2196 objfile);
2197 break;
2198 case 27:
2199 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2200 break;
2201 case 28:
2202 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2203 break;
2204 case 29:
2205 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2206 break;
2207 case 30:
2208 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2209 break;
2210 case 31:
2211 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2212 break;
2213 case 32:
2214 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2215 "unsigned long long", objfile);
2216 break;
2217 case 33:
2218 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2219 "logical*8", objfile);
2220 break;
2221 case 34:
2222 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2223 break;
2224 }
2225 negative_types[-typenum] = rettype;
2226 return rettype;
2227 }
2228 \f
2229 /* This page contains subroutines of read_type. */
2230
2231 /* Wrapper around method_name_from_physname to flag a complaint
2232 if there is an error. */
2233
2234 static char *
2235 stabs_method_name_from_physname (const char *physname)
2236 {
2237 char *method_name;
2238
2239 method_name = method_name_from_physname (physname);
2240
2241 if (method_name == NULL)
2242 {
2243 complaint (&symfile_complaints,
2244 _("Method has bad physname %s\n"), physname);
2245 return NULL;
2246 }
2247
2248 return method_name;
2249 }
2250
2251 /* Read member function stabs info for C++ classes. The form of each member
2252 function data is:
2253
2254 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2255
2256 An example with two member functions is:
2257
2258 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2259
2260 For the case of overloaded operators, the format is op$::*.funcs, where
2261 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2262 name (such as `+=') and `.' marks the end of the operator name.
2263
2264 Returns 1 for success, 0 for failure. */
2265
2266 static int
2267 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2268 struct objfile *objfile)
2269 {
2270 int nfn_fields = 0;
2271 int length = 0;
2272 int i;
2273 struct next_fnfield
2274 {
2275 struct next_fnfield *next;
2276 struct fn_field fn_field;
2277 }
2278 *sublist;
2279 struct type *look_ahead_type;
2280 struct next_fnfieldlist *new_fnlist;
2281 struct next_fnfield *new_sublist;
2282 char *main_fn_name;
2283 char *p;
2284
2285 /* Process each list until we find something that is not a member function
2286 or find the end of the functions. */
2287
2288 while (**pp != ';')
2289 {
2290 /* We should be positioned at the start of the function name.
2291 Scan forward to find the first ':' and if it is not the
2292 first of a "::" delimiter, then this is not a member function. */
2293 p = *pp;
2294 while (*p != ':')
2295 {
2296 p++;
2297 }
2298 if (p[1] != ':')
2299 {
2300 break;
2301 }
2302
2303 sublist = NULL;
2304 look_ahead_type = NULL;
2305 length = 0;
2306
2307 new_fnlist = (struct next_fnfieldlist *)
2308 xmalloc (sizeof (struct next_fnfieldlist));
2309 make_cleanup (xfree, new_fnlist);
2310 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2311
2312 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2313 {
2314 /* This is a completely wierd case. In order to stuff in the
2315 names that might contain colons (the usual name delimiter),
2316 Mike Tiemann defined a different name format which is
2317 signalled if the identifier is "op$". In that case, the
2318 format is "op$::XXXX." where XXXX is the name. This is
2319 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2320 /* This lets the user type "break operator+".
2321 We could just put in "+" as the name, but that wouldn't
2322 work for "*". */
2323 static char opname[32] = "op$";
2324 char *o = opname + 3;
2325
2326 /* Skip past '::'. */
2327 *pp = p + 2;
2328
2329 STABS_CONTINUE (pp, objfile);
2330 p = *pp;
2331 while (*p != '.')
2332 {
2333 *o++ = *p++;
2334 }
2335 main_fn_name = savestring (opname, o - opname);
2336 /* Skip past '.' */
2337 *pp = p + 1;
2338 }
2339 else
2340 {
2341 main_fn_name = savestring (*pp, p - *pp);
2342 /* Skip past '::'. */
2343 *pp = p + 2;
2344 }
2345 new_fnlist->fn_fieldlist.name = main_fn_name;
2346
2347 do
2348 {
2349 new_sublist =
2350 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2351 make_cleanup (xfree, new_sublist);
2352 memset (new_sublist, 0, sizeof (struct next_fnfield));
2353
2354 /* Check for and handle cretinous dbx symbol name continuation! */
2355 if (look_ahead_type == NULL)
2356 {
2357 /* Normal case. */
2358 STABS_CONTINUE (pp, objfile);
2359
2360 new_sublist->fn_field.type = read_type (pp, objfile);
2361 if (**pp != ':')
2362 {
2363 /* Invalid symtab info for member function. */
2364 return 0;
2365 }
2366 }
2367 else
2368 {
2369 /* g++ version 1 kludge */
2370 new_sublist->fn_field.type = look_ahead_type;
2371 look_ahead_type = NULL;
2372 }
2373
2374 (*pp)++;
2375 p = *pp;
2376 while (*p != ';')
2377 {
2378 p++;
2379 }
2380
2381 /* If this is just a stub, then we don't have the real name here. */
2382
2383 if (TYPE_STUB (new_sublist->fn_field.type))
2384 {
2385 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2386 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2387 new_sublist->fn_field.is_stub = 1;
2388 }
2389 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2390 *pp = p + 1;
2391
2392 /* Set this member function's visibility fields. */
2393 switch (*(*pp)++)
2394 {
2395 case VISIBILITY_PRIVATE:
2396 new_sublist->fn_field.is_private = 1;
2397 break;
2398 case VISIBILITY_PROTECTED:
2399 new_sublist->fn_field.is_protected = 1;
2400 break;
2401 }
2402
2403 STABS_CONTINUE (pp, objfile);
2404 switch (**pp)
2405 {
2406 case 'A': /* Normal functions. */
2407 new_sublist->fn_field.is_const = 0;
2408 new_sublist->fn_field.is_volatile = 0;
2409 (*pp)++;
2410 break;
2411 case 'B': /* `const' member functions. */
2412 new_sublist->fn_field.is_const = 1;
2413 new_sublist->fn_field.is_volatile = 0;
2414 (*pp)++;
2415 break;
2416 case 'C': /* `volatile' member function. */
2417 new_sublist->fn_field.is_const = 0;
2418 new_sublist->fn_field.is_volatile = 1;
2419 (*pp)++;
2420 break;
2421 case 'D': /* `const volatile' member function. */
2422 new_sublist->fn_field.is_const = 1;
2423 new_sublist->fn_field.is_volatile = 1;
2424 (*pp)++;
2425 break;
2426 case '*': /* File compiled with g++ version 1 --
2427 no info. */
2428 case '?':
2429 case '.':
2430 break;
2431 default:
2432 complaint (&symfile_complaints,
2433 _("const/volatile indicator missing, got '%c'"),
2434 **pp);
2435 break;
2436 }
2437
2438 switch (*(*pp)++)
2439 {
2440 case '*':
2441 {
2442 int nbits;
2443 /* virtual member function, followed by index.
2444 The sign bit is set to distinguish pointers-to-methods
2445 from virtual function indicies. Since the array is
2446 in words, the quantity must be shifted left by 1
2447 on 16 bit machine, and by 2 on 32 bit machine, forcing
2448 the sign bit out, and usable as a valid index into
2449 the array. Remove the sign bit here. */
2450 new_sublist->fn_field.voffset =
2451 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2452 if (nbits != 0)
2453 return 0;
2454
2455 STABS_CONTINUE (pp, objfile);
2456 if (**pp == ';' || **pp == '\0')
2457 {
2458 /* Must be g++ version 1. */
2459 new_sublist->fn_field.fcontext = 0;
2460 }
2461 else
2462 {
2463 /* Figure out from whence this virtual function came.
2464 It may belong to virtual function table of
2465 one of its baseclasses. */
2466 look_ahead_type = read_type (pp, objfile);
2467 if (**pp == ':')
2468 {
2469 /* g++ version 1 overloaded methods. */
2470 }
2471 else
2472 {
2473 new_sublist->fn_field.fcontext = look_ahead_type;
2474 if (**pp != ';')
2475 {
2476 return 0;
2477 }
2478 else
2479 {
2480 ++*pp;
2481 }
2482 look_ahead_type = NULL;
2483 }
2484 }
2485 break;
2486 }
2487 case '?':
2488 /* static member function. */
2489 {
2490 int slen = strlen (main_fn_name);
2491
2492 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2493
2494 /* For static member functions, we can't tell if they
2495 are stubbed, as they are put out as functions, and not as
2496 methods.
2497 GCC v2 emits the fully mangled name if
2498 dbxout.c:flag_minimal_debug is not set, so we have to
2499 detect a fully mangled physname here and set is_stub
2500 accordingly. Fully mangled physnames in v2 start with
2501 the member function name, followed by two underscores.
2502 GCC v3 currently always emits stubbed member functions,
2503 but with fully mangled physnames, which start with _Z. */
2504 if (!(strncmp (new_sublist->fn_field.physname,
2505 main_fn_name, slen) == 0
2506 && new_sublist->fn_field.physname[slen] == '_'
2507 && new_sublist->fn_field.physname[slen + 1] == '_'))
2508 {
2509 new_sublist->fn_field.is_stub = 1;
2510 }
2511 break;
2512 }
2513
2514 default:
2515 /* error */
2516 complaint (&symfile_complaints,
2517 _("member function type missing, got '%c'"),
2518 (*pp)[-1]);
2519 /* Fall through into normal member function. */
2520
2521 case '.':
2522 /* normal member function. */
2523 new_sublist->fn_field.voffset = 0;
2524 new_sublist->fn_field.fcontext = 0;
2525 break;
2526 }
2527
2528 new_sublist->next = sublist;
2529 sublist = new_sublist;
2530 length++;
2531 STABS_CONTINUE (pp, objfile);
2532 }
2533 while (**pp != ';' && **pp != '\0');
2534
2535 (*pp)++;
2536 STABS_CONTINUE (pp, objfile);
2537
2538 /* Skip GCC 3.X member functions which are duplicates of the callable
2539 constructor/destructor. */
2540 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2541 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2542 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2543 {
2544 xfree (main_fn_name);
2545 }
2546 else
2547 {
2548 int has_stub = 0;
2549 int has_destructor = 0, has_other = 0;
2550 int is_v3 = 0;
2551 struct next_fnfield *tmp_sublist;
2552
2553 /* Various versions of GCC emit various mostly-useless
2554 strings in the name field for special member functions.
2555
2556 For stub methods, we need to defer correcting the name
2557 until we are ready to unstub the method, because the current
2558 name string is used by gdb_mangle_name. The only stub methods
2559 of concern here are GNU v2 operators; other methods have their
2560 names correct (see caveat below).
2561
2562 For non-stub methods, in GNU v3, we have a complete physname.
2563 Therefore we can safely correct the name now. This primarily
2564 affects constructors and destructors, whose name will be
2565 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2566 operators will also have incorrect names; for instance,
2567 "operator int" will be named "operator i" (i.e. the type is
2568 mangled).
2569
2570 For non-stub methods in GNU v2, we have no easy way to
2571 know if we have a complete physname or not. For most
2572 methods the result depends on the platform (if CPLUS_MARKER
2573 can be `$' or `.', it will use minimal debug information, or
2574 otherwise the full physname will be included).
2575
2576 Rather than dealing with this, we take a different approach.
2577 For v3 mangled names, we can use the full physname; for v2,
2578 we use cplus_demangle_opname (which is actually v2 specific),
2579 because the only interesting names are all operators - once again
2580 barring the caveat below. Skip this process if any method in the
2581 group is a stub, to prevent our fouling up the workings of
2582 gdb_mangle_name.
2583
2584 The caveat: GCC 2.95.x (and earlier?) put constructors and
2585 destructors in the same method group. We need to split this
2586 into two groups, because they should have different names.
2587 So for each method group we check whether it contains both
2588 routines whose physname appears to be a destructor (the physnames
2589 for and destructors are always provided, due to quirks in v2
2590 mangling) and routines whose physname does not appear to be a
2591 destructor. If so then we break up the list into two halves.
2592 Even if the constructors and destructors aren't in the same group
2593 the destructor will still lack the leading tilde, so that also
2594 needs to be fixed.
2595
2596 So, to summarize what we expect and handle here:
2597
2598 Given Given Real Real Action
2599 method name physname physname method name
2600
2601 __opi [none] __opi__3Foo operator int opname
2602 [now or later]
2603 Foo _._3Foo _._3Foo ~Foo separate and
2604 rename
2605 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2606 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2607 */
2608
2609 tmp_sublist = sublist;
2610 while (tmp_sublist != NULL)
2611 {
2612 if (tmp_sublist->fn_field.is_stub)
2613 has_stub = 1;
2614 if (tmp_sublist->fn_field.physname[0] == '_'
2615 && tmp_sublist->fn_field.physname[1] == 'Z')
2616 is_v3 = 1;
2617
2618 if (is_destructor_name (tmp_sublist->fn_field.physname))
2619 has_destructor++;
2620 else
2621 has_other++;
2622
2623 tmp_sublist = tmp_sublist->next;
2624 }
2625
2626 if (has_destructor && has_other)
2627 {
2628 struct next_fnfieldlist *destr_fnlist;
2629 struct next_fnfield *last_sublist;
2630
2631 /* Create a new fn_fieldlist for the destructors. */
2632
2633 destr_fnlist = (struct next_fnfieldlist *)
2634 xmalloc (sizeof (struct next_fnfieldlist));
2635 make_cleanup (xfree, destr_fnlist);
2636 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2637 destr_fnlist->fn_fieldlist.name
2638 = obconcat (&objfile->objfile_obstack, "~",
2639 new_fnlist->fn_fieldlist.name, (char *) NULL);
2640
2641 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2642 obstack_alloc (&objfile->objfile_obstack,
2643 sizeof (struct fn_field) * has_destructor);
2644 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2645 sizeof (struct fn_field) * has_destructor);
2646 tmp_sublist = sublist;
2647 last_sublist = NULL;
2648 i = 0;
2649 while (tmp_sublist != NULL)
2650 {
2651 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2652 {
2653 tmp_sublist = tmp_sublist->next;
2654 continue;
2655 }
2656
2657 destr_fnlist->fn_fieldlist.fn_fields[i++]
2658 = tmp_sublist->fn_field;
2659 if (last_sublist)
2660 last_sublist->next = tmp_sublist->next;
2661 else
2662 sublist = tmp_sublist->next;
2663 last_sublist = tmp_sublist;
2664 tmp_sublist = tmp_sublist->next;
2665 }
2666
2667 destr_fnlist->fn_fieldlist.length = has_destructor;
2668 destr_fnlist->next = fip->fnlist;
2669 fip->fnlist = destr_fnlist;
2670 nfn_fields++;
2671 length -= has_destructor;
2672 }
2673 else if (is_v3)
2674 {
2675 /* v3 mangling prevents the use of abbreviated physnames,
2676 so we can do this here. There are stubbed methods in v3
2677 only:
2678 - in -gstabs instead of -gstabs+
2679 - or for static methods, which are output as a function type
2680 instead of a method type. */
2681 char *new_method_name =
2682 stabs_method_name_from_physname (sublist->fn_field.physname);
2683
2684 if (new_method_name != NULL
2685 && strcmp (new_method_name,
2686 new_fnlist->fn_fieldlist.name) != 0)
2687 {
2688 new_fnlist->fn_fieldlist.name = new_method_name;
2689 xfree (main_fn_name);
2690 }
2691 else
2692 xfree (new_method_name);
2693 }
2694 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2695 {
2696 new_fnlist->fn_fieldlist.name =
2697 obconcat (&objfile->objfile_obstack,
2698 "~", main_fn_name, (char *)NULL);
2699 xfree (main_fn_name);
2700 }
2701 else if (!has_stub)
2702 {
2703 char dem_opname[256];
2704 int ret;
2705
2706 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2707 dem_opname, DMGL_ANSI);
2708 if (!ret)
2709 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2710 dem_opname, 0);
2711 if (ret)
2712 new_fnlist->fn_fieldlist.name
2713 = obstack_copy0 (&objfile->objfile_obstack,
2714 dem_opname, strlen (dem_opname));
2715 xfree (main_fn_name);
2716 }
2717
2718 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2719 obstack_alloc (&objfile->objfile_obstack,
2720 sizeof (struct fn_field) * length);
2721 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2722 sizeof (struct fn_field) * length);
2723 for (i = length; (i--, sublist); sublist = sublist->next)
2724 {
2725 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2726 }
2727
2728 new_fnlist->fn_fieldlist.length = length;
2729 new_fnlist->next = fip->fnlist;
2730 fip->fnlist = new_fnlist;
2731 nfn_fields++;
2732 }
2733 }
2734
2735 if (nfn_fields)
2736 {
2737 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2738 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2739 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2740 memset (TYPE_FN_FIELDLISTS (type), 0,
2741 sizeof (struct fn_fieldlist) * nfn_fields);
2742 TYPE_NFN_FIELDS (type) = nfn_fields;
2743 }
2744
2745 return 1;
2746 }
2747
2748 /* Special GNU C++ name.
2749
2750 Returns 1 for success, 0 for failure. "failure" means that we can't
2751 keep parsing and it's time for error_type(). */
2752
2753 static int
2754 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2755 struct objfile *objfile)
2756 {
2757 char *p;
2758 const char *name;
2759 char cpp_abbrev;
2760 struct type *context;
2761
2762 p = *pp;
2763 if (*++p == 'v')
2764 {
2765 name = NULL;
2766 cpp_abbrev = *++p;
2767
2768 *pp = p + 1;
2769
2770 /* At this point, *pp points to something like "22:23=*22...",
2771 where the type number before the ':' is the "context" and
2772 everything after is a regular type definition. Lookup the
2773 type, find it's name, and construct the field name. */
2774
2775 context = read_type (pp, objfile);
2776
2777 switch (cpp_abbrev)
2778 {
2779 case 'f': /* $vf -- a virtual function table pointer */
2780 name = type_name_no_tag (context);
2781 if (name == NULL)
2782 {
2783 name = "";
2784 }
2785 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2786 vptr_name, name, (char *) NULL);
2787 break;
2788
2789 case 'b': /* $vb -- a virtual bsomethingorother */
2790 name = type_name_no_tag (context);
2791 if (name == NULL)
2792 {
2793 complaint (&symfile_complaints,
2794 _("C++ abbreviated type name "
2795 "unknown at symtab pos %d"),
2796 symnum);
2797 name = "FOO";
2798 }
2799 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2800 name, (char *) NULL);
2801 break;
2802
2803 default:
2804 invalid_cpp_abbrev_complaint (*pp);
2805 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2806 "INVALID_CPLUSPLUS_ABBREV",
2807 (char *) NULL);
2808 break;
2809 }
2810
2811 /* At this point, *pp points to the ':'. Skip it and read the
2812 field type. */
2813
2814 p = ++(*pp);
2815 if (p[-1] != ':')
2816 {
2817 invalid_cpp_abbrev_complaint (*pp);
2818 return 0;
2819 }
2820 fip->list->field.type = read_type (pp, objfile);
2821 if (**pp == ',')
2822 (*pp)++; /* Skip the comma. */
2823 else
2824 return 0;
2825
2826 {
2827 int nbits;
2828
2829 SET_FIELD_BITPOS (fip->list->field,
2830 read_huge_number (pp, ';', &nbits, 0));
2831 if (nbits != 0)
2832 return 0;
2833 }
2834 /* This field is unpacked. */
2835 FIELD_BITSIZE (fip->list->field) = 0;
2836 fip->list->visibility = VISIBILITY_PRIVATE;
2837 }
2838 else
2839 {
2840 invalid_cpp_abbrev_complaint (*pp);
2841 /* We have no idea what syntax an unrecognized abbrev would have, so
2842 better return 0. If we returned 1, we would need to at least advance
2843 *pp to avoid an infinite loop. */
2844 return 0;
2845 }
2846 return 1;
2847 }
2848
2849 static void
2850 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2851 struct type *type, struct objfile *objfile)
2852 {
2853 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2854
2855 fip->list->field.name =
2856 obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2857 *pp = p + 1;
2858
2859 /* This means we have a visibility for a field coming. */
2860 if (**pp == '/')
2861 {
2862 (*pp)++;
2863 fip->list->visibility = *(*pp)++;
2864 }
2865 else
2866 {
2867 /* normal dbx-style format, no explicit visibility */
2868 fip->list->visibility = VISIBILITY_PUBLIC;
2869 }
2870
2871 fip->list->field.type = read_type (pp, objfile);
2872 if (**pp == ':')
2873 {
2874 p = ++(*pp);
2875 #if 0
2876 /* Possible future hook for nested types. */
2877 if (**pp == '!')
2878 {
2879 fip->list->field.bitpos = (long) -2; /* nested type */
2880 p = ++(*pp);
2881 }
2882 else
2883 ...;
2884 #endif
2885 while (*p != ';')
2886 {
2887 p++;
2888 }
2889 /* Static class member. */
2890 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2891 *pp = p + 1;
2892 return;
2893 }
2894 else if (**pp != ',')
2895 {
2896 /* Bad structure-type format. */
2897 stabs_general_complaint ("bad structure-type format");
2898 return;
2899 }
2900
2901 (*pp)++; /* Skip the comma. */
2902
2903 {
2904 int nbits;
2905
2906 SET_FIELD_BITPOS (fip->list->field,
2907 read_huge_number (pp, ',', &nbits, 0));
2908 if (nbits != 0)
2909 {
2910 stabs_general_complaint ("bad structure-type format");
2911 return;
2912 }
2913 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2914 if (nbits != 0)
2915 {
2916 stabs_general_complaint ("bad structure-type format");
2917 return;
2918 }
2919 }
2920
2921 if (FIELD_BITPOS (fip->list->field) == 0
2922 && FIELD_BITSIZE (fip->list->field) == 0)
2923 {
2924 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2925 it is a field which has been optimized out. The correct stab for
2926 this case is to use VISIBILITY_IGNORE, but that is a recent
2927 invention. (2) It is a 0-size array. For example
2928 union { int num; char str[0]; } foo. Printing _("<no value>" for
2929 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2930 will continue to work, and a 0-size array as a whole doesn't
2931 have any contents to print.
2932
2933 I suspect this probably could also happen with gcc -gstabs (not
2934 -gstabs+) for static fields, and perhaps other C++ extensions.
2935 Hopefully few people use -gstabs with gdb, since it is intended
2936 for dbx compatibility. */
2937
2938 /* Ignore this field. */
2939 fip->list->visibility = VISIBILITY_IGNORE;
2940 }
2941 else
2942 {
2943 /* Detect an unpacked field and mark it as such.
2944 dbx gives a bit size for all fields.
2945 Note that forward refs cannot be packed,
2946 and treat enums as if they had the width of ints. */
2947
2948 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2949
2950 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2951 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2952 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2953 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2954 {
2955 FIELD_BITSIZE (fip->list->field) = 0;
2956 }
2957 if ((FIELD_BITSIZE (fip->list->field)
2958 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2959 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2960 && FIELD_BITSIZE (fip->list->field)
2961 == gdbarch_int_bit (gdbarch))
2962 )
2963 &&
2964 FIELD_BITPOS (fip->list->field) % 8 == 0)
2965 {
2966 FIELD_BITSIZE (fip->list->field) = 0;
2967 }
2968 }
2969 }
2970
2971
2972 /* Read struct or class data fields. They have the form:
2973
2974 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2975
2976 At the end, we see a semicolon instead of a field.
2977
2978 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2979 a static field.
2980
2981 The optional VISIBILITY is one of:
2982
2983 '/0' (VISIBILITY_PRIVATE)
2984 '/1' (VISIBILITY_PROTECTED)
2985 '/2' (VISIBILITY_PUBLIC)
2986 '/9' (VISIBILITY_IGNORE)
2987
2988 or nothing, for C style fields with public visibility.
2989
2990 Returns 1 for success, 0 for failure. */
2991
2992 static int
2993 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2994 struct objfile *objfile)
2995 {
2996 char *p;
2997 struct nextfield *new;
2998
2999 /* We better set p right now, in case there are no fields at all... */
3000
3001 p = *pp;
3002
3003 /* Read each data member type until we find the terminating ';' at the end of
3004 the data member list, or break for some other reason such as finding the
3005 start of the member function list. */
3006 /* Stab string for structure/union does not end with two ';' in
3007 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3008
3009 while (**pp != ';' && **pp != '\0')
3010 {
3011 STABS_CONTINUE (pp, objfile);
3012 /* Get space to record the next field's data. */
3013 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3014 make_cleanup (xfree, new);
3015 memset (new, 0, sizeof (struct nextfield));
3016 new->next = fip->list;
3017 fip->list = new;
3018
3019 /* Get the field name. */
3020 p = *pp;
3021
3022 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3023 unless the CPLUS_MARKER is followed by an underscore, in
3024 which case it is just the name of an anonymous type, which we
3025 should handle like any other type name. */
3026
3027 if (is_cplus_marker (p[0]) && p[1] != '_')
3028 {
3029 if (!read_cpp_abbrev (fip, pp, type, objfile))
3030 return 0;
3031 continue;
3032 }
3033
3034 /* Look for the ':' that separates the field name from the field
3035 values. Data members are delimited by a single ':', while member
3036 functions are delimited by a pair of ':'s. When we hit the member
3037 functions (if any), terminate scan loop and return. */
3038
3039 while (*p != ':' && *p != '\0')
3040 {
3041 p++;
3042 }
3043 if (*p == '\0')
3044 return 0;
3045
3046 /* Check to see if we have hit the member functions yet. */
3047 if (p[1] == ':')
3048 {
3049 break;
3050 }
3051 read_one_struct_field (fip, pp, p, type, objfile);
3052 }
3053 if (p[0] == ':' && p[1] == ':')
3054 {
3055 /* (the deleted) chill the list of fields: the last entry (at
3056 the head) is a partially constructed entry which we now
3057 scrub. */
3058 fip->list = fip->list->next;
3059 }
3060 return 1;
3061 }
3062 /* *INDENT-OFF* */
3063 /* The stabs for C++ derived classes contain baseclass information which
3064 is marked by a '!' character after the total size. This function is
3065 called when we encounter the baseclass marker, and slurps up all the
3066 baseclass information.
3067
3068 Immediately following the '!' marker is the number of base classes that
3069 the class is derived from, followed by information for each base class.
3070 For each base class, there are two visibility specifiers, a bit offset
3071 to the base class information within the derived class, a reference to
3072 the type for the base class, and a terminating semicolon.
3073
3074 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3075 ^^ ^ ^ ^ ^ ^ ^
3076 Baseclass information marker __________________|| | | | | | |
3077 Number of baseclasses __________________________| | | | | | |
3078 Visibility specifiers (2) ________________________| | | | | |
3079 Offset in bits from start of class _________________| | | | |
3080 Type number for base class ___________________________| | | |
3081 Visibility specifiers (2) _______________________________| | |
3082 Offset in bits from start of class ________________________| |
3083 Type number of base class ____________________________________|
3084
3085 Return 1 for success, 0 for (error-type-inducing) failure. */
3086 /* *INDENT-ON* */
3087
3088
3089
3090 static int
3091 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3092 struct objfile *objfile)
3093 {
3094 int i;
3095 struct nextfield *new;
3096
3097 if (**pp != '!')
3098 {
3099 return 1;
3100 }
3101 else
3102 {
3103 /* Skip the '!' baseclass information marker. */
3104 (*pp)++;
3105 }
3106
3107 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3108 {
3109 int nbits;
3110
3111 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3112 if (nbits != 0)
3113 return 0;
3114 }
3115
3116 #if 0
3117 /* Some stupid compilers have trouble with the following, so break
3118 it up into simpler expressions. */
3119 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3120 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3121 #else
3122 {
3123 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3124 char *pointer;
3125
3126 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3127 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3128 }
3129 #endif /* 0 */
3130
3131 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3132
3133 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3134 {
3135 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3136 make_cleanup (xfree, new);
3137 memset (new, 0, sizeof (struct nextfield));
3138 new->next = fip->list;
3139 fip->list = new;
3140 FIELD_BITSIZE (new->field) = 0; /* This should be an unpacked
3141 field! */
3142
3143 STABS_CONTINUE (pp, objfile);
3144 switch (**pp)
3145 {
3146 case '0':
3147 /* Nothing to do. */
3148 break;
3149 case '1':
3150 SET_TYPE_FIELD_VIRTUAL (type, i);
3151 break;
3152 default:
3153 /* Unknown character. Complain and treat it as non-virtual. */
3154 {
3155 complaint (&symfile_complaints,
3156 _("Unknown virtual character `%c' for baseclass"),
3157 **pp);
3158 }
3159 }
3160 ++(*pp);
3161
3162 new->visibility = *(*pp)++;
3163 switch (new->visibility)
3164 {
3165 case VISIBILITY_PRIVATE:
3166 case VISIBILITY_PROTECTED:
3167 case VISIBILITY_PUBLIC:
3168 break;
3169 default:
3170 /* Bad visibility format. Complain and treat it as
3171 public. */
3172 {
3173 complaint (&symfile_complaints,
3174 _("Unknown visibility `%c' for baseclass"),
3175 new->visibility);
3176 new->visibility = VISIBILITY_PUBLIC;
3177 }
3178 }
3179
3180 {
3181 int nbits;
3182
3183 /* The remaining value is the bit offset of the portion of the object
3184 corresponding to this baseclass. Always zero in the absence of
3185 multiple inheritance. */
3186
3187 SET_FIELD_BITPOS (new->field, read_huge_number (pp, ',', &nbits, 0));
3188 if (nbits != 0)
3189 return 0;
3190 }
3191
3192 /* The last piece of baseclass information is the type of the
3193 base class. Read it, and remember it's type name as this
3194 field's name. */
3195
3196 new->field.type = read_type (pp, objfile);
3197 new->field.name = type_name_no_tag (new->field.type);
3198
3199 /* Skip trailing ';' and bump count of number of fields seen. */
3200 if (**pp == ';')
3201 (*pp)++;
3202 else
3203 return 0;
3204 }
3205 return 1;
3206 }
3207
3208 /* The tail end of stabs for C++ classes that contain a virtual function
3209 pointer contains a tilde, a %, and a type number.
3210 The type number refers to the base class (possibly this class itself) which
3211 contains the vtable pointer for the current class.
3212
3213 This function is called when we have parsed all the method declarations,
3214 so we can look for the vptr base class info. */
3215
3216 static int
3217 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3218 struct objfile *objfile)
3219 {
3220 char *p;
3221
3222 STABS_CONTINUE (pp, objfile);
3223
3224 /* If we are positioned at a ';', then skip it. */
3225 if (**pp == ';')
3226 {
3227 (*pp)++;
3228 }
3229
3230 if (**pp == '~')
3231 {
3232 (*pp)++;
3233
3234 if (**pp == '=' || **pp == '+' || **pp == '-')
3235 {
3236 /* Obsolete flags that used to indicate the presence
3237 of constructors and/or destructors. */
3238 (*pp)++;
3239 }
3240
3241 /* Read either a '%' or the final ';'. */
3242 if (*(*pp)++ == '%')
3243 {
3244 /* The next number is the type number of the base class
3245 (possibly our own class) which supplies the vtable for
3246 this class. Parse it out, and search that class to find
3247 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3248 and TYPE_VPTR_FIELDNO. */
3249
3250 struct type *t;
3251 int i;
3252
3253 t = read_type (pp, objfile);
3254 p = (*pp)++;
3255 while (*p != '\0' && *p != ';')
3256 {
3257 p++;
3258 }
3259 if (*p == '\0')
3260 {
3261 /* Premature end of symbol. */
3262 return 0;
3263 }
3264
3265 TYPE_VPTR_BASETYPE (type) = t;
3266 if (type == t) /* Our own class provides vtbl ptr. */
3267 {
3268 for (i = TYPE_NFIELDS (t) - 1;
3269 i >= TYPE_N_BASECLASSES (t);
3270 --i)
3271 {
3272 const char *name = TYPE_FIELD_NAME (t, i);
3273
3274 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3275 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3276 {
3277 TYPE_VPTR_FIELDNO (type) = i;
3278 goto gotit;
3279 }
3280 }
3281 /* Virtual function table field not found. */
3282 complaint (&symfile_complaints,
3283 _("virtual function table pointer "
3284 "not found when defining class `%s'"),
3285 TYPE_NAME (type));
3286 return 0;
3287 }
3288 else
3289 {
3290 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3291 }
3292
3293 gotit:
3294 *pp = p + 1;
3295 }
3296 }
3297 return 1;
3298 }
3299
3300 static int
3301 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3302 {
3303 int n;
3304
3305 for (n = TYPE_NFN_FIELDS (type);
3306 fip->fnlist != NULL;
3307 fip->fnlist = fip->fnlist->next)
3308 {
3309 --n; /* Circumvent Sun3 compiler bug. */
3310 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3311 }
3312 return 1;
3313 }
3314
3315 /* Create the vector of fields, and record how big it is.
3316 We need this info to record proper virtual function table information
3317 for this class's virtual functions. */
3318
3319 static int
3320 attach_fields_to_type (struct field_info *fip, struct type *type,
3321 struct objfile *objfile)
3322 {
3323 int nfields = 0;
3324 int non_public_fields = 0;
3325 struct nextfield *scan;
3326
3327 /* Count up the number of fields that we have, as well as taking note of
3328 whether or not there are any non-public fields, which requires us to
3329 allocate and build the private_field_bits and protected_field_bits
3330 bitfields. */
3331
3332 for (scan = fip->list; scan != NULL; scan = scan->next)
3333 {
3334 nfields++;
3335 if (scan->visibility != VISIBILITY_PUBLIC)
3336 {
3337 non_public_fields++;
3338 }
3339 }
3340
3341 /* Now we know how many fields there are, and whether or not there are any
3342 non-public fields. Record the field count, allocate space for the
3343 array of fields, and create blank visibility bitfields if necessary. */
3344
3345 TYPE_NFIELDS (type) = nfields;
3346 TYPE_FIELDS (type) = (struct field *)
3347 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3348 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3349
3350 if (non_public_fields)
3351 {
3352 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3353
3354 TYPE_FIELD_PRIVATE_BITS (type) =
3355 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3356 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3357
3358 TYPE_FIELD_PROTECTED_BITS (type) =
3359 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3360 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3361
3362 TYPE_FIELD_IGNORE_BITS (type) =
3363 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3364 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3365 }
3366
3367 /* Copy the saved-up fields into the field vector. Start from the
3368 head of the list, adding to the tail of the field array, so that
3369 they end up in the same order in the array in which they were
3370 added to the list. */
3371
3372 while (nfields-- > 0)
3373 {
3374 TYPE_FIELD (type, nfields) = fip->list->field;
3375 switch (fip->list->visibility)
3376 {
3377 case VISIBILITY_PRIVATE:
3378 SET_TYPE_FIELD_PRIVATE (type, nfields);
3379 break;
3380
3381 case VISIBILITY_PROTECTED:
3382 SET_TYPE_FIELD_PROTECTED (type, nfields);
3383 break;
3384
3385 case VISIBILITY_IGNORE:
3386 SET_TYPE_FIELD_IGNORE (type, nfields);
3387 break;
3388
3389 case VISIBILITY_PUBLIC:
3390 break;
3391
3392 default:
3393 /* Unknown visibility. Complain and treat it as public. */
3394 {
3395 complaint (&symfile_complaints,
3396 _("Unknown visibility `%c' for field"),
3397 fip->list->visibility);
3398 }
3399 break;
3400 }
3401 fip->list = fip->list->next;
3402 }
3403 return 1;
3404 }
3405
3406
3407 /* Complain that the compiler has emitted more than one definition for the
3408 structure type TYPE. */
3409 static void
3410 complain_about_struct_wipeout (struct type *type)
3411 {
3412 const char *name = "";
3413 const char *kind = "";
3414
3415 if (TYPE_TAG_NAME (type))
3416 {
3417 name = TYPE_TAG_NAME (type);
3418 switch (TYPE_CODE (type))
3419 {
3420 case TYPE_CODE_STRUCT: kind = "struct "; break;
3421 case TYPE_CODE_UNION: kind = "union "; break;
3422 case TYPE_CODE_ENUM: kind = "enum "; break;
3423 default: kind = "";
3424 }
3425 }
3426 else if (TYPE_NAME (type))
3427 {
3428 name = TYPE_NAME (type);
3429 kind = "";
3430 }
3431 else
3432 {
3433 name = "<unknown>";
3434 kind = "";
3435 }
3436
3437 complaint (&symfile_complaints,
3438 _("struct/union type gets multiply defined: %s%s"), kind, name);
3439 }
3440
3441 /* Set the length for all variants of a same main_type, which are
3442 connected in the closed chain.
3443
3444 This is something that needs to be done when a type is defined *after*
3445 some cross references to this type have already been read. Consider
3446 for instance the following scenario where we have the following two
3447 stabs entries:
3448
3449 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3450 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3451
3452 A stubbed version of type dummy is created while processing the first
3453 stabs entry. The length of that type is initially set to zero, since
3454 it is unknown at this point. Also, a "constant" variation of type
3455 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3456 the stabs line).
3457
3458 The second stabs entry allows us to replace the stubbed definition
3459 with the real definition. However, we still need to adjust the length
3460 of the "constant" variation of that type, as its length was left
3461 untouched during the main type replacement... */
3462
3463 static void
3464 set_length_in_type_chain (struct type *type)
3465 {
3466 struct type *ntype = TYPE_CHAIN (type);
3467
3468 while (ntype != type)
3469 {
3470 if (TYPE_LENGTH(ntype) == 0)
3471 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3472 else
3473 complain_about_struct_wipeout (ntype);
3474 ntype = TYPE_CHAIN (ntype);
3475 }
3476 }
3477
3478 /* Read the description of a structure (or union type) and return an object
3479 describing the type.
3480
3481 PP points to a character pointer that points to the next unconsumed token
3482 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3483 *PP will point to "4a:1,0,32;;".
3484
3485 TYPE points to an incomplete type that needs to be filled in.
3486
3487 OBJFILE points to the current objfile from which the stabs information is
3488 being read. (Note that it is redundant in that TYPE also contains a pointer
3489 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3490 */
3491
3492 static struct type *
3493 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3494 struct objfile *objfile)
3495 {
3496 struct cleanup *back_to;
3497 struct field_info fi;
3498
3499 fi.list = NULL;
3500 fi.fnlist = NULL;
3501
3502 /* When describing struct/union/class types in stabs, G++ always drops
3503 all qualifications from the name. So if you've got:
3504 struct A { ... struct B { ... }; ... };
3505 then G++ will emit stabs for `struct A::B' that call it simply
3506 `struct B'. Obviously, if you've got a real top-level definition for
3507 `struct B', or other nested definitions, this is going to cause
3508 problems.
3509
3510 Obviously, GDB can't fix this by itself, but it can at least avoid
3511 scribbling on existing structure type objects when new definitions
3512 appear. */
3513 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3514 || TYPE_STUB (type)))
3515 {
3516 complain_about_struct_wipeout (type);
3517
3518 /* It's probably best to return the type unchanged. */
3519 return type;
3520 }
3521
3522 back_to = make_cleanup (null_cleanup, 0);
3523
3524 INIT_CPLUS_SPECIFIC (type);
3525 TYPE_CODE (type) = type_code;
3526 TYPE_STUB (type) = 0;
3527
3528 /* First comes the total size in bytes. */
3529
3530 {
3531 int nbits;
3532
3533 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3534 if (nbits != 0)
3535 {
3536 do_cleanups (back_to);
3537 return error_type (pp, objfile);
3538 }
3539 set_length_in_type_chain (type);
3540 }
3541
3542 /* Now read the baseclasses, if any, read the regular C struct or C++
3543 class member fields, attach the fields to the type, read the C++
3544 member functions, attach them to the type, and then read any tilde
3545 field (baseclass specifier for the class holding the main vtable). */
3546
3547 if (!read_baseclasses (&fi, pp, type, objfile)
3548 || !read_struct_fields (&fi, pp, type, objfile)
3549 || !attach_fields_to_type (&fi, type, objfile)
3550 || !read_member_functions (&fi, pp, type, objfile)
3551 || !attach_fn_fields_to_type (&fi, type)
3552 || !read_tilde_fields (&fi, pp, type, objfile))
3553 {
3554 type = error_type (pp, objfile);
3555 }
3556
3557 do_cleanups (back_to);
3558 return (type);
3559 }
3560
3561 /* Read a definition of an array type,
3562 and create and return a suitable type object.
3563 Also creates a range type which represents the bounds of that
3564 array. */
3565
3566 static struct type *
3567 read_array_type (char **pp, struct type *type,
3568 struct objfile *objfile)
3569 {
3570 struct type *index_type, *element_type, *range_type;
3571 int lower, upper;
3572 int adjustable = 0;
3573 int nbits;
3574
3575 /* Format of an array type:
3576 "ar<index type>;lower;upper;<array_contents_type>".
3577 OS9000: "arlower,upper;<array_contents_type>".
3578
3579 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3580 for these, produce a type like float[][]. */
3581
3582 {
3583 index_type = read_type (pp, objfile);
3584 if (**pp != ';')
3585 /* Improper format of array type decl. */
3586 return error_type (pp, objfile);
3587 ++*pp;
3588 }
3589
3590 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3591 {
3592 (*pp)++;
3593 adjustable = 1;
3594 }
3595 lower = read_huge_number (pp, ';', &nbits, 0);
3596
3597 if (nbits != 0)
3598 return error_type (pp, objfile);
3599
3600 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3601 {
3602 (*pp)++;
3603 adjustable = 1;
3604 }
3605 upper = read_huge_number (pp, ';', &nbits, 0);
3606 if (nbits != 0)
3607 return error_type (pp, objfile);
3608
3609 element_type = read_type (pp, objfile);
3610
3611 if (adjustable)
3612 {
3613 lower = 0;
3614 upper = -1;
3615 }
3616
3617 range_type =
3618 create_range_type ((struct type *) NULL, index_type, lower, upper);
3619 type = create_array_type (type, element_type, range_type);
3620
3621 return type;
3622 }
3623
3624
3625 /* Read a definition of an enumeration type,
3626 and create and return a suitable type object.
3627 Also defines the symbols that represent the values of the type. */
3628
3629 static struct type *
3630 read_enum_type (char **pp, struct type *type,
3631 struct objfile *objfile)
3632 {
3633 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3634 char *p;
3635 char *name;
3636 long n;
3637 struct symbol *sym;
3638 int nsyms = 0;
3639 struct pending **symlist;
3640 struct pending *osyms, *syms;
3641 int o_nsyms;
3642 int nbits;
3643 int unsigned_enum = 1;
3644
3645 #if 0
3646 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3647 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3648 to do? For now, force all enum values to file scope. */
3649 if (within_function)
3650 symlist = &local_symbols;
3651 else
3652 #endif
3653 symlist = &file_symbols;
3654 osyms = *symlist;
3655 o_nsyms = osyms ? osyms->nsyms : 0;
3656
3657 /* The aix4 compiler emits an extra field before the enum members;
3658 my guess is it's a type of some sort. Just ignore it. */
3659 if (**pp == '-')
3660 {
3661 /* Skip over the type. */
3662 while (**pp != ':')
3663 (*pp)++;
3664
3665 /* Skip over the colon. */
3666 (*pp)++;
3667 }
3668
3669 /* Read the value-names and their values.
3670 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3671 A semicolon or comma instead of a NAME means the end. */
3672 while (**pp && **pp != ';' && **pp != ',')
3673 {
3674 STABS_CONTINUE (pp, objfile);
3675 p = *pp;
3676 while (*p != ':')
3677 p++;
3678 name = obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3679 *pp = p + 1;
3680 n = read_huge_number (pp, ',', &nbits, 0);
3681 if (nbits != 0)
3682 return error_type (pp, objfile);
3683
3684 sym = allocate_symbol (objfile);
3685 SYMBOL_SET_LINKAGE_NAME (sym, name);
3686 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3687 &objfile->objfile_obstack);
3688 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3689 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3690 SYMBOL_VALUE (sym) = n;
3691 if (n < 0)
3692 unsigned_enum = 0;
3693 add_symbol_to_list (sym, symlist);
3694 nsyms++;
3695 }
3696
3697 if (**pp == ';')
3698 (*pp)++; /* Skip the semicolon. */
3699
3700 /* Now fill in the fields of the type-structure. */
3701
3702 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3703 set_length_in_type_chain (type);
3704 TYPE_CODE (type) = TYPE_CODE_ENUM;
3705 TYPE_STUB (type) = 0;
3706 if (unsigned_enum)
3707 TYPE_UNSIGNED (type) = 1;
3708 TYPE_NFIELDS (type) = nsyms;
3709 TYPE_FIELDS (type) = (struct field *)
3710 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3711 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3712
3713 /* Find the symbols for the values and put them into the type.
3714 The symbols can be found in the symlist that we put them on
3715 to cause them to be defined. osyms contains the old value
3716 of that symlist; everything up to there was defined by us. */
3717 /* Note that we preserve the order of the enum constants, so
3718 that in something like "enum {FOO, LAST_THING=FOO}" we print
3719 FOO, not LAST_THING. */
3720
3721 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3722 {
3723 int last = syms == osyms ? o_nsyms : 0;
3724 int j = syms->nsyms;
3725
3726 for (; --j >= last; --n)
3727 {
3728 struct symbol *xsym = syms->symbol[j];
3729
3730 SYMBOL_TYPE (xsym) = type;
3731 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3732 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3733 TYPE_FIELD_BITSIZE (type, n) = 0;
3734 }
3735 if (syms == osyms)
3736 break;
3737 }
3738
3739 return type;
3740 }
3741
3742 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3743 typedefs in every file (for int, long, etc):
3744
3745 type = b <signed> <width> <format type>; <offset>; <nbits>
3746 signed = u or s.
3747 optional format type = c or b for char or boolean.
3748 offset = offset from high order bit to start bit of type.
3749 width is # bytes in object of this type, nbits is # bits in type.
3750
3751 The width/offset stuff appears to be for small objects stored in
3752 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3753 FIXME. */
3754
3755 static struct type *
3756 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3757 {
3758 int type_bits;
3759 int nbits;
3760 int signed_type;
3761 enum type_code code = TYPE_CODE_INT;
3762
3763 switch (**pp)
3764 {
3765 case 's':
3766 signed_type = 1;
3767 break;
3768 case 'u':
3769 signed_type = 0;
3770 break;
3771 default:
3772 return error_type (pp, objfile);
3773 }
3774 (*pp)++;
3775
3776 /* For some odd reason, all forms of char put a c here. This is strange
3777 because no other type has this honor. We can safely ignore this because
3778 we actually determine 'char'acterness by the number of bits specified in
3779 the descriptor.
3780 Boolean forms, e.g Fortran logical*X, put a b here. */
3781
3782 if (**pp == 'c')
3783 (*pp)++;
3784 else if (**pp == 'b')
3785 {
3786 code = TYPE_CODE_BOOL;
3787 (*pp)++;
3788 }
3789
3790 /* The first number appears to be the number of bytes occupied
3791 by this type, except that unsigned short is 4 instead of 2.
3792 Since this information is redundant with the third number,
3793 we will ignore it. */
3794 read_huge_number (pp, ';', &nbits, 0);
3795 if (nbits != 0)
3796 return error_type (pp, objfile);
3797
3798 /* The second number is always 0, so ignore it too. */
3799 read_huge_number (pp, ';', &nbits, 0);
3800 if (nbits != 0)
3801 return error_type (pp, objfile);
3802
3803 /* The third number is the number of bits for this type. */
3804 type_bits = read_huge_number (pp, 0, &nbits, 0);
3805 if (nbits != 0)
3806 return error_type (pp, objfile);
3807 /* The type *should* end with a semicolon. If it are embedded
3808 in a larger type the semicolon may be the only way to know where
3809 the type ends. If this type is at the end of the stabstring we
3810 can deal with the omitted semicolon (but we don't have to like
3811 it). Don't bother to complain(), Sun's compiler omits the semicolon
3812 for "void". */
3813 if (**pp == ';')
3814 ++(*pp);
3815
3816 if (type_bits == 0)
3817 return init_type (TYPE_CODE_VOID, 1,
3818 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3819 objfile);
3820 else
3821 return init_type (code,
3822 type_bits / TARGET_CHAR_BIT,
3823 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3824 objfile);
3825 }
3826
3827 static struct type *
3828 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3829 {
3830 int nbits;
3831 int details;
3832 int nbytes;
3833 struct type *rettype;
3834
3835 /* The first number has more details about the type, for example
3836 FN_COMPLEX. */
3837 details = read_huge_number (pp, ';', &nbits, 0);
3838 if (nbits != 0)
3839 return error_type (pp, objfile);
3840
3841 /* The second number is the number of bytes occupied by this type. */
3842 nbytes = read_huge_number (pp, ';', &nbits, 0);
3843 if (nbits != 0)
3844 return error_type (pp, objfile);
3845
3846 if (details == NF_COMPLEX || details == NF_COMPLEX16
3847 || details == NF_COMPLEX32)
3848 {
3849 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3850 TYPE_TARGET_TYPE (rettype)
3851 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3852 return rettype;
3853 }
3854
3855 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3856 }
3857
3858 /* Read a number from the string pointed to by *PP.
3859 The value of *PP is advanced over the number.
3860 If END is nonzero, the character that ends the
3861 number must match END, or an error happens;
3862 and that character is skipped if it does match.
3863 If END is zero, *PP is left pointing to that character.
3864
3865 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3866 the number is represented in an octal representation, assume that
3867 it is represented in a 2's complement representation with a size of
3868 TWOS_COMPLEMENT_BITS.
3869
3870 If the number fits in a long, set *BITS to 0 and return the value.
3871 If not, set *BITS to be the number of bits in the number and return 0.
3872
3873 If encounter garbage, set *BITS to -1 and return 0. */
3874
3875 static long
3876 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3877 {
3878 char *p = *pp;
3879 int sign = 1;
3880 int sign_bit = 0;
3881 long n = 0;
3882 int radix = 10;
3883 char overflow = 0;
3884 int nbits = 0;
3885 int c;
3886 long upper_limit;
3887 int twos_complement_representation = 0;
3888
3889 if (*p == '-')
3890 {
3891 sign = -1;
3892 p++;
3893 }
3894
3895 /* Leading zero means octal. GCC uses this to output values larger
3896 than an int (because that would be hard in decimal). */
3897 if (*p == '0')
3898 {
3899 radix = 8;
3900 p++;
3901 }
3902
3903 /* Skip extra zeros. */
3904 while (*p == '0')
3905 p++;
3906
3907 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3908 {
3909 /* Octal, possibly signed. Check if we have enough chars for a
3910 negative number. */
3911
3912 size_t len;
3913 char *p1 = p;
3914
3915 while ((c = *p1) >= '0' && c < '8')
3916 p1++;
3917
3918 len = p1 - p;
3919 if (len > twos_complement_bits / 3
3920 || (twos_complement_bits % 3 == 0
3921 && len == twos_complement_bits / 3))
3922 {
3923 /* Ok, we have enough characters for a signed value, check
3924 for signness by testing if the sign bit is set. */
3925 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3926 c = *p - '0';
3927 if (c & (1 << sign_bit))
3928 {
3929 /* Definitely signed. */
3930 twos_complement_representation = 1;
3931 sign = -1;
3932 }
3933 }
3934 }
3935
3936 upper_limit = LONG_MAX / radix;
3937
3938 while ((c = *p++) >= '0' && c < ('0' + radix))
3939 {
3940 if (n <= upper_limit)
3941 {
3942 if (twos_complement_representation)
3943 {
3944 /* Octal, signed, twos complement representation. In
3945 this case, n is the corresponding absolute value. */
3946 if (n == 0)
3947 {
3948 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3949
3950 n = -sn;
3951 }
3952 else
3953 {
3954 n *= radix;
3955 n -= c - '0';
3956 }
3957 }
3958 else
3959 {
3960 /* unsigned representation */
3961 n *= radix;
3962 n += c - '0'; /* FIXME this overflows anyway. */
3963 }
3964 }
3965 else
3966 overflow = 1;
3967
3968 /* This depends on large values being output in octal, which is
3969 what GCC does. */
3970 if (radix == 8)
3971 {
3972 if (nbits == 0)
3973 {
3974 if (c == '0')
3975 /* Ignore leading zeroes. */
3976 ;
3977 else if (c == '1')
3978 nbits = 1;
3979 else if (c == '2' || c == '3')
3980 nbits = 2;
3981 else
3982 nbits = 3;
3983 }
3984 else
3985 nbits += 3;
3986 }
3987 }
3988 if (end)
3989 {
3990 if (c && c != end)
3991 {
3992 if (bits != NULL)
3993 *bits = -1;
3994 return 0;
3995 }
3996 }
3997 else
3998 --p;
3999
4000 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4001 {
4002 /* We were supposed to parse a number with maximum
4003 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4004 if (bits != NULL)
4005 *bits = -1;
4006 return 0;
4007 }
4008
4009 *pp = p;
4010 if (overflow)
4011 {
4012 if (nbits == 0)
4013 {
4014 /* Large decimal constants are an error (because it is hard to
4015 count how many bits are in them). */
4016 if (bits != NULL)
4017 *bits = -1;
4018 return 0;
4019 }
4020
4021 /* -0x7f is the same as 0x80. So deal with it by adding one to
4022 the number of bits. Two's complement represention octals
4023 can't have a '-' in front. */
4024 if (sign == -1 && !twos_complement_representation)
4025 ++nbits;
4026 if (bits)
4027 *bits = nbits;
4028 }
4029 else
4030 {
4031 if (bits)
4032 *bits = 0;
4033 return n * sign;
4034 }
4035 /* It's *BITS which has the interesting information. */
4036 return 0;
4037 }
4038
4039 static struct type *
4040 read_range_type (char **pp, int typenums[2], int type_size,
4041 struct objfile *objfile)
4042 {
4043 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4044 char *orig_pp = *pp;
4045 int rangenums[2];
4046 long n2, n3;
4047 int n2bits, n3bits;
4048 int self_subrange;
4049 struct type *result_type;
4050 struct type *index_type = NULL;
4051
4052 /* First comes a type we are a subrange of.
4053 In C it is usually 0, 1 or the type being defined. */
4054 if (read_type_number (pp, rangenums) != 0)
4055 return error_type (pp, objfile);
4056 self_subrange = (rangenums[0] == typenums[0] &&
4057 rangenums[1] == typenums[1]);
4058
4059 if (**pp == '=')
4060 {
4061 *pp = orig_pp;
4062 index_type = read_type (pp, objfile);
4063 }
4064
4065 /* A semicolon should now follow; skip it. */
4066 if (**pp == ';')
4067 (*pp)++;
4068
4069 /* The remaining two operands are usually lower and upper bounds
4070 of the range. But in some special cases they mean something else. */
4071 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4072 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4073
4074 if (n2bits == -1 || n3bits == -1)
4075 return error_type (pp, objfile);
4076
4077 if (index_type)
4078 goto handle_true_range;
4079
4080 /* If limits are huge, must be large integral type. */
4081 if (n2bits != 0 || n3bits != 0)
4082 {
4083 char got_signed = 0;
4084 char got_unsigned = 0;
4085 /* Number of bits in the type. */
4086 int nbits = 0;
4087
4088 /* If a type size attribute has been specified, the bounds of
4089 the range should fit in this size. If the lower bounds needs
4090 more bits than the upper bound, then the type is signed. */
4091 if (n2bits <= type_size && n3bits <= type_size)
4092 {
4093 if (n2bits == type_size && n2bits > n3bits)
4094 got_signed = 1;
4095 else
4096 got_unsigned = 1;
4097 nbits = type_size;
4098 }
4099 /* Range from 0 to <large number> is an unsigned large integral type. */
4100 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4101 {
4102 got_unsigned = 1;
4103 nbits = n3bits;
4104 }
4105 /* Range from <large number> to <large number>-1 is a large signed
4106 integral type. Take care of the case where <large number> doesn't
4107 fit in a long but <large number>-1 does. */
4108 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4109 || (n2bits != 0 && n3bits == 0
4110 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4111 && n3 == LONG_MAX))
4112 {
4113 got_signed = 1;
4114 nbits = n2bits;
4115 }
4116
4117 if (got_signed || got_unsigned)
4118 {
4119 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4120 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4121 objfile);
4122 }
4123 else
4124 return error_type (pp, objfile);
4125 }
4126
4127 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4128 if (self_subrange && n2 == 0 && n3 == 0)
4129 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4130
4131 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4132 is the width in bytes.
4133
4134 Fortran programs appear to use this for complex types also. To
4135 distinguish between floats and complex, g77 (and others?) seem
4136 to use self-subranges for the complexes, and subranges of int for
4137 the floats.
4138
4139 Also note that for complexes, g77 sets n2 to the size of one of
4140 the member floats, not the whole complex beast. My guess is that
4141 this was to work well with pre-COMPLEX versions of gdb. */
4142
4143 if (n3 == 0 && n2 > 0)
4144 {
4145 struct type *float_type
4146 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4147
4148 if (self_subrange)
4149 {
4150 struct type *complex_type =
4151 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4152
4153 TYPE_TARGET_TYPE (complex_type) = float_type;
4154 return complex_type;
4155 }
4156 else
4157 return float_type;
4158 }
4159
4160 /* If the upper bound is -1, it must really be an unsigned integral. */
4161
4162 else if (n2 == 0 && n3 == -1)
4163 {
4164 int bits = type_size;
4165
4166 if (bits <= 0)
4167 {
4168 /* We don't know its size. It is unsigned int or unsigned
4169 long. GCC 2.3.3 uses this for long long too, but that is
4170 just a GDB 3.5 compatibility hack. */
4171 bits = gdbarch_int_bit (gdbarch);
4172 }
4173
4174 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4175 TYPE_FLAG_UNSIGNED, NULL, objfile);
4176 }
4177
4178 /* Special case: char is defined (Who knows why) as a subrange of
4179 itself with range 0-127. */
4180 else if (self_subrange && n2 == 0 && n3 == 127)
4181 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4182
4183 /* We used to do this only for subrange of self or subrange of int. */
4184 else if (n2 == 0)
4185 {
4186 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4187 "unsigned long", and we already checked for that,
4188 so don't need to test for it here. */
4189
4190 if (n3 < 0)
4191 /* n3 actually gives the size. */
4192 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4193 NULL, objfile);
4194
4195 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4196 unsigned n-byte integer. But do require n to be a power of
4197 two; we don't want 3- and 5-byte integers flying around. */
4198 {
4199 int bytes;
4200 unsigned long bits;
4201
4202 bits = n3;
4203 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4204 bits >>= 8;
4205 if (bits == 0
4206 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4207 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4208 objfile);
4209 }
4210 }
4211 /* I think this is for Convex "long long". Since I don't know whether
4212 Convex sets self_subrange, I also accept that particular size regardless
4213 of self_subrange. */
4214 else if (n3 == 0 && n2 < 0
4215 && (self_subrange
4216 || n2 == -gdbarch_long_long_bit
4217 (gdbarch) / TARGET_CHAR_BIT))
4218 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4219 else if (n2 == -n3 - 1)
4220 {
4221 if (n3 == 0x7f)
4222 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4223 if (n3 == 0x7fff)
4224 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4225 if (n3 == 0x7fffffff)
4226 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4227 }
4228
4229 /* We have a real range type on our hands. Allocate space and
4230 return a real pointer. */
4231 handle_true_range:
4232
4233 if (self_subrange)
4234 index_type = objfile_type (objfile)->builtin_int;
4235 else
4236 index_type = *dbx_lookup_type (rangenums, objfile);
4237 if (index_type == NULL)
4238 {
4239 /* Does this actually ever happen? Is that why we are worrying
4240 about dealing with it rather than just calling error_type? */
4241
4242 complaint (&symfile_complaints,
4243 _("base type %d of range type is not defined"), rangenums[1]);
4244
4245 index_type = objfile_type (objfile)->builtin_int;
4246 }
4247
4248 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4249 return (result_type);
4250 }
4251
4252 /* Read in an argument list. This is a list of types, separated by commas
4253 and terminated with END. Return the list of types read in, or NULL
4254 if there is an error. */
4255
4256 static struct field *
4257 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4258 int *varargsp)
4259 {
4260 /* FIXME! Remove this arbitrary limit! */
4261 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4262 int n = 0, i;
4263 struct field *rval;
4264
4265 while (**pp != end)
4266 {
4267 if (**pp != ',')
4268 /* Invalid argument list: no ','. */
4269 return NULL;
4270 (*pp)++;
4271 STABS_CONTINUE (pp, objfile);
4272 types[n++] = read_type (pp, objfile);
4273 }
4274 (*pp)++; /* get past `end' (the ':' character). */
4275
4276 if (n == 0)
4277 {
4278 /* We should read at least the THIS parameter here. Some broken stabs
4279 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4280 have been present ";-16,(0,43)" reference instead. This way the
4281 excessive ";" marker prematurely stops the parameters parsing. */
4282
4283 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4284 *varargsp = 0;
4285 }
4286 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4287 *varargsp = 1;
4288 else
4289 {
4290 n--;
4291 *varargsp = 0;
4292 }
4293
4294 rval = (struct field *) xmalloc (n * sizeof (struct field));
4295 memset (rval, 0, n * sizeof (struct field));
4296 for (i = 0; i < n; i++)
4297 rval[i].type = types[i];
4298 *nargsp = n;
4299 return rval;
4300 }
4301 \f
4302 /* Common block handling. */
4303
4304 /* List of symbols declared since the last BCOMM. This list is a tail
4305 of local_symbols. When ECOMM is seen, the symbols on the list
4306 are noted so their proper addresses can be filled in later,
4307 using the common block base address gotten from the assembler
4308 stabs. */
4309
4310 static struct pending *common_block;
4311 static int common_block_i;
4312
4313 /* Name of the current common block. We get it from the BCOMM instead of the
4314 ECOMM to match IBM documentation (even though IBM puts the name both places
4315 like everyone else). */
4316 static char *common_block_name;
4317
4318 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4319 to remain after this function returns. */
4320
4321 void
4322 common_block_start (char *name, struct objfile *objfile)
4323 {
4324 if (common_block_name != NULL)
4325 {
4326 complaint (&symfile_complaints,
4327 _("Invalid symbol data: common block within common block"));
4328 }
4329 common_block = local_symbols;
4330 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4331 common_block_name = obstack_copy0 (&objfile->objfile_obstack,
4332 name, strlen (name));
4333 }
4334
4335 /* Process a N_ECOMM symbol. */
4336
4337 void
4338 common_block_end (struct objfile *objfile)
4339 {
4340 /* Symbols declared since the BCOMM are to have the common block
4341 start address added in when we know it. common_block and
4342 common_block_i point to the first symbol after the BCOMM in
4343 the local_symbols list; copy the list and hang it off the
4344 symbol for the common block name for later fixup. */
4345 int i;
4346 struct symbol *sym;
4347 struct pending *new = 0;
4348 struct pending *next;
4349 int j;
4350
4351 if (common_block_name == NULL)
4352 {
4353 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4354 return;
4355 }
4356
4357 sym = allocate_symbol (objfile);
4358 /* Note: common_block_name already saved on objfile_obstack. */
4359 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4360 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4361
4362 /* Now we copy all the symbols which have been defined since the BCOMM. */
4363
4364 /* Copy all the struct pendings before common_block. */
4365 for (next = local_symbols;
4366 next != NULL && next != common_block;
4367 next = next->next)
4368 {
4369 for (j = 0; j < next->nsyms; j++)
4370 add_symbol_to_list (next->symbol[j], &new);
4371 }
4372
4373 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4374 NULL, it means copy all the local symbols (which we already did
4375 above). */
4376
4377 if (common_block != NULL)
4378 for (j = common_block_i; j < common_block->nsyms; j++)
4379 add_symbol_to_list (common_block->symbol[j], &new);
4380
4381 SYMBOL_TYPE (sym) = (struct type *) new;
4382
4383 /* Should we be putting local_symbols back to what it was?
4384 Does it matter? */
4385
4386 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4387 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4388 global_sym_chain[i] = sym;
4389 common_block_name = NULL;
4390 }
4391
4392 /* Add a common block's start address to the offset of each symbol
4393 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4394 the common block name). */
4395
4396 static void
4397 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4398 {
4399 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4400
4401 for (; next; next = next->next)
4402 {
4403 int j;
4404
4405 for (j = next->nsyms - 1; j >= 0; j--)
4406 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4407 }
4408 }
4409 \f
4410
4411
4412 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4413 See add_undefined_type for more details. */
4414
4415 static void
4416 add_undefined_type_noname (struct type *type, int typenums[2])
4417 {
4418 struct nat nat;
4419
4420 nat.typenums[0] = typenums [0];
4421 nat.typenums[1] = typenums [1];
4422 nat.type = type;
4423
4424 if (noname_undefs_length == noname_undefs_allocated)
4425 {
4426 noname_undefs_allocated *= 2;
4427 noname_undefs = (struct nat *)
4428 xrealloc ((char *) noname_undefs,
4429 noname_undefs_allocated * sizeof (struct nat));
4430 }
4431 noname_undefs[noname_undefs_length++] = nat;
4432 }
4433
4434 /* Add TYPE to the UNDEF_TYPES vector.
4435 See add_undefined_type for more details. */
4436
4437 static void
4438 add_undefined_type_1 (struct type *type)
4439 {
4440 if (undef_types_length == undef_types_allocated)
4441 {
4442 undef_types_allocated *= 2;
4443 undef_types = (struct type **)
4444 xrealloc ((char *) undef_types,
4445 undef_types_allocated * sizeof (struct type *));
4446 }
4447 undef_types[undef_types_length++] = type;
4448 }
4449
4450 /* What about types defined as forward references inside of a small lexical
4451 scope? */
4452 /* Add a type to the list of undefined types to be checked through
4453 once this file has been read in.
4454
4455 In practice, we actually maintain two such lists: The first list
4456 (UNDEF_TYPES) is used for types whose name has been provided, and
4457 concerns forward references (eg 'xs' or 'xu' forward references);
4458 the second list (NONAME_UNDEFS) is used for types whose name is
4459 unknown at creation time, because they were referenced through
4460 their type number before the actual type was declared.
4461 This function actually adds the given type to the proper list. */
4462
4463 static void
4464 add_undefined_type (struct type *type, int typenums[2])
4465 {
4466 if (TYPE_TAG_NAME (type) == NULL)
4467 add_undefined_type_noname (type, typenums);
4468 else
4469 add_undefined_type_1 (type);
4470 }
4471
4472 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4473
4474 static void
4475 cleanup_undefined_types_noname (struct objfile *objfile)
4476 {
4477 int i;
4478
4479 for (i = 0; i < noname_undefs_length; i++)
4480 {
4481 struct nat nat = noname_undefs[i];
4482 struct type **type;
4483
4484 type = dbx_lookup_type (nat.typenums, objfile);
4485 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4486 {
4487 /* The instance flags of the undefined type are still unset,
4488 and needs to be copied over from the reference type.
4489 Since replace_type expects them to be identical, we need
4490 to set these flags manually before hand. */
4491 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4492 replace_type (nat.type, *type);
4493 }
4494 }
4495
4496 noname_undefs_length = 0;
4497 }
4498
4499 /* Go through each undefined type, see if it's still undefined, and fix it
4500 up if possible. We have two kinds of undefined types:
4501
4502 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4503 Fix: update array length using the element bounds
4504 and the target type's length.
4505 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4506 yet defined at the time a pointer to it was made.
4507 Fix: Do a full lookup on the struct/union tag. */
4508
4509 static void
4510 cleanup_undefined_types_1 (void)
4511 {
4512 struct type **type;
4513
4514 /* Iterate over every undefined type, and look for a symbol whose type
4515 matches our undefined type. The symbol matches if:
4516 1. It is a typedef in the STRUCT domain;
4517 2. It has the same name, and same type code;
4518 3. The instance flags are identical.
4519
4520 It is important to check the instance flags, because we have seen
4521 examples where the debug info contained definitions such as:
4522
4523 "foo_t:t30=B31=xefoo_t:"
4524
4525 In this case, we have created an undefined type named "foo_t" whose
4526 instance flags is null (when processing "xefoo_t"), and then created
4527 another type with the same name, but with different instance flags
4528 ('B' means volatile). I think that the definition above is wrong,
4529 since the same type cannot be volatile and non-volatile at the same
4530 time, but we need to be able to cope with it when it happens. The
4531 approach taken here is to treat these two types as different. */
4532
4533 for (type = undef_types; type < undef_types + undef_types_length; type++)
4534 {
4535 switch (TYPE_CODE (*type))
4536 {
4537
4538 case TYPE_CODE_STRUCT:
4539 case TYPE_CODE_UNION:
4540 case TYPE_CODE_ENUM:
4541 {
4542 /* Check if it has been defined since. Need to do this here
4543 as well as in check_typedef to deal with the (legitimate in
4544 C though not C++) case of several types with the same name
4545 in different source files. */
4546 if (TYPE_STUB (*type))
4547 {
4548 struct pending *ppt;
4549 int i;
4550 /* Name of the type, without "struct" or "union". */
4551 const char *typename = TYPE_TAG_NAME (*type);
4552
4553 if (typename == NULL)
4554 {
4555 complaint (&symfile_complaints, _("need a type name"));
4556 break;
4557 }
4558 for (ppt = file_symbols; ppt; ppt = ppt->next)
4559 {
4560 for (i = 0; i < ppt->nsyms; i++)
4561 {
4562 struct symbol *sym = ppt->symbol[i];
4563
4564 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4565 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4566 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4567 TYPE_CODE (*type))
4568 && (TYPE_INSTANCE_FLAGS (*type) ==
4569 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4570 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4571 typename) == 0)
4572 replace_type (*type, SYMBOL_TYPE (sym));
4573 }
4574 }
4575 }
4576 }
4577 break;
4578
4579 default:
4580 {
4581 complaint (&symfile_complaints,
4582 _("forward-referenced types left unresolved, "
4583 "type code %d."),
4584 TYPE_CODE (*type));
4585 }
4586 break;
4587 }
4588 }
4589
4590 undef_types_length = 0;
4591 }
4592
4593 /* Try to fix all the undefined types we ecountered while processing
4594 this unit. */
4595
4596 void
4597 cleanup_undefined_stabs_types (struct objfile *objfile)
4598 {
4599 cleanup_undefined_types_1 ();
4600 cleanup_undefined_types_noname (objfile);
4601 }
4602
4603 /* Scan through all of the global symbols defined in the object file,
4604 assigning values to the debugging symbols that need to be assigned
4605 to. Get these symbols from the minimal symbol table. */
4606
4607 void
4608 scan_file_globals (struct objfile *objfile)
4609 {
4610 int hash;
4611 struct minimal_symbol *msymbol;
4612 struct symbol *sym, *prev;
4613 struct objfile *resolve_objfile;
4614
4615 /* SVR4 based linkers copy referenced global symbols from shared
4616 libraries to the main executable.
4617 If we are scanning the symbols for a shared library, try to resolve
4618 them from the minimal symbols of the main executable first. */
4619
4620 if (symfile_objfile && objfile != symfile_objfile)
4621 resolve_objfile = symfile_objfile;
4622 else
4623 resolve_objfile = objfile;
4624
4625 while (1)
4626 {
4627 /* Avoid expensive loop through all minimal symbols if there are
4628 no unresolved symbols. */
4629 for (hash = 0; hash < HASHSIZE; hash++)
4630 {
4631 if (global_sym_chain[hash])
4632 break;
4633 }
4634 if (hash >= HASHSIZE)
4635 return;
4636
4637 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4638 {
4639 QUIT;
4640
4641 /* Skip static symbols. */
4642 switch (MSYMBOL_TYPE (msymbol))
4643 {
4644 case mst_file_text:
4645 case mst_file_data:
4646 case mst_file_bss:
4647 continue;
4648 default:
4649 break;
4650 }
4651
4652 prev = NULL;
4653
4654 /* Get the hash index and check all the symbols
4655 under that hash index. */
4656
4657 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4658
4659 for (sym = global_sym_chain[hash]; sym;)
4660 {
4661 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4662 SYMBOL_LINKAGE_NAME (sym)) == 0)
4663 {
4664 /* Splice this symbol out of the hash chain and
4665 assign the value we have to it. */
4666 if (prev)
4667 {
4668 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4669 }
4670 else
4671 {
4672 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4673 }
4674
4675 /* Check to see whether we need to fix up a common block. */
4676 /* Note: this code might be executed several times for
4677 the same symbol if there are multiple references. */
4678 if (sym)
4679 {
4680 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4681 {
4682 fix_common_block (sym,
4683 SYMBOL_VALUE_ADDRESS (msymbol));
4684 }
4685 else
4686 {
4687 SYMBOL_VALUE_ADDRESS (sym)
4688 = SYMBOL_VALUE_ADDRESS (msymbol);
4689 }
4690 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4691 }
4692
4693 if (prev)
4694 {
4695 sym = SYMBOL_VALUE_CHAIN (prev);
4696 }
4697 else
4698 {
4699 sym = global_sym_chain[hash];
4700 }
4701 }
4702 else
4703 {
4704 prev = sym;
4705 sym = SYMBOL_VALUE_CHAIN (sym);
4706 }
4707 }
4708 }
4709 if (resolve_objfile == objfile)
4710 break;
4711 resolve_objfile = objfile;
4712 }
4713
4714 /* Change the storage class of any remaining unresolved globals to
4715 LOC_UNRESOLVED and remove them from the chain. */
4716 for (hash = 0; hash < HASHSIZE; hash++)
4717 {
4718 sym = global_sym_chain[hash];
4719 while (sym)
4720 {
4721 prev = sym;
4722 sym = SYMBOL_VALUE_CHAIN (sym);
4723
4724 /* Change the symbol address from the misleading chain value
4725 to address zero. */
4726 SYMBOL_VALUE_ADDRESS (prev) = 0;
4727
4728 /* Complain about unresolved common block symbols. */
4729 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4730 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4731 else
4732 complaint (&symfile_complaints,
4733 _("%s: common block `%s' from "
4734 "global_sym_chain unresolved"),
4735 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4736 }
4737 }
4738 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4739 }
4740
4741 /* Initialize anything that needs initializing when starting to read
4742 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4743 to a psymtab. */
4744
4745 void
4746 stabsread_init (void)
4747 {
4748 }
4749
4750 /* Initialize anything that needs initializing when a completely new
4751 symbol file is specified (not just adding some symbols from another
4752 file, e.g. a shared library). */
4753
4754 void
4755 stabsread_new_init (void)
4756 {
4757 /* Empty the hash table of global syms looking for values. */
4758 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4759 }
4760
4761 /* Initialize anything that needs initializing at the same time as
4762 start_symtab() is called. */
4763
4764 void
4765 start_stabs (void)
4766 {
4767 global_stabs = NULL; /* AIX COFF */
4768 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4769 n_this_object_header_files = 1;
4770 type_vector_length = 0;
4771 type_vector = (struct type **) 0;
4772
4773 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4774 common_block_name = NULL;
4775 }
4776
4777 /* Call after end_symtab(). */
4778
4779 void
4780 end_stabs (void)
4781 {
4782 if (type_vector)
4783 {
4784 xfree (type_vector);
4785 }
4786 type_vector = 0;
4787 type_vector_length = 0;
4788 previous_stab_code = 0;
4789 }
4790
4791 void
4792 finish_global_stabs (struct objfile *objfile)
4793 {
4794 if (global_stabs)
4795 {
4796 patch_block_stabs (global_symbols, global_stabs, objfile);
4797 xfree (global_stabs);
4798 global_stabs = NULL;
4799 }
4800 }
4801
4802 /* Find the end of the name, delimited by a ':', but don't match
4803 ObjC symbols which look like -[Foo bar::]:bla. */
4804 static char *
4805 find_name_end (char *name)
4806 {
4807 char *s = name;
4808
4809 if (s[0] == '-' || *s == '+')
4810 {
4811 /* Must be an ObjC method symbol. */
4812 if (s[1] != '[')
4813 {
4814 error (_("invalid symbol name \"%s\""), name);
4815 }
4816 s = strchr (s, ']');
4817 if (s == NULL)
4818 {
4819 error (_("invalid symbol name \"%s\""), name);
4820 }
4821 return strchr (s, ':');
4822 }
4823 else
4824 {
4825 return strchr (s, ':');
4826 }
4827 }
4828
4829 /* Initializer for this module. */
4830
4831 void
4832 _initialize_stabsread (void)
4833 {
4834 rs6000_builtin_type_data = register_objfile_data ();
4835
4836 undef_types_allocated = 20;
4837 undef_types_length = 0;
4838 undef_types = (struct type **)
4839 xmalloc (undef_types_allocated * sizeof (struct type *));
4840
4841 noname_undefs_allocated = 20;
4842 noname_undefs_length = 0;
4843 noname_undefs = (struct nat *)
4844 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4845
4846 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4847 &stab_register_funcs);
4848 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4849 &stab_register_funcs);
4850 }